1
|
Lundgren JG, Flynn MG, List K. GPI-anchored serine proteases: essential roles in development, homeostasis, and disease. Biol Chem 2025; 406:1-28. [PMID: 40094301 DOI: 10.1515/hsz-2024-0135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Accepted: 02/23/2025] [Indexed: 03/19/2025]
Abstract
The glycosylphosphatidylinositol (GPI)-anchored serine proteases, prostasin and testisin, have essential roles in diverse physiological functions including development, reproduction, homeostasis and barrier function of epithelia, angiogenesis, coagulation, and fibrinolysis. Important functions in pathological conditions such as cancer, kidney disease and cardiovascular disease have also been reported. In this review, we summarize current knowledge of the cellular and in vivo roles of prostasin and testisin in physiology and pathophysiology and explore the underlying molecular mechanisms. We discuss how new insights of their role in cancer and cardiovascular disease may facilitate translation into clinical settings in the future.
Collapse
Affiliation(s)
- Joseph G Lundgren
- Department of Pharmacology, Wayne State University, Detroit, MI 48201, USA
- Department of Oncology, Wayne State University, Detroit, MI 48201, USA
| | - Michael G Flynn
- Department of Pharmacology, Wayne State University, Detroit, MI 48201, USA
| | - Karin List
- Department of Pharmacology, Wayne State University, Detroit, MI 48201, USA
- Department of Oncology, Wayne State University, Detroit, MI 48201, USA
| |
Collapse
|
2
|
Zhao X, Lv S, Li N, Zou Q, Sun L, Song T. YTHDF2 protein stabilization by the deubiquitinase OTUB1 promotes prostate cancer cell proliferation via PRSS8 mRNA degradation. J Biol Chem 2024; 300:107152. [PMID: 38462165 PMCID: PMC11002313 DOI: 10.1016/j.jbc.2024.107152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 02/23/2024] [Accepted: 03/04/2024] [Indexed: 03/12/2024] Open
Abstract
Prostate cancer is a leading cause of cancer-related mortality in males. Dysregulation of RNA adenine N-6 methylation (m6A) contributes to cancer malignancy. m6A on mRNA may affect mRNA splicing, turnover, transportation, and translation. m6A exerts these effects, at least partly, through dedicated m6A reader proteins, including YTH domain-containing family protein 2 (YTHDF2). YTHDF2 is necessary for development while its dysregulation is seen in various cancers, including prostate cancer. However, the mechanism underlying the dysregulation and function of YTHDF2 in cancer remains elusive. Here, we find that the deubiquitinase OUT domain-containing ubiquitin aldehyde-binding protein 1 (OTUB1) increases YTHDF2 protein stability by inhibiting its ubiquitination. With in vivo and in vitro ubiquitination assays, OTUB1 is shown to block ubiquitin transfer to YTHDF2 independent of its deubiquitinase activity. Furthermore, analysis of functional transcriptomic data and m6A-sequencing data identifies PRSS8 as a potential tumor suppressor gene. OTUB1 and YTHDF2 decrease mRNA and protein levels of PRSS8, which is a trypsin-like serine protease. Mechanistically, YTHDF2 binds PRSS8 mRNA and promotes its degradation in an m6A-dependent manner. Further functional study on cellular and mouse models reveals PRSS8 is a critical downstream effector of the OTUB1-YTHDF2 axis in prostate cancer. We find in prostate cancer cells, PRSS8 decreases nuclear β-catenin level through E-cadherin, which is independent of its protease activity. Collectively, our study uncovers a key regulator of YTHDF2 protein stability and establishes a functional OTUB1-YTHDF2-PRSS8 axis in prostate cancer.
Collapse
Affiliation(s)
- Xuefeng Zhao
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Suli Lv
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Neng Li
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qingli Zou
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lidong Sun
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Cell Architecture Research Institute, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| | - Tanjing Song
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Cell Architecture Research Institute, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| |
Collapse
|
3
|
van Eijck CWF, Sabroso-Lasa S, Strijk GJ, Mustafa DAM, Fellah A, Koerkamp BG, Malats N, van Eijck CHJ. A liquid biomarker signature of inflammatory proteins accurately predicts early pancreatic cancer progression during FOLFIRINOX chemotherapy. Neoplasia 2024; 49:100975. [PMID: 38335839 PMCID: PMC10873733 DOI: 10.1016/j.neo.2024.100975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 01/31/2024] [Indexed: 02/12/2024]
Abstract
BACKGROUND Pancreatic ductal adenocarcinoma (PDAC) is often treated with FOLFIRINOX, a chemotherapy associated with high toxicity rates and variable efficacy. Therefore, it is crucial to identify patients at risk of early progression during treatment. This study aims to explore the potential of a multi-omics biomarker for predicting early PDAC progression by employing an in-depth mathematical modeling approach. METHODS Blood samples were collected from 58 PDAC patients undergoing FOLFIRINOX before and after the first cycle. These samples underwent gene (GEP) and inflammatory protein expression profiling (IPEP). We explored the predictive potential of exclusively IPEP through Stepwise (Backward) Multivariate Logistic Regression modeling. Additionally, we integrated GEP and IPEP using Bayesian Kernel Regression modeling, aiming to enhance predictive performance. Ultimately, the FOLFIRINOX IPEP (FFX-IPEP) signature was developed. RESULTS Our findings revealed that proteins exhibited superior predictive accuracy than genes. Consequently, the FFX-IPEP signature consisted of six proteins: AMN, BANK1, IL1RL2, ITGB6, MYO9B, and PRSS8. The signature effectively identified patients transitioning from disease control to progression early during FOLFIRINOX, achieving remarkable predictive accuracy with an AUC of 0.89 in an independent test set. Importantly, the FFX-IPEP signature outperformed the conventional CA19-9 tumor marker. CONCLUSIONS Our six-protein FFX-IPEP signature holds solid potential as a liquid biomarker for the early prediction of PDAC progression during toxic FOLFIRINOX chemotherapy. Further validation in an external cohort is crucial to confirm the utility of the FFX-IPEP signature. Future studies should expand to predict progression under different chemotherapies to enhance the guidance of personalized treatment selection in PDAC.
Collapse
Affiliation(s)
- Casper W F van Eijck
- Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands; Genetic and Molecular Epidemiology Group, Spanish National Cancer Research Center, Madrid, Spain.
| | - Sergio Sabroso-Lasa
- Genetic and Molecular Epidemiology Group, Spanish National Cancer Research Center, Madrid, Spain; Centro de Investigación Biomédica en Red-Cáncer (CIBERONC), Madrid, Spain
| | - Gaby J Strijk
- Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Dana A M Mustafa
- Department of Clinical Bioinformatics, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Amine Fellah
- Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Bas Groot Koerkamp
- Department of Surgery, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Núria Malats
- Genetic and Molecular Epidemiology Group, Spanish National Cancer Research Center, Madrid, Spain; Centro de Investigación Biomédica en Red-Cáncer (CIBERONC), Madrid, Spain
| | - Casper H J van Eijck
- Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands; Genetic and Molecular Epidemiology Group, Spanish National Cancer Research Center, Madrid, Spain.
| |
Collapse
|
4
|
Yamamoto K, Yamashita F, Kawaguchi M, Izumi A, Kiwaki T, Kataoka H, Kaneuji T, Yamashita Y, Fukushima T. Decreased prostasin expression is associated with aggressiveness of oral squamous cell carcinoma. Hum Cell 2021; 34:1434-1445. [PMID: 34250582 DOI: 10.1007/s13577-021-00575-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 06/25/2021] [Indexed: 11/29/2022]
Abstract
Prostasin is a glycosylphosphatidylinositol-anchored serine protease widely expressed in epithelial cells, with crucial epidermal barrier functions. Evidence has suggested prostasin may have served as a tumor suppressor in various cancers, but its role in oral squamous cell carcinoma (OSCC) remains unclear. Thus, herein, we conducted an immunohistochemical prostasin study in 119 resected OSCC cases. Prostasin expression was decreased in 63% (75/119) of cases. OSCC with decreased prostasin immunoreactivity (low prostasin cases) tended to show a higher histological grade (p = 0.0088) and a more infiltrative cancer cell morphology (p = 0.0024). We then explored the role of prostasin in the OSCC cell lines: SAS and HSC-4. SAS did not express detectable prostasin levels, whereas HSC-4 expressed low but distinct levels. Prostasin overexpression suppressed the proliferation and migration of both OSCC lines in vitro. Conversely, prostasin silencing significantly enhanced growth rates of HSC-4. Finally, we analyzed the impact of prostasin expression on the prognosis of patients with OSCC; decreased expression tended to correlate with shorter overall survival (p = 0.0291) after resection. This trend was supported by our analyses using a public database (Kaplan-Meier plotter) of head and neck squamous cell carcinomas. In conclusion, we showed decreased prostasin expression was associated with aggressive features and a poorer prognosis of OSCC.
Collapse
Affiliation(s)
- Koji Yamamoto
- Section of Oncopathology and Regenerative Biology, Department of Pathology, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki, Japan
| | - Fumiki Yamashita
- Section of Oncopathology and Regenerative Biology, Department of Pathology, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki, Japan
| | - Makiko Kawaguchi
- Section of Oncopathology and Regenerative Biology, Department of Pathology, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki, Japan
| | - Aya Izumi
- Section of Oncopathology and Regenerative Biology, Department of Pathology, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki, Japan
| | - Takumi Kiwaki
- Section of Oncopathology and Regenerative Biology, Department of Pathology, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki, Japan
| | - Hiroaki Kataoka
- Section of Oncopathology and Regenerative Biology, Department of Pathology, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki, Japan
| | - Takeshi Kaneuji
- Department of Oral and Maxillofacial Surgery, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Yoshihiro Yamashita
- Department of Oral and Maxillofacial Surgery, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Tsuyoshi Fukushima
- Section of Oncopathology and Regenerative Biology, Department of Pathology, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki, Japan.
| |
Collapse
|
5
|
Prostasin regulates PD-L1 expression in human lung cancer cells. Biosci Rep 2021; 41:229226. [PMID: 34240739 PMCID: PMC8273379 DOI: 10.1042/bsr20211370] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 06/18/2021] [Accepted: 06/25/2021] [Indexed: 11/17/2022] Open
Abstract
The serine protease prostasin is a negative regulator of lipopolysaccharide-induced inflammation and has a role in the regulation of cellular immunity. Prostasin expression in cancer cells inhibits migration and metastasis, and reduces epithelial–mesenchymal transition. Programmed death-ligand 1 (PD-L1) is a negative regulator of the immune response and its expression in cancer cells interferes with immune surveillance. The aim of the present study was to investigate if prostasin regulates PD-L1 expression. We established sublines overexpressing various forms of prostasin as well as a subline deficient for the prostasin gene from the Calu-3 human lung cancer cells. We report here that PD-L1 expression induced by interferon-γ (IFNγ) is further enhanced in cells overexpressing the wildtype membrane-anchored prostasin. The PD-L1 protein was localized on the cell surface and released into the culture medium in extracellular vesicles (EVs) with the protease-active prostasin. The epidermal growth factor-epidermal growth factor receptor (EGF-EGFR), protein kinase C (PKC), and mitogen-activated protein kinase (MAPK) participated in the prostasin-mediated up-regulation of PD-L1 expression. A Gene Set Enrichment Analysis (GSEA) of patient lung tumors in The Cancer Genome Atlas (TCGA) database revealed that prostasin and PD-L1 regulate common signaling pathways during tumorigenesis and tumor progression.
Collapse
|
6
|
Murray AS, Hyland TE, Sala-Hamrick KE, Mackinder JR, Martin CE, Tanabe LM, Varela FA, List K. The cell-surface anchored serine protease TMPRSS13 promotes breast cancer progression and resistance to chemotherapy. Oncogene 2020; 39:6421-6436. [PMID: 32868877 DOI: 10.1038/s41388-020-01436-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 08/08/2020] [Accepted: 08/17/2020] [Indexed: 12/18/2022]
Abstract
Breast cancer progression is accompanied by increased expression of extracellular and cell-surface proteases capable of degrading the extracellular matrix as well as cleaving and activating downstream targets. The type II transmembrane serine proteases (TTSPs) are a family of cell-surface proteases that play critical roles in numerous types of cancers. Therefore, the aim of this study was to identify novel and uncharacterized TTSPs with differential expression in breast cancer and to determine their potential roles in progression. Systematic in silico data analysis followed by immunohistochemical validation identified increased expression of the TTSP family member, TMPRSS13 (transmembrane protease, serine 13), in invasive ductal carcinoma patient tissue samples compared to normal breast tissue. To test whether loss of TMPRSS13 impacts tumor progression, TMPRSS13 was genetically ablated in the oncogene-induced transgenic MMTV-PymT tumor model. TMPRSS13 deficiency resulted in a significant decrease in overall tumor burden and growth rate, as well as a delayed formation of detectable mammary tumors, thus suggesting a causal relationship between TMPRSS13 expression and the progression of breast cancer. Complementary studies using human breast cancer cell culture models revealed that siRNA-mediated silencing of TMPRSS13 expression decreases proliferation, induces apoptosis, and attenuates invasion. Importantly, targeting TMPRSS13 expression renders aggressive triple-negative breast cancer cell lines highly responsive to chemotherapy. At the molecular level, knockdown of TMPRSS13 in breast cancer cells led to increased protein levels of the tumor-suppressive protease prostasin. TMPRSS13/prostasin co-immunoprecipitation and prostasin zymogen activation experiments identified prostasin as a potential novel target for TMPRSS13. Regulation of prostasin levels may be a mechanism that contributes to the pro-oncogenic properties of TMPRSS13 in breast cancer. TMPRSS13 represents a novel candidate for targeted therapy in combination with standard of care chemotherapy agents in patients with hormone receptor-negative breast cancer or in patients with tumors refractory to endocrine therapy.
