1
|
Chen Z, Zhang C, Fang Y, Zhang H, Luo J, Miao C, Li J, Peng J, Qiu Y, Xia Y, Luo Q. Olfactory mucosa-mesenchymal stem cells with overexpressed Nrf2 modulate angiogenesis and exert anti-inflammation effect in an in vitro traumatic brain injury model. Eur J Med Res 2025; 30:80. [PMID: 39910594 DOI: 10.1186/s40001-025-02344-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Accepted: 01/29/2025] [Indexed: 02/07/2025] Open
Abstract
BACKGROUND Traumatic brain injury (TBI) is a major cause of disability and mortality among children and adults in developed countries. Transcription factor nuclear factor erythroid-derived 2-like 2 (Nrf2) has antioxidant, anti-inflammatory and neuroprotective effects and is closely related to TBI. Olfactory mucosa-mesenchymal stem cells (OM-MSCs) could promote neural regeneration. At present, the effects of OM-MSCs with overexpressed Nrf2 in brain diseases remain to be explored. METHODS The OM-MSCs were prepared and transfected with Nrf2 overexpression plasmid. Those transfected cells were termed as OM-MSCs with Nrf2 overexpression (OM-MSCsNrf2) and co-cultured with rat pheochromocytoma cells PC12 or murine microglia BV2. The effects of OM-MSCsNrf2 on the survival and angiogenesis of PC12 cells were evaluated through cell counting kit-8 (CCK-8) and tube formation assay, and extracellular acidification rate (ECAR) and oxygen consumption rate (OCR) were calculated to reflect glycolysis. Immunofluorescence assay was applied to determine the effects of OM-MSCsNrf2 on microglial polarization, and the underlying molecular mechanisms were analyzed based on the quantification tests of RT-qPCR and immunoblotting. RESULTS Co-culture of OM-MSCsNrf2 and PC12 cells increased the levels of anti-inflammatory cytokines and pro-angiogenesis factors, enhanced the cell survival and angiogenesis. Moreover, we also observed elevated phosphorylation of PI3K/AKT and suppressed BAX protein expression. Meanwhile, OM-MSCsNrf2 inhibited the levels of pro-inflammatory genes and affected the glycolysis in PC12 cells. In the co-cultured system of OM-MSCsNrf2 and BV2 cells, M2 microglial polarization was observed, and the levels of M2 microglia-relevant genes and the phosphorylation of STAT6/AMPKα/SMAD3 were elevated. CONCLUSION This study proved the effects of OM-MSCsNrf2 on modulating PC12 and BV2 cells in vitro, which, however, necessitates further in vivo validation.
Collapse
Affiliation(s)
- Zigui Chen
- Department of Neurosurgery, Haikou Affiliated Hospital of Central South University Xiangya School of Medicine, Haikou, 570208, China
| | - Chunyuan Zhang
- Department of Neurosurgery, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, 533000, China
- Guangxi Engineering Research Center for Biomaterials in Bone and Joint Degenerative Diseases, Baise, 533000, China
| | - Yuhua Fang
- Department of Neurosurgery, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, 533000, China
- Guangxi Engineering Research Center for Biomaterials in Bone and Joint Degenerative Diseases, Baise, 533000, China
| | - He Zhang
- Department of Neurosurgery, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, 533000, China
- Guangxi Engineering Research Center for Biomaterials in Bone and Joint Degenerative Diseases, Baise, 533000, China
| | - Jiawei Luo
- Department of Neurosurgery, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, 533000, China
- Guangxi Engineering Research Center for Biomaterials in Bone and Joint Degenerative Diseases, Baise, 533000, China
| | - Changfeng Miao
- Department of Neurosurgery Second Branche, Hunan Provincial People's Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha, 410005, China
| | - Jiale Li
- Department of Neurosurgery, Haikou Affiliated Hospital of Central South University Xiangya School of Medicine, Haikou, 570208, China
| | - Jun Peng
- Department of Neurosurgery, Haikou Affiliated Hospital of Central South University Xiangya School of Medicine, Haikou, 570208, China
| | - Yingqi Qiu
- Department of Clinical Research Center, Haikou Affiliated Hospital of Central South University Xiangya School of Medicine, Haikou, 570208, China.
| | - Ying Xia
- Department of Neurosurgery, Haikou Affiliated Hospital of Central South University Xiangya School of Medicine, Haikou, 570208, China.
| | - Qisheng Luo
- Department of Neurosurgery, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, 533000, China.
- Guangxi Engineering Research Center for Biomaterials in Bone and Joint Degenerative Diseases, Baise, 533000, China.
| |
Collapse
|
2
|
Guo L, Chen Y, Sun Z, Zhao J, Yao J, Zhang Z, Lei M, Zhai Y, Xu J, Jiang Y, Wang Y, Xue H, Liu M, Liu F. Causal relationships between hippocampal volumetric traits and the risk of Alzheimer's disease: a Mendelian randomization study. Brain Commun 2025; 7:fcaf030. [PMID: 39898324 PMCID: PMC11783321 DOI: 10.1093/braincomms/fcaf030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 12/26/2024] [Accepted: 01/22/2025] [Indexed: 02/04/2025] Open
Abstract
Alzheimer's disease, a common and progressive neurodegenerative disorder, is associated with alterations in hippocampal volume, as revealed by neuroimaging research. However, the causal links between the volumes of the hippocampus and its subfield structures with Alzheimer's disease remain unknown. A genetic correlation analysis using linkage disequilibrium score regression was conducted to identify hippocampal volumetric traits linked to Alzheimer's disease. Following this, to examine the causal links between Alzheimer's disease and hippocampal volumetric traits, we applied a two-sample Mendelian randomization approach, utilizing a bidirectional framework. Seven hippocampal volumetric traits were found as genetically correlated with Alzheimer's disease in the genetic correlation analysis and were then included in the Mendelian randomization analyses. Inverse variance weighted Mendelian randomization analyses revealed that increased volumes in the left whole hippocampus, left hippocampal body, right presubiculum head and right cornu ammonis 1 head were causally related to higher risks of Alzheimer's disease. Conversely, a higher risk of Alzheimer's disease was causally associated with decreased volumes of the left hippocampal body and left whole hippocampus. These results were validated through other Mendelian randomization approaches and sensitivity analysis. Our findings uncover bidirectional causal relationships between Alzheimer's disease and hippocampal volumetric traits, suggesting not only the potential significance of these traits in predicting Alzheimer's disease but also the reciprocal influence of Alzheimer's disease on hippocampal volumes.
Collapse
Affiliation(s)
- Lining Guo
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging and Tianjin Institute of Radiology, Tianjin Medical University General Hospital, 30052 Tianjin, China
| | - Yayuan Chen
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging and Tianjin Institute of Radiology, Tianjin Medical University General Hospital, 30052 Tianjin, China
| | - Zuhao Sun
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging and Tianjin Institute of Radiology, Tianjin Medical University General Hospital, 30052 Tianjin, China
| | - Jiaxuan Zhao
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging and Tianjin Institute of Radiology, Tianjin Medical University General Hospital, 30052 Tianjin, China
| | - Jia Yao
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging and Tianjin Institute of Radiology, Tianjin Medical University General Hospital, 30052 Tianjin, China
| | - Zhihui Zhang
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging and Tianjin Institute of Radiology, Tianjin Medical University General Hospital, 30052 Tianjin, China
| | - Minghuan Lei
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging and Tianjin Institute of Radiology, Tianjin Medical University General Hospital, 30052 Tianjin, China
| | - Ying Zhai
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging and Tianjin Institute of Radiology, Tianjin Medical University General Hospital, 30052 Tianjin, China
| | - Jinglei Xu
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging and Tianjin Institute of Radiology, Tianjin Medical University General Hospital, 30052 Tianjin, China
| | - Yurong Jiang
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging and Tianjin Institute of Radiology, Tianjin Medical University General Hospital, 30052 Tianjin, China
| | - Ying Wang
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging and Tianjin Institute of Radiology, Tianjin Medical University General Hospital, 30052 Tianjin, China
| | - Hui Xue
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging and Tianjin Institute of Radiology, Tianjin Medical University General Hospital, 30052 Tianjin, China
| | - Mengge Liu
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging and Tianjin Institute of Radiology, Tianjin Medical University General Hospital, 30052 Tianjin, China
| | - Feng Liu
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging and Tianjin Institute of Radiology, Tianjin Medical University General Hospital, 30052 Tianjin, China
| |
Collapse
|
3
|
Geigenmüller JN, Tari AR, Wisloff U, Walker TL. The relationship between adult hippocampal neurogenesis and cognitive impairment in Alzheimer's disease. Alzheimers Dement 2024; 20:7369-7383. [PMID: 39166771 PMCID: PMC11485317 DOI: 10.1002/alz.14179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 07/14/2024] [Accepted: 07/16/2024] [Indexed: 08/23/2024]
Abstract
Neurogenesis persists throughout adulthood in the hippocampus and contributes to specific cognitive functions. In Alzheimer's disease (AD), the hippocampus is affected by pathology and functional impairment early in the disease. Human AD patients have reduced adult hippocampal neurogenesis (AHN) levels compared to age-matched healthy controls. Similarly, rodent AD models show a decrease in AHN before the onset of the classical hallmarks of AD pathology. Conversely, enhancement of AHN can protect against AD pathology and ameliorate memory deficits in both rodents and humans. Therefore, impaired AHN may be a contributing factor of AD-associated cognitive decline, rather than an effect of it. In this review we outline the regulation and function of AHN in healthy individuals, and highlight the relationship between AHN dysfunction and cognitive impairments in AD. The existence of AHN in humans and its relevance in AD patients will also be discussed, with an outlook toward future research directions. HIGHLIGHTS: Adult hippocampal neurogenesis occurs in the brains of mammals including humans. Adult hippocampal neurogenesis is reduced in Alzheimer's disease in humans and animal models.
Collapse
Affiliation(s)
| | - Atefe R. Tari
- The Cardiac Exercise Research Group at Department of Circulation and Medical ImagingFaculty of Medicine and Health SciencesNorwegian University of Science and Technology (NTNU)TrondheimNorway
- Department of Neurology and Clinical NeurophysiologySt. Olavs University Hospital, Trondheim University HospitalTrondheimNorway
| | - Ulrik Wisloff
- The Cardiac Exercise Research Group at Department of Circulation and Medical ImagingFaculty of Medicine and Health SciencesNorwegian University of Science and Technology (NTNU)TrondheimNorway
| | - Tara L. Walker
- Clem Jones Centre for Ageing Dementia ResearchQueensland Brain InstituteThe University of QueenslandBrisbaneAustralia
| |
Collapse
|
4
|
Sharma M, Pal P, Gupta SK. Advances in Alzheimer's disease: A multifaceted review of potential therapies and diagnostic techniques for early detection. Neurochem Int 2024; 177:105761. [PMID: 38723902 DOI: 10.1016/j.neuint.2024.105761] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 04/20/2024] [Accepted: 05/06/2024] [Indexed: 06/04/2024]
Abstract
Alzheimer's disease (AD) remains one of the most formidable neurological disorders, affecting millions globally. This review provides a holistic overview of the therapeutic strategies, both conventional and novel, aimed at mitigating the impact of AD. Initially, we delve into the conventional approach, emphasizing the role of Acetylcholinesterase (AChE) inhibition, which has been a cornerstone in AD management. As our understanding of AD evolves, several novel potential approaches emerge. We discuss the promising roles of Butyrylcholinesterase (BChE) inhibition, Tau Protein inhibitors, COX-2 inhibition, PPAR-γ agonism, and FAHH inhibition, among others. The potential of the endocannabinoids (eCB) system, cholesterol-lowering drugs, metal chelators, and MMPs inhibitors are also explored, culminating in the exploration of the pivotal role of microRNA in AD progression. Parallel to these therapeutic insights, we shed light on the novel tools and methodologies revolutionizing AD research. From the quantitative analysis of gene expression by qRTPCR to the evaluation of mitochondrial function using induced pluripotent stem cells (iPSCs), the advances in diagnostic and research tools offer renewed hope. Moreover, we explore the current landscape of clinical trials, highlighting the leading drug interventions and their respective stages of development. This comprehensive review concludes with a look into the future perspectives, capturing the potential breakthroughs and innovations on the horizon. Through a synthesis of current knowledge and emerging research, this article aims to provide a consolidated resource for clinicians, researchers, and academicians in the realm of Alzheimer's disease.
Collapse
Affiliation(s)
- Monika Sharma
- Faculty of Pharmacy, Department of Pharmacology, Swami Vivekanand Subharti University, Meerut, Uttar Pradesh, India
| | - Pankaj Pal
- Department of Pharmacy, Banasthali Vidyapith, Rajasthan, India.
| | - Sukesh Kumar Gupta
- KIET School of Pharmacy, KIET Group of Institutions, Ghaziabad, Uttar Pradesh, India; Department of Ophthalmology, Visual and Anatomical Sciences (OVAS), School of Medicine, Wayne State University, USA.
| |
Collapse
|
5
|
Perez Garcia G, Bicak M, Buros J, Haure-Mirande JV, Perez GM, Otero-Pagan A, Gama Sosa MA, De Gasperi R, Sano M, Gage FH, Barlow C, Dudley JT, Glicksberg BS, Wang Y, Readhead B, Ehrlich ME, Elder GA, Gandy S. Beneficial effects of physical exercise and an orally active mGluR2/3 antagonist pro-drug on neurogenesis and behavior in an Alzheimer's amyloidosis model. FRONTIERS IN DEMENTIA 2023; 2:1198006. [PMID: 39081972 PMCID: PMC11285632 DOI: 10.3389/frdem.2023.1198006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 07/31/2023] [Indexed: 08/02/2024]
Abstract
Background Modulation of physical activity represents an important intervention that may delay, slow, or prevent mild cognitive impairment (MCI) or dementia due to Alzheimer's disease (AD). One mechanism proposed to underlie the beneficial effect of physical exercise (PE) involves the apparent stimulation of adult hippocampal neurogenesis (AHN). BCI-838 is a pro-drug whose active metabolite BCI-632 is a negative allosteric modulator at group II metabotropic glutamate receptors (mGluR2/3). We previously demonstrated that administration of BCI-838 to a mouse model of brain accumulation of oligomeric AβE22Q (APP E693Q = "Dutch APP") reduced learning behavior impairment and anxiety, both of which are associated with the phenotype of Dutch APP mice. Methods 3-month-old mice were administered BCI-838 and/or physical exercise for 1 month and then tested in novel object recognition, neurogenesis, and RNAseq. Results Here we show that (i) administration of BCI-838 and a combination of BCI-838 and PE enhanced AHN in a 4-month old mouse model of AD amyloid pathology (APP KM670/671NL /PSEN1 Δexon9= APP/PS1), (ii) administration of BCI-838 alone or with PE led to stimulation of AHN and improvement in recognition memory, (iii) the hippocampal dentate gyrus transcriptome of APP/PS1 mice following BCI-838 treatment showed up-regulation of brain-derived neurotrophic factor (BDNF), PIK3C2A of the PI3K-mTOR pathway, and metabotropic glutamate receptors, and down-regulation of EIF5A involved in modulation of mTOR activity by ketamine, and (iv) validation by qPCR of an association between increased BDNF levels and BCI-838 treatment. Conclusion Our study points to BCI-838 as a safe and orally active compound capable of mimicking the beneficial effect of PE on AHN and recognition memory in a mouse model of AD amyloid pathology.
