1
|
Huang X, Hao X, Wang T, Zhang X, Wu P, Shen L, Yang Y, Zhang W, Zhang K. Sex-related association between smoke exposure and gallstones in a US population: a cross-sectional study. BMC Public Health 2025; 25:344. [PMID: 39871261 PMCID: PMC11773891 DOI: 10.1186/s12889-024-21173-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 12/20/2024] [Indexed: 01/29/2025] Open
Abstract
BACKGROUND Cholelithiasis are a condition that creates an economic and medical burden on society, and women are more susceptible to gallbladder stones. However, the effect of smoking on the development of gallstones remains controversial. No studies, to our knowledge, have discussed the association between smoke exposure and gallstones separately in men and women. We evaluated the association between smoking and gallstones in both sexes. METHODS We conducted a cross-sectional analysis using data obtained from the National Health and Nutrition Examination Survey from 2017 to March 2020. The analysis was limited to individuals aged ≥ 20 years with complete information available. Self-reported smoking status, serum cotinine concentration, and self-reported gallstones conditions were combined to analyze the association of gallstones with smoking and cotinine concentration. RESULTS Of the 6,982 participants, a total of 6.2% (212) men and 14.5% (512) women reported having gallstones. Logistic regression analysis showed smoking and high serum cotinine level were risk factors associated with gallstones among women, both in the model 1 (current smoker: odds ratio [OR] = 1.563, 95% confidence interval [CI] = 1.044-2.339, p = 0.032; former smoker: OR = 1.434, 95% CI = 1.116-1.842, p = 0.007; cotinine ≥ 3 ng/mL: OR = 1.800, 95% CI = 1.247-2.596, p = 0.005; and cotinine 0.05-2.99 ng/mL: OR = 1.640, 95% CI = 1.188-2.263, p = 0.005) and model 2 (current smoker: OR = 1.588, 95% CI = 1.015-2.483, p = 0.044; cotinine ≥ 3 ng/mL: OR = 1.825; 95% CI = 1.181-2.821, p = 0.011; and cotinine 0.05-2.99 ng/mL: OR = 1.509, 95% CI = 1.075-2.126, p = 0.022). However, the association was statistically insignificant in men. The subgroup analysis showed the robustness of the association. CONCLUSIONS This study indicates smoking and elevated serum cotinine levels may be risk factors associated with the development of gallstones. Notably, the associations were specifically observed among women. The findings suggest the significance of smoking in the incidence of gallstones, which may potentially provide insights for future research on strategies to prevent gallstones, particularly among women. The validation of these findings necessitates the conduction of large-scale, high-quality prospective studies.
Collapse
Affiliation(s)
- Xingyong Huang
- Department of Gastroenterology, Endoscopic Center, Engineering Research Center of Ministry of Education for Minimally Invasive, Gastrointestinal Endoscopic Techniques, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Shenyang, 110004, Liaoning Province, China
| | - Xuanyu Hao
- Department of Gastroenterology, Endoscopic Center, Engineering Research Center of Ministry of Education for Minimally Invasive, Gastrointestinal Endoscopic Techniques, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Shenyang, 110004, Liaoning Province, China
| | - Tingting Wang
- Department of Gastroenterology, Endoscopic Center, Engineering Research Center of Ministry of Education for Minimally Invasive, Gastrointestinal Endoscopic Techniques, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Shenyang, 110004, Liaoning Province, China
| | - Xiaoyue Zhang
- Department of Gastroenterology, Endoscopic Center, Engineering Research Center of Ministry of Education for Minimally Invasive, Gastrointestinal Endoscopic Techniques, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Shenyang, 110004, Liaoning Province, China
| | - Peng Wu
- Department of Gastroenterology, Endoscopic Center, Engineering Research Center of Ministry of Education for Minimally Invasive, Gastrointestinal Endoscopic Techniques, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Shenyang, 110004, Liaoning Province, China
| | - Lufan Shen
- Department of Gastroenterology, Endoscopic Center, Engineering Research Center of Ministry of Education for Minimally Invasive, Gastrointestinal Endoscopic Techniques, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Shenyang, 110004, Liaoning Province, China
| | - Yuanyuan Yang
- Department of Gastroenterology, Endoscopic Center, Engineering Research Center of Ministry of Education for Minimally Invasive, Gastrointestinal Endoscopic Techniques, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Shenyang, 110004, Liaoning Province, China
| | - Wanchuan Zhang
- Department of Gastroenterology, Endoscopic Center, Engineering Research Center of Ministry of Education for Minimally Invasive, Gastrointestinal Endoscopic Techniques, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Shenyang, 110004, Liaoning Province, China.
| | - Kai Zhang
- Department of Gastroenterology, Endoscopic Center, Engineering Research Center of Ministry of Education for Minimally Invasive, Gastrointestinal Endoscopic Techniques, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Shenyang, 110004, Liaoning Province, China.
| |
Collapse
|
2
|
Li X, Yin X, Xu J, Geng L, Liu Z. Relationship between Abnormal Lipid Metabolism and Gallstone Formation. THE KOREAN JOURNAL OF GASTROENTEROLOGY = TAEHAN SOHWAGI HAKHOE CHI 2025; 85:11-21. [PMID: 39849808 DOI: 10.4166/kjg.2024.135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 11/22/2024] [Accepted: 11/27/2024] [Indexed: 01/25/2025]
Abstract
Cholelithiasis is a common biliary system disease with a high incidence worldwide. Abnormal lipid metabolism has been shown to play a key role in the mechanism of gallstones. Therefore, recent research literature on the genes, proteins, and molecular substances involved in lipid metabolism during the pathogenesis of gallstones has been conducted. This study aimed to determine the role of lipid metabolism in the pathogenesis of gallstones and provide insights for future studies using previous research in genomics, metabolomics, transcriptomics, and other fields.
Collapse
Affiliation(s)
- Xiang Li
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- NHC Key Laboratory of Combined Multi-organ Transplantation, Key Laboratory of the diagnosis and treatment of organ Transplantation, CAMS, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Key Laboratory of Organ Transplantation, Zhejiang Province, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Xiaodan Yin
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- NHC Key Laboratory of Combined Multi-organ Transplantation, Key Laboratory of the diagnosis and treatment of organ Transplantation, CAMS, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Key Laboratory of Organ Transplantation, Zhejiang Province, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Jun Xu
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- NHC Key Laboratory of Combined Multi-organ Transplantation, Key Laboratory of the diagnosis and treatment of organ Transplantation, CAMS, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Key Laboratory of Organ Transplantation, Zhejiang Province, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Lei Geng
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- NHC Key Laboratory of Combined Multi-organ Transplantation, Key Laboratory of the diagnosis and treatment of organ Transplantation, CAMS, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Key Laboratory of Organ Transplantation, Zhejiang Province, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Zhengtao Liu
- Shulan International Medical College, Zhejiang Shuren University, Hangzhou, Zhejiang, China
| |
Collapse
|
3
|
Gu S, Hu S, Wang S, Shi C, Qi C, Wan R, Fan G. Altered biliary microbial and metabolic profile reveals the crosstalk between NAFLD and cholelithiasis. Clin Res Hepatol Gastroenterol 2024; 48:102431. [PMID: 39094784 DOI: 10.1016/j.clinre.2024.102431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 07/17/2024] [Accepted: 07/26/2024] [Indexed: 08/04/2024]
Abstract
BACKGROUND The relationship between non-alcoholic fatty liver disease (NAFLD) and cholelithiasis is intricate, with alterations in the microenvironment potentially mediating this interplay. Thus, this study aimed to explore the biliary microbiota and metabolites of patients with cholelithiasis and detect changes induced by comorbid NAFLD. METHODS In this study, 16S rRNA gene sequencing and metabolome analysis were performed on biliary samples collected from 35 subjects. Then, patients were stratified into two groups: the comorbidity group (n = 18), consisting of cholelithiasis patients with NAFLD, and the non-comorbidity group (n = 17), comprising cholelithiasis patients without NAFLD. RESULTS Comorbid NAFLD did not significantly increase α-diversity but affected β-diversity. A statistically significant difference was observed in the abundance of biliary metabolites between the two groups. Specifically, differences in the abundance of 4 phyla, 19 genera, and 28 metabolites were significant between the two groups. Correlation analysis demonstrated positive associations among 12α-hydroxylated bile acid levels, Pyramidobacter and Fusobacterium abundance, AST levels, and the fibrosis-4 index (p < 0.05, r > 0.3), all of which were increased in patients with cholelithiasis and comorbid NAFLD. CONCLUSIONS The relationship between cholelithiasis and NAFLD influences the biliary microbial and metabolic profile, creating a detrimental microenvironment that promotes the disease progression.
Collapse
Affiliation(s)
- Shengying Gu
- Department of Clinical Pharmacy, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shanshan Hu
- Department of Clinical Pharmacy, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shuowen Wang
- Department of Clinical Pharmacy, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chenyang Shi
- Department of Clinical Pharmacy, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chendong Qi
- Department of Clinical Pharmacy, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Rong Wan
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Guorong Fan
- Department of Clinical Pharmacy, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
4
|
Zhang C, Dai W, Yang S, Wu S, Kong J. Resistance to Cholesterol Gallstone Disease: Hepatic Cholesterol Metabolism. J Clin Endocrinol Metab 2024; 109:912-923. [PMID: 37668355 DOI: 10.1210/clinem/dgad528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 08/25/2023] [Accepted: 09/01/2023] [Indexed: 09/06/2023]
Abstract
Cholesterol gallstone disease (CGD) is one of the most common digestive diseases, and it is closely associated with hepatic cholesterol metabolism. Cholesterol gallstones may be caused by abnormal hepatic cholesterol metabolism, such as excessive cholesterol biosynthesis within the liver, interfering with the uptake or export of cholesterol in the liver, and abnormal hepatic cholesterol esterification. In this review, we begin with a brief overview of the clinical diagnosis and treatment of gallstone disease (GSD). Then, we briefly describe the major processes of hepatic cholesterol metabolism and summarize the key molecular expression changes of hepatic cholesterol metabolism in patients with gallstones. We review and analyze the recent advances in elucidating the relationships between these key molecules and CGD, and some targets significantly impacting on CGD via hepatic cholesterol metabolism are also listed. We also provide a significant discussion on the relationship between CGD and nonalcoholic fatty liver disease (NAFLD). Finally, the new discoveries of some therapeutic strategies associated with hepatic cholesterol metabolism to prevent and treat CGD are summarized.
Collapse
Affiliation(s)
- Chenghao Zhang
- Biliary Surgery (2nd General) Unit, Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Wanlin Dai
- Innovation Institute of China Medical University, Shenyang 110122, P.R. China
| | - Shaojie Yang
- Biliary Surgery (2nd General) Unit, Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Shuodong Wu
- Biliary Surgery (2nd General) Unit, Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Jing Kong
- Biliary Surgery (2nd General) Unit, Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| |
Collapse
|
5
|
Alzain AA, Mukhtar RM. Application of computational approaches for the drug discovery of cholesterol gallstone disease: identification of new farnesoid X receptor modulators as a case study. GALLSTONE FORMATION, DIAGNOSIS, TREATMENT AND PREVENTION 2024:223-243. [DOI: 10.1016/b978-0-443-16098-1.00003-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
6
|
Portincasa P, Di Ciaula A, Bonfrate L, Stella A, Garruti G, Lamont JT. Metabolic dysfunction-associated gallstone disease: expecting more from critical care manifestations. Intern Emerg Med 2023; 18:1897-1918. [PMID: 37455265 PMCID: PMC10543156 DOI: 10.1007/s11739-023-03355-z] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 06/22/2023] [Indexed: 07/18/2023]
Abstract
About 20% of adults worldwide have gallstones which are solid conglomerates in the biliary tree made of cholesterol monohydrate crystals, mucin, calcium bilirubinate, and protein aggregates. About 20% of gallstone patients will definitively develop gallstone disease, a condition which consists of gallstone-related symptoms and/or complications requiring medical therapy, endoscopic procedures, and/or cholecystectomy. Gallstones represent one of the most prevalent digestive disorders in Western countries and patients with gallstone disease are one of the largest categories admitted to European hospitals. About 80% of gallstones in Western countries are made of cholesterol due to disturbed cholesterol homeostasis which involves the liver, the gallbladder and the intestine on a genetic background. The incidence of cholesterol gallstones is dramatically increasing in parallel with the global epidemic of insulin resistance, type 2 diabetes, expansion of visceral adiposity, obesity, and metabolic syndrome. In this context, gallstones can be largely considered a metabolic dysfunction-associated gallstone disease, a condition prone to specific and systemic preventive measures. In this review we discuss the key pathogenic and clinical aspects of gallstones, as the main clinical consequences of metabolic dysfunction-associated disease.
Collapse
Affiliation(s)
- Piero Portincasa
- Clinica Medica "A. Murri", Division of Internal Medicine, Department of Preventive and Regenerative Medicine and Ionian Area (DiMePrev-J), University of Bari Aldo Moro, p.zza Giulio Cesare 11, 70124, Bari, Italy.
| | - Agostino Di Ciaula
- Clinica Medica "A. Murri", Division of Internal Medicine, Department of Preventive and Regenerative Medicine and Ionian Area (DiMePrev-J), University of Bari Aldo Moro, p.zza Giulio Cesare 11, 70124, Bari, Italy
| | - Leonilde Bonfrate
- Clinica Medica "A. Murri", Division of Internal Medicine, Department of Preventive and Regenerative Medicine and Ionian Area (DiMePrev-J), University of Bari Aldo Moro, p.zza Giulio Cesare 11, 70124, Bari, Italy
| | - Alessandro Stella
- Laboratory of Medical Genetics, Department of Precision and Regenerative Medicine and Ionian Area (DIMEPRE-J), University of Bari Aldo Moro, Bari, Italy
| | - Gabriella Garruti
- Section of Endocrinology, Department of Preventive and Regenerative Medicine and Ionian Area (DiMePrev-J), University of Bari Aldo Moro, Bari, Italy
| | - John Thomas Lamont
- Division of Gastroenterology, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, 02215, USA
| |
Collapse
|
7
|
Ravi PC, Thugu TR, Singh J, Dasireddy RR, Kumar SA, Isaac NV, Oladimeji A, DeTrolio V, Abdalla R, Mohan V, Iqbal J. Gallstone Disease and Its Correlation With Thyroid Disorders: A Narrative Review. Cureus 2023; 15:e45116. [PMID: 37842424 PMCID: PMC10568238 DOI: 10.7759/cureus.45116] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Accepted: 09/12/2023] [Indexed: 10/17/2023] Open
Abstract
Over the years, several studies have revealed an important link between thyroid disorders and gallstone disease. According to these studies, hypothyroidism and hyperthyroidism are associated with cholesterol gallstone disease. This association between thyroid hormone disorders and cholesterol gallstone disease is due to the importance of thyroid hormones on cholesterol synthesis, bile functioning and content, and gallbladder motility. Several genes and receptors have been found on the thyroid gland, liver, and gallbladder to verify this association. These genes affect thyroid hormone secretion, lipid metabolism, and bile secretion. Defects in these various gene expression and protein functions lead to bile duct diseases. Other causes that lead to cholesterol gallstone disease are supersaturation of the bile with cholesterol and impaired gallbladder motility, which leads to bile stasis. This article has discussed these factors in detail while highlighting the association between thyroid hormones and cholesterol gallstone disease.
