1
|
Chen X, Yang C, Wei Q, Huang M, Wang A, Zhang M. A novel mutation in HNF1B promotes ferroptosis-mediated renal mesangial cells fibrosis. Biochem Biophys Res Commun 2024; 736:150803. [PMID: 39490151 DOI: 10.1016/j.bbrc.2024.150803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Accepted: 10/08/2024] [Indexed: 11/05/2024]
Abstract
Maturity onset diabetes of the young type 5(MODY5) is typically attributed to mutations in the HNF1B gene, which encodes transcription factors that play a significant role in kidney development and function maintenance. In this study, we identified a novel HNF1B gene mutation (c.445C > A) in a young male MODY5 patient exhibiting elevated serum creatinine levels and albuminuria. Through transfection of wild type and mutant HNF1B plasmids into mouse mesangial cells (MMCs), we investigated the impact on molecular indicators related to proliferation, fibrosis and oxidative stress. The results revealed that the HNF1B novel mutation promoted the expression of fibronectin, type 1 collagen, and CyclinD1, as well as increasing cellular oxidative stress and susceptibility to ferroptosis in MMCs. Our findings established a novel association between HNF1B mutant diseases and mesangial cell proliferation and fibrosis, suggesting that mutations of HNF1B may contribute to the progression of renal function in MODY5 patients. Additionally, our results implicate potential therapeutic targets for restraining fibrosis.
Collapse
Affiliation(s)
- Xin Chen
- Department of Endocrinology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Chuanhui Yang
- Department of Endocrinology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Qianying Wei
- Department of Endocrinology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Mei Huang
- Department of Endocrinology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Aiping Wang
- Department of Endocrinology, Nanjing Junxie Hospital, Nanjing, 210029, China.
| | - Mei Zhang
- Department of Endocrinology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China.
| |
Collapse
|
2
|
Bagattin A, Tammaccaro SL, Chiral M, Makinistoglu MP, Zimmermann N, Lerner J, Garbay S, Kuperwasser N, Pontoglio M. HNF1β bookmarking involves Topoisomerase 1 activation and DNA topology relaxation in mitotic chromatin. Cell Rep 2024; 43:114805. [PMID: 39388351 DOI: 10.1016/j.celrep.2024.114805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 07/03/2024] [Accepted: 09/12/2024] [Indexed: 10/12/2024] Open
Abstract
HNF1β (HNF1B) is a transcription factor frequently mutated in patients with developmental renal disease. It binds to mitotic chromatin and reactivates gene expression after mitosis, a phenomenon referred to as bookmarking. Using a crosslinking method that circumvents the artifacts of formaldehyde, we demonstrate that HNF1β remains associated with chromatin in a sequence-specific way in both interphase and mitosis. We identify an HNF1β-interacting protein, BTBD2, that enables the interaction and activation of Topoisomerase 1 (TOP1) exclusively during mitosis. Our study identifies a shared microhomology domain between HNF1β and TOP1, where a mutation, found in "maturity onset diabetes of the young" patients, disrupts their interaction. Importantly, HNF1β recruits TOP1 and induces DNA relaxation around HNF1β mitotic chromatin sites, elucidating its crucial role in chromatin remodeling and gene reactivation after mitotic exit. These findings shed light on how HNF1β reactivates target gene expression after mitosis, providing insights into its crucial role in maintenance of cellular identity.
Collapse
Affiliation(s)
- Alessia Bagattin
- Epigenetics and Development Laboratory, Growth and Signaling Department, Université Paris Cité, CNRS, INSERM, Institut Necker-Enfants Malades, 75015 Paris, France.
| | - Salvina Laura Tammaccaro
- Epigenetics and Development Laboratory, Growth and Signaling Department, Université Paris Cité, CNRS, INSERM, Institut Necker-Enfants Malades, 75015 Paris, France
| | - Magali Chiral
- Epigenetics and Development Laboratory, Growth and Signaling Department, Université Paris Cité, CNRS, INSERM, Institut Necker-Enfants Malades, 75015 Paris, France
| | - Munevver Parla Makinistoglu
- Epigenetics and Development Laboratory, Growth and Signaling Department, Université Paris Cité, CNRS, INSERM, Institut Necker-Enfants Malades, 75015 Paris, France
| | - Nicolas Zimmermann
- Epigenetics and Development Laboratory, Growth and Signaling Department, Université Paris Cité, CNRS, INSERM, Institut Necker-Enfants Malades, 75015 Paris, France
| | - Jonathan Lerner
- Epigenetics and Development Laboratory, Growth and Signaling Department, Université Paris Cité, CNRS, INSERM, Institut Necker-Enfants Malades, 75015 Paris, France
| | - Serge Garbay
- Epigenetics and Development Laboratory, Growth and Signaling Department, Université Paris Cité, CNRS, INSERM, Institut Necker-Enfants Malades, 75015 Paris, France
| | - Nicolas Kuperwasser
- Epigenetics and Development Laboratory, Growth and Signaling Department, Université Paris Cité, CNRS, INSERM, Institut Necker-Enfants Malades, 75015 Paris, France
| | - Marco Pontoglio
- Epigenetics and Development Laboratory, Growth and Signaling Department, Université Paris Cité, CNRS, INSERM, Institut Necker-Enfants Malades, 75015 Paris, France.
| |
Collapse
|
3
|
Kind L, Driver M, Raasakka A, Onck PR, Njølstad PR, Arnesen T, Kursula P. Structural properties of the HNF-1A transactivation domain. Front Mol Biosci 2023; 10:1249939. [PMID: 37908230 PMCID: PMC10613711 DOI: 10.3389/fmolb.2023.1249939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 09/26/2023] [Indexed: 11/02/2023] Open
Abstract
Hepatocyte nuclear factor 1α (HNF-1A) is a transcription factor with important gene regulatory roles in pancreatic β-cells. HNF1A gene variants are associated with a monogenic form of diabetes (HNF1A-MODY) or an increased risk for type 2 diabetes. While several pancreatic target genes of HNF-1A have been described, a lack of knowledge regarding the structure-function relationships in HNF-1A prohibits a detailed understanding of HNF-1A-mediated gene transcription, which is important for precision medicine and improved patient care. Therefore, we aimed to characterize the understudied transactivation domain (TAD) of HNF-1A in vitro. We present a bioinformatic approach to dissect the TAD sequence, analyzing protein structure, sequence composition, sequence conservation, and the existence of protein interaction motifs. Moreover, we developed the first protocol for the recombinant expression and purification of the HNF-1A TAD. Small-angle X-ray scattering and synchrotron radiation circular dichroism suggested a disordered conformation for the TAD. Furthermore, we present functional data on HNF-1A undergoing liquid-liquid phase separation, which is in line with in silico predictions and may be of biological relevance for gene transcriptional processes in pancreatic β-cells.
