1
|
Hellmann ZJ, Rehman S, Brown LM, Vasquez JC, Solomon DG, Christison-Lagay ER. Relationship Between Total Parenteral Nutrition, Ventilation, and Hepatoblastoma: A Study of 258,929 Neonatal Intensive Care Unit Admissions. Pediatr Blood Cancer 2025:e31741. [PMID: 40275525 DOI: 10.1002/pbc.31741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 03/09/2025] [Accepted: 04/09/2025] [Indexed: 04/26/2025]
Abstract
INTRODUCTION Gestational age, low birth weight, and overgrowth syndromes are associated with the diagnosis of hepatoblastoma. Previous studies have come to mixed conclusions regarding the contribution of other neonatal intensive care unit (NICU) exposures to hepatoblastoma development. We hypothesized that total parenteral nutrition (TPN) and mechanical ventilation during index NICU admission would correlate with the development of hepatoblastoma. METHODS The Pediatric Health Information System (PHIS) was queried for all infants admitted to the NICU with birthdates between 2016 and 2022. From this set, patients subsequently admitted to a PHIS hospital between 2016 and 2023 with a diagnosis code for hepatoblastoma were identified. Billing information was used to calculate the number of days of TPN and mechanical ventilation exposure during NICU hospitalization. RESULTS A total of 258,929 patients were included, with 51 patients diagnosed with hepatoblastoma. Patients with any duration of TPN (OR = 8.51, 95% CI 4.00-18.09) or mechanical ventilation (OR = 8.21, 95% CI 4.30-15.69) developed hepatoblastoma more frequently. Matched conditional logistic regression, on gestational age and birth weight, showed a significant increase in hepatoblastoma for each additional 10 days of TPN (OR = 1.25, 95% CI 1.06-1.50) and mechanical ventilation (OR = 1.21, 95% CI 1.06-1.39). DISCUSSION Leveraging the magnitude of the PHIS, we were able to demonstrate a significant relationship between the duration of exposure to both TPN and mechanical ventilation and the later diagnosis of hepatoblastoma. Although the PHIS lacks granularity in reporting clinical characteristics (e.g., mode and concentration of oxygen delivery and composition of TPN) of these common NICU interventions, future investigations should be directed at the role they may play in hepatoblastoma oncogenesis.
Collapse
Affiliation(s)
- Zane J Hellmann
- Division of Pediatric Surgery, Yale New Haven Children's Hospital, New Haven, Connecticut, USA
| | - Shahyan Rehman
- Division of Pediatric Surgery, Yale New Haven Children's Hospital, New Haven, Connecticut, USA
| | - Leanne M Brown
- Division of Pediatric Surgery, Yale New Haven Children's Hospital, New Haven, Connecticut, USA
| | - Juan C Vasquez
- Division of Pediatric Hematology and Oncology, Yale New Haven Children's Hospital, New Haven, Connecticut, USA
| | - Daniel G Solomon
- Division of Pediatric Surgery, Yale New Haven Children's Hospital, New Haven, Connecticut, USA
| | | |
Collapse
|
2
|
Ming Y, Gong Y, Fu X, Ouyang X, Peng Y, Pu W. Small-molecule-based targeted therapy in liver cancer. Mol Ther 2024; 32:3260-3287. [PMID: 39113358 PMCID: PMC11489561 DOI: 10.1016/j.ymthe.2024.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 03/13/2024] [Accepted: 08/02/2024] [Indexed: 08/23/2024] Open
Abstract
Liver cancer is one of the most prevalent malignant tumors worldwide. According to the Barcelona Clinic Liver Cancer staging criteria, clinical guidelines provide tutorials to clinical management of liver cancer at their individual stages. However, most patients diagnosed with liver cancer are at advanced stage; therefore, many researchers conduct investigations on targeted therapy, aiming to improve the overall survival of these patients. To date, small-molecule-based targeted therapies are highly recommended (first line: sorafenib and lenvatinib; second line: regorafenib and cabozantinib) by current the clinical guidelines of the American Society of Clinical Oncology, European Society for Medical Oncology, and National Comprehensive Cancer Network. Herein, we summarize the small-molecule-based targeted therapies in liver cancer, including the approved and preclinical therapies as well as the therapies under clinical trials, and introduce their history of discovery, clinical trials, indications, and molecular mechanisms. For drug resistance, the revealed mechanisms of action and the combination therapies are also discussed. In fact, the known small-molecule-based therapies still have limited clinical benefits to liver cancer patients. Therefore, we analyze the current status and give our ideas for the urgent issues and future directions in this field, suggesting clues for novel techniques in liver cancer treatment.
Collapse
Affiliation(s)
- Yue Ming
- Laboratory of Molecular Oncology, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610064, China
| | - Yanqiu Gong
- National Clinical Research Center for Geriatrics and Department of General Practice, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xuewen Fu
- Jinhua Huanke Environmental Technology Co., Ltd., Jinhua 321000, China
| | - Xinyu Ouyang
- Laboratory of Molecular Oncology, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610064, China; West China School of Medicine, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yong Peng
- Laboratory of Molecular Oncology, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610064, China; Frontier Medical Center, Tianfu Jincheng Laboratory, Chengdu 610212, China.
| | - Wenchen Pu
- Laboratory of Molecular Oncology, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610064, China; West China School of Medicine, West China Hospital, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
3
|
Hanlon MA, Gulati R, Johnston M, Fleifil Y, Rivas M, Timchenko NA. Genetic Ablation of C/EBPα-p300 Pathway Blocks Development of Obese Pregnancy Associated Liver Disorders in Offspring. Cell Mol Gastroenterol Hepatol 2023; 17:347-360. [PMID: 37967813 PMCID: PMC10821535 DOI: 10.1016/j.jcmgh.2023.11.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 11/08/2023] [Accepted: 11/09/2023] [Indexed: 11/17/2023]
Abstract
BACKGROUND & AIMS The obesity-associated nonalcoholic fatty liver disease represents a common cause of pediatric liver diseases, including the pediatric liver cancer hepatoblastoma. The mechanisms behind the development of fatty liver in children are not yet known. We examined the role of the C/EBPα-p300 pathway in the development of maternal obesity-associated fatty liver phenotype in offspring. METHODS Because the ability of C/EBPα to promote fatty liver phenotype is enhanced by CDK4-mediated phosphorylation of C/EBPα at Ser193 and subsequent formation of C/EBPα-p300 complexes, we used wild-type (WT) and C/EBPα-S193D and C/EBPα-S193A mutant mice to study the effects of maternal high-fat diet (HFD) on the liver health of offspring. The females of these mouse lines were fed an HFD before mating, and the pups were further subjected to either an HFD or a normal diet for 12 weeks. RESULTS WT female mice on the HFD before and during pregnancy and their subsequent offspring on the HFD had severe fatty liver, fibrosis, and an increased rate of liver proliferation. However, the HFD in C/EBPα-S193A mice did not cause development of these disorders. In HFD-HFD treated WT mice, C/EBPα is phosphorylated at Ser193 and forms complexes with p300, which activate expression of genes involved in development of fatty liver, fibrosis, and proliferation. However, S193A-C/EBPα mice do not have complexes of C/EBPα-S193A with p300, leading to a lack of activation of genes of fatty liver, fibrosis, and proliferation. The mutant C/EBPα-S193D mice have accelerated cdk4-dependent pathway and have developed steatosis at early stages. CONCLUSIONS These studies identified the epigenetic cause of obese pregnancy-associated liver diseases and suggest a potential therapy based on inhibition of cdk4-ph-S193-C/EBPα-p300 pathway.
Collapse
Affiliation(s)
- Margaret A Hanlon
- Division of General and Thoracic Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Ruhi Gulati
- Division of General and Thoracic Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Michael Johnston
- Division of General and Thoracic Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio; Department of Surgery, University of Cincinnati, Cincinnati, Ohio
| | - Yasmeen Fleifil
- Division of General and Thoracic Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Maria Rivas
- Institute of Biosciences, University of São Paulo (USP) Cidade Universitária, Butantã, São Paulo, Brazil
| | - Nikolai A Timchenko
- Division of General and Thoracic Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio; Department of Surgery, University of Cincinnati, Cincinnati, Ohio.
| |
Collapse
|
4
|
Romualdo GR, Heidor R, Bacil GP, Moreno FS, Barbisan LF. Past, present, and future of chemically induced hepatocarcinogenesis rodent models: Perspectives concerning classic and new cancer hallmarks. Life Sci 2023; 330:121994. [PMID: 37543357 DOI: 10.1016/j.lfs.2023.121994] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 07/25/2023] [Accepted: 07/29/2023] [Indexed: 08/07/2023]
Abstract
Hepatocellular carcinoma (HCC), the main primary liver cancer, accounts for 5 % of all incident cases and 8.4 % of all cancer-related deaths worldwide. HCC displays a spectrum of environmental risk factors (viral chronic infections, aflatoxin exposure, alcoholic- and nonalcoholic fatty liver diseases) that result in molecular complexity and heterogeneity, contributing to a rising epidemiological burden, poor prognosis, and non-satisfactory treatment options. The emergence of HCC (i.e., hepatocarcinogenesis) is a multistep and complex process that addresses many (epi)genetic alterations and phenotypic traits, the so-called cancer hallmarks. "Polymorphic microbiomes", "epigenetic reprogramming", "senescent cells" and "unlocking phenotypic plasticity" are trending hallmarks/enabling features in cancer biology. As the main molecular drivers of HCC are still undruggable, chemically induced in vivo models of hepatocarcinogenesis are useful tools in preclinical research. Thus, this narrative review aimed at recapitulating the basic features of chemically induced rodent models of hepatocarcinogenesis, eliciting their permanent translational value regarding the "classic" and the "new" cancer hallmarks/enabling features. We gathered state-of-art preclinical evidence on non-cirrhotic, inflammation-, alcoholic liver disease- and nonalcoholic fatty liver-associated HCC models, demonstrating that these bioassays indeed express the recently added hallmarks, as well as reflect the interplay between classical and new cancer traits. Our review demonstrated that these protocols remain valuable for translational preclinical application, as they recapitulate trending features of cancer science. Further "omics-based" approaches are warranted while multimodel investigations are encouraged in order to avoid "model-biased" responses.
Collapse
Affiliation(s)
- Guilherme Ribeiro Romualdo
- São Paulo State University (UNESP), Botucatu Medical School, Experimental Research Unit (UNIPEX), Multimodel Drug Screening Platform - Laboratory of Chemically Induced and Experimental Carcinogenesis (MDSP-LCQE), Botucatu, SP, Brazil; São Paulo State University (UNESP), Biosciences Institute, Department of Structural and Functional Biology, Laboratory of Chemically Induced and Experimental Carcinogenesis (LCQE), Botucatu, SP, Brazil; São Paulo State University (UNESP), Botucatu Medical School, Botucatu, SP, Brazil
| | - Renato Heidor
- University of São Paulo (USP), Faculty of Pharmaceutical Sciences, Department of Food and Experimental Nutrition, Laboratory of Diet, Nutrition, and Cancer, São Paulo, SP, Brazil
| | - Gabriel Prata Bacil
- São Paulo State University (UNESP), Biosciences Institute, Department of Structural and Functional Biology, Laboratory of Chemically Induced and Experimental Carcinogenesis (LCQE), Botucatu, SP, Brazil; São Paulo State University (UNESP), Botucatu Medical School, Botucatu, SP, Brazil
| | - Fernando Salvador Moreno
- University of São Paulo (USP), Faculty of Pharmaceutical Sciences, Department of Food and Experimental Nutrition, Laboratory of Diet, Nutrition, and Cancer, São Paulo, SP, Brazil
| | - Luís Fernando Barbisan
- São Paulo State University (UNESP), Botucatu Medical School, Experimental Research Unit (UNIPEX), Multimodel Drug Screening Platform - Laboratory of Chemically Induced and Experimental Carcinogenesis (MDSP-LCQE), Botucatu, SP, Brazil; São Paulo State University (UNESP), Biosciences Institute, Department of Structural and Functional Biology, Laboratory of Chemically Induced and Experimental Carcinogenesis (LCQE), Botucatu, SP, Brazil; São Paulo State University (UNESP), Botucatu Medical School, Botucatu, SP, Brazil.
| |
Collapse
|
5
|
Zheng S, Bian H, Li J, Shen Y, Yang Y, Hu W. Differentiation therapy: Unlocking phenotypic plasticity of hepatocellular carcinoma. Crit Rev Oncol Hematol 2022; 180:103854. [PMID: 36257532 DOI: 10.1016/j.critrevonc.2022.103854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 09/12/2022] [Accepted: 10/12/2022] [Indexed: 11/06/2022] Open
|
6
|
Gulati R, Johnston M, Rivas M, Cast A, Kumbaji M, Hanlon MA, Lee S, Zhou P, Lake C, Schepers E, Min K, Yoon J, Karns R, Reid LM, Lopez‐Terrada D, Timchenko L, Parameswaran S, Weirauch MT, Ranganathan S, Bondoc A, Geller J, Tiao G, Shin S, Timchenko N. β-catenin cancer-enhancing genomic regions axis is involved in the development of fibrolamellar hepatocellular carcinoma. Hepatol Commun 2022; 6:2950-2963. [PMID: 36000549 PMCID: PMC9512470 DOI: 10.1002/hep4.2055] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 06/27/2022] [Accepted: 07/03/2022] [Indexed: 11/24/2022] Open
Abstract
Fibrolamellar hepatocellular carcinoma (FLC) is a disease that occurs in children and young adults. The development of FLC is associated with creation of a fusion oncoprotein DNAJB1-PKAc kinase, which activates multiple cancer-associated pathways. The aim of this study was to examine the role of human genomic regions, called cancer-enhancing genomic regions or aggressive liver cancer domains (CEGRs/ALCDs), in the development of FLC. Previous studies revealed that CEGRs/ALCDs are located in multiple oncogenes and cancer-associated genes, regularly silenced in normal tissues. Using the regulatory element locus intersection (RELI) algorithm, we searched a large compendium of chromatin immunoprecipitation-sequencing (ChIP) data sets and found that CEGRs/ALCDs contain regulatory elements in several human cancers outside of pediatric hepatic neoplasms. The RELI algorithm further identified components of the β-catenin-TCF7L2/TCF4 pathway, which interacts with CEGRs/ALCDs in several human cancers. Particularly, the RELI algorithm found interactions of transcription factors and chromatin remodelers with many genes that are activated in patients with FLC. We found that these FLC-specific genes contain CEGRs/ALCDs, and that the driver of FLC, fusion oncoprotein DNAJB1-PKAc, phosphorylates β-catenin at Ser675, resulting in an increase of β-catenin-TCF7L2/TCF4 complexes. These complexes increase a large family of CEGR/ALCD-dependent collagens and oncogenes. The DNAJB1-PKAc-β-catenin-CEGR/ALCD pathway is preserved in lung metastasis. The inhibition of β-catenin in FLC organoids inhibited the expression of CEGRs/ALCDs-dependent collagens and oncogenes, preventing the formation of the organoid's structure. Conclusion: This study provides a rationale for the development of β-catenin-based therapy for patients with FLC.