Collapse
Affiliation(s)
- Georgina Perez Garcia
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Research and Development, James J. Peters Veterans Affairs Medical Center, Bronx, NY, United States
| | - Mesude Bicak
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Hasso Plattner Institute for Digital Health at Mount Sinai, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Jacqueline Buros
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | | | - Gissel M. Perez
- Research and Development, James J. Peters Veterans Affairs Medical Center, Bronx, NY, United States
| | - Alena Otero-Pagan
- Research and Development, James J. Peters Veterans Affairs Medical Center, Bronx, NY, United States
| | - Miguel A. Gama Sosa
- Research and Development, James J. Peters Veterans Affairs Medical Center, Bronx, NY, United States
- Department of Psychiatry and Alzheimer's Disease Research Center, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Rita De Gasperi
- Research and Development, James J. Peters Veterans Affairs Medical Center, Bronx, NY, United States
- Department of Psychiatry and Alzheimer's Disease Research Center, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Mary Sano
- Research and Development, James J. Peters Veterans Affairs Medical Center, Bronx, NY, United States
- Department of Psychiatry and Alzheimer's Disease Research Center, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Fred H. Gage
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, CA, United States
- BrainCells, Inc., La Jolla, CA, United States
| | - Carrolee Barlow
- BrainCells, Inc., La Jolla, CA, United States
- E-Scape Bio, South San Francisco, CA, United States
| | - Joel T. Dudley
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Benjamin S. Glicksberg
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Hasso Plattner Institute for Digital Health at Mount Sinai, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Yanzhuang Wang
- Department of Developmental and Cell Biology, University of Michigan, Ann Arbor, MI, United States
| | - Benjamin Readhead
- Arizona State University-Banner Neurodegenerative Disease Research Center, Arizona State University, Tempe, AZ, United States
| | - Michelle E. Ehrlich
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Gregory A. Elder
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Research and Development, James J. Peters Veterans Affairs Medical Center, Bronx, NY, United States
- Department of Psychiatry and Alzheimer's Disease Research Center, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Neurology Service, James J. Peters Department of Veterans Affairs Medical Center, Bronx, NY, United States
| | - Sam Gandy
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Research and Development, James J. Peters Veterans Affairs Medical Center, Bronx, NY, United States
- Department of Psychiatry and Alzheimer's Disease Research Center, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Mount Sinai Center for Cognitive Health, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| |
Collapse
|
6
|
Maruszak A, Silajdžić E, Lee H, Murphy T, Liu B, Shi L, de Lucia C, Douiri A, Salta E, Nevado AJ, Teunissen CE, Visser PJ, Price J, Zetterberg H, Lovestone S, Thuret S. Predicting progression to Alzheimer's disease with human hippocampal progenitors exposed to serum. Brain 2023; 146:2045-2058. [PMID: 36703180 PMCID: PMC10151193 DOI: 10.1093/brain/awac472] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 10/11/2022] [Accepted: 11/10/2022] [Indexed: 01/28/2023] Open
Abstract
Adult hippocampal neurogenesis is important for learning and memory and is altered early in Alzheimer's disease. As hippocampal neurogenesis is modulated by the circulatory systemic environment, evaluating a proxy of how hippocampal neurogenesis is affected by the systemic milieu could serve as an early biomarker for Alzheimer's disease progression. Here, we used an in vitro assay to model the impact of systemic environment on hippocampal neurogenesis. A human hippocampal progenitor cell line was treated with longitudinal serum samples from individuals with mild cognitive impairment, who either progressed to Alzheimer's disease or remained cognitively stable. Mild cognitive impairment to Alzheimer's disease progression was characterized most prominently with decreased proliferation, increased cell death and increased neurogenesis. A subset of 'baseline' cellular readouts together with education level were able to predict Alzheimer's disease progression. The assay could provide a powerful platform for early prognosis, monitoring disease progression and further mechanistic studies.
Collapse
Affiliation(s)
- Aleksandra Maruszak
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry Psychology & Neuroscience, King's College London, London, SE5 9RX, UK
| | - Edina Silajdžić
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry Psychology & Neuroscience, King's College London, London, SE5 9RX, UK
| | - Hyunah Lee
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry Psychology & Neuroscience, King's College London, London, SE5 9RX, UK
| | - Tytus Murphy
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry Psychology & Neuroscience, King's College London, London, SE5 9RX, UK
| | - Benjamine Liu
- Department of Psychiatry, University of Oxford, Oxford, OX3 7JX, UK
| | - Liu Shi
- Department of Psychiatry, University of Oxford, Oxford, OX3 7JX, UK
| | - Chiara de Lucia
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry Psychology & Neuroscience, King's College London, London, SE5 9RX, UK
| | - Abdel Douiri
- Department of Population Health Sciences, King's College London, London, SE1 1UL, UK
| | - Evgenia Salta
- Netherlands Institute for Neuroscience, 1105 BA Amsterdam, The Netherlands.,Neurochemistry Lab and Biobank, Department of Clinical Chemistry, Amsterdam Neuroscience, VU University Medical Center, 1007 MB Amsterdam, The Netherlands
| | - Alejo J Nevado
- Department of Psychiatry, University of Oxford, Oxford, OX3 7JX, UK
| | - Charlotte E Teunissen
- Neurochemistry Lab and Biobank, Department of Clinical Chemistry, Amsterdam Neuroscience, VU University Medical Center, 1007 MB Amsterdam, The Netherlands
| | - Pieter J Visser
- Department of Psychiatry and Neuropsychology, Alzheimer Center Limburg, School for Mental Health and Neuroscience, Maastricht University, 6200 MD Maastricht, The Netherlands.,Department of Neurology, Alzheimer Center, VU University Medical Center, 1081 HZ Amsterdam, The Netherlands
| | - Jack Price
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry Psychology & Neuroscience, King's College London, London, SE5 9RX, UK
| | - Henrik Zetterberg
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, S-431 80 Mölndal, Sweden.,Department of Neurodegenerative Disease, UCL Institute of Neurology, London, WC1N 3BG, UK.,Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, the Sahlgrenska Academy at the University of Gothenburg, S-431 80 Mölndal, Sweden.,UK Dementia Research Institute at UCL, London, WC1E 6BT, UK
| | - Simon Lovestone
- Department of Psychiatry, University of Oxford, Oxford, OX3 7JX, UK.,Janssen Medical UK, B-2340 Beerse, Belgium
| | - Sandrine Thuret
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry Psychology & Neuroscience, King's College London, London, SE5 9RX, UK
| |
Collapse
|
7
|
Pathological Nuclear Hallmarks in Dentate Granule Cells of Alzheimer’s Patients: A Biphasic Regulation of Neurogenesis. Int J Mol Sci 2022; 23:ijms232112873. [PMID: 36361662 PMCID: PMC9654738 DOI: 10.3390/ijms232112873] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 10/14/2022] [Accepted: 10/18/2022] [Indexed: 11/29/2022] Open
Abstract
The dentate gyrus (DG) of the human hippocampus is a complex and dynamic structure harboring mature and immature granular neurons in diverse proliferative states. While most mammals show persistent neurogenesis through adulthood, human neurogenesis is still under debate. We found nuclear alterations in granular cells in autopsied human brains, detected by immunohistochemistry. These alterations differ from those reported in pyramidal neurons of the hippocampal circuit. Aging and early AD chromatin were clearly differentiated by the increased epigenetic markers H3K9me3 (heterochromatin suppressive mark) and H3K4me3 (transcriptional euchromatin mark). At early AD stages, lamin B2 was redistributed to the nucleoplasm, indicating cell-cycle reactivation, probably induced by hippocampal nuclear pathology. At intermediate and late AD stages, higher lamin B2 immunopositivity in the perinucleus suggests fewer immature neurons, less neurogenesis, and fewer adaptation resources to environmental factors. In addition, senile samples showed increased nuclear Tau interacting with aged chromatin, likely favoring DNA repair and maintaining genomic stability. However, at late AD stages, the progressive disappearance of phosphorylated Tau forms in the nucleus, increased chromatin disorganization, and increased nuclear autophagy support a model of biphasic neurogenesis in AD. Therefore, designing therapies to alleviate the neuronal nuclear pathology might be the only pathway to a true rejuvenation of brain circuits.
Collapse
|
8
|
Examination of Longitudinal Alterations in Alzheimer’s Disease-Related Neurogenesis in an APP/PS1 Transgenic Mouse Model, and the Effects of P33, a Putative Neuroprotective Agent Thereon. Int J Mol Sci 2022; 23:ijms231810364. [PMID: 36142277 PMCID: PMC9499399 DOI: 10.3390/ijms231810364] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 09/05/2022] [Accepted: 09/05/2022] [Indexed: 11/17/2022] Open
Abstract
Neurogenesis plays a crucial role in cognitive processes. During aging and in Alzheimer’s disease (AD), altered neurogenesis and neuroinflammation are evident both in C57BL/6J, APPSwe/PS1dE9 (Tg) mice and humans. AD pathology may slow down upon drug treatment, for example, in a previous study of our group P33, a putative neuroprotective agent was found to exert advantageous effects on the elevated levels of APP, Aβ, and neuroinflammation. In the present study, we aimed to examine longitudinal alterations in neurogenesis, neuroinflammation and AD pathology in a transgenic (Tg) mouse model, and assessed the putative beneficial effects of long-term P33 treatment on AD-specific neurological alterations. Hippocampal cell proliferation and differentiation were significantly reduced between 8 and 12 months of age. Regarding neuroinflammation, significantly elevated astrogliosis and microglial activation were observed in 6- to 7-month-old Tg animals. The amounts of the molecules involved in the amyloidogenic pathway were altered from 4 months of age in Tg animals. P33-treatment led to significantly increased neurogenesis in 9-month-old animals. Our data support the hypothesis that altered neurogenesis may be a consequence of AD pathology. Based on our findings in the transgenic animal model, early pharmacological treatment before the manifestation of AD symptoms might ameliorate neurological decline.
Collapse
|
9
|
Mitra S, Muni M, Shawon NJ, Das R, Emran TB, Sharma R, Chandran D, Islam F, Hossain MJ, Safi SZ, Sweilam SH. Tacrine Derivatives in Neurological Disorders: Focus on Molecular Mechanisms and Neurotherapeutic Potential. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:7252882. [PMID: 36035218 PMCID: PMC9410840 DOI: 10.1155/2022/7252882] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 07/19/2022] [Accepted: 08/03/2022] [Indexed: 12/13/2022]
Abstract
Tacrine is a drug used in the treatment of Alzheimer's disease as a cognitive enhancer and inhibitor of the enzyme acetylcholinesterase (AChE). However, its clinical application has been restricted due to its poor therapeutic efficacy and high prevalence of detrimental effects. An attempt was made to understand the molecular mechanisms that underlie tacrine and its analogues influence over neurotherapeutic activity by focusing on modulation of neurogenesis, neuroinflammation, endoplasmic reticulum stress, apoptosis, and regulatory role in gene and protein expression, energy metabolism, Ca2+ homeostasis modulation, and osmotic regulation. Regardless of this, analogues of tacrine are considered as a model inhibitor of cholinesterase in the therapy of Alzheimer's disease. The variety both in structural make-up and biological functions of these substances is the main appeal for researchers' interest in them. A new paradigm for treating neurological diseases is presented in this review, which includes treatment strategies for Alzheimer's disease, as well as other neurological disorders like Parkinson's disease and the synthesis and biological properties of newly identified versatile tacrine analogues and hybrids. We have also shown that these analogues may have therapeutic promise in the treatment of neurological diseases in a variety of experimental systems.
Collapse
Affiliation(s)
- Saikat Mitra
- Department of Pharmacy, Faculty of Pharmacy, University of Dhaka, Dhaka 1000, Bangladesh
| | - Maniza Muni
- Department of Pharmacy, Faculty of Pharmacy, University of Dhaka, Dhaka 1000, Bangladesh
| | - Nusrat Jahan Shawon
- Department of Pharmacy, Faculty of Pharmacy, University of Dhaka, Dhaka 1000, Bangladesh
| | - Rajib Das
- Department of Pharmacy, Faculty of Pharmacy, University of Dhaka, Dhaka 1000, Bangladesh
| | - Talha Bin Emran
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong 4381, Bangladesh
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh
| | - Rohit Sharma
- Department of Rasa Shastra and Bhaishajya Kalpana, Faculty of Ayurveda, Institute of Medical Sciences, Banaras Hindu University, Varanasi, 221005 Uttar Pradesh, India
| | - Deepak Chandran
- Department of Veterinary Sciences and Animal Husbandry, Amrita School of Agricultural Sciences, Amrita Vishwa Vidyapeetham University, Coimbatore, Tamil Nadu 642109, India
| | - Fahadul Islam
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh
| | - Md. Jamal Hossain
- Department of Pharmacy, State University of Bangladesh, 77 Satmasjid Road, Dhanmondi, Dhaka 1205, Bangladesh
| | - Sher Zaman Safi
- Faculty of Medicine, Bioscience and Nursing, MAHSA University, Jenjarom, 42610 Selangor, Malaysia
- IRCBM, COMSATS University Islamabad, Lahore Campus, Lahore, Pakistan
| | - Sherouk Hussein Sweilam
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
- Department of Pharmacognosy, Faculty of Pharmacy, Egyptian Russian University, Cairo-Suez Road, Badr City 11829, Egypt
| |
Collapse
|
10
|
Early Changes in Transcriptomic Profiles in Synaptodendrosomes Reveal Aberrant Synaptic Functions in Alzheimer’s Disease. Int J Mol Sci 2022; 23:ijms23168888. [PMID: 36012153 PMCID: PMC9408306 DOI: 10.3390/ijms23168888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 07/29/2022] [Accepted: 08/04/2022] [Indexed: 11/16/2022] Open
Abstract
Alzheimer’s disease (AD) is one of the most prevalent neurodegenerative disorders characterized by the progressive decline of cognitive functions, and is closely associated with the dysfunction of synapses, which comprise the basic structure that mediates the communication between neurons. Although the protein architecture and machinery for protein translation at synapses are extensively studied, the impact that local changes in the mRNA reservoir have on AD progression is largely unknown. Here, we investigated the changes in transcriptomic profiles in the synaptodendrosomes purified from the cortices of AD mice at ages 3 and 6 months, a stage when early signatures of synaptic dysfunction are revealed. The transcriptomic profiles of synaptodendrosomes showed a greater number of localized differentially expressed genes (DEGs) in 6-month-old AD mice compared with mice 3 months of age. Gene Ontology (GO) analysis showed that these DEGs are majorly enriched in mitochondrial biogenesis and metabolic activity. More specifically, we further identified three representative DEGs in mitochondrial and metabolic pathways—Prnp, Cst3, and Cox6c—that regulate the dendritic spine density and morphology in neurons. Taken together, this study provides insights into the transcriptomic changes in synaptodendrosomes during AD progression, which may facilitate the development of intervention strategies targeting local translation to ameliorate the pathological progression of AD.
