1
|
Guan J, Wu F, Wu S, Ren Y, Wang J, Zhu H. FTY720 alleviates D-GalN/LPS-induced acute liver failure by regulating the JNK/MAPK pathway. Int Immunopharmacol 2025; 157:114726. [PMID: 40311319 DOI: 10.1016/j.intimp.2025.114726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 04/20/2025] [Accepted: 04/22/2025] [Indexed: 05/03/2025]
Abstract
Acute liver failure (ALF) poses a considerable health and economic burden worldwide and has limited treatment options. Sphingosine-1-phosphate (S1P) is a pleiotropic bioactive phospholipid that participates in various cellular processes by through S1P receptors (S1PRs). Previous studies have showed that the hepatic S1P levels were increased. Notably, deletion or inhibition of sphingosine kinase 1 (SphK1), the key enzyme responsible for S1P biosynthesis, could alleviate D-galactosamine (D-GalN)/lipopolysaccharide (LPS)-induced ALF in mice. However, the role of the S1P receptor modulator FTY720 in ALF remains unclear. In this study, we investigated the effects of FTY720 on D-GalN/LPS-induced ALF model. Our results demonstrated that FTY720 pretreatment significantly alleviated liver injury, decreased the serum levels of alanine aminotransferase and aspartate aminotransferase, and mitigated histopathological damage in ALF model mice. Mechanistically, FTY720 could inhibit the inflammatory response and reduced apoptosis. The protective effect of FTY720 was mediated by c-Jun N-terminal kinase (JNK)/mitogen-activated protein kinase (MAPK) signalling. A pharmacological JNK activator (anisomycin) partially counteracted these protective effects. FTY720, targeting S1PRs, is expected to be an effective therapeutic strategy for ALF.
Collapse
Affiliation(s)
- Jun Guan
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Fengtian Wu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Shanshan Wu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Yanli Ren
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Jing Wang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Haihong Zhu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China.
| |
Collapse
|
2
|
Wang Y, Sanghvi G, Ballal S, Sharma R, Pathak PK, Shankhyan A, Sun J, Chen Q, Ma Y, Huang L, Liu Y. Molecular mechanisms of lncRNA NEAT1 in the pathogenesis of liver-related diseases, with special focus on therapeutic approaches. Pathol Res Pract 2025; 269:155867. [PMID: 40054160 DOI: 10.1016/j.prp.2025.155867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 01/13/2025] [Accepted: 02/25/2025] [Indexed: 04/19/2025]
Abstract
Liver diseases are a major worldwide health concern, with high rates of dysfunction and mortality. In recent years, a variety of lncRNAs have been studied and discovered to be engaged in numerous cellular-level regulatory mechanisms as competing endogenous RNAs (ceRNAs), which play a significant role in the development of liver-related diseases. A class of RNA molecules known as lncRNAs, which are over 200 nucleotides long, do not translate into proteins. Nuclear Enriched Abundant Transcript 1 (NEAT1) is a type of lncRNA that has a critical function in paraspeckles formation and stability. NEAT1 levels are consistently found to be higher than normal in a number of different types of diseases, as well as patients who have high levels of NEAT1 expression often have a poor prognosis. The significance and mode of action of NEAT1 in liver illnesses, such as nonalcoholic fatty liver disease (NAFLD), alcohol-related liver disease (ALD), liver fibrosis/cirrhosis, hepatocellular carcinoma (HCC), viral hepatitis, and liver injury, are becoming more widely known. In this review, we highlighted significant recent studies concerning the various roles of lncRNA NEAT1 in hepatic diseases. As well as, we reviewed novel therapeutic potential of lncRNAs in several liver-related diseases.
Collapse
Affiliation(s)
- Yahui Wang
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China.
| | - Gaurav Sanghvi
- Marwadi University Research Center, Department of Microbiology, Faculty of Science Marwadi University, Rajkot, Gujarat 360003, India
| | - Suhas Ballal
- Department of Chemistry and Biochemistry, School of Sciences, JAIN (Deemed to be University), Bangalore, Karnataka, India
| | - Rsk Sharma
- Department of Chemistry, Raghu Engineering College, Visakhapatnam, Andhra Pradesh 531162, India
| | - Piyus Kumar Pathak
- Department of Applied Sciences-Chemistry, NIMS Institute of Engineering & Technology, NIMS University Rajasthan, Jaipur, India
| | - Aman Shankhyan
- Centre for Research Impact & Outcome, Chitkara University Institute of Engineering and Technology, Chitkara University, Rajpura, Punjab 140401, India
| | - Jiaxuan Sun
- Department of Hepatobiliary and Pancreatic Surgery, General Surgery Center, First Hospital of Jilin University, Changchun 130061, China
| | - Qingmin Chen
- Department of Hepatobiliary and Pancreatic Surgery, General Surgery Center, First Hospital of Jilin University, Changchun 130061, China
| | - Yu Ma
- Department of Hepatobiliary and Pancreatic Surgery, General Surgery Center, First Hospital of Jilin University, Changchun 130061, China
| | - Lei Huang
- Department of Hepatobiliary and Pancreatic Surgery, General Surgery Center, First Hospital of Jilin University, Changchun 130061, China
| | - Yahui Liu
- Department of Hepatobiliary and Pancreatic Surgery, General Surgery Center, First Hospital of Jilin University, Changchun 130061, China.
| |
Collapse
|
3
|
Kuchay MS, Choudhary NS, Ramos-Molina B. Pathophysiological underpinnings of metabolic dysfunction-associated steatotic liver disease. Am J Physiol Cell Physiol 2025; 328:C1637-C1666. [PMID: 40244183 DOI: 10.1152/ajpcell.00951.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 01/31/2025] [Accepted: 03/31/2025] [Indexed: 04/18/2025]
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) is emerging as the leading cause of chronic liver disease worldwide, reflecting the global epidemics of obesity, metabolic syndrome, and type 2 diabetes. Beyond its strong association with excess adiposity, MASLD encompasses a heterogeneous population that includes individuals with normal body weight ("lean MASLD") highlighting the complexity of its pathogenesis. This disease results from a complex interplay between genetic susceptibility, epigenetic modifications, and environmental factors, which converge to disrupt metabolic homeostasis. Adipose tissue dysfunction and insulin resistance trigger an overflow of lipids to the liver, leading to mitochondrial dysfunction, oxidative stress, and hepatocellular injury. These processes promote hepatic inflammation and fibrogenesis, driven by cross talk among hepatocytes, immune cells, and hepatic stellate cells, with key contributions from gut-liver axis perturbations. Recent advances have unraveled pivotal molecular pathways, such as transforming growth factor-β signaling, Notch-induced osteopontin, and sphingosine kinase 1-mediated responses, that orchestrate fibrogenic activation. Understanding these interconnected mechanisms is crucial for developing targeted therapies. This review integrates current knowledge on the pathophysiology of MASLD, emphasizing emerging concepts such as lean metabolic dysfunction-associated steatohepatitis (MASH), epigenetic alterations, hepatic extracellular vesicles, and the relevance of extrahepatic signals. It also discusses novel therapeutic strategies under investigation, aiming to provide a comprehensive and structured overview of the evolving MASLD landscape for both basic scientists and clinicians.
Collapse
Affiliation(s)
| | - Narendra Singh Choudhary
- Institute of Digestive and Hepatobiliary Sciences, Medanta-The Medicity Hospital, Gurugram, India
| | - Bruno Ramos-Molina
- Group of Obesity, Diabetes & Metabolism, Biomedical Research Institute of Murcia (IMIB), Murcia, Spain
| |
Collapse
|
4
|
Duan H, Gong M, Yuan G, Wang Z. Sex Hormone: A Potential Target at Treating Female Metabolic Dysfunction-Associated Steatotic Liver Disease? J Clin Exp Hepatol 2025; 15:102459. [PMID: 39722783 PMCID: PMC11667709 DOI: 10.1016/j.jceh.2024.102459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Accepted: 11/13/2024] [Indexed: 12/28/2024] Open
Abstract
The global prevalence of metabolic dysfunction-associated steatotic liver disease (MASLD) is rising due to rapid lifestyle changes. Although females may be less prone to MASLD than males, specific studies on MASLD in females should still be conducted. Previous research has shown that sex hormone levels are strongly linked to MASLD in females. By reviewing a large number of experimental and clinical studies, we summarized the pathophysiological mechanisms of estrogen, androgen, sex hormone-binding globulin, follicle-stimulating hormone, and prolactin involved in the development of MASLD. We also analyzed the role of these hormones in female MASLD patients with polycystic ovarian syndrome or menopause, and explored the potential of targeting sex hormones for the treatment of MASLD. We hope this will provide a reference for further exploration of mechanisms and treatments for female MASLD from the perspective of sex hormones.
Collapse
Affiliation(s)
- Huiyan Duan
- Department of Endocrinology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Minmin Gong
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Gang Yuan
- Department of Endocrinology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhi Wang
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
5
|
Elsayed Abouzed DE, Bafail DA, Refaie SM, Aboelez MO, Elsayed AA, Mallasiy LO, Bayoumy NMK, Hagar H. Protective effect of valsartan alone and in combination with neprilysin inhibitor (valsartan + sacubitril) against hepatic ischemia-reperfusion injury: targeting angiotensin II receptor-neprilysin and modulating SMAD-4/NF-κβ/JNK pathways in rats. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025:10.1007/s00210-025-03820-w. [PMID: 39869188 DOI: 10.1007/s00210-025-03820-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Accepted: 01/14/2025] [Indexed: 01/28/2025]
Abstract
Ischemia-reperfusion injury (IRI) is a common pathogenic situation that arises throughout all liver surgeries, including liver transplants. We aimed to compare the preventive effects of valsartan (VST) against valsartan + sacubitril (LCZ696) on hepatic injury caused by IRI. A total of thirty-six male Westar albino rats were split into six groups randomly: sham, IRI, VST + IRI, LCZ696 + IRI, VST, and LCZ696. The medicines were given orally for 10 days in a row. Hepatic tissues and blood were examined through histopathological imaging and immunohistochemical detection of hepatic SMAD-4 protein expression plus serum aminotransferase (ALT, AST) and gamma-glutamyl transferase (GGT) levels. Angiotensin II, aldosterone, and plasma renin activity were evaluated in rat serum. Liver tissue homogenate was utilized to assess reduced glutathione (GSH), myeloperoxidase (MPO), malondialdehyde (MDA), and total nitric oxide (NOx) levels. Pro-inflammatory indicators, tumor necrosis factor-alpha (TNF-α), and interleukin-1β (IL-1β), moreover with apoptosis indicators, BCL2-associated X protein (Bax), B-cell lymphoma 2 (Bcl-2), and galactine-9 (GAL9) proteins plus caspase-3, were measured in hepatic tissue homogenate. Hepatic endothelin-1 and neprilysin activity were evaluated. Western blot was done for c-Jun N-terminal kinase (JNK-7) plus nuclear factor-kappa B (NF-κβ) expressions. The study revealed that VST and LCZ696 pretreatment showed significant restoration of liver injury, correction of oxidative profile, and inhibition in the angiotensin II receptor-neprilysin pathway. Inflammatory mediators and apoptosis were significantly inhibited. The expression of SMAD-4, JNK-7, and NF-κβ proteins was notably diminished. The improvement in hepatic architecture supports these histopathological results. In conclusion, LCZ696 possesses a potentially significant protective effect against liver IRI superior to VST alone.
Collapse
Affiliation(s)
- Deiaa E Elsayed Abouzed
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Sohag University, Sohag, 82524, Egypt.
| | - Duaa Abdullah Bafail
- Department of Clinical Pharmacology, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Shereen Mahmoud Refaie
- Department of Biomedical Science, Faculty of Medicine, King Faisal University, 36375, Hofuf, Saudi Arabia
| | - Moustafa O Aboelez
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Sohag University, Sohag, 82524, Egypt
| | - Asmaa A Elsayed
- Clinical Pharmacy, Department of Pharmaceutics and Clinical Pharmacy, Faculty of Pharmacy, Sohag University, Sohag, 82524, Egypt
| | - L O Mallasiy
- Muhayil Asir, Applied College, King Khalid University, 61913, Abha, Saudi Arabia
| | - Nervana M K Bayoumy
- Department of Physiology, College of Medicine, King Saud University, 12271, Riyadh, Saudi Arabia
| | - Hanan Hagar
- Department of Physiology, College of Medicine, King Saud University, 12271, Riyadh, Saudi Arabia
- Department of Pharmacology, College of Pharmacy, Zagazig University, Zagazig, 44511, Egypt
| |
Collapse
|
6
|
Jiang Y, Xu J, Ding J, Liu T, Liu Y, Huang P, Wang Q, Zheng P, Song H, Yang L. Jiangzhi Granule Ameliorates JNK-Mediated Mitochondrial Dysfunction to Reduce Lipotoxic Liver Injury in NASH. Diabetes Metab Syndr Obes 2025; 18:23-36. [PMID: 39802620 PMCID: PMC11721512 DOI: 10.2147/dmso.s492174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 12/28/2024] [Indexed: 01/16/2025] Open
Abstract
Purpose Mitochondrial dysfunction mediated by c-Jun N-terminal kinase (JNK) plays an important role in lipotoxic liver injury in nonalcoholic steatohepatitis (NASH). This study aims to investigate the pharmacological mechanism of Jiangzhi Granule (JZG), a Chinese herbal formula against NASH, with a focus on its regulation of JNK signaling-mediated mitochondrial function. Methods Hepatocytes were induced by palmitic acid (PA) for 24 h to establish an in vitro lipotoxic model, which was simultaneously treated with either JZG or vehicle control. Male C57BL/6J mice were fed a high-fat diet (HFD) for 22 weeks and then treated with JZG via gavage for additional 8 weeks. Lipotoxic injury in hepatocytes or mice liver tissues, as well as JNK signaling-related molecules, were further investigated. Results JZG improved PA-induced lipid deposition, cell viability, apoptosis, and mitochondrial dysfunction in hepatocytes. In NASH mice, JZG reduced hepatosteatosis, and inflammatory infiltration, and improved mitochondrial morphology and quantity in liver tissues. Additionally, elevated phosphorylation ratio of non-receptor tyrosine kinase c-Src (Src) and reduced phosphorylation ratio of JNK and SH2-containing protein tyrosine phosphatase (SHP-1) were found in both hepatocytes and mice liver tissues treated with JZG versus those with the vehicle. Conclusion Taken together, JZG could improve mitochondrial dysfunction and reduce lipotoxic liver injury in NASH in vivo and in vitro models. The inhibition of the JNK signaling pathway may contribute to the underlying mechanism of JZG in preventing and reversing NASH development.
Collapse
Affiliation(s)
- Yuwei Jiang
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
| | - Jiaoya Xu
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
- Department of Gout, Guanghua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
| | - Junyao Ding
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
| | - Tao Liu
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
| | - Yang Liu
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
- Teaching Experiment Center, Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
| | - Ping Huang
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
| | - Qianlei Wang
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
| | - Peiyong Zheng
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
| | - Haiyan Song
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
| | - Lili Yang
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
| |
Collapse
|
7
|
Iturbe-Rey S, Maccali C, Arrese M, Aspichueta P, Oliveira CP, Castro RE, Lapitz A, Izquierdo-Sanchez L, Bujanda L, Perugorria MJ, Banales JM, Rodrigues PM. Lipotoxicity-driven metabolic dysfunction-associated steatotic liver disease (MASLD). Atherosclerosis 2025; 400:119053. [PMID: 39581063 DOI: 10.1016/j.atherosclerosis.2024.119053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 10/19/2024] [Accepted: 11/08/2024] [Indexed: 11/26/2024]
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) encompasses a spectrum of liver lesions, ranging from simple steatosis to metabolic dysfunction-associated steatohepatitis (MASH), that may further progress to cirrhosis. MASLD is estimated to affect more than one third of the general population and it represents a risk factor for end-stage liver failure and liver cancer, substantially contributing to liver-related morbidity and mortality. Although the pathogenesis of MASLD is incompletely understood, it is known to consist of a multifactorial process influenced by extrinsic and intrinsic factors such as metabolic, environmental and demographic features, gut microbiota and genetics. Dysregulation of both extracellular and intracellular lipid composition is known to promote the generation of toxic lipid species, thereby triggering lipotoxicity and cellular stress. These events ultimately lead to the activation of distinct cell death pathways, resulting in inflammation, fibrogenesis and, eventually, carcinogenesis. In this manuscript, we provide a comprehensive review of the role of lipotoxicity during MASLD pathogenesis, discussing the most relevant lipid species and related molecular mechanisms, summarizing the cell type-specific effects and highlighting the most promising putative therapeutic strategies for modulating lipotoxicity and lipid metabolism in MASLD.