Collapse
Affiliation(s)
- Andrew S Murray
- Department of Pharmacology, Wayne State University, Detroit, MI, USA.,Department of Oncology, Wayne State University, Detroit, MI, USA
| | - Thomas E Hyland
- Department of Pharmacology, Wayne State University, Detroit, MI, USA
| | | | - Jacob R Mackinder
- Department of Pharmacology, Wayne State University, Detroit, MI, USA
| | - Carly E Martin
- Department of Pharmacology, Wayne State University, Detroit, MI, USA.,Department of Oncology, Wayne State University, Detroit, MI, USA
| | - Lauren M Tanabe
- Department of Pharmacology, Wayne State University, Detroit, MI, USA
| | - Fausto A Varela
- Department of Pharmacology, Wayne State University, Detroit, MI, USA
| | - Karin List
- Department of Pharmacology, Wayne State University, Detroit, MI, USA. .,Department of Oncology, Wayne State University, Detroit, MI, USA.
| |
Collapse
|
7
|
Abstract
Over the last two decades, a novel subgroup of serine proteases, the cell surface-anchored serine proteases, has emerged as an important component of the human degradome, and several members have garnered significant attention for their roles in cancer progression and metastasis. A large body of literature describes that cell surface-anchored serine proteases are deregulated in cancer and that they contribute to both tumor formation and metastasis through diverse molecular mechanisms. The loss of precise regulation of cell surface-anchored serine protease expression and/or catalytic activity may be contributing to the etiology of several cancer types. There is therefore a strong impetus to understand the events that lead to deregulation at the gene and protein levels, how these precipitate in various stages of tumorigenesis, and whether targeting of selected proteases can lead to novel cancer intervention strategies. This review summarizes current knowledge about cell surface-anchored serine proteases and their role in cancer based on biochemical characterization, cell culture-based studies, expression studies, and in vivo experiments. Efforts to develop inhibitors to target cell surface-anchored serine proteases in cancer therapy will also be summarized.
Collapse
|
8
|
Kosok M, Alli-Shaik A, Bay BH, Gunaratne J. Comprehensive Proteomic Characterization Reveals Subclass-Specific Molecular Aberrations within Triple-negative Breast Cancer. iScience 2020; 23:100868. [PMID: 32058975 PMCID: PMC7015993 DOI: 10.1016/j.isci.2020.100868] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 12/30/2019] [Accepted: 01/20/2020] [Indexed: 02/07/2023] Open
Abstract
Triple-negative breast cancer (TNBC) is the most aggressive subtype of breast cancer lacking targeted therapies. This is attributed to its high heterogeneity that complicates elucidation of its molecular aberrations. Here, we report identification of specific proteome expression profiles pertaining to two TNBC subclasses, basal A and basal B, through in-depth proteomics analysis of breast cancer cells. We observed that kinases and proteases displayed unique expression patterns within the subclasses. Systematic analyses of protein-protein interaction and co-regulation networks of these kinases and proteases unraveled dysregulated pathways and plausible targets for each TNBC subclass. Among these, we identified kinases AXL, PEAK1, and TGFBR2 and proteases FAP, UCHL1, and MMP2/14 as specific targets for basal B subclass, which represents the more aggressive TNBC cell lines. Our study highlights intricate mechanisms and distinct targets within TNBC and emphasizes that these have to be exploited in a subclass-specific manner rather than a one-for-all TNBC therapy. Proteome profiling reveals functionally distinct subclasses within TNBC Kinases and proteases underlie unique functional signatures among the subclasses Kinase-protease-centric networks highlight subclass-specific molecular rewiring Protein association dysregulations reveal TNBC subclass-specific protein targets
Collapse
Affiliation(s)
- Max Kosok
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore 138673, Singapore; Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117594, Singapore
| | - Asfa Alli-Shaik
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore 138673, Singapore
| | - Boon Huat Bay
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117594, Singapore
| | - Jayantha Gunaratne
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore 138673, Singapore; Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117594, Singapore.
| |
Collapse
|
9
|
Caltabiano R, Castrogiovanni P, Barbagallo I, Ravalli S, Szychlinska MA, Favilla V, Schiavo L, Imbesi R, Musumeci G, Di Rosa M. Identification of Novel Markers of Prostate Cancer Progression, Potentially Modulated by Vitamin D. APPLIED SCIENCES 2019; 9:4923. [DOI: 10.3390/app9224923] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
Abstract
Prostate cancer (PCa) is one of the most common cancers in men. The main risk factors associated with the disease include older age, family history of the disease, smoking, alcohol and race. Vitamin D is a pleiotropic hormone whose low levels are associated with several diseases and a risk of cancer. Here, we undertook microarray analysis in order to identify the genes involved in PCa. We analyzed three PCa microarray datasets, overlapped all genes significantly up-regulated, and subsequently intersected the common genes identified with the down-regulated genes transcriptome of LNCaP cells treated with 1α,25(OH)2D3, in order to identify the common genes involved in PCa and potentially modulated by Vitamin D. The analysis yielded 43 genes potentially involved in PCa and significantly modulated by Vitamin D. Noteworthy, our analysis showed that six genes (PRSS8, SOX4, SMYD2, MCCC2, CCNG2 and CD2AP) were significantly modulated. A Pearson correlation analysis showed that five genes out of six (SOX4 was independent), were statistically correlated with the gene expression levels of KLK3, and with the tumor percentage. From the outcome of our investigation, it is possible to conclude that the genes identified by our analysis are associated with the PCa and are potentially modulated by the Vitamin D.
Collapse
Affiliation(s)
- Rosario Caltabiano
- Department G.F. Ingrassia, Section of Anatomic Pathology, University of Catania, 95123 Catania, Italy
| | - Paola Castrogiovanni
- Department of Biomedical and Biotechnological Sciences, Human Anatomy and Histology Section, School of Medicine, University of Catania, 95123 Catania, Italy
| | - Ignazio Barbagallo
- Department of Drug Sciences, University of Catania, Viale A. Doria 6, 95125 Catania, Italy
| | - Silvia Ravalli
- Department of Biomedical and Biotechnological Sciences, Human Anatomy and Histology Section, School of Medicine, University of Catania, 95123 Catania, Italy
| | - Marta Anna Szychlinska
- Department of Biomedical and Biotechnological Sciences, Human Anatomy and Histology Section, School of Medicine, University of Catania, 95123 Catania, Italy
| | - Vincenzo Favilla
- Department of Surgery, Urology Section, University of Catania, 95123 Catania, Italy
| | - Luigi Schiavo
- Obesity Unit, CETAC Medical and Research Center, 81100 Caserta, Italy
| | - Rosa Imbesi
- Department of Biomedical and Biotechnological Sciences, Human Anatomy and Histology Section, School of Medicine, University of Catania, 95123 Catania, Italy
| | - Giuseppe Musumeci
- Department of Biomedical and Biotechnological Sciences, Human Anatomy and Histology Section, School of Medicine, University of Catania, 95123 Catania, Italy
| | - Michelino Di Rosa
- Department of Biomedical and Biotechnological Sciences, Human Anatomy and Histology Section, School of Medicine, University of Catania, 95123 Catania, Italy
| |
Collapse
|
10
|
PRSS8 suppresses colorectal carcinogenesis and metastasis. Oncogene 2018; 38:497-517. [DOI: 10.1038/s41388-018-0453-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 07/22/2018] [Accepted: 07/24/2018] [Indexed: 12/13/2022]
|
11
|
Böttcher-Friebertshäuser E, Garten W, Klenk HD. Membrane-Anchored Serine Proteases: Host Cell Factors in Proteolytic Activation of Viral Glycoproteins. ACTIVATION OF VIRUSES BY HOST PROTEASES 2018. [PMCID: PMC7122464 DOI: 10.1007/978-3-319-75474-1_8] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Over one third of all known proteolytic enzymes are serine proteases. Among these, the trypsin-like serine proteases comprise one of the best characterized subfamilies due to their essential roles in blood coagulation, food digestion, fibrinolysis, or immunity. Trypsin-like serine proteases possess primary substrate specificity for basic amino acids. Most of the well-characterized trypsin-like proteases such as trypsin, plasmin, or urokinase are soluble proteases that are secreted into the extracellular environment. At the turn of the millennium, a number of novel trypsin-like serine proteases have been identified that are anchored in the cell membrane, either by a transmembrane domain at the N- or C-terminus or via a glycosylphosphatidylinositol (GPI) linkage. Meanwhile more than 20 membrane-anchored serine proteases (MASPs) have been identified in human and mouse, and some of them have emerged as key regulators of mammalian development and homeostasis. Thus, the MASP corin and TMPRSS6/matriptase-2 have been demonstrated to be the activators of the atrial natriuretic peptide (ANP) and key regulator of hepcidin expression, respectively. Furthermore, MASPs have been recognized as host cell factors activating respiratory viruses including influenza virus as well as severe acute respiratory syndrome (SARS) and Middle East respiratory syndrome (MERS) coronaviruses. In particular, transmembrane protease serine S1 member 2 (TMPRSS2) has been shown to be essential for proteolytic activation and consequently spread and pathogenesis of a number of influenza A viruses in mice and as a factor associated with severe influenza virus infection in humans. This review gives an overview on the physiological functions of the fascinating and rapidly evolving group of MASPs and a summary of the current knowledge on their role in proteolytic activation of viral fusion proteins.
Collapse
Affiliation(s)
| | - Wolfgang Garten
- 0000 0004 1936 9756grid.10253.35Institut für Virologie, Philipps Universität, Marburg, Germany
| | - Hans Dieter Klenk
- 0000 0004 1936 9756grid.10253.35Institut für Virologie, Philipps-Universität, Marburg, Germany
| |
Collapse
|
12
|
Hepatocyte growth factor activator inhibitor type-2 (HAI-2)/ SPINT2 contributes to invasive growth of oral squamous cell carcinoma cells. Oncotarget 2018; 9:11691-11706. [PMID: 29545930 PMCID: PMC5837738 DOI: 10.18632/oncotarget.24450] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Accepted: 02/01/2018] [Indexed: 11/25/2022] Open
Abstract
Hepatocyte growth factor activator inhibitor (HAI)-1/SPINT1 and HAI-2/SPINT2 are membrane-anchored protease inhibitors having homologous Kunitz-type inhibitor domains. They regulate membrane-anchored serine proteases, such as matriptase and prostasin. Whereas HAI-1 suppresses the neoplastic progression of keratinocytes to invasive squamous cell carcinoma (SCC) through matriptase inhibition, the role of HAI-2 in keratinocytes is poorly understood. In vitro homozygous knockout of the SPINT2 gene suppressed the proliferation of two oral SCC (OSCC) lines (SAS and HSC3) but not the growth of a non-tumorigenic keratinocyte line (HaCaT). Reversion of HAI-2 abrogated the growth suppression. Matrigel invasion of both OSCC lines was also suppressed by the loss of HAI-2. The levels of prostasin protein were markedly increased in HAI-2-deficient cells, and knockdown of prostasin alleviated the HAI-2 loss-induced suppression of OSCC cell invasion. Therefore, HAI-2 has a pro-invasive role in OSCC cells through suppression of prostasin. In surgically resected OSCC tissues, HAI-2 immunoreactivity increased along with neoplastic progression, showing intense immunoreactivities in invasive OSCC cells. In summary, HAI-2 is required for invasive growth of OSCC cells and may contribute to OSCC progression.