Collapse
Affiliation(s)
| | - Thanmai Reddy Thugu
- Internal Medicine, Sri Padmavathi Medical College for Women, Sri Venkateswara Institute of Medical Sciences (SVIMS), Tirupati, IND
| | - Jugraj Singh
- Internal Medicine, Punjab Institute of Medical Sciences, Jalandhar, IND
| | | | - Sharanya Anil Kumar
- Medicine and Surgery, Vydehi Institute of Medical Sciences and Research Centre, Bengaluru, IND
| | - Natasha Varghese Isaac
- Medicine, St. John's Medical College Hospital, Rajiv Gandhi University of Health Sciences (RGUHS), Bengaluru, IND
| | | | | | - Rasha Abdalla
- Medicine and Surgery, Shendi University, Shendi, SDN
| | - Vineetha Mohan
- Medicine and Surgery, Government Medical College Kottayam, Kottayam, IND
| | | |
Collapse
|
8
|
Ceci L, Han Y, Krutsinger K, Baiocchi L, Wu N, Kundu D, Kyritsi K, Zhou T, Gaudio E, Francis H, Alpini G, Kennedy L. Gallstone and Gallbladder Disease: Biliary Tract and Cholangiopathies. Compr Physiol 2023; 13:4909-4943. [PMID: 37358507 DOI: 10.1002/cphy.c220028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/27/2023]
Abstract
Cholestatic liver diseases are named primarily due to the blockage of bile flow and buildup of bile acids in the liver. Cholestasis can occur in cholangiopathies, fatty liver diseases, and during COVID-19 infection. Most literature evaluates damage occurring to the intrahepatic biliary tree during cholestasis; however, there may be associations between liver damage and gallbladder damage. Gallbladder damage can manifest as acute or chronic inflammation, perforation, polyps, cancer, and most commonly gallstones. Considering the gallbladder is an extension of the intrahepatic biliary network, and both tissues are lined by biliary epithelial cells that share common mechanisms and properties, it is worth further evaluation to understand the association between bile duct and gallbladder damage. In this comprehensive article, we discuss background information of the biliary tree and gallbladder, from function, damage, and therapeutic approaches. We then discuss published findings that identify gallbladder disorders in various liver diseases. Lastly, we provide the clinical aspect of gallbladder disorders in liver diseases and ways to enhance diagnostic and therapeutic approaches for congruent diagnosis. © 2023 American Physiological Society. Compr Physiol 13:4909-4943, 2023.
Collapse
Affiliation(s)
- Ludovica Ceci
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Department of Anatomical, Histological, Forensic Medicine and Orthopedics Sciences, Sapienza University of Rome, Rome, Italy
| | - Yuyan Han
- School of Biological Sciences, University of Northern Colorado, Greeley, Colorado, USA
| | - Kelsey Krutsinger
- School of Biological Sciences, University of Northern Colorado, Greeley, Colorado, USA
| | | | - Nan Wu
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Debjyoti Kundu
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Konstantina Kyritsi
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Tianhao Zhou
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Eugenio Gaudio
- Department of Anatomical, Histological, Forensic Medicine and Orthopedics Sciences, Sapienza University of Rome, Rome, Italy
| | - Heather Francis
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Department of Research, Richard L. Roudebush VA Medical Center, Indianapolis, Indiana, USA
| | - Gianfranco Alpini
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Department of Research, Richard L. Roudebush VA Medical Center, Indianapolis, Indiana, USA
| | - Lindsey Kennedy
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Department of Research, Richard L. Roudebush VA Medical Center, Indianapolis, Indiana, USA
| |
Collapse
|
9
|
Xia Y, Xu Y, Liu Q, Zhang J, Zhang Z, Jia Q, Tang Q, Jing X, Li J, Chen J, Xiong Y, Li Y, He J. Glutaredoxin 1 regulates cholesterol metabolism and gallstone formation by influencing protein S-glutathionylation. Metabolism 2023:155610. [PMID: 37277061 DOI: 10.1016/j.metabol.2023.155610] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/23/2023] [Accepted: 05/30/2023] [Indexed: 06/07/2023]
Abstract
OBJECTIVE Cholesterol gallstone disease (CGD) is closely related to cholesterol metabolic disorder. Glutaredoxin-1 (Glrx1) and Glrx1-related protein S-glutathionylation are increasingly being observed to drive various physiological and pathological processes, especially in metabolic diseases such as diabetes, obesity and fatty liver. However, Glrx1 has been minimally explored in cholesterol metabolism and gallstone disease. METHODS We first investigated whether Glrx1 plays a role in gallstone formation in lithogenic diet-fed mice using immunoblotting and quantitative real-time PCR. Then a whole-body Glrx1-deficient (Glrx1-/-) mice and hepatic-specific Glrx1-overexpressing (AAV8-TBG-Glrx1) mice were generated, in which we analyzed the effects of Glrx1 on lipid metabolism upon LGD feeding. Quantitative proteomic analysis and immunoprecipitation (IP) of glutathionylated proteins were performed. RESULTS We found that protein S-glutathionylation was markedly decreased and the deglutathionylating enzyme Glrx1 was greatly increased in the liver of lithogenic diet-fed mice. Glrx1-/- mice were protected from gallstone disease induced by a lithogenic diet because their biliary cholesterol and cholesterol saturation index (CSI) were reduced. Conversely, AAV8-TBG-Glrx1 mice showed greater gallstone progression with increased cholesterol secretion and CSI. Further studies showed that Glrx1-overexpressing greatly induced bile acid levels and/or composition to increase intestinal cholesterol absorption by upregulating Cyp8b1. In addition, liquid chromatography-mass spectrometry and IP analysis revealed that Glrx1 also affected the function of asialoglycoprotein receptor 1 (ASGR1) by mediating its deglutathionylation, thereby altering the expression of LXRα and controlling cholesterol secretion. CONCLUSION Our findings present novel roles of Glrx1 and Glrx1-regulated protein S-glutathionylation in gallstone formation through the targeting of cholesterol metabolism. Our data advises Glrx1 significantly increased gallstone formation by simultaneously increase bile-acid-dependent cholesterol absorption and ASGR1- LXRα-dependent cholesterol efflux. Our work suggests the potential effects of inhibiting Glrx1 activity to treat cholelithiasis.
Collapse
Affiliation(s)
- Yan Xia
- Department of Pharmacy, Institute of Metabolic Diseases and Pharmacotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Ying Xu
- Department of Pharmacy, Institute of Metabolic Diseases and Pharmacotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Qinhui Liu
- Department of Pharmacy, Institute of Metabolic Diseases and Pharmacotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Jinhang Zhang
- Department of Pharmacy, Institute of Metabolic Diseases and Pharmacotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Zijing Zhang
- Department of Pharmacy, Institute of Metabolic Diseases and Pharmacotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Qingyi Jia
- Department of Pharmacy, Institute of Metabolic Diseases and Pharmacotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Qin Tang
- Department of Pharmacy, Institute of Metabolic Diseases and Pharmacotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Xiandan Jing
- Department of Pharmacy, Institute of Metabolic Diseases and Pharmacotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Jiahui Li
- Department of Pharmacy, Institute of Metabolic Diseases and Pharmacotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Jiahao Chen
- Department of Pharmacy, Institute of Metabolic Diseases and Pharmacotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Yimin Xiong
- Department of Pharmacy, Institute of Metabolic Diseases and Pharmacotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Yanping Li
- Department of Pharmacy, Institute of Metabolic Diseases and Pharmacotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China.
| | - Jinhan He
- Department of Pharmacy, Institute of Metabolic Diseases and Pharmacotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China.
| |
Collapse
|
10
|
Lyu J, Lin Q, Fang Z, Xu Z, Liu Z. Complex impacts of gallstone disease on metabolic syndrome and nonalcoholic fatty liver disease. Front Endocrinol (Lausanne) 2022; 13:1032557. [PMID: 36506064 PMCID: PMC9727379 DOI: 10.3389/fendo.2022.1032557] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 10/25/2022] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Patients with gallstone disease (GSD) often have highly co-occurrence with metabolic syndrome (MetS) and Nonalcoholic fatty liver disease (NAFLD) both associated with insulin resistance (IR). Meanwhile, highly prevalence of NAFLD was found in patients who received cholecystectomy. However, the associations of GSD with MetS, NAFLD is inconsistent in the published literature. And risk of cholecystectomy on NAFLD is unclear. METHODS We searched the Medline EMBASE and WOS databases for literature that met our study topic. To be specific, studies with focus on associations between GSD and MetS/NAFLD, and risk evaluation on cholecystectomy and NAFLD incidence were enrolled for further analysis. The random effect model was used to calculate the combined relative ratio (RR) and odds ratio (OR)and 95% confidence interval (CI). RESULTS Seven and six papers with focus on connections between GSD and NAFLD/MetS prevalence. Correspondingly, seven papers with focus on risk of cholecystectomy on NAFLD occurrence were also enrolled into meta-analysis. After pooling the results from individual study, patients with GSD had higher risk of MetS (OR:1.45, 95%CI: 1.23-1.67, I2 = 41.1%, P=0.165). Risk of GSD was increased by 52% in NAFLD patients (pooled OR:1.52, 95%CI:1.24-1.80). And about 32% of increment on NAFLD prevalence was observed in patients with GSD (pooled OR: 1.32, 95%CI:1.14-1.50). With regard to individual MetS components, patients with higher systolic blood pressure were more prone to develop GSD, with combined SMD of 0.29 (96%CI: 0.24-0.34, P<0.05). Dose-response analysis found the GSD incidence was significantly associated with increased body mass index (BMI) (pooled OR: 1.02, 95%CI:1.01-1.03) in linear trends. Patients who received cholecystectomy had a higher risk of post-operative NAFLD (OR:2.14, 95%CI: 1.43-2.85), P<0.05). And this impact was amplified in obese patients (OR: 2.51, 95%CI: 1.95-3.06, P<0.05). CONCLUSION Our results confirmed that controls on weight and blood pressure might be candidate therapeutic strategy for GSD prevention. And concerns should be raised on de-novo NAFLD after cholecystectomy.
Collapse
Affiliation(s)
- Jingting Lyu
- Shulan International Medical College, Zhejiang Shuren University, Hangzhou, Zhejiang, China
| | - Qinghong Lin
- Shulan International Medical College, Zhejiang Shuren University, Hangzhou, Zhejiang, China
| | - Zhongbiao Fang
- Shulan International Medical College, Zhejiang Shuren University, Hangzhou, Zhejiang, China
| | - Zeling Xu
- Shulan International Medical College, Zhejiang Shuren University, Hangzhou, Zhejiang, China
| | - Zhengtao Liu
- Shulan International Medical College, Zhejiang Shuren University, Hangzhou, Zhejiang, China
- NHC Key Laboratory of Combined Multi-Organ Transplantation, Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, CAMS, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Organ Transplantation, Zhejiang Province, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Shulan (Hangzhou) Hospital, Hangzhou, China
| |
Collapse
|
11
|
E S, Srikanth MS, Shreyas A, Desai S, Mehdi S, Gangadharappa HV, Suman, Krishna KL. Recent advances, novel targets and treatments for cholelithiasis; a narrative review. Eur J Pharmacol 2021; 908:174376. [PMID: 34303667 DOI: 10.1016/j.ejphar.2021.174376] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 07/15/2021] [Accepted: 07/21/2021] [Indexed: 11/21/2022]
Abstract
Cholelithiasis is a common and frequent condition all over the world with a high prevalence rate in western countries. Individuals with cholesterol gallstone disease experience intense gastrointestinal symptoms and have a high risk of developing comorbidities like cholecystitis, Gall bladder (GB) cancer and pancreatitis. Multiple risk factors associated with cholesterol gallstones include but not limited to genetics, dietary habits, lifestyle changes, comorbid conditions and various drugs. These factors may lead to alteration in bile, cholesterol & phospholipids homeostasis in the GB, intestine and hepatocytes culminating in cholesterol gallstones formation. Surgical (cholecystectomy) and non-surgical (oral dissolution therapy) treatments are available for the disease, albeit with certain complications and high treatment cost. Thus, there is a need for interventions, complementary or alternative therapies for the treatment and prevention of cholesterol gallstones. Currently available drug therapies used for cholesterol gallstones include statins and ezetimibe. Many patients consider traditional herbal practitioners due to their promise of non-invasive and pain free management of gall stones. This present a positive shift towards generally acceptable safety and cost effectiveness of herbal treatment warranting extensive research for alternative or complementary choice such as herbal plants as an emerging area for their potential therapeutic effects. This review discusses current strategies, latest trends available in the disease pathogenesis, drug development for novel targets, risk management, newer anti-lithogenic drugs and herbal plants that target the different aspects of the disease.
Collapse
Affiliation(s)
- Swarne E
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru, 570 015, Karnataka, India
| | - M S Srikanth
- Department of Pharmacy Practice, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru, 570 015, Karnataka, India
| | - Ayachit Shreyas
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru, 570 015, Karnataka, India
| | - Sneha Desai
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru, 570 015, Karnataka, India
| | - Seema Mehdi
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru, 570 015, Karnataka, India
| | - H V Gangadharappa
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru, 570 015, Karnataka, India
| | - Suman
- Department of Dravya Guna, Government Ayurvedic Medical College and Hospital, New Sayyaji Rao Road, Mysuru, 570 001, India
| | - K L Krishna
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru, 570 015, Karnataka, India.
| |
Collapse
|
12
|
Sun D, Niu Z, Zheng HX, Wu F, Jiang L, Han TQ, Wei Y, Wang J, Jin L. A Mitochondrial DNA Variant Elevates the Risk of Gallstone Disease by Altering Mitochondrial Function. Cell Mol Gastroenterol Hepatol 2020; 11:1211-1226.e15. [PMID: 33279689 PMCID: PMC8053626 DOI: 10.1016/j.jcmgh.2020.11.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 11/27/2020] [Accepted: 11/30/2020] [Indexed: 01/06/2023]
Abstract
BACKGROUND AND AIMS Gallstone disease (cholelithiasis) is a cholesterol-related metabolic disorders with strong familial predisposition. Mitochondrial DNA (mtDNA) variants accumulated during human evolution are associated with some metabolic disorders related to modified mitochondrial function. The mechanistic links between mtDNA variants and gallstone formation need further exploration. METHODS In this study, we explored the possible associations of mtDNA variants with gallstone disease by comparing 104 probands and 300 controls in a Chinese population. We constructed corresponding cybrids using trans-mitochondrial technology to investigate the underlying mechanisms of these associations. Mitochondrial respiratory chain complex activity and function and cholesterol metabolism were assessed in the trans-mitochondrial cell models. RESULTS Here, we found a significant association of mtDNA 827A>G with an increased risk of familial gallstone disease in a Chinese population (odds ratio [OR]: 4.5, 95% confidence interval [CI]: 2.1-9.4, P=1.2×10-4). Compared with 827A cybrids (haplogroups B4a and B4c), 827G cybrids (haplogroups B4b and B4d) had impaired mitochondrial respiratory chain complex activity and function and activated JNK and AMPK signaling pathways. Additionally, the 827G cybrids showed disturbances in cholesterol transport and accelerated development of gallstones. Specifically, cholesterol transport through the transporter ABCG5/8 was increased via activation of the AMPK signaling pathway in 827G cybrids. CONCLUSIONS Our findings reveal that mtDNA 827A>G induces aberrant mitochondrial function and abnormal cholesterol transport, resulting in increased occurrence of gallstones. The results provide an important biological basis for the clinical diagnosis and prevention of gallstone disease in the future.