Collapse
Affiliation(s)
- Santiago Iturbe-Rey
- Department of Liver and Gastrointestinal Diseases, Biogipuzkoa Health Research Institute, Donostia University Hospital, University of the Basque Country (UPV/EHU), Donostia-San Sebastian, Spain
| | - Claudia Maccali
- Clinical and Experimental Gastroenterology Laboratory LIM-07, Department of Gastroenterology, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Marco Arrese
- Department of Gastroenterology, Faculty of Medicine, Pontificia Universidad Católica de Chile Santiago, 8330077, Chile
| | - Patricia Aspichueta
- Department of Physiology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), 48940, Leioa, Spain; Biobizkaia Health Research Institute, Cruces University Hospital, 48903, Barakaldo, Spain; National Institute for the Study of Liver and Gastrointestinal Diseases (CIBERehd, "Instituto de Salud Carlos III"), Spain
| | - Claudia P Oliveira
- Clinical and Experimental Gastroenterology Laboratory LIM-07, Department of Gastroenterology, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil; Division of Clinical Gastroenterology and Hepatology, Hospital das Clínicas de São Paulo, HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Rui E Castro
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Ainhoa Lapitz
- Department of Liver and Gastrointestinal Diseases, Biogipuzkoa Health Research Institute, Donostia University Hospital, University of the Basque Country (UPV/EHU), Donostia-San Sebastian, Spain; National Institute for the Study of Liver and Gastrointestinal Diseases (CIBERehd, "Instituto de Salud Carlos III"), Spain
| | - Laura Izquierdo-Sanchez
- Department of Liver and Gastrointestinal Diseases, Biogipuzkoa Health Research Institute, Donostia University Hospital, University of the Basque Country (UPV/EHU), Donostia-San Sebastian, Spain; National Institute for the Study of Liver and Gastrointestinal Diseases (CIBERehd, "Instituto de Salud Carlos III"), Spain
| | - Luis Bujanda
- Department of Liver and Gastrointestinal Diseases, Biogipuzkoa Health Research Institute, Donostia University Hospital, University of the Basque Country (UPV/EHU), Donostia-San Sebastian, Spain; National Institute for the Study of Liver and Gastrointestinal Diseases (CIBERehd, "Instituto de Salud Carlos III"), Spain
| | - Maria J Perugorria
- Department of Liver and Gastrointestinal Diseases, Biogipuzkoa Health Research Institute, Donostia University Hospital, University of the Basque Country (UPV/EHU), Donostia-San Sebastian, Spain; National Institute for the Study of Liver and Gastrointestinal Diseases (CIBERehd, "Instituto de Salud Carlos III"), Spain; Department of Medicine, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), 48940, Leioa, Spain
| | - Jesus M Banales
- Department of Liver and Gastrointestinal Diseases, Biogipuzkoa Health Research Institute, Donostia University Hospital, University of the Basque Country (UPV/EHU), Donostia-San Sebastian, Spain; National Institute for the Study of Liver and Gastrointestinal Diseases (CIBERehd, "Instituto de Salud Carlos III"), Spain; IKERBASQUE, Basque Foundation for Science, Bilbao, Spain; Department of Biochemistry and Genetics, School of Sciences, University of Navarra, Pamplona, Spain.
| | - Pedro M Rodrigues
- Department of Liver and Gastrointestinal Diseases, Biogipuzkoa Health Research Institute, Donostia University Hospital, University of the Basque Country (UPV/EHU), Donostia-San Sebastian, Spain; National Institute for the Study of Liver and Gastrointestinal Diseases (CIBERehd, "Instituto de Salud Carlos III"), Spain; IKERBASQUE, Basque Foundation for Science, Bilbao, Spain.
| |
Collapse
|
8
|
Al-Mahadeen MM, Jaber AM, Al-Najjar BO, Khanfar MA, El-Abadelah MM. Novel N-Substituted Isatin-Oxoindolin-1 H-Benzo[D] Imidazole Fumarate as a New Class of JNK3 Inhibitor: Design, Synthesis, Molecular Modeling and its Biological Activity. Curr Org Synth 2025; 22:410-418. [PMID: 40259593 DOI: 10.2174/0115701794335274240910111137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 07/27/2024] [Accepted: 08/05/2024] [Indexed: 04/23/2025]
Abstract
BACKGROUND A direct synthesis of functionalized dimethyl fumarate derivatives of 2- (2-((E)-(2-oxoindolin-3-ylidene)methyl)-1H-benzo[d]imidazol-1-yl) is achieved via one-pot reaction involving 2-methyl-1H-benzo[d]imidazole and appropriate isatin in the presence of DMAD. METHODS Conversely, this one-pot reaction furnished, upon conduction at 60 ° C, the 2-(2-((E)- (2-oxoindolin-3-ylidene)methyl)-1H-benzo[d]imidazol-1-yl) products. The biological activities were evaluated against JNK3 kinase. We chose to dock the compounds into the JNK3 binding site in order to comprehend the molecular underpinnings of the observed bioactivities. RESULTS The structures of the synthesized compound adduct were evidenced from NMR and MS spectral data and further confirmed by single-crystal X-ray diffraction. The biological activities revealing that the introduction of an alkyl group at the 1-position of the isatin moiety produced JNK3 inhibitors with IC50 values in the low micromolar range. CONCLUSION This study synthesized a unique compound using a three-component method. Compound 4d showed high antitumor activity (IC50 = 6.5 μM) against JNK3 inhibitors, while compounds 4c, 4d, and 4f exhibited high selectivity. The research highlights the effectiveness of the one-pot reaction in creating medically useful hybrid compounds, marking a significant advance in medicinal chemistry.
Collapse
Affiliation(s)
- Mohammed M Al-Mahadeen
- Department of Chemistry , Faculty of Science, The University of Jordan, Amman, 11942, Jordan
| | - Areej M Jaber
- Pharmacological and Diagnostic Research Center, Faculty of Pharmacy, Al-Ahliyya Amman University, Amman, 19328, Jordan
| | - Belal O Al-Najjar
- Pharmacological and Diagnostic Research Center, Faculty of Pharmacy, Al-Ahliyya Amman University, Amman, 19328, Jordan
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Al-Ahliyya Amman University, 19328 Amman, Jordan
| | - Monther A Khanfar
- Department of Chemistry , Faculty of Science, The University of Jordan, Amman, 11942, Jordan
- Department of Chemistry, Pure and Applied Chemistry Group, College of Sciences, University of Sharjah, Sharjah, 27272, UAE
| | - Mustafa M El-Abadelah
- Department of Chemistry , Faculty of Science, The University of Jordan, Amman, 11942, Jordan
| |
Collapse
|
9
|
Sayilan Ozgun G, Ozgun E, Karabas T, Suer Gokmen S, Eskiocak S. Piperine induces cellular stresses, apoptosis, and cytotoxicity via JNK signaling and has concentration-dependently additive or synergistic effects with sorafenib in hepatocellular carcinoma: an in-vitro study. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024:10.1007/s00210-024-03725-0. [PMID: 39708099 DOI: 10.1007/s00210-024-03725-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Accepted: 12/10/2024] [Indexed: 12/23/2024]
Abstract
We aimed to determine the effects of piperine on cell viability, cellular stresses, and apoptosis first, then the relationship of piperine's effects with the c-Jun N-terminal kinase (JNK) signaling pathway, and also the interaction of piperine with sorafenib in hepatocellular carcinoma. Hepatocellular carcinoma (HepG2 and Hep3B) and non-cancerous hepatocyte (AML12) cell lines were used. The cell viability was determined by using MTT assay. Cellular stresses, apoptosis, and JNK signaling markers were measured by Western blotting. Cells were pre-treated with SP600125 as a JNK inhibitor. The inhibitory concentration 50% (IC50) values and interaction of piperine with sorafenib were calculated by using CompuSyn software. IC50 values of piperine were 97 µM for HepG2, 58 µM for Hep3B, and 184 µM for AML12 with incubation for 48 h. Piperine caused a significant concentration-dependent increase in cellular stresses, apoptosis, and activated JNK signaling in hepatocellular carcinoma cells. Pre-treatment with a JNK inhibitor significantly reduced piperine-induced cellular stresses, apoptosis, and cytotoxicity. Piperine had concentration-dependent additive or synergistic effects when combined with sorafenib in both HepG2 and Hep3B cells. We found that piperine induces cellular stresses, apoptosis, and cytotoxicity via JNK signaling and has concentration-dependently additive or synergistic effects with sorafenib in hepatocellular carcinoma.
Collapse
Affiliation(s)
- Gulben Sayilan Ozgun
- Department of Medical Biochemistry, Trakya University School of Medicine, Edirne, 22030, Turkey.
| | - Eray Ozgun
- Department of Medical Biochemistry, Trakya University School of Medicine, Edirne, 22030, Turkey
| | - Tugce Karabas
- Department of Medical Biochemistry, Trakya University School of Medicine, Edirne, 22030, Turkey
| | - Selma Suer Gokmen
- Department of Medical Biochemistry, Trakya University School of Medicine, Edirne, 22030, Turkey
| | - Sevgi Eskiocak
- Department of Medical Biochemistry, Trakya University School of Medicine, Edirne, 22030, Turkey
| |
Collapse
|
10
|
Tong X, Wang G, Zhao X, Zhou J, Wang P, Xia H, Bian J, Liu X, Yuan Y, Zou H, Liu Z, Gu J. Angelica sinensis polysaccharides mitigate cadmium-induced apoptosis in layer chicken chondrocytes by inhibiting the JNK signaling pathway. Int J Biol Macromol 2024; 282:137106. [PMID: 39486695 DOI: 10.1016/j.ijbiomac.2024.137106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 10/24/2024] [Accepted: 10/29/2024] [Indexed: 11/04/2024]
Abstract
Cadmium (Cd), a toxic heavy metal pollutant, inflicts widespread damage on various organs and tissues, including cartilage, where it induces chondrocyte apoptosis. Angelica sinensis polysaccharides (ASP), a key active component of the traditional Chinese medicine Angelica sinensis, have been shown to possess anti-apoptotic effects on chondrocytes. This study investigates the in vitro effects of ASP on alleviating Cd-induced apoptosis in layer chicken chondrocytes, focusing on the mitochondrial apoptosis pathway mediated by the c-Jun N-terminal kinase (JNK) signaling pathway. Chondrocytes were isolated from layer chicken embryos and confirmed to express collagen type II alpha 1 (Col2a1). We found that Cd triggered apoptosis in the chondrocytes; however, the use of the JNK inhibitor SP 600125 mitigated mitochondrial structural damage casused by Cd, indicating the involvement of JNK signaling in this process. Furthermore, ASP effectively alleviated Cd-induced apoptosis in layer chicken chondrocytes by inhibiting JNK signaling in vitro. Our findings provide a theoretical foundation for the clinical application of ASP in preventing Cd-induced cartilage diseases in poultry.
Collapse
Affiliation(s)
- Xishuai Tong
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Institute of Agricultural Science and Technology Development, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu, PR China; Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, Jiangsu, PR China; Jiangsu Key Laboratory of Zoonosis, Yangzhou 225009, Jiangsu, PR China
| | - Guoshuai Wang
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Institute of Agricultural Science and Technology Development, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu, PR China; Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, Jiangsu, PR China; Jiangsu Key Laboratory of Zoonosis, Yangzhou 225009, Jiangsu, PR China
| | - Xinrui Zhao
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Institute of Agricultural Science and Technology Development, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu, PR China; Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, Jiangsu, PR China; Jiangsu Key Laboratory of Zoonosis, Yangzhou 225009, Jiangsu, PR China
| | - Jiatao Zhou
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Institute of Agricultural Science and Technology Development, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu, PR China; Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, Jiangsu, PR China; Jiangsu Key Laboratory of Zoonosis, Yangzhou 225009, Jiangsu, PR China
| | - Panting Wang
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Institute of Agricultural Science and Technology Development, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu, PR China; Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, Jiangsu, PR China; Jiangsu Key Laboratory of Zoonosis, Yangzhou 225009, Jiangsu, PR China
| | - Han Xia
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Institute of Agricultural Science and Technology Development, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu, PR China; Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, Jiangsu, PR China; Jiangsu Key Laboratory of Zoonosis, Yangzhou 225009, Jiangsu, PR China
| | - Jianchun Bian
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Institute of Agricultural Science and Technology Development, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu, PR China; Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, Jiangsu, PR China; Jiangsu Key Laboratory of Zoonosis, Yangzhou 225009, Jiangsu, PR China
| | - Xuezhong Liu
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Institute of Agricultural Science and Technology Development, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu, PR China; Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, Jiangsu, PR China; Jiangsu Key Laboratory of Zoonosis, Yangzhou 225009, Jiangsu, PR China
| | - Yan Yuan
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Institute of Agricultural Science and Technology Development, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu, PR China; Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, Jiangsu, PR China; Jiangsu Key Laboratory of Zoonosis, Yangzhou 225009, Jiangsu, PR China
| | - Hui Zou
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Institute of Agricultural Science and Technology Development, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu, PR China; Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, Jiangsu, PR China; Jiangsu Key Laboratory of Zoonosis, Yangzhou 225009, Jiangsu, PR China
| | - Zongping Liu
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Institute of Agricultural Science and Technology Development, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu, PR China; Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, Jiangsu, PR China; Jiangsu Key Laboratory of Zoonosis, Yangzhou 225009, Jiangsu, PR China
| | - Jianhong Gu
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Institute of Agricultural Science and Technology Development, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu, PR China; Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, Jiangsu, PR China; Jiangsu Key Laboratory of Zoonosis, Yangzhou 225009, Jiangsu, PR China.
| |
Collapse
|
11
|
Lin Z, Cai Z, Li L, Wei Y, Ling Q. c-Jun N-terminal kinase 1/P53 signaling mediates intrinsic apoptosis of largemouth bass (Micropterus salmoides) hepatocytes under heat stress. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 947:174664. [PMID: 38997017 DOI: 10.1016/j.scitotenv.2024.174664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 06/20/2024] [Accepted: 07/08/2024] [Indexed: 07/14/2024]
Abstract
The increasing frequency of high-temperature extremes threatens largemouth bass Micropterus salmoides, a significant fish for freshwater ecosystems and aquaculture. Our previous studies at the transcript level suggested that heat stress induces hepatic apoptosis in largemouth bass. In the current study, we sought to validate these findings and further investigate the role of the c-Jun N-terminal kinase (JNK)/P53 signaling in hepatic apoptosis under heat stress. First, heat treatments were conducted in vivo and in vitro under different temperatures: 28 °C, 32 °C, and 37 °C. In primary hepatocytes subjected to heat treatment, cell viability was evaluated via the Cell Counting Kit-8, while mitochondrial membrane potential and nuclear morphology were assessed through JC-1 and Hoechst 33258 staining, respectively. We observed reductions in both cell viability and mitochondrial membrane potential (ΔΨm), along with alterations in nuclear morphology, in primary hepatocytes exposed to heat stress at temperatures of 32 °C and 37 °C. Quantitative real-time PCR revealed significant alterations in the expression profiles of intrinsic apoptosis-related genes within liver tissues under heat stress. Immunohistochemistry analysis revealed that JNK1 signaling increased as the temperature increased, JNK2 expression increased only at 37 °C, and JNK3 expression did not change with temperature. We speculate that JNK1 and JNK2 have pro- and anti-apoptotic effects, respectively. Western blot analysis conducted on cultured hepatocytes further validated these findings. JNK inhibition reduced hepatocyte apoptosis, improved nuclear morphology, and maintained ΔΨm even after 37 °C treatment. These results not only confirm that heat stress led to intrinsic apoptosis of hepatocytes but also indicated that JNK1 could mediate P53 expression and activate caspase-dependent intrinsic apoptosis in largemouth bass hepatocytes under such conditions. This study illuminates the physiological responses of largemouth bass to acute heat stress, offering valuable insights into the potential impacts of climate change on freshwater fishes and the sustainability of aquaculture.
Collapse
Affiliation(s)
- Zijie Lin
- School of Biology and Basic Medical Sciences, Suzhou Medical College of Soochow University, 215000, China
| | - Zhiying Cai
- School of Biology and Basic Medical Sciences, Suzhou Medical College of Soochow University, 215000, China
| | - Lingling Li
- School of Biology and Basic Medical Sciences, Suzhou Medical College of Soochow University, 215000, China
| | - Yekai Wei
- School of Biology and Basic Medical Sciences, Suzhou Medical College of Soochow University, 215000, China
| | - Qufei Ling
- School of Biology and Basic Medical Sciences, Suzhou Medical College of Soochow University, 215000, China.
| |
Collapse
|
12
|
Hu J, Nieminen AL, Zhong Z, Lemasters JJ. Role of Mitochondrial Iron Uptake in Acetaminophen Hepatotoxicity. LIVERS 2024; 4:333-351. [PMID: 39554796 PMCID: PMC11567147 DOI: 10.3390/livers4030024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2024] Open
Abstract
Overdose of acetaminophen (APAP) produces fulminant hepatic necrosis. The underlying mechanism of APAP hepatotoxicity involves mitochondrial dysfunction, including mitochondrial oxidant stress and the onset of mitochondrial permeability transition (MPT). Reactive oxygen species (ROS) play an important role in APAP-induced hepatotoxicity, and iron is a critical catalyst for ROS formation. This review summarizes the role of mitochondrial ROS formation in APAP hepatotoxicity and further focuses on the role of iron. Normally, hepatocytes take up Fe3+-transferrin bound to transferrin receptors via endocytosis. Concentrated into lysosomes, the controlled release of iron is required for the mitochondrial biosynthesis of heme and non-heme iron-sulfur clusters. After APAP overdose, the toxic metabolite, NAPQI, damages lysosomes, causing excess iron release and the mitochondrial uptake of Fe2+ by the mitochondrial calcium uniporter (MCU). NAPQI also inhibits mitochondrial respiration to promote ROS formation, including H2O2, with which Fe2+ reacts to form highly reactive •OH through the Fenton reaction. •OH, in turn, causes lipid peroxidation, the formation of toxic aldehydes, induction of the MPT, and ultimately, cell death. Fe2+ also facilitates protein nitration. Targeting pathways of mitochondrial iron movement and consequent iron-dependent mitochondrial ROS formation is a promising strategy to intervene against APAP hepatotoxicity in a clinical setting.