Collapse
|
13
|
Bao Y, Li K, Guo Y, Wang Q, Li Z, Yang Y, Chen Z, Wang J, Zhao W, Zhang H, Chen J, Dong H, Shen K, Diamond AM, Yang W. Tumor suppressor PRSS8 targets Sphk1/S1P/Stat3/Akt signaling in colorectal cancer. Oncotarget 2018; 7:26780-92. [PMID: 27050145 PMCID: PMC5042014 DOI: 10.18632/oncotarget.8511] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Accepted: 03/06/2016] [Indexed: 02/06/2023] Open
Abstract
PRSS8 is a membrane-anchored serine protease prostasin and has been shown an association with carcinogenesis. Herein we found that PRSS8 expression was significantly reduced in colorectal adenomas and adenocarcinomas. The decreased PRSS8 was well correlated with clinical stages, poor differentiation and shorter survival time of colorectal cancer. Furthermore, increase of PRSS8 led to the inhibition of colorectal cancer cell proliferation, knockdown of PRSS8 accelerated cell proliferation in vitro, and overexpressing PRSS8 retarded cancer cell growth in nude mice. Mechanistic studies revealed that PRSS8 inhibited Sphk1/S1P/Stat3/Akt signaling pathway, in terms of inverse association between PRSS8 and Sphk1 in human colorectal cancers and in Sphk1-/- mice. In conclusion, PRSS8 acts as a tumor suppressor by inhibiting Sphk1/S1P/Stat3/Akt signaling pathway, and could be used as a biomarker to monitor colorectal carcinogenesis and predict outcomes.
Collapse
Affiliation(s)
- Yonghua Bao
- Department of Pathology and Institute of Precision Medicine, Jining Medical University, Jining 272067, China
| | - Kai Li
- Department of Pathology, The First Affiliated Hospital, Xinxiang Medical University, Xinxiang 453003, China
| | - Yongchen Guo
- Department of Pathology and Institute of Precision Medicine, Jining Medical University, Jining 272067, China
| | - Qian Wang
- Department of Immunology, Xinxiang Medical University, Xinxiang 453003, China
| | - Zexin Li
- Department of Surgical Oncology, The First Affiliated Hospital, Xinxiang Medical University, Weihui 453003, China
| | - Yiqiong Yang
- Department of Pathology and Institute of Precision Medicine, Jining Medical University, Jining 272067, China
| | - Zhiguo Chen
- Department of Pathology, Xinxiang Medical University, Xinxiang 453003, China
| | - Jianguo Wang
- Department of Surgical Oncology, The First Affiliated Hospital, Xinxiang Medical University, Weihui 453003, China
| | - Weixing Zhao
- Department of Pathology, The First Affiliated Hospital, Xinxiang Medical University, Xinxiang 453003, China.,Department of Pathology, Xinxiang Medical University, Xinxiang 453003, China
| | - Huijuan Zhang
- Department of Pathology, Xinxiang Medical University, Xinxiang 453003, China
| | - Jiwang Chen
- Division of Pulmonary, Critical Care, Sleep and Allergy, Department of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Huali Dong
- Department of Pathology, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Kui Shen
- Department of Pathology, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Alan M Diamond
- Department of Pathology, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Wancai Yang
- Department of Pathology and Institute of Precision Medicine, Jining Medical University, Jining 272067, China.,Department of Pathology, University of Illinois at Chicago, Chicago, IL 60612, USA
| |
Collapse
|
14
|
Bao Y, Wang Q, Guo Y, Chen Z, Li K, Yang Y, Zhang H, Dong H, Shen K, Yang W. PRSS8 methylation and its significance in esophageal squamous cell carcinoma. Oncotarget 2017; 7:28540-55. [PMID: 27081034 PMCID: PMC5053744 DOI: 10.18632/oncotarget.8677] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2015] [Accepted: 03/28/2016] [Indexed: 12/22/2022] Open
Abstract
Esophageal cancer is one of the most common cancers worldwide, and the incidence and mortality is increasing rapidly in recent years in China, but the underlying mechanisms are largely unclear. Herein we found that the expression of PRSS8, a serine protease prostasin, is significantly decreased in esophageal squamous cell carcinomas (ESCC) at mRNA and protein levels. The reduction of PRSS8 was well correlated with poor differentiation and shorter survival time. Interestingly, ESCC stromal expression of PRSS8 was significantly correlated with stromal lymphocyte infiltration and cancer progression. Methylation specific PCR showed that PRSS8 was hypermethylated in ESCC tissues and ESCC cell lines, which was linked to the downregulation of PRSS8 expression and decreased activities of PRSS8 promoter. De-methylation agent decitabine was able to restore PRSS8 expression, leading to the inhibition of cancer cell proliferation, motility, migration and cell cycle arrest. However, the restored PRSS8 and its tumor inhibition could be reversed by small interfering RNA targeting PRSS8. Mechanistic study showed that tumor inhibition of PRSS8 may be associated with proliferation- and epithelial mesenchymal transition - related proteins in ESCC cells. In conclusion, our finding showed that PRSS8 methylation and its stromal expression had important clinical significance in ESCC.
Collapse
Affiliation(s)
- Yonghua Bao
- Department of Pathology and Institute of Precision Medicine, Jining Medical University, Jining 272067, China
| | - Qian Wang
- Department of Immunology, Xinxiang Medical University, Xinxiang 453003, China
| | - Yongchen Guo
- Department of Pathology and Institute of Precision Medicine, Jining Medical University, Jining 272067, China
| | - Zhiguo Chen
- Department of Pathology, Xinxiang Medical University, Xinxiang 453003, China
| | - Kai Li
- Department of Pathology, The First Affiliated Hospital, Xinxiang Medical University, Xinxiang 453003, China
| | - Yiqiong Yang
- Department of Pathology and Institute of Precision Medicine, Jining Medical University, Jining 272067, China
| | - Huijuan Zhang
- Department of Pathology, Xinxiang Medical University, Xinxiang 453003, China
| | - Huali Dong
- Department of Pathology, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Kui Shen
- Department of Pathology, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Wancai Yang
- Department of Pathology and Institute of Precision Medicine, Jining Medical University, Jining 272067, China.,Department of Pathology, University of Illinois at Chicago, Chicago, IL 60612, USA
| |
Collapse
|
15
|
Coradin M, Karch KR, Garcia BA. Monitoring proteolytic processing events by quantitative mass spectrometry. Expert Rev Proteomics 2017; 14:409-418. [PMID: 28395554 DOI: 10.1080/14789450.2017.1316977] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
INTRODUCTION Protease activity plays a key role in a wide variety of biological processes including gene expression, protein turnover and development. misregulation of these proteins has been associated with many cancer types such as prostate, breast, and skin cancer. thus, the identification of protease substrates will provide key information to understand proteolysis-related pathologies. Areas covered: Proteomics-based methods to investigate proteolysis activity, focusing on substrate identification, protease specificity and their applications in systems biology are reviewed. Their quantification strategies, challenges and pitfalls are underlined and the biological implications of protease malfunction are highlighted. Expert commentary: Dysregulated protease activity is a hallmark for some disease pathologies such as cancer. Current biochemical approaches are low throughput and some are limited by the amount of sample required to obtain reliable results. Mass spectrometry based proteomics provides a suitable platform to investigate protease activity, providing information about substrate specificity and mapping cleavage sites.
Collapse
Affiliation(s)
- Mariel Coradin
- a Epigenetics Program, Department of Biochemistry and Biophysics, Perelman School of Medicine , University of Pennsylvania , Philadelphia , PA , USA
| | - Kelly R Karch
- a Epigenetics Program, Department of Biochemistry and Biophysics, Perelman School of Medicine , University of Pennsylvania , Philadelphia , PA , USA
| | - Benjamin A Garcia
- a Epigenetics Program, Department of Biochemistry and Biophysics, Perelman School of Medicine , University of Pennsylvania , Philadelphia , PA , USA
| |
Collapse
|
16
|
Yang HY, Fang DZ, Ding LS, Hui XB, Liu D. Overexpression of Protease Serine 8 Inhibits Glioma Cell Proliferation, Migration, and Invasion via Suppressing the Akt/mTOR Signaling Pathway. Oncol Res 2016; 25:923-930. [PMID: 27983922 PMCID: PMC7841053 DOI: 10.3727/096504016x14798241682647] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Protease serine 8 (PRSS8), a serine peptidase, has a widespread expression in normal epidermal cells. Recently, many researchers demonstrated downregulation of PRSS8 in cancer tissues as well as its tumor suppressor role in cancer development. However, the biological functions of PRSS8 in glioma remain unclear. In the current study, we demonstrated a decreased expression of PRSS8 in glioma tissues and cell lines. PRSS8 upregulation inhibited glioma cell proliferation, migration, and invasion. In addition, xenograft experiments showed that PRSS8 overexpression suppressed glioma cell growth in vivo. We also found that upregulated PRSS8 reduced the protein expression levels of p-Akt and p-mTOR in glioma cells. Taken together, our study demonstrated that overexpression of PRSS8 inhibited glioma cell proliferation, migration, and invasion via suppressing the Akt/mTOR signaling pathway. Therefore, PRSS8 may act as a novel therapeutic target for glioma.
Collapse
|
17
|
Chai AC, Robinson AL, Chai KX, Chen LM. Ibuprofen regulates the expression and function of membrane-associated serine proteases prostasin and matriptase. BMC Cancer 2015; 15:1025. [PMID: 26715240 PMCID: PMC4696080 DOI: 10.1186/s12885-015-2039-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Accepted: 12/21/2015] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND The glycosylphosphatidylinositol-anchored extracellular membrane serine protease prostasin is expressed in normal bladder urothelial cells. Bladder inflammation reduces prostasin expression and a loss of prostasin expression is associated with epithelial-mesenchymal transition (EMT) in human bladder transitional cell carcinomas. Non-steroidal anti-inflammatory drugs (NSAIDs) decrease the incidence of various cancers including bladder cancer, but the molecular mechanisms underlying the anticancer effect of NSAIDs are not fully understood. METHODS The normal human bladder urothelial cell line UROtsa, the normal human trophoblast cell line B6Tert-1, human bladder transitional cell carcinoma cell lines UM-UC-5 and UM-UC-9, and the human breast cancer cell line JIMT-1 were used for the study. Expression changes of the serine proteases prostasin and matriptase, and cyclooxygenases (COX-1 and COX-2) in these cells following ibuprofen treatments were analyzed by means of reverse-transcription/quantitative polymerase chain reaction (RT-qPCR) and immunoblotting. The functional role of the ibuprofen-regulated prostasin in epithelial tight junction formation and maintenance was assessed by measuring the transepithelial electrical resistance (TEER) and epithelial permeability in the B6Tert-1 cells. Prostasin's effects on tight junctions were also evaluated in B6Tert-1 cells over-expressing a recombinant human prostasin, silenced for prostasin expression, or treated with a functionally-blocking prostasin antibody. Matriptase zymogen activation was examined in cells over-expressing prostasin. RESULTS Ibuprofen increased prostasin expression in the UROtsa and the B6Tert-1 cells. Cyclooxygenase-2 (COX-2) expression was up-regulated at both the mRNA and the protein levels in the UROtsa cells by ibuprofen in a dose-dependent manner, but was not a requisite for up-regulating prostasin expression. The ibuprofen-induced prostasin contributed to the formation and maintenance of the epithelial tight junctions in the B6Tert-1 cells. The matriptase zymogen was down-regulated in the UROtsa cells by ibuprofen possibly as a result of the increased prostasin expression because over-expressing prostasin leads to matriptase activation and zymogen down-regulation in the UROtsa, JIMT-1, and B6Tert-1 cells. The expression of prostasin and matriptase was differentially regulated by ibuprofen in the bladder cancer cells. CONCLUSIONS Ibuprofen has been suggested for use in treating bladder cancer. Our results bring the epithelial extracellular membrane serine proteases prostasin and matriptase into the potential molecular mechanisms of the anticancer effect of NSAIDs.
Collapse
Affiliation(s)
- Andreas C Chai
- Burnett School of Biomedical Sciences, University of Central Florida College of Medicine, 4000 Central Florida Boulevard, Building 20, Room 323, Orlando, FL, 32816-2364, USA
| | - Andrew L Robinson
- Burnett School of Biomedical Sciences, University of Central Florida College of Medicine, 4000 Central Florida Boulevard, Building 20, Room 323, Orlando, FL, 32816-2364, USA
| | - Karl X Chai
- Burnett School of Biomedical Sciences, University of Central Florida College of Medicine, 4000 Central Florida Boulevard, Building 20, Room 323, Orlando, FL, 32816-2364, USA
| | - Li-Mei Chen
- Burnett School of Biomedical Sciences, University of Central Florida College of Medicine, 4000 Central Florida Boulevard, Building 20, Room 323, Orlando, FL, 32816-2364, USA.
| |
Collapse
|
18
|
Ghaffari-Tabrizi-Wizsy N, Cvitic S, Tam-Amersdorfer C, Bilban M, Majali-Martinez A, Schramke K, Desoye G, Hiden U. Different Preference of Degradome in Invasion versus Angiogenesis. Cells Tissues Organs 2015; 200:181-94. [PMID: 26068777 DOI: 10.1159/000381766] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/16/2015] [Indexed: 11/19/2022] Open
Abstract
Proteases are required for a multitude of cellular processes including homeostatic tissue remodelling, invasion and angiogenesis. The physiological function of a cell or tissue is reflected by the set of proteases expressed, also termed degradome. The role of proteases in invasion and angiogenesis has been studied intensively, mostly in cancer. We aimed to compare the set of proteases required for physiological invasion versus physiological angiogenesis from cells deriving from the same organ, and to identify the proteases specific for each process. The human placenta comprises trophoblasts that invade the maternal uterus in a regulated, physiological manner, and it is the source of primary endothelial cells. We isolated the trophoblasts and endothelial cells and verified their invasive phenotype and angiogenic properties, respectively. We then performed gene expression analysis of the degradome, e.g. cysteine, metallo, serine, threonine and aspartic proteases, identified the differentially expressed proteases among the trophoblasts and endothelial cells, and clustered them hierarchically. The results revealed that the set of proteases in trophoblasts versus in endothelial cells overlaps, with a total of 69% in common. Nevertheless, 42% of the studied degradomes differed, with a fold change ≥2. For instance, metalloproteinases were predominantly expressed in trophoblasts, and 31% of the proteases were exclusively expressed in either trophoblasts or endothelial cells; this suggests particular roles for these proteases in either invasion or angiogenesis. Our data identify common and distinct proteases in cells capable of performing invasion and angiogenesis, and may provide basic information for the design of techniques to specifically investigate invasion or angiogenesis.