Collapse
Affiliation(s)
- Dayan Sun
- State Key Laboratory of Genetic Engineering, School of Life Sciences, and Human Phenome Institute, Fudan University, Shanghai, China; Collaborative Innovation Center for Genetics and Development, Fudan University, Shanghai, China
| | - Zhenmin Niu
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, Chinese National Human Genome Center at Shanghai and Shanghai Academy of Science and Technology, Shanghai, China
| | - Hong-Xiang Zheng
- Collaborative Innovation Center for Genetics and Development, Fudan University, Shanghai, China; Ministry of Education Key Laboratory of Contemporary Anthropology, Department of Anthropology and Human Genetics, School of Life Sciences, Fudan University, Shanghai, China
| | - Fei Wu
- State Key Laboratory of Genetic Engineering, School of Life Sciences, and Human Phenome Institute, Fudan University, Shanghai, China
| | - Liuyiqi Jiang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, and Human Phenome Institute, Fudan University, Shanghai, China
| | - Tian-Quan Han
- Shanghai Institute of Digestive Surgery, Department of Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yang Wei
- State Key Laboratory of Genetic Engineering, School of Life Sciences, and Human Phenome Institute, Fudan University, Shanghai, China
| | - Jiucun Wang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, and Human Phenome Institute, Fudan University, Shanghai, China; Collaborative Innovation Center for Genetics and Development, Fudan University, Shanghai, China; Research Unit of Dissecting the Population Genetics and Developing New Technologies for Treatment and Prevention of Skin Phenotypes and Dermatological Diseases (2019RU058), Chinese Academy of Medical Sciences, Shanghai, China; Taizhou Institute of Health Sciences, Fudan University, Taizhou, China.
| | - Li Jin
- State Key Laboratory of Genetic Engineering, School of Life Sciences, and Human Phenome Institute, Fudan University, Shanghai, China; Collaborative Innovation Center for Genetics and Development, Fudan University, Shanghai, China; Research Unit of Dissecting the Population Genetics and Developing New Technologies for Treatment and Prevention of Skin Phenotypes and Dermatological Diseases (2019RU058), Chinese Academy of Medical Sciences, Shanghai, China; Taizhou Institute of Health Sciences, Fudan University, Taizhou, China.
| |
Collapse
|
13
|
Rodríguez-Antonio I, López-Sánchez GN, Garrido-Camacho VY, Uribe M, Chávez-Tapia NC, Nuño-Lámbarri N. Cholecystectomy as a risk factor for non-alcoholic fatty liver disease development. HPB (Oxford) 2020; 22:1513-1520. [PMID: 32773176 DOI: 10.1016/j.hpb.2020.07.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 12/12/2019] [Accepted: 07/07/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND Hepatic steatosis and gallstone disease are highly prevalent in the general population; the shared risk factors are age, ethnicity, obesity, insulin resistance, metabolic syndrome, atherosclerosis, risk of cardiovascular disease, and mortality. The presence of insulin resistance is the critical element in this association because it represents a crucial link between metabolic syndrome and non-alcoholic fatty liver disease, as well as a higher susceptibility to gallstone formation. METHODS An exhaustive search engine investigation of gallstone disease, cholecystectomy, and liver steatosis latest literature was made. RESULTS Clinical studies and systematic reviews suggest an association between gallstone disease, cholecystectomy, and hepatic steatosis. CONCLUSION The bidirectional relationship between liver steatosis and gallstone disease and cholecystectomy is summarized in the role of insulin resistance, lipid metabolism, bile acids signaling pathways regulated by transcription factors expression, and to the gallbladder physiological role; however, more epidemiological and experimental studies should be complemented.
Collapse
Affiliation(s)
- Itzayana Rodríguez-Antonio
- Translational Research Unit, Medica Sur Clinic & Foundation, Puente de Piedra 150, Toriello Guerra Tlalpan, Z.C. 14050, Mexico City, Mexico; School of Medicine, Benemérita Universidad Autónoma de Puebla, 13 Sur 2702, Los Volcanes, Z.C. 72420, Puebla, Mexico
| | - Guillermo N López-Sánchez
- Translational Research Unit, Medica Sur Clinic & Foundation, Puente de Piedra 150, Toriello Guerra Tlalpan, Z.C. 14050, Mexico City, Mexico
| | - Victor Y Garrido-Camacho
- Translational Research Unit, Medica Sur Clinic & Foundation, Puente de Piedra 150, Toriello Guerra Tlalpan, Z.C. 14050, Mexico City, Mexico
| | - Misael Uribe
- Obesity and Digestive Diseases Unit, Medica Sur Clinic & Foundation, Puente de Piedra 150, Toriello Guerra Tlalpan, Z.C. 14050, Mexico City, Mexico
| | - Norberto C Chávez-Tapia
- Translational Research Unit, Medica Sur Clinic & Foundation, Puente de Piedra 150, Toriello Guerra Tlalpan, Z.C. 14050, Mexico City, Mexico; Obesity and Digestive Diseases Unit, Medica Sur Clinic & Foundation, Puente de Piedra 150, Toriello Guerra Tlalpan, Z.C. 14050, Mexico City, Mexico
| | - Natalia Nuño-Lámbarri
- Translational Research Unit, Medica Sur Clinic & Foundation, Puente de Piedra 150, Toriello Guerra Tlalpan, Z.C. 14050, Mexico City, Mexico.
| |
Collapse
|
14
|
Role of Baicalin and Liver X Receptor Alpha in the Formation of Cholesterol Gallstones in Mice. Gastroenterol Res Pract 2020; 2020:1343969. [PMID: 32382260 PMCID: PMC7191361 DOI: 10.1155/2020/1343969] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 02/17/2020] [Accepted: 03/28/2020] [Indexed: 12/23/2022] Open
Abstract
This study was aimed at investigating the effect of baicalin on experimental cholesterol gallstones in mice. The mouse gallstone model was induced by feeding with a lithogenic diet, and cholesterol stones were found in the gallbladder. The lithogenic diet caused elevation of triglycerides, cholesterol, and low-density lipoprotein concentrations and descent of high-density lipoprotein concentration in serum. Hyperplasia and inflammatory infiltration were observed in the gallbladder wall of lithogenic diet-fed mice. We also found the increase of cholesterol content and the decrease of bile acid in bile. Real-time PCR and western blot results demonstrated that the expression levels of two enzymes (cholesterol 7α-hydroxylase (CYP7a1) and sterol 12α-hydroxylase (CYP8b1)) to catalyze the synthesis of bile acid from cholesterol were decreased and that two cholesterol transporters (ATP-binding cassette transporter G5/G8 (ABCG5/8)) were increased in the liver of lithogenic diet-fed mice. The lithogenic diet also led to enhanced activity of alanine aminotransferase and aspartate aminotransferase in serum; increased concentrations of tumor necrosis factor-α, interleukin- (IL-) 1β, IL-6, and malondialdehyde; and decreased superoxide dismutase activity in the liver, suggesting inflammatory and oxidative stress. In addition, liver X receptor alpha (LXRα) was increased in the liver. After gavage of baicalin, the lithogenic diet-induced gallstones, hyperlipidemia, gallbladder hyperplasia, inflammation, and oxidative stress in liver and cholesterol metabolism disorders were all alleviated to some degree. The expression of LXRα in the liver was inhibited by baicalin. In addition, the LXRα agonist T0901317 aggravated lithogenic diet-induced harmful symptoms in mice, including the increase of gallstone formation, hyperlipidemia, hepatic injury, inflammation, and oxidative stress. In conclusion, we demonstrated that baicalin played a protective role in a lithogenic diet-induced gallstone mouse model, which may be mediated by inhibition of LXRα activity. These findings may provide novel insights for prevention and therapy of gallstones in the clinic.
Collapse
|
15
|
Cortés VA, Barrera F, Nervi F. Pathophysiological connections between gallstone disease, insulin resistance, and obesity. Obes Rev 2020; 21:e12983. [PMID: 31814283 DOI: 10.1111/obr.12983] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 10/28/2019] [Accepted: 11/13/2019] [Indexed: 12/12/2022]
Abstract
Obesity and cholesterol gallstone disease (GSD) are frequently coexisting diseases; therefore and considering the current worldwide obesity epidemics, a precise understanding of the pathophysiological relationships between GSD and insulin resistance (IR) is important. Classically, obesity has been understood as a risk factor for GSD and the gallbladder (GB) viewed as a simple bile reservoir, with no metabolic roles whatsoever. However, consistent evidence has showed that both GSD and cholecystectomy associates with fatty liver and IR, raising the possibility that the GB is indeed an organ with metabolic regulatory roles. Herein, we review the pathophysiological mechanisms by which GSD, IR, and obesity are interconnected, with emphasis in the actions of the GB as a regulator of bile acids kinetics and a hormone secreting organ, with metabolic actions at the systemic level. We also examine the relationships between increased hepatic lipogenic in IR states and GSD pathogenesis. We propose a model in which GSD and hepatic IR mutually interact to determine a state of dysregulated lipid and energy metabolism that potentiate the metabolic dysregulation of obesity.
Collapse
Affiliation(s)
- Víctor A Cortés
- Department of Nutrition, Diabetes and Metabolism, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Francisco Barrera
- Department of Gastroenterology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Flavio Nervi
- Department of Gastroenterology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
16
|
Wang HH, Liu M, Portincasa P, Wang DQH. Recent Advances in the Critical Role of the Sterol Efflux Transporters ABCG5/G8 in Health and Disease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1276:105-136. [PMID: 32705597 PMCID: PMC8118135 DOI: 10.1007/978-981-15-6082-8_8] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Cardiovascular disease is characterized by lipid accumulation, inflammatory response, cell death, and fibrosis in the arterial wall and is the leading cause of morbidity and mortality worldwide. Cholesterol gallstone disease is caused by complex genetic and environmental factors and is one of the most prevalent and costly digestive diseases in the USA and Europe. Although sitosterolemia is a rare inherited lipid storage disease, its genetic studies led to identification of the sterol efflux transporters ABCG5/G8 that are located on chromosome 2p21 in humans and chromosome 17 in mice. Human and animal studies have clearly demonstrated that ABCG5/G8 play a critical role in regulating hepatic secretion and intestinal absorption of cholesterol and plant sterols. Sitosterolemia is caused by a mutation in either the ABCG5 or the ABCG8 gene alone, but not in both simultaneously. Polymorphisms in the ABCG5/G8 genes are associated with abnormal plasma cholesterol metabolism and may play a key role in the genetic determination of plasma cholesterol concentrations. Moreover, ABCG5/G8 is a new gallstone gene, LITH9. Gallstone-associated variants in ABCG5/G8 are involved in the pathogenesis of cholesterol gallstones in European, Asian, and South American populations. In this chapter, we summarize the latest advances in the critical role of the sterol efflux transporters ABCG5/G8 in regulating hepatic secretion of biliary cholesterol, intestinal absorption of cholesterol and plant sterols, the classical reverse cholesterol transport, and the newly established transintestinal cholesterol excretion, as well as in the pathogenesis and pathophysiology of ABCG5/G8-related metabolic diseases such as sitosterolemia, cardiovascular disease, and cholesterol gallstone disease.
Collapse
Affiliation(s)
- Helen H Wang
- Department of Medicine and Genetics, Division of Gastroenterology and Liver Diseases, Marion Bessin Liver Research Center, Einstein-Mount Sinai Diabetes Research Center, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Min Liu
- Department of Pathology and Laboratory Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Piero Portincasa
- Department of Biomedical Sciences and Human Oncology, Clinica Medica "A. Murri", University of Bari Medical School, Bari, Italy
| | - David Q-H Wang
- Department of Medicine and Genetics, Division of Gastroenterology and Liver Diseases, Marion Bessin Liver Research Center, Einstein-Mount Sinai Diabetes Research Center, Albert Einstein College of Medicine, Bronx, NY, USA.
| |
Collapse
|
17
|
Abstract
Cholesterol gallstone disease (CGD) affects 10-15% of the adult population worldwide and the prevalence increases as a result of longer life expectancy as well as rising obesity in the general population. Beside well established CGD risk factors including environmental and genetic determinants (LITH genes), a correlation between thyroid dysfunction and CGD has been suggested in several human and murine studies. Although the precise underlying mechanisms are poorly understood, thyroid hormones may impact bile flow, bile composition and the maintenance of the enterohepatic circulation. Further there is evidence that thyroid hormones possibly impact LITH genes which are regulated by nuclear receptors (NRs). A better understanding of the CGD pathomechanisms might contribute to personalized prevention and therapy of highly prevalent and economically significant digestive disease. This review presents the current knowledge about the association between CGD and thyroid hormone dysfunction.
Collapse
Affiliation(s)
- Irina Kube
- Department of Endocrinology, Diabetes and Metabolism, University of Duisburg-Essen, Essen, Germany
| | - Denise Zwanziger
- Department of Endocrinology, Diabetes and Metabolism, University of Duisburg-Essen, Essen, Germany
| |
Collapse
|
18
|
Bueverov AO. Clinical and Pathogenetic Parallels of Nonalcoholic Fatty Liver Disease and Gallstone Disease. ACTA ACUST UNITED AC 2019. [DOI: 10.22416/1382-4376-2019-29-1-17-23] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Aim:to analyze the data that has so far been accumulated on the pathogenetic association of gallstone disease (GD) and non-alcoholic fatty liver disease (NAFLD), as well as to assess the effect of cholecystectomy on the NAFLD course.Key findings.The relationship between GD and NAFLD is very complex and seems to be mutually aggravating. There is no doubt that there is an increased risk of GB in NAFLD patients, which is primarily associated with common pathogenetic mechanisms. These include central and peripheral insulin resistance, changes in the expression of transcription factors (liver X-receptor and farnesoid X-receptor) and the bile acid membrane receptors (TGR5). Conversely, the effect of GD on the NAFLD course is assumed, although the pathogenetic factors of this association are still unknown. In recent years, convincing data has emerged concerning the role of cholecystectomy in the NAFLD progression, which may be connected with the development of small intestinal bacterial overgrowth, as well as with the disruption of the endocrine balance and the signal function of bile acids.Conclusion.The connection between NAFLD, GD and cholecystectomy is complex and multifaceted. The study of this connection will allow new methods of treatment to be developed.