Collapse
Affiliation(s)
- Ruhi Gulati
- Division of General and Thoracic SurgeryCincinnati Children's Hospital Medical CenterCincinnatiOhioUSA
| | - Michael Johnston
- Division of General and Thoracic SurgeryCincinnati Children's Hospital Medical CenterCincinnatiOhioUSA
- Department of SurgeryUniversity of Cincinnati College of MedicineCincinnatiOhioUSA
| | - Maria Rivas
- Institute of BiosciencesUniversity of São PauloSão PauloBrazil
| | - Ashley Cast
- Division of General and Thoracic SurgeryCincinnati Children's Hospital Medical CenterCincinnatiOhioUSA
| | - Meenasri Kumbaji
- Division of General and Thoracic SurgeryCincinnati Children's Hospital Medical CenterCincinnatiOhioUSA
| | - Margaret A. Hanlon
- Division of General and Thoracic SurgeryCincinnati Children's Hospital Medical CenterCincinnatiOhioUSA
| | - Sanghoon Lee
- Division of General and Thoracic SurgeryCincinnati Children's Hospital Medical CenterCincinnatiOhioUSA
| | - Ping Zhou
- Division of General and Thoracic SurgeryCincinnati Children's Hospital Medical CenterCincinnatiOhioUSA
| | - Charissa Lake
- Division of General and Thoracic SurgeryCincinnati Children's Hospital Medical CenterCincinnatiOhioUSA
| | - Emily Schepers
- Division of General and Thoracic SurgeryCincinnati Children's Hospital Medical CenterCincinnatiOhioUSA
| | - Kyung‐Won Min
- Department of BiologyGangneung‐Wonju National UniversityGangneungRepublic of Korea
| | - Je‐Hyun Yoon
- Department of Biochemistry and Molecular BiologyMedical University of South CarolinaCharlestonSouth CarolinaUSA
| | - Rebekah Karns
- Department of Gastroenterology, Hepatology and NutritionCincinnati Children's Hospital Medical CenterCincinnatiOhioUSA
| | - Lola M. Reid
- Departments of Cell Biology and PhysiologyProgram in Molecular Biology and BiotechnologyUNC School of MedicineChapel HillNorth CarolinaUSA
| | - Dolores Lopez‐Terrada
- Department of Pathology and Immunology, and Department of PediatricsBaylor College of MedicineOne Baylor PlazaHoustonTexasUSA
| | - Lubov Timchenko
- Department of NeurologyCincinnati Children's Hospital Medical CenterCincinnatiOhioUSA
| | - Sreeja Parameswaran
- Center for Autoimmune Genomics and EtiologyCincinnati Children's Hospital Medical CenterCincinnatiOhioUSA
| | - Matthew T. Weirauch
- Center for Autoimmune Genomics and EtiologyCincinnati Children's Hospital Medical CenterCincinnatiOhioUSA
- Divisions of Biomedical Informatics and Developmental BiologyCCHMCDepartment of PediatricsUniversity of Cincinnati College of MedicineCincinnatiOhioUSA
| | | | - Alexander Bondoc
- Division of General and Thoracic SurgeryCincinnati Children's Hospital Medical CenterCincinnatiOhioUSA
| | - James Geller
- Department of OncologyCincinnati Children's Hospital Medical CenterCincinnatiOhioUSA
| | - Gregory Tiao
- Division of General and Thoracic SurgeryCincinnati Children's Hospital Medical CenterCincinnatiOhioUSA
- Department of SurgeryUniversity of Cincinnati College of MedicineCincinnatiOhioUSA
| | - Soona Shin
- Division of General and Thoracic SurgeryCincinnati Children's Hospital Medical CenterCincinnatiOhioUSA
- Department of SurgeryUniversity of Cincinnati College of MedicineCincinnatiOhioUSA
| | - Nikolai Timchenko
- Division of General and Thoracic SurgeryCincinnati Children's Hospital Medical CenterCincinnatiOhioUSA
- Department of SurgeryUniversity of Cincinnati College of MedicineCincinnatiOhioUSA
| |
Collapse
|
7
|
Lu Y, Li M, Zhou Q, Fang D, Wu R, Li Q, Chen L, Su S. Dynamic network biomarker analysis and system pharmacology methods to explore the therapeutic effects and targets of Xiaoyaosan against liver cirrhosis. JOURNAL OF ETHNOPHARMACOLOGY 2022; 294:115324. [PMID: 35489663 DOI: 10.1016/j.jep.2022.115324] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/26/2022] [Accepted: 04/22/2022] [Indexed: 06/14/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Xiaoyaosan is a traditional Chinese herbal formula that has long been used to treat liver cirrhosis, liver failure, and hepatocarcinoma (HCC). However, little is known about its mechanism of action and targets in treating chronic liver disease. AIM OF THE STUDY This study aimed to detect the critical transition of HCC progression and to explore the regulatory mechanism and targets of Xiaoyaosan treating liver cirrhosis (cirrhosis) using integrative medicinal research involving system biology and pharmacology. MATERIALS AND METHODS We recruited chronic liver disease participants to obtain gene expression data and applied the dynamic network biomarker (DNB) method to identify molecular markers and the critical transition. We combined network pharmacology and DNB analysis to locate the potential DNBs (targets). Then we validated the DNBs in the liver cirrhosis rat models using Xiaoyaosan treatment. The expression of genes encoding the four DNBs, including Cebpa, Csf1, Egfr, and Il7r, were further validated in rat liver tissue using Western blot analysis. RESULTS We found EGFR, CEBPA, Csf1, Ccnb1, Rrmm2, C3, Il7r, Ccna2, and Peg10 overlap in the DNB list and Xiaoyaosan-Target-Disease (XTD) network constructed using network pharmacology databases. We investigated the diagnostic ability of each member in the DNB cluster and found EGFR, CEBPA, CSF1, and IL7R had high diagnostic abilities with AUC >0.7 and P-value < 0.05. We validated these findings in rats and found that liver function improved significantly and fibrotic changes were relieved in the Xiaoyaosan treatment group. The expression levels of CSF1 and IL7R in the Xiaoyaosan group were significantly lower than those in the cirrhosis model group. In contrast, CEBPA expression in the Xiaoyaosan group was significantly higher than that in the cirrhosis model group. The expression of EGFR in the Xiaoyaosan group was slightly decreased than in the model group but not significantly. CONCLUSION Using the DNB method and network pharmacology approach, this study revealed that CEBPA, IL7R, EGFR, and CSF1 expression was remarkably altered in chronic liver disease and thus, may play an important role in driving the progression of cirrhosis. Therefore, CEBPA, IL7R, EGFR, and CSF1 may be important targets of Xiaoyaosan in treating cirrhosis and can be considered for developing novel therapeutics.
Collapse
Affiliation(s)
- Yiyu Lu
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Meiyi Li
- Institute of Digestive Disease, Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, Chinese University of Hong Kong, Shenzhen Research Institute, Sha Tin, New Territories, Hong Kong, China
| | - Qianmei Zhou
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Dongdong Fang
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Rong Wu
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Qingya Li
- Henan University of Chinese Medicine, Henan, 450046, China
| | - Luonan Chen
- Key Laboratory of Systems Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Shanghai Institute of Biological Sciences, Chinese Academy of Sciences, Shanghai, 200031, China; CAS Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, 650223, China.
| | - Shibing Su
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| |
Collapse
|
8
|
D’Souza AM, Gnanamony M, Thomas M, Hanley P, Kanabar D, de Alarcon P, Muth A, Timchenko N. Second Generation Small Molecule Inhibitors of Gankyrin for the Treatment of Pediatric Liver Cancer. Cancers (Basel) 2022; 14:3068. [PMID: 35804840 PMCID: PMC9265042 DOI: 10.3390/cancers14133068] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 06/03/2022] [Accepted: 06/14/2022] [Indexed: 11/17/2022] Open
Abstract
Background: Gankyrin, a member of the 26S proteasome, is an overexpressed oncoprotein in hepatoblastoma (HBL) and hepatocellular carcinoma (HCC). Cjoc42 was the first small molecule inhibitor of Gankyrin developed; however, the IC50 values of >50 μM made them unattractive for clinical use. Second-generation inhibitors demonstrate a stronger affinity toward Gankyrin and increased cytotoxicity. The aim of this study was to characterize the in vitro effects of three cjoc42 derivatives. Methods: Experiments were performed on the HepG2 (HBL) and Hep3B (pediatric HCC) cell lines. We evaluated the expression of TSPs, cell cycle markers, and stem cell markers by Western blotting and/or real-time quantitative reverse transcription PCR. We also performed apoptotic, synergy, and methylation assays. Results: The treatment with cjoc42 derivatives led to an increase in TSPs and a dose-dependent decrease in the stem cell phenotype in both cell lines. An increase in apoptosis was only seen with AFM-1 and -2 in Hep3B cells. Drug synergy was seen with doxorubicin, and antagonism was seen with cisplatin. In the presence of cjoc42 derivatives, the 20S subunit of the 26S proteasome was more available to transport doxorubicin to the nucleus, leading to synergy. Conclusion: Small-molecule inhibitors for Gankyrin are a promising therapeutic strategy, especially in combination with doxorubicin.
Collapse
Affiliation(s)
- Amber M. D’Souza
- Department of Pediatrics, University of Illinois College of Medicine Peoria, 1 Illini Drive, Peoria, IL 61605, USA; (M.G.); (M.T.); (P.H.); (P.d.A.)
| | - Manu Gnanamony
- Department of Pediatrics, University of Illinois College of Medicine Peoria, 1 Illini Drive, Peoria, IL 61605, USA; (M.G.); (M.T.); (P.H.); (P.d.A.)
| | - Maria Thomas
- Department of Pediatrics, University of Illinois College of Medicine Peoria, 1 Illini Drive, Peoria, IL 61605, USA; (M.G.); (M.T.); (P.H.); (P.d.A.)
| | - Peter Hanley
- Department of Pediatrics, University of Illinois College of Medicine Peoria, 1 Illini Drive, Peoria, IL 61605, USA; (M.G.); (M.T.); (P.H.); (P.d.A.)
| | - Dipti Kanabar
- Department of Pharmaceutical Sciences, St. John’s University, 8000 Utopia Pkwy, Jamaica, NY 11439, USA; (D.K.); (A.M.)
| | - Pedro de Alarcon
- Department of Pediatrics, University of Illinois College of Medicine Peoria, 1 Illini Drive, Peoria, IL 61605, USA; (M.G.); (M.T.); (P.H.); (P.d.A.)
| | - Aaron Muth
- Department of Pharmaceutical Sciences, St. John’s University, 8000 Utopia Pkwy, Jamaica, NY 11439, USA; (D.K.); (A.M.)
| | - Nikolai Timchenko
- Division of Pediatric Surgery, Cincinnati Children’s Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45229, USA;
| |
Collapse
|
9
|
Song J, Zhou H, Gu D, Xu Y. Hepatocellular Carcinoma Differentiation: Research Progress in Mechanism and Treatment. Front Oncol 2022; 11:790358. [PMID: 35096588 PMCID: PMC8790246 DOI: 10.3389/fonc.2021.790358] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 12/20/2021] [Indexed: 12/24/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is the most common primary malignant tumor of the liver. Although progress has been made in diagnosis and treatment, morbidity and mortality continue to rise. Chronic liver disease and liver cirrhosis are still the most important risk factors for liver cancer. Although there are many treatments, it can only be cured by orthotopic liver transplantation (OLT) or surgical resection. And the worse the degree of differentiation, the worse the prognosis of patients with liver cancer. Then it can be considered that restoring a better state of differentiation may improve the prognosis. The differentiation treatment of liver cancer is to reverse the dedifferentiation process of hepatocytes to liver cancer cells by means of drugs, improve the differentiation state of the tumor, and restore the normal liver characteristics, so as to improve the prognosis. Understanding the mechanism of dedifferentiation of liver cancer can provide ideas for drug design. Liver enrichment of transcription factors, imbalance of signal pathway and changes of tumor microenvironment can promote the occurrence and development of liver cancer, and restoring its normal level can inhibit the malignant behavior of tumor. At present, some drugs have been proved to be effective, but more clinical data are needed to support the effectiveness and reliability of drugs. The differentiation treatment of liver cancer is expected to become an important part of the treatment of liver cancer in the future.
Collapse
Affiliation(s)
- Jianning Song
- Department of Clinical Laboratory, Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen University, Shenzhen, China.,Guangzhou Medical University, Shenzhen, China
| | - Hongzhong Zhou
- Department of Clinical Laboratory, Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen University, Shenzhen, China.,Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Dayong Gu
- Department of Clinical Laboratory, Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen University, Shenzhen, China
| | - Yong Xu
- Department of Clinical Laboratory, Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen University, Shenzhen, China.,Guangzhou Medical University, Shenzhen, China
| |
Collapse
|
10
|
miR-10b-5p Suppresses the Proliferation and Invasion of Primary Hepatic Carcinoma Cells by Downregulating EphA2. BIOMED RESEARCH INTERNATIONAL 2022; 2021:1382061. [PMID: 35005012 PMCID: PMC8731268 DOI: 10.1155/2021/1382061] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 10/25/2021] [Accepted: 10/27/2021] [Indexed: 11/29/2022]
Abstract
Objective To analyze the function of miR-10b-5p in suppressing the invasion and proliferation of primary hepatic carcinoma cells by downregulating erythropoietin-producing hepatocellular receptor A2 (EphA2). Material and Methods. Eighty-six hepatic carcinoma (HCC) tissue specimens and 86 corresponding adjacent tissue specimens were collected, and the mRNA expression of miR-10b-5p and Ephrin type-A receptor 2 (EphA2) in the specimens was determined using a reverse transcription-polymerase chain reaction (RT-PCR) assay. Western blot was employed to quantify EphA2, B-cell chronic lymphocytic leukemia/lymphoma-2 (Bcl-2), Bcl-2-associated X protein (Bax), and Caspase-3 in the cells, and CCK8, Transwell assay, and flow cytometry were applied to evaluate the proliferation, invasion, and apoptosis of cells, respectively. Moreover, the dual luciferase reporter assay was utilized for correlation analysis between miR-10b-5p and EphA2. Results miR-10b-5p was lowly expressed in HCC, while EphA2 was highly expressed. Cell experiments revealed that miR-10b-5p overexpression or EphA2 knockdown could reduce cell proliferation, accelerate apoptosis, strongly upregulate Bax and Caspase-3, and downregulate Bcl-2. In contrast, miR-10b-5p knockdown or EphA2 overexpression gave rise to reverse biological phenotypes. Furthermore, dual luciferase reporter assay verified that miR-10b-5p was a target of EphA2, and the rescue experiment implied that transfection of pCMV-EphA2 or Si-EphA2 could reverse EphA2 expression and cell biological functions caused by miR-10b-5p overexpression or knockdown. Conclusions miR-10b-5p reduced HCC cell proliferation but accelerate apoptosis by regulating EphA2, suggesting it has the potential to be a clinical target for HCC.
Collapse
|
11
|
Naz F, Shi M, Sajid S, Yang Z, Yu C. Cancer stem cells: a major culprit of intra-tumor heterogeneity. Am J Cancer Res 2021; 11:5782-5811. [PMID: 35018226 PMCID: PMC8727794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Accepted: 08/25/2021] [Indexed: 06/14/2023] Open
Abstract
Cancer is recognized as a preeminent factor of the world's mortality. Although various modalities have been designed to cure this life-threatening ailment, a significant impediment in the effective output of cancer treatment is heterogeneity. Cancer is characterized as a heterogeneous health disorder that comprises a distinct group of transformed cells to assist anomalous proliferation of affected cells. Cancer stem cells (CSCs) are a leading cause of cancer heterogeneity that is continually transformed by cellular extrinsic and intrinsic factors. They intensify neoplastic cells aggressiveness by strengthening their dissemination, relapse and therapy resistance. Considering this viewpoint, in this review article we have discussed some intrinsic (transcription factors, cell signaling pathways, genetic alterations, epigenetic modifications, non-coding RNAs (ncRNAs) and epitranscriptomics) and extrinsic factors (tumor microenvironment (TME)) that contribute to CSC heterogeneity and plasticity, which may help scientists to meddle these processes and eventually improve cancer research and management. Besides, the potential role of CSCs heterogeneity in establishing metastasis and therapy resistance has been articulated which signifies the importance of developing novel anticancer therapies to target CSCs along with targeting bulk tumor mass to achieve an effective output.