Collapse
Affiliation(s)
- Jiangting Hu
- Center for Cell Death, Injury & Regeneration, Medical University of South Carolina, Charleston, SC 29425, USA
- Department of Drug Discovery & Biomedical Sciences, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Anna-Liisa Nieminen
- Center for Cell Death, Injury & Regeneration, Medical University of South Carolina, Charleston, SC 29425, USA
- Department of Drug Discovery & Biomedical Sciences, Medical University of South Carolina, Charleston, SC 29425, USA
- Hollings Cancer Center, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Zhi Zhong
- Center for Cell Death, Injury & Regeneration, Medical University of South Carolina, Charleston, SC 29425, USA
- Department of Drug Discovery & Biomedical Sciences, Medical University of South Carolina, Charleston, SC 29425, USA
| | - John J Lemasters
- Center for Cell Death, Injury & Regeneration, Medical University of South Carolina, Charleston, SC 29425, USA
- Department of Drug Discovery & Biomedical Sciences, Medical University of South Carolina, Charleston, SC 29425, USA
- Hollings Cancer Center, Medical University of South Carolina, Charleston, SC 29425, USA
- Department of Biochemistry & Molecular Biology, Medical University of South Carolina, Charleston, SC 29425, USA
| |
Collapse
|
13
|
Khan I, Kamal A, Akhtar S. Diabetes Driven Oncogenesis and Anticancer Potential of Repurposed Antidiabetic Drug: A Systemic Review. Cell Biochem Biophys 2024; 82:1907-1929. [PMID: 38954353 DOI: 10.1007/s12013-024-01387-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/22/2024] [Indexed: 07/04/2024]
Abstract
Diabetes and cancer are two prevalent disorders, pose significant public health challenges and contribute substantially to global mortality rates, with solely 10 million reported cancer-related deaths in 2020. This review explores the pathological association between diabetes and diverse cancer progressions, examining molecular mechanisms and potential therapeutic intersections. From altered metabolic landscapes to dysregulated signaling pathways, the intricate links are delineated, offering a comprehensive understanding of diabetes as a modulator of tumorigenesis. Cancer cells develop drug resistance through mechanisms like enhanced drug efflux, genetic mutations, and altered drug metabolism, allowing them to survive despite chemotherapeutic agent. Glucose emerges as a pivotal player in diabetes progression, and serving as a crucial energy source for cancer cells, supporting their biosynthetic needs and adaptation to diverse microenvironments. Glycation, a non-enzymatic process that produces advanced glycation end products (AGEs), has been linked to the etiology of cancer and has been shown in a number of tumor forms, such as leiomyosarcomas, adenocarcinomas, and squamous cell carcinomas. Furthermore, in aggressive and metastatic breast cancer, the receptor for AGEs (RAGE) is increased, which may increase the malignancy of the tumor. Reprogramming glucose metabolism manifests as hallmark cancer features, including accelerated cell proliferation, angiogenesis, metastasis, and evasion of apoptosis. This manuscript encapsulates the dual narrative of diabetes as a driver of cancer progression and the potential of repurposed antidiabetic drugs as formidable countermeasures. The amalgamation of mechanistic understanding and clinical trial outcomes establishes a robust foundation for further translational research and therapeutic advancements in the dynamic intersection of diabetes and cancer.
Collapse
Affiliation(s)
- Iqra Khan
- Department of Bioengineering, Integral University, Lucknow, 226026, Uttar Pradesh, India
| | - Aisha Kamal
- Department of Bioengineering, Integral University, Lucknow, 226026, Uttar Pradesh, India.
| | - Salman Akhtar
- Department of Bioengineering, Integral University, Lucknow, 226026, Uttar Pradesh, India
| |
Collapse
|
14
|
Lee H, Yang X, Jin PR, Won KJ, Kim CH, Jeong H. The Discovery of Gut Microbial Metabolites as Modulators of Host Susceptibility to Acetaminophen-Induced Hepatotoxicity. Drug Metab Dispos 2024; 52:754-764. [PMID: 38302428 PMCID: PMC11257691 DOI: 10.1124/dmd.123.001541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/11/2024] [Accepted: 01/29/2024] [Indexed: 02/03/2024] Open
Abstract
The mammalian gut microbiota plays diverse and essential roles in modulating host physiology. Key mediators determining the outcome of the microbiota-host interactions are the small molecule metabolites produced by the gut microbiota. The liver is a major organ exposed to gut microbial metabolites, and it serves as the nexus for maintaining healthy interactions between the gut microbiota and the host. At the same time, the liver is the primary target of potentially harmful gut microbial metabolites. In this review, we provide an up-to-date list of gut microbial metabolites that have been identified to either increase or decrease host susceptibility to acetaminophen (APAP)-induced liver injury. The signaling pathways and molecular factors involved in the progression of APAP-induced hepatotoxicity are well-established, and we propose that the mouse model of APAP-induced hepatotoxicity serves as a model system for uncovering gut microbial metabolites with previously unknown functions. Furthermore, we envision that gut microbial metabolites identified to alter APAP-induced hepatotoxicity likely have broader implications in other liver diseases. SIGNIFICANCE STATEMENT: This review provides an overview of the role of the gut microbiota in modulating the host susceptibility to acetaminophen (APAP)-induced liver injury. It focuses on the roles of gut bacterial small molecule metabolites as mediators of the interaction between the gut microbiota and the liver. It also illustrates the utility of APAP-induced liver injury as a model to identify gut microbial metabolites with biological function.
Collapse
Affiliation(s)
- Hyunwoo Lee
- Department of Industrial and Molecular Pharmaceutics (H.L., X.Y., P.-R.J., K.-J.W., H.J.), Department of Pharmacy Practice (H.J.), and College of Pharmacy, and Department of Comparative Pathobiology, College of Veterinary Medicine (H.L.), Purdue University, West Lafayette, Indiana and Department of Pathology and Mary H. Weiser Food Allergy Center and Rogel Center for Cancer Research, University of Michigan School of Medicine, Ann Arbor, Michigan (C.H.K.)
| | - Xiaotong Yang
- Department of Industrial and Molecular Pharmaceutics (H.L., X.Y., P.-R.J., K.-J.W., H.J.), Department of Pharmacy Practice (H.J.), and College of Pharmacy, and Department of Comparative Pathobiology, College of Veterinary Medicine (H.L.), Purdue University, West Lafayette, Indiana and Department of Pathology and Mary H. Weiser Food Allergy Center and Rogel Center for Cancer Research, University of Michigan School of Medicine, Ann Arbor, Michigan (C.H.K.)
| | - Pei-Ru Jin
- Department of Industrial and Molecular Pharmaceutics (H.L., X.Y., P.-R.J., K.-J.W., H.J.), Department of Pharmacy Practice (H.J.), and College of Pharmacy, and Department of Comparative Pathobiology, College of Veterinary Medicine (H.L.), Purdue University, West Lafayette, Indiana and Department of Pathology and Mary H. Weiser Food Allergy Center and Rogel Center for Cancer Research, University of Michigan School of Medicine, Ann Arbor, Michigan (C.H.K.)
| | - Kyoung-Jae Won
- Department of Industrial and Molecular Pharmaceutics (H.L., X.Y., P.-R.J., K.-J.W., H.J.), Department of Pharmacy Practice (H.J.), and College of Pharmacy, and Department of Comparative Pathobiology, College of Veterinary Medicine (H.L.), Purdue University, West Lafayette, Indiana and Department of Pathology and Mary H. Weiser Food Allergy Center and Rogel Center for Cancer Research, University of Michigan School of Medicine, Ann Arbor, Michigan (C.H.K.)
| | - Chang H Kim
- Department of Industrial and Molecular Pharmaceutics (H.L., X.Y., P.-R.J., K.-J.W., H.J.), Department of Pharmacy Practice (H.J.), and College of Pharmacy, and Department of Comparative Pathobiology, College of Veterinary Medicine (H.L.), Purdue University, West Lafayette, Indiana and Department of Pathology and Mary H. Weiser Food Allergy Center and Rogel Center for Cancer Research, University of Michigan School of Medicine, Ann Arbor, Michigan (C.H.K.)
| | - Hyunyoung Jeong
- Department of Industrial and Molecular Pharmaceutics (H.L., X.Y., P.-R.J., K.-J.W., H.J.), Department of Pharmacy Practice (H.J.), and College of Pharmacy, and Department of Comparative Pathobiology, College of Veterinary Medicine (H.L.), Purdue University, West Lafayette, Indiana and Department of Pathology and Mary H. Weiser Food Allergy Center and Rogel Center for Cancer Research, University of Michigan School of Medicine, Ann Arbor, Michigan (C.H.K.)
| |
Collapse
|
15
|
Mahmoudi A, Jalili A, Butler AE, Aghaee-Bakhtiari SH, Jamialahmadi T, Sahebkar A. Exploration of the Key Genes Involved in Non-alcoholic Fatty Liver Disease and Possible MicroRNA Therapeutic Targets. J Clin Exp Hepatol 2024; 14:101365. [PMID: 38433957 PMCID: PMC10904918 DOI: 10.1016/j.jceh.2024.101365] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 02/11/2024] [Indexed: 03/05/2024] Open
Abstract
Background MicroRNAs (miRNAs) are promising therapeutic agents for non-alcoholic fatty liver disease (NAFLD). This study aimed to identify key genes/proteins involved in NAFLD pathogenesis and progression and to evaluate miRNAs influencing their expression. Methods Gene expression profiles from datasets GSE151158, GSE163211, GSE135251, GSE167523, GSE46300, and online databases were analyzed to identify significant NAFLD-related genes. Then, protein-protein interaction networks and module analysis identified hub genes/proteins, which were validated using real-time PCR in oleic acid-treated HepG2 cells. Functional enrichment analysis evaluated signaling pathways and biological processes. Gene-miRNA interaction networks identified miRNAs targeting critical NAFLD genes. Results The most critical overexpressed hub genes/proteins included: TNF, VEGFA, TLR4, CYP2E1, ACE, SCD, FASN, SREBF2, and TGFB1 based on PPI network analysis, of which TNF, TLR4, SCD, FASN, SREBF2, and TGFB1 were up-regulated in oleic acid-treated HepG2 cells. Functional enrichment analysis for biological processes highlighted programmed necrotic cell death, lipid metabolic process response to reactive oxygen species, and inflammation. In the Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis, the highest adjusted P-value signaling pathways encompassed AGE-RAGE in diabetic complications, TNF, and HIF-1 signaling pathways. In gene-miRNA network analysis, miR-16 and miR-124 were highlighted as the miRNAs exerting the most influence on important NAFLD-related genes. Conclusion In silico analyses identified NAFLD therapeutic targets and miRNA candidates to guide further experimental investigation.
Collapse
Affiliation(s)
- Ali Mahmoudi
- Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Iran
| | - Amin Jalili
- Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Iran
| | | | - Seyed H. Aghaee-Bakhtiari
- Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Iran
- Bioinformatics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Tannaz Jamialahmadi
- Medical Toxicology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
16
|
Chung E, Wen X, Jia X, Ciallella HL, Aleksunes LM, Zhu H. Hybrid non-animal modeling: A mechanistic approach to predict chemical hepatotoxicity. JOURNAL OF HAZARDOUS MATERIALS 2024; 471:134297. [PMID: 38677119 PMCID: PMC11519847 DOI: 10.1016/j.jhazmat.2024.134297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 04/10/2024] [Accepted: 04/11/2024] [Indexed: 04/29/2024]
Abstract
Developing mechanistic non-animal testing methods based on the adverse outcome pathway (AOP) framework must incorporate molecular and cellular key events associated with target toxicity. Using data from an in vitro assay and chemical structures, we aimed to create a hybrid model to predict hepatotoxicants. We first curated a reference dataset of 869 compounds for hepatotoxicity modeling. Then, we profiled them against PubChem for existing in vitro toxicity data. Of the 2560 resulting assays, we selected the mitochondrial membrane potential (MMP) assay, a high-throughput screening (HTS) tool that can test chemical disruptors for mitochondrial function. Machine learning was applied to develop quantitative structure-activity relationship (QSAR) models with 2536 compounds tested in the MMP assay for screening new compounds. The MMP assay results, including QSAR model outputs, yielded hepatotoxicity predictions for reference set compounds with a Correct Classification Ratio (CCR) of 0.59. The predictivity improved by including 37 structural alerts (CCR = 0.8). We validated our model by testing 37 reference set compounds in human HepG2 hepatoma cells, and reliably predicting them for hepatotoxicity (CCR = 0.79). This study introduces a novel AOP modeling strategy that combines public HTS data, computational modeling, and experimental testing to predict chemical hepatotoxicity.
Collapse
Affiliation(s)
- Elena Chung
- Department of Chemistry and Biochemistry, Rowan University, NJ, USA; Center for Biomedical Informatics and Genomics, Tulane University, New Orleans, LA, USA
| | - Xia Wen
- Department of Pharmacology and Toxicology, Rutgers University, Piscataway, NJ, USA
| | - Xuelian Jia
- Department of Chemistry and Biochemistry, Rowan University, NJ, USA; Center for Biomedical Informatics and Genomics, Tulane University, New Orleans, LA, USA
| | - Heather L Ciallella
- Department of Toxicology, Cuyahoga County Medical Examiner's Office, Cleveland, OH, USA
| | - Lauren M Aleksunes
- Department of Pharmacology and Toxicology, Rutgers University, Piscataway, NJ, USA
| | - Hao Zhu
- Department of Chemistry and Biochemistry, Rowan University, NJ, USA; Center for Biomedical Informatics and Genomics, Tulane University, New Orleans, LA, USA.
| |
Collapse
|
17
|
Zhang H, Cai W, Dong L, Yang Q, Li Q, Ran Q, Liu L, Wang Y, Li Y, Weng X, Zhu X, Chen Y. Jiaohong pills attenuate neuroinflammation and amyloid-β protein-induced cognitive deficits by modulating the mitogen-activated protein kinase/nuclear factor kappa-B pathway. Animal Model Exp Med 2024; 7:222-233. [PMID: 38177948 PMCID: PMC11228096 DOI: 10.1002/ame2.12369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Accepted: 11/15/2023] [Indexed: 01/06/2024] Open
Abstract
BACKGROUND Jiaohong pills (JHP) consist of Pericarpium Zanthoxyli (PZ) and Radix Rehmanniae, two herbs that have been extensively investigated over many years due to their potential protective effects against cognitive decline and memory impairment. However, the precise mechanisms underlying the beneficial effects remain elusive. Here, research studies were conducted to investigate and validate the therapeutic effects of JHP on Alzheimer's disease. METHODS BV-2 cell inflammation was induced by lipopolysaccharide. AD mice were administered amyloid-β (Aβ). Behavioral experiments were used to evaluate learning and memory ability. The levels of nitric oxide (NO), tumor necrosis factor-alpha (TNF-α), interleukin-1β (IL-1β), and interleukin-10 (IL-10) were detected using enzyme-linked immunosorbent assay (ELISA). The protein expressions of inducible nitric oxide synthase (iNOS) and the phosphorylation level of mitogen-activated protein kinase (MAPK) and nuclear factor kappa-B (NF-κB) were detected using Western blot. Nissl staining was used to detect neuronal degeneration. RESULTS The results demonstrated that an alcoholic extract of PZ significantly decreased the levels of NO, IL-1β, TNF-α, and iNOS; increased the expression level of IL-10; and significantly decreased the phosphorylation levels of MAPK and NF-κB. These inhibitory effects were further confirmed in the AD mouse model. Meanwhile, JHP improved learning and memory function in AD mice, reduced neuronal damage, and enriched the Nissl bodies in the hippocampus. Moreover, IL-1β and TNF-α in the cortex were significantly downregulated after JHP administration, whereas IL-10 showed increased expression. CONCLUSIONS It was found that JHP reduced neuroinflammatory response in AD mice by targeting the MAPK/NF-κB signaling pathway.
Collapse
Affiliation(s)
- Hong Zhang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Weiyan Cai
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Lijinchuan Dong
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Qing Yang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Qi Li
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Qingsen Ran
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Li Liu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yajie Wang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yujie Li
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xiaogang Weng
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xiaoxin Zhu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Ying Chen
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
18
|
Mohamed GA, El-Agamy DS, Abdallah HM, Sindi IA, Almogaddam MA, Alzain AA, Andijani YS, Ibrahim SR. Kaempferol sophoroside glucoside mitigates acetaminophen-induced hepatotoxicity: Role of Nrf2/NF-κB and JNK/ASK-1 signaling pathways. Heliyon 2024; 10:e31448. [PMID: 38813141 PMCID: PMC11133934 DOI: 10.1016/j.heliyon.2024.e31448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 05/14/2024] [Accepted: 05/15/2024] [Indexed: 05/31/2024] Open
Abstract
APAP (Acetaminophen)-induced hepatic injury is a major public health threat that requires continuous searching for new effective therapeutics. KSG (Kaempferol-3-sophoroside-7-glucoside) is a kaempferol derivative that was separated from plant species belonging to different genera. This study explored the protective effects of KSG on ALI (acute liver injury) caused by APAP overdose in mice and elucidated its possible mechanisms. The results showed that KSG pretreatment alleviated APAP-induced hepatic damage as it reduced hepatic pathological lesions as well as the serum parameters of liver injury. Moreover, KSG opposed APAP-associated oxidative stress and augmented hepatic antioxidants. KSG suppressed the inflammatory response as it decreased the genetic and protein expression as well as the levels of inflammatory cytokines. Meanwhile, KSG enhanced the mRNA expression and level of anti-inflammatory cytokine, IL-10 (interleukin-10). KSG repressed the activation of NF-κB (nuclear-factor kappa-B), besides it promoted the activation of Nrf2 signaling. Additionally, KSG markedly hindered the elevation of ASK-1 (apoptosis-signal regulating-kinase-1) and JNK (c-Jun-N-terminal kinase). Furthermore, KSG suppressed APAP-induced apoptosis as it decreased the level and expression of Bax (BCL2-associated X-protein), and caspase-3 concurrent with an enhancement of anti-apoptotic protein, Bcl2 in the liver. More thoroughly, Computational studies reveal indispensable binding affinities between KSG and Keap1 (Kelch-like ECH-associated protein-1), ASK1 (apoptosis signal-regulating kinase-1), and JNK1 (c-Jun N-terminal protein kinase-1) with distinctive tendencies for selective inhibition. Taken together, our data showed the hepatoprotective capacity of KSG against APAP-produced ALI via modulation of Nrf2/NF-κB and JNK/ASK-1/caspase-3 signaling. Henceforth, KSG could be a promising hepatoprotective candidate for ALI.