Collapse
Affiliation(s)
- Laura Kind
- Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Mark Driver
- Zernike Institute for Advanced Materials, University of Groningen, Groningen, Netherlands
| | - Arne Raasakka
- Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Patrick R. Onck
- Zernike Institute for Advanced Materials, University of Groningen, Groningen, Netherlands
| | - Pål Rasmus Njølstad
- Mohn Center for Diabetes Precision Medicine, Department of Clinical Science, University of Bergen, Bergen, Norway
- Section of Endocrinology and Metabolism, Children and Youth Clinic, Haukeland University Hospital, Bergen, Norway
| | - Thomas Arnesen
- Department of Biomedicine, University of Bergen, Bergen, Norway
- Department of Surgery, Haukeland University Hospital, Bergen, Norway
| | - Petri Kursula
- Department of Biomedicine, University of Bergen, Bergen, Norway
- Faculty of Biochemistry and Molecular Medicine & Biocenter Oulu, University of Oulu, Oulu, Finland
| |
Collapse
|
4
|
Firdous P, Nissar K, Masoodi SR, Wani JA, Hassan T, Ganai BA. HNF1α upregulation and promoter hypermethylation as a cause of glucose dysregulation: a case-control study of Kashmiri MODY population. J Endocrinol Invest 2023; 46:915-926. [PMID: 36331708 DOI: 10.1007/s40618-022-01953-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 10/25/2022] [Indexed: 11/06/2022]
Abstract
AIM HNF1α transcription factor regulates a network of genes involved in the development of β-cells and also serves as a model for transcription defects in pancreatic β-cells; mutations in this gene cause MODY. The goal of this study was to assess the promoter methylation and expression profile of the most common MODY causing gene, HNF1α, in Kashmiri MODY patients, as factors responsible for glucose dysregulation, as no such study had been performed on MODY patients in Kashmir previously. METHODS The study included 85 Kashmiri subjects. Samples were extracted for DNA and RNA using standard protocols. The HNF1α promoter methylation profile was assessed by bisulfite conversion of the DNA followed by MSP, whereas qPCR was used for expression analysis. RESULTS The expression of HNF1α was found to be upregulated (p value 0.0349*) in majority of MODY (60%) and T1D (72%) cases (p value 0.0349*). HNF1α expression was 1.33-fold higher in MODY cases with hypermethylated HNF1α promoters (p value 0.0360*). HNF1α expression was upregulated by 2.3-fold in MODY patients with HbA1c levels > 7% (p value 0.0025**). MODY cases with FBS levels > 7.7 mmol/l were upregulated by 0.646-fold than those with FBS levels ≤ 7.7 mmol/l (p value 0.0161*). CONCLUSION In this study, we found that as glucose dysregulation progresses, blood FBS, RBS, and HbA1c levels rise, and that at higher levels, HNF1α expression rises as well. From the results obtained, we may conclude that HNF1α is strongly upregulated in MODY, thus indicating the deleterious effect of over expression of HNF1α gene on glucose regulation.
Collapse
Affiliation(s)
- P Firdous
- Centre of Research for Development (CORD), University of Kashmir, Srinagar, Jammu and Kashmir, 190006, India
| | - K Nissar
- Centre of Research for Development (CORD), University of Kashmir, Srinagar, Jammu and Kashmir, 190006, India
- Department of Biochemistry, University of Kashmir, Srinagar, Jammu and Kashmir, 190006, India
| | - S R Masoodi
- Department of Endocrinology, SKIMS, Srinagar, Jammu and Kashmir, 190011, India
| | - J A Wani
- Department of Biochemistry, University of Kashmir, Srinagar, Jammu and Kashmir, 190006, India
| | - T Hassan
- Centre of Research for Development (CORD), University of Kashmir, Srinagar, Jammu and Kashmir, 190006, India
| | - B A Ganai
- Centre of Research for Development (CORD), University of Kashmir, Srinagar, Jammu and Kashmir, 190006, India.
| |
Collapse
|
5
|
Giannareas N, Zhang Q, Yang X, Na R, Tian Y, Yang Y, Ruan X, Huang D, Yang X, Wang C, Zhang P, Manninen A, Wang L, Wei GH. Extensive germline-somatic interplay contributes to prostate cancer progression through HNF1B co-option of TMPRSS2-ERG. Nat Commun 2022; 13:7320. [PMID: 36443337 PMCID: PMC9705428 DOI: 10.1038/s41467-022-34994-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 11/15/2022] [Indexed: 11/29/2022] Open
Abstract
Genome-wide association studies have identified 270 loci conferring risk for prostate cancer (PCa), yet the underlying biology and clinical impact remain to be investigated. Here we observe an enrichment of transcription factor genes including HNF1B within PCa risk-associated regions. While focused on the 17q12/HNF1B locus, we find a strong eQTL for HNF1B and multiple potential causal variants involved in the regulation of HNF1B expression in PCa. An unbiased genome-wide co-expression analysis reveals PCa-specific somatic TMPRSS2-ERG fusion as a transcriptional mediator of this locus and the HNF1B eQTL signal is ERG fusion status dependent. We investigate the role of HNF1B and find its involvement in several pathways related to cell cycle progression and PCa severity. Furthermore, HNF1B interacts with TMPRSS2-ERG to co-occupy large proportion of genomic regions with a remarkable enrichment of additional PCa risk alleles. We finally show that HNF1B co-opts ERG fusion to mediate mechanistic and biological effects of the PCa risk-associated locus 17p13.3/VPS53/FAM57A/GEMIN4. Taken together, we report an extensive germline-somatic interaction between TMPRSS2-ERG fusion and genetic variations underpinning PCa risk association and progression.
Collapse
Affiliation(s)
- Nikolaos Giannareas
- Disease Networks Research Unit, Faculty of Biochemistry and Molecular Medicine & Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Qin Zhang
- Disease Networks Research Unit, Faculty of Biochemistry and Molecular Medicine & Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Xiayun Yang
- Disease Networks Research Unit, Faculty of Biochemistry and Molecular Medicine & Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Rong Na
- Division of Urology, Department of Surgery, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Hong Kong, China
| | - Yijun Tian
- Department of Tumour Biology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Yuehong Yang
- Disease Networks Research Unit, Faculty of Biochemistry and Molecular Medicine & Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Xiaohao Ruan
- Department of Urology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Da Huang
- Department of Urology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Xiaoqun Yang
- Department of Pathology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Chaofu Wang
- Department of Pathology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Peng Zhang
- Fudan University Shanghai Cancer Center & MOE Key Laboratory of Metabolism and Molecular Medicine and Department of Biochemistry and Molecular Biology of School of Basic Medical Sciences, Shanghai Medical College of Fudan University, Shanghai, China
| | - Aki Manninen
- Disease Networks Research Unit, Faculty of Biochemistry and Molecular Medicine & Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Liang Wang
- Department of Tumour Biology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Gong-Hong Wei
- Disease Networks Research Unit, Faculty of Biochemistry and Molecular Medicine & Biocenter Oulu, University of Oulu, Oulu, Finland.
- Fudan University Shanghai Cancer Center & MOE Key Laboratory of Metabolism and Molecular Medicine and Department of Biochemistry and Molecular Biology of School of Basic Medical Sciences, Shanghai Medical College of Fudan University, Shanghai, China.
| |
Collapse
|
6
|
Liu F, Zhu X, Jiang X, Li S, Lv Y. Transcriptional control by HNF-1: Emerging evidence showing its role in lipid metabolism and lipid metabolism disorders. Genes Dis 2022; 9:1248-1257. [PMID: 35873023 DOI: 10.1016/j.gendis.2021.06.010.ecollection] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 06/10/2021] [Accepted: 06/29/2021] [Indexed: 05/25/2023] Open
Abstract
The present review focuses on the roles and underlying mechanisms of action of hepatic nuclear factor-1 (HNF-1) in lipid metabolism and the development of lipid metabolism disorders. HNF-1 is a transcriptional regulator that can form homodimers, and the HNF-1α and HNF-1β isomers can form heterodimers. Both homo- and heterodimers recognize and bind to specific cis-acting elements in gene promoters to transactivate transcription and to coordinate the expression of target lipid-related genes, thereby influencing the homeostasis of lipid metabolism. HNF-1 was shown to restrain lipid anabolism, including synthesis, absorption, and storage, by inhibiting the expression of lipogenesis-related genes, such as peroxisome proliferator-activated receptor γ (PPARγ) and sterol regulatory element-binding protein-1/2 (SREBP-1/2). Moreover, HNF-1 enhances the expression of various genes, such as proprotein convertase subtilisin/kexin type 9 (PCSK9), glutathione peroxidase 1 (GPx1), and suppressor of cytokine signaling-3 (SOCS-3) and negatively regulates signal transducer and activator of transcription (STAT) to facilitate lipid catabolism in hepatocytes. HNF-1 reduces hepatocellular lipid decomposition, which alleviates the progression of nonalcoholic fatty liver disease (NAFLD). HNF-1 impairs preadipocyte differentiation to reduce the number of adipocytes, stunting the development of obesity. Furthermore, HNF-1 reduces free cholesterol levels in the plasma to inhibit aortic lipid deposition and lipid plaque formation, relieving dyslipidemia and preventing the development of atherosclerotic cardiovascular disease (ASCVD). In summary, HNF-1 transcriptionally regulates lipid-related genes to manipulate intracorporeal balance of lipid metabolism and to suppress the development of lipid metabolism disorders.