Collapse
Affiliation(s)
- Faiza Naz
- College of Life Science and Technology, Beijing University of Chemical TechnologyBeijing 100029, China
| | - Mengran Shi
- College of Life Science and Technology, Beijing University of Chemical TechnologyBeijing 100029, China
| | - Salvia Sajid
- Department of Biotechnology, Jinnah University for WomenKarachi 74600, Pakistan
| | - Zhao Yang
- College of Life Science and Technology, Beijing University of Chemical TechnologyBeijing 100029, China
- College of Life Science, Key Laboratory of Protection and Utilization of Biological Resources in Tarim Basin of Xinjiang Production and Construction Corps, Tarim UniversityAlar 843300, Xinjiang, China
| | - Changyuan Yu
- College of Life Science and Technology, Beijing University of Chemical TechnologyBeijing 100029, China
| |
Collapse
|
12
|
Romualdo GR, Leroy K, Costa CJS, Prata GB, Vanderborght B, da Silva TC, Barbisan LF, Andraus W, Devisscher L, Câmara NOS, Vinken M, Cogliati B. In Vivo and In Vitro Models of Hepatocellular Carcinoma: Current Strategies for Translational Modeling. Cancers (Basel) 2021; 13:5583. [PMID: 34771745 PMCID: PMC8582701 DOI: 10.3390/cancers13215583] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 11/02/2021] [Accepted: 11/04/2021] [Indexed: 12/24/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is the sixth most common cancer worldwide and the third leading cause of cancer-related death globally. HCC is a complex multistep disease and usually emerges in the setting of chronic liver diseases. The molecular pathogenesis of HCC varies according to the etiology, mainly caused by chronic hepatitis B and C virus infections, chronic alcohol consumption, aflatoxin-contaminated food, and non-alcoholic fatty liver disease associated with metabolic syndrome or diabetes mellitus. The establishment of HCC models has become essential for both basic and translational research to improve our understanding of the pathophysiology and unravel new molecular drivers of this disease. The ideal model should recapitulate key events observed during hepatocarcinogenesis and HCC progression in view of establishing effective diagnostic and therapeutic strategies to be translated into clinical practice. Despite considerable efforts currently devoted to liver cancer research, only a few anti-HCC drugs are available, and patient prognosis and survival are still poor. The present paper provides a state-of-the-art overview of in vivo and in vitro models used for translational modeling of HCC with a specific focus on their key molecular hallmarks.
Collapse
Affiliation(s)
- Guilherme Ribeiro Romualdo
- Department of Pathology, School of Veterinary Medicine and Animal Science, University of São Paulo (USP), São Paulo 05508-270, Brazil; (G.R.R.); (C.J.S.C.); (T.C.d.S.)
- Department of Structural and Functional Biology, Biosciences Institute, São Paulo State University (UNESP), Botucatu 18618-689, Brazil; (G.B.P.); (L.F.B.)
- Department of Pathology, Botucatu Medical School, São Paulo State University (UNESP), Botucatu 18618-687, Brazil
| | - Kaat Leroy
- Department of Pharmaceutical and Pharmacological Sciences, Vrije Universiteit Brussel, 1090 Brussels, Belgium; (K.L.); (M.V.)
| | - Cícero Júlio Silva Costa
- Department of Pathology, School of Veterinary Medicine and Animal Science, University of São Paulo (USP), São Paulo 05508-270, Brazil; (G.R.R.); (C.J.S.C.); (T.C.d.S.)
| | - Gabriel Bacil Prata
- Department of Structural and Functional Biology, Biosciences Institute, São Paulo State University (UNESP), Botucatu 18618-689, Brazil; (G.B.P.); (L.F.B.)
- Department of Pathology, Botucatu Medical School, São Paulo State University (UNESP), Botucatu 18618-687, Brazil
| | - Bart Vanderborght
- Gut-Liver Immunopharmacology Unit, Basic and Applied Medical Sciences, Liver Research Center Ghent, Faculty of Medicine and Health Sciences, Ghent University, 9000 Ghent, Belgium;
- Hepatology Research Unit, Internal Medicine and Paediatrics, Liver Research Center Ghent, Faculty of Medicine and Health Sciences, Ghent University, 9000 Ghent, Belgium;
| | - Tereza Cristina da Silva
- Department of Pathology, School of Veterinary Medicine and Animal Science, University of São Paulo (USP), São Paulo 05508-270, Brazil; (G.R.R.); (C.J.S.C.); (T.C.d.S.)
| | - Luís Fernando Barbisan
- Department of Structural and Functional Biology, Biosciences Institute, São Paulo State University (UNESP), Botucatu 18618-689, Brazil; (G.B.P.); (L.F.B.)
| | - Wellington Andraus
- Department of Gastroenterology, Clinics Hospital, School of Medicine, University of São Paulo (HC-FMUSP), São Paulo 05403-000, Brazil;
| | - Lindsey Devisscher
- Hepatology Research Unit, Internal Medicine and Paediatrics, Liver Research Center Ghent, Faculty of Medicine and Health Sciences, Ghent University, 9000 Ghent, Belgium;
| | - Niels Olsen Saraiva Câmara
- Department of Immunology, Institute of Biomedical Sciences IV, University of São Paulo (USP), São Paulo 05508-000, Brazil;
| | - Mathieu Vinken
- Department of Pharmaceutical and Pharmacological Sciences, Vrije Universiteit Brussel, 1090 Brussels, Belgium; (K.L.); (M.V.)
| | - Bruno Cogliati
- Department of Pathology, School of Veterinary Medicine and Animal Science, University of São Paulo (USP), São Paulo 05508-270, Brazil; (G.R.R.); (C.J.S.C.); (T.C.d.S.)
| |
Collapse
|
13
|
Azukisawa S, Zheng J, Guo X, Ura H, Niida Y, Itoh T, Yamada S. The differential expression of perilipin-2 in hepatoblastoma and its association with prognosis. Histol Histopathol 2021; 36:1169-1178. [PMID: 34477212 DOI: 10.14670/hh-18-371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Perilipin-2, a lipid droplet (LD) coating protein, has been found to be involved in cancer progression. However, its role in hepatoblastoma (HB) is undefined. We collected 87 HB samples and the corresponding clinical data. Immunohistochemistry (IHC) staining was performed to detect perilipin-2 and the association of the perilipin-2 expression with clinical characteristics and prognosis was analyzed. The expression of perilipin-2 was increased in fetal HB components in comparison to embryonal HB components. The predominant staining pattern was vesicular in fetal HB cells, while it was granular in embryonal HB cells. Furthermore, strong expression of perilipin-2 was associated with the histopathological type of fetal predominant HB. Although event-free survival (EFS) did not differ to a statistically significant extent between the strong and weak expression groups in a univariate survival analysis, a multivariate survival analysis revealed that EFS was significantly improved in the strong perilipin-2 expression group. In conclusion, perilipin-2 is differentially expressed in HB and the strong expression of perilipin-2 predicts a better prognosis.
Collapse
Grants
- 19K16783 Ministry of Education, Culture, Sports, Science and Technology, Tokyo, Japan
- 20K07454 Ministry of Education, Culture, Sports, Science and Technology, Tokyo, Japan
- S2018-6 Promoted Research from Kanazawa Medical University
Collapse
Affiliation(s)
- Sadafumi Azukisawa
- Department of Gastroenterological Endoscopy, Kanazawa Medical University Hospital, Ishikawa, Japan
| | - Jianbo Zheng
- Department of Pathology and Laboratory Medicine, Kanazawa Medical University, Ishikawa, Japan
- Department of Pediatrics, Wuhan Union Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, Hubei, China.
| | - Xin Guo
- Department of Pathology and Laboratory Medicine, Kanazawa Medical University, Ishikawa, Japan
- Department of Pathology, Kanazawa Medical University Hospital, Ishikawa, Japan
| | - Hiroki Ura
- Center for Clinical Genomics, Kanazawa Medical University Hospital, Ishikawa, Japan
- Division of Genomic Medicine, Department of Advanced Medicine, Medical Research Institute, Kanazawa Medical University, Ishikawa, Japan
| | - Yo Niida
- Center for Clinical Genomics, Kanazawa Medical University Hospital, Ishikawa, Japan
- Division of Genomic Medicine, Department of Advanced Medicine, Medical Research Institute, Kanazawa Medical University, Ishikawa, Japan
| | - Tohru Itoh
- Department of Gastroenterological Endoscopy, Kanazawa Medical University Hospital, Ishikawa, Japan
| | - Sohsuke Yamada
- Department of Pathology and Laboratory Medicine, Kanazawa Medical University, Ishikawa, Japan
- Department of Pathology, Kanazawa Medical University Hospital, Ishikawa, Japan
| |
Collapse
|
14
|
Johnston ME, Rivas MP, Nicolle D, Gorse A, Gulati R, Kumbaji M, Weirauch MT, Bondoc A, Cairo S, Geller J, Tiao G, Timchenko N. Olaparib Inhibits Tumor Growth of Hepatoblastoma in Patient-Derived Xenograft Models. Hepatology 2021; 74:2201-2215. [PMID: 34037269 PMCID: PMC8463483 DOI: 10.1002/hep.31919] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 04/30/2021] [Accepted: 05/06/2021] [Indexed: 12/11/2022]
Abstract
BACKGROUND AND AIMS Hepatoblastoma (HBL) is a devastating pediatric liver cancer with multiple treatment options, but it ultimately requires surgery for a cure. The most malicious form of HBL is a chemo-resistant aggressive tumor that is characterized by rapid growth, metastases, and poor response to treatment. Very little is known of the mechanisms of aggressive HBL, and recent focuses have been on developing alternative treatment strategies. In this study, we examined the role of human chromosomal regions, called aggressive liver cancer domains (ALCDs), in liver cancer and evaluated the mechanisms that activate ALCDs in aggressive HBL. RESULTS We found that ALCDs are critical regions of the human genome that are located on all human chromosomes, preferentially in intronic regions of the oncogenes and other cancer-associated genes. In aggressive HBL and in patients with Hepatocellular (HCC), JNK1/2 phosphorylates p53 at Ser6, which leads to the ph-S6-p53 interacting with and delivering the poly(adenosine diphosphate ribose) polymerase 1 (PARP1)/Ku70 complexes on the oncogenes containing ALCDs. The ph-S6-p53-PARP1 complexes open chromatin around ALCDs and activate multiple oncogenic pathways. We found that the inhibition of PARP1 in patient-derived xenografts (PDXs) from aggressive HBL by the Food and Drug Administration (FDA)-approved inhibitor olaparib (Ola) significantly inhibits tumor growth. Additionally, this is associated with the reduction of the ph-S6-p53/PARP1 complexes and subsequent inhibition of ALCD-dependent oncogenes. Studies in cultured cancer cells confirmed that the Ola-mediated inhibition of the ph-S6-p53-PARP1-ALCD axis inhibits proliferation of cancer cells. CONCLUSIONS In this study, we showed that aggressive HBL is moderated by ALCDs, which are activated by the ph-S6-p53/PARP1 pathway. By using the PARP1 inhibitor Ola, we suppressed tumor growth in HBL-PDX models, which demonstrated its utility in future clinical models.
Collapse
Affiliation(s)
- Michael Edward Johnston
- Division of General and Thoracic SurgeryCincinnati Children’s Hospital Medical CenterCincinnatiOH,Department of SurgeryUniversity of CincinnatiCincinnatiOH
| | - Maria Prates Rivas
- Division of General and Thoracic SurgeryCincinnati Children’s Hospital Medical CenterCincinnatiOH
| | | | | | - Ruhi Gulati
- Division of General and Thoracic SurgeryCincinnati Children’s Hospital Medical CenterCincinnatiOH
| | - Meenasri Kumbaji
- Division of General and Thoracic SurgeryCincinnati Children’s Hospital Medical CenterCincinnatiOH
| | - Matthew T. Weirauch
- Center for Autoimmune Genomics and EtiologyCincinnati Children’s Hospital Medical CenterCincinnatiOH
| | - Alexander Bondoc
- Division of General and Thoracic SurgeryCincinnati Children’s Hospital Medical CenterCincinnatiOH
| | - Stefano Cairo
- XenTech 4Évry‐CourcouronnesFrance,Istituto di Ricerca PediatricaPaduaItaly
| | - James Geller
- Department of OncologyCincinnati Children’s Hospital Medical CenterCincinnatiOH
| | - Gregory Tiao
- Division of General and Thoracic SurgeryCincinnati Children’s Hospital Medical CenterCincinnatiOH
| | - Nikolai Timchenko
- Division of General and Thoracic SurgeryCincinnati Children’s Hospital Medical CenterCincinnatiOH,Department of SurgeryUniversity of CincinnatiCincinnatiOH
| |
Collapse
|
15
|
Huang S, Wang S, Xie Y, He X, Yi X, Zhang J, Deng Z, Yin L. Application of NRS2002 in Preoperative Nutritional Screening for Patients with Liver Cancer. JOURNAL OF ONCOLOGY 2021; 2021:8943353. [PMID: 34518766 PMCID: PMC8434900 DOI: 10.1155/2021/8943353] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 08/17/2021] [Indexed: 11/18/2022]
Abstract
OBJECTIVE To explore the application of NRS2002 in preoperative nutritional screening of patients with liver cancer (LC). METHODS 60 LC patients treated in the First Affiliated Hospital of Gannan Medical University (January 2018-May 2021) were chosen as the research objects, and split into group J without nutritional risk and group Q with nutritional risk according to the results of NRS2002 to compare the preoperative situation, surgery-related indexes, hematological indexes, postoperative recovery, and incidence of complications between the two groups. RESULTS Group J (n = 28) and group Q (n = 32) showed no obvious difference in preoperative situation, and patients' liver function indexes were within the normal range. The duration of surgery in group J was notably shorter compared with group Q (P < 0.05). Alanine aminotransferase (ALT), aspartate aminotransferase (AST), direct bilirubin (DBIL), and albumin in group J were notably different from those of group Q (P < 0.001) at 1 day after surgery. ALT and AST in group J were notably different from those of group Q at 3 days after surgery (P < 0.001). No obvious differences were observed in the hematological indexes between the two groups at 5 days after surgery (P > 0.05). The total amount of albumin infusion, postoperative hospitalization time, and hospitalization cost in group J were notably lower compared with group Q (P < 0.001). The incidence of complications in group J was notably lower compared with group Q (P < 0.05). CONCLUSION Postoperative recovery of LC patients is closely related to their preoperative nutritional status, and those with poor nutritional status have a high incidence of postoperative complications and long recovery time. NRS2002 can effectively screen the nutritional status of patients and provide reference for prognosis evaluation.
Collapse
Affiliation(s)
- Suling Huang
- Department of Hepatological Surgery, First Affiliated Hospital of Gannan Medical University, Ganzhou 341000, Jiangxi Province, China
| | - Shijie Wang
- Department of Hepatological Surgery, First Affiliated Hospital of Gannan Medical University, Ganzhou 341000, Jiangxi Province, China
| | - Yuankang Xie
- Department of Hepatological Surgery, First Affiliated Hospital of Gannan Medical University, Ganzhou 341000, Jiangxi Province, China
| | - Xiao He
- Department of Hepatological Surgery, First Affiliated Hospital of Gannan Medical University, Ganzhou 341000, Jiangxi Province, China
| | - Xiuying Yi
- Department of Hepatological Surgery, First Affiliated Hospital of Gannan Medical University, Ganzhou 341000, Jiangxi Province, China
| | - Jianhong Zhang
- Department of Pharmacy, First Affiliated Hospital of Gannan Medical University, Ganzhou 341000, Jiangxi Province, China
| | - Zuomei Deng
- Department of Thyroid Hernia Surgery, First Affiliated Hospital of Gannan Medical University, Ganzhou 341000, Jiangxi Province, China
| | - Ling Yin
- Department of Hepatological Surgery, First Affiliated Hospital of Gannan Medical University, Ganzhou 341000, Jiangxi Province, China
| |
Collapse
|
16
|
Liu X, Chen X, Xiao M, Zhu Y, Gong R, Liu J, Zeng Q, Xu C, Chen X, Wang F, Cao K. RANBP2 Activates O-GlcNAcylation through Inducing CEBPα-Dependent OGA Downregulation to Promote Hepatocellular Carcinoma Malignant Phenotypes. Cancers (Basel) 2021; 13:3475. [PMID: 34298689 PMCID: PMC8304650 DOI: 10.3390/cancers13143475] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 06/25/2021] [Accepted: 06/30/2021] [Indexed: 11/16/2022] Open
Abstract
O-GlcNAcylation is an important post-translational modification (PTM) jointly controlled by O-GlcNAc transferase (OGT) and O-GlcNAcase (OGA). Aberrant hyper-O-GlcNAcylation is reported to yield hepatocellular carcinoma (HCC) malignancy, but the underlying mechanisms of the OGT/OGA imbalance responsible for HCC tumorigenesis remain largely unknown. Here, we report that RAN-binding protein 2 (RANBP2), one of the small ubiquitin-like modifier (SUMO) E3 ligases, contributed to malignant phenotypes in HCC. RANBP2 was found to facilitate CCAAT/enhancer-binding protein alpha (CEBPα) SUMOylation and degradation by direct interplay with CEBPα. As a transcriptional factor, CEBPα was verified to augment OGA transcription, and further experiments demonstrated that RANBP2 enhanced the O-GlcNAc level by downregulating OGA transcription while not affecting OGT expression. Importantly, we provided in vitro and in vivo evidence of HCC malignant phenotypes that RANBP2 triggered through an imbalance of OGT/OGA and subsequent higher O-GlcNAcylation events for oncogenic proteins such as peroxisome proliferative-activated receptor gamma coactivator 1 alpha (PGC1α) in a CEBPα-dependent manner. Altogether, our results show a novel molecular mechanism whereby RANBP2 regulates its function through CEBPα-dependent OGA downregulation to induce a global change in the hyper-O-GlcNAcylation of genes, such as PGC1α, encouraging the further study of promising implications for HCC therapy.