Collapse
|
19
|
Desai MA, Webb HD, Sinanan LM, Scarsdale JN, Walavalkar NM, Ginder GD, Williams DC. An intrinsically disordered region of methyl-CpG binding domain protein 2 (MBD2) recruits the histone deacetylase core of the NuRD complex. Nucleic Acids Res 2015; 43:3100-13. [PMID: 25753662 PMCID: PMC4381075 DOI: 10.1093/nar/gkv168] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2014] [Revised: 02/13/2015] [Accepted: 02/20/2015] [Indexed: 12/20/2022] Open
Abstract
The MBD2-NuRD (Nucleosome Remodeling and Deacetylase) complex is an epigenetic reader of DNA methylation that regulates genes involved in normal development and neoplastic diseases. To delineate the architecture and functional interactions of the MBD2-NuRD complex, we previously solved the structures of MBD2 bound to methylated DNA and a coiled-coil interaction between MBD2 and p66α that recruits the CHD4 nucleosome remodeling protein to the complex. The work presented here identifies novel structural and functional features of a previously uncharacterized domain of MBD2 (MBD2IDR). Biophysical analyses show that the MBD2IDR is an intrinsically disordered region (IDR). However, despite this inherent disorder, MBD2IDR increases the overall binding affinity of MBD2 for methylated DNA. MBD2IDR also recruits the histone deacetylase core components (RbAp48, HDAC2 and MTA2) of NuRD through a critical contact region requiring two contiguous amino acid residues, Arg(286) and Leu(287). Mutating these residues abrogates interaction of MBD2 with the histone deacetylase core and impairs the ability of MBD2 to repress the methylated tumor suppressor gene PRSS8 in MDA-MB-435 breast cancer cells. These findings expand our knowledge of the multi-dimensional interactions of the MBD2-NuRD complex that govern its function.
Collapse
Affiliation(s)
- Megha A Desai
- Department of Human and Molecular Genetics and Massey Cancer Center, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Heather D Webb
- Department of Pathology and Massey Cancer Center, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Leander M Sinanan
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - J Neel Scarsdale
- Institute of Structural Biology and Drug Design, Center for the Study of Biological Complexity, and Massey Cancer Center, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Ninad M Walavalkar
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Gordon D Ginder
- Departments of Internal Medicine, Human and Molecular Genetics, and Microbiology and Immunology and Massey Cancer Center, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - David C Williams
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
20
|
Increased expression of prostasin contributes to early-onset severe preeclampsia through inhibiting trophoblast invasion. J Perinatol 2015; 35:16-22. [PMID: 25078863 DOI: 10.1038/jp.2014.136] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2014] [Revised: 06/13/2014] [Accepted: 06/23/2014] [Indexed: 01/03/2023]
Abstract
OBJECTIVE To investigate the potential role of prostasin, as an invasion suppressor, in the process of trophoblast invasion in preeclampsia. STUDY DESIGN This case-control study included 19 early-onset severe preeclampsia (⩽ 34 weeks), 20 late-onset severe preeclampsia (>34 weeks) and 20 normal term pregnant women. Immunohistochemistry was conducted to identify the cellular localization of prostasin, as well as the matrix metalloproteinase 2 (MMP2) and MMP9 in the placenta tissues. Enzyme-linked immunosorbent assay was performed to analyze the expression of these three proteins in placental homogenates. The effect of prostasin on the invasive and migratory ability of trophoblast cells was detected by transwell assays. We also examined the regulation of the prostasin antibody in the MMP2 and MMP9 secretion by HTR-8/SVneo cells via blocking the prostasin activity. RESULT This study demonstrated that the prostasin, MMP2 and MMP9 were all expressed in the placental syncytiotrophoblasts. Increased expression of prostasin was detected in cases with early-onset severe preeclampsia compared with the late-onset and control groups (P < 0.05), whereas the expression patterns of MMP2 and MMP9 in placental homogenates were opposite to that of prostasin (P < 0.05). Recombinant prostasin inhibited the invasion and migration of trophoblast cells, whereas prostasin antibody enhanced the MMP2 and MMP9 secretion in a dose- and time-dependent manner. CONCLUSION These findings suggest that prostasin may suppress the invasion process in preeclampsia by attenuating MMP2 and MMP9 secretion.
Collapse
|
21
|
Protease Nexin-1 affects the migration and invasion of C6 glioma cells through the regulation of urokinase Plasminogen Activator and Matrix Metalloproteinase-9/2. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2014; 1843:2631-44. [DOI: 10.1016/j.bbamcr.2014.07.008] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Revised: 06/26/2014] [Accepted: 07/17/2014] [Indexed: 01/23/2023]
|
22
|
PSP94, an upstream signaling mediator of prostasin found highly elevated in ovarian cancer. Cell Death Dis 2014; 5:e1407. [PMID: 25188517 PMCID: PMC4540204 DOI: 10.1038/cddis.2014.374] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Revised: 07/24/2014] [Accepted: 07/28/2014] [Indexed: 01/04/2023]
Abstract
Ovarian cancer is a leading cause of cancer death as diagnosis is frequently delayed to an advanced stage. Effective biomarkers and screening strategies for early detection are urgently needed. In the current study, we identify PSP94 as a key upstream factor in mediating prostasin (a protein previously reported to be overexpressed in ovarian cancer) signaling that regulates prostasin expression and action in ovarian cancer cells. PSP94 is overexpressed in ovarian cancer cell lines and patients, and is significantly correlated with prostasin levels. Signaling pathway analysis demonstrated that both PSP94 and prostasin, as potential upstream regulators of the Lin28b/Let-7 pathway, regulate Lin28b and its downstream partner Let-7 in ovarian cancer cells. Expression of PSP94 and prostasin show a strong correlation with the expression levels of Lin28b/Let-7 in ovarian cancer patients. Thus, PSP94/prostasin axis appears to be linked to the Lin28b/Let-7 loop, a well-known signaling mechanism in oncogenesis in general that is also altered in ovarian cancer. The findings suggest that PSP94 and PSP94/prostasin axis are key factors and potential therapeutic targets or early biomarkers for ovarian cancer.
Collapse
|
23
|
Yan BX, Ma JX, Zhang J, Guo Y, Mueller MD, Remick SC, Yu JJ. Prostasin may contribute to chemoresistance, repress cancer cells in ovarian cancer, and is involved in the signaling pathways of CASP/PAK2-p34/actin. Cell Death Dis 2014; 5:e995. [PMID: 24434518 PMCID: PMC4043260 DOI: 10.1038/cddis.2013.523] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2013] [Revised: 11/18/2013] [Accepted: 11/20/2013] [Indexed: 02/07/2023]
Abstract
Ovarian cancer is the deadliest of gynecologic cancers, largely due to the development of drug resistance in chemotherapy. Prostasin may have an essential role in the oncogenesis. In this study, we show that prostasin is decreased in an ovarian cancer drug-resistant cell line and in ovarian cancer patients with high levels of excision repair cross-complementing 1, a marker for chemoresistance. Our cell cultural model investigation demonstrates prostasin has important roles in the development of drug resistance and cancer cell survival. Forced overexpression of prostasin in ovarian cancer cells greatly induces cell death (resulting in 99% cell death in a drug-resistant cell line and 100% cell death in other tested cell lines). In addition, the surviving cells grow at a much lower rate compared with non-overexpressed cells. In vivo studies indicate that forced overexpression of prostasin in drug-resistant cells greatly inhibits the growth of tumors and may partially reverse drug resistance. Our investigation of the molecular mechanisms suggests that prostasin may repress cancer cells and/or contribute to chemoresistance by modulating the CASP/P21-activated protein kinase (PAK2)-p34 pathway, and thereafter PAK2-p34/JNK/c-jun and PAK2-p34/mlck/actin signaling pathways. Thus, we introduce prostain as a potential target for treating/repressing some ovarian tumors and have begun to identify their relevant molecular targets in specific signaling pathways.
Collapse
Affiliation(s)
- B-x Yan
- 1] Department of Biochemistry, School of Medicine, Department of Basic Pharmaceutical Sciences, School of Pharmacy, and Mary Babb Randolph Cancer Center, Robert C. Byrd Health Sciences Center, West Virginia University, Morgantown, WV 26506, USA [2] IcesnowYanyan Bioscience Association, Beijing 00094, China
| | - J-x Ma
- 1] Department of Biochemistry, School of Medicine, Department of Basic Pharmaceutical Sciences, School of Pharmacy, and Mary Babb Randolph Cancer Center, Robert C. Byrd Health Sciences Center, West Virginia University, Morgantown, WV 26506, USA [2] Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA
| | - J Zhang
- 1] IcesnowYanyan Bioscience Association, Beijing 00094, China [2] Beijing Animal Science Institute, Beijing 00097, China
| | - Y Guo
- Department of Biochemistry, School of Medicine, Department of Basic Pharmaceutical Sciences, School of Pharmacy, and Mary Babb Randolph Cancer Center, Robert C. Byrd Health Sciences Center, West Virginia University, Morgantown, WV 26506, USA
| | - M D Mueller
- Department of Biochemistry, School of Medicine, Department of Basic Pharmaceutical Sciences, School of Pharmacy, and Mary Babb Randolph Cancer Center, Robert C. Byrd Health Sciences Center, West Virginia University, Morgantown, WV 26506, USA
| | - S C Remick
- Department of Biochemistry, School of Medicine, Department of Basic Pharmaceutical Sciences, School of Pharmacy, and Mary Babb Randolph Cancer Center, Robert C. Byrd Health Sciences Center, West Virginia University, Morgantown, WV 26506, USA
| | - J J Yu
- Department of Biochemistry, School of Medicine, Department of Basic Pharmaceutical Sciences, School of Pharmacy, and Mary Babb Randolph Cancer Center, Robert C. Byrd Health Sciences Center, West Virginia University, Morgantown, WV 26506, USA
| |
Collapse
|
24
|
Aggarwal S, Dabla PK, Arora S. Prostasin: An Epithelial Sodium Channel Regulator. J Biomark 2013; 2013:179864. [PMID: 26317012 PMCID: PMC4436870 DOI: 10.1155/2013/179864] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Revised: 06/03/2013] [Accepted: 06/04/2013] [Indexed: 12/26/2022] Open
Abstract
Prostasin is a glycophosphatidylinositol-anchored protein which is found in prostate gland, kidney, bronchi, colon, liver, lung, pancreas, and salivary glands. It is a serine protease with trypsin-like substrate specificity which was first purified from seminal fluid in 1994. In the last decade, its diverse roles in various biological and physiological processes have been elucidated. Many studies done to date suggest that prostasin is one of several membrane peptidases regulating epithelial sodium channels in mammals. A comprehensive literature search was conducted from the websites of Pubmed Central, the US National Library of Medicine's digital archive of life sciences literature and the National Library of Medicine. The data was also assessed from journals and books that published relevant articles in this field. Understanding the mechanism by which prostasin and its inhibitors regulate sodium channels has provided a new insight into the treatment of hypertension and some other diseases like cystic fibrosis. Prostasin plays an important role in epidermal growth factor receptor (EGFR) signal modulation. Extracellular proteases have been implicated in tumor metastasis and local tissue invasion because of their ability to degrade extracellular matrices.