Collapse
|
11
|
Culig L, Chu X, Bohr VA. Neurogenesis in aging and age-related neurodegenerative diseases. Ageing Res Rev 2022; 78:101636. [PMID: 35490966 PMCID: PMC9168971 DOI: 10.1016/j.arr.2022.101636] [Citation(s) in RCA: 86] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 04/14/2022] [Accepted: 04/25/2022] [Indexed: 12/11/2022]
Abstract
Adult neurogenesis, the process by which neurons are generated in certain areas of the adult brain, declines in an age-dependent manner and is one potential target for extending cognitive healthspan. Aging is a major risk factor for neurodegenerative diseases and, as lifespans are increasing, these health challenges are becoming more prevalent. An age-associated loss in neural stem cell number and/or activity could cause this decline in brain function, so interventions that reverse aging in stem cells might increase the human cognitive healthspan. In this review, we describe the involvement of adult neurogenesis in neurodegenerative diseases and address the molecular mechanistic aspects of neurogenesis that involve some of the key aggregation-prone proteins in the brain (i.e., tau, Aβ, α-synuclein, …). We summarize the research pertaining to interventions that increase neurogenesis and regulate known targets in aging research, such as mTOR and sirtuins. Lastly, we share our outlook on restoring the levels of neurogenesis to physiological levels in elderly individuals and those with neurodegeneration. We suggest that modulating neurogenesis represents a potential target for interventions that could help in the fight against neurodegeneration and cognitive decline.
Collapse
Affiliation(s)
- Luka Culig
- Section on DNA Repair, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Xixia Chu
- Section on DNA Repair, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Vilhelm A Bohr
- Section on DNA Repair, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA.
| |
Collapse
|
12
|
Ye C, Cheng M, Ma L, Zhang T, Sun Z, Yu C, Wang J, Dou Y. Oxytocin Nanogels Inhibit Innate Inflammatory Response for Early Intervention in Alzheimer's Disease. ACS APPLIED MATERIALS & INTERFACES 2022; 14:21822-21835. [PMID: 35510352 DOI: 10.1021/acsami.2c00007] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Prevention of Alzheimer's disease (AD) is a global imperative, but reliable early interventions are currently lacking. Microglia-mediated chronic neuroinflammation is thought to occur in the early stage of AD and plays a critical role in AD pathogenesis. Here, oxytocin (OT)-loaded angiopep-2-modified chitosan nanogels (AOC NGs) were designed for early treatment of AD via inhibiting innate inflammatory response. Through the effective transcytosis of angiopep-2, AOC NGs were driven intravenously to cross the blood-brain barrier, enter the brain, and enrich in brain areas affected by AD. A large amount of OT was then released and specifically bound to the pathological upregulated OT receptor, thus effectively inhibiting microglial activation and reducing inflammatory cytokine levels through blocking the ERK/p38 MAPK and COX-2/iNOS NF-κB signaling pathways. Consecutive weekly intravenous administration of AOC NGs into 12-week-old young APP/PS1 mice, representing the early stage of AD, remarkably slowed the progression of Aβ deposition and neuronal apoptosis in the APP/PS1 mice as they aged and ultimately prevented cognitive impairment and delayed hippocampal atrophy. Together, the findings suggest that AOC NGs, which show good biosafety, can serve as a promising therapeutic candidate to combat neuroinflammation for early prevention of AD.
Collapse
Affiliation(s)
- Caihua Ye
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin 300052, P. R. China
| | - Meng Cheng
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin 300052, P. R. China
| | - Lin Ma
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin 300052, P. R. China
| | - Tianzhu Zhang
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin 300052, P. R. China
| | - Zuhao Sun
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin 300052, P. R. China
| | - Chunshui Yu
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin 300052, P. R. China
| | - Junping Wang
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin 300052, P. R. China
| | - Yan Dou
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin 300052, P. R. China
| |
Collapse
|
13
|
Mi X, Du H, Guo X, Wu Y, Shen L, Luo Y, Wang D, Su Q, Xiang R, Yue S, Wu S, Gong J, Yang Z, Zhang Y, Tan X. Asparagine endopeptidase-targeted Ultrasound-responsive Nanobubbles Alleviate Tau Cleavage and Amyloid-β Deposition in an Alzheimer's Disease Model. Acta Biomater 2022; 141:388-397. [PMID: 35045359 DOI: 10.1016/j.actbio.2022.01.023] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 01/07/2022] [Accepted: 01/12/2022] [Indexed: 11/01/2022]
Abstract
Inhibition of asparagine endopeptidase (AEP) has been implied to be effective for treating tau- and amyloid-beta-mediated neurodegenerative diseases, although a method for targeted intracerebral delivery of AEP inhibitors has not yet been achieved. Here, we fabricated ultrasound-responsive nanobubbles (NBs) to load AEP inhibitor RR-11a, and modified the NB surface with either AEP recognizable peptide AAN or pro-transendothelial transversal motif RGD, i.e. NB(11a)-A and NB(11a)-R, for AEP-targeted treatment of Alzheimer's disease (AD). The developed NBs were uniform, small in size (50.1 ± 1.5 nm), with strong echogenicity and high drug loading efficiency (∼91.97%). When intravenously co-injected in the APP/PS1 mouse model, NB(11a)-R could adhere to endothelial cells and enhance transient opening of the blood-brain barrier (BBB) upon focused ultrasound oscillations, allowing the rest NBs/localized released RR-11a molecules to enter the brain, and then NB(11a)-A could selectively bind with the impaired neurons and deposit RR-11a molecules at the AD lesion. As a result, co-administration of NB(11a)-A and NB(11a)-R significantly promoted accumulation of RR-11a in the mouse brain, and substantially alleviated both tau cleavage and amyloid plaques deposition in the hippocampus. Most strikingly, the cognitive ability of the AD model mice was dramatically improved, achieving a level close to the normal mice. Overall, this unique AEP-targeted nanobubble design provides an efficient intracerebral drug delivery strategy and significantly enhances treatment efficacy of AD. STATEMENT OF SIGNIFICANCE: Asparagine endopeptidase (AEP) is an innovative therapeutic target simultaneously involved in Aβ and tau-mediated Alzheimer's disease (AD) pathology, but targeted delivery of AEP inhibitors has not been achieved yet. Here we developed an efficient strategy to deliver AEP inhibitor RR-11a towards impaired neurons. We fabricated RR-11a-loaded ultrasound-responsive nanobubbles (NBs) and modified the NB surface with RGD peptide to promote BBB crossing upon focused ultrasound oscillations, or with AAN peptide to increase binding of NBs on the neurons. Our results indicated that, co-administration of the NB(11a)-A and NB(11a)-R significantly enhanced accumulation of RR-11a molecules at the AD lesion, alleviated both tau cleavage and amyloid plaques deposition in the hippocampus, and consequently restored cognitive function of the AD model mice.
Collapse
|
14
|
Sun X, Duan S, Cao A, Villagomez B, Lin R, Chen H, Pi L, Ren B, Chen R, Chen M, Ying Z, Fang S, Cao Q. RRY Inhibits Amyloid-β 1-42 Peptide Aggregation and Neurotoxicity. J Alzheimers Dis Rep 2021; 5:479-495. [PMID: 34368633 PMCID: PMC8293670 DOI: 10.3233/adr-210012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/04/2021] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Current understanding of amyloid-β protein (Aβ) aggregation and toxicity provides an extensive list of drugs for treating Alzheimer's disease (AD); however, one of the most promising strategies for its treatment has been tri-peptides. OBJECTIVE The aim of this study is to examine those tri-peptides, such as Arg-Arg-Try (RRY), which have the potential of Aβ1-42 aggregating inhibition and Aβ clearance. METHODS In the present study, in silico, in vitro, and in vivo studies were integrated for screening tri-peptides binding to Aβ, then evaluating its inhibition of aggregation of Aβ, and finally its rescuing cognitive deficit. RESULTS In the in silico simulations, molecular docking and molecular dynamics determined that seven top-ranking tri-peptides could bind to Aβ1-42 and form stable complexes. Circular dichroism, ThT assay, and transmission electron microscope indicated the seven tri-peptides might inhibit the aggregation of Aβ1-42 in vitro. In the in vivo studies, Morris water maze, ELISA, and Diolistic staining were used, and data showed that RRY was capable of rescuing the Aβ1-42-induced cognitive deficit, reducing the Aβ1-42 load and increasing the dendritic spines in the transgenic mouse model. CONCLUSION Such converging outcomes from three consecutive studies lead us to conclude that RRY is a preferred inhibitor of Aβ1-42 aggregation and treatment for Aβ-induced cognitive deficit.
Collapse
Affiliation(s)
- Xicui Sun
- Department of Neurology, Sun Yat-sen University, Guangzhou, Guangdong, China
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Songwei Duan
- Department of Neurology, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Anna Cao
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Bryan Villagomez
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Runxuan Lin
- Department of Neurology, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Hongxia Chen
- Department of Surgery, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Liya Pi
- Department of Pediatrics in College of Medicine, University of Florida, Gainesville, FL, USA
| | - Bin Ren
- Department of Surgery, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Rong Chen
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Minjie Chen
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Zhekang Ying
- The Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Shenyun Fang
- Department of Physiology, University of Maryland, Baltimore, Maryland, USA
| | - Qi Cao
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|
15
|
Hippocampal miR-211-5p regulates neurogenesis and depression-like behaviors in the rat. Neuropharmacology 2021; 194:108618. [PMID: 34062164 DOI: 10.1016/j.neuropharm.2021.108618] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 05/13/2021] [Accepted: 05/15/2021] [Indexed: 01/22/2023]
Abstract
Emerging evidence has shown that microRNAs (miRNAs) contribute to the pathogenesis of depression, a potentially life-threatening and disabling mental disorder caused by the interaction of genetic and environmental factors. However, the specific miRNAs and their underlying molecular mechanisms as involved in the pathogenesis and development of depression remain largely unknown. In the present study, we screened miRNA expression profiles and found that miR-211-5p was significantly down-regulated within the dentate gyrus (DG) hippocampus in the chronic unpredictable mild stress (CUMS) induced rat model of depression. Deficits in miR-211-5p were accompanied with reductions in neurogenesis and increased apoptosis in these CUMS rats. In contrast, an up-regulation of miR-211-5p within the DG area in CUMS rats promoted neuronal neurogenesis, reduced neuronal apoptosis via suppression of the Dyrk1A/STAT3 signaling pathway and relieved depression-like behaviors in these CUMS rats. In rats subjected to a knock-down of miR-211-5p in the DG there was an increase in neuronal apoptosis and a decrease in neuronal regeneration, effects which were accompanied with an induction of depression-like behaviors. Taken together, the results of our study reveal that altered levels of miR-211-5p in the hippocampal DG area exert a significant impact on neurogenesis, apoptosis and thus depression-like behaviors in rats. These findings suggest that the miR-211-5p/Dyrk1A pathway plays an important role in the pathogenesis of depression and may serve as a potential therapeutic target for the treatment of depression.
Collapse
|
16
|
Li Puma DD, Piacentini R, Grassi C. Does Impairment of Adult Neurogenesis Contribute to Pathophysiology of Alzheimer's Disease? A Still Open Question. Front Mol Neurosci 2021; 13:578211. [PMID: 33551741 PMCID: PMC7862134 DOI: 10.3389/fnmol.2020.578211] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 12/15/2020] [Indexed: 12/15/2022] Open
Abstract
Adult hippocampal neurogenesis is a physiological mechanism contributing to hippocampal memory formation. Several studies associated altered hippocampal neurogenesis with aging and Alzheimer's disease (AD). However, whether amyloid-β protein (Aβ)/tau accumulation impairs adult hippocampal neurogenesis and, consequently, the hippocampal circuitry, involved in memory formation, or altered neurogenesis is an epiphenomenon of AD neuropathology contributing negligibly to the AD phenotype, is, especially in humans, still debated. The detrimental effects of Aβ/tau on synaptic function and neuronal viability have been clearly addressed both in in vitro and in vivo experimental models. Until some years ago, studies carried out on in vitro models investigating the action of Aβ/tau on proliferation and differentiation of hippocampal neural stem cells led to contrasting results, mainly due to discrepancies arising from different experimental conditions (e.g., different cellular/animal models, different Aβ and/or tau isoforms, concentrations, and/or aggregation profiles). To date, studies investigating in situ adult hippocampal neurogenesis indicate severe impairment in most of transgenic AD mice; this impairment precedes by several months cognitive dysfunction. Using experimental tools, which only became available in the last few years, research in humans indicated that hippocampal neurogenesis is altered in cognitive declined individuals affected by either mild cognitive impairment or AD as well as in normal cognitive elderly with a significant inverse relationship between the number of newly formed neurons and cognitive impairment. However, despite that such information is available, the question whether impaired neurogenesis contributes to AD pathogenesis or is a mere consequence of Aβ/pTau accumulation is not definitively answered. Herein, we attempted to shed light on this complex and very intriguing topic by reviewing relevant literature on impairment of adult neurogenesis in mouse models of AD and in AD patients analyzing the temporal relationship between the occurrence of altered neurogenesis and the appearance of AD hallmarks and cognitive dysfunctions.
Collapse
Affiliation(s)
- Domenica Donatella Li Puma
- Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome, Italy.,Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Roberto Piacentini
- Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome, Italy.,Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Claudio Grassi
- Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome, Italy.,Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| |
Collapse
|
17
|
Hu W, Pan D, Wang Y, Bao W, Zuo C, Guan Y, Hua F, Yang M, Zhao J. PET Imaging for Dynamically Monitoring Neuroinflammation in APP/PS1 Mouse Model Using [ 18F]DPA714. Front Neurosci 2020; 14:810. [PMID: 33132817 PMCID: PMC7550671 DOI: 10.3389/fnins.2020.00810] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 07/10/2020] [Indexed: 11/13/2022] Open
Abstract
Background: In the pathogenesis of Alzheimer's disease (AD), microglia play an increasingly important role. Molecular imaging of neuroinflammatory targeting microglia activation and the high expression of 18-kDa translocator protein (TSPO) has become a hot topic of research in recent years. Dynamic monitoring neuroinflammation is crucial for discovering the best time point of anti-inflammatory therapy. Motivated by this, Positron emission tomography (PET) imaging in an APP/PS1 mouse model of AD, using 18F-labeled DPA-714 to monitor microglia activation and neuroinflammation, were performed in this paper. Methods: We prepared [18F]DPA714 and tested the biological characteristics of the molecular probe in normal mice. To obtain a higher radiochemical yield, we improved the [18F]-fluorination conditions in the precursor dosage, reaction temperature, and synthesis time. We performed [18F]DPA714 PET scanning on APP/PS1 mice at 6-7, 9-10, 12-13, and 15-16 months of age, respectively. The same experiments were conducted in Wild-type (Wt) mice as a control. Referring to the [18F]DPA714 concentrated situation in the brain, we performed blocking experiments with PK11195 (1 mg/kg) in 12-13-months-old APP/PS1 mice to confirm the specificity of [18F]DPA714 for TSPO in the APP/PS1 mice. Reconstructed brain PET images, fused with the Magnetic Resonance Imaging (MRI) template atlas, and the volumes of interests (VOIs) of the hippocampus and cortex were determined. The distribution of [18F]DPA714 in the brain tissues of 15-16-months-old APP/PS1 and Wt mice were studied by immunofluorescence staining. Results: Through the reaction of 18F, with 2 mg precursor dissolved in 300 ul acetonitrile at 105°C for 10 min, we obtained the optimal radiochemical yield of 42.3 ± 5.1% (non-decay correction). Quantitative analysis of brain PET images showed that the [18F]DPA714 uptake in the cortex and hippocampus of 12-13-months-old APP/PS1 mice was higher than that of the control mice of the same age (cortex/muscle: 2.77 ± 0.13 vs. 1.93 ± 0.32, p = 0.0014; hippocampus/muscle: 3.33 ± 0.10 vs. 2.10 ± 0.35, p = 0.0008). The same significant difference was found between 15- and 16-months-old APP/PS1 mice (cortex/muscle: 2.64 ± 0.14 vs. 1.86 ± 0.52, p=0.0159; hippocampus/muscle: 2.89 ± 0.53 vs. 1.77 ± 0.48, p = 0.0050). Immunofluorescence staining showed that the activation of microglia and the level of TSPO expression in the cortex and hippocampus of APP/PS1 mice were significantly higher than Wt mice. Conclusion: [18F]DPA714, a molecular probe for targeting TSPO, showed great potential in monitoring microglia activation and neuroinflammation, which can be helpful in discovering the best time point for anti-inflammatory therapy in AD.