Collapse
Affiliation(s)
- Gamal A. Mohamed
- Department of Natural Products and Alternative Medicine, Faculty of Pharmacy, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Dina S. El-Agamy
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt
| | - Hossam M. Abdallah
- Department of Natural Products and Alternative Medicine, Faculty of Pharmacy, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Ikhlas A. Sindi
- Department of Biology, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Mohammed A. Almogaddam
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Gezira, Wad Madani, 21111, Sudan
| | - Abdulrahim A. Alzain
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Gezira, Wad Madani, 21111, Sudan
| | - Yusra Saleh Andijani
- Department of Pharmacology and Toxicology, College of Pharmacy, Taibah University, Al-Madinah Al-Munawwarah, 30078, Saudi Arabia
| | - Sabrin R.M. Ibrahim
- Department of Chemistry, Preparatory Year Program, Batterjee Medical College, Jeddah, 21442, Saudi Arabia
- Department of Pharmacognosy, Faculty of Pharmacy, Assiut University, Assiut, 71526, Egypt
| |
Collapse
|
19
|
Gao W, Wang Y, Liu S, Li G, Shao Q, Zhang C, Cao L, Liu K, Gao W, Yang Z, Dong Y, Du X, Lei L, Liu G, Li X. Inositol-requiring enzyme 1α and c-Jun N-terminal kinase axis activation contributes to intracellular lipid accumulation in calf hepatocytes. J Dairy Sci 2024; 107:3127-3139. [PMID: 37939835 DOI: 10.3168/jds.2022-23189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 10/13/2023] [Indexed: 11/10/2023]
Abstract
During the perinatal period, dairy cows undergo negative energy balance, resulting in elevated circulating levels of nonesterified fatty acids (NEFA). Although increased blood NEFA concentrations are a physiological adaptation of early lactation, excessive NEFA in dairy cows is a major cause of fatty liver. Aberrant lipid metabolism leads to hepatic lipid accumulation and subsequently the development of fatty liver. Both inositol-requiring enzyme 1α (IRE1α) and c-Jun N-terminal kinase (JNK) have been validated for their association with hepatic lipid accumulation, including their regulatory functions in calf hepatocyte insulin resistance, oxidative stress, and apoptosis. Meanwhile, both IRE1α and JNK are involved in lipid metabolism in nonruminants. Therefore, the aim of this study was to investigate how IRE1α and JNK regulate lipid metabolism in bovine hepatocytes. An experiment was conducted on randomly selected 10 healthy cows (hepatic triglyceride [TG] content <1%) and 10 cows with fatty liver (hepatic TG content >5%). Liver tissue and blood samples were collected from experimental cows. Serum concentrations of NEFA and β-hydroxybutyrate (BHB) were greater, whereas serum concentrations of glucose and milk production were lower in cows with fatty liver. The western blot results revealed that dairy cows with fatty liver had higher phosphorylation levels of JNK, c-Jun, and IRE1α in the liver tissue. Three in vitro experiments were conducted using primary calf hepatocytes isolated from 5 healthy calves (body weight: 30-40 kg; 1 d old). First, hepatocytes were treated with NEFA (1.2 mM) for 0.5, 1, 2, 3, 5, 7, 9, or 12 h, which showed that the phosphorylated levels of JNK, c-Jun, and IRE1α increased in both linear and quadratic effects. In the second experiment, hepatocytes were treated with high concentrations of NEFA (1.2 mM) for 12 h with or without SP600125, a canonical inhibitor of JNK. Western blot results showed that SP600125 treatment could decrease the expression of lipogenesis-associated proteins (PPARγ and SREBP-1c) and increase the expression of fatty acid oxidation (FAO)-associated proteins (CPT1A and PPARα) in NEFA-treated hepatocytes. The perturbed expression of lipogenesis-associated genes (FASN, ACACA, and CD36) and FAO-associated gene ACOX1 were also recovered by JNK inhibition, indicating that JNK reduced excessive NEFA-induced lipogenesis and FAO dysregulation in calf hepatocytes. Third, short hairpin RNA targeting IRE1α (sh-IRE1α) was transfected into calf hepatocytes to silence IRE1α, and KIRA6 was used to inhibit the kinase activity of IRE1α. The blockage of IRE1α could at least partially suppressed NEFA-induced JNK activation. Moreover, the blockage of IRE1α downregulated the expression of lipogenesis genes and upregulated the expression of FAO genes in NEFA-treated hepatocytes. In conclusion, these findings indicate that targeting the IRE1α-JNK axis can reduce NEFA-induced lipid accumulation in bovine hepatocytes by modulating lipogenesis and FAO. This may offer a prospective therapeutic target for fatty liver in dairy cows.
Collapse
Affiliation(s)
- Wenwen Gao
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Yanxi Wang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Siyu Liu
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Guojin Li
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Qi Shao
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Cai Zhang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471003, China
| | - Liguang Cao
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Kai Liu
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Wenrui Gao
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Zifeng Yang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Yifei Dong
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Xiliang Du
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Lin Lei
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Guowen Liu
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Xinwei Li
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China.
| |
Collapse
|
20
|
Tian Y, Jellinek MJ, Mehta K, Seok SM, Kuo SH, Lu W, Shi R, Lee R, Lau GW, Kemper JK, Zhang K, Ford DA, Wang B. Membrane phospholipid remodeling modulates nonalcoholic steatohepatitis progression by regulating mitochondrial homeostasis. Hepatology 2024; 79:882-897. [PMID: 36999536 PMCID: PMC10544743 DOI: 10.1097/hep.0000000000000375] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 03/01/2023] [Indexed: 04/01/2023]
Abstract
BACKGROUND AND AIMS NASH, characterized by inflammation and fibrosis, is emerging as a leading etiology of HCC. Lipidomics analyses in the liver have shown that the levels of polyunsaturated phosphatidylcholine (PC) are decreased in patients with NASH, but the roles of membrane PC composition in the pathogenesis of NASH have not been investigated. Lysophosphatidylcholine acyltransferase 3 (LPCAT3), a phospholipid (PL) remodeling enzyme that produces polyunsaturated PLs, is a major determinant of membrane PC content in the liver. APPROACH AND RESULTS The expression of LPCAT3 and the correlation between its expression and NASH severity were analyzed in human patient samples. We examined the effect of Lpcat3 deficiency on NASH progression using Lpcat3 liver-specific knockout (LKO) mice. RNA sequencing, lipidomics, and metabolomics were performed in liver samples. Primary hepatocytes and hepatic cell lines were used for in vitro analyses. We showed that LPCAT3 was dramatically suppressed in human NASH livers, and its expression was inversely correlated with NAFLD activity score and fibrosis stage. Loss of Lpcat3 in mouse liver promotes both spontaneous and diet-induced NASH/HCC. Mechanistically, Lpcat3 deficiency enhances reactive oxygen species production due to impaired mitochondrial homeostasis. Loss of Lpcat3 increases inner mitochondrial membrane PL saturation and elevates stress-induced autophagy, resulting in reduced mitochondrial content and increased fragmentation. Furthermore, overexpression of Lpcat3 in the liver ameliorates inflammation and fibrosis of NASH. CONCLUSIONS These results demonstrate that membrane PL composition modulates the progression of NASH and that manipulating LPCAT3 expression could be an effective therapeutic for NASH.
Collapse
Affiliation(s)
- Ye Tian
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Matthew J. Jellinek
- Department of Biochemistry and Molecular Biology, and Center for Cardiovascular Research, Saint Louis University, St. Louis, MO, USA
| | - Kritika Mehta
- Department of Biochemistry, School of Molecular and Cellular Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Sun Mi Seok
- Department of Molecular and Integrative Physiology, School of Molecular and Cellular Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Shanny Hsuan Kuo
- Department of Pathobiology, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Wei Lu
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Ruicheng Shi
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | | | - Gee W. Lau
- Department of Pathobiology, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Jongsook Kim Kemper
- Department of Molecular and Integrative Physiology, School of Molecular and Cellular Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Cancer Center at Illinois, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Kai Zhang
- Department of Biochemistry, School of Molecular and Cellular Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - David A. Ford
- Department of Biochemistry and Molecular Biology, and Center for Cardiovascular Research, Saint Louis University, St. Louis, MO, USA
| | - Bo Wang
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Division of Nutritional Sciences, College of Agricultural, Consumer and Environmental Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Cancer Center at Illinois, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| |
Collapse
|
21
|
Win S, Than TA, Kaplowitz N. Mitochondrial P-JNK target, SAB (SH3BP5), in regulation of cell death. Front Cell Dev Biol 2024; 12:1359152. [PMID: 38559813 PMCID: PMC10978662 DOI: 10.3389/fcell.2024.1359152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 02/19/2024] [Indexed: 04/04/2024] Open
Abstract
Cell death occurs in various circumstances, such as homeostasis, stress response, and defense, via specific pathways and mechanisms that are regulated by specific activator-induced signal transductions. Among them, Jun N-terminal kinases (JNKs) participate in various aspects, and the recent discovery of JNKs and mitochondrial protein SAB interaction in signal regulation of cell death completes our understanding of the mechanism of sustained activation of JNK (P-JNK), which leads to triggering of the machinery of cell death. This understanding will lead the investigators to discover the modulators facilitating or preventing cell death for therapeutic application in acute or chronic diseases and cancer. We discuss here the mechanism and modulators of the JNK-SAB-ROS activation loop, which is the core component of mitochondria-dependent cell death, specifically apoptosis and mitochondrial permeability transition (MPT)-driven necrosis, and which may also contribute to cell death mechanisms of ferroptosis and pyroptosis. The discussion here is based on the results and evidence discovered from liver disease models, but the JNK-SAB-ROS activation loop to sustain JNK activation is universally applicable to various disease models where mitochondria and reactive oxygen species contribute to the mechanism of disease.
Collapse
Affiliation(s)
- Sanda Win
- *Correspondence: Sanda Win, ; Neil Kaplowitz,
| | | | - Neil Kaplowitz
- Department of Medicine, Division of Gastroenterology and Liver Diseases, University of Southern California, Los Angeles, CA, United States
| |
Collapse
|
22
|
Lu H, Ban Z, Xiao K, Sun M, Liu Y, Chen F, Shi T, Chen L, Shao D, Zhang M, Li W. Hepatic-Accumulated Obeticholic Acid and Atorvastatin Self-Assembled Nanocrystals Potentiate Ameliorative Effects in Treatment of Metabolic-Associated Fatty Liver Disease. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2308866. [PMID: 38196299 PMCID: PMC10933608 DOI: 10.1002/advs.202308866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Indexed: 01/11/2024]
Abstract
Exploration of medicines for efficient and safe management of metabolic-associated fatty liver disease (MAFLD) remains a challenge. Obeticholic acid (OCA), a selective farnesoid X receptor agonist, has been reported to ameliorate injury and inflammation in various liver diseases. However, its clinical application is mainly limited by poor solubility, low bioavailability, and potential side effects. Herein a hepatic-targeted nanodrugs composed of OCA and cholesterol-lowering atorvastatin (AHT) with an ideal active pharmaceutical ingredient (API) content for orally combined treatment of MAFLD is created. Such carrier-free nanocrystals (OCAHTs) are self-assembled, not only improving the stability in gastroenteric environments but also achieving hepatic accumulation through the bile acid transporter-mediated enterohepatic recycling process. Orally administrated OCAHT outperforms the simple combination of OCA and AHT in ameliorating of liver damage and inflammation in both acetaminophen-challenged mice and high-fat diet-induced MAFLD mice with less systematic toxicity. Importantly, OCAHT exerts profoundly reverse effects on MAFLD-associated molecular pathways, including impairing lipid metabolism, reducing inflammation, and enhancing the antioxidation response. This work not only provides a facile bile acid transporter-based strategy for hepatic-targeting drug delivery but also presents an efficient and safe full-API nanocrystal with which to facilitate the practical translation of nanomedicines against MAFLD.
Collapse
Affiliation(s)
- Huanfen Lu
- School of Biomedical Sciences and EngineeringSouth China University of TechnologyGuangzhouGuangdong511442China
- National Engineering Research Center for Tissue Restoration and ReconstructionSouth China University of TechnologyGuangzhouGuangdong510006China
| | - Zhenglan Ban
- National Engineering Research Center for Tissue Restoration and ReconstructionSouth China University of TechnologyGuangzhouGuangdong510006China
- School of MedicineSouth China University of TechnologyGuangzhouGuangdong510006China
| | - Kai Xiao
- National Engineering Research Center for Tissue Restoration and ReconstructionSouth China University of TechnologyGuangzhouGuangdong510006China
- School of MedicineSouth China University of TechnologyGuangzhouGuangdong510006China
| | - Madi Sun
- School of Biomedical Sciences and EngineeringSouth China University of TechnologyGuangzhouGuangdong511442China
- National Engineering Research Center for Tissue Restoration and ReconstructionSouth China University of TechnologyGuangzhouGuangdong510006China
| | - Yongbo Liu
- College of Chinese Medicinal MaterialsJilin Agricultural UniversityChangchun130118China
| | - Fangman Chen
- National Engineering Research Center for Tissue Restoration and ReconstructionSouth China University of TechnologyGuangzhouGuangdong510006China
| | - Tongfei Shi
- School of Biomedical Sciences and EngineeringSouth China University of TechnologyGuangzhouGuangdong511442China
- National Engineering Research Center for Tissue Restoration and ReconstructionSouth China University of TechnologyGuangzhouGuangdong510006China
| | - Li Chen
- College of MedicineJilin UniversityChangchun130021China
| | - Dan Shao
- School of Biomedical Sciences and EngineeringSouth China University of TechnologyGuangzhouGuangdong511442China
- National Engineering Research Center for Tissue Restoration and ReconstructionSouth China University of TechnologyGuangzhouGuangdong510006China
- School of MedicineSouth China University of TechnologyGuangzhouGuangdong510006China
| | - Ming Zhang
- College of MedicineJilin UniversityChangchun130021China
| | - Wei Li
- College of Chinese Medicinal MaterialsJilin Agricultural UniversityChangchun130118China
| |
Collapse
|
23
|
Yan H, He L, Lv D, Yang J, Yuan Z. The Role of the Dysregulated JNK Signaling Pathway in the Pathogenesis of Human Diseases and Its Potential Therapeutic Strategies: A Comprehensive Review. Biomolecules 2024; 14:243. [PMID: 38397480 PMCID: PMC10887252 DOI: 10.3390/biom14020243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 02/12/2024] [Accepted: 02/15/2024] [Indexed: 02/25/2024] Open
Abstract
JNK is named after c-Jun N-terminal kinase, as it is responsible for phosphorylating c-Jun. As a member of the mitogen-activated protein kinase (MAPK) family, JNK is also known as stress-activated kinase (SAPK) because it can be activated by extracellular stresses including growth factor, UV irradiation, and virus infection. Functionally, JNK regulates various cell behaviors such as cell differentiation, proliferation, survival, and metabolic reprogramming. Dysregulated JNK signaling contributes to several types of human diseases. Although the role of the JNK pathway in a single disease has been summarized in several previous publications, a comprehensive review of its role in multiple kinds of human diseases is missing. In this review, we begin by introducing the landmark discoveries, structures, tissue expression, and activation mechanisms of the JNK pathway. Next, we come to the focus of this work: a comprehensive summary of the role of the deregulated JNK pathway in multiple kinds of diseases. Beyond that, we also discuss the current strategies for targeting the JNK pathway for therapeutic intervention and summarize the application of JNK inhibitors as well as several challenges now faced. We expect that this review can provide a more comprehensive insight into the critical role of the JNK pathway in the pathogenesis of human diseases and hope that it also provides important clues for ameliorating disease conditions.
Collapse
Affiliation(s)
- Huaying Yan
- Department of Ultrasound, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China; (H.Y.); (L.H.)
| | - Lanfang He
- Department of Ultrasound, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China; (H.Y.); (L.H.)
| | - De Lv
- Department of Endocrinology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
| | - Jun Yang
- Cancer Center and State Key Laboratory of Biotherapy, Department of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China;
| | - Zhu Yuan
- Cancer Center and State Key Laboratory of Biotherapy, Department of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China;
| |
Collapse
|
24
|
Lee KI, Fang KM, Kuo CY, Huang CF, Liu SH, Liu JM, Lai WC, Chang KC, Su CC, Chen YW. Roles of oxidative stress/JNK/ERK signals in paraquat-triggered hepatic apoptosis. Curr Res Toxicol 2024; 6:100155. [PMID: 38379848 PMCID: PMC10877118 DOI: 10.1016/j.crtox.2024.100155] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 01/18/2024] [Accepted: 02/07/2024] [Indexed: 02/22/2024] Open
Abstract
Paraquat (PQ), a toxic and nonselective bipyridyl herbicide, is one of the most extensively used pesticides in agricultural countries. In addition to pneumotoxicity, the liver is an important target organ for PQ poisoning in humans. However, the mechanism of PQ in hepatotoxicity remains unclear. In this study, we found that exposure of rat hepatic H4IIE cells to PQ (0.1-2 mM) induced significant cytotoxicity and apoptosis, which was accompanied by mitochondria-dependent apoptotic signals, including loss of mitochondrial membrane potential (MMP), cytosolic cytochrome c release, and changes in the Bcl-2/Bax mRNA ratio. Moreover, PQ (0.5 mM) exposure markedly induced JNK and ERK1/2 activation, but not p38-MAPK. Blockade of JNK and ERK1/2 signaling by pretreatment with the specific pharmacological inhibitors SP600125 and PD98059, respectively, effectively prevented PQ-induced cytotoxicity, mitochondrial dysfunction, and apoptotic events. Additionally, PQ exposure stimulated significant oxidative stress-related signals, including reactive oxygen species (ROS) generation and intracellular glutathione (GSH) depletion, which could be reversed by the antioxidant N-Acetylcysteine (NAC). Buffering the oxidative stress response with NAC also effectively abrogated PQ-induced hepatotoxicity, MMP loss, apoptosis, and phosphorylation of JNK and ERK1/2 protein, however, the JNK or ERK inhibitors did not suppress ROS generation in PQ-treated cells. Collectively, these results demonstrate that PQ exposure induces hepatic cell toxicity and death via an oxidative stress-dependent JNK/ERK activation-mediated downstream mitochondria-regulated apoptotic pathway.