Collapse
Affiliation(s)
- Fang Liu
- Guangxi Key Laboratory of Diabetic Systems Medicine, Guangxi Province Postgraduate Co-training Base for Cooperative Innovation in Basic Medicine (Guilin Medical University and Yueyang Women & Children's Medical Center), Guilin Medical University, Guilin, Guangxi 541199, PR China
| | - Xiao Zhu
- Guangxi Key Laboratory of Diabetic Systems Medicine, Guangxi Province Postgraduate Co-training Base for Cooperative Innovation in Basic Medicine (Guilin Medical University and Yueyang Women & Children's Medical Center), Guilin Medical University, Guilin, Guangxi 541199, PR China
| | - Xiaping Jiang
- Guangxi Key Laboratory of Diabetic Systems Medicine, Guangxi Province Postgraduate Co-training Base for Cooperative Innovation in Basic Medicine (Guilin Medical University and Yueyang Women & Children's Medical Center), Guilin Medical University, Guilin, Guangxi 541199, PR China
| | - Shan Li
- Guangxi Key Laboratory of Diabetic Systems Medicine, Guangxi Province Postgraduate Co-training Base for Cooperative Innovation in Basic Medicine (Guilin Medical University and Yueyang Women & Children's Medical Center), Guilin Medical University, Guilin, Guangxi 541199, PR China
| | - Yuncheng Lv
- Guangxi Key Laboratory of Diabetic Systems Medicine, Guangxi Province Postgraduate Co-training Base for Cooperative Innovation in Basic Medicine (Guilin Medical University and Yueyang Women & Children's Medical Center), Guilin Medical University, Guilin, Guangxi 541199, PR China
| |
Collapse
|
7
|
Comparison of Different Hepatocyte Nuclear Factor 4α Clones for Invasive Mucinous Adenocarcinoma of the Lung. Appl Immunohistochem Mol Morphol 2022; 30:383-388. [PMID: 35510773 DOI: 10.1097/pai.0000000000001020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 02/18/2022] [Indexed: 11/02/2022]
Abstract
Invasive mucinous adenocarcinoma (IMA) is a rare variant of adenocarcinoma that comprises mucinous epithelial cells. The expression of hepatocyte nuclear factor 4α (HNF4α) has been previously reported as a marker for IMA, but controversy remains regarding whether HNF4α is a reliable marker for lung IMAs. In the present study, we compared HNF4α expression levels between IMA and nonmucinous adenocarcinoma (NMA) cases using 2 different HNF4α clones. We used 2 HNF4α antibody clones, H1 and H1415, to examine HNF4α expression in 36 IMA and 40 NMA cases, which comprised the control group. HNF4α immunostaining intensity (range, 0 to 3) and percentage of intensity (range, 0% to 100%) were evaluated by 3 pathologists and ImageJ software, and average H-scores were calculated for each case. Interobserver agreement was assessed using intraclass correlation coefficient. Receiver-operating characteristic curve was used to analyze sensitivity and specificity of the clones. The mean H-score was higher in the IMA group than in the NMA group for both the H1415 (141.3 vs. 9.3) and H1 (67.3 vs. 3.4) clones. The intraclass correlation coefficient for agreement among the 4 observers was good (0.806 and 0.711). The H1415 clone exhibited comparable sensitivity (83.3% vs. 83.3%) with higher specificity (97.5% vs. 92.5%) compared with the H1 clone when using cutoff values of 36.2 (H1415) and 9.5 (H1), respectively. Our analyses suggest that HNF4α should be considered as a reliable marker for primary IMA of the lung. The H1415 clone should be preferred for use in clinical practice.
Collapse
|
8
|
Kind L, Raasakka A, Molnes J, Aukrust I, Bjørkhaug L, Njølstad PR, Kursula P, Arnesen T. Structural and biophysical characterization of transcription factor HNF-1A as a tool to study MODY3 diabetes variants. J Biol Chem 2022; 298:101803. [PMID: 35257744 PMCID: PMC8988010 DOI: 10.1016/j.jbc.2022.101803] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 02/15/2022] [Accepted: 02/20/2022] [Indexed: 11/05/2022] Open
Abstract
Hepatocyte nuclear factor 1A (HNF-1A) is a transcription factor expressed in several embryonic and adult tissues, modulating the expression of numerous target genes. Pathogenic variants in the HNF1A gene are known to cause maturity-onset diabetes of the young 3 (MODY3 or HNF1A MODY), a disease characterized by dominant inheritance, age of onset before 25 to 35 years of age, and pancreatic β-cell dysfunction. A precise diagnosis can alter management of this disease, as insulin can be exchanged with sulfonylurea tablets and genetic counseling differs from polygenic forms of diabetes. Therefore, more knowledge on the mechanisms of HNF-1A function and the level of pathogenicity of the numerous HNF1A variants is required for precise diagnostics. Here, we structurally and biophysically characterized an HNF-1A protein containing both the DNA-binding domain and the dimerization domain, and determined the folding and DNA-binding capacity of two established MODY3 HNF-1A variant proteins (P112L, R263C) and one variant of unknown significance (N266S). All three variants showed reduced functionality compared to the WT protein. Furthermore, while the R263C and N266S variants displayed reduced binding to an HNF-1A target promoter, we found the P112L variant was unstable in vitro and in cells. Our results support and mechanistically explain disease causality for these investigated variants and present a novel approach for the dissection of structurally unstable and DNA-binding defective variants. This study indicates that structural and biochemical investigation of HNF-1A is a valuable tool in reliable variant classification needed for precision diabetes diagnostics and management.
Collapse
Affiliation(s)
- Laura Kind
- Department of Biomedicine, University of Bergen, Bergen, Norway.
| | - Arne Raasakka
- Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Janne Molnes
- Center for Diabetes Research, Department of Clinical Science, University of Bergen, Bergen, Norway; Department of Medical Genetics, Haukeland University Hospital, Bergen, Norway
| | - Ingvild Aukrust
- Center for Diabetes Research, Department of Clinical Science, University of Bergen, Bergen, Norway; Department of Medical Genetics, Haukeland University Hospital, Bergen, Norway
| | - Lise Bjørkhaug
- Department of Safety, Chemistry, and Biomedical Laboratory Sciences, Western Norway University of Applied Sciences, Bergen, Norway
| | - Pål Rasmus Njølstad
- Center for Diabetes Research, Department of Clinical Science, University of Bergen, Bergen, Norway; Section of Endocrinology and Metabolism, Children and Youth Clinic, Haukeland University Hospital, Bergen, Norway.
| | - Petri Kursula
- Department of Biomedicine, University of Bergen, Bergen, Norway; Faculty of Biochemistry and Molecular Medicine & Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Thomas Arnesen
- Department of Biomedicine, University of Bergen, Bergen, Norway; Department of Biological Sciences, University of Bergen, Bergen, Norway; Department of Surgery, Haukeland University Hospital, Bergen, Norway.
| |
Collapse
|
9
|
Molecular diagnosis of maturity onset diabetes of the young in Iranian patients: improving management. J Diabetes Metab Disord 2021; 20:1369-1374. [PMID: 34900788 DOI: 10.1007/s40200-021-00870-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 07/31/2021] [Indexed: 10/20/2022]
Abstract
Background The purpose of this study is to identify the mutations of the most common form of maturity-onset diabetes of the young (MODY), also known as MODY3, in diabetic patients suspected of MODY. This can recommend appropriate medical surveillance of at-risk family members of MODY based on the genetic cause. Methods We analyzed the clinical course of 19 patients from 12 unrelated Iranian families with diabetes features. The coding regions and intron-exon boundaries of the hepatocyte nuclear factor 1 alpha (HNF1A) gene were studied by polymerase chain reaction (PCR) and sanger sequencing. Also, the detected mutation was analyzed by bioinformatics tools. Results One novel frameshift insertion mutation (p.Glu11Argfs*12) was detected in one of the probands and seven other patients of her family with the heterozygote state. The mutation is located in the exon1 of the dimerization domain of the HNF1A gene. According to the In Silico analysis, the detected mutation is predicted as a pathogenic one. Conclusions Differential diagnosis between MODY3 and other forms of diabetes can be considered a necessity in terms of overlapping symptoms of MODY3 with type1 or 2 diabetes. Molecular genetic testing can provide an accurate diagnosis for optimal management.