Collapse
Affiliation(s)
- Wei Hu
- PET Center, Huashan Hospital, Fudan University, Shanghai, China.,Department of Nuclear Medicine, Affiliated Wuxi People's Hospital, Nanjing Medical University, Wuxi, China
| | - Donghui Pan
- Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Ministry of Health, Wuxi, China
| | - Yalin Wang
- State Key Lab of Medical Neurobiology, Department of Integrative Medicine and Neurobiology, Institutes of Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Weiqi Bao
- PET Center, Huashan Hospital, Fudan University, Shanghai, China
| | - Chuantao Zuo
- PET Center, Huashan Hospital, Fudan University, Shanghai, China
| | - Yihui Guan
- PET Center, Huashan Hospital, Fudan University, Shanghai, China
| | - Fengchun Hua
- PET Center, Huashan Hospital, Fudan University, Shanghai, China
| | - Min Yang
- Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Ministry of Health, Wuxi, China
| | - Jun Zhao
- PET Center, Huashan Hospital, Fudan University, Shanghai, China.,Department of Nuclear Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
18
|
Du Preez A, Law T, Onorato D, Lim YM, Eiben P, Musaelyan K, Egeland M, Hye A, Zunszain PA, Thuret S, Pariante CM, Fernandes C. The type of stress matters: repeated injection and permanent social isolation stress in male mice have a differential effect on anxiety- and depressive-like behaviours, and associated biological alterations. Transl Psychiatry 2020; 10:325. [PMID: 32958745 PMCID: PMC7505042 DOI: 10.1038/s41398-020-01000-3] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 08/12/2020] [Accepted: 09/03/2020] [Indexed: 01/02/2023] Open
Abstract
Chronic stress can alter the immune system, adult hippocampal neurogenesis and induce anxiety- and depressive-like behaviour in rodents. However, previous studies have not discriminated between the effect(s) of different types of stress on these behavioural and biological outcomes. We investigated the effect(s) of repeated injection vs. permanent social isolation on behaviour, stress responsivity, immune system functioning and hippocampal neurogenesis, in young adult male mice, and found that the type of stress exposure does indeed matter. Exposure to 6 weeks of repeated injection resulted in an anxiety-like phenotype, decreased systemic inflammation (i.e., reduced plasma levels of TNFα and IL4), increased corticosterone reactivity, increased microglial activation and decreased neuronal differentiation in the dentate gyrus (DG). In contrast, exposure to 6 weeks of permanent social isolation resulted in a depressive-like phenotype, increased plasma levels of TNFα, decreased plasma levels of IL10 and VEGF, decreased corticosterone reactivity, decreased microglial cell density and increased cell density for radial glia, s100β-positive cells and mature neuroblasts-all in the DG. Interestingly, combining the two distinct stress paradigms did not have an additive effect on behavioural and biological outcomes, but resulted in yet a different phenotype, characterized by increased anxiety-like behaviour, decreased plasma levels of IL1β, IL4 and VEGF, and decreased hippocampal neuronal differentiation, without altered neuroinflammation or corticosterone reactivity. These findings demonstrate that different forms of chronic stress can differentially alter both behavioural and biological outcomes in young adult male mice, and that combining multiple stressors may not necessarily cause more severe pathological outcomes.
Collapse
Affiliation(s)
- Andrea Du Preez
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Thomas Law
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Diletta Onorato
- Department of Psychological Medicine, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Yau M Lim
- Department of Old Age Psychiatry, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Paola Eiben
- Department of Psychological Medicine, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Ksenia Musaelyan
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Martin Egeland
- Department of Psychological Medicine, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Abdul Hye
- Department of Old Age Psychiatry, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Patricia A Zunszain
- Department of Psychological Medicine, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Sandrine Thuret
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Carmine M Pariante
- Department of Psychological Medicine, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Cathy Fernandes
- Social, Genetic & Developmental Psychiatry Centre, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK.
- MRC Centre for Neurodevelopmental Disorders, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK.
| |
Collapse
|
19
|
Shakerin Z, Esfandiari E, Razavi S, Alaei H, Ghanadian M, Dashti G. Effects of Cyperus rotundus Extract on Spatial Memory Impairment and Neuronal Differentiation in Rat Model of Alzheimer's Disease. Adv Biomed Res 2020; 9:17. [PMID: 32775310 PMCID: PMC7282694 DOI: 10.4103/abr.abr_173_19] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Revised: 09/04/2019] [Accepted: 02/26/2020] [Indexed: 11/04/2022] Open
Abstract
Background Alzheimer's disease (AD) is one of the most common neurodegenerative diseases in the older population and characterized by progressive memory and cognitive impairment. Cyperus rotundus, a traditional medicinal herb, has analgesic, sedative, and anti-inflammatory effects and also used to increase memory in Islamic traditional medicine. This study was designed to consider the effects of C. rotundus extract on memory impairment and neurogenesis in the Beta-Amyloid rats' model. Materials and Methods Forty-two male Wistar rats were randomly divided into six groups (n = 7) for the evaluation of baseline training performance in the Morris water maze test. Then, amyloid-beta (Aβ1-42) was injected in animal hippocampal CA1 bilaterally in four groups. The first probe trial was performed 21 days after Aβ injection. Then, 250, 500, and 750 mg/kg of C. rotundus extract were administered to three Aβ-injected groups for 1 month; after that, the second probe trial was performed, and rats were sacrificed after 28 days of the second probe trial. The neurogenesis was detected in the hippocampus, by immunohistochemical staining. Results This study showed that spatial memory increased in the behavioral test in AD treated group with C. rotundus extract, compared with the AD group (P = 0.02). Immunohistochemical staining revealed that neuronal differentiation has been occurred in the hippocampus in the AD-treated group with C. rotundus extract compared with the AD group (P = 0.01). Conclusions This study showed that C. rotundus extract, repaired spatial memory impairment in the Aβ rats, through increased neurogenesis in the hippocampus, which could be related to the flavonoid components in the extract.
Collapse
Affiliation(s)
- Zeinab Shakerin
- Department of Anatomical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Ebrahim Esfandiari
- Department of Anatomical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Shahnaz Razavi
- Department of Anatomical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Hojjatallah Alaei
- Department of Physiological Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mustafa Ghanadian
- Department of Pharmacognosy, Faculty of Pharmacy, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Gholamreza Dashti
- Department of Anatomical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
20
|
Hierro-Bujalance C, Del Marco A, José Ramos-Rodríguez J, Infante-Garcia C, Bella Gomez-Santos S, Herrera M, Garcia-Alloza M. Cell proliferation and neurogenesis alterations in Alzheimer's disease and diabetes mellitus mixed murine models. J Neurochem 2020; 154:673-692. [PMID: 32068886 DOI: 10.1111/jnc.14987] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 02/07/2020] [Accepted: 02/07/2020] [Indexed: 12/22/2022]
Abstract
The classic neuropathological features of Alzheimer's disease (AD) are accompanied by other complications, including alterations in adult cell proliferation and neurogenesis. Moreover recent studies have shown that traditional markers of the neurogenic process, such as doublecortin (DCX), may also be expressed in CD8+ T cells and ionized calcium-binding adaptor molecule 1 (Iba1+ ) microglia, in the close proximity to senile plaques, increasing the complexity of the condition. Altered glucose tolerance, observed in metabolic alteratioins, may accelerate the neurodegenerative process and interfere with normal adult cell proliferation and neurogenesis. To further explore the role of metabolic disease in AD, we analyzed cell proliferation and neurogenesis using 5'-bromo-2'-deoxyuridine and DCX immunohistochemistry in three different mouse models of AD and metabolic alterations: APP/PS1xdb/db mice, APP/PS1 mice on a long-term high-fat diet, and APP/PS1 mice treated with streptozotozin. As reported previously, an overall reduction in cell proliferation and neurogenesis was observed after streptozotocin administration. In contrast, an increase in cell proliferation and neurogenesis was detected in neurogenic niches in 14- and 26-week-old APP/PS1xdb/db mice, accompanied by a slight increase in cortical cell proliferation. While a similar trend was observed in animals on a high-fat diet, differences were not statistically significant. We observed very few DCX+ /CD8+ cells and no DCX+ /Iba1+ cells were observed in the close proximity to senile plaques in any of the groups. Interestingly, metabolic parameters such as body weight and glucose and insulin levels were identified as reliable predictors of cell proliferation and neurogenesis in APP/PS1xdb/db mice. Furthermore, metabolic parameters were also associated with altered Aβ levels in the cortex and hippocampus of APP/PS1xdb/db mice. Altogether, our data suggest that metabolic disease may also interfere with central complications in AD.
Collapse
Affiliation(s)
- Carmen Hierro-Bujalance
- Division of Physiology. School of Medicine, Edificio Andrés Segovia. C/Dr. Marañón 3, 3er piso, (11002) Cadiz. Universidad de Cadiz, Cadiz, Spain.,Instituto de Investigación Biomédica e Innovación en Ciencias Biomédicas de la Provincia de Cadiz (INiBICA), Cadiz, Spain
| | - Angel Del Marco
- Division of Physiology. School of Medicine, Edificio Andrés Segovia. C/Dr. Marañón 3, 3er piso, (11002) Cadiz. Universidad de Cadiz, Cadiz, Spain.,Instituto de Investigación Biomédica e Innovación en Ciencias Biomédicas de la Provincia de Cadiz (INiBICA), Cadiz, Spain
| | - Juan José Ramos-Rodríguez
- Division of Physiology. School of Medicine, Edificio Andrés Segovia. C/Dr. Marañón 3, 3er piso, (11002) Cadiz. Universidad de Cadiz, Cadiz, Spain
| | - Carmen Infante-Garcia
- Division of Physiology. School of Medicine, Edificio Andrés Segovia. C/Dr. Marañón 3, 3er piso, (11002) Cadiz. Universidad de Cadiz, Cadiz, Spain.,Instituto de Investigación Biomédica e Innovación en Ciencias Biomédicas de la Provincia de Cadiz (INiBICA), Cadiz, Spain
| | - Sara Bella Gomez-Santos
- Division of Physiology. School of Medicine, Edificio Andrés Segovia. C/Dr. Marañón 3, 3er piso, (11002) Cadiz. Universidad de Cadiz, Cadiz, Spain
| | - Marta Herrera
- Division of Physiology. School of Medicine, Edificio Andrés Segovia. C/Dr. Marañón 3, 3er piso, (11002) Cadiz. Universidad de Cadiz, Cadiz, Spain.,Instituto de Investigación Biomédica e Innovación en Ciencias Biomédicas de la Provincia de Cadiz (INiBICA), Cadiz, Spain
| | - Monica Garcia-Alloza
- Division of Physiology. School of Medicine, Edificio Andrés Segovia. C/Dr. Marañón 3, 3er piso, (11002) Cadiz. Universidad de Cadiz, Cadiz, Spain.,Instituto de Investigación Biomédica e Innovación en Ciencias Biomédicas de la Provincia de Cadiz (INiBICA), Cadiz, Spain
| |
Collapse
|
21
|
Multiple inflammatory profiles of microglia and altered neuroimages in APP/PS1 transgenic AD mice. Brain Res Bull 2020; 156:86-104. [DOI: 10.1016/j.brainresbull.2020.01.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 12/14/2019] [Accepted: 01/03/2020] [Indexed: 12/11/2022]
|
22
|
Cicvaric A, Sachernegg HM, Stojanovic T, Symmank D, Smani T, Moeslinger T, Uhrin P, Monje FJ. Podoplanin Gene Disruption in Mice Promotes in vivo Neural Progenitor Cells Proliferation, Selectively Impairs Dentate Gyrus Synaptic Depression and Induces Anxiety-Like Behaviors. Front Cell Neurosci 2020; 13:561. [PMID: 32009902 PMCID: PMC6974453 DOI: 10.3389/fncel.2019.00561] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 12/05/2019] [Indexed: 12/20/2022] Open
Abstract
Podoplanin (Pdpn), a brain-tumor-related glycoprotein identified in humans and animals, is endogenously expressed in several organs critical for life support such as kidney, lung, heart and brain. In the brain, Pdpn has been identified in proliferative nestin-positive adult neural progenitor cells and in neurons of the neurogenic hippocampal dentate gyrus (DG), a structure associated to anxiety, critical for learning and memory functions and severely damaged in people with Alzheimer's Disease (AD). The in vivo role of Pdpn in adult neurogenesis and anxiety-like behavior remained however unexplored. Using mice with disrupted Pdpn gene as a model organism and applying combined behavioral, molecular biological and electrophysiological assays, we here show that the absence of Pdpn selectively impairs long-term synaptic depression in the neurogenic DG without affecting the CA3-Schaffer's collateral-CA1 synapses. Pdpn deletion also enhanced the proliferative capacity of DG neural progenitor cells and diminished survival of differentiated neuronal cells in vitro. In addition, mice with podoplanin gene disruption showed increased anxiety-like behaviors in experimentally validated behavioral tests as compared to wild type littermate controls. Together, these findings broaden our knowledge on the molecular mechanisms influencing hippocampal synaptic plasticity and neurogenesis in vivo and reveal Pdpn as a novel molecular target for future studies addressing general anxiety disorder and synaptic depression-related memory dysfunctions.
Collapse
Affiliation(s)
- Ana Cicvaric
- Center for Physiology and Pharmacology, Department of Neurophysiology and Neuropharmacology, Medical University of Vienna, Vienna, Austria
| | - Hannah M. Sachernegg
- Center for Physiology and Pharmacology, Department of Neurophysiology and Neuropharmacology, Medical University of Vienna, Vienna, Austria
| | - Tamara Stojanovic
- Center for Physiology and Pharmacology, Department of Neurophysiology and Neuropharmacology, Medical University of Vienna, Vienna, Austria
| | - Dörte Symmank
- Center for Physiology and Pharmacology, Institute for Physiology, Medical University of Vienna, Vienna, Austria
| | - Tarik Smani
- Department of Medical Physiology and Biophysics, Institute of Biomedicine of Seville (IBiS)/University of Seville/CIBERCV, Seville, Spain
| | - Thomas Moeslinger
- Center for Physiology and Pharmacology, Institute for Physiology, Medical University of Vienna, Vienna, Austria
| | - Pavel Uhrin
- Center for Physiology and Pharmacology, Department of Vascular Biology and Thrombosis Research, Medical University of Vienna, Vienna, Austria
| | - Francisco J. Monje
- Center for Physiology and Pharmacology, Department of Neurophysiology and Neuropharmacology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
23
|
Chavoshinezhad S, Mohseni Kouchesfahani H, Ahmadiani A, Dargahi L. Interferon beta ameliorates cognitive dysfunction in a rat model of Alzheimer's disease: Modulation of hippocampal neurogenesis and apoptosis as underlying mechanism. Prog Neuropsychopharmacol Biol Psychiatry 2019; 94:109661. [PMID: 31152860 DOI: 10.1016/j.pnpbp.2019.109661] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Revised: 05/08/2019] [Accepted: 05/28/2019] [Indexed: 12/21/2022]
Abstract
Neuronal apoptosis and impaired hippocampal neurogenesis are major players in cognitive/memory dysfunctions including Alzheimer's disease (AD). Interferon beta (IFNβ) is a cytokine with anti-apoptotic and neuroprotective properties on the central nervous system (CNS) cells which specifically affects neural progenitor cells (NPCs) even in the adult brain. In this study, we examined the effect of IFNβ on memory impairment as well as hippocampal neurogenesis and apoptosis in a rat model of AD. AD model was induced by lentiviral-mediated overexpression of mutant APP in the hippocampus of adult rats. Intranasal (IN) administration of IFNβ (0.5 μg/kg and 1 μg/kg doses) was started from day 23 after virus injection and continued every other day to the final day of experiments. The expression levels of APP, neurogenesis (Nestin, Ki67, DCX, and Reelin) and apoptosis (Bax/Bcl-2 ratio, cleaved-caspase-3 and seladin-1) markers were evaluated by immunohistochemistry, real-time PCR, immunofluorescence and western blotting. Moreover, thioflavin T and Nissl stainings were used to assess Aβ plaque levels and neuronal degeneration in the hippocampus, respectively. Our results showed that IFNβ treatment reduced APP expression and Aβ plaque formation, and concomitantly ameliorated spatial learning and memory deficits examined in Y-maze and Morris water maze tests. Moreover, in parallel with reducing apoptosis and neural loss in the hippocampal subfields, IFNβ decreased ectopic neurogenesis in the CA1 and CA3 regions of the AD rat hippocampus. However, IFNβ increased neurogenesis in the dentate gyrus neurogenic niche. Our findings suggest that IFNβ exerts neuroprotective effects at least partly by inhibition of apoptosis and modulation of neurogenesis. Taken together, IFNβ can be a promising therapeutic approach to improve cognitive performance in AD-like neurodegenerative context.