Collapse
Affiliation(s)
- Kuan-I Lee
- Department of Emergency, Taichung Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Taichung 427, Taiwan
| | - Kai-Min Fang
- Department of Otolaryngology, Far Eastern Memorial Hospital, New Taipei City 220, Taiwan
| | - Chun-Ying Kuo
- Department of Otorhinolaryngology, Head and Neck Surgery, Changhua Christian Hospital, Changhua County 500, Taiwan
| | - Chun-Fa Huang
- School of Chinese Medicine, College of Chinese Medicine, China Medical University, Taichung 404, Taiwan
- Department of Nursing, College of Medical and Health Science, Asia University, Taichung 413, Taiwan
| | - Shing-Hwa Liu
- Institute of Toxicology, College of Medicine, National Taiwan University, Taipei 100, Taiwan
| | - Jui-Ming Liu
- Department of Urology, Taoyuan General Hospital, Ministry of Health and Welfare, Taoyuan 330, Taiwan
| | - Wei-Cheng Lai
- Department of Emergency, Taichung Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Taichung 427, Taiwan
| | - Kai-Chih Chang
- Center for Digestive Medicine, Department of Internal Medicine, China Medical University Hospital, Taichung 404, Taiwan
| | - Chin-Chuan Su
- Department of Otorhinolaryngology, Head and Neck Surgery, Changhua Christian Hospital, Changhua County 500, Taiwan
- Department of Post-Baccalaureate Medicine, College of Medicine, National Chung Hsing University, Taichung 402, Taiwan
| | - Ya-Wen Chen
- Department of Physiology, School of Medicine, College of Medicine, China Medical University, Taichung 404, Taiwan
| |
Collapse
|
25
|
Walter MN, Montoya-Durango D, Rodriguez W, Wang Y, Zhang J, Chariker JH, Rouchka EC, Maldonado C, Bennett A, McClain CJ, Barve S, Gobejishvili L. Hepatocyte-specific mitogen-activated protein kinase phosphatase 1 in sexual dimorphism and susceptibility to alcohol induced liver injury. Front Immunol 2024; 15:1316228. [PMID: 38370409 PMCID: PMC10871047 DOI: 10.3389/fimmu.2024.1316228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 01/03/2024] [Indexed: 02/20/2024] Open
Abstract
Background It is well established that females are more susceptible to the toxic effects of alcohol, although the exact mechanisms are still poorly understood. Previous studies noted that alcohol reduces the expression of mitogen-activated protein kinase phosphatase 1 (MKP1), a negative regulator of mitogen-activated protein kinases (MAPK) in the liver. However, the role of hepatocyte- specific MKP1 in the pathogenesis of alcohol-associated liver disease (ALD) remains uncharacterized. This study aimed to evaluate the role of hepatocyte-specific MKP1 in the susceptibility and sexual dimorphism in alcohol-induced liver injury. Methods C57Bl/6 mice were used in an intragastric ethanol feeding model of alcohol-associated steatohepatitis (ASH). Hepatocyte-specific Mkp1-/- knockout and (Mkp1+/+ "f/f" male and female mice were subjected to the NIAAA chronic plus binge model. Primary mouse hepatocytes were used for in vitro studies. Liver RNA sequencing was performed on an Illumina NextSeq 500. Liver injury was evaluated by plasma alanine transaminase (ALT), hepatic ER stress and inflammation markers. Statistical analysis was carried out using ANOVA and the unpaired Student's t-test. Results ASH was associated with the severe injury accompanied by increased endoplasmic reticulum (ER) stress and significant downregulation of Dusp1 mRNA expression. In vitro, ethanol treatment resulted in a time-dependent decrease in Dusp1 mRNA and protein expression in primary hepatocytes in both males and females; however, this effect was significantly more pronounced in hepatocytes from females. In vivo, female mice developed more liver injury in a chronic plus binge model which was accompanied by a significant decrease in liver Dusp1 mRNA expression. In comparison, liver Dusp1 was not changed in male mice, while they developed milder injury to alcohol. Mkp1 deletion in hepatocytes led to increased alcohol induced liver injury, ER stress and inflammation in both sexes. Conclusion Hepatocyte Mkp1 plays a significant role in alcohol induced liver injury. Alcohol downregulates Mkp1 expression in hepatocytes in a sex dependent manner and could play a role in sexual dimorphism in increased female susceptibility to alcohol.
Collapse
Affiliation(s)
- Mary Nancy Walter
- Department of Physiology, School of Medicine, University of Louisville, Louisville, KY, United States
| | - Diego Montoya-Durango
- Department of Physiology, School of Medicine, University of Louisville, Louisville, KY, United States
| | - Walter Rodriguez
- Department of Physiology, School of Medicine, University of Louisville, Louisville, KY, United States
| | - Yali Wang
- Department of Physiology, School of Medicine, University of Louisville, Louisville, KY, United States
| | - JingWen Zhang
- Department of Medicine, School of Medicine, University of Louisville, Louisville, KY, United States
| | - Julia H. Chariker
- Department of Neuroscience Training, University of Louisville, Louisville, KY, United States
- Kentucky IDeA Networks of Biomedical Research Excellence, (KY INBRE) Bioinformatics Core, University of Louisville, Louisville, KY, United States
| | - Eric C. Rouchka
- Kentucky IDeA Networks of Biomedical Research Excellence, (KY INBRE) Bioinformatics Core, University of Louisville, Louisville, KY, United States
- Department of Biochemistry and Molecular Genetics, University of Louisville, Louisville, KY, United States
| | - Claudio Maldonado
- Department of Physiology, School of Medicine, University of Louisville, Louisville, KY, United States
| | - Anton Bennett
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT, United States
| | - Craig James McClain
- Department of Medicine, School of Medicine, University of Louisville, Louisville, KY, United States
- Robley Rex Veterans Affairs (VA) Medical Center, Louisville, KY, United States
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY, United States
- Alcohol Research Center, University of Louisville, Louisville, KY, United States
- Hepatobiology and Toxicology Center, University of Louisville, Louisville, KY, United States
| | - Shirish Barve
- Department of Medicine, School of Medicine, University of Louisville, Louisville, KY, United States
- Alcohol Research Center, University of Louisville, Louisville, KY, United States
- Hepatobiology and Toxicology Center, University of Louisville, Louisville, KY, United States
| | - Leila Gobejishvili
- Department of Physiology, School of Medicine, University of Louisville, Louisville, KY, United States
- Department of Medicine, School of Medicine, University of Louisville, Louisville, KY, United States
- Alcohol Research Center, University of Louisville, Louisville, KY, United States
- Hepatobiology and Toxicology Center, University of Louisville, Louisville, KY, United States
| |
Collapse
|
26
|
Yu J, Li X, Cao J, Zhu T, Liang S, Du L, Cao M, Wang H, Zhang Y, Zhou Y, Shen B, Feng J, Zhang J, Wang J, Jin J. Components of the JNK-MAPK pathway play distinct roles in hepatocellular carcinoma. J Cancer Res Clin Oncol 2023; 149:17495-17509. [PMID: 37902853 DOI: 10.1007/s00432-023-05473-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 10/10/2023] [Indexed: 11/01/2023]
Abstract
PURPOSE Mitogen-activated protein kinases (MAPK), specifically the c-Jun N-terminal kinase (JNK)-MAPK subfamily, play a crucial role in the development of various cancers, including hepatocellular carcinoma (HCC). However, the specific roles of JNK1/2 and their upstream regulators, MKK4/7, in HCC carcinogenesis remain unclear. METHODS In this study, we performed differential expression analysis of JNK-MAPK components at both the transcriptome and protein levels using TCGA and HPA databases. We utilized Kaplan-Meier survival plots and receiver operating characteristic (ROC) curve analysis to evaluate the prognostic performance of a risk scoring model based on these components in the TCGA-HCC cohort. Additionally, we conducted immunoblotting, apoptosis analysis with FACS and soft agar assays to investigate the response of JNK-MAPK pathway components to various death stimuli (TRAIL, TNF-α, anisomycin, and etoposide) in HCC cell lines. RESULTS JNK1/2 and MKK7 levels were significantly upregulated in HCC samples compared to paracarcinoma tissues, whereas MKK4 was downregulated. ROC analyses suggested that JNK2 and MKK7 may serve as suitable diagnostic genes for HCC, and high JNK2 expression correlated with significantly poorer overall survival. Knockdown of JNK1 enhanced TRAIL-induced apoptosis in hepatoma cells, while JNK2 knockdown reduced TNF-α/cycloheximide (CHX)-and anisomycin-induced apoptosis. Neither JNK1 nor JNK2 knockdown affected etoposide-induced apoptosis. Furthermore, MKK7 knockdown augmented TNF-α/CHX- and TRAIL-induced apoptosis and inhibited colony formation in hepatoma cells. CONCLUSION Targeting MKK7, rather than JNK1/2 or MKK4, may be a promising therapeutic strategy to inhibit the JNK-MAPK pathway in HCC therapy.
Collapse
Affiliation(s)
- Jijun Yu
- School of Basic Medicine, Hainan Medical University, Haikou, 571199, China
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China
| | - Xinying Li
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China
| | - Junxia Cao
- Department of Molecular Immunology, Beijing Institute of Basic Medical Sciences, Beijing, 100850, China
| | - Ting Zhu
- Beijing No. 80 High School, Beijing, 100102, China
| | - Shuifeng Liang
- School of Basic Medicine, Hainan Medical University, Haikou, 571199, China
| | - Le Du
- School of Basic Medicine, Hainan Medical University, Haikou, 571199, China
| | - Meng Cao
- School of Basic Medicine, Hainan Medical University, Haikou, 571199, China
| | - Haitao Wang
- Department of Hematology, The Fifth Medical Center of Chinese, PLA General Hospital, Beijing, 100071, China
| | - Yaolin Zhang
- Department of Molecular Immunology, Beijing Institute of Basic Medical Sciences, Beijing, 100850, China
| | - Yinxi Zhou
- School of Basic Medicine, Hainan Medical University, Haikou, 571199, China
| | - Beifen Shen
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China
- Department of Molecular Immunology, Beijing Institute of Basic Medical Sciences, Beijing, 100850, China
| | - Jiannan Feng
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China
| | - Jiyan Zhang
- Department of Molecular Immunology, Beijing Institute of Basic Medical Sciences, Beijing, 100850, China.
| | - Jing Wang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China.
| | - Jianfeng Jin
- School of Basic Medicine, Hainan Medical University, Haikou, 571199, China.
| |
Collapse
|
27
|
Sharma S, Le Guillou D, Chen JY. Cellular stress in the pathogenesis of nonalcoholic steatohepatitis and liver fibrosis. Nat Rev Gastroenterol Hepatol 2023; 20:662-678. [PMID: 37679454 DOI: 10.1038/s41575-023-00832-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/26/2023] [Indexed: 09/09/2023]
Abstract
The burden of chronic liver disease is rising substantially worldwide. Fibrosis, characterized by excessive deposition of extracellular matrix proteins, is the common pathway leading to cirrhosis, and limited treatment options are available. There is increasing evidence suggesting the role of cellular stress responses contributing to fibrogenesis. This Review provides an overview of studies that analyse the role of cellular stress in different cell types involved in fibrogenesis, including hepatocytes, hepatic stellate cells, liver sinusoidal endothelial cells and macrophages.
Collapse
Affiliation(s)
- Sachin Sharma
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
- The Liver Center, University of California, San Francisco, San Francisco, CA, USA
| | - Dounia Le Guillou
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
- The Liver Center, University of California, San Francisco, San Francisco, CA, USA
| | - Jennifer Y Chen
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA.
- The Liver Center, University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
28
|
Robea MA, Balmus IM, Girleanu I, Huiban L, Muzica C, Ciobica A, Stanciu C, Cimpoesu CD, Trifan A. Coagulation Dysfunctions in Non-Alcoholic Fatty Liver Disease-Oxidative Stress and Inflammation Relevance. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:1614. [PMID: 37763733 PMCID: PMC10535217 DOI: 10.3390/medicina59091614] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 08/29/2023] [Accepted: 09/04/2023] [Indexed: 09/29/2023]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is one of the most common liver diseases. Its incidence is progressively rising and it is possibly becoming a worldwide epidemic. NAFLD encompasses a spectrum of diseases accounting for the chronic accumulation of fat within the hepatocytes due to various causes, excluding excessive alcohol consumption. In this study, we aimed to focus on finding evidence regarding the implications of oxidative stress and inflammatory processes that form the multifaceted pathophysiological tableau in relation to thrombotic events that co-occur in NAFLD and associated chronic liver diseases. Recent evidence on the pathophysiology of NAFLD suggests that a complex pattern of multidirectional components, such as prooxidative, proinflammatory, and prothrombotic components, better explains the multiple factors that promote the mechanisms underlying the fatty acid excess and subsequent processes. As there is extensive evidence on the multi-component nature of NAFLD pathophysiology, further studies could address the complex interactions that underlie the development and progression of the disease. Therefore, this study aimed to describe possible pathophysiological mechanisms connecting the molecular impairments with the various clinical manifestations, focusing especially on the interactions among oxidative stress, inflammation, and coagulation dysfunctions. Thus, we described the possible bidirectional modulation among coagulation homeostasis, oxidative stress, and inflammation that occurs in the various stages of NAFLD.
Collapse
Affiliation(s)
- Madalina Andreea Robea
- CENEMED Platform for Interdisciplinary Research, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (M.A.R.); (I.-M.B.); (C.D.C.)
| | - Ioana-Miruna Balmus
- CENEMED Platform for Interdisciplinary Research, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (M.A.R.); (I.-M.B.); (C.D.C.)
- Department of Exact Sciences and Natural Sciences, Institute of Interdisciplinary Research, “Alexandru Ioan Cuza” University of Iasi, Alexandru Lapusneanu Street, No. 26, 700057 Iasi, Romania
| | - Irina Girleanu
- Department of Gastroenterology, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (I.G.); (L.H.); (C.M.); (A.T.)
- Institute of Gastroenterology and Hepatology, “St. Spiridon” University Hospital, 700111 Iasi, Romania
| | - Laura Huiban
- Department of Gastroenterology, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (I.G.); (L.H.); (C.M.); (A.T.)
- Institute of Gastroenterology and Hepatology, “St. Spiridon” University Hospital, 700111 Iasi, Romania
| | - Cristina Muzica
- Department of Gastroenterology, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (I.G.); (L.H.); (C.M.); (A.T.)
- Institute of Gastroenterology and Hepatology, “St. Spiridon” University Hospital, 700111 Iasi, Romania
| | - Alin Ciobica
- Department of Biology, Faculty of Biology, “Alexandru Ioan Cuza” University, Carol I Avenue, No. 20A, 700505 Iasi, Romania
- Centre of Biomedical Research, Romanian Academy, Carol I Avenue, No. 8, 700506 Iasi, Romania;
- Academy of Romanian Scientists, Splaiul Independentei nr. 54, Sector 5, 050094 Bucuresti, Romania
| | - Carol Stanciu
- Centre of Biomedical Research, Romanian Academy, Carol I Avenue, No. 8, 700506 Iasi, Romania;
| | - Carmen Diana Cimpoesu
- CENEMED Platform for Interdisciplinary Research, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (M.A.R.); (I.-M.B.); (C.D.C.)
- Department of Emergency Medicine, Emergency County Hospital “Sf. Spiridon”, 700111 Iasi, Romania
- Faculty of Medicine, University of Medicine and Pharmacy “Grigore T. Popa” Iasi, Blvd. Independentei 1, 700111 Iasi, Romania
| | - Anca Trifan
- Department of Gastroenterology, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (I.G.); (L.H.); (C.M.); (A.T.)
- Institute of Gastroenterology and Hepatology, “St. Spiridon” University Hospital, 700111 Iasi, Romania
- Centre of Biomedical Research, Romanian Academy, Carol I Avenue, No. 8, 700506 Iasi, Romania;
| |
Collapse
|
29
|
Anderson B, Rosston P, Ong HW, Hossain MA, Davis-Gilbert ZW, Drewry DH. How many kinases are druggable? A review of our current understanding. Biochem J 2023; 480:1331-1363. [PMID: 37642371 PMCID: PMC10586788 DOI: 10.1042/bcj20220217] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 08/11/2023] [Accepted: 08/15/2023] [Indexed: 08/31/2023]
Abstract
There are over 500 human kinases ranging from very well-studied to almost completely ignored. Kinases are tractable and implicated in many diseases, making them ideal targets for medicinal chemistry campaigns, but is it possible to discover a drug for each individual kinase? For every human kinase, we gathered data on their citation count, availability of chemical probes, approved and investigational drugs, PDB structures, and biochemical and cellular assays. Analysis of these factors highlights which kinase groups have a wealth of information available, and which groups still have room for progress. The data suggest a disproportionate focus on the more well characterized kinases while much of the kinome remains comparatively understudied. It is noteworthy that tool compounds for understudied kinases have already been developed, and there is still untapped potential for further development in this chemical space. Finally, this review discusses many of the different strategies employed to generate selectivity between kinases. Given the large volume of information available and the progress made over the past 20 years when it comes to drugging kinases, we believe it is possible to develop a tool compound for every human kinase. We hope this review will prove to be both a useful resource as well as inspire the discovery of a tool for every kinase.