Collapse
|
10
|
Liu F, Zhu X, Jiang X, Li S, Lv Y. Transcriptional control by HNF-1: Emerging evidence showing its role in lipid metabolism and lipid metabolism disorders. Genes Dis 2021; 9:1248-1257. [PMID: 35873023 PMCID: PMC9293700 DOI: 10.1016/j.gendis.2021.06.010] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 06/10/2021] [Accepted: 06/29/2021] [Indexed: 11/13/2022] Open
Abstract
The present review focuses on the roles and underlying mechanisms of action of hepatic nuclear factor-1 (HNF-1) in lipid metabolism and the development of lipid metabolism disorders. HNF-1 is a transcriptional regulator that can form homodimers, and the HNF-1α and HNF-1β isomers can form heterodimers. Both homo- and heterodimers recognize and bind to specific cis-acting elements in gene promoters to transactivate transcription and to coordinate the expression of target lipid-related genes, thereby influencing the homeostasis of lipid metabolism. HNF-1 was shown to restrain lipid anabolism, including synthesis, absorption, and storage, by inhibiting the expression of lipogenesis-related genes, such as peroxisome proliferator-activated receptor γ (PPARγ) and sterol regulatory element-binding protein-1/2 (SREBP-1/2). Moreover, HNF-1 enhances the expression of various genes, such as proprotein convertase subtilisin/kexin type 9 (PCSK9), glutathione peroxidase 1 (GPx1), and suppressor of cytokine signaling-3 (SOCS-3) and negatively regulates signal transducer and activator of transcription (STAT) to facilitate lipid catabolism in hepatocytes. HNF-1 reduces hepatocellular lipid decomposition, which alleviates the progression of nonalcoholic fatty liver disease (NAFLD). HNF-1 impairs preadipocyte differentiation to reduce the number of adipocytes, stunting the development of obesity. Furthermore, HNF-1 reduces free cholesterol levels in the plasma to inhibit aortic lipid deposition and lipid plaque formation, relieving dyslipidemia and preventing the development of atherosclerotic cardiovascular disease (ASCVD). In summary, HNF-1 transcriptionally regulates lipid-related genes to manipulate intracorporeal balance of lipid metabolism and to suppress the development of lipid metabolism disorders.
Collapse
|
11
|
Chandra S, Srinivasan S, Batra J. Hepatocyte nuclear factor 1 beta: A perspective in cancer. Cancer Med 2021; 10:1791-1804. [PMID: 33580750 PMCID: PMC7940219 DOI: 10.1002/cam4.3676] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 11/27/2020] [Accepted: 11/30/2020] [Indexed: 12/17/2022] Open
Abstract
Hepatocyte nuclear factor 1 beta (HNF1 β/B) exists as a homeobox transcription factor having a vital role in the embryonic development of organs mainly liver, kidney and pancreas. Initially described as a gene causing maturity‐onset diabetes of the young (MODY), HNF1β expression deregulation and single nucleotide polymorphisms in HNF1β have now been associated with several tumours including endometrial, prostate, ovarian, hepatocellular, renal and colorectal cancers. Its function has been studied either as homodimer or heterodimer with HNF1α. In this review, the role of HNF1B in different cancers will be discussed along with the role of its splice variants, and its emerging role as a potential biomarker in cancer.
Collapse
Affiliation(s)
- Shubhra Chandra
- Institute of Health and Biomedical Innovation and School of Biomedical Sciences, Australian Prostate Cancer Research Centre-Queensland, Queensland University of Technology, Brisbane, QLD, Australia.,Translational Research Institute, Woolloongabba, QLD, Australia
| | - Srilakshmi Srinivasan
- Institute of Health and Biomedical Innovation and School of Biomedical Sciences, Australian Prostate Cancer Research Centre-Queensland, Queensland University of Technology, Brisbane, QLD, Australia.,Translational Research Institute, Woolloongabba, QLD, Australia
| | - Jyotsna Batra
- Institute of Health and Biomedical Innovation and School of Biomedical Sciences, Australian Prostate Cancer Research Centre-Queensland, Queensland University of Technology, Brisbane, QLD, Australia.,Translational Research Institute, Woolloongabba, QLD, Australia
| |
Collapse
|
12
|
The molecular functions of hepatocyte nuclear factors - In and beyond the liver. J Hepatol 2018; 68:1033-1048. [PMID: 29175243 DOI: 10.1016/j.jhep.2017.11.026] [Citation(s) in RCA: 148] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Revised: 11/16/2017] [Accepted: 11/20/2017] [Indexed: 12/27/2022]
Abstract
The hepatocyte nuclear factors (HNFs) namely HNF1α/β, FOXA1/2/3, HNF4α/γ and ONECUT1/2 are expressed in a variety of tissues and organs, including the liver, pancreas and kidney. The spatial and temporal manner of HNF expression regulates embryonic development and subsequently the development of multiple tissues during adulthood. Though the HNFs were initially identified individually based on their roles in the liver, numerous studies have now revealed that the HNFs cross-regulate one another and exhibit synergistic relationships in the regulation of tissue development and function. The complex HNF transcriptional regulatory networks have largely been elucidated in rodent models, but less so in human biological systems. Several heterozygous mutations in these HNFs were found to cause diseases in humans but not in rodents, suggesting clear species-specific differences in mutational mechanisms that remain to be uncovered. In this review, we compare and contrast the expression patterns of the HNFs, the HNF cross-regulatory networks and how these liver-enriched transcription factors serve multiple functions in the liver and beyond, extending our focus to the pancreas and kidney. We also summarise the insights gained from both human and rodent studies of mutations in several HNFs that are known to lead to different disease conditions.
Collapse
|
13
|
Karaca E, Onay H, Cetinkalp S, Aykut A, Göksen D, Ozen S, Atik T, Darcan S, Tekin IM, Ozkınay F. The spectrum of HNF1A gene mutations in patients with MODY 3 phenotype and identification of three novel germline mutations in Turkish Population. Diabetes Metab Syndr 2017; 11 Suppl 1:S491-S496. [PMID: 28395978 DOI: 10.1016/j.dsx.2017.03.042] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 03/31/2017] [Indexed: 11/22/2022]
Abstract
BACKGROUND Maturity-onset diabetes of the young (MODY) is a monogenic form of diabetes mellitus characterized by autosomal dominant inheritance, early age of onset, and pancreatic beta cell dysfunction. Heterozygous mutations in several genes may cause MODY. METHODS In the present study, we investigated the molecular spectrum of HNF1A (hepatocyte nuclear factor 1a) mutations, in the individuals referred to a reference center for molecular genetic analysis. Mutations screening was performed in a group of 136 unrelated patients (average age 17.22 years) selected by clinical characterization of MODY. Mutation screening involved direct sequencing of the HNF1A gene. RESULTS Among 136 individuals analyzed, 10 were carrying heterozygous HNF1A mutations, 3 of them being novel. Clinical features, such as age of diabetes at diagnosis or severity of hyperglycemia, were not related to the mutation type or location. No clear phenotype - genotype correlations were identified. CONCLUSIONS As a conclusion MODY resulted from HNF1A mutations shows heterogeneity at both phenotypic and molecular levels in Turkish population.