Collapse
Affiliation(s)
- Sara Chavoshinezhad
- Department of Animal Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | | | - Abolhassan Ahmadiani
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Leila Dargahi
- Neurobiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
24
|
Female mice with apolipoprotein E4 domain interaction demonstrated impairments in spatial learning and memory performance and disruption of hippocampal cyto-architecture. Neurobiol Learn Mem 2019; 161:106-114. [PMID: 30954674 DOI: 10.1016/j.nlm.2019.03.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 03/01/2019] [Accepted: 03/29/2019] [Indexed: 11/22/2022]
Abstract
We have previously reported cognitive impairments in both young and old mice, particularly in female mice expressing mouse Arg-61 apoE, with a point mutation to mimic the domain interaction feature of human apoE4, as compared to the wildtype mouse (C57BL/6J) apoE. In this study, we further evaluated water maze performance in the female Arg-61 mice at an additional time point and then investigated related hippocampal cyto-architecture in these young female Arg-61 apoE mice vs. the wildtype mice. The results of behavioral performance consistently support our previous report that the young female Arg-61 apoE showed cognitive impairment versus C57BL/6J at the same age. The cyto-architectural results showed that volume of the granular cell layer (GCL) was significantly larger in both 5- and 10-month old Arg-61 apoE mice versus C57BL/6J mice. While the number of newborn calretinin-positive neurons was greater in the sub-granular zone (SGZ) in 5-month old Arg-61 mice, this number dropped significantly in 10-month old Arg-61 mice to a lower level than in age-matched C57BL/6J mice. In addition, the amyloid β species was significantly higher in 5-month old Arg-61 mice versus age-matched C57BL/6J mice. In conclusion, impaired cognitive functions in female Arg-61 apoE mice appear correlated with larger GCL volume and higher calretinin-positive cell number and suggest a compensatory cellular response that may be related to amyloid beta perturbations early in life. Therefore this study suggests a novel cyto-architectural mechanism of apoE4-dependent pathologies and increased susceptibility of APOEε4 subjects to Alzheimer's disease.
Collapse
|
25
|
Otto SL, Yakel JL. The α7 nicotinic acetylcholine receptors regulate hippocampal adult-neurogenesis in a sexually dimorphic fashion. Brain Struct Funct 2018; 224:829-846. [PMID: 30515567 DOI: 10.1007/s00429-018-1799-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Accepted: 11/16/2018] [Indexed: 12/17/2022]
Abstract
Disruption in cholinergic signaling has been linked to many environmental and/or pathological conditions known to modify adult neurogenesis. The α7 nAChRs are in the family of cys-loop receptor channels which have been shown to be neuroprotective in adult neurons and are thought to be critical for survival and integration of immature neurons. However, in developing neurons, poor calcium buffering may cause α7 nAChR activation to be neurotoxic. To investigate whether the α7 nAChR regulates neurogenesis in the hippocampus, we used a combination of mouse genetics and imaging to quantify neural stem cell (NSC) densities located in the dentate gyrus of adult mice. In addition, we considered whether the loss of α7 nAChRs had functional consequences on a spatial discrimination task that is thought to rely on pattern separation mechanisms. We found that the loss of α7 nAChRs resulted in increased neurogenesis in male mice only, while female mice showed increased cell divisions and intermediate progenitors but no change in neurogenesis. Knocking out the α7 nAChR from nestin+ NSCs and their progeny showed signaling in these cells contributes to regulating neurogenesis. In addition, male, but not female, mice lacking α7 nAChRs performed significantly worse in the spatial discrimination task. This task was sexually dimorphic in wild-type mice, but not in the absence of α7 nAChRs. We conclude that α7 nAChRs regulate adult neurogenesis and impact spatial discrimination function in male, but not female mice, via a mechanism involving nestin+ NSCs and their progeny.
Collapse
Affiliation(s)
- Simone L Otto
- Neurobiology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, P.O. box 12233, Mail Drop F2-08, Research Triangle Park, NC, 27709, USA
| | - Jerrel L Yakel
- Neurobiology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, P.O. box 12233, Mail Drop F2-08, Research Triangle Park, NC, 27709, USA.
| |
Collapse
|
26
|
Liu Y, Wei M, Yue K, Hu M, Li S, Men L, Pi Z, Liu Z, Liu Z. Study on Urine Metabolic Profile of Aβ25–35-Induced Alzheimer's Disease Using UHPLC-Q-TOF-MS. Neuroscience 2018; 394:30-43. [DOI: 10.1016/j.neuroscience.2018.10.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 08/28/2018] [Accepted: 10/01/2018] [Indexed: 12/22/2022]
|
27
|
Luca A, Calandra C, Luca M. Molecular Bases of Alzheimer's Disease and Neurodegeneration: The Role of Neuroglia. Aging Dis 2018; 9:1134-1152. [PMID: 30574424 PMCID: PMC6284765 DOI: 10.14336/ad.2018.0201] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2017] [Accepted: 02/01/2018] [Indexed: 12/13/2022] Open
Abstract
Neuroglia is an umbrella term indicating different cellular types that play a pivotal role in the brain, being involved in its development and functional homeostasis. Glial cells are becoming the focus of recent researches pertaining the pathogenesis of neurodegenerative disorders, Alzheimer's Disease (AD) in particular. In fact, activated microglia is the main determinant of neuroinflammation, contributing to neurodegeneration. In addition, the oxidative insult occurring during pathological brain aging can activate glial cells that, in turn, can favor the production of free radicals. Moreover, the recent Glycogen Synthase Kinase 3 (GSK-3) hypothesis of AD suggests that GSK3, involved in the regulation of glial cells functioning, could exert a role in amyloid deposition and tau hyper-phosphorylation. In this review, we briefly describe the main physiological functions of the glial cells and discuss the link between neuroglia and the most studied molecular bases of AD. In addition, we dedicate a section to the glial changes occurring in AD, with particular attention to their role in terms of neurodegeneration. In the light of the literature data, neuroglia could play a fundamental role in AD pathogenesis and progression. Further studies are needed to shed light on this topic.
Collapse
Affiliation(s)
- Antonina Luca
- Department of Medical and Surgical Sciences and Advanced Technologies “G.F. Ingrassia”, University Hospital Policlinico-Vittorio Emanuele, Catania, 95100 Sicily, Italy
| | - Carmela Calandra
- Department of Medical and Surgical Sciences and Advanced Technologies “G.F. Ingrassia”, University Hospital Policlinico-Vittorio Emanuele, Catania, 95100 Sicily, Italy
| | - Maria Luca
- Department of General Surgery and Medical-Surgical Specialties, Dermatology Clinic, University Hospital Policlinico-Vittorio Emanuele, Catania, 95100 Sicily, Italy
| |
Collapse
|
28
|
Alterations of hippocampal neurogenesis during development of Alzheimer's disease-like pathology in OXYS rats. Exp Gerontol 2018; 115:32-45. [PMID: 30415068 DOI: 10.1016/j.exger.2018.11.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 10/05/2018] [Accepted: 11/07/2018] [Indexed: 12/18/2022]
Abstract
Neurogenesis is the key mechanism of neuronal plasticity in the adult mammalian brain. Alterations of neurogenesis happen concurrently with (and contribute to) development and progression of numerous neuropathological conditions including Alzheimer's disease (AD). Being the most common type of dementia, AD is studied extensively; however, the data concerning changes in neurogenesis in the pathogenesis of this disease are inconsistent. Here, using OXYS rats as a suitable model of the most common (sporadic) form of AD, we examined neurogenesis in the hippocampal dentate gyrus in early ontogenesis prior to appearance of any signs of neurodegeneration and during development and progression of AD-like pathology. We demonstrated retardation of hippocampal development in OXYS rats at an early age; this problem may contribute to the emergence of AD signs late in life. Manifestation and progression of AD-like pathology are accompanied by transcriptome changes affecting genes involved in neurogenesis in the hippocampus. These genes are associated with the extracellular matrix and angiogenesis; this observation points to alteration of a cellular microenvironment. This change along with an increased TrkA/p75NTR ratio of nerve growth factor receptors in the hippocampus may contribute to increased density of immature neurons that we observed at the progressive stage of AD-like pathology in OXYS rats. These changes may be considered a compensatory reaction intended to slow down AD-associated neurodegeneration at the progressive stage of the disease. Collectively, these data suggest that alterations of neurogenesis may not only accompany the course of Alzheimer's disease but also play a causative role in this disorder.
Collapse
|
29
|
Kim HJ, Jung SW, Kim SY, Cho IH, Kim HC, Rhim H, Kim M, Nah SY. Panax ginseng as an adjuvant treatment for Alzheimer's disease. J Ginseng Res 2018; 42:401-411. [PMID: 30337800 PMCID: PMC6190533 DOI: 10.1016/j.jgr.2017.12.008] [Citation(s) in RCA: 100] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 11/29/2017] [Accepted: 12/12/2017] [Indexed: 01/22/2023] Open
Abstract
Longevity in medicine can be defined as a long life without mental or physical deficits. This can be prevented by Alzheimer's disease (AD). Current conventional AD treatments only alleviate the symptoms without reversing AD progression. Recent studies demonstrated that Panax ginseng extract improves AD symptoms in patients with AD, and the two main components of ginseng might contribute to AD amelioration. Ginsenosides show various AD-related neuroprotective effects. Gintonin is a newly identified ginseng constituent that contains lysophosphatidic acids and attenuates AD-related brain neuropathies. Ginsenosides decrease amyloid β-protein (Aβ) formation by inhibiting β- and γ-secretase activity or by activating the nonamyloidogenic pathway, inhibit acetylcholinesterase activity and Aβ-induced neurotoxicity, and decrease Aβ-induced production of reactive oxygen species and neuroinflammatory reactions. Oral administration of ginsenosides increases the expression levels of enzymes involved in acetylcholine synthesis in the brain and alleviates Aβ-induced cholinergic deficits in AD models. Similarly, gintonin inhibits Aβ-induced neurotoxicity and activates the nonamyloidogenic pathway to reduce Aβ formation and to increase acetylcholine and choline acetyltransferase expression in the brain through lysophosphatidic acid receptors. Oral administration of gintonin attenuates brain amyloid plaque deposits, boosting hippocampal cholinergic systems and neurogenesis, thereby ameliorating learning and memory impairments. It also improves cognitive functions in patients with AD. Ginsenosides and gintonin attenuate AD-related neuropathology through multiple routes. This review focuses research demonstrating that ginseng constituents could be a candidate as an adjuvant for AD treatment. However, clinical investigations including efficacy and tolerability analyses may be necessary for the clinical acceptance of ginseng components in combination with conventional AD drugs.
Collapse
Key Words
- AChE, acetylcholinesterase
- AD, Alzheimer's disease
- APP, amyloid precursor protein
- Adjuvant
- Alzheimer's disease
- Aβ, amyloid β-protein
- BDNF, brain-derived neurotrophic factor
- EGF, Epidermal growth factor
- GLP151, ginseng major latex-like protein 151
- Ginsenoside
- Gintonin
- LPA, Lysophosphatidic acid
- NGF, nerve growth factor
- NMDA, n-methyl-d-aspartic acid
- PI3K, phosphoinositide-3 kinase
- PPARγ, peroxisome proliferator-activated receptor-γ
- Panax ginseng
- ROS, reactive oxygen species
- sAPPα, soluble amyloid precursor protein α
Collapse
Affiliation(s)
- Hyeon-Joong Kim
- Ginsentology Research Laboratory and Department of Physiology, College of Veterinary Medicine, Konkuk University, Seoul, Republic of Korea
| | - Seok-Won Jung
- Ginsentology Research Laboratory and Department of Physiology, College of Veterinary Medicine, Konkuk University, Seoul, Republic of Korea
| | - Seog-Young Kim
- Department of Convergence Medicine, University of Ulsan College of Medicine and Institute of Life Science, Asan Medical Center, Seoul, Republic of Korea
| | - Ik-Hyun Cho
- Department of Convergence Medical Science, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Hyoung-Chun Kim
- Neuropsychopharmacology and toxicology program, College of Pharmacy, Kangwon National University, Chunchon, Republic of Korea
| | - Hyewhon Rhim
- Center for Neuroscience, Korea Institute of Science and Technology, Seoul, Republic of Korea
| | - Manho Kim
- Department of Neurology, Neuroscience Research Center, Seoul National University Hospital, Seoul, Republic of Korea
| | - Seung-Yeol Nah
- Ginsentology Research Laboratory and Department of Physiology, College of Veterinary Medicine, Konkuk University, Seoul, Republic of Korea
| |
Collapse
|
30
|
Zhu L, Chi T, Zhao X, Yang L, Song S, Lu Q, Ji X, Liu P, Wang L, Zou L. Xanthoceraside modulates neurogenesis to ameliorate cognitive impairment in APP/PS1 transgenic mice. J Physiol Sci 2018; 68:555-565. [PMID: 28744803 PMCID: PMC10717762 DOI: 10.1007/s12576-017-0561-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Accepted: 07/19/2017] [Indexed: 11/25/2022]
Abstract
Neuronal loss is reported to be an important pathological process in Alzheimer's disease (AD). Neurogenesis is a process of generation of new neurons to fill the neuronal loss. Xanthoceraside has been shown to attenuate the cognitive deficits in several AD animal models. However, little is known about the effect of xanthoceraside on neurogenesis in APP/PS1 transgenic mice. Thus, in this study, we investigated whether xanthoceraside can ameliorate learning and memory impairment by promoting NSCs proliferation and neuronal differentiation. The results suggested that xanthoceraside significantly ameliorated the cognitive impairment and induced NSCs proliferation and neuronal differentiation in APP/PS1 transgenic mice. Meanwhile, in vitro study revealed that xanthoceraside increased the size of NSCs and induced NSCs differentiation into neurons compared with amyloid beta-peptide (25-35) (Aβ25-35) treatment. Furthermore, we found that xanthoceraside significantly increased the expression of Wnt3a and p-GSK3β, decreased the expression of p-β-catenin, and induced nuclear translocation of β-catenin in APP/PS1 transgenic mice. Furthermore, in vitro study found that the effect of xanthoceraside on inducing NSCs proliferation and neuronal differentiation were inhibited by Wnt pathway inhibitor Dickkopf-1 (Dkk-1). Our data demonstrated that xanthoceraside may promote the proliferation and differentiation of NSCs into neurons by up-regulating the Wnt/β-catenin pathway to fill the neuronal loss, thereby improving learning and memory impairment in APP/PS1 transgenic mice.