Collapse
Affiliation(s)
- Shakti Aggarwal
- Department of Biochemistry, ESI Hospital, Basai Darapur, New Delhi 110015, India
| | - Pradeep K. Dabla
- Department of Biochemistry, Chacha Nehru Bal Chikitsalaya, New Delhi 110031, India
| | - Sarika Arora
- Department of Biochemistry, ESI Hospital, Basai Darapur, New Delhi 110015, India
| |
Collapse
|
25
|
Chen LM, Nergard JC, Ni L, Rosser CJ, Chai KX. Long-term exposure to cigarette smoke extract induces hypomethylation at the RUNX3 and IGF2-H19 loci in immortalized human urothelial cells. PLoS One 2013; 8:e65513. [PMID: 23724145 PMCID: PMC3665628 DOI: 10.1371/journal.pone.0065513] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2012] [Accepted: 05/01/2013] [Indexed: 11/18/2022] Open
Abstract
Cigarette smoking is the single most important epidemiological risk factor for bladder cancer but it is not known whether exposure of urothelial cells to the systemic soluble contents of cigarette smoke is directly causative to bladder cancer and the associated epigenetic changes such as tumor suppressor gene hypermethylation. We undertook this study to investigate if long-term treatment of human urothelial cells with cigarette smoke extract (CSE) results in tumor suppressor gene hypermethylation, a phenotype that was previously associated with long-term constant CSE treatment of airway epithelial cells. We chronically treated an immortalized human urothelial cell line UROtsa with CSE using a cyclic daily regimen but the cells were cultured in CSE-free medium between daily treatments. Bisulfite sequencing and real-time PCR array-based methylation profiling were employed to evaluate methylation changes at tumor suppressor gene loci in the chronically CSE-treated cells versus the passage-matched untreated control cells. The RUNX3 tumor suppressor gene promoter was hypomethylated with a significant increase in proportion of the completely unmethylated haplotype after the long-term CSE treatment; whereas RUNX3 promoter hypermethylation was previously reported for bladder cancers of smokers. Hypomethylation induced by the long-term CSE treatment was also observed for the IGF2-H19 locus. The methylation status at the PRSS8/prostasin and 16 additional loci however, was unaffected by the chronic CSE treatment. Transient CSE treatment over 1 daily regimen resulted in transcriptional down-regulation of RUNX3 and H19, but only the H19 transcription was down-regulated in the chronically CSE-treated urothelial cells. Transcription of a key enzyme in one-carbon metabolism, dihydrofolate reductase (DHFR) was greatly reduced by the long-term CSE treatment, potentially serving as a mechanism for the hypomethylation phenotype via a reduced supply of methyl donor. In conclusion, chronic cyclic CSE treatment of urothelial cells induced hypomethylation rather than hypermethylation at specific loci.
Collapse
Affiliation(s)
- Li-Mei Chen
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, Florida, United States of America
| | | | | | | | | |
Collapse
|
26
|
Hummler E, Dousse A, Rieder A, Stehle JC, Rubera I, Osterheld MC, Beermann F, Frateschi S, Charles RP. The channel-activating protease CAP1/Prss8 is required for placental labyrinth maturation. PLoS One 2013; 8:e55796. [PMID: 23405214 PMCID: PMC3565977 DOI: 10.1371/journal.pone.0055796] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2012] [Accepted: 01/04/2013] [Indexed: 11/18/2022] Open
Abstract
The serine protease CAP1/Prss8 is crucial for skin barrier function, lung alveolar fluid clearance and has been unveiled as diagnostic marker for specific cancer types. Here, we show that a constitutive knockout of CAP1/Prss8 leads to embryonic lethality. These embryos presented no specific defects, but it is during this period, and in particular at E13.5, that wildtype placentas show an increased expression of CAP1/Prss8, thus suggesting a placental defect in the knockout situation. The placentas of knockout embryos exhibited significantly reduced vascular development and incomplete cellular maturation. In contrary, epiblast-specific deletion of CAP1/Prss8 allowed development until birth. These CAP1/Prss8-deficient newborns presented abnormal epidermis, and died soon after birth due to impaired skin function. We thus conclude that a late placental insufficiency might be the primary cause of embryonic lethality in CAP1/Prss8 knockouts. This study highlights a novel and crucial role for CAP1/Prss8 in placental development and function.
Collapse
Affiliation(s)
- Edith Hummler
- Department of Pharmacology and Toxicology, University of Lausanne, Lausanne, Switzerland.
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Frateschi S, Keppner A, Malsure S, Iwaszkiewicz J, Sergi C, Merillat AM, Fowler-Jaeger N, Randrianarison N, Planès C, Hummler E. Mutations of the serine protease CAP1/Prss8 lead to reduced embryonic viability, skin defects, and decreased ENaC activity. THE AMERICAN JOURNAL OF PATHOLOGY 2012; 181:605-15. [PMID: 22705055 DOI: 10.1016/j.ajpath.2012.05.007] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2011] [Revised: 04/23/2012] [Accepted: 05/02/2012] [Indexed: 11/17/2022]
Abstract
CAP1/Prss8 is a membrane-bound serine protease involved in the regulation of several different effectors, such as the epithelial sodium channel ENaC, the protease-activated receptor PAR2, the tight junction proteins, and the profilaggrin polypeptide. Recently, the V170D and the G54-P57 deletion mutations within the CAP1/Prss8 gene, identified in mouse frizzy (fr) and rat hairless (fr(CR)) animals, respectively, have been proposed to be responsible for their skin phenotypes. In the present study, we analyzed those mutations, revealing a change in the protein structure, a modification of the glycosylation state, and an overall reduction in the activation of ENaC of the two mutant proteins. In vivo analyses demonstrated that both fr and fr(CR) mutant animals present analogous reduction of embryonic viability, similar histologic aberrations at the level of the skin, and a significant decrease in the activity of ENaC in the distal colon compared with their control littermates. Hairless rats additionally had dehydration defects in skin and intestine and significant reduction in the body weight. In conclusion, we provided molecular and functional evidence that CAP1/Prss8 mutations are accountable for the defects in fr and fr(CR) animals, and we furthermore demonstrate a decreased function of the CAP1/Prss8 mutant proteins. Therefore, fr and fr(CR) animals are suitable models to investigate the consequences of CAP1/Prss8 action on its target proteins in the whole organism.
Collapse
Affiliation(s)
- Simona Frateschi
- Department of Pharmacology and Toxicology, University of Lausanne, Lausanne, Switzerland
| | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Chen M, Chen LM, Lin CY, Chai KX. Hepsin activates prostasin and cleaves the extracellular domain of the epidermal growth factor receptor. Mol Cell Biochem 2010; 337:259-66. [PMID: 19911255 DOI: 10.1007/s11010-009-0307-y] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2009] [Accepted: 10/29/2009] [Indexed: 12/25/2022]
Abstract
The epithelial extracellular serine protease activation cascade involves matriptase (PRSS14) and prostasin (PRSS8), capable of modulating epidermal growth factor receptor (EGFR) signaling. Matriptase activates prostasin by cleaving in the amino-terminal pro-peptide region of prostasin, presumably at the Arg residue of position 44 (R44) of the full-length human prostasin. Using an Arg-to-Ala mutant (R44A) human prostasin, we showed in this report that the cleavage of prostasin by matriptase is at Arg44. This prostasin proteolytic activation site is also cleaved by hepsin (TMPRSS1) to produce active prostasin capable of forming a covalent complex with protease nexin 1 (PN-1). An amino-terminal truncation of EGFR in the extracellular domain (ECD) was observed when the receptor was co-expressed with hepsin. Hepsin and matriptase appear to cleave the EGFR ECD at different sites, while the hepsin cleavage is not affected by active prostasin, which enhances the matriptase cleavage of EGFR. Using hepsin as the prostasin-activating protease in cells co-transfected with EGFR, we showed that active prostasin does not cleave the EGFR ECD directly in the cellular context. Purified active prostasin also does not cleave purified EGFR. Hepsin cleavage of EGFR is not dependent on receptor tyrosine phosphorylation, while the hepsin-cleaved EGFR is phosphorylated at Tyr1068 and no longer responsive to EGF stimulation. The cleavage of EGFR by hepsin does not result in increased phosphorylation of the downstream extracellular signal-regulated kinases (Erk1/2), an event inducible by the matriptase-prostasin cleavage of EGFR. The role of hepsin serine protease should be considered in future studies of epithelial biology concerning matriptase, prostasin, and EGFR.
Collapse
Affiliation(s)
- Mengqian Chen
- Department of Molecular Biology and Microbiology, Burnett School of Biomedical Sciences, University of Central Florida College of Medicine, Orlando, FL 32816-2364, USA
| | | | | | | |
Collapse
|
29
|
Kitamura K, Tomita K. Regulation of renal sodium handling through the interaction between serine proteases and serine protease inhibitors. Clin Exp Nephrol 2010; 14:405-10. [PMID: 20535627 DOI: 10.1007/s10157-010-0299-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2010] [Accepted: 05/13/2010] [Indexed: 11/30/2022]
Abstract
Sodium balance, extracellular fluid volume, and ultimately blood pressure are maintained by precise regulation of the activity of epithelial sodium channels (ENaC). Multiple mechanisms such as hormones, intracellular factors, and other regulatory factors contribute to regulation of ENaC activity. Prostasin, a glycosylphosphatidylinositol-anchored serine protease, has been identified as an activator of ENaC that increases its open probability. Furin cleaves αENaC at two sites and γENaC at one site at the Golgi. Prostasin cleaves γENaC at one site that is distinct from the furin site at the plasma membrane. Dual cleavage of α- and γ-subunit releases inhibitory segments from ENaC, leading to channel activation. Protease nexin-1 (PN-1), an endogenous prostasin inhibitor, inhibits ENaC activity through suppression of prostasin activity. Aldosterone and transforming growth factor-β1 reciprocally regulate expression of prostasin, PN-1, and ENaC in renal epithelial cell, resulting in sodium retention or natriuresis, respectively. These findings strongly suggest the possibility that coordinated regulation of serine protease, serpin, and ENaC expression plays a key role in sodium handling in the kidney.
Collapse
Affiliation(s)
- Kenichiro Kitamura
- Department of Nephrology, Kumamoto University Graduate School of Medical Sciences, 1-1-1 Honjo, Kumamoto, 860-8556, Japan,
| | | |
Collapse
|
30
|
Fu YY, Gao WL, Chen M, Chai KX, Wang YL, Chen LM. Prostasin regulates human placental trophoblast cell proliferation via the epidermal growth factor receptor signaling pathway. Hum Reprod 2010; 25:623-32. [PMID: 20089521 DOI: 10.1093/humrep/dep457] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Prostasin is a glycosylphosphatidylinositol-anchored extracellular serine protease with a role in epidermal growth factor receptor (EGFR) signal modulation. EGFR signaling has been shown to be important for regulating cytotrophoblast (CT) cell proliferation in human placenta. We investigated the impact of prostasin expression regulation on this cellular function as well as the molecular mechanisms involved in human cytotrophoblastic cells. METHODS An immortalized normal human CT cell line (B6Tert-1) was used as an in vitro cell model. Prostasin expression in B6Tert-1 cells was knocked down by transfection of a short interfering RNA. Lentivirus-mediated expression of recombinant human prostasin under tetracycline regulation was performed to obtain stable B6Tert-1 cell sublines that over-expressed prostasin. Changes in cell proliferation and EGFR signaling were evaluated by immunocytochemistry for Ki67 and western blot analysis, respectively, in B6Tert-1 cells with knocked-down or increased prostasin expression. RESULTS Prostasin knock-down in B6Tert-1 cells resulted in inhibition of cell proliferation, in association with down-regulated EGFR protein expression (both P < 0.05 versus control) as well as reduced phosphorylation of c-raf, mitogen-activated protein kinase (MAPK) kinases (MEK1/2) and extracellular signal-regulated kinases (Erk1/2) (all P < 0.05 versus control). Over-expression of prostasin led to up-regulation of the EGFR protein, but had no effect on cell proliferation or phosphorylation of MAPK signaling molecules in the B6Tert-1 cells. CONCLUSIONS Prostasin may regulate trophoblast cell proliferation via modulating the EGFR-MAPK signaling pathway.
Collapse
Affiliation(s)
- Ya-Yuan Fu
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, People's Republic of China
| | | | | | | | | | | |
Collapse
|
31
|
Chen LM, Hatfield ML, Fu YY, Chai KX. Prostasin regulates iNOS and cyclin D1 expression by modulating protease-activated receptor-2 signaling in prostate epithelial cells. Prostate 2009; 69:1790-801. [PMID: 19670249 DOI: 10.1002/pros.21030] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
BACKGROUND Prostasin is down-regulated during inflammation and in invasive cancers, and plays a role in regulation of inflammatory gene expression and invasion. METHODS We used the human benign prostatic hyperplasia cell line BPH-1 to investigate gene expression changes associated with siRNA-mediated loss of prostasin expression. Quantitative PCR and/or western blotting were used to evaluate the expression changes of iNOS, ICAM-1, cyclin D1, IL-6, and IL-8. Gene expression changes were also evaluated in the presence of a PAR-2 antagonist. The PC-3 human prostate cancer cell line was used for evaluation of gene expression in response to prostasin re-expression. RESULTS Prostasin silencing in BPH-1 was associated with up-regulation of iNOS, ICAM-1, IL-6, and IL-8, and down-regulation of cyclin D1; as well as reduced proliferation and invasion. The iNOS up-regulation and cyclin D1 down-regulation associated with prostasin silencing were inhibited by a PAR-2 antagonist. Re-expression of prostasin, a serine active-site mutant, and a GPI-anchor-free mutant, in the PC-3 cells resulted in PAR-2 and cyclin D1 transcription up-regulation. Transcription up-regulation of IL-6 and IL-8 was associated with re-expression of the serine active-site mutant prostasin in the PC-3 cells. Transcription up-regulation of IL-8, but to a lesser extent, was also observed in PC-3 cells expressing the wild-type prostasin. Expression of a serine protease active prostasin, GPI-anchored or anchor-free, prevented the IL-6 induction in response to PAR-2. The GPI-anchor-free prostasin also prevented the IL-8 induction. CONCLUSIONS Prostasin plays a negative regulatory role on PAR-2-mediated signaling in prostate epithelial cells.