Collapse
Affiliation(s)
- Xiaoming Liu
- Department of Oncology, Third Xiangya Hospital of Central South University, Changsha 410013, China; (X.L.); (X.C.); (M.X.); (Y.Z.)
- Department of Gastroenterology, Third Xiangya Hospital of Central South University, Changsha 410013, China; (R.G.); (C.X.); (X.C.); (F.W.)
| | - Xingyu Chen
- Department of Oncology, Third Xiangya Hospital of Central South University, Changsha 410013, China; (X.L.); (X.C.); (M.X.); (Y.Z.)
| | - Mengqing Xiao
- Department of Oncology, Third Xiangya Hospital of Central South University, Changsha 410013, China; (X.L.); (X.C.); (M.X.); (Y.Z.)
| | - Yuxing Zhu
- Department of Oncology, Third Xiangya Hospital of Central South University, Changsha 410013, China; (X.L.); (X.C.); (M.X.); (Y.Z.)
| | - Renjie Gong
- Department of Gastroenterology, Third Xiangya Hospital of Central South University, Changsha 410013, China; (R.G.); (C.X.); (X.C.); (F.W.)
| | - Jianye Liu
- Department of Urology, Third Xiangya Hospital of Central South University, Changsha 410013, China;
| | - Qinghai Zeng
- Department of Dermatology, Third Xiangya Hospital of Central South University, Changsha 410013, China;
| | - Canxia Xu
- Department of Gastroenterology, Third Xiangya Hospital of Central South University, Changsha 410013, China; (R.G.); (C.X.); (X.C.); (F.W.)
| | - Xiong Chen
- Department of Gastroenterology, Third Xiangya Hospital of Central South University, Changsha 410013, China; (R.G.); (C.X.); (X.C.); (F.W.)
| | - Fen Wang
- Department of Gastroenterology, Third Xiangya Hospital of Central South University, Changsha 410013, China; (R.G.); (C.X.); (X.C.); (F.W.)
| | - Ke Cao
- Department of Oncology, Third Xiangya Hospital of Central South University, Changsha 410013, China; (X.L.); (X.C.); (M.X.); (Y.Z.)
| |
Collapse
|
17
|
Rivas M, Johnston ME, Gulati R, Kumbaji M, Margues Aguiar TF, Timchenko L, Krepischi A, Shin S, Bondoc A, Tiao G, Geller J, Timchenko N. HDAC1-Dependent Repression of Markers of Hepatocytes and P21 Is Involved in Development of Pediatric Liver Cancer. Cell Mol Gastroenterol Hepatol 2021; 12:1669-1682. [PMID: 34245919 PMCID: PMC8536541 DOI: 10.1016/j.jcmgh.2021.06.026] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 06/29/2021] [Accepted: 06/30/2021] [Indexed: 02/08/2023]
Abstract
BACKGROUND & AIMS Epigenetic regulation of gene expression plays a critical role in the development of liver cancer; however, the molecular mechanisms of epigenetic-driven liver cancers are not well understood. The aims of this study were to examine molecular mechanisms that cause the dedifferentiation of hepatocytes into cancer cells in aggressive hepatoblastoma and test if the inhibition of these mechanisms inhibits tumor growth. METHODS We have analyzed CCAAT/Enhancer Binding Protein alpha (C/EBPα), Transcription factor Sp5, and histone deacetylase (HDAC)1 pathways from a large biobank of fresh hepatoblastoma (HBL) samples using high-pressure liquid chromatography-based examination of protein-protein complexes and have examined chromatin remodeling on the promoters of markers of hepatocytes and p21. The HDAC1 activity was inhibited in patient-derived xenograft models of HBL and in cultured hepatoblastoma cells and expression of HDAC1-dependent markers of hepatocytes was examined. RESULTS Analyses of a biobank showed that a significant portion of HBL patients have increased levels of an oncogenic de-phosphorylated-S190-C/EBPα, Sp5, and HDAC1 compared with amounts of these proteins in adjacent regions. We found that the oncogenic de-phosphorylated-S190-C/EBPα is created in aggressive HBL by protein phosphatase 2A, which is increased within the nucleus and dephosphorylates C/EBPα at Ser190. C/EBPα-HDAC1 and Sp5-HDAC1 complexes are abundant in hepatocytes, which dedifferentiate into cancer cells. Studies in HBL cells have shown that C/EBPα-HDAC1 and Sp5-HDAC1 complexes reduce markers of hepatocytes and p21 via repression of their promoters. Pharmacologic inhibition of C/EBPα-HDAC1 and Sp5-HDAC1 complexes by Suberoylanilide hydroxamic acid (SAHA) and small interfering RNA-mediated inhibition of HDAC1 increase expression of hepatocyte markers, p21, and inhibit proliferation of cancer cells. CONCLUSIONS HDAC1-mediated repression of markers of hepatocytes is an essential step for the development of HBL, providing background for generation of therapies for aggressive HBL by targeting HDAC1 activities.
Collapse
Affiliation(s)
- Maria Rivas
- Division of General and Thoracic Surgery, Cincinnati, Ohio,Institute of Biosciences, University of São Paulo, São Paulo, Brazil
| | - Michael E. Johnston
- Division of General and Thoracic Surgery, Cincinnati, Ohio,Department of Surgery, University of Cincinnati College of Medicine, University of Cincinnati, Cincinnati, Ohio
| | - Ruhi Gulati
- Division of General and Thoracic Surgery, Cincinnati, Ohio
| | | | | | | | - Ana Krepischi
- Institute of Biosciences, University of São Paulo, São Paulo, Brazil
| | - Soona Shin
- Division of General and Thoracic Surgery, Cincinnati, Ohio,Department of Surgery, University of Cincinnati College of Medicine, University of Cincinnati, Cincinnati, Ohio
| | | | - Gregory Tiao
- Division of General and Thoracic Surgery, Cincinnati, Ohio,Department of Surgery, University of Cincinnati College of Medicine, University of Cincinnati, Cincinnati, Ohio
| | - James Geller
- Department of Oncology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio
| | - Nikolai Timchenko
- Division of General and Thoracic Surgery, Cincinnati, Ohio,Department of Surgery, University of Cincinnati College of Medicine, University of Cincinnati, Cincinnati, Ohio,Correspondence Address correspondence to: Nikolai Timchenko, PhD, Liver Tumor Program, Cincinnati Children’s Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, Ohio 45229. fax: (513) 636-4200.
| |
Collapse
|
18
|
Xu Z, Meng SH, Bai JG, Sun C, Zhao LL, Tang RF, Yin ZL, Ji JW, Yang W, Ma GJ. C/EBPα Regulates FOXC1 to Modulate Tumor Growth by Interacting with PPARγ in Hepatocellular Carcinoma. Curr Cancer Drug Targets 2021; 20:59-66. [PMID: 31512996 DOI: 10.2174/1568009619666190912161003] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 05/28/2019] [Accepted: 07/01/2019] [Indexed: 01/17/2023]
Abstract
BACKGROUND Forkhead box C1 (FOXC1) is an important cancer-associated gene in tumor. PPAR-γ and C/EBPα are both transcriptional regulators involved in tumor development. OBJECTIVE We aimed to clarify the function of PPAR-γ, C/EBPα in hepatocellular carcinoma (HCC) and the relationship of PPAR-γ, C/EBPα and FOXC1 in HCC. METHODS Western blotting, immunofluorescent staining, and immunohistochemistry were used to evaluate protein expression. qRT-PCR was used to assess mRNA expression. Co-IP was performed to detect the protein interaction. And ChIP and fluorescent reporter detection were used to determine the binding between protein and FOXC1 promoter. RESULTS C/EBPα could bind to FOXC1 promoter and PPAR-γ could strengthen C/EBPα's function. Expressions of C/EBPα and PPAR-γ were both negatively related to FOXC1 in human HCC tissue. Confocal displayed that C/EBPα was co-located with FOXC1 in HepG2 cells. C/EBPα could bind to FOXC1 promoter by ChIP. Luciferase activity detection exhibited that C/EBPα could inhibit FOXC1 promoter activity, especially FOXC1 promoter from -600 to -300 was the critical binding site. Only PPAR-γ could not influence luciferase activity but strengthen inhibited effect of C/EBPα. Further, the Co-IP displayed that PPAR-γ could bind to C/EBPα. When C/EBPα and PPAR-γ were both high expressed, cell proliferation, migration, invasion, and colony information were inhibited enormously. C/EBPα plasmid combined with or without PPAR-γ agonist MDG548 treatment exhibited a strong tumor inhibition and FOXC1 suppression in mice. CONCLUSION Our data establish C/EBPα targeting FOXC1 as a potential determinant in the HCC, which supplies a new pathway to treat HCC. However, PPAR-γ has no effect on FOXC1 expression.
Collapse
Affiliation(s)
- Zhuo Xu
- Department of Hepatobiliary Surgery, the Fourth Hospital of Hebei Medical University, China
| | - Shao-Hua Meng
- Second Department of Abdominal Surgery, First Affiliated Hospital of Xingtai Medical College, China
| | - Jian-Guo Bai
- Department of Hepatobiliary Surgery, the Fourth Hospital of Hebei Medical University, China
| | - Chao Sun
- Department of Hepatobiliary Surgery, the Fourth Hospital of Hebei Medical University, China
| | - Li-Li Zhao
- National Engineering Laboratory of High Level Expression in Mammalian Cells, Lunan Pharmaceutical Group Co., Ltd., Linyi 276000, China
| | - Rui-Feng Tang
- Department of Hepatobiliary Surgery, the Fourth Hospital of Hebei Medical University, China
| | - Zhao-Lin Yin
- Department of Ultrasound, the Fourth Hospital of Hebei Medical University, China
| | - Jun-Wei Ji
- Department of Emergency, The Fourth Hospital of Hebei Medical University, Hebei, China
| | - Wei Yang
- Department of Hepatobiliary Surgery, the Fourth Hospital of Hebei Medical University, China
| | - Guang-Jun Ma
- Department of Hepatobiliary Surgery, the Fourth Hospital of Hebei Medical University, China
| |
Collapse
|
19
|
Zhang L, Li X, Lu J, Qian Y, Qian T, Wu X, Xu Q. The EGFR Polymorphism Increased the Risk of Hepatocellular Carcinoma Through the miR-3196-Dependent Approach in Chinese Han Population. PHARMACOGENOMICS & PERSONALIZED MEDICINE 2021; 14:469-476. [PMID: 33935511 PMCID: PMC8079348 DOI: 10.2147/pgpm.s304524] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 03/16/2021] [Indexed: 12/17/2022]
Abstract
Background Previous studies have shown that epidermal growth factor receptor (EGFR) promotes cell proliferation through the PI3K-Akt-mTOR signaling pathway and participates in the occurrence and development of hepatocellular carcinoma (HCC). Here, we focused on the functional polymorphism of EGFR in the 3ʹ-untranslated region (UTR), aiming to reveal the potential mechanisms by which functional polymorphism is associated with the risk and development of HCC in the Han Chinese population. Methods This study was a hospital-based case-control study. A total of 600 patients were enrolled, and another 600 healthy volunteers served as controls. The miR-associated SNPs in EGFR were screened, and genotyping was performed by TaqMan allele differential analysis. In this study, genotyping, real-time PCR, cell transfection and double luciferase reporter gene were used for subsequent analysis. Results HBV/HCV infection instead of alcohol exposure, smoking exposure, hypertension or diabetes mellitus was associated with an increased risk of HCC. Compared with TT genotypes, TG and GG genotypes of EGFR rs884225 were significantly associated with reduced HCC risk. The stratified analysis of association between rs884225 and HCC subgroup feature reveal a highly correlation with tumor size. Furthermore, qRT-PCR confirmed that EGFR rs884225, TG and GG genotypes were more likely to bind to miR-3196 and down-regulate EGFR level in cells, thereby inhibiting cell proliferation. Conclusion This study suggested that EGFR rs884225 is associated with a reduced risk of liver cancer and may be a developing biomarker.
Collapse
Affiliation(s)
- Li Zhang
- Department of Hepatobiliary and Pancreatic Surgery, LiYang People's Hospital, LiYang, 213300, Jiangsu, People's Republic of China
| | - Xiaoping Li
- Department of Hepatobiliary and Pancreatic Surgery, LiYang People's Hospital, LiYang, 213300, Jiangsu, People's Republic of China
| | - Jiang Lu
- Department of Hepatobiliary and Pancreatic Surgery, LiYang People's Hospital, LiYang, 213300, Jiangsu, People's Republic of China
| | - Yi Qian
- Department of Hepatobiliary and Pancreatic Surgery, LiYang People's Hospital, LiYang, 213300, Jiangsu, People's Republic of China
| | - Tao Qian
- Department of Hepatobiliary and Pancreatic Surgery, LiYang People's Hospital, LiYang, 213300, Jiangsu, People's Republic of China
| | - Xing Wu
- Department of Hepatobiliary and Pancreatic Surgery, LiYang People's Hospital, LiYang, 213300, Jiangsu, People's Republic of China
| | - Qinghua Xu
- Department of Hepatobiliary and Pancreatic Surgery, LiYang People's Hospital, LiYang, 213300, Jiangsu, People's Republic of China
| |
Collapse
|
20
|
Microvesicles - promising tiny players' of cancer stem cells targeted liver cancer treatments: The interesting interactions and therapeutic aspects. Pharmacol Res 2021; 169:105609. [PMID: 33852962 DOI: 10.1016/j.phrs.2021.105609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 04/07/2021] [Accepted: 04/08/2021] [Indexed: 11/23/2022]
Abstract
Liver cancer is one of the most malignant cancers worldwide with poor prognosis. Intracellular mediators like microvesicles (MVs) and cancer stem cells (CSCs) are considered as potential candidates in liver cancer progression. CSCs receive stimuli from the tumor microenvironment to initiate tumor formation in which it's secreted MVs play a noteworthy role. The phenotypic conversion of tumor cells during epithelial-to-mesenchymal transition (EMT) is a key step in tumor invasion and metastasis which indicates that the diverse cell populations within the primary tumor are in a dynamic balance and can be regulated by cell to cell communication via secreted microvesicles. Thus, in this review, we aim to highlight the evidences that suggest CSCs are crucial for liver cancer development where the microvesicles plays an important part in the maintenance of its stemness properties. In addition, we summarize the existing evidences that support the concept of microvesicles, the tiny particles have a big role behind the rare immortal CSCs which controls the tumor initiation, propagation and metastasis in liver cancer. Identifying interactions between CSCs and microvesicles may offer new insights into precise anti-cancer therapies in the future.