Collapse
Affiliation(s)
- Brian Anderson
- Structural Genomics Consortium, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, U.S.A
| | - Peter Rosston
- Structural Genomics Consortium, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, U.S.A
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, U.S.A
| | - Han Wee Ong
- Structural Genomics Consortium, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, U.S.A
| | - Mohammad Anwar Hossain
- Structural Genomics Consortium, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, U.S.A
| | - Zachary W. Davis-Gilbert
- Structural Genomics Consortium, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, U.S.A
| | - David H. Drewry
- Structural Genomics Consortium, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, U.S.A
- UNC Lineberger Comprehensive Cancer Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, U.S.A
| |
Collapse
|
30
|
Liu C, Li X, Gao M, Dong Y, Chen Z. Downregulation of hepatic METTL3 contributes to APAP-induced liver injury in mice. JHEP Rep 2023; 5:100766. [PMID: 37456679 PMCID: PMC10338307 DOI: 10.1016/j.jhepr.2023.100766] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 04/06/2023] [Accepted: 04/12/2023] [Indexed: 07/18/2023] Open
Abstract
Background & Aims Acetaminophen (APAP) overdose is a major cause of acute liver failure in the Western world, but its molecular mechanisms are not fully understood. Methyltransferase-like 3 (METTL3) is a core N6-methyl-adenosine (m6A) RNA methyltransferase that has been shown to regulate many physiological and pathological processes. This study aimed to investigate the role of METTL3 in APAP-induced liver injury in mice. Methods Hepatocyte-specific Mettl3 knockout (Mettl3-HKO) mice and adenovirus-mediated gene overexpression or knockdown were used. We assayed APAP-induced liver injury by measuring serum alanine aminotransferase/aspartate aminotransferase activity, necrotic area, cell death, reactive oxygen species levels and activation of signalling pathways. We also performed mechanistic studies using a variety of assays and molecular techniques. Results Hepatic METTL3 is downregulated in APAP-induced liver injury, and hepatocyte-specific deletion of Mettl3 accelerates APAP-induced liver injury, leading to increased mortality as a result of the dramatic activation of the mitogen-activated protein kinase kinase 4 (MKK4) / c-Jun NH2-terminal kinase (JNK) signalling pathway. Inhibition of JNK by SP600125 largely blocks APAP-induced liver injury in Mettl3-HKO mice. Hepatic deletion of Mettl3 activates the MKK4/JNK signalling pathway by increasing the protein stability of MKK4 and JNK1/2 as a result of decreased proteasome activity. Restoration of proteasome activity by overexpression of proteasome 20S subunit beta 4 (PSMB4) or proteasome 20S subunit beta 6 (PSMB6) leads to the downregulation of MKK4 and JNK in Mettl3-HKO hepatocytes. Mechanistically, METTL3 interacts with RNA polymerase II and active histone modifications such as H3K9ac, H3K27ac, and H3K36me3 to maintain the expression of proteasome-related genes. Conclusions Our study demonstrated that downregulation of METTL3 promotes APAP-induced liver injury by decreasing proteasome activity and thereby enhancing activity of the MKK4/JNK signalling pathway. Impact and Implications Acetaminophen (APAP) overdose is a key cause of acute liver failure in the Western world, but its molecular mechanisms are not fully understood. We demonstrated in this study that methyltransferase-like 3 (METTL3), a core m6A RNA methyltransferase, is downregulated in APAP-induced liver injury, which exacerbates APAP-induced liver injury through enhancing the MKK4/JNK signalling pathway with involvement of the decreased proteasome activity.
Collapse
Affiliation(s)
- Chunhong Liu
- HIT Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin 150001, China
| | - Xinzhi Li
- HIT Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin 150001, China
| | - Ming Gao
- HIT Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin 150001, China
| | - Yanbin Dong
- Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Zheng Chen
- HIT Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin 150001, China
| |
Collapse
|
31
|
Zheng Y, Wang S, Wu J, Wang Y. Mitochondrial metabolic dysfunction and non-alcoholic fatty liver disease: new insights from pathogenic mechanisms to clinically targeted therapy. J Transl Med 2023; 21:510. [PMID: 37507803 PMCID: PMC10375703 DOI: 10.1186/s12967-023-04367-1] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 07/17/2023] [Indexed: 07/30/2023] Open
Abstract
Metabolic dysfunction-associated fatty liver disease (MAFLD) is among the most widespread metabolic disease globally, and its associated complications including insulin resistance and diabetes have become threatening conditions for human health. Previous studies on non-alcoholic fatty liver disease (NAFLD) were focused on the liver's lipid metabolism. However, growing evidence suggests that mitochondrial metabolism is involved in the pathogenesis of NAFLD to varying degrees in several ways, for instance in cellular division, oxidative stress, autophagy, and mitochondrial quality control. Ultimately, liver function gradually declines as a result of mitochondrial dysfunction. The liver is unable to transfer the excess lipid droplets outside the liver. Therefore, how to regulate hepatic mitochondrial function to treat NAFLD has become the focus of current research. This review provides details about the intrinsic link of NAFLD with mitochondrial metabolism and the mechanisms by which mitochondrial dysfunctions contribute to NAFLD progression. Given the crucial role of mitochondrial metabolism in NAFLD progression, the application potential of multiple mitochondrial function improvement modalities (including physical exercise, diabetic medications, small molecule agonists targeting Sirt3, and mitochondria-specific antioxidants) in the treatment of NAFLD was evaluated hoping to provide new insights into NAFLD treatment.
Collapse
Affiliation(s)
- Youwei Zheng
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Shiting Wang
- Department of Cardiovascular Medicine, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Jialiang Wu
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Yong Wang
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning Province, China.
| |
Collapse
|
32
|
Abdelfattah AM, Mahmoud SS, El-Wafaey DI, Abdelgeleel HM, Abdelhamid AM. Diacerein ameliorates cholestasis-induced liver fibrosis in rat via modulating HMGB1/RAGE/NF-κB/JNK pathway and endoplasmic reticulum stress. Sci Rep 2023; 13:11455. [PMID: 37454204 PMCID: PMC10349817 DOI: 10.1038/s41598-023-38375-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 07/07/2023] [Indexed: 07/18/2023] Open
Abstract
Diacerein is an interleukin (IL)-1β inhibitor approved for osteoarthritis. This study aimed to investigate the potential anti-fibrotic effect of diacerein against bile duct ligation (BDL)-induced liver fibrosis. Forty male Wistar rats were divided into: sham-operated group, BDL group, and BDL groups treated with diacerein at 10, 30, and 50 mg/kg/day starting two days before surgery and continued for 4 weeks. Diacerein decreased the hepatic injury markers and alleviated oxidative stress triggered by BDL by reducing hepatic malondialdehyde (MDA) and increasing hepatic superoxide dismutase (SOD) levels. Diacerein mitigated BDL-induced inflammation via lowering hepatic levels and mRNA expression of high mobility group box 1 (HMGB1), nuclear factor-κB (NF-κB), and IL-1β. The hepatic gene expression of Advanced Glycation End products Receptor (RAGE) gene and immunohistochemical expression of some ER stress markers, e.g., glucose-regulated protein 78 (GRP78), inositol-requiring enzyme 1 (IRE1α), protein kinase RNA-like endoplasmic reticulum kinase (PERK), CCAAT/enhancer-binding protein homologous protein (CHOP), and phosphorylated c-Jun N-terminal kinase protein contents were lowered by diacerein. Furthermore, diacerein suppressed the hepatic levels of fibrogenic mediators, e.g., Transforming growth factor β1 (TGF-β1), α- smooth muscle actin (α-SMA), collagen 1, and hydroxyproline, as well as the apoptotic caspase 3 and BAX immunostaining in BDL rats. The histopathological abnormalities induced by BDL significantly improved. Our study demonstrated that diacerein exhibited an antifibrotic effect by inhibiting HMGB1/RAGE/NF-κB/JNK pathway, and ER stress. Better protection was observed with increasing the dose.
Collapse
Affiliation(s)
| | - Shireen Sami Mahmoud
- Clinical Pharmacology Department, Faculty of Medicine, Zagazig University, Zagazig, Sharkia, Egypt
| | - Dalia Ibrahim El-Wafaey
- Human Anatomy and Embryology Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | | | - Amira Mohamed Abdelhamid
- Clinical Pharmacology Department, Faculty of Medicine, Zagazig University, Zagazig, Sharkia, Egypt.
| |
Collapse
|
33
|
Sahin B, Acikel Elmas M, Bingol Ozakpinar O, Arbak S. The Effects of Apocynin on Monosodium Glutamate Induced Liver Damage of Rats. Heliyon 2023; 9:e17327. [PMID: 37449146 PMCID: PMC10336448 DOI: 10.1016/j.heliyon.2023.e17327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 06/09/2023] [Accepted: 06/14/2023] [Indexed: 07/18/2023] Open
Abstract
Monosodium glutamate (MSG) is found in refined foods. Apocynin (APO) is a selective NADPH oxidase (NOX) inhibitor. The aim of this experimental study was to investigate possible effects of MSG and the curative effects of APO in rats. Twenty-eight male Sprague-Dawley rats were randomly divided into four groups (Normal control, APO, MSG and MSG + APO, n:7 for each group). The MSG and MSG + APO groups received 120 mg/kg MSG solution orally for 28 consecutive days. The APO and MSG + APO groups received 25 mg/kg APO solution orally for 5 days until the end of the experiment. At the end of the experiment, all rats were sacrificed and liver tissue and blood samples were taken for histological, ultrastructural, and biochemical analyses. In the MSG group, vacuolization and loss in glycogen content in the hepatocytes, leukocyte infiltration and fibrosis in the liver parenchyme and portal triads, were observed. Terminal deoxynucleotidyl transferase dUTP (TUNEL)-positivity and NADPH oxidase (NOX)-2-positivity were higher in the MSG group compared with the other experimental groups. The concentrations of alanine transaminase (ALT), aspartate transaminase (AST), alkaline phosphatase (ALP), total bilirubin, malondialdehyde (MDA), and myeloperoxidase (MPO) were higher, whereas albumin, glutathione (GSH), and superoxide (SOD) levels were lower in the MSG group. All these data has been reversed in MSG + APO group. The histological and biochemical criteria indicated the prominent ameliorating effect of APO on MSG -induced liver injury.
Collapse
Affiliation(s)
- Begum Sahin
- Department of Histology and Embryology, Acibadem Mehmet Ali Aydinlar University, School of Medicine, Istanbul, Turkey
| | - Merve Acikel Elmas
- Department of Histology and Embryology, Acibadem Mehmet Ali Aydinlar University, School of Medicine, Istanbul, Turkey
| | | | - Serap Arbak
- Department of Histology and Embryology, Acibadem Mehmet Ali Aydinlar University, School of Medicine, Istanbul, Turkey
| |
Collapse
|
34
|
Musso G, Saba F, Cassader M, Gambino R. Lipidomics in pathogenesis, progression and treatment of nonalcoholic steatohepatitis (NASH): Recent advances. Prog Lipid Res 2023; 91:101238. [PMID: 37244504 DOI: 10.1016/j.plipres.2023.101238] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 05/20/2023] [Accepted: 05/21/2023] [Indexed: 05/29/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a chronic liver disease affecting up to 30% of the general adult population. NAFLD encompasses a histological spectrum ranging from pure steatosis to non-alcoholic steatohepatitis (NASH). NASH can progress to cirrhosis and is becoming the most common indication for liver transplantation, as a result of increasing disease prevalence and of the absence of approved treatments. Lipidomic readouts of liver blood and urine samples from experimental models and from NASH patients disclosed an abnormal lipid composition and metabolism. Collectively, these changes impair organelle function and promote cell damage, necro-inflammation and fibrosis, a condition termed lipotoxicity. We will discuss the lipid species and metabolic pathways leading to NASH development and progression to cirrhosis, as well as and those species that can contribute to inflammation resolution and fibrosis regression. We will also focus on emerging lipid-based therapeutic opportunities, including specialized proresolving lipid molecules and macrovesicles contributing to cell-to-cell communication and NASH pathophysiology.
Collapse
Affiliation(s)
- Giovanni Musso
- Dept of Emergency Medicine, San Luigi Gonzaga University Hospital, Orbassano, Turin, Italy.
| | - Francesca Saba
- Dept. of Medical Sciences, San Giovanni Battista Hospital, University of Turin, Turin, Italy
| | - Maurizio Cassader
- Dept. of Medical Sciences, San Giovanni Battista Hospital, University of Turin, Turin, Italy
| | - Roberto Gambino
- Dept. of Medical Sciences, San Giovanni Battista Hospital, University of Turin, Turin, Italy
| |
Collapse
|
35
|
Masenga SK, Muchaili L, Hamooya BM. Cardiovascular Outcomes Among Persons with HIV and Nonalcoholic Fatty Liver Disease. AIDS 2023; 37:1329-1331. [PMID: 37822712 PMCID: PMC10564394 DOI: 10.1097/qad.0000000000003562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2023]
Affiliation(s)
- Sepiso K. Masenga
- HAND Research group, School of Medicine and Health Sciences, Mulungushi University, Livingstone, Zambia
- School of Public Health, University of Zambia, Lusaka, Zambia
- Vanderbilt Institute for Global Health, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Lweendo Muchaili
- HAND Research group, School of Medicine and Health Sciences, Mulungushi University, Livingstone, Zambia
| | - Benson M. Hamooya
- HAND Research group, School of Medicine and Health Sciences, Mulungushi University, Livingstone, Zambia
| |
Collapse
|
36
|
Arndt L, Hernandez-Resendiz I, Moos D, Dokas J, Müller S, Jeromin F, Wagner R, Ceglarek U, Heid IM, Höring M, Liebisch G, Stadler SC, Burkhardt R. Trib1 Deficiency Promotes Hyperlipidemia, Inflammation, and Atherosclerosis in LDL Receptor Knockout Mice. Arterioscler Thromb Vasc Biol 2023; 43:979-994. [PMID: 37078290 DOI: 10.1161/atvbaha.122.318137] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 04/04/2023] [Indexed: 04/21/2023]
Abstract
BACKGROUND Genetic variants at the TRIB1 gene locus are strongly associated with plasma lipid traits and the risk of coronary artery disease in humans. Here, we analyzed the consequences of Trib1 deficiency on lipid metabolism and atherosclerotic lesion formation in atherosclerosis-susceptible Ldlr-/- mice. METHODS Trib1-/- mice were crossed onto the Ldlr-/- background to generate double-knockout mice (Trib1-/-Ldlr-/-) and fed a semisynthetic, modified AIN76 diet (0.02% cholesterol and 4.3% fat) until 20 weeks of age. RESULTS Trib1-/-Ldlr-/- mice had profoundly larger (5.8-fold) and more advanced atherosclerotic lesions at the aortic root as compared with Trib1+/+Ldlr-/- controls. Further, we observed significantly elevated plasma total cholesterol and triglyceride levels in Trib1-/-Ldlr-/- mice, resulting from higher VLDL (very-low-density lipoprotein) secretion. Lipidomics analysis revealed that loss of Trib1 altered hepatic lipid composition, including the accumulation of cholesterol and proinflammatory ceramide species, which was accompanied by signs of hepatic inflammation and injury. Concomitantly, we detected higher plasma levels of IL (interleukin)-6 and LCN2 (lipocalin 2), suggesting increased systemic inflammation in Trib1-/-Ldlr-/- mice. Hepatic transcriptome analysis demonstrated significant upregulation of key genes controlling lipid metabolism and inflammation in Trib1-/-Ldlr-/- mice. Further experiments suggested that these effects may be mediated through pathways involving a C/EPB (CCAAT/enhancer binding protein)-PPARγ (peroxisome proliferator-activated receptor γ) axis and JNK (c-Jun N-terminal kinase) signaling. CONCLUSIONS We provide experimental evidence that Trib1 deficiency promotes atherosclerotic lesion formation in a complex manner that includes the modulation of lipid metabolism and inflammation.
Collapse
Affiliation(s)
- Lilli Arndt
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University Hospital Leipzig, Germany (L.A., D.M., J.D., S.M., F.J., R.W., U.C.)
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital Regensburg, Germany (L.A., I.H.-R., M.H., G.L., S.C.S., R.B.)
| | - Ileana Hernandez-Resendiz
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital Regensburg, Germany (L.A., I.H.-R., M.H., G.L., S.C.S., R.B.)
| | - Doreen Moos
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University Hospital Leipzig, Germany (L.A., D.M., J.D., S.M., F.J., R.W., U.C.)
| | - Janine Dokas
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University Hospital Leipzig, Germany (L.A., D.M., J.D., S.M., F.J., R.W., U.C.)
| | - Silvana Müller
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University Hospital Leipzig, Germany (L.A., D.M., J.D., S.M., F.J., R.W., U.C.)
| | - Franziska Jeromin
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University Hospital Leipzig, Germany (L.A., D.M., J.D., S.M., F.J., R.W., U.C.)
| | - Richard Wagner
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University Hospital Leipzig, Germany (L.A., D.M., J.D., S.M., F.J., R.W., U.C.)
| | - Uta Ceglarek
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University Hospital Leipzig, Germany (L.A., D.M., J.D., S.M., F.J., R.W., U.C.)
| | - Iris M Heid
- Department of Genetic Epidemiology, University of Regensburg, Germany (I.M.H.)
| | - Marcus Höring
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital Regensburg, Germany (L.A., I.H.-R., M.H., G.L., S.C.S., R.B.)
| | - Gerhard Liebisch
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital Regensburg, Germany (L.A., I.H.-R., M.H., G.L., S.C.S., R.B.)
| | - Sonja C Stadler
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital Regensburg, Germany (L.A., I.H.-R., M.H., G.L., S.C.S., R.B.)
| | - Ralph Burkhardt
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital Regensburg, Germany (L.A., I.H.-R., M.H., G.L., S.C.S., R.B.)
| |
Collapse
|
37
|
Win S, Than TA, Kaplowitz N. c- Jun-N Terminal Kinase-Mediated Degradation of γ-Glutamylcysteine Ligase Catalytic Subunit Inhibits GSH Recovery After Acetaminophen Treatment: Role in Sustaining JNK Activation and Liver Injury. Antioxid Redox Signal 2023; 38:1071-1081. [PMID: 36333933 PMCID: PMC10425160 DOI: 10.1089/ars.2022.0119] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 10/01/2022] [Accepted: 10/22/2022] [Indexed: 11/08/2022]
Abstract
Aims: Acetaminophen (APAP) overdose is the most common cause of acute liver failure in the United States. Liver glutathione (GSH) depletion and sustained P-JNK (c-Jun-N-terminal kinase) activation are key modulators in the mechanism leading to hepatic necrosis. GSH depletion is directly related to the consumption of GSH by APAP metabolites N-acetyl-p-benzoquinone imine (NAPQI). We previously noticed that the glutamate-cysteine ligase catalytic subunit (GCLC), the rate-limiting enzyme in GSH synthesis, rapidly decreased at the same time P-JNK increased. Our aims were to determine if JNK was directly responsible for decreased GCLC causing impaired recovery of GSH and if this was an important factor in determining APAP hepatotoxicity. Results: Immunoprecipitation of JNK after APAP identified binding to GCLC. Expression of a site-directed mutated canonical JNK docking site in GCLC was resistant to degradation and led to rapid restoration of GSH and inhibited sustained JNK activation. The JNK-resistant GCLC markedly protected against necrosis and alanine aminotransferase (ALT) elevation. The proteolytic loss of GCLC was abrogated by inhibition of the proteasome, ubiquitination, or calpain. Innovation: Using mutated-GCLC resistant to JNK-induced degradation, the results allowed us to identify impaired GSH recovery as an important contributor to early progression of APAP toxicity after the metabolism of APAP and initial GSH depletion had occurred. Conclusion: Activated JNK interacts directly with GCLC and leads to proteolytic degradation of GCLC. Degradation of GCLC impairs GSH recovery after APAP allowing the continued activation of JNK. Conversely, rapid recovery of GSH inhibits the sustained activation of the mitogen-activated protein (MAP) kinase cascade and dampens APAP toxicity by suppressing the continued activation of JNK. Antioxid. Redox Signal. 38, 1071-1081.