Collapse
Affiliation(s)
- Li-Mei Chen
- Department of Molecular Biology and Microbiology, Burnett School of Biomedical Sciences, University of Central Florida College of Medicine, Orlando, Florida, USA
| | | | | | | |
Collapse
|
32
|
Chen LM, Verity NJ, Chai KX. Loss of prostasin (PRSS8) in human bladder transitional cell carcinoma cell lines is associated with epithelial-mesenchymal transition (EMT). BMC Cancer 2009; 9:377. [PMID: 19849847 PMCID: PMC2770574 DOI: 10.1186/1471-2407-9-377] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2009] [Accepted: 10/22/2009] [Indexed: 01/22/2023] Open
Abstract
Background The glycosylphosphatidylinositol (GPI)-anchored epithelial extracellular membrane serine protease prostasin (PRSS8) is expressed abundantly in normal epithelia and essential for terminal epithelial differentiation, but down-regulated in human prostate, breast, and gastric cancers and invasive cancer cell lines. Prostasin is involved in the extracellular proteolytic modulation of the epidermal growth factor receptor (EGFR) and is an invasion suppressor. The aim of this study was to evaluate prostasin expression states in the transitional cell carcinomas (TCC) of the human bladder and in human TCC cell lines. Methods Normal human bladder tissues and TCC on a bladder cancer tissue microarray (TMA) were evaluated for prostasin expression by means of immunohistochemistry. A panel of 16 urothelial and TCC cell lines were evaluated for prostasin and E-cadherin expression by western blot and quantitative PCR, and for prostasin gene promoter region CpG methylation by methylation-specific PCR (MSP). Results Prostasin is expressed in the normal human urothelium and in a normal human urothelial cell line, but is significantly down-regulated in high-grade TCC and lost in 9 (of 15) TCC cell lines. Loss of prostasin expression in the TCC cell lines correlated with loss of or reduced E-cadherin expression, loss of epithelial morphology, and promoter DNA hypermethylation. Prostasin expression could be reactivated by demethylation or inhibition of histone deacetylase. Re-expression of prostasin or a serine protease-inactive variant resulted in transcriptional up-regulation of E-cadherin. Conclusion Loss of prostasin expression in bladder transitional cell carcinomas is associated with epithelial-mesenchymal transition (EMT), and may have functional implications in tumor invasion and resistance to chemotherapy.
Collapse
Affiliation(s)
- Li-Mei Chen
- Department of Molecular Biology, Burnett School of Biomedical Sciences, University of Central Florida College of Medicine, Orlando, Florida 32816, USA.
| | | | | |
Collapse
|
33
|
Selzer-Plon J, Bornholdt J, Friis S, Bisgaard HC, Lothe IM, Tveit KM, Kure EH, Vogel U, Vogel LK. Expression of prostasin and its inhibitors during colorectal cancer carcinogenesis. BMC Cancer 2009; 9:201. [PMID: 19555470 PMCID: PMC2717118 DOI: 10.1186/1471-2407-9-201] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2009] [Accepted: 06/25/2009] [Indexed: 02/01/2023] Open
Abstract
Background Clinical trials where cancer patients were treated with protease inhibitors have suggested that the serine protease, prostasin, may act as a tumour suppressor. Prostasin is proteolytically activated by the serine protease, matriptase, which has a very high oncogenic potential. Prostasin is inhibited by protease nexin-1 (PN-1) and the two isoforms encoded by the mRNA splice variants of hepatocyte growth factor activator inhibitor-1 (HAI-1), HAI-1A, and HAI-1B. Methods Using quantitative RT-PCR, we have determined the mRNA levels for prostasin and PN-1 in colorectal cancer tissue (n = 116), severe dysplasia (n = 13), mild/moderate dysplasia (n = 93), and in normal tissue from the same individuals. In addition, corresponding tissues were examined from healthy volunteers (n = 23). A part of the cohort was further analysed for the mRNA levels of the two variants of HAI-1, here denoted HAI-1A and HAI-1B. mRNA levels were normalised to β-actin. Immunohistochemical analysis of prostasin and HAI-1 was performed on normal and cancer tissue. Results The mRNA level of prostasin was slightly but significantly decreased in both mild/moderate dysplasia (p < 0.001) and severe dysplasia (p < 0.01) and in carcinomas (p < 0.05) compared to normal tissue from the same individual. The mRNA level of PN-1 was more that two-fold elevated in colorectal cancer tissue as compared to healthy individuals (p < 0.001) and elevated in both mild/moderate dysplasia (p < 0.01), severe dysplasia (p < 0.05) and in colorectal cancer tissue (p < 0.001) as compared to normal tissue from the same individual. The mRNA levels of HAI-1A and HAI-1B mRNAs showed the same patterns of expression. Immunohistochemistry showed that prostasin is located mainly on the apical plasma membrane in normal colorectal tissue. A large variation was found in the degree of polarization of prostasin in colorectal cancer tissue. Conclusion These results show that the mRNA level of PN-1 is significantly elevated in colorectal cancer tissue. Future studies are required to clarify whether down-regulation of prostasin activity via up regulation of PN-1 is causing the malignant progression or if it is a consequence of it.
Collapse
Affiliation(s)
- Joanna Selzer-Plon
- Department of Cellular and Molecular Medicine, Faculty of Health Science, University of Copenhagen, Denmark.
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Zhu H, Chao J, Guo D, Li K, Huang Y, Hawkins K, Wright N, Stallmann-Jorgenson I, Yan W, Harshfield GA, Dong Y. Urinary prostasin: a possible biomarker for renal pressure natriuresis in black adolescents. Pediatr Res 2009; 65:443-6. [PMID: 19127211 PMCID: PMC3826778 DOI: 10.1203/pdr.0b013e3181994b85] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Prostasin is a membrane-bound/secretive serine protease interacting with aldosterone and the epithelial sodium channel in the kidney. We and others have previously proposed the concept of stress-induced pressure natriuresis (SIPN) where increased urinary sodium excretion (UNaV) is coupled with elevated blood pressure (BP) in response to behavioral stress in normotensive adolescents. This study thus aimed to test the relationship between prostasin and pressure natriuresis using the SIPN model. A cohort of 102 normotensive black adolescents (mean age: 17.0 +/- 1.2 y; 56% females) were placed on a controlled sodium (4000 +/- 200 mg/d) and potassium (2600 +/- 200 mg/d) diet for three days before testing. The SIPN protocol consisted of a 1-h baseline period, a 1-h stress period (competitive video game), and a 1-h recovery period. During the stress period, BP elevation was coupled with an increase in UNaV. Urinary prostasin concentration had more than a 2-fold reduction from baseline (38.4 +/- 32.7 ng/mL) to stress (17.2 +/- 16.0 ng/mL), and further declined during recovery (12.1 +/- 16.2 ng/mL) (p < 0.001). Urinary prostasin was inversely correlated with UNaV during stress (r = -0.43, p = 0.0001), even after being normalized by urinary creatinine. Our data suggest that urinary prostasin could be a novel biomarker and/or mechanism for renal pressure natriuresis in normotensive black adolescents.
Collapse
Affiliation(s)
- Haidong Zhu
- Georgia Prevention Institute, Department of Pediatrics, Medical College of Georgia, Augusta, Georgia, USA 30907
| | - Julie Chao
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, South Carolina, USA 29425
| | - Dehuang Guo
- Georgia Prevention Institute, Department of Pediatrics, Medical College of Georgia, Augusta, Georgia, USA 30907
| | - Ke Li
- Georgia Prevention Institute, Department of Pediatrics, Medical College of Georgia, Augusta, Georgia, USA 30907
| | - Ying Huang
- Georgia Prevention Institute, Department of Pediatrics, Medical College of Georgia, Augusta, Georgia, USA 30907
| | - Kimberly Hawkins
- Georgia Prevention Institute, Department of Pediatrics, Medical College of Georgia, Augusta, Georgia, USA 30907
| | - Nikki Wright
- Georgia Prevention Institute, Department of Pediatrics, Medical College of Georgia, Augusta, Georgia, USA 30907
| | - Inger Stallmann-Jorgenson
- Georgia Prevention Institute, Department of Pediatrics, Medical College of Georgia, Augusta, Georgia, USA 30907
| | - Weili Yan
- Georgia Prevention Institute, Department of Pediatrics, Medical College of Georgia, Augusta, Georgia, USA 30907
| | - Gregory A. Harshfield
- Georgia Prevention Institute, Department of Pediatrics, Medical College of Georgia, Augusta, Georgia, USA 30907
| | - Yanbin Dong
- Georgia Prevention Institute, Department of Pediatrics, Medical College of Georgia, Augusta, Georgia, USA 30907
| |
Collapse
|
35
|
Koda A, Wakida N, Toriyama K, Yamamoto K, Iijima H, Tomita K, Kitamura K. Urinary prostasin in humans: relationships among prostasin, aldosterone and epithelial sodium channel activity. Hypertens Res 2009; 32:276-81. [DOI: 10.1038/hr.2009.6] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
36
|
Sakashita K, Mimori K, Tanaka F, Tahara K, Inoue H, Sawada T, Ohira M, Hirakawa K, Mori M. Clinical significance of low expression of Prostasin mRNA in human gastric cancer. J Surg Oncol 2009; 98:559-64. [PMID: 18932242 DOI: 10.1002/jso.21158] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
BACKGROUND Prostasin is considered to have suppressive activities against tumor progression. The aim of this study was to clarify its clinical significance in gastric cancer. METHODS Tumor and the corresponding normal samples were prepared from a total of 108 gastric cancer patients. Prostasin expression was assayed by real time reverse transcription (RT)-polymerase chain reaction (PCR) and by immunohistochemistry. Epigenetic silencing of the expression was examined by demethylation treatment. Survival was examined in Kaplan-Meier plots, and the relationship between its expression and clinicopathologic factors was statistically analyzed. RESULTS Prostasin mRNA expression was significantly down-regulated in tumor tissues. Immunohistochemistry confirmed loss of Prostasin expression in gastric cancer. Gastric cancer cell lines that did not express Prostasin mRNA retrieved its expression following demethylation treatment. In those patients whose tumor expressed Prostasin mRNA at reduced levels, we observed shorter survival (P = 0.0110), due to a higher incidence of lymph node metastasis (P = 0.0087), lymphatic permeation (P = 0.0542) and venous permeation (P = 0.0492). CONCLUSIONS Prostasin mRNA expression was frequently down-regulated in gastric cancer. Loss of expression might be regulated by epigenetic factors, contributing to the shorter survival. Reduced Prostasin mRNA expression might be a novel indicator for biological aggressiveness in gastric cancer.
Collapse
Affiliation(s)
- Katsuya Sakashita
- Department of Surgery and Molecular Oncology, Medical Institute of Bioregulation, Kyushu University, 4546 Tsurumihara, Beppu 874-0838, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Costa FP, Junior ELB, Zelmanowicz A, Svedman C, Devenz G, Alves S, da Silva ASM, Garicochea B. Prostasin, a potential tumor marker in ovarian cancer--a pilot study. Clinics (Sao Paulo) 2009; 64:641-4. [PMID: 19606239 PMCID: PMC2710436 DOI: 10.1590/s1807-59322009000700006] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2009] [Accepted: 04/13/2009] [Indexed: 12/12/2022] Open
Abstract
INTRODUCTION Ovarian cancer is generally diagnosed at advanced stages of the disease; therefore, poor prognoses are typical. The development of tumor markers is thus of utmost importance. Prostasin is a protease that in normal tissues is highly expressed only in the prostate gland and seminal fluid. A previous study showed that prostasin is highly overexpressed in ovarian cancer cell lines. This study sought to evaluate the expression of prostasin in ovarian cancer. METHODS Fresh tumor samples of ovarian epithelial cancer (n: 12) were analyzed for expression of prostasin mRNA (messenger ribonucleic acid) by conventional and real time quantitative PCR (polymerase chain reaction). As a standard control, a normal prostate sample was analyzed. RESULTS Using conventional PCR, prostasin was detected in all but one sample. Using quantitative PCR, prostasin was over-expressed in all but one of the samples as compared to the control (prostate). CONCLUSIONS These findings indicate that prostasin is overexpressed in many epithelial ovarian cancers. Further studies of prostasin as a potential biomarker for this disease are warranted.