Collapse
Affiliation(s)
- Aleksey O. Bueverov
- I.M. Sechenov First Moscow State Medical University (Sechenov University); M.F. Vladimirsky Moscow Regional Research and Clinical Institute (MONIKI)
| |
Collapse
|
19
|
Di Ciaula A, Wang DQH, Portincasa P. Cholesterol cholelithiasis: part of a systemic metabolic disease, prone to primary prevention. Expert Rev Gastroenterol Hepatol 2019; 13:157-171. [PMID: 30791781 DOI: 10.1080/17474124.2019.1549988] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Accepted: 11/15/2018] [Indexed: 02/07/2023]
Abstract
Cholesterol gallstone disease have relationships with various conditions linked with insulin resistance, but also with heart disease, atherosclerosis, and cancer. These associations derive from mechanisms active at a local (i.e. gallbladder, bile) and a systemic level and are involved in inflammation, hormones, nuclear receptors, signaling molecules, epigenetic modulation of gene expression, and gut microbiota. Despite advanced knowledge of these pathways, the available therapeutic options for symptomatic gallstone patients remain limited. Therapy includes oral litholysis by the bile acid ursodeoxycholic acid (UDCA) in a small subgroup of patients at high risk of postdissolution recurrence, or laparoscopic cholecystectomy, which is the therapeutic radical gold standard treatment. Cholecystectomy, however, may not be a neutral event, and potentially generates health problems, including the metabolic syndrome. Areas covered: Several studies on risk factors and pathogenesis of cholesterol gallstone disease, acting at a systemic level have been reviewed through a PubMed search. Authors have focused on primary prevention and novel potential therapeutic strategies. Expert commentary: The ultimate goal appears to target the manageable systemic mechanisms responsible for gallstone occurrence, pointing to primary prevention measures. Changes must target lifestyles, as well as experimenting innovative pharmacological tools in subgroups of patients at high risk of developing gallstones.
Collapse
Affiliation(s)
- Agostino Di Ciaula
- a Division of Internal Medicine , Hospital of Bisceglie , Bisceglie , Italy
| | - David Q-H Wang
- b Department of Medicine, Division of Gastroenterology and Liver Diseases , Marion Bessin Liver Research Center, Albert Einstein College of Medicine , Bronx , NY , USA
| | - Piero Portincasa
- c Department of Biomedical Sciences and Human Oncology, Clinica Medica "A. Murri" , University of Bari Medical School , Bari , Italy
| |
Collapse
|
20
|
Abstract
The high prevalence of cholesterol gallstones, the availability of new information about pathogenesis, and the relevant health costs due to the management of cholelithiasis in both children and adults contribute to a growing interest in this disease. From an epidemiologic point of view, the risk of gallstones has been associated with higher risk of incident ischemic heart disease, total mortality, and disease-specific mortality (including cancer) independently from the presence of traditional risk factors such as body weight, lifestyle, diabetes, and dyslipidemia. This evidence points to the existence of complex pathogenic pathways linking the occurrence of gallstones to altered systemic homeostasis involving multiple organs and dynamics. In fact, the formation of gallstones is secondary to local factors strictly dependent on the gallbladder (that is, impaired smooth muscle function, wall inflammation, and intraluminal mucin accumulation) and bile (that is, supersaturation in cholesterol and precipitation of solid crystals) but also to "extra-gallbladder" features such as gene polymorphism, epigenetic factors, expression and activity of nuclear receptors, hormonal factors (in particular, insulin resistance), multi-level alterations in cholesterol metabolism, altered intestinal motility, and variations in gut microbiota. Of note, the majority of these factors are potentially manageable. Thus, cholelithiasis appears as the expression of systemic unbalances that, besides the classic therapeutic approaches to patients with clinical evidence of symptomatic disease or complications (surgery and, in a small subgroup of subjects, oral litholysis with bile acids), could be managed with tools oriented to primary prevention (changes in diet and lifestyle and pharmacologic prevention in subgroups at high risk), and there could be relevant implications in reducing both prevalence and health costs.
Collapse
Affiliation(s)
- Agostino Di Ciaula
- Division of Internal Medicine - Hospital of Bisceglie, ASL BAT, Bisceglie, Italy
| | - Piero Portincasa
- Clinica Medica “A. Murri”, Department of Biomedical Sciences & Human Oncology, University of Bari Medical School, Bari, Italy
| |
Collapse
|
21
|
Chen YD, Cai HB, Liu P, Peng Y. Non-surgical treatment of cholesterol gallstones: An update on recent developments. Shijie Huaren Xiaohua Zazhi 2018; 26:1511-1516. [DOI: 10.11569/wcjd.v26.i25.1511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Cholesterol gallstones (CS) are a common disease of the digestive system. The imbalance of cholesterol and bile acid metabolism tends to result in the deposition of cholesterol crystals, which is the basis of gallstone formation. Current guidelines recommend cholecystectomy for CS patients with any symptoms. Nevertheless, there are still some patients without surgical indications, surgical conditions, or surgical consent, who may be benefit from non-surgical treatment. However, there are not too many tips for non-surgical treatment of CS in latest guidelines, nor sufficient attention paid form clinicians. This paper reviews the relevant recent literature on non-surgical treatment of CS, with an aim to help clinicians be familiar with non-surgical treatment of CS.
Collapse
Affiliation(s)
- Ya-Dong Chen
- Department of Gastroenterology, The First Affiliated Hospital of Hunan Normal University, Changsha 410000, Hunan Province, China
| | - Hai-Bin Cai
- Department of Gastroenterology, The First Affiliated Hospital of Hunan Normal University, Changsha 410000, Hunan Province, China
| | - Peng Liu
- Department of Gastroenterology, The First Affiliated Hospital of Hunan Normal University, Changsha 410000, Hunan Province, China
| | - Ya Peng
- Department of Gastroenterology, The First Affiliated Hospital of Hunan Normal University, Changsha 410000, Hunan Province, China
| |
Collapse
|
22
|
Abstract
PURPOSE OF REVIEW The establishment of mouse models of gallstones, and the contribution of mouse models to genetic studies of gallstone disease, as well as the latest advances in the pathophysiology of gallstones from mouse experiments are summarized. RECENT FINDINGS The combined uses of genomic strategies and phenotypic studies in mice have successfully led to the identification of many Lith genes, which pave the way for the discovery of human LITH genes. The physical-chemical, genetic, and molecular biological studies of gallstone disease in mice with knockout or transgene of specific target genes have provided many novel insights into the complex pathophysiological mechanisms of this very common hepatobiliary disease worldwide, showing that interactions of five primary defects play a critical role in the pathogenesis of cholesterol gallstones. Based on mouse studies, a new concept has been proposed that hepatic hypersecretion of biliary cholesterol is induced by multiple Lith genes, with insulin resistance as part of the metabolic syndrome interacting with cholelithogenic environmental factors to cause the phenotype. SUMMARY The mouse model of gallstones is crucial for elucidating the physical-chemical and genetic mechanisms of cholesterol crystallization and gallstone formation, which greatly increase our understanding of the pathogenesis of this disease in humans.
Collapse
Affiliation(s)
- Tony Y. Wang
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Piero Portincasa
- Department of Biomedical Sciences and Human Oncology, Clinica Medica ‘A. Murri’, University of Bari ‘Aldo Moro’ Medical School, Bari, Italy
| | - Min Liu
- Department of Pathology and Laboratory Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Patrick Tso
- Department of Pathology and Laboratory Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - David Q.-H. Wang
- Department of Medicine, Division of Gastroenterology and Liver Diseases, Marion Bessin Liver Research Center, Albert Einstein College of Medicine, Bronx, New York, USA
| |
Collapse
|
23
|
Abstract
PURPOSE OF REVIEW Gallstone disease is a major epidemiologic and economic burden worldwide, and the most frequent form is cholesterol gallstone disease. RECENT FINDINGS Major pathogenetic factors for cholesterol gallstones include a genetic background, hepatic hypersecretion of cholesterol, and supersaturated bile which give life to precipitating cholesterol crystals that accumulate and grow in a sluggish gallbladder. Additional factors include mucin and inflammatory changes in the gallbladder, slow intestinal motility, increased intestinal absorption of cholesterol, and altered gut microbiota. Mechanisms of disease are linked with insulin resistance, obesity, the metabolic syndrome, and type 2 diabetes. The role of nuclear receptors, signaling pathways, gut microbiota, and epigenome are being actively investigated. SUMMARY Ongoing research on cholesterol gallstone disease is intensively investigating several pathogenic mechanisms, associated metabolic disorders, new therapeutic approaches, and novel strategies for primary prevention, including lifestyles.
Collapse
Affiliation(s)
| | - David Q.-H. Wang
- Department of Medicine, Division of Gastroenterology and Liver Diseases, Marion Bessin Liver Research Center, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Piero Portincasa
- Department of Biomedical Sciences and Human Oncology, Clinica Medica “A. Murri”, University of Bari Medical School, Bari, Italy
| |
Collapse
|
24
|
Nonalcoholic fatty liver disease, cholesterol gallstones, and cholecystectomy: new insights on a complex relationship. Curr Opin Gastroenterol 2018; 34:90-96. [PMID: 29266009 DOI: 10.1097/mog.0000000000000416] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
PURPOSE OF REVIEW Gallstone disease (GSD) and nonalcoholic fatty liver disease (NAFLD often coexist in a given patient and both conditions are associated to obesity and insulin resistance. The relationship between GSD and NAFLD is complex and bidirectional. In the present review, we summarize the existing information on the complex link between GSD and NAFLD and the potential implications for patient care. RECENT FINDINGS Several clinical studies and systematic reviews have addressed the association between NAFLD and GSD underscoring that NAFLD is an independent risk factor for GSD. Conversely, GSD has been found also to be an independent risk factor for NAFLD with GSD potentially being linked to greater disease severity. In addition to the data showing association of NAFLD and GSD, recent evidence has also showed that cholecystectomy may itself be a risk factor for NAFLD development. The complex and bidirectional relationship between these diseases is partially explained by a number of common pathogenic links but the precise underlying mechanisms of the association of GSD and NAFLD need to be better delineated. Also, although the mechanisms of the promotional effect of cholecystectomy on NAFLD development are unknown, recent findings unveiling new aspects of gallbladder physiology and endocrine actions of bile acids provide a framework to advance research in this field. SUMMARY In this review, we address the different aspects of the complex association between NAFLD and GSD. The potential underlying mechanisms and recent information on endocrine actions of bile acids and the gallbladder are reviewed.
Collapse
|
25
|
Lee EJ, Kim MH, Kim YR, Park JW, Park WJ. Proteasome inhibition protects against diet-induced gallstone formation through modulation of cholesterol and bile acid homeostasis. Int J Mol Med 2017; 41:1715-1723. [PMID: 29286073 DOI: 10.3892/ijmm.2017.3326] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 12/07/2017] [Indexed: 11/06/2022] Open
Abstract
Gallstone disease is one of the most prevalent and costly gastrointestinal disorders worldwide. Gallstones are formed in the biliary system by cholesterol secretions in bile, which result from excess cholesterol, a deficiency in bile salts or a combination of the two. The present study examined the effects of proteasome inhibition on gallstone formation using the proteasome inhibitors bortezomib (BT) and carfilzomib (CF). C57BL/6J mice were fed a lithogenic diet to generate gallstones and injected with BT or CF for 12 weeks. After 12 weeks of the lithogenic diet, 8 out of the 10 mice in the control group had developed gallstones, whereas none of the mice who received proteasome inhibitors had developed gallstones. Notably, the expression of genes associated with cholesterol synthesis (sterol regulatory element‑binding protein‑2 and 3‑hydroxy‑3‑methylglutaryl‑CoA reductase), cholesterol secretion [ATP‑binding cassette subfamily G member 5 (ABCG5) and ABCG8] and bile acid synthesis [cytochrome P450 family 7 subfamily A member 1 (Cyp7a1), Cyp7b1, Cyp27a1 and Cyp8b1] was reduced in the livers of mice injected with BT or CF. Cyp7a1 encodes cholesterol 7α‑hydroxylase, the rate‑limiting enzyme in the synthesis of bile acid from cholesterol. The present study therefore measured the expression levels of transcription factors that are known to inhibit Cyp7a1 expression, namely farnesoid X receptor (FXR), pregnane X receptor (PXR) and small heterodimer partner (SHP). Although FXR, PXR and SHP expression was predicted to increase in the presence of proteasome inhibitors, the expression levels were actually reduced; thus, it was concluded that they were not involved in the proteasome inhibition‑induced regulation of Cyp7a1. Further investigation of the mitogen‑activated protein kinase and protein kinase A (PKA) signaling pathways in human hepatoma cells revealed that proteasome inhibition‑induced c‑Jun N‑terminal kinase (JNK) phosphorylation reduced CYP7A1 and CYP27A1 expression. In addition, reduced PKA phosphorylation as a result of proteasome inhibition regulated ABCG5 and ABCG8 expression. In conclusion, these findings suggest that proteasome inhibition regulates cholesterol and biliary metabolism via the JNK and PKA pathways, and is a promising therapeutic strategy to prevent gallstone disease.
Collapse
Affiliation(s)
- Eun-Ji Lee
- Department of Biochemistry, School of Medicine, Gachon University, Incheon 21999, Republic of Korea
| | - Min Hee Kim
- Department of Biochemistry, School of Medicine, Gachon University, Incheon 21999, Republic of Korea
| | - Ye-Ryung Kim
- Department of Biochemistry, College of Medicine, Ewha Womans University, Seoul 07985, Republic of Korea
| | - Joo-Won Park
- Department of Biochemistry, College of Medicine, Ewha Womans University, Seoul 07985, Republic of Korea
| | - Woo-Jae Park
- Department of Biochemistry, School of Medicine, Gachon University, Incheon 21999, Republic of Korea
| |
Collapse
|
26
|
Liu M, Liu C, Chen H, Huang X, Zeng X, Zhou J, Mi S. Prevention of cholesterol gallstone disease by schaftoside in lithogenic diet-induced C57BL/6 mouse model. Eur J Pharmacol 2017; 815:1-9. [PMID: 28993159 DOI: 10.1016/j.ejphar.2017.10.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 09/24/2017] [Accepted: 10/03/2017] [Indexed: 12/16/2022]
Abstract
Schaftoside (SS) is a bioactive compound present in the Herba Desmodii Styracifolii (DS), a herb that has been used to treat cholelithiasis and urolithiasis in Chinese medicine. Whether SS inhibits cholesterol (Ch) gallstone formation has not been investigated. This study examined the effects of oral intake of SS on Ch gallstone formation in C57BL/6 mice fed a lithogenic diet. The rate of gallstone formation was recorded. Levels of Ch, triglycerides (TG) and bile salts (BS) were measured in the bile and serum. Liver histopathology was examined microscopically, and mRNA expression levels of key genes involved in cholesterol and bile metabolism were determined by qPCR. Mice fed SS were protected against gallstone formation, had increased biliary levels of BS, and reduced biliary Ch levels, resulting in a lower Ch saturation index (CSI). In addition, mice fed SS had lower serum TG and Ch levels, increased mRNA expression of liver X receptor α, ATP binding cassette transporter 5/8 (ABCG5/8), and ileal bile acid binding protein (IBABP) in the ileum, and of farnesoid X receptor and bile salt export protein (BSEP) in the liver and ileum. SS also protected against histologically determined liver damage. Overall, these data indicate that SS protects against Ch gallstone formation in mice, and that the effect is mediated by activation of ileal liver X receptor α and hepatic farnesoid X receptor.