Collapse
|
21
|
Help for Sick Kids: New Insights Into Hepatoblastoma. Cell Mol Gastroenterol Hepatol 2021; 12:350-351. [PMID: 33775655 PMCID: PMC8257457 DOI: 10.1016/j.jcmgh.2021.03.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 02/24/2021] [Accepted: 03/01/2021] [Indexed: 02/06/2023]
|
22
|
D'Souza AM, Cast A, Kumbaji M, Rivas M, Gulati R, Johnston M, Smithrud D, Geller J, Timchenko N. Small Molecule Cjoc42 Improves Chemo-Sensitivity and Increases Levels of Tumor Suppressor Proteins in Hepatoblastoma Cells and in Mice by Inhibiting Oncogene Gankyrin. Front Pharmacol 2021; 12:580722. [PMID: 33746747 PMCID: PMC7969996 DOI: 10.3389/fphar.2021.580722] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 01/18/2021] [Indexed: 12/31/2022] Open
Abstract
Objective: Relapsed hepatoblastoma (HBL) and upfront hepatocellular carcinoma (HCC) are notoriously chemoresistant tumors associated with poor outcomes. Gankyrin (Gank) is a known oncogene that is overexpressed in pediatric liver cancer and implicated in chemo-resistance. The goal of this study was to evaluate if the Gank-tumor suppressor axis is activated in chemoresistant hepatoblastoma patients and examine if an inhibitor of Gank, Cjoc42, might improve the chemosensitivity of cancer cells. Methods: Expression of Gank and its downstream targets were examined in fresh human HBL samples using immunostaining, QRT-PCR, and Western Blot. Cancer cells, Huh6 (human HBL) and Hepa1c1c7 (mouse HCC) were treated with Cjoc42 and with Cjoc42 in combination with cisplatin or doxorubicin. Cell proliferation, apoptosis, and chemoresistance were examined. To examine activities of Cjoc42 in vivo, mice were treated with different doses of Cjoc42, and biological activities of Gank and cytotoxicity of Cjoc42 were tested. Results: Elevation of Gank and Gank-mediated elimination of TSPs are observed in patients with minimal necrosis after chemotherapy and relapsed disease. The treatment of Huh6 and Hepa1c1c7 with Cjoc42 was not cytotoxic; however, in combination with cisplatin or doxorubicin, Cjoc42 caused a significant increase in cytotoxicity compared to chemotherapy alone with increased apoptosis. Examination of Cjoc42 in WT mice showed that Cjoc42 is well tolerated without systemic toxicity, and levels of tumor suppressors CUGBP1, Rb, p53, C/EBPα, and HNF4α are increased by blocking their Gank-dependent degradation. Conclusions: Our work shows that Cjoc42 might be a promising adjunct to chemotherapy for the treatment of severe pediatric liver cancer and presents mechanisms by which Cjoc42 increases chemo-sensitivity.
Collapse
Affiliation(s)
- Amber M D'Souza
- Departments of Oncology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States.,Department of Pediatrics, Hematology and Oncology, University of Illinois College of Medicine, Peoria, IL, United States
| | - Ashley Cast
- Departments of Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| | - Meenasri Kumbaji
- Departments of Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| | - Maria Rivas
- Departments of Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| | - Ruhi Gulati
- Departments of Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| | - Michael Johnston
- Departments of Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States.,Department of Surgery, University of Cincinnati, Cincinnati, OH, United States
| | - David Smithrud
- Department of Chemistry, University of Cincinnati, Cincinnati, OH, United States
| | - James Geller
- Departments of Oncology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| | - Nikolai Timchenko
- Departments of Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States.,Department of Surgery, University of Cincinnati, Cincinnati, OH, United States
| |
Collapse
|
23
|
Iscan E, Ekin U, Yildiz G, Oz O, Keles U, Suner A, Cakan-Akdogan G, Ozhan G, Nekulova M, Vojtesek B, Uzuner H, Karakülah G, Alotaibi H, Ozturk M. TAp73β Can Promote Hepatocellular Carcinoma Dedifferentiation. Cancers (Basel) 2021; 13:cancers13040783. [PMID: 33668566 PMCID: PMC7918882 DOI: 10.3390/cancers13040783] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 01/14/2021] [Accepted: 01/18/2021] [Indexed: 12/26/2022] Open
Abstract
Simple Summary Hepatocellular carcinoma (HCC) is a highly complex and heterogeneous type of cancer. Hepatocyte dedifferentiation is one of the important steps in the development of HCC. However, its molecular mechanisms are not well known. In this study, we report that transcriptionally active TAp73 isoforms are overexpressed in HCC. We also show that TAp73β suppresses the expression of the hepatocyte markers including CYP3A4, AFP, ALB, HNF4α, while increasing the expression of several cholangiocyte markers in HCC cell lines. In conclusion, this report reveals a pro-oncogenic role for TAp73β in liver cancer. Abstract Hepatocyte dedifferentiation is a major source of hepatocellular carcinoma (HCC), but its mechanisms are unknown. We explored the p73 expression in HCC tumors and studied the effects of transcriptionally active p73β (TAp73β) in HCC cells. Expression profiles of p73 and patient clinical data were collected from the Genomic Data Commons (GDC) data portal and the TSVdb database, respectively. Global gene expression profiles were determined by pan-genomic 54K microarrays. The Gene Set Enrichment Analysis method was used to identify TAp73β-regulated gene sets. The effects of TAp73 isoforms were analyzed in monolayer cell culture, 3D-cell culture and xenograft models in zebrafish using western blot, flow cytometry, fluorescence imaging, real-time polymerase chain reaction (RT-PCR), immunohistochemistry and morphological examination. TAp73 isoforms were significantly upregulated in HCC, and high p73 expression correlated with poor patient survival. The induced expression of TAp73β caused landscape expression changes in genes involved in growth signaling, cell cycle, stress response, immunity, metabolism and development. Hep3B cells overexpressing TAp73β had lost hepatocyte lineage biomarkers including ALB, CYP3A4, AFP, HNF4α. In contrast, TAp73β upregulated genes promoting cholangiocyte lineage such as YAP, JAG1 and ZO-1, accompanied with an increase in metastatic ability. Our findings suggest that TAp73β may promote malignant dedifferentiation of HCC cells.
Collapse
Affiliation(s)
- Evin Iscan
- Izmir Biomedicine and Genome Center, Izmir 35000, Turkey; (E.I.); (U.E.); (O.O.); (U.K.); (G.C.-A.); (G.O.); (H.U.); (G.K.); (H.A.)
- Izmir International Biomedicine and Genome Institute, Dokuz Eylul University, Izmir 35000, Turkey
| | - Umut Ekin
- Izmir Biomedicine and Genome Center, Izmir 35000, Turkey; (E.I.); (U.E.); (O.O.); (U.K.); (G.C.-A.); (G.O.); (H.U.); (G.K.); (H.A.)
- Izmir International Biomedicine and Genome Institute, Dokuz Eylul University, Izmir 35000, Turkey
| | - Gokhan Yildiz
- Department of Medical Biology, Faculty of Medicine, Karadeniz Technical University, Trabzon 61000, Turkey;
| | - Ozden Oz
- Izmir Biomedicine and Genome Center, Izmir 35000, Turkey; (E.I.); (U.E.); (O.O.); (U.K.); (G.C.-A.); (G.O.); (H.U.); (G.K.); (H.A.)
- Izmir International Biomedicine and Genome Institute, Dokuz Eylul University, Izmir 35000, Turkey
- Izmir Bozyaka Education and Research Hospital, University of Health Sciences, Izmir 35000, Turkey
| | - Umur Keles
- Izmir Biomedicine and Genome Center, Izmir 35000, Turkey; (E.I.); (U.E.); (O.O.); (U.K.); (G.C.-A.); (G.O.); (H.U.); (G.K.); (H.A.)
- Izmir International Biomedicine and Genome Institute, Dokuz Eylul University, Izmir 35000, Turkey
| | - Aslı Suner
- Department of Biostatistics and Medical Informatics, Faculty of Medicine, Ege University, Izmir 35000, Turkey;
| | - Gulcin Cakan-Akdogan
- Izmir Biomedicine and Genome Center, Izmir 35000, Turkey; (E.I.); (U.E.); (O.O.); (U.K.); (G.C.-A.); (G.O.); (H.U.); (G.K.); (H.A.)
- Department of Medical Biology, Faculty of Medicine, Dokuz Eylul University, Izmir 35000, Turkey
| | - Gunes Ozhan
- Izmir Biomedicine and Genome Center, Izmir 35000, Turkey; (E.I.); (U.E.); (O.O.); (U.K.); (G.C.-A.); (G.O.); (H.U.); (G.K.); (H.A.)
- Izmir International Biomedicine and Genome Institute, Dokuz Eylul University, Izmir 35000, Turkey
| | - Marta Nekulova
- RECAMO, Masaryk Memorial Cancer Institute, 60200 Brno, Czech Republic; (M.N.); (B.V.)
| | - Borivoj Vojtesek
- RECAMO, Masaryk Memorial Cancer Institute, 60200 Brno, Czech Republic; (M.N.); (B.V.)
| | - Hamdiye Uzuner
- Izmir Biomedicine and Genome Center, Izmir 35000, Turkey; (E.I.); (U.E.); (O.O.); (U.K.); (G.C.-A.); (G.O.); (H.U.); (G.K.); (H.A.)
- Izmir International Biomedicine and Genome Institute, Dokuz Eylul University, Izmir 35000, Turkey
| | - Gökhan Karakülah
- Izmir Biomedicine and Genome Center, Izmir 35000, Turkey; (E.I.); (U.E.); (O.O.); (U.K.); (G.C.-A.); (G.O.); (H.U.); (G.K.); (H.A.)
- Izmir International Biomedicine and Genome Institute, Dokuz Eylul University, Izmir 35000, Turkey
| | - Hani Alotaibi
- Izmir Biomedicine and Genome Center, Izmir 35000, Turkey; (E.I.); (U.E.); (O.O.); (U.K.); (G.C.-A.); (G.O.); (H.U.); (G.K.); (H.A.)
- Izmir International Biomedicine and Genome Institute, Dokuz Eylul University, Izmir 35000, Turkey
| | - Mehmet Ozturk
- Izmir Biomedicine and Genome Center, Izmir 35000, Turkey; (E.I.); (U.E.); (O.O.); (U.K.); (G.C.-A.); (G.O.); (H.U.); (G.K.); (H.A.)
- Correspondence:
| |
Collapse
|
24
|
Lin H, Huang YS, Fustin JM, Doi M, Chen H, Lai HH, Lin SH, Lee YL, King PC, Hou HS, Chen HW, Young PY, Chao HW. Hyperpolyploidization of hepatocyte initiates preneoplastic lesion formation in the liver. Nat Commun 2021; 12:645. [PMID: 33510150 PMCID: PMC7844417 DOI: 10.1038/s41467-020-20572-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 12/09/2020] [Indexed: 01/30/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the most predominant primary malignancy in the liver. Genotoxic and genetic models have revealed that HCC cells are derived from hepatocytes, but where the critical region for tumor foci emergence is and how this transformation occurs are still unclear. Here, hyperpolyploidization of hepatocytes around the centrilobular (CL) region is demonstrated to be closely linked with the development of HCC cells after diethylnitrosamine treatment. We identify the CL region as a dominant lobule for accumulation of hyperpolyploid hepatocytes and preneoplastic tumor foci formation. We also demonstrate that upregulation of Aurkb plays a critical role in promoting hyperpolyploidization. Increase of AURKB phosphorylation is detected on the midbody during cytokinesis, causing abscission failure and hyperpolyploidization. Pharmacological inhibition of AURKB dramatically reduces nucleus size and tumor foci number surrounding the CL region in diethylnitrosamine-treated liver. Our work reveals an intimate molecular link between pathological hyperpolyploidy of CL hepatocytes and transformation into HCC cells.
Collapse
MESH Headings
- Animals
- Carcinoma, Hepatocellular/chemically induced
- Carcinoma, Hepatocellular/genetics
- Carcinoma, Hepatocellular/metabolism
- Cell Transformation, Neoplastic/chemically induced
- Cell Transformation, Neoplastic/genetics
- Cell Transformation, Neoplastic/metabolism
- Cells, Cultured
- Diethylnitrosamine/toxicity
- Female
- Hepatocytes/drug effects
- Hepatocytes/metabolism
- Humans
- Liver/drug effects
- Liver/metabolism
- Liver/pathology
- Liver Neoplasms/chemically induced
- Liver Neoplasms/genetics
- Liver Neoplasms/metabolism
- Male
- Mice, Inbred C57BL
- Mice, Inbred ICR
- Mice, Inbred NOD
- Mice, Knockout
- Mice, SCID
- Microscopy, Confocal
- Polyploidy
- Precancerous Conditions/chemically induced
- Precancerous Conditions/genetics
- Precancerous Conditions/metabolism
- Mice
Collapse
Affiliation(s)
- Heng Lin
- Department of Physiology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, 11031, Taiwan
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, 11031, Taiwan
| | - Yen-Sung Huang
- The Ph.D. Program for Translational Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei, 11031, Taiwan
- Institute of Biomedical Sciences, Academia Sinica, Taipei, 11529, Taiwan
| | - Jean-Michel Fustin
- Laboratory of Molecular Metabology, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto, 606-8501, Japan
- The University of Manchester, Faculty of Biology, Medicine and Health, Oxford Road, Manchester, M13 9PL, UK
| | - Masao Doi
- Department of Systems Biology, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyō-ku, Kyoto, 606-8501, Japan
| | - Huatao Chen
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, China
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Hui-Huang Lai
- Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan, 70101, Taiwan
| | - Shu-Hui Lin
- Department of Physiology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, 11031, Taiwan
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, 11031, Taiwan
| | - Yen-Lurk Lee
- Institute of Biomedical Sciences, Academia Sinica, Taipei, 11529, Taiwan
| | - Pei-Chih King
- Department of Physiology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, 11031, Taiwan
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, 11031, Taiwan
| | - Hsien-San Hou
- Institute of Biomedical Sciences, Academia Sinica, Taipei, 11529, Taiwan
| | - Hao-Wen Chen
- Department of Physiology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, 11031, Taiwan
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, 11031, Taiwan
| | - Pei-Yun Young
- Department of Physiology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, 11031, Taiwan
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, 11031, Taiwan
| | - Hsu-Wen Chao
- Department of Physiology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, 11031, Taiwan.
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, 11031, Taiwan.
| |
Collapse
|
25
|
Abstract
Hepatoblastoma (HB) is the predominant primary liver tumor in children. While the prognosis is favorable when the tumor can be resected, the outcome is dismal for patients with progressed HB. Therefore, a better understanding of the molecular mechanisms responsible for HB is imperative for early detection and effective treatment. Sequencing analysis of human HB specimens unraveled the pivotal role of Wnt/β-catenin pathway activation in this disease. Nonetheless, β-catenin activation alone does not suffice to induce HB, implying the need for additional alterations. Perturbations of several pathways, including Hippo, Hedgehog, NRF2/KEAP1, HGF/c-Met, NK-1R/SP, and PI3K/AKT/mTOR cascades and aberrant activation of c-MYC, n-MYC, and EZH2 proto-oncogenes, have been identified in HB, although their role requires additional investigation. Here, we summarize the current knowledge on HB molecular pathogenesis, the relevance of the preclinical findings for the human disease, and the innovative therapeutic strategies that could be beneficial for the treatment of HB patients.