Collapse
Affiliation(s)
- Sanda Win
- Division of Gastrointestinal and Liver Disease, Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Tin Aung Than
- Division of Gastrointestinal and Liver Disease, Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Neil Kaplowitz
- Division of Gastrointestinal and Liver Disease, Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| |
Collapse
|
38
|
Gu L, He X, Zhang Y, Li S, Tang J, Ma R, Yang X, Huang H, Peng Y, Xie Y, Peng Z, Meng J, Hu G, Tao L, Liu X, Yang H. Fluorofenidone protects against acute liver failure in mice by regulating MKK4/JNK pathway. Biomed Pharmacother 2023; 164:114844. [PMID: 37224750 DOI: 10.1016/j.biopha.2023.114844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 04/20/2023] [Accepted: 05/04/2023] [Indexed: 05/26/2023] Open
Abstract
AIMS Acute liver failure (ALF) is a life-threatening disease characterized by abrupt and extensive hepatic necrosis and apoptosis, resulting in high mortality. The approved drug, N-acetylcysteine (NAC), is only effective for acetaminophen (APAP)-associated ALF at the early stage. Thus, we investigate whether fluorofenidone (AKF-PD), a novel antifibrosis pyridone agent, protects against ALF in mice and explore its underlying mechanisms. METHODS ALF mouse models were established using APAP or lipopolysaccharide/D-galactosamine (LPS/D-Gal). Anisomycin and SP600125 were used as JNK activator and inhibitor, respectively, and NAC served as a positive control. Mouse hepatic cell line AML12 and primary mouse hepatocytes were used for in vitro studies. RESULTS AKF-PD pretreatment alleviated APAP-induced ALF with decreased necrosis, apoptosis, reactive oxygen species (ROS) markers, and mitochondrial permeability transition in liver. Additionally, AKF-PD alleviated mitochondrial ROS stimulated by APAP in AML12 cells. RNA-sequencing in the liver and subsequent gene set enrichment analysis showed that AKF-PD significantly impacted MAPK and IL-17 pathway. In vitro and in vivo studies demonstrated that AKF-PD inhibited APAP-induced phosphorylation of MKK4/JNK, while SP600125 only inhibited JNK phosphorylation. The protective effect of AKF-PD was abolished by anisomycin. Similarly, AKF-PD pretreatment abolished hepatotoxicity caused by LPS/D-Gal, decreased ROS levels, and diminished inflammation. Furthermore, unlike NAC, AKF-PD, inhibited the phosphorylation of MKK4 and JNK upon pretreatment, and improved survival in cases of LPS/D-Gal-induced mortality with delayed dosing. CONCLUSIONS In summary, AKF-PD can protect against ALF caused by APAP or LPS/D-Gal, in part, via regulating MKK4/JNK pathway. AKF-PD might be a novel candidate drug for ALF.
Collapse
Affiliation(s)
- Lei Gu
- Department of Gastroenterology, Xiangya Hospital, Central South University, Changsha 410008, China; Hunan Key Lab of Organ Fibrosis, Changsha 410008, China; National International Collaborative Research Center for Medical Metabolomics, Xiangya Hospital, Central South University, Changsha 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| | - Xin He
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha 410008, China; Hunan Key Lab of Organ Fibrosis, Changsha 410008, China
| | - Yanqiu Zhang
- Department of Gastroenterology, Xiangya Hospital, Central South University, Changsha 410008, China; Hunan Key Lab of Organ Fibrosis, Changsha 410008, China
| | - Shenglan Li
- Department of Gastroenterology, Xiangya Hospital, Central South University, Changsha 410008, China; Hunan Key Lab of Organ Fibrosis, Changsha 410008, China
| | - Jie Tang
- Department of Gastroenterology, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Ruixue Ma
- Department of Gastroenterology, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Xinyi Yang
- Department of Gastroenterology, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Hao Huang
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha 410008, China; Hunan Key Lab of Organ Fibrosis, Changsha 410008, China; Department of Cell Biology, School of Life Sciences, Central South University, Changsha 410013, China
| | - Yu Peng
- Department of Gastroenterology, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Yanyun Xie
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha 410008, China; Hunan Key Lab of Organ Fibrosis, Changsha 410008, China; National International Collaborative Research Center for Medical Metabolomics, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Zhangzhe Peng
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha 410008, China; Hunan Key Lab of Organ Fibrosis, Changsha 410008, China; National International Collaborative Research Center for Medical Metabolomics, Xiangya Hospital, Central South University, Changsha 410008, China.
| | - Jie Meng
- Hunan Key Lab of Organ Fibrosis, Changsha 410008, China; National International Collaborative Research Center for Medical Metabolomics, Xiangya Hospital, Central South University, Changsha 410008, China; Department of Respirology, Third Xiangya Hospital, Central South University, Changsha 410013, China
| | - Gaoyun Hu
- Hunan Key Lab of Organ Fibrosis, Changsha 410008, China; Faculty of Pharmaceutical Sciences, Central South University, Changsha 410013, China
| | - Lijian Tao
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha 410008, China; Hunan Key Lab of Organ Fibrosis, Changsha 410008, China; National International Collaborative Research Center for Medical Metabolomics, Xiangya Hospital, Central South University, Changsha 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| | - Xiaowei Liu
- Department of Gastroenterology, Xiangya Hospital, Central South University, Changsha 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| | - Huixiang Yang
- Department of Gastroenterology, Xiangya Hospital, Central South University, Changsha 410008, China; Hunan Key Lab of Organ Fibrosis, Changsha 410008, China; National International Collaborative Research Center for Medical Metabolomics, Xiangya Hospital, Central South University, Changsha 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China.
| |
Collapse
|
39
|
Shao M, Wang Y, Dong H, Wang L, Zhang X, Han X, Sang X, Bao Y, Peng M, Cao G. From liver fibrosis to hepatocarcinogenesis: Role of excessive liver H2O2 and targeting nanotherapeutics. Bioact Mater 2023; 23:187-205. [PMID: 36406254 PMCID: PMC9663332 DOI: 10.1016/j.bioactmat.2022.11.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 10/23/2022] [Accepted: 11/06/2022] [Indexed: 11/13/2022] Open
Abstract
Liver fibrosis and hepatocellular carcinoma (HCC) have been worldwide threats nowadays. Liver fibrosis is reversible in early stages but will develop precancerosis of HCC in cirrhotic stage. In pathological liver, excessive H2O2 is generated and accumulated, which impacts the functionality of hepatocytes, Kupffer cells (KCs) and hepatic stellate cells (HSCs), leading to genesis of fibrosis and HCC. H2O2 accumulation is associated with overproduction of superoxide anion (O2•−) and abolished antioxidant enzyme systems. Plenty of therapeutics focused on H2O2 have shown satisfactory effects against liver fibrosis or HCC in different ways. This review summarized the reasons of liver H2O2 accumulation, and the role of H2O2 in genesis of liver fibrosis and HCC. Additionally, nanotherapeutics targeting H2O2 were summarized for further consideration of antifibrotic or antitumor therapy. Liver fibrosis and HCC are closely related because ROS induced liver damage and inflammation, especially over-cumulated H2O2. Excess H2O2 diffusion in pathological liver was due to increased metabolic rate and diminished cellular antioxidant systems. Freely diffused H2O2 damaged liver-specific cells, thereby leading to fibrogenesis and hepatocarcinogenesis. Nanotherapeutics targeting H2O2 are summarized for treatment of liver fibrosis and HCC, and also challenges are proposed.
Collapse
|
40
|
Yang F, Li M, Xu D, Jiang Z, Jiang H, Xiao Y, Mei C, Yang M, Chen C, Zhou B, He B, Shan H, Pang P, Li D. Inhibition of JNK/c-Jun-ATF2 Overcomes Cisplatin Resistance in Liver Cancer through down-Regulating Galectin-1. Int J Biol Sci 2023; 19:2366-2381. [PMID: 37215991 PMCID: PMC10197891 DOI: 10.7150/ijbs.79163] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 03/20/2023] [Indexed: 05/24/2023] Open
Abstract
Due to drug resistance, the clinical response to cisplatin (CDDP) from patients with liver cancer is unsatisfactory. The alleviation or overcoming of CDDP resistance is an urgent problem to be solved in clinics. Tumor cells rapidly change signal pathways to mediate drug resistance under drug exposure. Here, multiple phosphor-kinase assays were performed and c-Jun N-terminal kinase (JNK) was activated in liver cancer cells treated with CDDP. The high activity of the JNK promotes poor progression and mediates cisplatin resistance in liver cancer, leading to a poor prognosis of liver cancer. Mechanistically, the highly activated JNK phosphorylated c-Jun and ATF2 formed a heterodimer to upregulate the expression of Galectin-1, leading to promoting cisplatin resistance in liver cancer. Importantly, we simulated the clinical evolution of drug resistance in liver cancer by continuous CDDP administration in vivo. In vivo bioluminescence imaging showed the activity of JNK gradually increased during this process. Moreover, the inhibition of JNK activity by small molecular or genetic inhibitors enhanced DNA damage and overcame CDDP resistance in vitro and in vivo. Collectively, our results underline that the high activity of JNK/c-Jun-ATF2/Galectin-1 mediates cisplatin resistance in liver cancer and provides an optional scheme for dynamic monitoring of molecular activity in vivo.
Collapse
Affiliation(s)
- Fan Yang
- Department of Nuclear Medicine, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province 519000, China
- Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province 519000, China
| | - Mengzhu Li
- Department of Nuclear Medicine, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province 519000, China
- Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province 519000, China
| | - Duo Xu
- Department of Nuclear Medicine, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province 519000, China
- Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province 519000, China
- Center for Interventional Medicine, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province 519000, China
| | - Zebo Jiang
- Department of Nuclear Medicine, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province 519000, China
- Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province 519000, China
| | - Hailong Jiang
- Department of Nuclear Medicine, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province 519000, China
- Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province 519000, China
- Center for Interventional Medicine, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province 519000, China
| | - Yitai Xiao
- Department of Nuclear Medicine, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province 519000, China
- Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province 519000, China
| | - Chaoming Mei
- Department of Nuclear Medicine, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province 519000, China
- Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province 519000, China
| | - Meilin Yang
- Department of Nuclear Medicine, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province 519000, China
- Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province 519000, China
| | - Congmin Chen
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong Province 510080, China
| | - Bin Zhou
- Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province 519000, China
- Center for Interventional Medicine, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province 519000, China
| | - Bailiang He
- Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province 519000, China
| | - Hong Shan
- Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province 519000, China
- Center for Interventional Medicine, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province 519000, China
| | - Pengfei Pang
- Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province 519000, China
- Center for Interventional Medicine, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province 519000, China
| | - Dan Li
- Department of Nuclear Medicine, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province 519000, China
- Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province 519000, China
| |
Collapse
|
41
|
Hoff J, Xiong L, Kammann T, Neugebauer S, Micheel JM, Gaßler N, Bauer M, Press AT. RIPK3 promoter hypermethylation in hepatocytes protects from bile acid-induced inflammation and necroptosis. Cell Death Dis 2023; 14:275. [PMID: 37072399 PMCID: PMC10113265 DOI: 10.1038/s41419-023-05794-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/24/2023] [Accepted: 04/04/2023] [Indexed: 04/20/2023]
Abstract
Necroptosis facilitates cell death in a controlled manner and is employed by many cell types following injury. It plays a significant role in various liver diseases, albeit the cell-type-specific regulation of necroptosis in the liver and especially hepatocytes, has not yet been conceptualized. We demonstrate that DNA methylation suppresses RIPK3 expression in human hepatocytes and HepG2 cells. In diseases leading to cholestasis, the RIPK3 expression is induced in mice and humans in a cell-type-specific manner. Overexpression of RIPK3 in HepG2 cells leads to RIPK3 activation by phosphorylation and cell death, further modulated by different bile acids. Additionally, bile acids and RIPK3 activation further facilitate JNK phosphorylation, IL-8 expression, and its release. This suggests that hepatocytes suppress RIPK3 expression to protect themselves from necroptosis and cytokine release induced by bile acid and RIPK3. In chronic liver diseases associated with cholestasis, induction of RIPK3 expression may be an early event signaling danger and repair through releasing IL-8.
Collapse
Affiliation(s)
- Jessica Hoff
- Department of Anesthesiology and Intensive Care Medicine, Nanophysiology Group, Jena University Hospital, Jena, 07747, Germany
- Center for Sepsis Control and Care, Jena University Hospital, Jena, 07743, Germany
| | - Ling Xiong
- Department of Anesthesiology and Intensive Care Medicine, Nanophysiology Group, Jena University Hospital, Jena, 07747, Germany
- Center for Sepsis Control and Care, Jena University Hospital, Jena, 07743, Germany
| | - Tobias Kammann
- Department of Anesthesiology and Intensive Care Medicine, Nanophysiology Group, Jena University Hospital, Jena, 07747, Germany
- Center for Sepsis Control and Care, Jena University Hospital, Jena, 07743, Germany
| | - Sophie Neugebauer
- Center for Sepsis Control and Care, Jena University Hospital, Jena, 07743, Germany
- Department of Clinical Chemistry and Laboratory Diagnostics, Jena University Hospital, Jena, 07747, Germany
| | - Julia M Micheel
- Department of Anesthesiology and Intensive Care Medicine, Nanophysiology Group, Jena University Hospital, Jena, 07747, Germany
- Center for Sepsis Control and Care, Jena University Hospital, Jena, 07743, Germany
| | | | - Michael Bauer
- Department of Anesthesiology and Intensive Care Medicine, Nanophysiology Group, Jena University Hospital, Jena, 07747, Germany
- Center for Sepsis Control and Care, Jena University Hospital, Jena, 07743, Germany
| | - Adrian T Press
- Department of Anesthesiology and Intensive Care Medicine, Nanophysiology Group, Jena University Hospital, Jena, 07747, Germany.
- Center for Sepsis Control and Care, Jena University Hospital, Jena, 07743, Germany.
- Faculty of Medicine, Friedrich Schiller University Jena, Jena, 07747, Germany.
| |
Collapse
|
42
|
Ding J, Wu L, Zhu G, Zhu J, Luo P, Li Y. HADHA alleviates hepatic steatosis and oxidative stress in NAFLD via inactivation of the MKK3/MAPK pathway. Mol Biol Rep 2023; 50:961-970. [PMID: 36376538 PMCID: PMC9889437 DOI: 10.1007/s11033-022-07965-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 09/22/2022] [Indexed: 11/16/2022]
Abstract
BACKGROUND Nonalcoholic fatty liver disease (NAFLD) is a liver metabolic syndrome and still lacks effective treatments because the molecular mechanism underlying the development of NAFLD is not completely understood. We investigated the role of Hydroxyl CoA dehydrogenase alpha subunit (HADHA) in the pathogenesis of NAFLD. METHODS HADHA expression was detected both in NAFLD cell and mice, and knockdown of HADHA in free fatty acids (FFA)-treated L02 or overexpression of HADHA in high fat diet (HFD)-fed mice was used to detected the influence of HADHA on hepatic steatosis, mitochondrial dysfunction, and oxidative stress by regulating of MKK3/MAPK signaling. RESULTS Our data revealed that HADHA expression was decreased in FFA-treated L02 cells and in HFD-fed mice. Knockdown of HADHA markedly aggravated hepatic steatosis, inflammation and oxidative stress in FFA-treated L02 cells, which was associated with the activation of MKK3/MAPK signalling pathways. Moreover, oxidative stress and liver lesions were improved in NAFLD mice by upregulation of HADHA. Importantly, we demonstrated that overexpression of HADHA inhibited the expression of p-MAPK in NAFLD mice, reducing lipid accumulation and steatosis. CONCLUSION HADHA may function as a protective factor in the progression of NAFLD by alleviating abnormal metabolism and oxidative stress by suppressing MKK3/MAPK signalling pathway activation, providing a new target for the treatment of NAFLD.
Collapse
Affiliation(s)
- Jiexia Ding
- Department of Infectious Diseases, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, No. 261 Huansha Road, 310003, Hangzhou, Zhejiang Province, China.
| | - Lili Wu
- Department of Oncology, Ruian City People's Hospital, 325200, Rui'an, China
| | - Guoxian Zhu
- Department of Infectious Diseases, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, No. 261 Huansha Road, 310003, Hangzhou, Zhejiang Province, China
| | - Jing Zhu
- Department of Infectious Diseases, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, No. 261 Huansha Road, 310003, Hangzhou, Zhejiang Province, China
| | - Pingping Luo
- Department of Infectious Diseases, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, No. 261 Huansha Road, 310003, Hangzhou, Zhejiang Province, China
| | - Youming Li
- Department of Gastroenterology, Zhejiang University School of Medicine First Affiliated Hospital, 310003, Hangzhou, China
| |
Collapse
|
43
|
Duan J, Yuan W, Jiang J, Wang J, Yan X, Liu F, Liu A. ASK1 inhibitor NQDI‑1 decreases oxidative stress and neuroapoptosis via the ASK1/p38 and JNK signaling pathway in early brain injury after subarachnoid hemorrhage in rats. Mol Med Rep 2023; 27:47. [PMID: 36633130 PMCID: PMC9879074 DOI: 10.3892/mmr.2023.12934] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Accepted: 11/30/2022] [Indexed: 01/10/2023] Open
Abstract
Oxidative stress and neuroapoptosis are key pathological processes after subarachnoid hemorrhage (SAH). The present study evaluated the anti‑oxidation and anti‑apoptotic neuroprotective effects of the apoptosis signal‑regulating kinase 1 (ASK1) inhibitor ethyl‑2,7‑dioxo‑2,7‑dihydro‑3H‑naphtho(1,2,3‑de)quinoline‑1‑carboxylate (NQDI‑1) in early brain injury (EBI) following SAH in a rat model. A total of 191 rats were used and the SAH model was induced using monofilament perforation. Western blotting was subsequently used to detect the endogenous expression levels of proteins. Immunofluorescence was then used to confirm the nerve cellular localization of ASK1. Short‑term neurological function was assessed using the modified Garcia scores and the beam balance test 24 h after SAH, whereas long‑term neurological function was assessed using the rotarod test and the Morris water maze test. Apoptosis of neurons was assessed by TUNEL staining and oxidative stress was assessed by dihydroethidium staining 24 h after SAH. The protein expression levels of phosphorylated (p‑)ASK1 and ASK1 rose following SAH. NQDI‑1 was intracerebroventricularly injected 1 h after SAH and demonstrated significant improvements in both short and long‑term neurological function and significantly reduced oxidative stress and neuronal apoptosis. Injection of NQDI‑1 caused a significant decrease in protein expression levels of p‑ASK1, p‑p38, p‑JNK, 4 hydroxynonenal, and Bax and significantly increased the protein expression levels of heme oxygenase 1 and Bcl‑2. The use of the p38 inhibitor BMS‑582949 or the JNK inhibitor SP600125 led to significant decreases in the protein expression levels of p‑p38 or p‑JNK, respectively, and a significant reduction in oxidative stress and neuronal apoptosis; however, these inhibitors did not demonstrate an effect on p‑ASK1 or ASK1 protein expression levels. In conclusion, treatment with NQDI‑1 improved neurological function and decreased oxidative stress and neuronal apoptosis in EBI following SAH in rats, possibly via inhibition of ASK1 phosphorylation and the ASK1/p38 and JNK signaling pathway. NQDI‑1 may be considered a potential agent for the treatment of patients with SAH.