Collapse
Affiliation(s)
- Meijing Liu
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Jichang Road 12, Guangzhou 510405, Guangdong Province, PR China
| | - Changhui Liu
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Jichang Road 12, Guangzhou 510405, Guangdong Province, PR China
| | - Hao Chen
- College of food and drug, Anhui Science and Technology of University, Fengyang 233100, Anhui Province, PR China
| | - Xiaotao Huang
- Zhaoqing Medical College, Zhaoqing, Guangdong Province, PR China; Foshan University, Foshan, Guangdong Province, PR China.
| | - Xiaohui Zeng
- Guangdong Province Engineering Technology Research Institute of Traditional Chinese Medicine, Guangdong Province, PR China
| | - Juncheng Zhou
- Guangdong Province Engineering Technology Research Institute of Traditional Chinese Medicine, Guangdong Province, PR China
| | - Suiqing Mi
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Jichang Road 12, Guangzhou 510405, Guangdong Province, PR China
| |
Collapse
|
27
|
Cheng S, Zou M, Liu Q, Kuang J, Shen J, Pu S, Chen L, Li H, Wu T, Li R, Li Y, Jiang W, Zhang Z, He J. Activation of Constitutive Androstane Receptor Prevents Cholesterol Gallstone Formation. THE AMERICAN JOURNAL OF PATHOLOGY 2017; 187:808-818. [PMID: 28283178 DOI: 10.1016/j.ajpath.2016.12.013] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2016] [Revised: 11/23/2016] [Accepted: 12/16/2016] [Indexed: 02/05/2023]
Abstract
Cholesterol gallstone disease (CGD) is one of the most common gastrointestinal diseases. Lithogenic hepatic bile secretion precedes the formation of cholesterol gallstones. Constitutive androstane receptor (CAR), a member of nuclear family, plays an important role in cholesterol and bile acid metabolism. To examine whether activation of CAR can prevent cholesterol gallstone formation, we treated C57BL6/J mice maintained on a lithogenic diet with CAR agonist 1,4-bis-[2-(3, 5-dichlorpyridyloxy)] benzene and performed bile duct cannulation to study the dynamics of biliary lipids. We report that activation of CAR decreases the biliary cholesterol concentration and prevents CGD formation. The lower biliary cholesterol level was largely attributed to suppressed Abcg5 and Abcg8 expression in CAR-activated mice. CAR activation also promoted cholesterol conversion into bile acids by increasing the expression of Cyp7a1, a rate-limiting enzyme in bile acid biosynthesis. Activation of CAR enhanced bile acid re-absorption via increasing the expression of bile acid transporters Asbt and Ostβ in the ileum. The hepatic steatosis was also improved in the liver of CAR-activated mice. Furthermore, activation of CAR protected the mice against the liver X receptor α-sensitized CGD through suppressing the expression of Abcg5/8. Collectively, CAR plays an important role in maintaining the homeostasis of cholesterol, bile acids, and triglycerides levels, and it might be a promising therapeutic target for preventing or treating CGD.
Collapse
Affiliation(s)
- Shihai Cheng
- Department of Clinical Pharmacy and Pharmacy Administration, West China School of Pharmacy, Sichuan University, Chengdu; Laboratory of Clinical Pharmacy and Adverse Drug Reaction, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, China
| | - Min Zou
- Department of Pharmacy, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, China
| | - Qinhui Liu
- Laboratory of Clinical Pharmacy and Adverse Drug Reaction, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, China
| | - Jiangying Kuang
- Laboratory of Clinical Pharmacy and Adverse Drug Reaction, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, China; Department of Pharmacy, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, China
| | - Jing Shen
- Laboratory of Clinical Pharmacy and Adverse Drug Reaction, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, China; Department of Pharmacy, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, China
| | - Shiyun Pu
- Laboratory of Clinical Pharmacy and Adverse Drug Reaction, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, China; Department of Pharmacy, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, China
| | - Lei Chen
- Laboratory of Clinical Pharmacy and Adverse Drug Reaction, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, China; Department of Pharmacy, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, China
| | - Hong Li
- Laboratory of Clinical Pharmacy and Adverse Drug Reaction, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, China; Department of Pharmacy, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, China
| | - Tong Wu
- Laboratory of Clinical Pharmacy and Adverse Drug Reaction, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, China; Department of Pharmacy, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, China
| | - Rui Li
- Laboratory of Clinical Pharmacy and Adverse Drug Reaction, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, China; Department of Pharmacy, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, China
| | - Yanping Li
- Laboratory of Clinical Pharmacy and Adverse Drug Reaction, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, China; Department of Pharmacy, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, China
| | - Wei Jiang
- Molecular Medicine Research Center, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, China
| | - Zhiyong Zhang
- Department of Pharmacy, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, China.
| | - Jinhan He
- Laboratory of Clinical Pharmacy and Adverse Drug Reaction, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, China; Department of Pharmacy, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, China.
| |
Collapse
|
28
|
Wang HH, Li X, Patel SB, Wang DQH. Evidence that the adenosine triphosphate-binding cassette G5/G8-independent pathway plays a determinant role in cholesterol gallstone formation in mice. Hepatology 2016; 64:853-64. [PMID: 27014967 PMCID: PMC6037420 DOI: 10.1002/hep.28570] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Accepted: 03/19/2016] [Indexed: 12/18/2022]
Abstract
UNLABELLED The adenosine triphosphate-binding cassette (ABC) sterol transporter, Abcg5/g8, is Lith9 in mice, and two gallstone-associated variants in ABCG5/G8 have been identified in humans. Although ABCG5/G8 plays a critical role in determining hepatic sterol secretion, cholesterol is still secreted to bile in sitosterolemic patients with a defect in either ABCG5 or ABCG8 and in either Abcg5/g8 double- or single-knockout mice. We hypothesize that in the defect of ABCG5/G8, an ABCG5/G8-independent pathway is essential for regulating hepatic secretion of biliary sterols, which is independent of the lithogenic mechanism of the ABCG5/G8 pathway. To elucidate the effect of the ABCG5/G8-independent pathway on cholelithogenesis, we investigated the biliary and gallstone characteristics in male wild-type (WT), ABCG5(-/-)/G8(-/-), and ABCG8 (-/-) mice fed a lithogenic diet or varying amounts of cholesterol, treated with a liver X receptor (LXR) agonist, or injected intravenously with [(3) H]sitostanol- and [(14) C]cholesterol-labeled high-density lipoprotein (HDL). We found that ABCG5(-/-)/G8(-/-) and ABCG8 (-/-) mice displayed the same biliary and gallstone phenotypes. Although both groups of knockout mice showed a significant reduction in hepatic cholesterol output compared to WT mice, they still formed gallstones. The LXR agonist significantly increased biliary cholesterol secretion and gallstones in WT, but not ABCG5(-/-)/G8(-/-) or ABCG8 (-/-), mice. The 6-hour recovery of [(14) C]cholesterol in hepatic bile was significantly lower in both groups of knockout mice than in WT mice and [(3) H]sitostanol was detected in WT, but not ABCG5(-/-)/G8(-/-) or ABCG8 (-/-), mice. CONCLUSIONS The ABCG5/G8-independent pathway plays an important role in regulating biliary cholesterol secretion, the transport of HDL-derived cholesterol from plasma to bile, and gallstone formation, which works independently of the ABCG5/G8 pathway. Further studies are needed to observe whether this pathway is also operational in humans. (Hepatology 2016;64:853-864).
Collapse
Affiliation(s)
- Helen H. Wang
- Department of Medicine, Liver Center and Gastroenterology Division, Beth Israel Deaconess Medical Center, Harvard Medical School and Harvard Digestive Diseases Center, Boston, MA,Department of Internal Medicine, Division of Gastroenterology and Hepatology, Saint Louis University School of Medicine, St. Louis, MO
| | - Xiaodan Li
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, Saint Louis University School of Medicine, St. Louis, MO
| | - Shailendra B. Patel
- Division of Endocrinology, Metabolism and Clinical Nutrition, Medical College of Wisconsin, Milwaukee, WI
| | - David Q.-H. Wang
- Department of Medicine, Liver Center and Gastroenterology Division, Beth Israel Deaconess Medical Center, Harvard Medical School and Harvard Digestive Diseases Center, Boston, MA,Department of Internal Medicine, Division of Gastroenterology and Hepatology, Saint Louis University School of Medicine, St. Louis, MO,Correspondence to David Q.-H. Wang, M.D., Ph.D., at his present address: Department of Internal Medicine, Division of Gastroenterology and Hepatology, Saint Louis University School of Medicine, St. Louis, MO 63104, USA. Phone: (314) 977-8737, Fax: (314) 977-9909,
| |
Collapse
|
29
|
Zuo M, Rashid A, Wang Y, Jain A, Li D, Behari A, Kapoor VK, Koay EJ, Chang P, Vauthey JN, Li Y, Espinoza JA, Roa JC, Javle M. RNA sequencing-based analysis of gallbladder cancer reveals the importance of the liver X receptor and lipid metabolism in gallbladder cancer. Oncotarget 2016; 7:35302-12. [PMID: 27167107 PMCID: PMC5085230 DOI: 10.18632/oncotarget.9181] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Accepted: 04/16/2016] [Indexed: 12/24/2022] Open
Abstract
Gallbladder cancer (GBC) is an aggressive malignancy. Although surgical resection may be curable, most patients are diagnosed at an advanced unresectable disease stage. Cholelithiasis is the major risk factor; however the pathogenesis of the disease, from gallstone cholecystitis to cancer, is still not understood. To understand the molecular genetic underpinnings of this cancer and explore novel therapeutic targets for GBC, we examined the key genes and pathways involved in GBC using RNA sequencing. We performed gene expression analysis of 32 cases of surgically-resected GBC along with normal gallbladder tissue controls. We observed that 519 genes were differentially expressed between GBC and normal GB mucosal controls. The liver X receptor (LXR)/retinoid X receptor (RXR) and farnesoid X receptor (FXR) /RXR pathways were the top canonical pathways involved in GBC. Key genes in these pathways, including SERPINB3 and KLK1, were overexpressed in GBC, especially in female GBC patients. Additionally, ApoA1 gene expression suppressed in GBC as compared with normal control tissues. LXR and FXR genes, known to be important in lipid metabolism also function as tumor suppressors and their down regulation appears to be critical for GBC pathogenesis. LXR agonists may have therapeutic value and as potential therapeutic targets.
Collapse
Affiliation(s)
- Mingxin Zuo
- Department of Gastrointestinal Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Asif Rashid
- Department of Pathology, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Ying Wang
- Department of Bioinformatics and Computational Biology, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Apurva Jain
- Department of Gastrointestinal Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Donghui Li
- Department of Gastrointestinal Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Anu Behari
- Department of Surgical Gastroenterology, Sanjay Gandhi Post-Graduate Institute of Medical Sciences (SGPGIMS), Lucknow, UP, India
| | - Vinay Kumar Kapoor
- Department of Surgical Gastroenterology, Sanjay Gandhi Post-Graduate Institute of Medical Sciences (SGPGIMS), Lucknow, UP, India
| | - Eugene J. Koay
- Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Ping Chang
- Department of Gastrointestinal Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Jean Nicholas Vauthey
- Department of Surgical Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Yanan Li
- Department of Gastrointestinal Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Jaime A. Espinoza
- SciLifeLab, Division of Translational Medicine and Chemical Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Solna, Stockholm, Sweden
| | - Juan Carlos Roa
- Department of Pathology, Advanced Center for Chronic Diseases (ACCDiS), UC-Center for Investigational Oncology (CITO), School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Milind Javle
- Department of Gastrointestinal Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|
30
|
Lammert F, Gurusamy K, Ko CW, Miquel JF, Méndez-Sánchez N, Portincasa P, van Erpecum KJ, van Laarhoven CJ, Wang DQH. Gallstones. Nat Rev Dis Primers 2016; 2:16024. [PMID: 27121416 DOI: 10.1038/nrdp.2016.24] [Citation(s) in RCA: 496] [Impact Index Per Article: 55.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Gallstones grow inside the gallbladder or biliary tract. These stones can be asymptomatic or symptomatic; only gallstones with symptoms or complications are defined as gallstone disease. Based on their composition, gallstones are classified into cholesterol gallstones, which represent the predominant entity, and bilirubin ('pigment') stones. Black pigment stones can be caused by chronic haemolysis; brown pigment stones typically develop in obstructed and infected bile ducts. For treatment, localization of the gallstones in the biliary tract is more relevant than composition. Overall, up to 20% of adults develop gallstones and >20% of those develop symptoms or complications. Risk factors for gallstones are female sex, age, pregnancy, physical inactivity, obesity and overnutrition. Factors involved in metabolic syndrome increase the risk of developing gallstones and form the basis of primary prevention by lifestyle changes. Common mutations in the hepatic cholesterol transporter ABCG8 confer most of the genetic risk of developing gallstones, which accounts for ∼25% of the total risk. Diagnosis is mainly based on clinical symptoms, abdominal ultrasonography and liver biochemistry tests. Symptoms often precede the onset of the three common and potentially life-threatening complications of gallstones (acute cholecystitis, acute cholangitis and biliary pancreatitis). Although our knowledge on the genetics and pathophysiology of gallstones has expanded recently, current treatment algorithms remain predominantly invasive and are based on surgery. Hence, our future efforts should focus on novel preventive strategies to overcome the onset of gallstones in at-risk patients in particular, but also in the population in general.