Collapse
Affiliation(s)
- Emin Karaca
- Department of Medical Genetics, Ege University Medical Faculty, Izmir, Turkey.
| | - Huseyin Onay
- Department of Medical Genetics, Ege University Medical Faculty, Izmir, Turkey
| | - Sevki Cetinkalp
- Department of Internal Medicine, Division of Endocrinology, Ege University Medical Faculty, Izmir, Turkey
| | - Ayca Aykut
- Department of Medical Genetics, Ege University Medical Faculty, Izmir, Turkey
| | - Damla Göksen
- Division of Pediatric Endocrinology, Department of Pediatrics, Ege University Medical Faculty Izmir, Turkey
| | - Samim Ozen
- Division of Pediatric Endocrinology, Department of Pediatrics, Ege University Medical Faculty Izmir, Turkey
| | - Tahir Atik
- Division of Genetics, Department of Pediatrics, Ege University Medical Faculty Izmir, Turkey
| | - Sukran Darcan
- Division of Pediatric Endocrinology, Department of Pediatrics, Ege University Medical Faculty Izmir, Turkey
| | - Ismihan Merve Tekin
- Department of Medical Genetics, Ege University Medical Faculty, Izmir, Turkey
| | - Ferda Ozkınay
- Department of Medical Genetics, Ege University Medical Faculty, Izmir, Turkey
| |
Collapse
|
14
|
Forkhead box protein A2, a pioneer factor for hepatogenesis, is involved in the expression of hepatic phenotype of alpha-fetoprotein-producing adenocarcinoma. Pathol Res Pract 2017; 213:1082-1088. [PMID: 28778497 DOI: 10.1016/j.prp.2017.07.024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 07/19/2017] [Accepted: 07/19/2017] [Indexed: 12/13/2022]
Abstract
Alpha-fetoprotein (AFP)-producing adenocarcinoma is a high-malignant variant of adenocarcinoma with a hepatic or fetal-intestinal phenotype. The number of cases of AFP-producing adenocarcinomas is increasing, but the molecular mechanism underlying the aberrant production of AFP is unclear. Here we sought to assess the role of Forkhead box A (FoxA)2, which is a pioneer transcription factor in the differentiation of hepatoblasts. FoxA2 expression was investigated in five cases of AFP-producing gastric adenocarcinomas by immunohistochemistry, and all cases showed FoxA2 expression. Chromatin immunoprecipitation revealed the DNA binding of FoxA2 on the regulatory element of AFP gene in AFP-producing adenocarcinoma cells. The inhibition of FoxA2 expression with siRNA reduced the mRNA expression of liver-specific proteins, including AFP, albumin, and transferrin. The inhibition of FoxA2 also reduced the expressions of liver-enriched nuclear factors, i.e., hepatocyte nuclear factor (HNF) 4α and HNF6, although the expressions of HNF1α and HNF1β were not affected. The same effect as FoxA2 knockdown in AFP producing adenocarcinoma cells was also observed in hepatocellular carcinoma cells. Our results suggest that FoxA2 plays a key role in the expression of hepatic phenotype of AFP-producing adenocarcinomas.
Collapse
|
15
|
Wiedmann MM, Aibara S, Spring DR, Stewart M, Brenton JD. Structural and calorimetric studies demonstrate that the hepatocyte nuclear factor 1β (HNF1β) transcription factor is imported into the nucleus via a monopartite NLS sequence. J Struct Biol 2016; 195:273-281. [PMID: 27346421 PMCID: PMC4991853 DOI: 10.1016/j.jsb.2016.06.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Revised: 06/20/2016] [Accepted: 06/21/2016] [Indexed: 02/03/2023]
Abstract
The transcription factor hepatocyte nuclear factor 1β (HNF1β) is ubiquitously overexpressed in ovarian clear cell carcinoma (CCC) and is a potential therapeutic target. To explore potential approaches that block HNF1β transcription we have identified and characterised extensively the nuclear localisation signal (NLS) for HNF1β and its interactions with the nuclear protein import receptor, Importin-α. Pull-down assays demonstrated that the DNA binding domain of HNF1β interacted with a spectrum of Importin-α isoforms and deletion constructs tagged with eGFP confirmed that the HNF1β (229)KKMRRNR(235) sequence was essential for nuclear localisation. We further characterised the interaction between the NLS and Importin-α using complementary biophysical techniques and have determined the 2.4Å resolution crystal structure of the HNF1β NLS peptide bound to Importin-α. The functional, biochemical, and structural characterisation of the nuclear localisation signal present on HNF1β and its interaction with the nuclear import protein Importin-α provide the basis for the development of compounds targeting transcription factor HNF1β via its nuclear import pathway.
Collapse
Affiliation(s)
- Mareike M Wiedmann
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK; Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge CB2 0RE, UK
| | - Shintaro Aibara
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge CB2 0QH, UK
| | - David R Spring
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK
| | - Murray Stewart
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge CB2 0QH, UK.
| | - James D Brenton
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge CB2 0RE, UK
| |
Collapse
|
16
|
Lerner J, Bagattin A, Verdeguer F, Makinistoglu MP, Garbay S, Felix T, Heidet L, Pontoglio M. Human mutations affect the epigenetic/bookmarking function of HNF1B. Nucleic Acids Res 2016; 44:8097-111. [PMID: 27229139 PMCID: PMC5041451 DOI: 10.1093/nar/gkw467] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Accepted: 05/13/2016] [Indexed: 12/19/2022] Open
Abstract
Bookmarking factors are transcriptional regulators involved in the mitotic transmission of epigenetic information via their ability to remain associated with mitotic chromatin. The mechanisms through which bookmarking factors bind to mitotic chromatin remain poorly understood. HNF1β is a bookmarking transcription factor that is frequently mutated in patients suffering from renal multicystic dysplasia and diabetes. Here, we show that HNF1β bookmarking activity is impaired by naturally occurring mutations found in patients. Interestingly, this defect in HNF1β mitotic chromatin association is rescued by an abrupt decrease in temperature. The rapid relocalization to mitotic chromatin is reversible and driven by a specific switch in DNA-binding ability of HNF1β mutants. Furthermore, we demonstrate that importin-β is involved in the maintenance of the mitotic retention of HNF1β, suggesting a functional link between the nuclear import system and the mitotic localization/translocation of bookmarking factors. Altogether, our studies have disclosed novel aspects on the mechanisms and the genetic programs that account for the mitotic association of HNF1β, a bookmarking factor that plays crucial roles in the epigenetic transmission of information through the cell cycle.