Collapse
Affiliation(s)
- Lin Zhu
- Department of Pharmacology, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang Liaoning, 110016, People's Republic of China
| | - Tianyan Chi
- Department of Pharmacology, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang Liaoning, 110016, People's Republic of China
| | - Xuemei Zhao
- Department of Pharmacology, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang Liaoning, 110016, People's Republic of China
| | - Lei Yang
- Department of Pharmacology, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang Liaoning, 110016, People's Republic of China
| | - Shijie Song
- Department of Pharmacology, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang Liaoning, 110016, People's Republic of China
| | - Qiaohui Lu
- Department of Pharmacology, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang Liaoning, 110016, People's Republic of China
| | - Xuefei Ji
- Department of Pharmacology, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang Liaoning, 110016, People's Republic of China
| | - Peng Liu
- Department of Pharmacology, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang Liaoning, 110016, People's Republic of China
| | - Lihua Wang
- Shenyang Institute of Applied Ecology, Chinese Academy of Sciences, 72 Wenhua Road, Shenhe District, Shenyang Liaoning, 110016, People's Republic of China
| | - Libo Zou
- Department of Pharmacology, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang Liaoning, 110016, People's Republic of China.
| |
Collapse
|
31
|
Merlo S, Spampinato SF, Sortino MA. Early compensatory responses against neuronal injury: A new therapeutic window of opportunity for Alzheimer's Disease? CNS Neurosci Ther 2018; 25:5-13. [PMID: 30101571 DOI: 10.1111/cns.13050] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 07/24/2018] [Accepted: 07/24/2018] [Indexed: 12/21/2022] Open
Abstract
Alzheimer's disease (AD) is characterized by extensive neurodegeneration and inflammation in selective brain areas, linked to severely disabling cognitive deficits. Before full manifestation, different stages appear with progressively increased brain pathology and cognitive impairment. This significantly extends the time lag between initial molecular triggers and appearance of detectable symptoms. Notably, a number of studies in the last decade have revealed that in the early stage of mild cognitive impairment, events that appear in contrast with neuronal distress may occur. These have been reproduced in vitro and in animal models and include increase in synaptic elements, increase in synaptic and metabolic activity, enhancement of neurotrophic milieu and changes in glial cell reactivity and inflammation. They have been interpreted as compensatory responses that could either delay disease progression or, in the long run, result detrimental. For this reason, these mechanisms define a new and previously undervalued window of opportunity for intervention. Their importance resides especially in their early appearance. Directing efforts to better characterize this stage, in order to identify new pharmacological targets, is an exciting new avenue to future advances in AD research.
Collapse
Affiliation(s)
- Sara Merlo
- Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, Catania, Italy
| | - Simona Federica Spampinato
- Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, Catania, Italy
| | - Maria Angela Sortino
- Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, Catania, Italy
| |
Collapse
|
32
|
Kirschen GW, Kéry R, Ge S. The Hippocampal Neuro-Glio-Vascular Network: Metabolic Vulnerability and Potential Neurogenic Regeneration in Disease. Brain Plast 2018; 3:129-144. [PMID: 30151338 PMCID: PMC6091038 DOI: 10.3233/bpl-170055] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Brain metabolism is a fragile balance between nutrient/oxygen supply provided by the blood and neuronal/glial demand. Small perturbations in these parameters are necessary for proper homeostatic functioning and information processing, but can also cause significant damage and cell death if dysregulated. During embryonic and early post-natal development, massive neurogenesis occurs, a process that continues at a limited rate in adulthood in two neurogenic niches, one in the lateral ventricle and the other in the hippocampal dentate gyrus. When metabolic demand does not correspond with supply, which can occur dramatically in the case of hypoxia or ischemia, or more subtly in the case of neuropsychiatric or neurodegenerative disorders, both of these neurogenic niches can respond—either in a beneficial manner, to regenerate damaged or lost tissue, or in a detrimental fashion—creating aberrant synaptic connections. In this review, we focus on the complex relationship that exists between the cerebral vasculature and neurogenesis across development and in disease states including hypoxic-ischemic injury, hypertension, diabetes mellitus, and Alzheimer’s disease. Although there is still much to be elucidated, we are beginning to appreciate how neurogenesis may help or harm the metabolically-injured brain, in the hopes that these insights can be used to tailor novel therapeutics to regenerate damaged tissue after injury.
Collapse
Affiliation(s)
- Gregory W Kirschen
- Medical Scientist Training Program (MSTP), Stony Brook Medicine, Stony Brook, NY, USA.,Department of Neurobiology and Behavior, Stony Brook University, Stony Brook, NY, USA
| | - Rachel Kéry
- Medical Scientist Training Program (MSTP), Stony Brook Medicine, Stony Brook, NY, USA.,Department of Neurobiology and Behavior, Stony Brook University, Stony Brook, NY, USA
| | - Shaoyu Ge
- Department of Neurobiology and Behavior, Stony Brook University, Stony Brook, NY, USA
| |
Collapse
|
33
|
Hane FT, Lee BY, Leonenko Z. Recent Progress in Alzheimer's Disease Research, Part 1: Pathology. J Alzheimers Dis 2018; 57:1-28. [PMID: 28222507 DOI: 10.3233/jad-160882] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The field of Alzheimer's disease (AD) research has grown exponentially over the past few decades, especially since the isolation and identification of amyloid-β from postmortem examination of the brains of AD patients. Recently, the Journal of Alzheimer's Disease (JAD) put forth approximately 300 research reports which were deemed to be the most influential research reports in the field of AD since 2010. JAD readers were asked to vote on these most influential reports. In this 3-part review, we review the results of the 300 most influential AD research reports to provide JAD readers with a readily accessible, yet comprehensive review of the state of contemporary research. Notably, this multi-part review identifies the "hottest" fields of AD research providing guidance for both senior investigators as well as investigators new to the field on what is the most pressing fields within AD research. Part 1 of this review covers pathogenesis, both on a molecular and macro scale. Part 2 review genetics and epidemiology, and part 3 covers diagnosis and treatment. This part of the review, pathology, reviews amyloid-β, tau, prions, brain structure, and functional changes with AD and the neuroimmune response of AD.
Collapse
Affiliation(s)
- Francis T Hane
- Department of Biology, University of Waterloo, Waterloo, ON, Canada.,Department of Chemistry, Lakehead University, Thunder Bay, ON, Canada
| | - Brenda Y Lee
- Department of Biology, University of Waterloo, Waterloo, ON, Canada
| | - Zoya Leonenko
- Department of Biology, University of Waterloo, Waterloo, ON, Canada.,Department of Physics and Astronomy, University of Waterloo, Waterloo, ON, Canada
| |
Collapse
|
34
|
Matsuda T, Hisatsune T. Cholinergic Modification of Neurogenesis and Gliosis Improves the Memory of AβPPswe/PSEN1dE9 Alzheimer's Disease Model Mice Fed a High-Fat Diet. J Alzheimers Dis 2018; 56:1-23. [PMID: 27911310 DOI: 10.3233/jad-160761] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
We previously reported that neuroinflammation contributes to the amnesia of AβPPswe/PSEN1dE9 Alzheimer's disease model mice fed a high-fat diet to induce type-2 diabetes (T2DM-AD mice), but the underlying mechanism for the memory decline remained unclear. Recent studies have suggested that cholinergic modulation is involved in neuroinflammatory cellular reactions including neurogenesis and gliosis, and in memory improvement. In this study, we administered a broad-spectrum cholinesterase inhibitor, rivastigmine (2 mg/kg/day, s.c.), into T2DM-AD mice for 6 weeks, and evaluated their memory performance, neurogenesis, and neuroinflammatory reactions. By two hippocampal-dependent memory tests, the Morris water maze and contextual fear conditioning, rivastigmine improved the memory deterioration of the T2DM-AD mice (n = 8, p < 0.01). The number of newborn neurons in the hippocampal dentate gyrus was 1138±324 (Ave±SEM) in wild-type littermates, 2573±442 in T2DM-AD-Vehicle, and 2165±300 in T2DM-AD-Rivastigmine mice, indicating that neurogenesis was accelerated in the two T2DM-AD groups (n = 5, p < 0.05). The dendritic maturation of new neurons in T2DM-AD-Vehicle mice was severely abrogated, and rivastigmine treatment reversed this retarded maturation. In addition, the hippocampus of T2DM-AD-Vehicle mice showed increased proinflammatory cytokines IL-1β and TNF-α and gliosis, and rivastigmine treatment blocked these inflammatory reactions. Rivastigmine did not change the insulin abnormality or amyloid pathology in these mice. Thus, cholinergic modulation by rivastigmine treatment led to enhanced neurogenesis and the suppression of gliosis, which together ameliorated the memory decline in T2DM-AD model mice.
Collapse
|
35
|
Komleva Y, Lopatina O, Gorina Y, Chernykh A, Shuvaev A, Salmina A. Early changes in hyppocampal neurogenesis induced by soluble Ab1-42 oligomers. ACTA ACUST UNITED AC 2018; 64:326-333. [DOI: 10.18097/pbmc20186404326] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Alzheimer's disease is characterized by the loss of neurons, the accumulation of intracellular neurofibrillary tangles and extracellular amyloid plaques in the brain. However, there are contradicting data on differences in neurogenesis at the onset of the disease or before the formation of amyloid plaques. As awareness of the importance of the pre-symptom phase in neurodegenerative diseases grows in the context of early diagnosis and pathogenesis, we analyzed the critical periods of adult hippocampal neurogenesis at an early stage under the action of soluble Ab1-42 beta-amyloid. The proliferation, migration and neuronal cells survival were evaluated in mice with an injection of soluble amyloid beta-oligomers. It was found that the injection of Ab1-42 oligomers causes a decrease in cell proliferation in the mouse hippocampus. Despite the preservation of the neuroblast pool in animals after beta-amyloid injection, the process of radial migration is disrupted, and an increase in apoptosis in the neurogenic niche was revealed. Thus, our results demonstrate damage of neurogenesis critical stages: the progenitor cells, neuroblast migration, the integration of immature neurons, and the survival of neurons under application of soluble beta-amyloid oligomers. The obtained data indicate decline in proliferation rate in the subgranular zone, that is accompanied by ectopic differentiation and disturbed migration, producing, apparently, abnormal neurons that have lower survival rates. That could lead to a decrease in mature neurons numbers and the number of cells in the granular layer of the dentate gyrus.
Collapse
Affiliation(s)
- Yu.K. Komleva
- Department of Biochemistry, Medical, Pharmaceutical, and Toxicological Chemistry, Krasnoyarsk State Medical University named after Prof. V.F. Voino-Yasenetsky, Krasnoyarsk, Russia; Research Institute of Molecular Medicine and Pathobiochemistry, Krasnoyarsk State Medical University named after Prof. V.F. Voino-Yasenetsky, Krasnoyarsk, Russia
| | - O.L. Lopatina
- Department of Biochemistry, Medical, Pharmaceutical, and Toxicological Chemistry, Krasnoyarsk State Medical University named after Prof. V.F. Voino-Yasenetsky, Krasnoyarsk, Russia; Research Institute of Molecular Medicine and Pathobiochemistry, Krasnoyarsk State Medical University named after Prof. V.F. Voino-Yasenetsky, Krasnoyarsk, Russia
| | - Ya.V. Gorina
- Department of Biochemistry, Medical, Pharmaceutical, and Toxicological Chemistry, Krasnoyarsk State Medical University named after Prof. V.F. Voino-Yasenetsky, Krasnoyarsk, Russia; Research Institute of Molecular Medicine and Pathobiochemistry, Krasnoyarsk State Medical University named after Prof. V.F. Voino-Yasenetsky, Krasnoyarsk, Russia
| | - A.I. Chernykh
- Research Institute of Molecular Medicine and Pathobiochemistry, Krasnoyarsk State Medical University named after Prof. V.F. Voino-Yasenetsky, Krasnoyarsk, Russia
| | - A.N. Shuvaev
- Research Institute of Molecular Medicine and Pathobiochemistry, Krasnoyarsk State Medical University named after Prof. V.F. Voino-Yasenetsky, Krasnoyarsk, Russia
| | - A.B. Salmina
- Department of Biochemistry, Medical, Pharmaceutical, and Toxicological Chemistry, Krasnoyarsk State Medical University named after Prof. V.F. Voino-Yasenetsky, Krasnoyarsk, Russia; Research Institute of Molecular Medicine and Pathobiochemistry, Krasnoyarsk State Medical University named after Prof. V.F. Voino-Yasenetsky, Krasnoyarsk, Russia
| |
Collapse
|
36
|
Hoeijmakers L, Meerhoff GF, de Vries JW, Ruigrok SR, van Dam AM, van Leuven F, Korosi A, Lucassen PJ. The age-related slow increase in amyloid pathology in APP.V717I mice activates microglia, but does not alter hippocampal neurogenesis. Neurobiol Aging 2018; 61:112-123. [DOI: 10.1016/j.neurobiolaging.2017.09.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Revised: 09/12/2017] [Accepted: 09/14/2017] [Indexed: 01/09/2023]
|
37
|
Zhang W, Gu GJ, Zhang Q, Liu JH, Zhang B, Guo Y, Wang MY, Gong QY, Xu JR. NSCs promote hippocampal neurogenesis, metabolic changes and synaptogenesis in APP/PS1 transgenic mice. Hippocampus 2017; 27:1250-1263. [PMID: 28833933 DOI: 10.1002/hipo.22794] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2017] [Revised: 08/02/2017] [Accepted: 08/11/2017] [Indexed: 02/05/2023]
Abstract
Adult neurogenesis and synaptic remodeling persist as a unique form of structural and functional plasticity in the hippocampal dentate gyrus (DG) and subventricular zone (SVZ) of the lateral ventricles due to the existence of neural stem cells (NSCs). Transplantation of NSCs may represent a promising approach for the recovery of neural circuits. Here, we aimed to examine effects of highly neuronal differentiation of NSCs transplantation on hippocampal neurogenesis, metabolic changes and synaptic formation in APP/PS1 mice. 12-month-old APP/PS1 mice were used for behavioral tests, immunohistochemistry, western blot, transmission electron microscopy and proton magnetic resonance spectroscopy (1H-MRS). The results showed that N-acetylaspartate (NAA) and Glutamate (Glu) levels were increased in the Tg-NSC mice compared with the Tg-PBS and Tg-AD mice 10 weeks after NSCs transplantation. NSC-induced an increase in expression of synaptophysin and postsynaptic protein-95, and the number of neurons with normal synapses was significantly increased in Tg-NSC mice. More doublecortin-, BrdU/NeuN- and Nestin-positive neurons were observed in the hippocampal DG and SVZ of the Tg-NSC mice. This is the first demonstration that engrafted NSCs with a high differentiation rate to neurons can enhance neurogenesis in a mouse model of AD and can be detected by 1H-MRS in vivo. It is suggested that engraft of NSCs can restore memory and promote endogenous neurogenesis and synaptic remodeling, moreover, 1H-MRS can detect metabolite changes in AD mice in vivo. The observed changes in NAA/creatine (Cr) and glutamate (Glu)/Cr may be correlated with newborn neurons and new synapse formation.