Collapse
Affiliation(s)
- Frank Lammert
- Department of Medicine II, Saarland University Medical Center, Saarland University, Kirrberger Str. 100, 66424 Hamburg, Germany
| | - Kurinchi Gurusamy
- Royal Free Campus, University College London Medical School, 9th Floor, Royal Free Hospital, Rowland Hill Street, London NW3 2PF, UK
| | - Cynthia W Ko
- Department of Medicine, Division of Gastroenterology, University of Washington, Seattle, Washington, USA
| | - Juan-Francisco Miquel
- Department of Gastroenterology, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | | | - Piero Portincasa
- Department of Biomedical Sciences and Human Oncology, Clinica Medica "A. Murri", University of Bari Medical School, Bari, Italy
| | - Karel J van Erpecum
- Department of Gastroenterology and Hepatology, University Medical Center, Utrecht, The Netherlands
| | - Cees J van Laarhoven
- Department of Surgery, Radboud University Medical Center, Nijmegen, The Netherlands
| | - David Q-H Wang
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, Saint Louis University School of Medicine, Saint Louis, Missouri, USA
| |
Collapse
|
31
|
Xu G, Li Y, Jiang X, Chen H. CAV1 Prevents Gallbladder Cholesterol Crystallization by Regulating Biosynthesis and Transport of Bile Salts. J Cell Biochem 2016; 117:2118-27. [PMID: 26875794 DOI: 10.1002/jcb.25518] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Accepted: 02/11/2016] [Indexed: 12/25/2022]
Affiliation(s)
- Guoqiang Xu
- Department of Gastroenterology; Zhejiang University School of Medicine; The First Affiliated Hospital; Hangzhou Zhejiang 310003 China
| | - Yiqiao Li
- Department of Nephrology; Zhejiang Province People's Hospital; Hangzhou Zhejiang 310014 China
| | - Xin Jiang
- Department of Pathology and Pathophysiology; Zhejiang University School of Medicine; Hangzhou Zhejiang 310058 China
| | - Hongtan Chen
- Department of Gastroenterology; Zhejiang University School of Medicine; The First Affiliated Hospital; Hangzhou Zhejiang 310003 China
| |
Collapse
|
32
|
Preventive obesity agent montmorillonite adsorbs dietary lipids and enhances lipid excretion from the digestive tract. Sci Rep 2016; 6:19659. [PMID: 26891902 PMCID: PMC4759552 DOI: 10.1038/srep19659] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Accepted: 12/16/2015] [Indexed: 01/04/2023] Open
Abstract
Western diets are typically high in fat and are associated with long-term complications such as obesity and hepatic steatosis. Because of the enjoyable taste of high-fat diets (HFDs), we are interested in determining how to decrease lipid absorption and enhance lipid excretion from the digestive tract after the consumption of eating fatty foods. Montmorillonite was initially characterized as a gastrointestinal mucosal barrier protective agent for the treatment of diarrhoea. Dietary lipid adsorbent- montmorillonite (DLA-M) was isolated and purified from Xinjiang montmorillonite clay via the water extraction method. Here, we show that DLA-M has an unexpected role in preventing obesity, hyperlipidaemia and hepatic steatosis in HFD-fed rats. Interestingly, combined application of polarized light microscopy and lipid staining analyses, showed that DLA-M crystals have dietary lipid-adsorbing ability in vitro and in vivo, which enhances lipid excretion via bowel movements. In summary, our results indicate that DLA-M prevent HFD-induced obesity. This novel dietary lipid-adsorbing agent can help prevent obesity and its comorbidities.
Collapse
|
33
|
Ou Z, Jiang M, Hu B, Huang Y, Xu M, Ren S, Li S, Liu S, Xie W, Huang M. Transcriptional regulation of human hydroxysteroid sulfotransferase SULT2A1 by LXRα. Drug Metab Dispos 2014; 42:1684-9. [PMID: 25028566 PMCID: PMC4164974 DOI: 10.1124/dmd.114.058479] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2014] [Accepted: 07/15/2014] [Indexed: 11/22/2022] Open
Abstract
The nuclear receptor liver X receptor (LXR) plays an important role in the metabolism and homeostasis of cholesterol, lipids, bile acids, and steroid hormones. In this study, we uncovered a function of LXRα (NR1H3) in regulating the human hydroxysteroid sulfotransferase SULT2A1, a phase II conjugating enzyme known to sulfonate bile acids, hydroxysteroid dehydroepiandrosterone, and related androgens. We showed that activation of LXR induced the expression of SULT2A1 at mRNA, protein, and enzymatic levels. A combination of promoter reporter gene and chromatin immunoprecipitation assays showed that LXRα transactivated the SULT2A1 gene promoter through its specific binding to the -500- to -258-base pair region of the SULT2A1 gene promoter. LXR small interfering RNA knockdown experiments suggested that LXRα, but not LXRβ, played a dominant role in regulating SULT2A1. In primary human hepatocytes, we found a positive correlation between the expression of SULT2A1 and LXRα, which further supported the regulation of SULT2A1 by LXRα. In summary, our results established human SULT2A1 as a novel LXRα target gene. The expression of LXRα is a potential predictor for the expression of SULT2A1 in human liver.
Collapse
Affiliation(s)
- Zhimin Ou
- Institute of Clinical Pharmacology, Sun Yat-Sen University, Guangzhou, China (Z.O., B.H., M.H.); Center for Pharmacogenetics and Department of Pharmaceutical Sciences (Z.O., M.J., B.H., Y.H., M.X., S.R., So.L., W.X.) and Department of Pharmacology and Chemical Biology (W.X.), University of Pittsburgh, Pittsburgh, Pennsylvania; and Xiamen Diabetes Institute, the First Affiliated Hospital of Xiamen University, Xiamen, China (Z.O., Su.L.)
| | - Mengxi Jiang
- Institute of Clinical Pharmacology, Sun Yat-Sen University, Guangzhou, China (Z.O., B.H., M.H.); Center for Pharmacogenetics and Department of Pharmaceutical Sciences (Z.O., M.J., B.H., Y.H., M.X., S.R., So.L., W.X.) and Department of Pharmacology and Chemical Biology (W.X.), University of Pittsburgh, Pittsburgh, Pennsylvania; and Xiamen Diabetes Institute, the First Affiliated Hospital of Xiamen University, Xiamen, China (Z.O., Su.L.)
| | - Bingfang Hu
- Institute of Clinical Pharmacology, Sun Yat-Sen University, Guangzhou, China (Z.O., B.H., M.H.); Center for Pharmacogenetics and Department of Pharmaceutical Sciences (Z.O., M.J., B.H., Y.H., M.X., S.R., So.L., W.X.) and Department of Pharmacology and Chemical Biology (W.X.), University of Pittsburgh, Pittsburgh, Pennsylvania; and Xiamen Diabetes Institute, the First Affiliated Hospital of Xiamen University, Xiamen, China (Z.O., Su.L.)
| | - Yixian Huang
- Institute of Clinical Pharmacology, Sun Yat-Sen University, Guangzhou, China (Z.O., B.H., M.H.); Center for Pharmacogenetics and Department of Pharmaceutical Sciences (Z.O., M.J., B.H., Y.H., M.X., S.R., So.L., W.X.) and Department of Pharmacology and Chemical Biology (W.X.), University of Pittsburgh, Pittsburgh, Pennsylvania; and Xiamen Diabetes Institute, the First Affiliated Hospital of Xiamen University, Xiamen, China (Z.O., Su.L.)
| | - Meishu Xu
- Institute of Clinical Pharmacology, Sun Yat-Sen University, Guangzhou, China (Z.O., B.H., M.H.); Center for Pharmacogenetics and Department of Pharmaceutical Sciences (Z.O., M.J., B.H., Y.H., M.X., S.R., So.L., W.X.) and Department of Pharmacology and Chemical Biology (W.X.), University of Pittsburgh, Pittsburgh, Pennsylvania; and Xiamen Diabetes Institute, the First Affiliated Hospital of Xiamen University, Xiamen, China (Z.O., Su.L.)
| | - Songrong Ren
- Institute of Clinical Pharmacology, Sun Yat-Sen University, Guangzhou, China (Z.O., B.H., M.H.); Center for Pharmacogenetics and Department of Pharmaceutical Sciences (Z.O., M.J., B.H., Y.H., M.X., S.R., So.L., W.X.) and Department of Pharmacology and Chemical Biology (W.X.), University of Pittsburgh, Pittsburgh, Pennsylvania; and Xiamen Diabetes Institute, the First Affiliated Hospital of Xiamen University, Xiamen, China (Z.O., Su.L.)
| | - Song Li
- Institute of Clinical Pharmacology, Sun Yat-Sen University, Guangzhou, China (Z.O., B.H., M.H.); Center for Pharmacogenetics and Department of Pharmaceutical Sciences (Z.O., M.J., B.H., Y.H., M.X., S.R., So.L., W.X.) and Department of Pharmacology and Chemical Biology (W.X.), University of Pittsburgh, Pittsburgh, Pennsylvania; and Xiamen Diabetes Institute, the First Affiliated Hospital of Xiamen University, Xiamen, China (Z.O., Su.L.)
| | - Suhuan Liu
- Institute of Clinical Pharmacology, Sun Yat-Sen University, Guangzhou, China (Z.O., B.H., M.H.); Center for Pharmacogenetics and Department of Pharmaceutical Sciences (Z.O., M.J., B.H., Y.H., M.X., S.R., So.L., W.X.) and Department of Pharmacology and Chemical Biology (W.X.), University of Pittsburgh, Pittsburgh, Pennsylvania; and Xiamen Diabetes Institute, the First Affiliated Hospital of Xiamen University, Xiamen, China (Z.O., Su.L.)
| | - Wen Xie
- Institute of Clinical Pharmacology, Sun Yat-Sen University, Guangzhou, China (Z.O., B.H., M.H.); Center for Pharmacogenetics and Department of Pharmaceutical Sciences (Z.O., M.J., B.H., Y.H., M.X., S.R., So.L., W.X.) and Department of Pharmacology and Chemical Biology (W.X.), University of Pittsburgh, Pittsburgh, Pennsylvania; and Xiamen Diabetes Institute, the First Affiliated Hospital of Xiamen University, Xiamen, China (Z.O., Su.L.)
| | - Min Huang
- Institute of Clinical Pharmacology, Sun Yat-Sen University, Guangzhou, China (Z.O., B.H., M.H.); Center for Pharmacogenetics and Department of Pharmaceutical Sciences (Z.O., M.J., B.H., Y.H., M.X., S.R., So.L., W.X.) and Department of Pharmacology and Chemical Biology (W.X.), University of Pittsburgh, Pittsburgh, Pennsylvania; and Xiamen Diabetes Institute, the First Affiliated Hospital of Xiamen University, Xiamen, China (Z.O., Su.L.)
| |
Collapse
|
34
|
Cai JS, Chen JH. The mechanism of enterohepatic circulation in the formation of gallstone disease. J Membr Biol 2014; 247:1067-82. [PMID: 25107305 PMCID: PMC4207937 DOI: 10.1007/s00232-014-9715-3] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2014] [Accepted: 07/25/2014] [Indexed: 12/25/2022]
Abstract
Bile acids entering into enterohepatic circulating are primary acids synthesized from cholesterol in hepatocyte. They are secreted actively across canalicular membrane and carried in bile to gallbladder, where they are concentrated during digestion. About 95 % BAs are actively taken up from the lumen of terminal ileum efficiently, leaving only approximately 5 % (or approximately 0.5 g/d) in colon, and a fraction of bile acids are passively reabsorbed after a series of modifications in the human large intestine including deconjugation and oxidation of hydroxy groups. Bile salts hydrolysis and hydroxy group dehydrogenation reactions are performed by a broad spectrum of intestinal anaerobic bacteria. Next, hepatocyte reabsorbs bile acids from sinusoidal blood, which are carried to liver through portal vein via a series of transporters. Bile acids (BAs) transporters are critical for maintenance of the enterohepatic BAs circulation, where BAs exert their multiple physiological functions including stimulation of bile flow, intestinal absorption of lipophilic nutrients, solubilization, and excretion of cholesterol. Tight regulation of BA transporters via nuclear receptors (NRs) is necessary to maintain proper BA homeostasis. In conclusion, disturbances of enterohepatic circulation may account for pathogenesis of gallstones diseases, including BAs transporters and their regulatory NRs and the metabolism of intestinal bacterias, etc.
Collapse
Affiliation(s)
- Jian-Shan Cai
- Department of General Surgery, Huashan Hospital, Fudan University, 12 Wulumuqi Road, Shanghai, 200040, People's Republic of China,
| | | |
Collapse
|
35
|
Zimmer V, Lammert F. Role of genetics in diagnosis and therapy of acquired liver disease. Mol Aspects Med 2014; 37:15-34. [DOI: 10.1016/j.mam.2013.10.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2013] [Revised: 10/07/2013] [Accepted: 10/15/2013] [Indexed: 02/08/2023]
|
36
|
Sharma KL, Misra S, Kumar A, Mittal B. Association of liver X receptors (LXRs) genetic variants to gallbladder cancer susceptibility. Tumour Biol 2013; 34:3959-3966. [PMID: 23838803 DOI: 10.1007/s13277-013-0984-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2013] [Accepted: 06/26/2013] [Indexed: 12/16/2022] Open
Abstract
Liver X receptors (LXRs) α and β are ligand-activated transcription factors belonging to the family of nuclear receptors. LXRs play role in control of lipid homeostasis, glucose metabolism, inflammation, and proliferation. LXRs are expressed in gallbladder cholangiocytes and recent studies have shown that LXR-β (-/-) Mice exhibit an estrogen-dependent gallbladder carcinogenesis. However, there are no studies reported in humans. Therefore, using case-control design in the present study, we have evaluated the associations of LXR-α (rs7120118) and LXR-β (rs35463555 and rs2695121) genetic variants with gallbladder cancer (GBC) susceptibility in 400 cases and 200 controls. Genotypes were determined by TaqMan probes. Statistical analysis was done by SPSS and SNPstats. In silico analysis was performed using Bioinformatics tools (F-SNP, FAST-SNP). LXR-β genotypes (rs35463555) [GA + AA] and (rs2695121) [TC + CC] were associated with risk of GBC [OR = 1.46, p = 0.03; OR = 1.52, p = 0.01, respectively] as compared to healthy controls whereas LXR-α (rs7120118) was not associated with GBC risk. LXR-β haplotype [Ars35463555-Crs2695121] showed statistical significant association with GBC [OR = 5.0, p = 0.03]. On stratification based on gender, LXR-β [GA + AA] and [TC + CC] genotypes were found to be significantly associated in females GBC patients [OR = 1.5, p = 0.04; OR = 1.7, p = 0.005, respectively]. The LXR-β [TC + CC] associated with GBC patients with gallstones [OR; 1.8, p = 0.002]. The genetic risk by LXR-β was not modulated by tobacco consumption or age of onset. In silico analysis using FAST-SNP showed "Low-medium risk" by LXR-β (rs2695121) T > C variation. Our results suggest that LXR-β polymorphisms influence gallbladder cancer susceptibility through estrogen and gallstone-dependent pathways.