Collapse
Affiliation(s)
- Jiajia Duan
- Department of Neurosurgery, Third Xiangya Hospital, Central South University, Changsha, Hunan 410000, P.R. China
| | - Wen Yuan
- Department of Neurosurgery, Zhuzhou Central Hospital, Zhuzhou, Hunan 412000, P.R. China
| | - Juan Jiang
- Department of Anatomy and Neurobiology, Xiangya Medicine School, Central South University, Changsha, Hunan 410000, P.R. China
| | - Jikai Wang
- Department of Neurosurgery, The Fifth Sun Yet-sen Hospital, Sun Yet-sen University, Zhuhai, Guangdong 519000, P.R. China
| | - Xiaoxin Yan
- Department of Anatomy and Neurobiology, Xiangya Medicine School, Central South University, Changsha, Hunan 410000, P.R. China
| | - Fei Liu
- Department of Neurosurgery, The Fifth Sun Yet-sen Hospital, Sun Yet-sen University, Zhuhai, Guangdong 519000, P.R. China,Correspondence to: Professor Fei Liu, Department of Neurosurgery, The Fifth Sun Yet-sen Hospital, Sun Yet-sen University, 52 Meihuadong Road, Xiangzhou, Zhuhai, Guangdong 519000, P.R. China, E-mail:
| | - Aihua Liu
- Department of Neurosurgery, Third Xiangya Hospital, Central South University, Changsha, Hunan 410000, P.R. China,Beijing Neurosurgical Institute, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, P.R. China,Professor Aihua Liu, Beijing Neurosurgical Institute, Department of Interventional Neuroradiology, Beijing Tiantan Hospital, Capital Medical University, 119 South Fourth Ring West Road, Fengtai, Beijing 100070, P.R. China, E-mail:
| |
Collapse
|
44
|
Litwinowicz K, Waszczuk E, Kuzan A, Bronowicka-Szydełko A, Gostomska-Pampuch K, Naporowski P, Gamian A. Alcoholic Liver Disease Is Associated with Elevated Plasma Levels of Novel Advanced Glycation End-Products: A Preliminary Study. Nutrients 2022; 14:nu14245266. [PMID: 36558425 PMCID: PMC9783524 DOI: 10.3390/nu14245266] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 12/01/2022] [Accepted: 12/07/2022] [Indexed: 12/14/2022] Open
Abstract
Elucidating the biochemical mechanisms associated with the progression of alcoholic liver disease (ALD) to more advanced stages such as alcoholic hepatitis (AH) remains an important clinical and scientific challenge. Several hypotheses point to the involvement of advanced glycation end-products (AGEs) in alcohol-associated liver injuries. Recently, we determined the structure of a synthetic, melibiose-derived AGE (MAGE), which was an analog of the novel AGE subgroup AGE10. The primary objective of our study was to determine whether AGE10 was associated with alcoholic hepatitis. The secondary objective was to provide a diagnostic accuracy of AGE10 in AH. To achieve this objective, we examined the plasma levels of AGE10 in 65 healthy individuals and 65 patients with AH. The AGE10 level was measured using a competitive ELISA. Our study confirmed that patients with AH had significantly higher plasma concentrations of AGE10 compared with healthy controls (184.5 ± 71.1 μg/mL and 123.5 ± 44.9 μg/mL, respectively; p < 0.001). In addition, AGE10 showed an acceptable performance as a diagnostic marker of AH, with an AUC of 0.78. In conclusion, AH was associated with elevated levels of novel advanced glycation end-product AGE10.
Collapse
Affiliation(s)
- Kamil Litwinowicz
- Department of Biochemistry and Immunochemistry, Wroclaw Medical University, 50-368 Wroclaw, Poland
- Correspondence:
| | - Ewa Waszczuk
- Department of Gastroenterology and Hepatology, Wroclaw Medical University, 50-566 Wroclaw, Poland
| | - Aleksandra Kuzan
- Department of Biochemistry and Immunochemistry, Wroclaw Medical University, 50-368 Wroclaw, Poland
| | | | - Kinga Gostomska-Pampuch
- Department of Biochemistry and Immunochemistry, Wroclaw Medical University, 50-368 Wroclaw, Poland
| | - Piotr Naporowski
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wroclaw, Poland
| | - Andrzej Gamian
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wroclaw, Poland
| |
Collapse
|
45
|
Yepmo M, Potier JB, Pinget M, Grabarz A, Bouzakri K, Dumond Bourie A. Discussing the role of circular RNA in the pathogenesis of non-alcoholic fatty liver disease and its complications. Front Endocrinol (Lausanne) 2022; 13:1035159. [PMID: 36407314 PMCID: PMC9667057 DOI: 10.3389/fendo.2022.1035159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 10/17/2022] [Indexed: 01/24/2023] Open
Abstract
Circular RNAs (circRNAs) are class of non-coding RNA, which are characterized by a covalently closed loop structure. Functionally they can act on cellular physiology, notably by sponging microRNAs (miR), regulating gene expression or interacting with binding protein. To date, circRNAs might represent an interesting, underexploited avenue for new target discovery for therapeutic applications, especially in the liver. The first characteristic of non-alcoholic fatty liver disease (NAFLD) is hepatic cholesterol accumulation, followed by its advanced form of the affection, nonalcoholic steatohepatitis (NASH), due to the occurrence of lobular inflammation, irreversible fibrosis, and in some cases hepatocellular carcinoma (HCC). Therefore, studies have investigated the importance of the dysregulation of circRNAs in the onset of metabolic disorders. In this review, we summarize the potential role of circRNAs in the development of metabolic diseases associated with the liver such as NAFLD or NASH, and their potential to become therapeutic strategies for these pathologies.
Collapse
Affiliation(s)
- Melissa Yepmo
- Centre européen d’étude du Diabète, Unité Mixte de Recherche de l’Université de Strasbourg « Diabète et Thérapeutique », Strasbourg, France
| | - Jean-Baptiste Potier
- Centre européen d’étude du Diabète, Unité Mixte de Recherche de l’Université de Strasbourg « Diabète et Thérapeutique », Strasbourg, France
- ILONOV, Strasbourg, France
| | - Michel Pinget
- Centre européen d’étude du Diabète, Unité Mixte de Recherche de l’Université de Strasbourg « Diabète et Thérapeutique », Strasbourg, France
| | | | - Karim Bouzakri
- Centre européen d’étude du Diabète, Unité Mixte de Recherche de l’Université de Strasbourg « Diabète et Thérapeutique », Strasbourg, France
- ILONOV, Strasbourg, France
| | - Aurore Dumond Bourie
- Centre européen d’étude du Diabète, Unité Mixte de Recherche de l’Université de Strasbourg « Diabète et Thérapeutique », Strasbourg, France
| |
Collapse
|
46
|
Potential Therapeutic Implication of Herbal Medicine in Mitochondria-Mediated Oxidative Stress-Related Liver Diseases. Antioxidants (Basel) 2022; 11:antiox11102041. [PMID: 36290765 PMCID: PMC9598588 DOI: 10.3390/antiox11102041] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/10/2022] [Accepted: 10/10/2022] [Indexed: 11/22/2022] Open
Abstract
Mitochondria are double-membrane organelles that play a role in ATP synthesis, calcium homeostasis, oxidation-reduction status, apoptosis, and inflammation. Several human disorders have been linked to mitochondrial dysfunction. It has been found that traditional therapeutic herbs are effective on alcoholic liver disease (ALD) and nonalcoholic fatty liver disease (NAFLD) which are leading causes of liver cirrhosis and hepatocellular carcinoma. The generation of reactive oxygen species (ROS) in response to oxidative stress is caused by mitochondrial dysfunction and is considered critical for treatment. The role of oxidative stress, lipid toxicity, and inflammation in NAFLD are well known. NAFLD is a chronic liver disease that commonly progresses to cirrhosis and chronic liver disease, and people with obesity, insulin resistance, diabetes, hyperlipidemia, and hypertension are at a higher risk of developing NAFLD. NAFLD is associated with a number of pathological factors, including insulin resistance, lipid metabolic dysfunction, oxidative stress, inflammation, apoptosis, and fibrosis. As a result, the improvement in steatosis and inflammation is enough to entice researchers to look into liver disease treatment. However, antioxidant treatment has not been very effective for liver disease. Additionally, it has been suggested that the beneficial effects of herbal medicines on immunity and inflammation are governed by various mechanisms for lipid metabolism and inflammation control. This review provided a summary of research on herbal medicines for the therapeutic implementation of mitochondria-mediated ROS production in liver disease as well as clinical applications through herbal medicine. In addition, the pathophysiology of common liver disorders such as ALD and NAFLD would be investigated in the role that mitochondria play in the process to open new therapeutic avenues in the management of patients with liver disease.
Collapse
|
47
|
Shan S, Liu Z, Liu Z, Zhang C, Song F. MitoQ alleviates carbon tetrachloride-induced liver fibrosis in mice through regulating JNK/YAP pathway. Toxicol Res (Camb) 2022; 11:852-862. [PMID: 36337246 PMCID: PMC9618106 DOI: 10.1093/toxres/tfac062] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 07/11/2022] [Accepted: 08/07/2022] [Indexed: 08/15/2023] Open
Abstract
Background Liver fibrosis is a pathological wound-healing response caused by chronic liver damage. Mitochondria regulate hepatic energy metabolism and oxidative stress. Accumulating evidence has revealed that increased mitochondrial oxidative stress contributes to the activation of fibrogenesis. However, the roles and underlying mechanisms of mitochondrial oxidative stress in liver fibrosis remain unknown. Methods and results In this study, C57BL/6 mice were used to establish a model of liver fibrosis via oral gavage with CCl4 treatment for 8 weeks. Furthermore, intervention experiments were achieved by CCl4 combined with the intraperitoneal injection of mitoquinone mesylate (mitoQ). We demonstrated that the chronic CCl4 exposure resulted in severe hepatic fibrogenesis and significantly promoted the production of reactive oxygen species (ROS) and mitochondrial abnormalities. Besides, JNK/YAP pathway was also activated. By contrast, the administration of mitoQ markedly inhibited the expression of pro-fibrogenic transforming growth factor-β as well as type I collagen. The antifibrotic effects of mitoQ were also confirmed by hematoxylin and eosin staining and Sirius red staining. Moreover, mitoQ substantially reduced CCl4-induced mitochondrial damage and the release of ROS. Further studies suggested that this protection against liver fibrosis was mechanistically related to the inhibition of phosphorylation of JNK and the nuclear translocation of YAP. Conclusion In conclusion, these findings revealed that mitoQ attenuated liver fibrosis by inhibiting ROS production and the JNK/YAP signaling pathway. Selective targeting JNK/YAP may serve as a therapeutic strategy for retarding progression of chronic liver disease.
Collapse
Affiliation(s)
- Shulin Shan
- Department of Toxicology and Nutrition, School of Public Health, Cheeloo College of Medicine, Shandong University, 44 West Wenhua Road, Jinan, Shandong 250012, P. R. China
| | - Zhaoxiong Liu
- Department of Toxicology and Nutrition, School of Public Health, Cheeloo College of Medicine, Shandong University, 44 West Wenhua Road, Jinan, Shandong 250012, P. R. China
| | - Zhidan Liu
- Department of Toxicology and Nutrition, School of Public Health, Cheeloo College of Medicine, Shandong University, 44 West Wenhua Road, Jinan, Shandong 250012, P. R. China
| | - Cuiqin Zhang
- Department of Toxicology and Nutrition, School of Public Health, Cheeloo College of Medicine, Shandong University, 44 West Wenhua Road, Jinan, Shandong 250012, P. R. China
| | - Fuyong Song
- Department of Toxicology and Nutrition, School of Public Health, Cheeloo College of Medicine, Shandong University, 44 West Wenhua Road, Jinan, Shandong 250012, P. R. China
| |
Collapse
|
48
|
Min RWM, Aung FWM, Liu B, Arya A, Win S. Mechanism and Therapeutic Targets of c-Jun-N-Terminal Kinases Activation in Nonalcoholic Fatty Liver Disease. Biomedicines 2022; 10:biomedicines10082035. [PMID: 36009582 PMCID: PMC9406172 DOI: 10.3390/biomedicines10082035] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/15/2022] [Accepted: 08/18/2022] [Indexed: 11/16/2022] Open
Abstract
Non-alcoholic fatty liver (NAFL) is the most common chronic liver disease. Activation of mitogen-activated kinases (MAPK) cascade, which leads to c-Jun N-terminal kinase (JNK) activation occurs in the liver in response to the nutritional and metabolic stress. The aberrant activation of MAPKs, especially c-Jun-N-terminal kinases (JNKs), leads to unwanted genetic and epi-genetic modifications in addition to the metabolic stress adaptation in hepatocytes. A mechanism of sustained P-JNK activation was identified in acute and chronic liver diseases, suggesting an important role of aberrant JNK activation in NASH. Therefore, modulation of JNK activation, rather than targeting JNK protein levels, is a plausible therapeutic application for the treatment of chronic liver disease.
Collapse
Affiliation(s)
| | | | - Bryant Liu
- Division of Gastrointestinal and Liver Disease, Department of Medicine, Keck School of Medicine, University of Southern California, 2011 Zonal Ave., HMR 612, Los Angeles, CA 90089, USA
| | - Aliza Arya
- Division of Gastrointestinal and Liver Disease, Department of Medicine, Keck School of Medicine, University of Southern California, 2011 Zonal Ave., HMR 612, Los Angeles, CA 90089, USA
| | - Sanda Win
- Division of Gastrointestinal and Liver Disease, Department of Medicine, Keck School of Medicine, University of Southern California, 2011 Zonal Ave., HMR 612, Los Angeles, CA 90089, USA
- Correspondence:
| |
Collapse
|
49
|
Rare Inherited Cholestatic Disorders and Molecular Links to Hepatocarcinogenesis. Cells 2022; 11:cells11162570. [PMID: 36010647 PMCID: PMC9406938 DOI: 10.3390/cells11162570] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 08/05/2022] [Accepted: 08/12/2022] [Indexed: 11/16/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is the most common primary liver cancer affecting adults and the second most common primary liver cancer affecting children. Recent years have seen a significant increase in our understanding of the molecular changes associated with HCC. However, HCC is a complex disease, and its molecular pathogenesis, which likely varies by aetiology, remains to be fully elucidated. Interestingly, some inherited cholestatic disorders that manifest in childhood are associated with early HCC development. This review will thus explore how three genes that are associated with liver disease in childhood (ABCB11, TJP2 and VPS33B) might play a role in the initiation and progression of HCC. Specifically, chronic bile-induced damage (caused by ABCB11 changes), disruption of intercellular junction formation (caused by TJP2 changes) and loss of normal apical–basal cell polarity (caused by VPS33B changes) will be discussed as possible mechanisms for HCC development.
Collapse
|
50
|
Shangguan L, Wang J, Qian X, Wu Y, Liu Y. Mitochondria-Targeted Ratiometric Chemdosimeter to Detect Hypochlorite Acid for Monitoring the Drug-Damaged Liver and Kidney. Anal Chem 2022; 94:11881-11888. [PMID: 35973089 DOI: 10.1021/acs.analchem.2c02431] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Liver and kidney injury caused by drug toxicity is a serious threat to human health. Acetaminophenol (APAP), as a common antipyretic and analgesic drug, inevitably causes injury. When it is overused, hypochlorous acid (HClO) is excessively generated due to metabolic abnormalities, resulting in the accumulation of HClO in the mitochondria of liver and kidney tissues and causing damage. In this study, we designed a series of HClO responsive ratiometric chemdosimeter NRH-X (NRH-O, NRH-S, and NRH-C) to evaluate liver and kidney injury, and found that NRH-O has a specific sensitive response to HClO. NRH-O can not only monitor the variations of endogenous HClO content of living cells by fluorescence ratio changes in the mitochondria but also detect the upregulation of HClO induced by APAP. In addition, NRH-O can also be used for anatomic diagnosis of liver and kidney injury by fluorescence ratio imaging of HClO in the tissues of inflammatory mice.
Collapse
Affiliation(s)
- Lina Shangguan
- School of Engineering, China Pharmaceutical University, Nanjing 211198, China
| | - Jing Wang
- School of Engineering, China Pharmaceutical University, Nanjing 211198, China
| | - Xiaoli Qian
- School of Engineering, China Pharmaceutical University, Nanjing 211198, China
| | - Yongquan Wu
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province, School of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou 341000, China
| | - Yi Liu
- School of Engineering, China Pharmaceutical University, Nanjing 211198, China
| |
Collapse
|