Collapse
Affiliation(s)
- Jonathan Lerner
- Department of Development, Reproduction and Cancer, Institut Cochin, INSERM U1016/CNRS UMR 8104/Université Paris-Descartes, Paris 75014, France
| | - Alessia Bagattin
- Department of Development, Reproduction and Cancer, Institut Cochin, INSERM U1016/CNRS UMR 8104/Université Paris-Descartes, Paris 75014, France
| | - Francisco Verdeguer
- Department of Development, Reproduction and Cancer, Institut Cochin, INSERM U1016/CNRS UMR 8104/Université Paris-Descartes, Paris 75014, France
| | - Munevver P Makinistoglu
- Department of Development, Reproduction and Cancer, Institut Cochin, INSERM U1016/CNRS UMR 8104/Université Paris-Descartes, Paris 75014, France
| | - Serge Garbay
- Department of Development, Reproduction and Cancer, Institut Cochin, INSERM U1016/CNRS UMR 8104/Université Paris-Descartes, Paris 75014, France
| | - Tristan Felix
- Department of Development, Reproduction and Cancer, Institut Cochin, INSERM U1016/CNRS UMR 8104/Université Paris-Descartes, Paris 75014, France
| | - Laurence Heidet
- Department of Pediatric Nephrology, Assistance Publique des Hôpitaux de Paris, Centre de référence des Maladies Rénales Héréditaires de l'Enfant et de l'Adulte (MARHEA), Hospital Necker-Enfants Malades, Paris 75015, France
| | - Marco Pontoglio
- Department of Development, Reproduction and Cancer, Institut Cochin, INSERM U1016/CNRS UMR 8104/Université Paris-Descartes, Paris 75014, France
| |
Collapse
|
17
|
Expression, Epigenetic and Genetic Changes of HNF1B in Endometrial Lesions. Pathol Oncol Res 2015; 22:523-30. [PMID: 26685938 DOI: 10.1007/s12253-015-0037-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Accepted: 12/15/2015] [Indexed: 12/19/2022]
Abstract
Hepatocyte nuclear factor 1-beta (HNF-1-beta) is a transcription factor involved in cancerogenesis of various tumors, including endometrioid carcinoma. We performed comprehensive analysis of HNF-1-beta in lesions of the endometrium, including protein expression and genetic and epigenetic changes. Expression of HNF-1-beta was analyzed immunohistochemically in 320 cases including both tumor and non-tumor endometrial lesions. Promoter methylation and genetic variants were evaluated, using bisulphite and direct sequencing, in 30 (18 fresh frozen, 12 FFPE tumors) endometrioid carcinomas (ECs) and 15 ovarian clear cell carcinomas (OCCCs) as a control group. We detected expression of HNF-1-beta in 28 % of ECs (51/180 cases), 26 % of serous carcinoma (7/27 cases), 83 % of endometrial clear cell carcinoma (15/18 cases), 93 % of hyperplastic polyps with atypias (13/14 cases), 100 % of hyperplastic polyps without atypias (16/16 cases), 88 % of hyperplasias with atypias (14/16 cases), 91 % of hyperplasias without atypias (10/11 cases), and in ≥80 % of different normal endometrium samples. The control group of OCCCs showed HNF-1-beta expression in 95 % (18/19 cases). Methylation in promoter region was detected in 13.3 % (4/30) of ECs, but not in corresponding normal tissue where available, nor in OCCCs (0/15 cases). Mutation analysis revealed truncating variant c.454C > T (p.Gln152X) in one EC and missense variant c.848C > T (p.Ala283Val) was detected in one OCCC. In conclusion, expression of HNF-1-beta was detected in various extents in all types of lesions analyzed, nevertheless its strong expression was mostly limited to clear cell carcinomas. Biological significance of genetic and epigenetic changes needs further investigation.
Collapse
|
18
|
Mandato VD, Farnetti E, Torricelli F, Abrate M, Casali B, Ciarlini G, Pirillo D, Gelli MC, Nicoli D, Grassi M, LA Sala GB, Palomba S. HNF1B polymorphism influences the prognosis of endometrial cancer patients: a cohort study. BMC Cancer 2015; 15:229. [PMID: 25885815 PMCID: PMC4403886 DOI: 10.1186/s12885-015-1246-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Accepted: 03/23/2015] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND HNF1B (formerly known as TCF2) gene encodes for a transcription factor that regulates gene expression involved in normal mesodermal and endodermal developments. A close association between rs4430796 polymorphism of HNF1B gene and decreased endometrial cancer (EC) risk has been demonstrated. The aim of the current study was to test the hypothesis that rs4430796 polymorphism can influence the prognosis of EC patients. METHODS Retrospective cohort study. Clinical and pathological data were extrapolated and genotypes were assessed on formalin-fixed and paraffin-embedded non-tumour tissues. The influence of patients' genotype on overall survival and progression free survival were our main outcome measures. RESULTS A total of 191 EC patients were included in the final analysis. Overall survival differed significantly (P = 0.003) among genotypes. At multivariate analysis, a significant (P < 0.05) effect on overall survival was detected for FIGO stage, and rs4430796 polymorphism of HNF1B gene. After grouping EC patients according to adjuvant treatment, rs4430796 polymorphism resulted significantly (P < 0.001) related to overall survival only in subjects who received radiotherapy plus chemotherapy. A significant (P = 0.014) interaction between rs4430796 polymorphism and chemo-radiotherapy was also detected. Finally, only a trend (P = 0.090) towards significance was observed for rs4430796 polymorphism effect on progression free survival. CONCLUSIONS rs4430796 polymorphism of HNF1B gene influences independently the prognosis of EC patients with a potential effect on tumor chemo-sensitivity.
Collapse
Affiliation(s)
- Vincenzo Dario Mandato
- Unit of Obstetrics and Gynecology, IRCCS-Arcispedale Santa Maria Nuova, Reggio Emilia, Italy.
| | - Enrico Farnetti
- Laboratory of Molecular Biology, IRCCS-Arcispedale Santa Maria Nuova, Reggio Emilia, Italy.
| | - Federica Torricelli
- Laboratory of Molecular Biology, IRCCS-Arcispedale Santa Maria Nuova, Reggio Emilia, Italy.
| | - Martino Abrate
- Unit of Obstetrics and Gynecology, IRCCS-Arcispedale Santa Maria Nuova, Reggio Emilia, Italy.
| | - Bruno Casali
- Laboratory of Molecular Biology, IRCCS-Arcispedale Santa Maria Nuova, Reggio Emilia, Italy.
| | - Gino Ciarlini
- Unit of Obstetrics and Gynecology, IRCCS-Arcispedale Santa Maria Nuova, Reggio Emilia, Italy.
| | - Debora Pirillo
- Unit of Obstetrics and Gynecology, IRCCS-Arcispedale Santa Maria Nuova, Reggio Emilia, Italy.
| | | | - Davide Nicoli
- Laboratory of Molecular Biology, IRCCS-Arcispedale Santa Maria Nuova, Reggio Emilia, Italy.
| | - Mario Grassi
- Department of Brain and Behavioral Science, Medical and Genomics Statistics Unit, University of Pavia, Pavia, Italy.
| | - Giovanni Battista LA Sala
- Unit of Obstetrics and Gynecology, IRCCS-Arcispedale Santa Maria Nuova, Reggio Emilia, Italy.
- University of Modena and Reggio Emilia, Modena, Italy.
| | - Stefano Palomba
- Unit of Gynecologic Oncology, IRCCS-CROB, Rionero in Vulture (Potenza), Potenza, Italy.