Collapse
Affiliation(s)
- Kiran Lata Sharma
- Department of Genetics, Sanjay Gandhi Post Graduate Institute of Medical Sciences (SGPGIMS), Lucknow, 226014, Uttar Pradesh, India,
| | | | | | | |
Collapse
|
37
|
Egan CE, Daugherity EK, Rogers AB, Abi Abdallah DS, Denkers EY, Maurer KJ. CCR2 and CD44 promote inflammatory cell recruitment during fatty liver formation in a lithogenic diet fed mouse model. PLoS One 2013; 8:e65247. [PMID: 23762326 PMCID: PMC3676479 DOI: 10.1371/journal.pone.0065247] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2013] [Accepted: 04/25/2013] [Indexed: 12/31/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a common disease with a spectrum of presentations. The current study utilized a lithogenic diet model of NAFLD. The diet was fed to mice that are either resistant (AKR) or susceptible (BALB/c and C57BL/6) to hepatitis followed by molecular and flow cytometric analysis. Following this, a similar approach was taken in congenic mice with specific mutations in immunological genes. The initial study identified a significant and profound increase in multiple ligands for the chemokine receptor CCR2 and an increase in CD44 expression in susceptible C57BL/6 (B6) but not resistant AKR mice. Ccr2−/− mice were completely protected from hepatitis and Cd44−/− mice were partially protected. Despite protection from inflammation, both strains displayed similar histological steatosis scores and significant increases in serum liver enzymes. CD45+CD44+ cells bound to hyaluronic acid (HA) in diet fed B6 mice but not Cd44−/− or Ccr2−/− mice. Ccr2−/− mice displayed a diminished HA binding phenotype most notably in monocytes, and CD8+ T-cells. In conclusion, this study demonstrates that absence of CCR2 completely and CD44 partially reduces hepatic leukocyte recruitment. These data also provide evidence that there are multiple redundant CCR2 ligands produced during hepatic lipid accumulation and describes the induction of a strong HA binding phenotype in response to LD feeding in some subsets of leukocytes from susceptible strains.
Collapse
Affiliation(s)
- Charlotte E. Egan
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, New York, United States of America
| | - Erin K. Daugherity
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, United States of America
- Center for Animal Resources and Education, College of Veterinary Medicine, Cornell University, Ithaca, New York, United States of America
| | - Arlin B. Rogers
- Department of Pathology and Laboratory Medicine; University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Delbert S. Abi Abdallah
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, New York, United States of America
| | - Eric Y. Denkers
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, New York, United States of America
| | - Kirk J. Maurer
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, United States of America
- Center for Animal Resources and Education, College of Veterinary Medicine, Cornell University, Ithaca, New York, United States of America
- * E-mail:
| |
Collapse
|
38
|
Di Ciaula A, Wang DQH, Bonfrate L, Portincasa P. Current views on genetics and epigenetics of cholesterol gallstone disease. CHOLESTEROL 2013; 2013:298421. [PMID: 23691293 PMCID: PMC3649201 DOI: 10.1155/2013/298421] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2013] [Revised: 03/06/2013] [Accepted: 03/20/2013] [Indexed: 02/07/2023]
Abstract
Cholesterol gallstone disease, one of the commonest digestive diseases in western countries, is induced by an imbalance in cholesterol metabolism, which involves intestinal absorption, hepatic biosynthesis, and biliary output of cholesterol, and its conversion to bile acids. Several components of the metabolic syndrome (e.g., obesity, type 2 diabetes, dyslipidemia, and hyperinsulinemia) are also well-known risk factors for gallstones, suggesting the existence of interplay between common pathophysiological pathways influenced by insulin resistance, genetic, epigenetic, and environmental factors. Cholesterol gallstones may be enhanced, at least in part, by the abnormal expression of a set of the genes that affect cholesterol homeostasis and lead to insulin resistance. Additionally, epigenetic mechanisms (mainly DNA methylation, histone acetylation/deacetylation, and noncoding microRNAs) may modify gene expression in the absence of an altered DNA sequence, in response to different lithogenic environmental stimuli, such as diet, lifestyle, pollutants, also occurring in utero before birth. In this review, we will comment on various steps of the pathogenesis of cholesterol gallstones and interaction between environmental and genetic factors. The epigenomic approach may offer new options for therapy of gallstones and better possibilities for primary prevention in subjects at risk.
Collapse
Affiliation(s)
- Agostino Di Ciaula
- Division of Internal Medicine Hospital of Bisceglie, 76011 Bisceglie, Italy
| | - David Q.-H. Wang
- Saint Louis University School of Medicine, Division of Gastroenterology and Hepatology, Department of Internal Medicine, Edward Doisy Research Center, St. Louis, MO 63104, USA
| | - Leonilde Bonfrate
- Clinica Medica “A. Murri”, Department of Biomedical Sciences & Human Oncology, University “Aldo Moro“ of Bari Medical School, 70124 Bari, Italy
| | - Piero Portincasa
- Clinica Medica “A. Murri”, Department of Biomedical Sciences & Human Oncology, University “Aldo Moro“ of Bari Medical School, 70124 Bari, Italy
- European Society for Clinical Investigation (ESCI), 3584 CJ Utrecht, The Netherlands
| |
Collapse
|
39
|
Halilbasic E, Claudel T, Trauner M. Bile acid transporters and regulatory nuclear receptors in the liver and beyond. J Hepatol 2013; 58:155-68. [PMID: 22885388 PMCID: PMC3526785 DOI: 10.1016/j.jhep.2012.08.002] [Citation(s) in RCA: 298] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2012] [Revised: 08/01/2012] [Accepted: 08/03/2012] [Indexed: 02/06/2023]
Abstract
Bile acid (BA) transporters are critical for maintenance of the enterohepatic BA circulation where BAs exert their multiple physiological functions including stimulation of bile flow, intestinal absorption of lipophilic nutrients, solubilization and excretion of cholesterol, as well as antimicrobial and metabolic effects. Tight regulation of BA transporters via nuclear receptors is necessary to maintain proper BA homeostasis. Hereditary and acquired defects of BA transporters are involved in the pathogenesis of several hepatobiliary disorders including cholestasis, gallstones, fatty liver disease and liver cancer, but also play a role in intestinal and metabolic disorders beyond the liver. Thus, pharmacological modification of BA transporters and their regulatory nuclear receptors opens novel treatment strategies for a wide range of disorders.
Collapse
Key Words
- bile acids, cholestasis, fatty liver disease, gallstones, liver regeneration, liver cancer
- 6-ecdca, 6-ethylchenodeoxycholic acid
- ae2, anion exchanger 2
- abcg5/8, cholesterol efflux pump, atp-binding cassette, subfamily g, member 5/8
- ba, bile acid
- ampk, amp activated protein kinase
- bcrp (abcg2), breast cancer resistance protein, atp-binding cassette, subfamily g, member 2
- bric, benign recurrent intrahepatic cholestasis
- bsep (abcb11), bile salt export pump
- car (nr1i3), constitutive androstane receptor
- egfr, epidermal growth factor receptor
- fgf15/19, fibroblast growth factor 15/19
- fxr (nr1h4), farnesoid x receptor/bile acid receptor
- glp-1, glucagon like peptide 1
- gr (nr3c1), glucocorticoid receptor
- hcc, hepatocellular carcinoma
- hnf1α, hepatocyte nuclear factor 1 alpha
- hnf4α (nr2a1), hepatocyte nuclear factor 4 alpha
- ibabp (fabp6, ilbp), intestinal bile acid-binding protein, fatty acid-binding protein 6
- icp, intrahepatic cholestasis of pregnancy
- il6, interleukin 6
- lca, lithocholic acid
- lrh-1 (nr5a2), liver receptor homolog-1
- lxrα (nr1h3), liver x receptor alpha
- mdr1 (abcb1), p-glycoprotein, atp-binding cassette, subfamily b, member 1
- mdr2/mdr3 (abcb4), multidrug resistance protein 2 (rodents)/3 (human)
- mrp2 (abcc2), multidrug resistance-associated protein 2, atp-binding cassette, subfamily c, member 2
- mrp3 (abcc3), multidrug resistance-associated protein 3, atp-binding cassette, subfamily c, member 3
- mrp4 (abcc4), multidrug resistance-associated protein 4, atp-binding cassette, subfamily c, member 4
- nafld, non-alcoholic fatty liver disease
- nash, non-alcoholic steatohepatitis
- norudca, norursodeoxycholic acid
- nr, nuclear receptor
- ntcp (slc10a1), sodium/taurocholate cotransporting polypeptide, solute carrier family 10, member 1
- oatp1a2 (slco1a2, oatp1, oatp-a, slc21a3), solute carrier organic anion transporter family, member 1a2
- oatp1b1 (slco1b1, oatp2, oatp-c, slc21a6), solute carrier organic anion transporter family, member 1b1
- oatp1b3 (slco1b3, oatp8, slc21a8), solute carrier organic anion transporter family, member 1b3
- ostαβ, organic solute transporter alpha/beta
- pbc, primary biliary cirrhosis
- pfic, progressive familial intrahepatic cholestasis
- ph, partial hepatectomy
- pparα (nr1c1), peroxisome proliferator-activated receptor alpha
- pparγ (nr1c3), peroxisome proliferator-activated receptor gamma
- psc, primary sclerosing cholangitis
- pxr (nr1i2), pregnane x receptor
- rarα (nr1b1), retinoic acid receptor alpha
- rxrα (nr2b1), retinoid x receptor alpha
- shp (nr0b2), short heterodimer partner
- src2, p160 steroid receptor coactivator
- tgr5, g protein-coupled bile acid receptor
- tnfα, tumor necrosis factor α
- tpn, total parenteral nutrition
- udca, ursodeoxycholic acid
- vdr (nr1i1), vitamin d receptor. please note that for the convenience of better readability and clarity, abbreviations for transporters and nuclear receptors were capitalized throughout this article when symbols were identical for human and rodents
Collapse
Affiliation(s)
| | | | - Michael Trauner
- Corresponding author. Address: Hans Popper Laboratory of Molecular Hepatology, Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Waehringer Waehringer Guertel 18-20, A-1090 Vienna, Austria. Tel.: +43 01 40400 4741; fax: +43 01 40400 4735.
| |
Collapse
|
40
|
Lee JK, Kang HW, Kim JH, Lim YJ, Koh MS, Lee JH. Effects of Korean red ginseng as an adjuvant to bile acids in medical dissolution therapy for gallstones: a prospective, randomized, controlled, double-blind pilot trial. Food Funct 2013; 4:116-20. [DOI: 10.1039/c2fo30196b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
41
|
Xiao L, Wang J, Jiang M, Xie W, Zhai Y. The emerging role of constitutive androstane receptor and its cross talk with liver X receptors and peroxisome proliferator-activated receptor A in lipid metabolism. VITAMINS AND HORMONES 2013; 91:243-58. [PMID: 23374719 DOI: 10.1016/b978-0-12-407766-9.00010-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The regulation of lipid metabolism is central to energy homeostasis in higher multicellular organisms. Lipid homeostasis depends on factors that are able to transduce metabolic parameters into regulatory events representing the fundamental components of the general control system. Nuclear receptors form a superfamily of ligand-activated transcription factors implicated in various physiological functions including energy metabolism. The constitutive androstane receptor (CAR, NR1I3), initially identified as a xenobiotic-sensing receptor, may also have roles in lipid homeostasis. The nuclear receptors liver X receptors (LXRs, NR1H2/3) and peroxisome proliferator-activated receptors (PPARs, NR1C) have been known for their roles in lipid metabolism. LXR is a sterol sensor that promotes lipogenesis, whereas PPARα controls a variety of genes in several pathways of lipid metabolism. This chapter focuses primarily on the role of CAR in lipid metabolism directly or through its cross talk with LXRs and PPARα.
Collapse
Affiliation(s)
- Lei Xiao
- Key Laboratory for Cell Proliferation and Regulation Biology, Ministry of Education, Biomedicine Research Institute and College of Life Sciences, Beijing Normal University, Beijing, China
| | | | | | | | | |
Collapse
|
42
|
Xia X, Jung D, Webb P, Zhang A, Zhang B, Li L, Ayers SD, Gabbi C, Ueno Y, Gustafsson JÅ, Alpini G, Moore DD, LeSage GD. Liver X receptor β and peroxisome proliferator-activated receptor δ regulate cholesterol transport in murine cholangiocytes. Hepatology 2012; 56:2288-96. [PMID: 22729460 PMCID: PMC3469731 DOI: 10.1002/hep.25919] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2012] [Accepted: 06/03/2012] [Indexed: 02/02/2023]
Abstract
UNLABELLED Nuclear receptors (NRs) play crucial roles in the regulation of hepatic cholesterol synthesis, metabolism, and conversion to bile acids, but their actions in cholangiocytes have not been examined. In this study, we investigated the roles of NRs in cholangiocyte physiology and cholesterol metabolism and flux. We examined the expression of NRs and other genes involved in cholesterol homeostasis in freshly isolated and cultured murine cholangiocytes and found that these cells express a specific subset of NRs, including liver X receptor (LXR) β and peroxisome proliferator-activated receptor (PPAR) δ. Activation of LXRβ and/or PPARδ in cholangiocytes induces ATP-binding cassette cholesterol transporter A1 (ABCA1) and increases cholesterol export at the basolateral compartment in polarized cultured cholangiocytes. In addition, PPARδ induces Niemann-Pick C1-like L1 (NPC1L1), which imports cholesterol into cholangiocytes and is expressed on the apical cholangiocyte membrane via specific interaction with a peroxisome proliferator-activated response element (PPRE) within the NPC1L1 promoter. CONCLUSION We propose that (1) LXRβ and PPARδ coordinate NPC1L1/ABCA1-dependent vectorial cholesterol flux from bile through cholangiocytes and (2) manipulation of these processes may influence bile composition with important applications in cholestatic liver disease and gallstone disease, two serious health concerns for humans.