Collapse
Affiliation(s)
- Yi Zhang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China,Department of Bioengineering and Therapeutic Sciences and Liver Center, University of California, San Francisco, California
| | - Antonio Solinas
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | - Stefano Cairo
- XenTech, Evry, France,Istituto di Ricerca Pediatrica, Padova, Italy
| | - Matthias Evert
- Institute of Pathology, University of Regensburg, Regensburg, Germany
| | - Xin Chen
- Department of Bioengineering and Therapeutic Sciences and Liver Center, University of California, San Francisco, California
| | - Diego F. Calvisi
- Institute of Pathology, University of Regensburg, Regensburg, Germany
| |
Collapse
|
26
|
Johnston ME, Timchenko N. Molecular signatures of aggressive pediatric liver cancer. ARCHIVES OF STEM CELL AND THERAPY 2021; 2:1-4. [PMID: 34447970 PMCID: PMC8386353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Liver masses account for 5 to 6% of pediatric cancer, which includes hepatoblastoma (HBL) along with rare cases of hepatocellular carcinoma (HCC). The most dangerous form of pediatric liver cancer is aggressive HBL, which can be characterized by chemo-resistance and multiple nodules or metastases at diagnosis, all correlating with worse clinical prognosis. Despite intensive studies and a significant improvement in overall outcomes, very little is known about the key molecular pathways which determine the aggressiveness of pediatric liver cancer. Although genetic mutations have been reported in aggressive HBL, they represent a low level (1.9% per case) and are found mainly in two genes CTNNB1 and NRF2. Over the past 5 years, our liver biology and tumor group at Cincinnati Children's Hospital Medical Center has investigated molecular signatures of aggressive HBL by examination of fresh tissue specimens, which were studied immediately after surgery to preserve the integrity of key biochemical pathways. Summarization of these high quality HBL samples discovered several critical pathways that are specific for aggressive pediatric liver cancer. These pathways include three characteristics: Conversion of tumor suppressor proteins (TSPs) by posttranslational modifications into oncogenesActivation of specific chromosomal regions, i.e., Aggressive Liver Cancer Domains (ALCDs) within many oncogenes, resulting in increased expression of oncogenesPotential epigenetic mechanisms that open chromatin structure of oncogenes via ALCDs. This commentary summarizes our key findings and discusses development of potential ALCD-based therapeutic approaches.
Collapse
Affiliation(s)
- Michael E. Johnston
- Division of General and Thoracic Surgery, Cincinnati Children’s Hospital Medical Center, USA,University of Cincinnati, Ohio, Cincinnati, 33333 Burnet Ave, 45229, USA
| | - Nikolai Timchenko
- Division of General and Thoracic Surgery, Cincinnati Children’s Hospital Medical Center, USA,University of Cincinnati, Ohio, Cincinnati, 33333 Burnet Ave, 45229, USA,Author for correspondence:
| |
Collapse
|
27
|
Rivas MP, Aguiar TFM, Maschietto M, Lemes RB, Caires-Júnior LC, Goulart E, Telles-Silva KA, Novak E, Cristofani LM, Odone V, Cypriano M, de Toledo SRC, Carraro DM, Escobar MQ, Lee H, Johnston M, da Costa CML, da Cunha IW, Tasic L, Pearson PL, Rosenberg C, Timchenko N, Krepischi ACV. Hepatoblastomas exhibit marked NNMT downregulation driven by promoter DNA hypermethylation. Tumour Biol 2020; 42:1010428320977124. [PMID: 33256542 DOI: 10.1177/1010428320977124] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Hepatoblastomas exhibit the lowest mutational burden among pediatric tumors. We previously showed that epigenetic disruption is crucial for hepatoblastoma carcinogenesis. Our data revealed hypermethylation of nicotinamide N-methyltransferase, a highly expressed gene in adipocytes and hepatocytes. The expression pattern and the role of nicotinamide N-methyltransferase in pediatric liver tumors have not yet been explored, and this study aimed to evaluate the effect of nicotinamide N-methyltransferase hypermethylation in hepatoblastomas. We evaluated 45 hepatoblastomas and 26 non-tumoral liver samples. We examined in hepatoblastomas if the observed nicotinamide N-methyltransferase promoter hypermethylation could lead to dysregulation of expression by measuring mRNA and protein levels by real-time quantitative polymerase chain reaction, immunohistochemistry, and Western blot assays. The potential impact of nicotinamide N-methyltransferase changes was evaluated on the metabolic profile by high-resolution magic angle spinning nuclear magnetic resonance spectroscopy. Significant nicotinamide N-methyltransferase downregulation was revealed in hepatoblastomas, with two orders of magnitude lower nicotinamide N-methyltransferase expression in tumor samples and hepatoblastoma cell lines than in hepatocellular carcinoma cell lines. A specific TSS1500 CpG site (cg02094283) of nicotinamide N-methyltransferase was hypermethylated in tumors, with an inverse correlation between its methylation level and nicotinamide N-methyltransferase expression. A marked global reduction of the nicotinamide N-methyltransferase protein was validated in tumors, with strong correlation between gene and protein expression. Of note, higher nicotinamide N-methyltransferase expression was statistically associated with late hepatoblastoma diagnosis, a known clinical variable of worse prognosis. In addition, untargeted metabolomics analysis detected aberrant lipid metabolism in hepatoblastomas. Data presented here showed the first evidence that nicotinamide N-methyltransferase reduction occurs in hepatoblastomas, providing further support that the nicotinamide N-methyltransferase downregulation is a wide phenomenon in liver cancer. Furthermore, this study unraveled the role of DNA methylation in the regulation of nicotinamide N-methyltransferase expression in hepatoblastomas, in addition to evaluate the potential effect of nicotinamide N-methyltransferase reduction in the metabolism of these tumors. These preliminary findings also suggested that nicotinamide N-methyltransferase level may be a potential prognostic biomarker for hepatoblastoma.
Collapse
Affiliation(s)
- Maria Prates Rivas
- Human Genome and Stem Cell Research Center, Department of Genetics and Evolutionary Biology, Institute of Biosciences, University of São Paulo, São Paulo, Brazil
| | - Talita Ferreira Marques Aguiar
- Human Genome and Stem Cell Research Center, Department of Genetics and Evolutionary Biology, Institute of Biosciences, University of São Paulo, São Paulo, Brazil
| | | | - Renan B Lemes
- Human Genome and Stem Cell Research Center, Department of Genetics and Evolutionary Biology, Institute of Biosciences, University of São Paulo, São Paulo, Brazil
| | - Luiz Carlos Caires-Júnior
- Human Genome and Stem Cell Research Center, Department of Genetics and Evolutionary Biology, Institute of Biosciences, University of São Paulo, São Paulo, Brazil
| | - Ernesto Goulart
- Human Genome and Stem Cell Research Center, Department of Genetics and Evolutionary Biology, Institute of Biosciences, University of São Paulo, São Paulo, Brazil
| | - Kayque Alves Telles-Silva
- Human Genome and Stem Cell Research Center, Department of Genetics and Evolutionary Biology, Institute of Biosciences, University of São Paulo, São Paulo, Brazil
| | - Estela Novak
- Pediatric Cancer Institute (ITACI) at the Pediatric Department, São Paulo University Medical School, São Paulo, Brazil.,Molecular Genetics-São Paulo's Blood Center, São Paulo, Brazil
| | - Lilian Maria Cristofani
- Pediatric Cancer Institute (ITACI) at the Pediatric Department, São Paulo University Medical School, São Paulo, Brazil
| | - Vicente Odone
- Pediatric Cancer Institute (ITACI) at the Pediatric Department, São Paulo University Medical School, São Paulo, Brazil
| | - Monica Cypriano
- Department of Pediatric, Adolescent and Child with Cancer Support Group (GRAACC), Federal University of São Paulo, São Paulo, Brazil
| | - Silvia Regina Caminada de Toledo
- Department of Pediatric, Adolescent and Child with Cancer Support Group (GRAACC), Federal University of São Paulo, São Paulo, Brazil
| | - Dirce Maria Carraro
- International Center for Research, A.C. Camargo Cancer Center, São Paulo, Brazil
| | - Melissa Quintero Escobar
- Department of Organic Chemistry, Institute of Chemistry, University of Campinas, Campinas, Brazil
| | - Hana Lee
- Department of Surgery, Division of General and Thoracic Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Michael Johnston
- Department of Surgery, Division of General and Thoracic Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | | | - Isabela Werneck da Cunha
- Department of Pathology, Rede D'OR São Luiz, São Paulo, Brazil.,Department of Pathology, A.C. Camargo Cancer Center, São Paulo, Brazil
| | - Ljubica Tasic
- Department of Organic Chemistry, Institute of Chemistry, University of Campinas, Campinas, Brazil
| | - Peter L Pearson
- Human Genome and Stem Cell Research Center, Department of Genetics and Evolutionary Biology, Institute of Biosciences, University of São Paulo, São Paulo, Brazil
| | - Carla Rosenberg
- Human Genome and Stem Cell Research Center, Department of Genetics and Evolutionary Biology, Institute of Biosciences, University of São Paulo, São Paulo, Brazil
| | - Nikolai Timchenko
- Department of Surgery, Division of General and Thoracic Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Ana Cristina Victorino Krepischi
- Human Genome and Stem Cell Research Center, Department of Genetics and Evolutionary Biology, Institute of Biosciences, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
28
|
The "Janus" Role of C/EBPs Family Members in Cancer Progression. Int J Mol Sci 2020; 21:ijms21124308. [PMID: 32560326 PMCID: PMC7352866 DOI: 10.3390/ijms21124308] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 06/11/2020] [Accepted: 06/15/2020] [Indexed: 12/13/2022] Open
Abstract
CCAAT/enhancer-binding proteins (C/EBPs) constitute a family of transcription factors composed of six members that are critical for normal cellular differentiation in a variety of tissues. They promote the expression of genes through interaction with their promoters. Moreover, they have a key role in regulating cellular proliferation through interaction with cell cycle proteins. C/EBPs are considered to be tumor suppressor factors due to their ability to arrest cell growth (contributing to the terminal differentiation of several cell types) and for their role in cellular response to DNA damage, nutrient deprivation, hypoxia, and genotoxic agents. However, C/EBPs can elicit completely opposite effects on cell proliferation and cancer development and they have been described as both tumor promoters and tumor suppressors. This "Janus" role of C/EBPs depends on different factors, such as the type of tumor, the isoform/s expressed in cells, the type of dimerization (homo- or heterodimerization), the presence of inhibitory elements, and the ability to inhibit the expression of other tumor suppressors. In this review, we discuss the implication of the C/EBPs family in cancer, focusing on the molecular aspects that make these transcription factors tumor promoters or tumor suppressors.
Collapse
|
29
|
Chao J, Zhao S, Sun H. Dedifferentiation of hepatocellular carcinoma: molecular mechanisms and therapeutic implications. Am J Transl Res 2020; 12:2099-2109. [PMID: 32509204 PMCID: PMC7269980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Accepted: 04/30/2020] [Indexed: 06/11/2023]
Abstract
Hepatocellular carcinoma (HCC) is a common cancer with high morbidity and mortality. Poorer differentiation status indicates worse prognosis of HCC patients. Regain of better differentiation status may improve the prognosis. Differentiation therapy for HCC is based on the fact that agents may reverse the dedifferentiation process from hepatocytes to HCC cells and thus improve tumor differentiation status. Reversal of progenitor-like property and restoration of hepatic characteristics are main objectives of HCC differentiation therapy. Comprehending the mechanisms of HCC dedifferentiation provides ideas for drug design. Diverse dysregulated molecules and signalings cooperatively cause HCC dedifferentiation. Dysregulation of liver enriched transcription factors, especially hepatocyte nuclear factor 4α, was a critical determinant of HCC dedifferentiation. Aberrant pivotal signaling molecules such as transforming factor-β, β-catenin and Yes-associated protein caused disordered signalings, which promoted HCC dedifferentiation. Loss of epithelial morphology during epithelial-mesenchymal transition (EMT) concurred with HCC dedifferentiation. Some EMT-related molecules exerted double-sided role in concurrently inducing EMT and HCC dedifferentiation. Besides, microRNAs (e.g. miR-122 and miR-148a) as well as some impressive proteins (i.e. KLF4, gankyrin and CHD1L) functioned in manipulating HCC differentiation status. Restoring normal expression levels of these molecules could induce HCC differentiation and inhibited malignant tumor behaviors. Based on the knowledge above, some agents have been found effective in lab, but need more data to support their reliability. Additionally, peretinoin as a potential drug is in progress of several phase III clinical trials. It's promising that differentiation therapy for HCC may be a part of options in future HCC treatment.
Collapse
Affiliation(s)
- Jiashuo Chao
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiaotong University School of MedicineShanghai 200080, China
| | - Senlin Zhao
- Department of Colorectal Surgery, Fudan University Shanghai Cancer CenterShanghai 200032, China
| | - Hongcheng Sun
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiaotong University School of MedicineShanghai 200080, China
| |
Collapse
|
30
|
Kawakubo M, Tanaka M, Ochi K, Watanabe A, Saka-Tanaka M, Kanamori Y, Yoshioka N, Yamashita S, Goto M, Itoh M, Shirakawa I, Kanai S, Suzuki H, Sawada M, Ito A, Ishigami M, Fujishiro M, Arima H, Ogawa Y, Suganami T. Dipeptidyl peptidase-4 inhibition prevents nonalcoholic steatohepatitis-associated liver fibrosis and tumor development in mice independently of its anti-diabetic effects. Sci Rep 2020; 10:983. [PMID: 31969650 PMCID: PMC6976646 DOI: 10.1038/s41598-020-57935-6] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 01/08/2020] [Indexed: 01/24/2023] Open
Abstract
Nonalcoholic steatohepatitis (NASH) is a hepatic phenotype of the metabolic syndrome, and increases the risk of cirrhosis and hepatocellular carcinoma (HCC). Although increasing evidence points to the therapeutic implications of certain types of anti-diabetic agents in NASH, it remains to be elucidated whether their effects on NASH are independent of their effects on diabetes. Genetically obese melanocortin 4 receptor–deficient (MC4R-KO) mice fed Western diet are a murine model that sequentially develops hepatic steatosis, NASH, and HCC in the presence of obesity and insulin resistance. In this study, we investigated the effect of the dipeptidyl peptidase-4 (DPP-4) inhibitor anagliptin on NASH and HCC development in MC4R-KO mice. Anagliptin treatment effectively prevented inflammation, fibrosis, and carcinogenesis in the liver of MC4R-KO mice. Interestingly, anagliptin only marginally affected body weight, systemic glucose and lipid metabolism, and hepatic steatosis. Histological data and gene expression analysis suggest that anagliptin treatment targets macrophage activation in the liver during the progression from simple steatosis to NASH. As a molecular mechanism underlying anagliptin action, we showed that glucagon-like peptide-1 suppressed proinflammatory and profibrotic phenotypes of macrophages in vitro. This study highlights the glucose metabolism–independent effects of anagliptin on NASH and HCC development.
Collapse
Affiliation(s)
- Mitsuhiro Kawakubo
- Department of Molecular Medicine and Metabolism, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Japan.,Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Miyako Tanaka
- Department of Molecular Medicine and Metabolism, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Japan. .,Department of Immunometabolism, Nagoya University Graduate School of Medicine, Nagoya, Japan.
| | - Kozue Ochi
- Department of Molecular Medicine and Metabolism, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Japan
| | - Akiko Watanabe
- Department of Molecular Medicine and Metabolism, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Japan
| | - Marie Saka-Tanaka
- Department of Molecular Medicine and Metabolism, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Japan.,Department of Nephrology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yohei Kanamori
- Department of Molecular Medicine and Metabolism, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Japan
| | - Naoki Yoshioka
- Department of Molecular Medicine and Metabolism, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Japan.,Department of Gastroenterology and Hepatology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Satoko Yamashita
- Pharmaceutical Research Laboratories, Sanwa Kagaku Kenkyusho Co., Ltd., Nagoya, Japan
| | - Moritaka Goto
- Pharmaceutical Research Laboratories, Sanwa Kagaku Kenkyusho Co., Ltd., Nagoya, Japan
| | - Michiko Itoh
- Department of Molecular Medicine and Metabolism, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Japan.,Department of Organ Network and Metabolism, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan.,Kanagawa Institute of Industrial Science and Technology, Kawasaki, Japan
| | - Ibuki Shirakawa
- Department of Molecular Medicine and Metabolism, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Japan
| | - Sayaka Kanai
- Department of Molecular Endocrinology and Metabolism, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Hiromi Suzuki
- Department of Brain Function, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Japan.,Department of Molecular Pharmacokinetics, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Makoto Sawada
- Department of Brain Function, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Japan.,Department of Molecular Pharmacokinetics, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Ayaka Ito
- Department of Molecular Medicine and Metabolism, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Japan.,Department of Immunometabolism, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Masatoshi Ishigami
- Department of Gastroenterology and Hepatology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Mitsuhiro Fujishiro
- Department of Gastroenterology and Hepatology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Hiroshi Arima
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yoshihiro Ogawa
- Department of Molecular Medicine and Metabolism, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Japan.,Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan.,Japan Agency for Medical Research and Development, CREST, Tokyo, Japan
| | - Takayoshi Suganami
- Department of Molecular Medicine and Metabolism, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Japan. .,Department of Immunometabolism, Nagoya University Graduate School of Medicine, Nagoya, Japan.
| |
Collapse
|
31
|
Lu Y, Duan Y, Xu Q, Zhang L, Chen W, Qu Z, Wu B, Liu W, Shi L, Wu D, Yang Y, Sun D, Chen X. Circulating exosome-derived bona fide long non-coding RNAs predicting the occurrence and metastasis of hepatocellular carcinoma. J Cell Mol Med 2019; 24:1311-1318. [PMID: 31811749 PMCID: PMC6991696 DOI: 10.1111/jcmm.14783] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 07/05/2019] [Accepted: 08/01/2019] [Indexed: 12/16/2022] Open
Abstract
Although the diagnosis and therapy approach developed, techniques for the early diagnosis of HCC remain insufficient which results in poor prognosis of patients. The traditional biomarker AFP, however, has been proved with low specificity. Circulating exosomal ncRNAs revealed different profiles reflecting the characteristics of tumour. In this study, we mainly focused on circulating exosomal ncRNAs which might be the fingerprint for HCC, especially for the diagnosis or metastasis prediction. A high throughput lncRNA microarray in exosomes extracted from cell‐free plasma was applied. The risk score analysis was employed to screen the potential exosome‐derived lncRNAs in two independent sets based on different clinical parameters in 200 paired HCC patients. After a multi‐stage validation, we finally revealed three lncRNAs, ENSG00000248932.1, ENST00000440688.1 and ENST00000457302.2, increased in HCC comparing with the both chronic hepatitis (CH) patients and cancer‐free controls. ROC curve revealed a higher sensitivity and specificity in predicting the occurrence of HCC from cancer‐free controls and CH patients with the area under curve (AUC) of 0.905 and 0.879 by combining AFP. The three lncRNA panel combined with AFP also indicted a fingerprint function in predicting the metastasis of HCC with the AUC of 0.870. In conclusion, ENSG00000248932.1, ENST00000440688.1 and ENST00000457302.2 might be the potential biomarker for the tumorigenesis prediction from CH patients or healthy controls and may also be applied for dynamic monitoring the metastasis of HCC.