| |
Collapse
|
19
|
Painter JN, O'Mara TA, Batra J, Cheng T, Lose FA, Dennis J, Michailidou K, Tyrer JP, Ahmed S, Ferguson K, Healey CS, Kaufmann S, Hillman KM, Walpole C, Moya L, Pollock P, Jones A, Howarth K, Martin L, Gorman M, Hodgson S, De Polanco MME, Sans M, Carracedo A, Castellvi-Bel S, Rojas-Martinez A, Santos E, Teixeira MR, Carvajal-Carmona L, Shu XO, Long J, Zheng W, Xiang YB, Montgomery GW, Webb PM, Scott RJ, McEvoy M, Attia J, Holliday E, Martin NG, Nyholt DR, Henders AK, Fasching PA, Hein A, Beckmann MW, Renner SP, Dörk T, Hillemanns P, Dürst M, Runnebaum I, Lambrechts D, Coenegrachts L, Schrauwen S, Amant F, Winterhoff B, Dowdy SC, Goode EL, Teoman A, Salvesen HB, Trovik J, Njolstad TS, Werner HMJ, Ashton K, Proietto T, Otton G, Tzortzatos G, Mints M, Tham E, Hall P, Czene K, Liu J, Li J, Hopper JL, Southey MC, Ekici AB, Ruebner M, Johnson N, Peto J, Burwinkel B, Marme F, Brenner H, Dieffenbach AK, Meindl A, Brauch H, Lindblom A, Depreeuw J, Moisse M, Chang-Claude J, Rudolph A, Couch FJ, Olson JE, Giles GG, Bruinsma F, Cunningham JM, Fridley BL, Børresen-Dale AL, Kristensen VN, Cox A, Swerdlow AJ, Orr N, et alPainter JN, O'Mara TA, Batra J, Cheng T, Lose FA, Dennis J, Michailidou K, Tyrer JP, Ahmed S, Ferguson K, Healey CS, Kaufmann S, Hillman KM, Walpole C, Moya L, Pollock P, Jones A, Howarth K, Martin L, Gorman M, Hodgson S, De Polanco MME, Sans M, Carracedo A, Castellvi-Bel S, Rojas-Martinez A, Santos E, Teixeira MR, Carvajal-Carmona L, Shu XO, Long J, Zheng W, Xiang YB, Montgomery GW, Webb PM, Scott RJ, McEvoy M, Attia J, Holliday E, Martin NG, Nyholt DR, Henders AK, Fasching PA, Hein A, Beckmann MW, Renner SP, Dörk T, Hillemanns P, Dürst M, Runnebaum I, Lambrechts D, Coenegrachts L, Schrauwen S, Amant F, Winterhoff B, Dowdy SC, Goode EL, Teoman A, Salvesen HB, Trovik J, Njolstad TS, Werner HMJ, Ashton K, Proietto T, Otton G, Tzortzatos G, Mints M, Tham E, Hall P, Czene K, Liu J, Li J, Hopper JL, Southey MC, Ekici AB, Ruebner M, Johnson N, Peto J, Burwinkel B, Marme F, Brenner H, Dieffenbach AK, Meindl A, Brauch H, Lindblom A, Depreeuw J, Moisse M, Chang-Claude J, Rudolph A, Couch FJ, Olson JE, Giles GG, Bruinsma F, Cunningham JM, Fridley BL, Børresen-Dale AL, Kristensen VN, Cox A, Swerdlow AJ, Orr N, Bolla MK, Wang Q, Weber RP, Chen Z, Shah M, French JD, Pharoah PDP, Dunning AM, Tomlinson I, Easton DF, Edwards SL, Thompson DJ, Spurdle AB. Fine-mapping of the HNF1B multicancer locus identifies candidate variants that mediate endometrial cancer risk. Hum Mol Genet 2015; 24:1478-92. [PMID: 25378557 PMCID: PMC4321445 DOI: 10.1093/hmg/ddu552] [Show More Authors] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2014] [Revised: 10/13/2014] [Accepted: 10/24/2014] [Indexed: 12/14/2022] Open
Abstract
Common variants in the hepatocyte nuclear factor 1 homeobox B (HNF1B) gene are associated with the risk of Type II diabetes and multiple cancers. Evidence to date indicates that cancer risk may be mediated via genetic or epigenetic effects on HNF1B gene expression. We previously found single-nucleotide polymorphisms (SNPs) at the HNF1B locus to be associated with endometrial cancer, and now report extensive fine-mapping and in silico and laboratory analyses of this locus. Analysis of 1184 genotyped and imputed SNPs in 6608 Caucasian cases and 37 925 controls, and 895 Asian cases and 1968 controls, revealed the best signal of association for SNP rs11263763 (P = 8.4 × 10(-14), odds ratio = 0.86, 95% confidence interval = 0.82-0.89), located within HNF1B intron 1. Haplotype analysis and conditional analyses provide no evidence of further independent endometrial cancer risk variants at this locus. SNP rs11263763 genotype was associated with HNF1B mRNA expression but not with HNF1B methylation in endometrial tumor samples from The Cancer Genome Atlas. Genetic analyses prioritized rs11263763 and four other SNPs in high-to-moderate linkage disequilibrium as the most likely causal SNPs. Three of these SNPs map to the extended HNF1B promoter based on chromatin marks extending from the minimal promoter region. Reporter assays demonstrated that this extended region reduces activity in combination with the minimal HNF1B promoter, and that the minor alleles of rs11263763 or rs8064454 are associated with decreased HNF1B promoter activity. Our findings provide evidence for a single signal associated with endometrial cancer risk at the HNF1B locus, and that risk is likely mediated via altered HNF1B gene expression.
Collapse
Affiliation(s)
- Jodie N Painter
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Tracy A O'Mara
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Jyotsna Batra
- Australian Prostate Cancer Research Centre-Qld, Institute of Health and Biomedical Innovation, and School of Biomedical Science and
| | - Timothy Cheng
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Felicity A Lose
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Joe Dennis
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care and
| | - Kyriaki Michailidou
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care and
| | - Jonathan P Tyrer
- Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge, UK
| | - Shahana Ahmed
- Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge, UK
| | - Kaltin Ferguson
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Catherine S Healey
- Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge, UK
| | - Susanne Kaufmann
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | | | - Carina Walpole
- Australian Prostate Cancer Research Centre-Qld, Institute of Health and Biomedical Innovation, and School of Biomedical Science and
| | - Leire Moya
- Australian Prostate Cancer Research Centre-Qld, Institute of Health and Biomedical Innovation, and School of Biomedical Science and
| | - Pamela Pollock
- Institute of Health and Biomedical Innovation and School of Biomedical Science, Queensland University of Technology, Brisbane, QLD, Australia
| | - Angela Jones
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Kimberley Howarth
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Lynn Martin
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Maggie Gorman
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Shirley Hodgson
- Department of Clinical Genetics, St George's Hospital Medical School, London, UK
| | | | - Monica Sans
- Department of Biological Anthropology, College of Humanities and Educational Sciences, University of the Republic, Magallanes, Montevideo, Uruguay
| | - Angel Carracedo
- Grupo de Medicina Xenómica, Fundación Galega de Medicina Xenómica (SERGAS) and CIBERER, Universidade de Santiago de Compostela, Santiago de Compostela, Spain, Center of Excellence in Genomic Medicine Research, King Abdulaziz University, Jeddah, KSA
| | - Sergi Castellvi-Bel
- Genetic Predisposition to Colorectal Cancer Group, Gastrointestinal & Pancreatic Oncology Team, IDIBAPS/CIBERehd/Hospital Clínic, Centre Esther Koplowitz (CEK), Barcelona, Spain
| | - Augusto Rojas-Martinez
- Universidad Autónoma de Nuevo León, Pedro de Alba s/n, San Nicolás de Los Garza, Nuevo León, Mexico
| | | | - Manuel R Teixeira
- Department of Genetics, Portuguese Oncology Institute, Porto, Portugal, Biomedical Sciences Institute (ICBAS), University of Porto, Porto, Portugal
| | - Luis Carvajal-Carmona
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK, Grupo de Investigación Citogenética, Filogenia y Evolución de Poblaciones, Universidad del Tolima, Ibagué, Tolima, Colombia, Genome Center and Department of Biochemistry and Molecular Medicine, University of California, Davis, CA, USA
| | - Xiao-Ou Shu
- Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Jirong Long
- Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Wei Zheng
- Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Yong-Bing Xiang
- Department of Epidemiology, Shanghai Cancer Institute, Shanghai, China
| | | | - Penelope M Webb
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Rodney J Scott
- Hunter Medical Research Institute and, Hunter Area Pathology Service, John Hunter Hospital, Newcastle, NSW, Australia, Centre for Information Based Medicine and School of Biomedical Science and Pharmacy
| | - Mark McEvoy
- Centre for Clinical Epidemiology and Biostatistics, School of Medicine and Public Health
| | - John Attia
- Hunter Medical Research Institute and, Centre for Clinical Epidemiology and Biostatistics, School of Medicine and Public Health
| | - Elizabeth Holliday
- Hunter Medical Research Institute and, Centre for Information Based Medicine and School of Medicine and Public Health
| | | | - Dale R Nyholt
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Anjali K Henders
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Peter A Fasching