Collapse
Affiliation(s)
- Xuefeng Xia
- Methodist Hospital Research Institute, Weill Cornell School of Medicine, Houston, TX 77030, USA.
| | - Dongju Jung
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030
| | - Paul Webb
- The Methodist Hospital Research Institute, Weill Cornell School of Medicine, 6670 Bertner Ave, Houston, TX 77030
| | - Aijun Zhang
- The Methodist Hospital Research Institute, Weill Cornell School of Medicine, 6670 Bertner Ave, Houston, TX 77030
| | - Bin Zhang
- The Methodist Hospital Research Institute, Weill Cornell School of Medicine, 6670 Bertner Ave, Houston, TX 77030
| | - Lifei Li
- The First Hospital, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Stephen D. Ayers
- The Methodist Hospital Research Institute, Weill Cornell School of Medicine, 6670 Bertner Ave, Houston, TX 77030
| | - Chiara Gabbi
- Center for Nuclear Receptor and Cell Signaling, University of Houston, Calhoun Road, Houston TX77004,Karolinska Institutet, Department of Biosciences and Nutrition, NOVUM, 14186 Stockholm, Sweden
| | - Yoshiyuki Ueno
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Jan-Åke Gustafsson
- Center for Nuclear Receptor and Cell Signaling, University of Houston, Calhoun Road, Houston TX77004,Karolinska Institutet, Department of Biosciences and Nutrition, NOVUM, 14186 Stockholm, Sweden
| | - Gianfranco Alpini
- Scott & White Digestive Diseases Research Center, Temple, TX 76504,Division Research, Central Texas Veterans Health Care System, Temple, TX 76504,Department of Medicine, Texas A & M Health Science Center College of Medicine, Temple, TX 76504
| | - David D. Moore
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030
| | - Gene D. LeSage
- Department of Internal Medicine at East Tennessee State University’s James H. Quillen College of Medicine, Johnson City, TN 37614,Correspondence to: Xuefeng Xia, The Methodist Hospital Research Institute, 6670 Bertner Ave, R8-117, Houston, TX 77030, Telephone: 713-441-6665, Fax: 713-793-7162, and Gene LeSage, Department of Internal Medicine, East Tennessee State University, VA Bldg. 1, Box 70622, Johnson City, TN 37614, Telephone: 423-439-6282, Fax: 423-439-6387,
| |
Collapse
|
43
|
Portincasa P, Ciaula AD, Bonfrate L, Wang DQ. Therapy of gallstone disease: What it was, what it is, what it will be. World J Gastrointest Pharmacol Ther 2012; 3:7-20. [PMID: 22577615 PMCID: PMC3348960 DOI: 10.4292/wjgpt.v3.i2.7] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2011] [Revised: 09/21/2011] [Accepted: 09/28/2011] [Indexed: 02/06/2023] Open
Abstract
Cholesterol gallstone disease is a common clinical condition influenced by genetic factors, increasing age, female gender, and metabolic factors. Although laparoscopic cholecystectomy is currently considered the gold standard in treating patients with symptomatic gallstones, new perspectives regarding medical therapy of cholelithiasis are currently under discussion, also taking into account the pathogenesis of gallstones, the natural history of the disease and the analysis of the overall costs of therapy. A careful selection of patients may lead to successful non-surgical therapy in symptomatic subjects with a functioning gallbladder harboring small radiolucent stones. The classical oral litholysis by ursodeoxycholic acid has been recently paralleled by new experimental observations, suggesting that cholesterol-lowering agents which inhibit cholesterol synthesis (statins) or intestinal cholesterol absorption (ezetimibe), or drugs acting on specific nuclear receptors involved in cholesterol and bile acid homeostasis, might be proposed as additional approaches for treating cholesterol gallstones. In this review we discuss old, recent and future perspectives on medical treatment of cholesterol cholelithiasis.
Collapse
Affiliation(s)
- Piero Portincasa
- Piero Portincasa, Leonilde Bonfrate, Department of Biomedical Sciences and Human Oncology, Clinica Medica "A. Murri", University of Bari Medical School, Piazza Giulio Cesare 11, Policlinico, 70124 Bari, Italy
| | | | | | | |
Collapse
|
44
|
Saini SP, Zhang B, Niu Y, Jiang M, Gao J, Zhai Y, Lee JH, Uppal H, Tian H, Tortorici MA, Poloyac SM, Qin W, Venkataramanan R, Xie W. Activation of liver X receptor increases acetaminophen clearance and prevents its toxicity in mice. Hepatology 2011; 54:2208-17. [PMID: 21898498 PMCID: PMC3230770 DOI: 10.1002/hep.24646] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
UNLABELLED Overdose of acetaminophen (APAP), the active ingredient of Tylenol, is the leading cause of drug-induced acute liver failure in the United States. As such, it is necessary to develop novel strategies to prevent or manage APAP toxicity. In this report, we reveal a novel function of the liver X receptor (LXR) in preventing APAP-induced hepatotoxicity. Activation of LXR in transgenic (Tg) mice or by an LXR agonist conferred resistance to the hepatotoxicity of APAP, whereas the effect of LXR agonist on APAP toxicity was abolished in LXR-deficient mice. The increased APAP resistance in LXR Tg mice was associated with increased APAP clearance, increased APAP sulfation, and decreased formation of toxic APAP metabolites. The hepatoprotective effect of LXR may have resulted from the induction of antitoxic phase II conjugating enzymes, such as Gst and Sult2a1, as well as the suppression of protoxic phase I P450 enzymes, such as Cyp3a11 and Cyp2e1. Promoter analysis suggested the mouse Gst isoforms as novel transcriptional targets of LXR. The suppression of Cyp3a11 may be accounted for by the inhibitory effect of LXR on the PXR-responsive transactivation of Cyp3a11. The protective effect of LXR in preventing APAP toxicity is opposite to the sensitizing effect of pregnane X receptor, constitutive androstane receptor, and retinoid X receptor alpha. CONCLUSION We conclude that LXR represents a potential therapeutic target for the prevention and treatment of Tylenol toxicity.
Collapse
Affiliation(s)
- Simrat P.S. Saini
- Center for Pharmacogenetics and Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA 15261
| | - Bin Zhang
- Center for Pharmacogenetics and Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA 15261
| | - Yongdong Niu
- Center for Pharmacogenetics and Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA 15261,State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200032, China
| | - Mengxi Jiang
- Center for Pharmacogenetics and Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA 15261
| | - Jie Gao
- Center for Pharmacogenetics and Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA 15261
| | - Yonggong Zhai
- Key Laboratory for Cell Proliferation and Regulation Biology, Ministry of Education, Beijing Normal University, Beijing 100875, China
| | - Jung Hoon Lee
- Center for Pharmacogenetics and Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA 15261
| | - Hirdesh Uppal
- Center for Pharmacogenetics and Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA 15261
| | - Hui Tian
- Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA 15261
| | - Michael A. Tortorici
- Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA 15261
| | - Samuel M. Poloyac
- Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA 15261
| | - Wenxin Qin
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200032, China
| | - Raman Venkataramanan
- Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA 15261
| | - Wen Xie
- Center for Pharmacogenetics and Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA 15261
| |
Collapse
|
45
|
Molecular Mechanisms Underlying the Link between Nuclear Receptor Function and Cholesterol Gallstone Formation. J Lipids 2011; 2012:547643. [PMID: 22132343 PMCID: PMC3206498 DOI: 10.1155/2012/547643] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2011] [Accepted: 08/10/2011] [Indexed: 12/23/2022] Open
Abstract
Cholesterol gallstone disease is highly prevalent in western countries, particularly in women and some specific ethnic groups. The formation of water-insoluble cholesterol crystals is due to a misbalance between the three major lipids present in the bile: cholesterol, bile salts, and phospholipids. Many proteins implicated in biliary lipid secretion in the liver are regulated by several transcription factors, including nuclear receptors LXR and FXR. Human and murine genetic, physiological, pathophysiological, and pharmacological evidence is consistent with the relevance of these nuclear receptors in gallstone formation. In addition, there is emerging data that also suggests a role for estrogen receptor ESR1 in abnormal cholesterol metabolism leading to gallstone disease. A better comprehension of the role of nuclear receptor function in gallstone formation may help to design new and more effective therapeutic strategies for this highly prevalent disease condition.
Collapse
|
46
|
Zanlungo S, Rigotti A, Miquel JF, Nervi F. Abnormalities of lipid metabolism, gallstone disease and gallbladder function. ACTA ACUST UNITED AC 2011. [DOI: 10.2217/clp.11.22] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
47
|
He J, Nishida S, Xu M, Makishima M, Xie W. PXR prevents cholesterol gallstone disease by regulating biosynthesis and transport of bile salts. Gastroenterology 2011; 140:2095-106. [PMID: 21354151 PMCID: PMC3109201 DOI: 10.1053/j.gastro.2011.02.055] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2010] [Revised: 01/18/2011] [Accepted: 02/14/2011] [Indexed: 12/31/2022]
Abstract
BACKGROUND & AIMS Cholesterol gallstone disease (CGD) results from a biochemical imbalance of lipids and bile salts in the gallbladder bile. We investigated whether the xenobiotic receptor pregnane X receptor (PXR) has a role in pathogenesis of CGD. METHODS Wild-type, PXR-null (PXR-/-), and CGD-sensitive C57L mice were placed on a lithogenic diet and then analyzed for CGD at the biochemical, histological, and gene-regulation levels. RESULTS Loss of PXR sensitized mice to lithogenic diet-induced CGD, characterized by decreases in biliary concentrations of bile salts and phospholipids and an increases in the cholesterol saturation index and formation of cholesterol crystals. The decreased bile acid pool size in PXR-/- mice that received lithogenic diets was associated with reduced expression of cholesterol 7α-hydroxylase, the rate-limiting enzyme of cholesterol catabolism and bile acid formation. The reduced expression of cholesterol 7α-hydroxylase most likely resulted from activation of farnesoid X receptor and induction of fibroblast growth factor 15 in the intestine. In C57L mice given the PXR agonist, pregnenolone-16α-carbonitrile, or the herbal medicine, St John's wort, cholesterol precipitation was prevented by increases in concentrations of biliary bile salt and a reduced cholesterol saturation index. PXR prevented CGD via its coordinate regulation of the biosynthesis and transport of bile salts in the liver and intestine. CONCLUSIONS PXR maintains biliary bile acid homeostasis and may be developed as a therapeutic target for CGD.
Collapse
Affiliation(s)
- Jinhan He
- Center for Pharmacogenetics and Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA 15261
| | - Shigeru Nishida
- Division of Biochemistry, Department of Biomedical Sciences, Nihon University School of Medicine, Tokyo 173-8610, Japan
| | - Meishu Xu
- Center for Pharmacogenetics and Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA 15261
| | - Makoto Makishima
- Division of Biochemistry, Department of Biomedical Sciences, Nihon University School of Medicine, Tokyo 173-8610, Japan
| | - Wen Xie
- Center for Pharmacogenetics and Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA 15261
- Department of Pharmacology & Chemical Biology, University of Pittsburgh, Pittsburgh, PA 15261
| |
Collapse
|
48
|
Yamazaki Y, Hashizume T, Morioka H, Sadamitsu S, Ikari A, Miwa M, Sugatani J. Diet-induced lipid accumulation in liver enhances ATP-binding cassette transporter g5/g8 expression in bile canaliculi. Drug Metab Pharmacokinet 2011; 26:442-50. [PMID: 21628838 DOI: 10.2133/dmpk.dmpk-11-rg-025] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The ATP-binding cassette half-transporters Abcg5 and Abcg8 promote the secretion of neutral sterols into bile. Studies have demonstrated the diet-induced expression of these transporters in liver, but precisely where this occurs remains to be elucidated. This study investigated the changes in the expression of these transporters in bile canaliculi in cholesterol-loaded livers. Mice were fed either a standard (SD) diet or a high-fat and high-sucrose (HF/HS) diet for 3 weeks. Bile canaliculi proteins and cryosections were prepared from the liver, and the protein levels and distribution of Abcg5/Abcg8 were determined. The high-calorie diet induced a marked accumulation of lipids in mouse liver. Protein levels of Abcg5 and Abcg8 in bile canaliculi were significantly increased by the HF/HS diet compared to the SD diet. No significant differences in Abca1, Abcb4 (Mdr2), Abcb11 (Bsep), or Abcc2 (Mrp2) levels were observed. Immunohistochemical analyses confirmed that these increases occurred in bile canaliculi. These results suggest that diet-induced lipid loading of the liver causes a significant increase in the expression of Abcg5 and Abcg8 in bile canaliculi.
Collapse
Affiliation(s)
- Yasuhiro Yamazaki
- Department of Pharmaco-Biochemistry, School of Pharmaceutical Sciences, University of Shizuoka, Japan
| | | | | | | | | | | | | |
Collapse
|
49
|
Van Erpecum KJ. Pathogenesis of cholesterol and pigment gallstones: an update. Clin Res Hepatol Gastroenterol 2011; 35:281-7. [PMID: 21353662 DOI: 10.1016/j.clinre.2011.01.009] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2011] [Accepted: 01/24/2011] [Indexed: 02/04/2023]
Abstract
Phase separation of cholesterol crystals from supersaturated bile is still considered the key event in cholesterol gallstone formation. In this review, we will first provide a basal framework of the interactions between the sterol, bile salts and phospholipids in aqueous solutions and then summarize new developments. The hepatocytic apical membrane harbours specific transport proteins for these lipids. Polymorphisms in the gene encoding the cholesterol transporter ABCG5-G8 have been found to increase overall gallstone risk, whereas functional mutations in the gene encoding the phospholipid floppase ABCB4 lead to the rare clinical syndrome of low phospholipid associated cholelithiasis. Expression of bile salt and phospholipid transport proteins is regulated bij the bile salt nuclear receptor Farnesoid X receptor (FXR), while the Liver X Receptor (LXR) α regulates ABCG5-G8. Although data from murine experiments suggest a critical role of FXR in gallstone formation, its role in human lithogenesis remains controversial. Variants of the gene encoding UGT1A1 (uridine 5'-diphosphate (UDP)-glucuronosyltransferase 1A1) responsible for bilirubin conjugation were recently associated with risk of gallstones as well as stone bilirubin content, suggesting common factors in cholesterol and pigment gallstone pathogenesis.
Collapse
Affiliation(s)
- Karel Johannes Van Erpecum
- Dept of Gastroenterology and Hepatology, University Medical Center Utrecht, HP. F.02.618, PO Box 85500, 3508 GA Utrecht, The Netherlands.
| |
Collapse
|
50
|
Ou Z, Wada T, Gramignoli R, Li S, Strom SC, Huang M, Xie W. MicroRNA hsa-miR-613 targets the human LXRα gene and mediates a feedback loop of LXRα autoregulation. Mol Endocrinol 2011; 25:584-96. [PMID: 21310851 PMCID: PMC3063084 DOI: 10.1210/me.2010-0360] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2010] [Accepted: 01/14/2011] [Indexed: 01/18/2023] Open
Abstract
The nuclear receptor liver X receptor (LXR) is a ligand-dependent transcription factor that plays an important role in the metabolism and homeostasis of cholesterol, lipids, bile acids, and steroid hormones. MicroRNAs (miRNAs) are recently recognized important negative regulators of gene expression. In this report, we showed that miRNA hsa-miR-613 played an important role in the autoregulation of the human LXRα gene. hsa-miR-613 targeted the endogenous LXRα through its specific miRNA response element (613MRE) within the LXRα 3'-untranslated region. Interestingly and paradoxically, the expression of hsa-miR-613 itself was induced upon the activation of LXR. However, hsa-miR-613 did not appear to be a direct LXR target gene. Instead, the positive regulation of hsa-miR-613 by LXR was mediated by the sterol regulatory element binding protein (SREBP)-1c, a known LXR target gene. Promoter analysis revealed an SREBP response element in the hsa-miR-613 gene promoter. Treatment with insulin also induced the expression of hsa-miR-613 in an SREBP-1c-dependent manner, further supporting the role of SREBP-1c in the positive regulation of this miRNA species. Finally, the autoinduction of LXRα by a LXR agonist was enhanced when hsa-miR-613 was inhibited or SREBP-1c was down-regulated. hsa-miR-613 appeared to specifically target the human LXRα. We propose that the negative regulation mediated by hsa-miR-613 and SREBP-1c and the previously reported positive regulation mediated by an LXR response element in the LXRα gene promoter constitute a ying-yang mechanism to ensure a tight regulation of this nuclear receptor of many metabolic functions.
Collapse
Affiliation(s)
- Zhimin Ou
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, USA
| | | | | | | | | | | | | |
Collapse
|