Collapse
Affiliation(s)
- Wei Zhang
- Department of Medical Imaging, Renji Hospital, Medical School of Jiaotong University, No. 160, Pujian Road, Pudong District, Shanghai, 200127, P. R. China
| | - Guo-Jun Gu
- Department of Medical Imaging, Tongji Hospital, Medical School of Tongji University, No. 389, Xincun Road, Putuo District, Shanghai, 200065, P. R. China
| | - Qi Zhang
- Department of Blood Transfusion, Huashan Hospital, Fudan University, No. 12, Urumqi Road, Jing'an District, Shanghai, 200040, P. R. China
| | - Jian-Hui Liu
- Department of Anesthesiology, Tongji Hospital, Medical School of Tongji University, No. 389, Xincun Road, Putuo District, Shanghai, 200065, P. R. China
| | - Bo Zhang
- Department of Medical Imaging, Tongji Hospital, Medical School of Tongji University, No. 389, Xincun Road, Putuo District, Shanghai, 200065, P. R. China
| | - Yi Guo
- Department of Medical Imaging, Tongji Hospital, Medical School of Tongji University, No. 389, Xincun Road, Putuo District, Shanghai, 200065, P. R. China
| | - Mei-Yun Wang
- Department of Radiology, Henan Provincial People's Hospital, No. 7, Weiwu Road, Jinshui District, Zhengzhou, 450003, P. R. China
| | - Qi-Yong Gong
- Huaxi MR Research Center, Department of Radiology, West China Hospital of Sichuan University, Chengdu, 610065, P. R. China
| | - Jian-Rong Xu
- Department of Medical Imaging, Renji Hospital, Medical School of Jiaotong University, No. 160, Pujian Road, Pudong District, Shanghai, 200127, P. R. China
| |
Collapse
|
38
|
Dual roles of Aβ in proliferative processes in an amyloidogenic model of Alzheimer's disease. Sci Rep 2017; 7:10085. [PMID: 28855626 PMCID: PMC5577311 DOI: 10.1038/s41598-017-10353-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Accepted: 08/08/2017] [Indexed: 12/20/2022] Open
Abstract
Alzheimer’s disease is a major neurodegenerative disorder that leads to severe cognitive deficits in the elderly population. Over the past two decades, multiple studies have focused on elucidating the causative factors underlying memory defects in Alzheimer’s patients. In this regard, new evidence linking Alzheimer’s disease-related pathology and neuronal stem cells suggests that hippocampal neurogenesis impairment is an important factor underlying these cognitive deficits. However, because of conflicting results, the impact of Aβ pathology on neurogenesis/gliogenesis remains unclear. Here, we investigated the effect of Aβ on neuronal and glial proliferation by using an APP/PS1 transgenic model and in vitro assays. Specifically, we showed that neurogenesis is affected early in the APP/PS1 hippocampus, as evidenced by a significant decrease in the proliferative activity due to a reduced number of both radial glia-like neural stem cells (type-1 cells) and intermediate progenitor cells (type-2 cells). Moreover, we demonstrated that soluble Aβ from APP/PS1 mice impairs neuronal cell proliferation using neurosphere cultures. On the other hand, we showed that oligomeric Aβ stimulates microglial proliferation, whereas no effect was observed on astrocytes. These findings indicate that Aβ has a differential effect on hippocampal proliferative cells by inhibiting neuronal proliferation and triggering the formation of microglial cells.
Collapse
|
39
|
Neuron and neuroblast numbers and cytogenesis in the dentate gyrus of aged APP swe /PS1 dE9 transgenic mice: Effect of long-term treatment with paroxetine. Neurobiol Dis 2017; 104:50-60. [DOI: 10.1016/j.nbd.2017.04.021] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2016] [Revised: 04/07/2017] [Accepted: 04/27/2017] [Indexed: 11/20/2022] Open
|
40
|
Hoeijmakers L, Ruigrok SR, Amelianchik A, Ivan D, van Dam AM, Lucassen PJ, Korosi A. Early-life stress lastingly alters the neuroinflammatory response to amyloid pathology in an Alzheimer's disease mouse model. Brain Behav Immun 2017; 63:160-175. [PMID: 28027926 DOI: 10.1016/j.bbi.2016.12.023] [Citation(s) in RCA: 108] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Revised: 12/12/2016] [Accepted: 12/23/2016] [Indexed: 12/16/2022] Open
Abstract
Exposure to stress during the sensitive period of early-life increases the risk to develop cognitive impairments and psychopathology later in life. In addition, early-life stress (ES) exposure, next to genetic causes, has been proposed to modulate the development and progression of Alzheimer's disease (AD), however evidence for this hypothesis is currently lacking. We here tested whether ES modulates progression of AD-related neuropathology and assessed the possible contribution of neuroinflammatory factors in this. We subjected wild-type (WT) and transgenic APP/PS1 mice, as a model for amyloid neuropathology, to chronic ES from postnatal day (P)2 to P9. We next studied how ES exposure affected; 1) amyloid β (Aβ) pathology at an early (4month old) and at a more advanced pathological (10month old) stage, 2) neuroinflammatory mediators immediately after ES exposure as well as in adult WT mice, and 3) the neuroinflammatory response in relation to Aβ neuropathology. ES exposure resulted in a reduction of cell-associated amyloid in 4month old APP/PS1 mice, but in an exacerbation of Aβ plaque load at 10months of age, demonstrating that ES affects Aβ load in the hippocampus in an age-dependent manner. Interestingly, ES modulated various neuroinflammatory mediators in the hippocampus of WT mice as well as in response to Aβ neuropathology. In WT mice, immediately following ES exposure (P9), Iba1-immunopositive microglia exhibited reduced complexity and hippocampal interleukin (IL)-1β expression was increased. In contrast, microglial Iba1 and CD68 were increased and hippocampal IL-6 expression was decreased at 4months, while these changes resolved by 10months of age. Finally, Aβ neuropathology triggered a neuroinflammatory response in APP/PS1 mice that was altered after ES exposure. APP/PS1 mice exhibited increased CD68 expression at 4months, which was further enhanced by ES, whereas the microglial response to Aβ neuropathology, as measured by Iba1 and CD11b, was less prominent after ES at 10months of age. Finally, the hippocampus appears to be more vulnerable for these ES-induced effects, since ES did not affect Aβ neuropathology and neuroinflammation in the entorhinal cortex of adult ES exposed mice. Overall, our results demonstrate that ES exposure has both immediate and lasting effects on the neuroinflammatory response. In the context of AD, such alterations in neuroinflammation might contribute to aggravated neuropathology in ES exposed mice, hence altering disease progression. This indicates that, at least in a genetic context, ES could aggravate AD pathology.
Collapse
Affiliation(s)
- Lianne Hoeijmakers
- Swammerdam Institute for Life Sciences, Center for Neuroscience, University of Amsterdam, Science Park 904, Amsterdam, The Netherlands
| | - Silvie R Ruigrok
- Swammerdam Institute for Life Sciences, Center for Neuroscience, University of Amsterdam, Science Park 904, Amsterdam, The Netherlands
| | - Anna Amelianchik
- Swammerdam Institute for Life Sciences, Center for Neuroscience, University of Amsterdam, Science Park 904, Amsterdam, The Netherlands
| | - Daniela Ivan
- Swammerdam Institute for Life Sciences, Center for Neuroscience, University of Amsterdam, Science Park 904, Amsterdam, The Netherlands
| | - Anne-Marie van Dam
- Department of Anatomy & Neurosciences, Amsterdam Neuroscience, VU University Medical Center, De Boelelaan 1108, Amsterdam, The Netherlands
| | - Paul J Lucassen
- Swammerdam Institute for Life Sciences, Center for Neuroscience, University of Amsterdam, Science Park 904, Amsterdam, The Netherlands
| | - Aniko Korosi
- Swammerdam Institute for Life Sciences, Center for Neuroscience, University of Amsterdam, Science Park 904, Amsterdam, The Netherlands.
| |
Collapse
|
41
|
New Functions of APC/C Ubiquitin Ligase in the Nervous System and Its Role in Alzheimer's Disease. Int J Mol Sci 2017; 18:ijms18051057. [PMID: 28505105 PMCID: PMC5454969 DOI: 10.3390/ijms18051057] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 05/05/2017] [Accepted: 05/09/2017] [Indexed: 12/16/2022] Open
Abstract
The E3 ubiquitin ligase Anaphase Promoting Complex/Cyclosome (APC/C) regulates important processes in cells, such as the cell cycle, by targeting a set of substrates for degradation. In the last decade, APC/C has been related to several major functions in the nervous system, including axon guidance, synaptic plasticity, neurogenesis, and neuronal survival. Interestingly, some of the identified APC/C substrates have been related to neurodegenerative diseases. There is an accumulation of some degradation targets of APC/C in Alzheimer’s disease (AD) brains, which suggests a dysregulation of the protein complex in the disorder. Moreover, recently evidence has been provided for an inactivation of APC/C in AD. It has been shown that oligomers of the AD-related peptide, Aβ, induce degradation of the APC/C activator subunit cdh1, in vitro in neurons in culture and in vivo in the mouse hippocampus. Furthermore, in the AD mouse model APP/PS1, lower cdh1 levels were observed in pyramidal neurons in CA1 when compared to age-matched wildtype mice. In this review, we provide a complete list of APC/C substrates that are involved in the nervous system and we discuss their functions. We also summarize recent studies that show neurobiological effects in cdh1 knockout mouse models. Finally, we discuss the role of APC/C in the pathophysiology of AD.
Collapse
|
42
|
Kent BA, Mistlberger RE. Sleep and hippocampal neurogenesis: Implications for Alzheimer's disease. Front Neuroendocrinol 2017; 45:35-52. [PMID: 28249715 DOI: 10.1016/j.yfrne.2017.02.004] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Revised: 01/23/2017] [Accepted: 02/24/2017] [Indexed: 01/29/2023]
Abstract
Alzheimer's disease (AD) is the most common cause of dementia and currently there are no effective disease-modifying treatments available. Hallmark symptoms of AD include impaired hippocampus-dependent episodic memory and disrupted sleep and circadian rhythms. The pathways connecting these symptoms are of particular interest because it is well established that sleep and circadian disruption can impair hippocampus-dependent learning and memory. In rodents, these procedures also markedly suppress adult hippocampal neurogenesis, a form of brain plasticity that is believed to play an important role in pattern separation, and thus episodic memory. A causal role for sleep disruptions in AD pathophysiology is suggested by evidence for sleep-dependent glymphatic clearance of metabolic waste products from the brain. This review explores a complementary hypothesis that sleep and circadian disruptions in AD contribute to cognitive decline by activating neuroendocrine and neuroinflammatory signaling pathways that suppress hippocampal neurogenesis. Evidence for this hypothesis underscores the promise of sleep, circadian rhythms, and neurogenesis as therapeutic targets for remediation of memory impairment in AD.
Collapse
Affiliation(s)
- Brianne A Kent
- Division of Neurology and Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, Canada
| | | |
Collapse
|
43
|
Ma MW, Wang J, Zhang Q, Wang R, Dhandapani KM, Vadlamudi RK, Brann DW. NADPH oxidase in brain injury and neurodegenerative disorders. Mol Neurodegener 2017; 12:7. [PMID: 28095923 PMCID: PMC5240251 DOI: 10.1186/s13024-017-0150-7] [Citation(s) in RCA: 309] [Impact Index Per Article: 38.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Accepted: 01/05/2017] [Indexed: 12/11/2022] Open
Abstract
Oxidative stress is a common denominator in the pathology of neurodegenerative disorders such as Alzheimer’s disease, Parkinson’s disease, Huntington’s disease, amyotrophic lateral sclerosis, and multiple sclerosis, as well as in ischemic and traumatic brain injury. The brain is highly vulnerable to oxidative damage due to its high metabolic demand. However, therapies attempting to scavenge free radicals have shown little success. By shifting the focus to inhibit the generation of damaging free radicals, recent studies have identified NADPH oxidase as a major contributor to disease pathology. NADPH oxidase has the primary function to generate free radicals. In particular, there is growing evidence that the isoforms NOX1, NOX2, and NOX4 can be upregulated by a variety of neurodegenerative factors. The majority of recent studies have shown that genetic and pharmacological inhibition of NADPH oxidase enzymes are neuroprotective and able to reduce detrimental aspects of pathology following ischemic and traumatic brain injury, as well as in chronic neurodegenerative disorders. This review aims to summarize evidence supporting the role of NADPH oxidase in the pathology of these neurological disorders, explores pharmacological strategies of targeting this major oxidative stress pathway, and outlines obstacles that need to be overcome for successful translation of these therapies to the clinic.
Collapse
Affiliation(s)
- Merry W Ma
- Charlie Norwood VA Medical Center, One Freedom Way, Augusta, GA, 30904, USA.,Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, 1120 Fifteenth Street, Augusta, GA, 30912, USA
| | - Jing Wang
- Charlie Norwood VA Medical Center, One Freedom Way, Augusta, GA, 30904, USA.,Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, 1120 Fifteenth Street, Augusta, GA, 30912, USA
| | - Quanguang Zhang
- Charlie Norwood VA Medical Center, One Freedom Way, Augusta, GA, 30904, USA.,Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, 1120 Fifteenth Street, Augusta, GA, 30912, USA
| | - Ruimin Wang
- Charlie Norwood VA Medical Center, One Freedom Way, Augusta, GA, 30904, USA.,Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, 1120 Fifteenth Street, Augusta, GA, 30912, USA
| | - Krishnan M Dhandapani
- Charlie Norwood VA Medical Center, One Freedom Way, Augusta, GA, 30904, USA.,Department of Neurosurgery, Medical College of Georgia, Augusta University, 1120 Fifteenth Street, Augusta, GA, 30912, USA
| | - Ratna K Vadlamudi
- Department of Obstetrics and Gynecology, University of Texas Health Science Center, 7703 Medical Drive, San Antonio, TX, 78229, USA
| | - Darrell W Brann
- Charlie Norwood VA Medical Center, One Freedom Way, Augusta, GA, 30904, USA. .,Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, 1120 Fifteenth Street, Augusta, GA, 30912, USA.
| |
Collapse
|
44
|
Hong XP, Chen T, Yin NN, Han YM, Yuan F, Duan YJ, Shen F, Zhang YH, Chen ZB. Puerarin Ameliorates D-Galactose Induced Enhanced Hippocampal Neurogenesis and Tau Hyperphosphorylation in Rat Brain. J Alzheimers Dis 2016; 51:605-17. [PMID: 26890737 DOI: 10.3233/jad-150566] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Enhanced neurogenesis has been reported in the hippocampus of patients with Alzheimer's disease (AD), the most common neurodegenerative disorder characterized with amyloid-β (Aβ) aggregation, tau hyperphosphorylation, and progressive neuronal loss. Previously we reported that tau phosphorylation played an essential role in adult hippocampal neurogenesis, and activation of glycogen synthase kinase (GSK-3), a crucial tau kinase, could induce increased hippocampal neurogenesis. In the present study, we found that treatment of D-galactose rats with Puerarin could significantly improve behavioral performance and ameliorate the enhanced neurogenesis and microtubule-associated protein tau hyperphosphorylation in the hippocampus of D-galactose rat brains. FGF-2/GSK-3 signaling pathway might be involved in the effects of Puerarin on hippocampal neurogenesis and tau hyperphosphorylation. Our finding provides primary in vivo evidence that Puerarin can attenuate AD-like enhanced hippocampal neurogenesis and tau hyperphosphorylation. Our finding also suggests Puerarin can be served as a treatment for age-related neurodegenerative disorders, such as AD.