Collapse
Affiliation(s)
- Fernanda Pires Costa
- Oncology Unit, Hospital São Lucas, Pontifícia Universidade Católica do Rio Grande do Sul - Porto Alegre/RS, Brazil
| | - Eraldo Luis Batista Junior
- Center of Research in Molecular and Functional Biology, Pontifícia Universidade Católica do Rio Grande do Sul - Porto Alegre/RS, Brazil
| | - Alice Zelmanowicz
- Prevention Cancer Center, Hospital Santa Casa - Porto Alegre/RS, Brazil
| | - Christer Svedman
- Department of Oncology, Karolinska University Hospital - Stockholm, Sweden
| | - Gabriela Devenz
- Biomedical Research Institute, Pontifícia Universidade Católica do Rio Grande do Sul - Porto Alegre/RS, Brazil.,
, Tel: 55 53 3227.9070
| | - Silvana Alves
- Biomedical Research Institute, Pontifícia Universidade Católica do Rio Grande do Sul - Porto Alegre/RS, Brazil.,
, Tel: 55 53 3227.9070
| | | | - Bernardo Garicochea
- Oncology Unit, Hospital São Lucas, Pontifícia Universidade Católica do Rio Grande do Sul - Porto Alegre/RS, Brazil
| |
Collapse
|
38
|
Chen M, Chen LM, Lin CY, Chai KX. The epidermal growth factor receptor (EGFR) is proteolytically modified by the Matriptase-Prostasin serine protease cascade in cultured epithelial cells. BIOCHIMICA ET BIOPHYSICA ACTA 2008; 1783:896-903. [PMID: 18054338 PMCID: PMC3214967 DOI: 10.1016/j.bbamcr.2007.10.019] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/24/2007] [Revised: 10/28/2007] [Accepted: 10/31/2007] [Indexed: 01/13/2023]
Abstract
Prostasin is expressed at the apical surface of normal epithelial cells and suppresses in vitro invasion of cancer cells. Prostasin re-expression in the PC-3 prostate carcinoma cells down-regulated the epidermal growth factor receptor (EGFR) protein expression and EGF-induced phosphorylation of the extracellular signal-regulated kinases (Erk1/2). We report here that prostasin and its activating enzyme matriptase are capable of inducing proteolytic cleavages in the EGFR extracellular domain (ECD) when co-expressed in the FT-293 cells, generating two amino-terminally truncated fragments EGFR135 and EGFR110, at 135 and 110 kDa. Prostasin's role in EGFR cleavage is dependent on the serine active-site but not the GPI-anchor. The modifications of EGFR were confirmed to be on the primary structure by deglycosylation. EGFR135 and EGFR110 are not responsive to EGF stimulation, indicating loss of the ligand-binding domains. EGFR110 is constitutively phosphorylated and in its presence Erk1/2 phosphorylation is increased in the absence of EGF. The protease-induced EGFR cleavages are not dependent on EGFR phosphorylation. The EGFR ECD proteolytic modification by matriptase-prostasin is also observed in the BEAS-2B normal lung epithelial cells, the BPH-1 benign prostate hyperplasia and the MDA-MB-231 breast cancer cell lines; and represents a novel mechanism for epithelial cells to modulate EGF-EGFR signaling.
Collapse
Affiliation(s)
- Mengqian Chen
- Biomolecular Science Center, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL
| | - Li-Mei Chen
- Department of Molecular Biology and Microbiology, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL
| | - Chen-Yong Lin
- Greenebaum Cancer Center, Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD
| | - Karl X. Chai
- Biomolecular Science Center, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL
- Department of Molecular Biology and Microbiology, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL
| |
Collapse
|
39
|
Woodward JKL, Holen I, Coleman RE, Buttle DJ. The roles of proteolytic enzymes in the development of tumour-induced bone disease in breast and prostate cancer. Bone 2007; 41:912-27. [PMID: 17945547 DOI: 10.1016/j.bone.2007.07.024] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2007] [Revised: 07/18/2007] [Accepted: 07/31/2007] [Indexed: 10/22/2022]
Abstract
Tumour-induced bone disease is a common clinical feature of advanced breast and prostate cancer and is associated with considerable morbidity for the affected patients. Our understanding of the molecular mechanisms underlying the development of bone metastases is incomplete, but proteolytic enzymes are implicated in a number of processes involved in both bone metastasis and in normal bone turnover, including matrix degradation, cell migration, angiogenesis, tumour promotion and growth factor activation. Malignant as well as non-malignant cells in the primary and secondary sites express these enzymes, the activity of which may be regulated by soluble factors, cell- or matrix-associated components, as well as a number of cell signalling pathways. A number of secreted and cell surface-associated proteolytic enzymes are implicated in tumour-induced bone disease, including the matrix metalloproteinases, lysosomal cysteine proteinases and plasminogen activators. This review will introduce the role of proteolytic enzymes in normal bone turnover and give an overview of the studies in which their involvement and regulation in the development of bone metastases in breast and prostate cancer has been described. The results from trials involving protease inhibitors in clinical development will also be briefly discussed.
Collapse
Affiliation(s)
- Julia K L Woodward
- Academic Unit of Clinical Oncology, D Floor, School of Medicine and Biomedical Sciences, University of Sheffield, Beech Hill Road, Sheffield, S10 2RX, UK
| | | | | | | |
Collapse
|
40
|
List K, Hobson JP, Molinolo A, Bugge TH. Co-localization of the channel activating protease prostasin/(CAP1/PRSS8) with its candidate activator, matriptase. J Cell Physiol 2007; 213:237-45. [PMID: 17471493 DOI: 10.1002/jcp.21115] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Prostasin (CAP1/PRSS8) is a glycosylphosphatidylinositol-anchored membrane serine protease believed to be critical for the regulation of epithelial sodium channel (ENaC) activity. Prostasin is synthesized as an inactive zymogen that requires a site-specific endoproteolytic cleavage to be converted to an active protease. We have recently reported that the tumor-associated type II transmembrane serine protease, matriptase is necessary and sufficient for prostasin activation in the epidermis. In this study, the interrelationship between the two membrane serine proteases was investigated further by using enzymatic gene trapping combined with immunohistochemistry to delineate the spatial expression of matriptase and prostasin in mouse tissues. We utilized a knock-in mouse with a promoterless beta-galactosidase marker gene inserted into the matriptase locus, as a unique tool for precise assessment of endogenous matriptase expression. The spatial expression of matriptase and prostasin in mouse tissues was delineated by combining in situ beta-galactosidase matriptase staining with immunohistochemical detection of prostasin. We report that prostasin displays a near-ubiquitous co-localization with its candidate activator matriptase in a variety of normal epithelial tissues. These include simple, stratified, and pseudo-stratified epithelium of the integumentary system, digestive tract, respiratory tract, and urogenital tract. However, matriptase and prostasin expression segregates during epithelial multi-stage carcinogenesis to eventually become localized in separate compartments of the tumor. These data suggest that a matriptase-prostasin zymogen activation cascade may be functionally operative in multiple epithelial tissues, but matriptase promotes epithelial carcinogenesis independent of prostasin.
Collapse
Affiliation(s)
- Karin List
- Oral and Pharyngeal Cancer Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | |
Collapse
|
41
|
Abstract
Proteases have long been associated with cancer progression because of their ability to degrade extracellular matrices, which facilitates invasion and metastasis. However, recent studies have shown that these enzymes target a diversity of substrates and favour all steps of tumour evolution. Unexpectedly, the post-trial studies have also revealed proteases with tumour-suppressive effects. These effects are associated with more than 30 different enzymes that belong to three distinct protease classes. What are the clinical implications of these findings?
Collapse
Affiliation(s)
- Carlos López-Otín
- Carlos López-Otín is at the Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Instituto Universitario de Oncología, Universidad de Oviedo, 33006 Oviedo, Spain.
| | | |
Collapse
|
42
|
Zhang H, Lin HY, Yang Q, Wang HX, Chai KX, Chen LM, Zhu C. Expression of Prostasin Serine Protease and Protease Nexin-1 (PN-1) in Rhesus Monkey Ovary During Menstrual Cycle and Early Pregnancy. J Histochem Cytochem 2007; 55:1237-44. [PMID: 17827166 DOI: 10.1369/jhc.7a7232.2007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Serine proteases and their cognate serpin-class inhibitors are involved in the controlled proteolytic events during follicular development, ovulation, formation, and maintenance of the corpus luteum (CL). In this study, we investigated the expression patterns of prostasin serine protease and protease nexin-1 (PN-1), a serine protease inhibitor also called serpin-E2, in rhesus monkey ovaries during the menstrual cycle and early pregnancy, by using in situ hybridization and immunohistochemistry. Expression of prostasin was localized in oocyte, granulosa cells, and/or theca cells of early antral follicles and antral follicles, with high levels observed in preovulatory follicles. Prostasin was also localized at high levels of abundance in the CL during the menstrual cycle and early pregnancy. During the menstrual cycle, PN-1 was coordinately localized with prostasin in oocytes, granulosa cells, and theca cells of antral follicles and preovulatory follicles and in the CL. In addition, the PN-1 expression level in macaque CL during early pregnancy increased as pregnancy proceeded. We propose that prostasin may be involved in follicular development, ovulation, and CL formation, whereas PN-1 may be present to regulate the proteolysis in these processes.
Collapse
Affiliation(s)
- Heng Zhang
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Datun Road, Chaoyang District, Beijing 100101, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
43
|
Chen M, Fu YY, Lin CY, Chen LM, Chai KX. Prostasin induces protease-dependent and independent molecular changes in the human prostate carcinoma cell line PC-3. BIOCHIMICA ET BIOPHYSICA ACTA 2007; 1773:1133-40. [PMID: 17532063 PMCID: PMC1950849 DOI: 10.1016/j.bbamcr.2007.04.013] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/23/2007] [Revised: 04/19/2007] [Accepted: 04/19/2007] [Indexed: 11/17/2022]
Abstract
Expression of prostasin in the PC-3 human prostate carcinoma cells inhibited in vitro invasion, but the molecular mechanisms are unknown. Wild-type human prostasin or a serine active-site mutant prostasin was expressed in the PC-3 cells. Molecular changes were measured at the mRNA and the protein levels. Cell signaling changes were evaluated by measuring phosphorylation of the extracellular signal-regulated kinases (Erk1/2) following epidermal growth factor (EGF) treatment of the cells. Protein expression of the EGF receptor (EGFR) was differentially down-regulated by the wild-type and the active-site mutant prostasin. The mRNA expression of EGFR and the transcription repressor SLUG was reduced in cells expressing wild-type prostasin but not the active-site mutant. Phosphorylation of Erk1/2 in response to EGF was greatly reduced by the wild-type prostasin but not by the active-site mutant. The mRNA expression of the urokinase-type plasminogen activator (uPA), the uPA receptor (uPAR), cyclooxygenase-2 (COX-2), and the inducible nitric oxide synthase (iNOS) was decreased by the wild-type and the active-site mutant prostasin. The mRNA or protein expression of granulocyte-macrophage colony-stimulating factor (GM-CSF), matriptase, and E-cadherin was greatly increased by the active-site mutant prostasin. In conclusion, prostasin expression elicits both protease-dependent and independent molecular changes in the PC-3 cells.
Collapse
Affiliation(s)
- Mengqian Chen
- Biomolecular Science Center, Burnett College of Biomedical Sciences, University of Central Florida, Orlando, FL
| | - Ya-Yuan Fu
- Department of Molecular Biology and Microbiology, Burnett College of Biomedical Sciences, University of Central Florida, Orlando, FL
- State Key Laboratory of Reproductive Biology, Institute of Zoology and Graduate School, Chinese Academy of Sciences, Beijing, People’s Republic of China
| | - Chen-Yong Lin
- Lombardi Cancer Center, Georgetown University Medical Center, Washington, D.C
| | - Li-Mei Chen
- Department of Molecular Biology and Microbiology, Burnett College of Biomedical Sciences, University of Central Florida, Orlando, FL
| | - Karl X. Chai
- Biomolecular Science Center, Burnett College of Biomedical Sciences, University of Central Florida, Orlando, FL
- Department of Molecular Biology and Microbiology, Burnett College of Biomedical Sciences, University of Central Florida, Orlando, FL
| |
Collapse
|
44
|
Verghese GM, Gutknecht MF, Caughey GH. Prostasin regulates epithelial monolayer function: cell-specific Gpld1-mediated secretion and functional role for GPI anchor. Am J Physiol Cell Physiol 2006; 291:C1258-70. [PMID: 16822939 PMCID: PMC2271112 DOI: 10.1152/ajpcell.00637.2005] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Prostasin, a trypsinlike serine peptidase, is highly expressed in prostate, kidney, and lung epithelia, where it is bound to the cell surface, secreted, or both. Prostasin activates the epithelial sodium channel (ENaC) and suppresses invasion of prostate and breast cancer cells. The studies reported here establish mechanisms of membrane anchoring and secretion in kidney and lung epithelial cells and demonstrate a critical role for prostasin in regulating epithelial monolayer function. We report that endogenous mouse prostasin is glycosylphosphatidylinositol (GPI) anchored to the cell surface and is constitutively secreted from the apical surface of kidney cortical collecting duct cells. Using site-directed mutagenesis, detergent phase separation, and RNA interference approaches, we show that prostasin secretion depends on GPI anchor cleavage by endogenous GPI-specific phospholipase D1 (Gpld1). Secretion of prostasin by kidney and lung epithelial cells, in contrast to prostate epithelium, does not depend on COOH-terminal processing at conserved Arg(322). Using stably transfected M-1 cells expressing wild-type, catalytically inactive, or chimeric transmembrane (not GPI)-anchored prostasins we establish that prostasin regulates transepithelial resistance, current, and paracellular permeability by GPI anchor- and protease activity-dependent mechanisms. These studies demonstrate a novel role for prostasin in regulating epithelial monolayer resistance and permeability in kidney epithelial cells and, furthermore, show specifically that prostasin is a critical regulator of transepithelial ion transport in M-1 cells. These functions depend on the GPI anchor as well as the peptidase activity of prostasin. These studies suggest that cell-specific Gpld1- or peptidase-dependent pathways for prostasin secretion may control prostasin functions in a tissue-specific manner.