Collapse
Affiliation(s)
- Yunjie Lu
- Department of Hepatobiliary Surgery, The First People's Hospital of Changzhou, The Third Hospital Affiliated to Soochow University, Changzhou, China
| | - Yunfei Duan
- Department of Hepatobiliary Surgery, The First People's Hospital of Changzhou, The Third Hospital Affiliated to Soochow University, Changzhou, China
| | - Qinghua Xu
- Department of General Surgery, Liyang People's Hospital, Liyang, China
| | - Li Zhang
- Department of General Surgery, Liyang People's Hospital, Liyang, China
| | - Weibo Chen
- Department of Hepatobiliary Surgery, The First People's Hospital of Changzhou, The Third Hospital Affiliated to Soochow University, Changzhou, China
| | - Zhen Qu
- Department of Hepatobiliary Surgery, The First People's Hospital of Changzhou, The Third Hospital Affiliated to Soochow University, Changzhou, China
| | - Baoqiang Wu
- Department of Hepatobiliary Surgery, The First People's Hospital of Changzhou, The Third Hospital Affiliated to Soochow University, Changzhou, China
| | - Wensong Liu
- Department of Hepatobiliary Surgery, The First People's Hospital of Changzhou, The Third Hospital Affiliated to Soochow University, Changzhou, China
| | - Longqing Shi
- Department of Hepatobiliary Surgery, The First People's Hospital of Changzhou, The Third Hospital Affiliated to Soochow University, Changzhou, China
| | - Di Wu
- Department of Hepatobiliary Surgery, The First People's Hospital of Changzhou, The Third Hospital Affiliated to Soochow University, Changzhou, China
| | - Yan Yang
- Department of Nephrology, The First People's Hospital of Changzhou, The Third Hospital Affiliated to Soochow University, Changzhou, China
| | - Donglin Sun
- Department of Hepatobiliary Surgery, The First People's Hospital of Changzhou, The Third Hospital Affiliated to Soochow University, Changzhou, China
| | - Xuemin Chen
- Department of Hepatobiliary Surgery, The First People's Hospital of Changzhou, The Third Hospital Affiliated to Soochow University, Changzhou, China
| |
Collapse
|
32
|
The Emerging Roles of Cancer Stem Cells and Wnt/Beta-Catenin Signaling in Hepatoblastoma. Cancers (Basel) 2019; 11:cancers11101406. [PMID: 31547062 PMCID: PMC6826653 DOI: 10.3390/cancers11101406] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 09/11/2019] [Accepted: 09/11/2019] [Indexed: 02/07/2023] Open
Abstract
Hepatoblastoma (HB) is the most common form of primary liver malignancy found in pediatric populations. HB is considered to be clonal and arises from hepatoblasts, or embryonic liver progenitor cells. These less differentiated tumor-initiating progenitor cells, or cancer stem cells (CSCs), may contribute to tumor recurrence and resistance to therapies, and have high metastatic abilities. Phenotypic heterogeneity, undesired genetic and epigenetic alterations, and dysregulated signaling pathways provide CSCs with a survival advantage over current therapies. The molecular and cellular basis of HB and the mechanism of CSC induction are not fully understood. The Wnt/beta-catenin pathway is one of the major developmental pathways and is believed to play an important role in the pathogenesis of HB and CSC formation. This review summarizes the cellular and molecular characteristics of HB with a specific emphasis on CSCs and Wnt/beta-catenin signaling.
Collapse
|
33
|
Cast A, Kumbaji M, D'Souza A, Rodriguez K, Gupta A, Karns R, Timchenko L, Timchenko N. Liver Proliferation Is an Essential Driver of Fibrosis in Mouse Models of Nonalcoholic Fatty Liver Disease. Hepatol Commun 2019; 3:1036-1049. [PMID: 31388625 PMCID: PMC6671863 DOI: 10.1002/hep4.1381] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 04/27/2019] [Indexed: 12/22/2022] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) involves development of hepatic steatosis, fibrosis, and steatohepatitis. Because hepatic steatosis appears first in NAFLD animal models, the current therapy development focuses on inhibition of hepatic steatosis, suggesting that further steps of NAFLD will be also inhibited. In this report, we show that the first event of NAFLD is liver proliferation, which drives fibrosis in NAFLD. We have deleted a strong driver of liver proliferation, gankyrin (Gank), and examined development of NAFLD in this animal model under conditions of a high‐fat diet (HFD). We found that proliferating livers of wild‐type mice develop fibrosis; however, livers of Gank liver‐specific knockout (GLKO) mice with reduced proliferation show no fibrosis. Interestingly, an HFD causes the development of strong macrovesicular steatosis in GLKO mice and is surprisingly associated with improvements in animal health. We observed that key regulators of liver biology CCAAT/enhancer binding protein α (C/EBPα), hepatocyte nuclear factor 4α (HNF4α), p53, and CUG repeat binding protein 1 (CUGBP1) are elevated due to the deletion of Gank and that these proteins support liver functions leading to healthy conditions in GLKO mice under an HFD. To examine the role of one of these proteins in the protection of liver from fibrosis, we used CUGBP1‐S302A knockin mice, which have a reduction of CUGBP1 due to increased degradation of this mutant by Gank. These studies show that reduction of CUGBP1 inhibits steatosis and facilitates liver proliferation, leading to fibrosis and the development of liver tumors. Conclusion: Liver proliferation drives fibrosis, while steatosis might play a protective role. Therapy for NAFLD should include inhibition of proliferation rather than inhibition of steatosis.
Collapse
Affiliation(s)
- Ashley Cast
- Department of Surgery Cincinnati Children's Hospital Medical Center Cincinnati OH
| | - Meenasri Kumbaji
- Department of Surgery Cincinnati Children's Hospital Medical Center Cincinnati OH
| | - Amber D'Souza
- Department of Surgery Cincinnati Children's Hospital Medical Center Cincinnati OH
| | - Katherine Rodriguez
- Department of Surgery Cincinnati Children's Hospital Medical Center Cincinnati OH
| | - Anita Gupta
- Department of Pathology Cincinnati Children's Hospital Medical Center Cincinnati OH
| | - Rebekah Karns
- Department of Gastroenterology, Hepatology and Nutrition Cincinnati Children's Hospital Medical Center Cincinnati OH
| | - Lubov Timchenko
- Department of Neurology Cincinnati Children's Hospital Medical Center Cincinnati OH
| | - Nikolai Timchenko
- Department of Surgery Cincinnati Children's Hospital Medical Center Cincinnati OH
| |
Collapse
|
34
|
Pascale RM, Peitta G, Simile MM, Feo F. Alterations of Methionine Metabolism as Potential Targets for the Prevention and Therapy of Hepatocellular Carcinoma. MEDICINA (KAUNAS, LITHUANIA) 2019; 55:E296. [PMID: 31234428 PMCID: PMC6631235 DOI: 10.3390/medicina55060296] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 05/28/2019] [Accepted: 05/29/2019] [Indexed: 12/12/2022]
Abstract
Several researchers have analyzed the alterations of the methionine cycle associated with liver disease to clarify the pathogenesis of human hepatocellular carcinoma (HCC) and improve the preventive and the therapeutic approaches to this tumor. Different alterations of the methionine cycle leading to a decrease of S-adenosylmethionine (SAM) occur in hepatitis, liver steatosis, liver cirrhosis, and HCC. The reproduction of these changes in MAT1A-KO mice, prone to develop hepatitis and HCC, demonstrates the pathogenetic role of MAT1A gene under-regulation associated with up-regulation of the MAT2A gene (MAT1A:MAT2A switch), encoding the SAM synthesizing enzymes, methyladenosyltransferase I/III (MATI/III) and methyladenosyltransferase II (MATII), respectively. This leads to a rise of MATII, inhibited by the reaction product, with a consequent decrease of SAM synthesis. Attempts to increase the SAM pool by injecting exogenous SAM have beneficial effects in experimental alcoholic and non-alcoholic steatohepatitis and hepatocarcinogenesis. Mechanisms involved in hepatocarcinogenesis inhibition by SAM include: (1) antioxidative effects due to inhibition of nitric oxide (NO•) production, a rise in reduced glutathione (GSH) synthesis, stabilization of the DNA repair protein Apurinic/Apyrimidinic Endonuclease 1 (APEX1); (2) inhibition of c-myc, H-ras, and K-ras expression, prevention of NF-kB activation, and induction of overexpression of the oncosuppressor PP2A gene; (3) an increase in expression of the ERK inhibitor DUSP1; (4) inhibition of PI3K/AKT expression and down-regulation of C/EBPα and UCA1 gene transcripts; (5) blocking LKB1/AMPK activation; (6) DNA and protein methylation. Different clinical trials have documented curative effects of SAM in alcoholic liver disease. Furthermore, SAM enhances the IFN-α antiviral activity and protects against hepatic ischemia-reperfusion injury during hepatectomy in HCC patients with chronic hepatitis B virus (HBV) infection. However, although SAM prevents experimental tumors, it is not curative against already established experimental and human HCCs. The recent observation that the inhibition of MAT2A and MAT2B expression by miRNAs leads to a rise of endogenous SAM and strong inhibition of cancer cell growth could open new perspectives to the treatment of HCC.
Collapse
Affiliation(s)
- Rosa M Pascale
- Department of Clinical, Surgery and Experimental Sciences, Division of Experimental Pathology and Oncology, University of Sassari, 07100 Sassari, Italy.
| | - Graziella Peitta
- Department of Clinical, Surgery and Experimental Sciences, Division of Experimental Pathology and Oncology, University of Sassari, 07100 Sassari, Italy.
| | - Maria M Simile
- Department of Clinical, Surgery and Experimental Sciences, Division of Experimental Pathology and Oncology, University of Sassari, 07100 Sassari, Italy.
| | - Francesco Feo
- Department of Clinical, Surgery and Experimental Sciences, Division of Experimental Pathology and Oncology, University of Sassari, 07100 Sassari, Italy.
| |
Collapse
|
35
|
Hu XX, Feng J, Huang XW, Lu PZ, Wang ZX, Dai HQ, Deng JH, Ye XP, Peng T, Hooi SC, Zhou J, Lu GD. Histone deacetylases up-regulate C/EBPα expression through reduction of miR-124-3p and miR-25 in hepatocellular carcinoma. Biochem Biophys Res Commun 2019; 514:1009-1016. [PMID: 31092334 DOI: 10.1016/j.bbrc.2019.05.024] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Accepted: 05/03/2019] [Indexed: 12/25/2022]
Abstract
BACKGROUND CCAAT enhancer binding protein α (C/EBPα), as an important transcription factor involved in cell proliferation, differentiation and metabolism, was up-regulated in primary hepatocellular carcinoma (HCC) and predicted poorer prognosis. In this study, we explored how histone deacetylases (HDACs) up-regulated C/EBPα in HCC. METHODS The protein expressions of HDAC1, HDAC2 were associated with C/EBPα by immunohistochemistry staining in a HCC tissue microarray. HCC cells were then treated with HDAC inhibitors or siRNAs to determine the roles of miR-124-3p and miR-25 in the regulation of C/EBPα mRNA expression. RESULTS Both HDAC1 and HDAC2 proteins were significantly associated with C/EBPα. Inhibition of HDAC by either pharmacological inhibitors or siRNAs decreased C/EBPα mRNA expression in dose-dependent manners in HCC cells. HDAC inhibitors reduced C/EBPα mRNA stability as shown by pmiRGLO luciferase reporter assays. HDAC inhibition consistently induced miR-124-3p and miR-25 expression. Conversely, blockage of miR-124-3p and/or miR-25 by treatment with specific synthetic inhibitors abolished C/EBPα reduction. More importantly, C/EBPα mRNA stability could be rescued by site-directed mutations of miR-124-3p or miR-25 recognition sites in the C/EBPα 3'UTR sequence. In summary, HDAC may up-regulate C/EBPα expression through miR-124-3p and miR-25 in HCC.
Collapse
Affiliation(s)
- Xiao-Xiao Hu
- Department of Toxicology, School of Public Health, Guangxi Medical University, Nanning, Guangxi Province, 530021, China
| | - Ji Feng
- Department of Toxicology, School of Public Health, Guangxi Medical University, Nanning, Guangxi Province, 530021, China
| | - Xiao-Wei Huang
- Department of Toxicology, School of Public Health, Guangxi Medical University, Nanning, Guangxi Province, 530021, China
| | - Pei-Zhi Lu
- Department of Toxicology, School of Public Health, Guangxi Medical University, Nanning, Guangxi Province, 530021, China
| | - Zi-Xuan Wang
- Department of Toxicology, School of Public Health, Guangxi Medical University, Nanning, Guangxi Province, 530021, China
| | - Hui-Qi Dai
- Department of Toxicology, School of Public Health, Guangxi Medical University, Nanning, Guangxi Province, 530021, China
| | - Jing-Huan Deng
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning, Guangxi Province, 530021, China
| | - Xin-Pin Ye
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Province, 530021, China
| | - Tao Peng
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Province, 530021, China
| | - Shing Chuan Hooi
- Department of Physiology, National University of Singapore, 2 Medical Drive, 117597, Singapore
| | - Jing Zhou
- Department of Physiology, School of Preclinical Medicine, Guangxi Medical University, Nanning, Guangxi Province, 530021, China.
| | - Guo-Dong Lu
- Department of Toxicology, School of Public Health, Guangxi Medical University, Nanning, Guangxi Province, 530021, China; Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning, Guangxi Province, 530021, China.
| |
Collapse
|
36
|
Li W, Jiang LJ, Zhou XJ, Lu XZ, Liu LF, Wang S. Association of the invasiveness of colon cancer with the expression of C/EBPα. Oncol Lett 2018; 17:1974-1979. [PMID: 30675263 DOI: 10.3892/ol.2018.9755] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Accepted: 05/05/2017] [Indexed: 12/22/2022] Open
Abstract
The present study aimed to investigate the association of the invasiveness of colon cancer (CC) with the expression of CCAAT/enhancer binding protein α (C/EBPα). Immunohistochemistry was performed to determine the expression of C/EBPα in the cancer and adjacent tissue samples from 48 patients with CC. A pCDGFP-C/EBPα eukaryotic expression vector was constructed, and a wound-healing assay was performed to observe the effect of transfection on the migration of SW480 cells. In addition, the expression levels of tumor invasion-associated proteins, including Kruppel-like factor 5 (KLF5), matrix metallopeptidase (MMP)-2, MMP-9, and E-cadherin (ECD) were detected subsequent to transfection. Immunohistochemistry analysis demonstrated that the rate of low C/EBPα expression in normal tissue was 6.25%, whereas the rate in CC tissues was 68.75%; this difference was statistically significant (P<0.05). The patients with lower C/EBPα expression exhibited statistically larger tumor diameters, more advanced tumor-node-metastasis (TMN) stages and a greater likelihood of lymph node metastasis. The overexpression of C/EBPα significantly reduced the mobility of SW480 cells, and the expression of KLF5, MMP-2 and MMP-9 was reduced, whereas the expression of ECD was increased. In conclusion, C/EBPα was downregulated in CC tissue samples, and associated with the TMN stage and metastasis of CC; in addition, the overexpression of C/EBPα significantly reduced the invasiveness of CC cells. This may be significant for the diagnosis and treatment of CC in the future.