Collapse
Affiliation(s)
- Xiao-Ping Hong
- Department of Anatomy and Histology, College of Basic Medicine, Hubei University of Chinese Medicine, Wuhan, People's Republic of China
| | - Tao Chen
- Department of Anatomy and Histology, College of Basic Medicine, Hubei University of Chinese Medicine, Wuhan, People's Republic of China
| | - Ni-Na Yin
- Department of Anatomy and Histology, College of Basic Medicine, Hubei University of Chinese Medicine, Wuhan, People's Republic of China
| | - Yong-Ming Han
- Department of Anatomy and Histology, College of Basic Medicine, Hubei University of Chinese Medicine, Wuhan, People's Republic of China
| | - Fang Yuan
- Central Laboratory of College of Basic Medicine, Hubei University of Chinese Medicine, Wuhan, People's Republic of China
| | - Yan-Jun Duan
- Department of Anatomy and Histology, College of Basic Medicine, Hubei University of Chinese Medicine, Wuhan, People's Republic of China
| | - Feng Shen
- Department of Acupuncture and Moxibustion, College of Acupuncture and Orthopedics, Hubei University of Chinese Medicine, Wuhan, People's Republic of China
| | - Yan-Hong Zhang
- Department of Anatomy and Histology, College of Basic Medicine, Hubei University of Chinese Medicine, Wuhan, People's Republic of China
| | - Ze-Bin Chen
- Department of Anatomy and Histology, College of Basic Medicine, Hubei University of Chinese Medicine, Wuhan, People's Republic of China
| |
Collapse
|
45
|
Unger MS, Marschallinger J, Kaindl J, Höfling C, Rossner S, Heneka MT, Van der Linden A, Aigner L. Early Changes in Hippocampal Neurogenesis in Transgenic Mouse Models for Alzheimer's Disease. Mol Neurobiol 2016; 53:5796-806. [PMID: 27544234 PMCID: PMC5012146 DOI: 10.1007/s12035-016-0018-9] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Accepted: 08/01/2016] [Indexed: 12/01/2022]
Abstract
Alzheimer's disease (AD) is the most prevalent neurodegenerative disease in the Western world and is characterized by a progressive loss of cognitive functions leading to dementia. One major histopathological hallmark of AD is the formation of amyloid-beta plaques, which is reproduced in numerous transgenic animal models overexpressing pathogenic forms of amyloid precursor protein (APP). In human AD and in transgenic amyloid plaque mouse models, several studies report altered rates of adult neurogenesis, i.e. the formation of new neurons from neural stem and progenitor cells, and impaired neurogenesis has also been attributed to contribute to the cognitive decline in AD. So far, changes in neurogenesis have largely been considered to be a consequence of the plaque pathology. Therefore, possible alterations in neurogenesis before plaque formation or in prodromal AD have been largely ignored. Here, we analysed adult hippocampal neurogenesis in amyloidogenic mouse models of AD at different points before and during plaque progression. We found prominent alterations of hippocampal neurogenesis before plaque formation. Survival of newly generated cells and the production of new neurons were already compromised at this stage. Moreover and surprisingly, proliferation of doublecortin (DCX) expressing neuroblasts was significantly and specifically elevated during the pre-plaque stage in the APP-PS1 model, while the Nestin-expressing stem cell population was unaffected. In summary, changes in neurogenesis are evident already before plaque deposition and might contribute to well-known early hippocampal dysfunctions in prodromal AD such as hippocampal overactivity.
Collapse
Affiliation(s)
- M S Unger
- Institute of Molecular Regenerative Medicine, Paracelsus Medical University, Strubergasse 21, 5020, Salzburg, Austria
- Spinal Cord Injury and Tissue Regeneration Center Salzburg (SCI-TReCS), Paracelsus Medical University, Salzburg, Austria
| | - J Marschallinger
- Institute of Molecular Regenerative Medicine, Paracelsus Medical University, Strubergasse 21, 5020, Salzburg, Austria
- Spinal Cord Injury and Tissue Regeneration Center Salzburg (SCI-TReCS), Paracelsus Medical University, Salzburg, Austria
| | - J Kaindl
- Institute of Molecular Regenerative Medicine, Paracelsus Medical University, Strubergasse 21, 5020, Salzburg, Austria
- Spinal Cord Injury and Tissue Regeneration Center Salzburg (SCI-TReCS), Paracelsus Medical University, Salzburg, Austria
| | - C Höfling
- Paul Flechsig Institute for Brain Research, University of Leipzig, Leipzig, Germany
| | - S Rossner
- Paul Flechsig Institute for Brain Research, University of Leipzig, Leipzig, Germany
| | - Michael T Heneka
- Clinical Neuroscience, Department of Neurology, University of Bonn, Bonn, Germany
| | - A Van der Linden
- Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Ludwig Aigner
- Institute of Molecular Regenerative Medicine, Paracelsus Medical University, Strubergasse 21, 5020, Salzburg, Austria.
- Spinal Cord Injury and Tissue Regeneration Center Salzburg (SCI-TReCS), Paracelsus Medical University, Salzburg, Austria.
| |
Collapse
|
46
|
Pan H, Wang D, Zhang X, Zhou D, Zhang H, Qian Q, He X, Liu Z, Liu Y, Zheng T, Zhang L, Wang M, Sun B. Amyloid β Is Not the Major Factor Accounting for Impaired Adult Hippocampal Neurogenesis in Mice Overexpressing Amyloid Precursor Protein. Stem Cell Reports 2016; 7:707-718. [PMID: 27693425 PMCID: PMC5063569 DOI: 10.1016/j.stemcr.2016.08.019] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Revised: 08/30/2016] [Accepted: 08/31/2016] [Indexed: 11/22/2022] Open
Abstract
Adult hippocampal neurogenesis was impaired in several Alzheimer's disease models overexpressing mutant human amyloid precursor protein (hAPP). However, the effects of wild-type hAPP on adult neurogenesis and whether the impaired adult hippocampal neurogenesis was caused by amyloid β (Aβ) or APP remained unclear. Here, we found that neurogenesis was impaired in the dentate gyrus (DG) of adult mice overexpressing wild-type hAPP (hAPP-I5) compared with controls. However, the adult hippocampal neurogenesis was more severely impaired in hAPP-I5 than that in hAPP-J20 mice, which express similar levels of hAPP mRNA but much higher levels of Aβ. Furthermore, reducing Aβ levels did not affect the number of doublecortin-positive cells in the DG of hAPP-J20 mice. Our results suggested that hAPP was more likely an important factor inhibiting adult neurogenesis, and Aβ was not the major factor affecting neurogenesis in the adult hippocampus of hAPP mice. Overexpression of wild-type hAPP impairs adult hippocampal neurogenesis Adult hippocampal neurogenesis was more severely impaired in hAPP-I5 than in hAPP-J20 Reducing Aβ levels did not affect adult neurogenesis in hAPP-J20 mice Aβ is not the major factor accounting for impaired adult neurogenesis in hAPP mice
Collapse
Affiliation(s)
- Hongyu Pan
- Department of Neurobiology, School of Basic Medical Sciences, Key Laboratory of Medical Neurobiology (Ministry of Health of China), Key Laboratory of Neurobiology of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province 310058, China
| | - Dongpi Wang
- Department of Neurobiology, School of Basic Medical Sciences, Key Laboratory of Medical Neurobiology (Ministry of Health of China), Key Laboratory of Neurobiology of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province 310058, China
| | - Xiaoqin Zhang
- Department of Neurobiology, School of Basic Medical Sciences, Key Laboratory of Medical Neurobiology (Ministry of Health of China), Key Laboratory of Neurobiology of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province 310058, China
| | - Dongming Zhou
- Department of Neurobiology, School of Basic Medical Sciences, Key Laboratory of Medical Neurobiology (Ministry of Health of China), Key Laboratory of Neurobiology of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province 310058, China
| | - Heng Zhang
- Department of Neurobiology, School of Basic Medical Sciences, Key Laboratory of Medical Neurobiology (Ministry of Health of China), Key Laboratory of Neurobiology of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province 310058, China
| | - Qi Qian
- Department of Neurology, Brain Medical Center, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province 310058, China
| | - Xiao He
- Department of Neurobiology, School of Basic Medical Sciences, Key Laboratory of Medical Neurobiology (Ministry of Health of China), Key Laboratory of Neurobiology of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province 310058, China
| | - Zhaoling Liu
- Department of Neurobiology, School of Basic Medical Sciences, Key Laboratory of Medical Neurobiology (Ministry of Health of China), Key Laboratory of Neurobiology of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province 310058, China
| | - Yunjin Liu
- Department of Neurobiology, School of Basic Medical Sciences, Key Laboratory of Medical Neurobiology (Ministry of Health of China), Key Laboratory of Neurobiology of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province 310058, China
| | - Tingting Zheng
- Department of Neurology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province 310058, China
| | - Ling Zhang
- Department of Neurobiology, School of Basic Medical Sciences, Key Laboratory of Medical Neurobiology (Ministry of Health of China), Key Laboratory of Neurobiology of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province 310058, China
| | - Mingkai Wang
- Department of Neurobiology, School of Basic Medical Sciences, Key Laboratory of Medical Neurobiology (Ministry of Health of China), Key Laboratory of Neurobiology of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province 310058, China
| | - Binggui Sun
- Department of Neurobiology, School of Basic Medical Sciences, Key Laboratory of Medical Neurobiology (Ministry of Health of China), Key Laboratory of Neurobiology of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province 310058, China.
| |
Collapse
|
47
|
Petkova R, Chelenkova P, Tournev I, Chakarov S. The minus of a plus is a minus. Mass death of selected neuron populations in sporadic late-onset neurodegenerative disease may be due to a combination of subtly decreased capacity to repair oxidative DNA damage and increased propensity for damage-related apoptosis. BIOTECHNOL BIOTEC EQ 2016. [DOI: 10.1080/13102818.2016.1179593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Affiliation(s)
- Rumena Petkova
- Scientific Technological Service (STS) Ltd., Sofia, Bulgaria
| | - Pavlina Chelenkova
- Department of Biochemistry, Faculty of Biology, Sofia University ‘St. Kliment Ohridski’, Sofia, Bulgaria
| | - Ivaylo Tournev
- Clinic of Neurology, University Hospital ‘Alexandrovska’, Medical University of Sofia, Sofia, Bulgaria
| | - Stoyan Chakarov
- Department of Biochemistry, Faculty of Biology, Sofia University ‘St. Kliment Ohridski’, Sofia, Bulgaria
| |
Collapse
|
48
|
Mastroeni D, Chouliaras L, Van den Hove DL, Nolz J, Rutten BP, Delvaux E, Coleman. PD. Increased 5-hydroxymethylation levels in the sub ventricular zone of the Alzheimer's brain. ACTA ACUST UNITED AC 2016. [DOI: 10.1016/j.nepig.2016.04.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
49
|
Progranulin Protects Hippocampal Neurogenesis via Suppression of Neuroinflammatory Responses Under Acute Immune Stress. Mol Neurobiol 2016; 54:3717-3728. [DOI: 10.1007/s12035-016-9939-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Accepted: 05/10/2016] [Indexed: 12/11/2022]
|
50
|
Zeng J, Jiang X, Hu XF, Ma RH, Chai GS, Sun DS, Xu ZP, Li L, Bao J, Feng Q, Hu Y, Chu J, Chai DM, Hong XY, Wang JZ, Liu GP. Spatial training promotes short-term survival and neuron-like differentiation of newborn cells in Aβ1-42-injected rats. Neurobiol Aging 2016; 45:64-75. [PMID: 27459927 DOI: 10.1016/j.neurobiolaging.2016.05.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Revised: 05/05/2016] [Accepted: 05/07/2016] [Indexed: 01/22/2023]
Abstract
Neurogenesis plays a role in hippocampus-dependent learning and impaired neurogenesis may correlate with cognitive deficits in Alzheimer's disease. Spatial training influences the production and fate of newborn cells in hippocampus of normal animals, whereas the effects on neurogenesis in Alzheimer-like animal are not reported until now. Here, for the first time, we investigated the effect of Morris water maze training on proliferation, survival, apoptosis, migration, and differentiation of newborn cells in β-amyloid-treated Alzheimer-like rats. We found that spatial training could preserve a short-term survival of newborn cells generated before training, during the early phase, and the late phase of training. However, the training had no effect on the long-term survival of mature newborn cells generated at previously mentioned 3 different phases. We also demonstrated that spatial training promoted newborn cell differentiation preferentially to the neuron direction. These findings suggest a time-independent neurogenesis induced by spatial training, which may be indicative for the cognitive stimulation in Alzheimer's disease therapy.
Collapse
Affiliation(s)
- Juan Zeng
- Department of Pathophysiology, Key Laboratory of Neurological Diseases of Chinese Ministry of Education, the School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P. R. China; Medicine Vocational and Technical School of Wuhan University, Wuhan, P. R. China
| | - Xia Jiang
- Department of Pathophysiology, Key Laboratory of Neurological Diseases of Chinese Ministry of Education, the School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P. R. China; Department of Pathology, Hubei University of Chinese Medicine, Wuhan, P. R. China
| | - Xian-Feng Hu
- Wuhan Pu Ai Hospital, Huazhong University of Science and Technology, Wuhan, P. R. China
| | - Rong-Hong Ma
- Department of Laboratory Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P. R. China
| | - Gao-Shang Chai
- Department of Pathophysiology, Key Laboratory of Neurological Diseases of Chinese Ministry of Education, the School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P. R. China; Department of Basic Medicine, Wuxi Medical School, Jiangnan University, Wuxi, Jiangsu Province, P. R. China
| | - Dong-Sheng Sun
- Department of Pathophysiology, Key Laboratory of Neurological Diseases of Chinese Ministry of Education, the School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P. R. China
| | - Zhi-Peng Xu
- Department of Pathophysiology, Key Laboratory of Neurological Diseases of Chinese Ministry of Education, the School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P. R. China
| | - Li Li
- Department of Pathophysiology, Key Laboratory of Neurological Diseases of Chinese Ministry of Education, the School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P. R. China
| | - Jian Bao
- Department of Pathophysiology, Key Laboratory of Neurological Diseases of Chinese Ministry of Education, the School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P. R. China
| | - Qiong Feng
- Department of Pathophysiology, Key Laboratory of Neurological Diseases of Chinese Ministry of Education, the School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P. R. China
| | - Yu Hu
- Department of Pathophysiology, Key Laboratory of Neurological Diseases of Chinese Ministry of Education, the School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P. R. China
| | - Jiang Chu
- Department of Pathophysiology, Key Laboratory of Neurological Diseases of Chinese Ministry of Education, the School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P. R. China
| | - Da-Min Chai
- Department of Pathophysiology, Key Laboratory of Neurological Diseases of Chinese Ministry of Education, the School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P. R. China
| | - Xiao-Yue Hong
- Department of Pathophysiology, Key Laboratory of Neurological Diseases of Chinese Ministry of Education, the School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P. R. China
| | - Jian-Zhi Wang
- Department of Pathophysiology, Key Laboratory of Neurological Diseases of Chinese Ministry of Education, the School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P. R. China; Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, P. R. China
| | - Gong-Ping Liu
- Department of Pathophysiology, Key Laboratory of Neurological Diseases of Chinese Ministry of Education, the School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P. R. China; Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, P. R. China.
| |
Collapse
|