Collapse
Affiliation(s)
- George M Verghese
- Department of Medicine, University of Virginia, Charlottesville, Virginia 22908-0546, USA.
| | | | | |
Collapse
|
45
|
Fan B, Brennan J, Grant D, Peale F, Rangell L, Kirchhofer D. Hepatocyte growth factor activator inhibitor-1 (HAI-1) is essential for the integrity of basement membranes in the developing placental labyrinth. Dev Biol 2006; 303:222-30. [PMID: 17174946 DOI: 10.1016/j.ydbio.2006.11.005] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2006] [Revised: 10/15/2006] [Accepted: 11/06/2006] [Indexed: 11/27/2022]
Abstract
Hepatocyte growth factor activator inhibitor-1 (HAI-1) is a membrane-associated Kunitz-type serine protease inhibitor that regulates cell surface and extracellular serine proteases involved in tissue remodeling and tumorigenesis, such as HGFA, matriptase, prostasin and hepsin. We generated HAI-1 deficient mice, which died in utero due to placental defects. The HAI-1(-/-) placental labyrinth exhibited a complete failure of vascularization and a compact morphology of the trophoblast layer. Immunofluorescent staining of collagen IV and laminin and electron microscopy analysis revealed that this aberrant labyrinth architecture was associated with disrupted basement membranes located at the interface of chorionic trophoblasts and allantoic mesoderm. Unlike the placental labyrinth, basement membranes and vasculogenesis were normal in embryo and yolk sac. Therefore, basement membrane defects appear to be the underlying cause for the greatly impaired vascularization and trophoblast branching in HAI-1(-/-) placentas. In wild-type placentas, the expression of matriptase and prostasin co-localized with their physiological inhibitor HAI-1 to the labyrinthine trophoblast cells in proximity to basement membranes. In HAI-1(-/-) placentas, both the localization and expression of the two proteases remained unchanged, implying uncontrolled proteolytic activities of the two enzymes. Our study demonstrates the important role of HAI-1 in maintaining the integrity of basement membrane most likely by regulating extracellular proteolytic activities during placental development.
Collapse
Affiliation(s)
- Bin Fan
- Department of Protein Engineering, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | | | | | | | | | | |
Collapse
|
46
|
Netzel-Arnett S, Currie BM, Szabo R, Lin CY, Chen LM, Chai KX, Antalis TM, Bugge TH, List K. Evidence for a matriptase-prostasin proteolytic cascade regulating terminal epidermal differentiation. J Biol Chem 2006; 281:32941-5. [PMID: 16980306 DOI: 10.1074/jbc.c600208200] [Citation(s) in RCA: 144] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Recent gene ablation studies in mice have shown that matriptase, a type II transmembrane serine protease, and prostasin, a glycosylphosphatidylinositol-anchored membrane serine protease, are both required for processing of the epidermis-specific polyprotein, profilaggrin, stratum corneum formation, and acquisition of epidermal barrier function. Here we present evidence that matriptase acts upstream of prostasin in a zymogen activation cascade that regulates terminal epidermal differentiation and is required for prostasin zymogen activation. Enzymatic gene trapping of matriptase combined with prostasin immunohistochemistry revealed that matriptase was co-localized with prostasin in transitional layer cells of the epidermis and that the developmental onset of expression of the two membrane proteases was coordinated and correlated with acquisition of epidermal barrier function. Purified soluble matriptase efficiently converted soluble prostasin zymogen to an active two-chain form that formed SDS-stable complexes with the serpin protease nexin-1. Whereas two forms of prostasin with molecular weights corresponding to the prostasin zymogen and active prostasin were present in wild type epidermis, prostasin was exclusively found in the zymogen form in matriptase-deficient epidermis. These data suggest that matriptase, an autoactivating protease, acts upstream from prostasin to initiate a zymogen cascade that is essential for epidermal differentiation.
Collapse
Affiliation(s)
- Sarah Netzel-Arnett
- Center for Vascular and Inflammatory Diseases and Department of Physiology, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Lin HY, Zhang H, Yang Q, Wang HX, Wang HM, Chai KX, Chen LM, Zhu C. Expression of prostasin and protease nexin-1 in rhesus monkey (Macaca mulatta) endometrium and placenta during early pregnancy. J Histochem Cytochem 2006; 54:1139-47. [PMID: 16801525 PMCID: PMC3957810 DOI: 10.1369/jhc.6a7005.2006] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Serine proteases have been documented to play key roles in uterine matrix turnover and trophoblastic invasion during implantation. Roles of prostasin serine protease in these processes, however, are currently unclear. The present study was first conducted to investigate the colocalization of prostasin and its cognate serpin, protease nexin-1 (PN-1), in rhesus monkey endometrium and placenta on days 12, 18, and 26 of pregnancy by using in situ hybridization (ISH) and immunohistochemistry. With ISH, expression of prostasin mRNA was intensely localized in the glandular epithelium on days 12 and 18 and in the placental villi, trophoblastic column, trophoblastic shell, and fetal-maternal border on days 18 and 26. With the progress of pregnancy, expression level in the glandular epithelium was significantly decreased, and the accumulation in the placental compartments was further increased. In addition, the stroma and arterioles exhibited modest levels of prostasin signals. However, expression level of PN-1 in these compartments on adjacent sections in the three stages of early pregnancy was weak or below the level of detection. Prostasin protein expression in the endometrium was found to be consistent with the distribution patterns revealed in the ISH experiments. It may be suggested from these results that prostasin is involved in endometrial epithelial morphology establishment, tissue remodeling, and trophoblastic invasion during early pregnancy. The cognate serpin PN-1 was not coordinately expressed along with prostasin, creating a tissue environment favorable for proteolytic activities of prostasin during early pregnancy events.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Cheng Zhu
- Correspondence to: Prof. Cheng Zhu, State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, 25 Bei Si Huan Xi Lu, Haidian District, Beijing 100080, China. E-mail: or
| |
Collapse
|
48
|
Chen M, Chen LM, Chai KX. Mechanisms of sterol regulatory element-binding protein-2 (SREBP-2) regulation of human prostasin gene expression. Biochem Biophys Res Commun 2006; 346:1245-53. [PMID: 16806080 DOI: 10.1016/j.bbrc.2006.06.049] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2006] [Accepted: 06/07/2006] [Indexed: 10/24/2022]
Abstract
Prostasin is a glycosylphosphatidylinositol (GPI)-anchored serine protease and a suppressor of tumor cell invasion. We recently reported that the human prostasin gene is up-regulated by the transcription factor sterol regulatory element-binding protein-2 (SREBP-2). In the present study, we identified multiple SREBP-2 binding sites, known as sterol regulatory elements (SREs), located at positions -897, -538, +8, +71, and +98 (named SRE-897, SRE-538, SRE+8, SRE+71, and SRE+98) in the human prostasin gene promoter. Prostasin promoter-reporter constructs, representing serial deletions of the 5'-flanking region of the human prostasin gene, were transiently transfected into HEK-293 cells for evaluation of promoter activities. The region defined by nucleotides -17 to +232 of the prostasin gene promoter was shown to be essential for the basal transcriptional activity of the human prostasin gene. Mutagenesis of the five SREs was carried out for evaluation of their roles in SREBP-2 up-regulation. SRE+98, a novel functional sterol regulatory element, was found to be the major site for the stimulatory response of prostasin gene expression to SREBP-2.
Collapse
Affiliation(s)
- Mengqian Chen
- Department of Molecular Biology and Microbiology, University of Central Florida, Orlando, FL 32816-2364, USA
| | | | | |
Collapse
|
49
|
Chen M, Chen LM, Chai KX. Androgen regulation of prostasin gene expression is mediated by sterol-regulatory element-binding proteins and SLUG. Prostate 2006; 66:911-20. [PMID: 16541421 DOI: 10.1002/pros.20325] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
BACKGROUND Prostasin is downregulated in hormone-refractory prostate cancers (HRPC). The mechanisms by which androgens regulate prostasin expression are unclear. METHODS LNCaP cells were treated with dihydrotestosterone (DHT), and mRNA expression of prostasin, SREBPs, SNAIL, and SLUG was examined by real-time PCR following reverse transcription. A human prostasin promoter was evaluated in HEK-293 cells co-transfected with transcription factor cDNAs. Regulation of endogenous prostasin expression by transfected SREBP-2 or SLUG was evaluated. Expression of SNAIL and SLUG mRNA in DU-145 cells treated with epidermal growth factor (EGF) was examined. RESULTS Prostasin mRNA expression in LNCaP cells was not responsive to DHT treatment. DHT marginally upregulated mRNA expression of SREBP-1c, SREBP-2, and SNAIL, but not SREBP-1a, while dramatically increased SLUG mRNA expression, in a dose-dependent manner. Co-transfection of prostasin promoter and SREBP cDNA in HEK-293 cells resulted in stimulation of promoter activity at approximately twofold by SREBP-1c, and up to sixfold by SREBP-2; while co-transfection with SNAIL or SLUG cDNA resulted in repression of promoter activity to 43% or 59%, respectively. Co-transfection of the SLUG cDNA negated SREBP-2's stimulation of prostasin promoter in a dose-dependent manner. Transfection of an SREBP-2 cDNA in HEK-293 and DU-145 resulted in upregulation of prostasin while transfection of a SLUG cDNA in LNCaP repressed prostasin expression. EGF upregulated SNAIL and SLUG mRNA in DU-145. CONCLUSIONS DHT regulates prostasin expression in prostate cells via SREBP stimulation and SLUG repression of prostasin promoter. SLUG is upregulated by DHT and EGF, providing a molecular mechanism by which epithelial cell-specific genes are silenced during prostate cancer development and progression.
Collapse
Affiliation(s)
- Mengqian Chen
- Department of Molecular Biology and Microbiology, University of Central Florida, Orlando, Florida 32816-2364, USA
| | | | | |
Collapse
|
50
|
Chen LM, Wang C, Chen M, Marcello MR, Chao J, Chao L, Chai KX. Prostasin attenuates inducible nitric oxide synthase expression in lipopolysaccharide-induced urinary bladder inflammation. Am J Physiol Renal Physiol 2006; 291:F567-77. [PMID: 16638913 DOI: 10.1152/ajprenal.00047.2006] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Prostasin is a glycosylphosphatidylinositol-anchored serine protease, with epithelial sodium channel activation and tumor invasion suppression activities. We identified the bladder as an expression site of prostasin. In the mouse, prostasin mRNA expression was detected by reverse transcription and real-time polymerase chain reaction in the bladder, and the prostasin protein was localized by immunohistochemistry in the urothelial cells. In mice injected intraperitoneally with bacterial lipopolysaccharide (LPS), bladder prostasin mRNA expression was downregulated, whereas the expression of inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), interferon-gamma (IFN-gamma), TNF-alpha, IL-1beta, and IL-6 was upregulated. Viral promoter-driven expression of the human prostasin homolog in the bladder of transgenic mice attenuated the LPS induction of iNOS but did not abolish the induction. LPS induction of COX-2, TNF-alpha, IL-1beta, and IL-6 expression, however, was not reduced by prostasin transgene expression. Liposome-mediated delivery of prostasin-expressing plasmid into mouse bladder produced similar attenuation effects on LPS-induced iNOS expression, while not affecting COX-2 or cytokine induction. Mice receiving plasmid expressing a catalytic mutant prostasin did not manifest the iNOS induction attenuation phenotype. We propose a proteolytic mechanism for prostasin to intercept cytokine signaling during LPS-induced bladder inflammation.
Collapse
Affiliation(s)
- Li-Mei Chen
- Department of Molecular Biology and Microbiology, University of Central Florida, 4000 Central Florida Boulevard, Orlando, FL 32816-2364, USA
| | | | | | | | | | | | | |
Collapse
|