Collapse
Affiliation(s)
- Wei Li
- Department of General Surgery, Affiliated Nanhua Hospital, University of South China, Hengyang, Hunan 421002, P.R. China
| | - Liang-Jun Jiang
- Department of Gastroenterology, Affiliated Nanhua Hospital, University of South China, Hengyang, Hunan 421002, P.R. China
| | - Xiao-Jun Zhou
- Department of General Surgery, Affiliated Nanhua Hospital, University of South China, Hengyang, Hunan 421002, P.R. China
| | - Xian-Zhou Lu
- Department of General Surgery, Affiliated Nanhua Hospital, University of South China, Hengyang, Hunan 421002, P.R. China
| | - Long-Fei Liu
- Department of General Surgery, Affiliated Nanhua Hospital, University of South China, Hengyang, Hunan 421002, P.R. China
| | - Song Wang
- Department of General Surgery, Affiliated Nanhua Hospital, University of South China, Hengyang, Hunan 421002, P.R. China
| |
Collapse
|
37
|
Liu Z, Yang J, Ge C, Zhao F, Li H, Yao M, Li J, Tian H. Inhibitor of binding/differentiation 2 (Id2) is regulated by CCAAT/enhancer-binding protein-α (C/EBPα) and promotes the proliferation of hepatocellular carcinoma. Am J Cancer Res 2018; 8:2254-2266. [PMID: 30555742 PMCID: PMC6291656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 10/02/2018] [Indexed: 06/09/2023] Open
Abstract
Inhibitor of DNA binding/differentiation (Id2) is an important regulator involved in the initiation and progression of cancer. However, the function and mechanism of the regulation of Id2 in hepatocellular carcinoma (HCC) was unclear. In the present study, we found that the overexpression of Id2 increased HCC cell proliferation in vitro and in vivo. Knockdown of Id2 inhibited HCC cell proliferation in vitro and in vivo. Furthermore, knockdown of Id2 enhanced sorafenib-induced apoptosis in HCC. Conversely, overexpression of Id2 weakened sorafenib-induced apoptosis in HCC. In addition, the transcription factor CCAAT/enhancer-binding protein alpha (C/EBPα) bound to the Id2 promoter and decreased its expression in HCC cells. Therefore, all results suggest that Id2 promotes the proliferation of HCC cells by inhibiting cell apoptosis. Id2 may serve as a potential target in HCC therapy.
Collapse
Affiliation(s)
- Zheng Liu
- Shanghai Medical College, Fudan UniversityShanghai 200032, PR China
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of MedicineShanghai 200032, PR China
| | - Jing Yang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of MedicineShanghai 200032, PR China
| | - Chao Ge
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of MedicineShanghai 200032, PR China
| | - Fangyu Zhao
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of MedicineShanghai 200032, PR China
| | - Hong Li
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of MedicineShanghai 200032, PR China
| | - Ming Yao
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of MedicineShanghai 200032, PR China
| | - Jinjun Li
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of MedicineShanghai 200032, PR China
| | - Hua Tian
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of MedicineShanghai 200032, PR China
| |
Collapse
|
38
|
Li J, Zhao J, Wang H, Li X, Liu A, Qin Q, Li B. MicroRNA-140-3p enhances the sensitivity of hepatocellular carcinoma cells to sorafenib by targeting pregnenolone X receptor. Onco Targets Ther 2018; 11:5885-5894. [PMID: 30271172 PMCID: PMC6149869 DOI: 10.2147/ott.s179509] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Background Pregnane X receptor (PXR), which is a member of the nuclear receptor protein family (nuclear receptor subfamily 1 group I member 2 [NR 1I2]), mediates the drug-resistance in the hepatocellular carcinoma (HCC) via enhancing the expression of drug-resistance-related genes which accelerate the clearance of antitumor drugs, eg, sorafenib. However, there are few reports on miRNA targeting PXR participating in the epigenetic regulation of PXR in HCC cells. Materials and methods TargetScan 7.2, an online method, was used to predict the miRNAs potentially targeting PXR. The expression of PXR and PXR downstream genes was detected by quantitative real-time PCR (qPCR) and Western blot. The clearance of sorafenib in HCC cells was monitored by liquid chromatograph-mass spectrometer/mass spectrometer (LC-MS/MS). The effects of miRNA on sorafenib’s efficacy were examined by in vitro methods, eg, MTT, and in vivo methods, eg, subcutaneous or intrahepatic tumor model. Results By virtual screening, we identified that miR-140-3p possibly targets PXR and then confirmed that the overexpression of miR-140-3p via lentiviral particles inhibited the expression of PXR in HCC cells. The downregulation of PXR’s expression by miR-140-3p led to the reduction of PXR downstream genes’ expression, which finally resulted in the decelerating clearance of sorafenib in HCC cells and enhanced the sensitivity of HCC cells to sorafenib. The effect of miR-140-3p could not modulate the expression of mutated PXR and the effect of miR-140-3p could also be inhibited by miR-140-3p’s inhibitor. Moreover, miR-140-3p enhanced the anti-tumor effect of sorafenib in both the subcutaneous and intrahepatic HCC tumor models. Conclusion Our study suggests that targeting PXR by miR-140-3p is a promising strategy for enhancing sorafenib’s efficacy during HCC treatment.
Collapse
Affiliation(s)
- Jiaqi Li
- Basic Medicine College, Navy Military Medical University of Chinese PLA, Shanghai 200433, People's Republic of China, .,Center for Clinical Laboratory, The 302nd Hospital of Chinese PLA, Beijing 100039, People's Republic of China,
| | - Jing Zhao
- Center for Clinical Laboratory, The 302nd Hospital of Chinese PLA, Beijing 100039, People's Republic of China,
| | - Huan Wang
- Center for Clinical Laboratory, The 302nd Hospital of Chinese PLA, Beijing 100039, People's Republic of China,
| | - Xiaohan Li
- Center for Clinical Laboratory, The 302nd Hospital of Chinese PLA, Beijing 100039, People's Republic of China,
| | - Aixia Liu
- Center for Clinical Laboratory, The 302nd Hospital of Chinese PLA, Beijing 100039, People's Republic of China,
| | - Qin Qin
- Basic Medicine College, Navy Military Medical University of Chinese PLA, Shanghai 200433, People's Republic of China, .,Department of Laboratory Medicine, Changhai Hospital, Navy Military Medical University of Chinese PLA, Shanghai 200433, People's Republic of China
| | - Boan Li
- Basic Medicine College, Navy Military Medical University of Chinese PLA, Shanghai 200433, People's Republic of China, .,Center for Clinical Laboratory, The 302nd Hospital of Chinese PLA, Beijing 100039, People's Republic of China,
| |
Collapse
|
39
|
PARP1 activation increases expression of modified tumor suppressors and pathways underlying development of aggressive hepatoblastoma. Commun Biol 2018; 1:67. [PMID: 30271949 PMCID: PMC6123626 DOI: 10.1038/s42003-018-0077-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Accepted: 05/21/2018] [Indexed: 02/07/2023] Open
Abstract
Hepatoblastoma (HBL) is a pediatric liver cancer that affects children under the age of three. Reduction of tumor suppressor proteins (TSPs) is commonly seen in liver cancer. However, in our studies we find that aggressive, chemo-resistant HBLs exhibit an elevation of TSPs. HBL patients with a classic phenotype have reduced TSP levels, but patients with aggressive HBL express elevated TSPs that undergo posttranslational modifications, eliminating their tumor suppression activities. Here we identify unique aggressive liver cancer domains (ALCDs) that are activated in aggressive HBL by PARP1-mediated chromatin remodeling leading to elevation of modified TSPs and activation of additional cancer pathways: WNT signaling and β-catenin. Inhibition of PARP1 blocks activation of ALCDs and normalizes expression of corresponding genes, therefore reducing cell proliferation. Our studies reveal PARP1 activation as a mechanism for the development of aggressive HBL, further suggesting FDA-approved PARP1 inhibitors might be used for treatment of patients with aggressive HBL. Leila Valanejad et al. report increased expression of modified tumor suppressor proteins (TSPs) with loss of tumor suppressor activity in aggressive, chemotherapy-resistant hepatoblastoma. They find that TSP upregulation occurs via PARP1-mediated chromatin remodeling, leading to activation of multiple cancer-associated pathways.
Collapse
|
40
|
Sun Y, Tan YJ, Lu ZZ, Li BB, Sun CH, Li T, Zhao LL, Liu Z, Zhang GM, Yao JC, Li J. Arctigenin Inhibits Liver Cancer Tumorigenesis by Inhibiting Gankyrin Expression via C/EBPα and PPARα. Front Pharmacol 2018; 9:268. [PMID: 29636686 PMCID: PMC5880935 DOI: 10.3389/fphar.2018.00268] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Accepted: 03/09/2018] [Indexed: 01/19/2023] Open
Abstract
Burdock (Arctium lappa) is a popular vegetable in China and Japan that is consumed for its general health benefits. The principal active component of burdock is arctigenin, which shows a range of bioactivities in vivo and in vitro. Here, we investigated the potential anti-tumor effects of arctigenin using two human hepatocellular carcinoma (HCC) cell lines, HepG2 and Hep3B, and sought to elucidate its potential mechanisms of action. Our results showed that arctigenin treatment inhibited cell growth in both HepG2 and Hep3B cell lines (IC50 of 4.74 nM for HepG2 cells, and of 59.27 nM for Hep3B cells). In addition, migration, invasion, and colony formation by HepG2 cells were significantly inhibited by arctigenin. By contrast, treatment of Hep3B cells with arctigenin did not alter these parameters. Arctigenin also significantly reduced the levels of gankyrin mRNA and protein in HepG2 cells, but not in Hep3B cells. A luciferase assay indicated that arctigenin targeted the -450 to -400 region of the gankyrin promoter. This region is also the potential binding site for both C/EBPα and PPARα, as predicted and confirmed by an online software analysis and ChIP assay. Additionally, a co-immunoprecipitation (Co-IP) assay showed that binding between C/EBPα and PPARα was increased in the presence of arctigenin. However, arctigenin did not increase the expression of C/EBPα or PPARα protein. A binding screening assay and liquid chromatography-mass spectrometry (LC-MS) were performed to identify the mechanisms by which arctigenin regulates gankyrin expression. The results suggested that arctigenin could directly increase C/EBPα binding to the gankyrin promoter (-432 to -422 region), but did not affect PPARα binding. Expression of gankyrin, C/EBPα, and PPARα were analyzed in tumor tissues of patients using real-time PCR. Both C/EBPα and PPARα showed negative correlations with gankyrin. In tumor-bearing mice, arctigenin had a significant inhibitory effect on HCC growth. In conclusion, our results suggested that arctigenin could inhibit liver cancer growth by directly recruiting C/EBPα to the gankyrin promoter. PPARα subsequently bound to C/EBPα, and both had a negative regulatory effect on gankyrin expression. This study has identified a new mechanism of action of arctigenin against liver cancer growth.
Collapse
Affiliation(s)
- Ying Sun
- Shandong New Time Pharmaceutical Co., Ltd., Lunan Pharmaceutical Group Co., Ltd., Linyi, China.,State Key Laboratory of Generic Manufacture Technology of Chinese Traditional Medicine, Lunan Pharmaceutical Group Co., Ltd., Linyi, China
| | - Yu-Jun Tan
- Shandong New Time Pharmaceutical Co., Ltd., Lunan Pharmaceutical Group Co., Ltd., Linyi, China.,Center for New Drug Safety Evaluation of Lunan Pharmaceutical, Lunan Pharmaceutical Group Co., Ltd., Linyi, China
| | - Zhan-Zhao Lu
- Shandong New Time Pharmaceutical Co., Ltd., Lunan Pharmaceutical Group Co., Ltd., Linyi, China.,State Key Laboratory of Generic Manufacture Technology of Chinese Traditional Medicine, Lunan Pharmaceutical Group Co., Ltd., Linyi, China
| | - Bing-Bing Li
- Shandong New Time Pharmaceutical Co., Ltd., Lunan Pharmaceutical Group Co., Ltd., Linyi, China.,Center for New Drug Safety Evaluation of Lunan Pharmaceutical, Lunan Pharmaceutical Group Co., Ltd., Linyi, China
| | - Cheng-Hong Sun
- Shandong New Time Pharmaceutical Co., Ltd., Lunan Pharmaceutical Group Co., Ltd., Linyi, China.,Center for New Drug Safety Evaluation of Lunan Pharmaceutical, Lunan Pharmaceutical Group Co., Ltd., Linyi, China
| | - Tao Li
- Shandong New Time Pharmaceutical Co., Ltd., Lunan Pharmaceutical Group Co., Ltd., Linyi, China.,Center for New Drug Safety Evaluation of Lunan Pharmaceutical, Lunan Pharmaceutical Group Co., Ltd., Linyi, China
| | - Li-Li Zhao
- Shandong New Time Pharmaceutical Co., Ltd., Lunan Pharmaceutical Group Co., Ltd., Linyi, China.,State Key Laboratory of Generic Manufacture Technology of Chinese Traditional Medicine, Lunan Pharmaceutical Group Co., Ltd., Linyi, China
| | - Zhong Liu
- Shandong New Time Pharmaceutical Co., Ltd., Lunan Pharmaceutical Group Co., Ltd., Linyi, China.,State Key Laboratory of Generic Manufacture Technology of Chinese Traditional Medicine, Lunan Pharmaceutical Group Co., Ltd., Linyi, China.,Center for New Drug Safety Evaluation of Lunan Pharmaceutical, Lunan Pharmaceutical Group Co., Ltd., Linyi, China
| | - Gui-Min Zhang
- Shandong New Time Pharmaceutical Co., Ltd., Lunan Pharmaceutical Group Co., Ltd., Linyi, China.,State Key Laboratory of Generic Manufacture Technology of Chinese Traditional Medicine, Lunan Pharmaceutical Group Co., Ltd., Linyi, China.,Center for New Drug Safety Evaluation of Lunan Pharmaceutical, Lunan Pharmaceutical Group Co., Ltd., Linyi, China
| | - Jing-Chun Yao
- Shandong New Time Pharmaceutical Co., Ltd., Lunan Pharmaceutical Group Co., Ltd., Linyi, China.,State Key Laboratory of Generic Manufacture Technology of Chinese Traditional Medicine, Lunan Pharmaceutical Group Co., Ltd., Linyi, China.,Center for New Drug Safety Evaluation of Lunan Pharmaceutical, Lunan Pharmaceutical Group Co., Ltd., Linyi, China
| | - Jie Li
- Shandong New Time Pharmaceutical Co., Ltd., Lunan Pharmaceutical Group Co., Ltd., Linyi, China.,Center for New Drug Safety Evaluation of Lunan Pharmaceutical, Lunan Pharmaceutical Group Co., Ltd., Linyi, China
| |
Collapse
|