- Division of Hematology/Oncology, Department of Medicine, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA, USA, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | - Alexander Hein
- University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | - Matthias W Beckmann
- University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | - Stefan P Renner
- University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | | | - Peter Hillemanns
- Clinics of Gynaecology and Obstetrics, Hannover Medical School, Hannover, Germany
| | - Matthias Dürst
- Dept. of Gynaecology, Friedrich Schiller University Jena, Jena, Germany
| | - Ingo Runnebaum
- Dept. of Gynaecology, Friedrich Schiller University Jena, Jena, Germany
| | - Diether Lambrechts
- Vesalius Research Center, VIB, Leuven, Belgium, Department of Oncology, Laboratory for Translational Genetics
| | - Lieve Coenegrachts
- Division of Gynaecological Oncology, Department of Oncology, University Hospital Leuven, KU Leuven, Belgium
| | - Stefanie Schrauwen
- Division of Gynaecological Oncology, Department of Oncology, University Hospital Leuven, KU Leuven, Belgium
| | - Frederic Amant
- Division of Gynaecological Oncology, Department of Oncology, University Hospital Leuven, KU Leuven, Belgium
| | - Boris Winterhoff
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology
| | - Sean C Dowdy
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology
| | - Ellen L Goode
- Division of Epidemiology, Department of Health Science Research and
| | - Attila Teoman
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology
| | - Helga B Salvesen
- Department of Clinical Science, Centre for Cancerbiomarkers, The University of Bergen, Norway, Department of Obstetrics and Gynecology, Haukeland University Hospital, Bergen, Norway
| | - Jone Trovik
- Department of Clinical Science, Centre for Cancerbiomarkers, The University of Bergen, Norway, Department of Obstetrics and Gynecology, Haukeland University Hospital, Bergen, Norway
| | - Tormund S Njolstad
- Department of Clinical Science, Centre for Cancerbiomarkers, The University of Bergen, Norway, Department of Obstetrics and Gynecology, Haukeland University Hospital, Bergen, Norway
| | - Henrica M J Werner
- Department of Clinical Science, Centre for Cancerbiomarkers, The University of Bergen, Norway, Department of Obstetrics and Gynecology, Haukeland University Hospital, Bergen, Norway
| | - Katie Ashton
- Hunter Area Pathology Service, John Hunter Hospital, Newcastle, NSW, Australia, Faculty of Health, Centre for Information Based Medicine and the Discipline of Medical Genetics, School of Biomedical Sciences and Pharmacy and
| | - Tony Proietto
- Faculty of Health, School of Medicine and Public Health, University of Newcastle, NSW, Australia
| | - Geoffrey Otton
- Faculty of Health, School of Medicine and Public Health, University of Newcastle, NSW, Australia
| | | | | | - Emma Tham
- Department of Molecular Medicine and Surgery and
| | - Per Hall
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Kamila Czene
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Jianjun Liu
- Human Genetics, Genome Institute of Singapore, Singapore
| | - Jingmei Li
- Human Genetics, Genome Institute of Singapore, Singapore
| | - John L Hopper
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health and
| | - Melissa C Southey
- Department of Pathology, Genetic Epidemiology Laboratory, The University of Melbourne, Melbourne, VIC, Australia
| | - Arif B Ekici
- Institute of Human Genetics, University Hospital, Erlangen, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | - Matthias Ruebner
- University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | | | - Julian Peto
- London School of Hygiene and Tropical Medicine, London, UK
| | - Barbara Burwinkel
- Molecular Biology of Breast Cancer, Department of Gynecology and Obstetrics, Molecular Epidemiology, C080
| | - Frederik Marme
- Molecular Biology of Breast Cancer, Department of Gynecology and Obstetrics, National Center for Tumor Diseases, University of Heidelberg, Heidelberg, Germany
| | - Hermann Brenner
- Division of Clinical Epidemiology and Aging Research, German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Aida K Dieffenbach
- Division of Clinical Epidemiology and Aging Research, German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Alfons Meindl
- Division of Tumor Genetics, Department of Obstetrics and Gynecology, Technical University of Munich, Munich, Germany
| | - Hiltrud Brauch
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology Stuttgart, University of Tuebingen, Germany
| | | | | | | | - Jenny Chang-Claude
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Anja Rudolph
- Department of Cancer Epidemiology/Clinical Cancer Registry and Institute for Medical Biometrics and Epidemiology, University Clinic Hamburg-Eppendorf, Hamburg, Germany
| | - Fergus J Couch
- Departments of Laboratory Medicine and Pathology, and Health Science Research, Mayo Clinic, Rochester, MN, USA
| | - Janet E Olson
- Division of Epidemiology, Department of Health Science Research and
| | - Graham G Giles
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health and Cancer Epidemiology Centre, The Cancer Council Victoria, Melbourne, VIC, Australia, Department of Epidemiology and Preventive Medicine, Monash University, Melbourne, VIC, Australia
| | - Fiona Bruinsma
- Cancer Epidemiology Centre, The Cancer Council Victoria, Melbourne, VIC, Australia
| | - Julie M Cunningham
- Departments of Laboratory Medicine and Pathology, and Health Science Research, Mayo Clinic, Rochester, MN, USA
| | - Brooke L Fridley
- Department of Biostatistics, University of Kansas Medical Center, Kansas City, KS, USA
| | - Anne-Lise Børresen-Dale
- Department of Genetics, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo, Norway, Faculty of Medicine, The K.G. Jebsen Center for Breast Cancer Research, Institute for Clinical Medicine, University of Oslo, Oslo, Norway
| | - Vessela N Kristensen
- Department of Genetics, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo, Norway, Faculty of Medicine, The K.G. Jebsen Center for Breast Cancer Research, Institute for Clinical Medicine, University of Oslo, Oslo, Norway, Division of Medicine, Department of Clinical Molecular Oncology, Akershus University Hospital, Ahus, Norway
| | - Angela Cox
- Department of Oncology, Sheffield Cancer Research Centre, University of Sheffield, Sheffield, UK
| | - Anthony J Swerdlow
- Division of Genetics and Epidemiology and, Division of Breast Cancer Research, Institute of Cancer Research, London, UK
| | - Nicholas Orr
- Division of Breast Cancer Research, Institute of Cancer Research, London, UK
| | - Manjeet K Bolla
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care and
| | - Qin Wang
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care and
| | - Rachel Palmieri Weber
- Department of Community and Family Medicine, Duke University School of Medicine, Durham, NC, USA
| | - Zhihua Chen
- Division of Population Sciences, Department of Cancer Epidemiology, Moffitt Cancer Center, Tampa, FL, USA
| | - Mitul Shah
- Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge, UK
| | - Juliet D French
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Paul D P Pharoah
- Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge, UK
| | - Alison M Dunning
- Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge, UK
| | - Ian Tomlinson
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Douglas F Easton
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care and Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge, UK
| | - Stacey L Edwards
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Deborah J Thompson
- Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge, UK
| | - Amanda B Spurdle
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia,
| |
Collapse
|
20
|
Yamaguchi N, Sunto A, Goda T, Suruga K. Competitive regulation of human intestinal β-carotene 15,15′-monooxygenase 1 (BCMO1) gene expression by hepatocyte nuclear factor (HNF)-1α and HNF-4α. Life Sci 2014; 119:34-9. [DOI: 10.1016/j.lfs.2014.10.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Revised: 09/17/2014] [Accepted: 10/16/2014] [Indexed: 10/24/2022]
|
21
|
Li J, Zhang Y, Gao Y, Cui Y, Liu H, Li M, Tian Y. Downregulation of HNF1 homeobox B is associated with drug resistance in ovarian cancer. Oncol Rep 2014; 32:979-88. [PMID: 24968817 DOI: 10.3892/or.2014.3297] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2014] [Accepted: 05/29/2014] [Indexed: 11/05/2022] Open
Abstract
The expression of HNF1 homeobox B (HNF1B) is associated with cancer risk in several tumors, including ovarian cancer, and its decreased expression play roles in cancer development. However, the study of HNF1B and cancer is limited, and its association with drug resistance in cancer has never been reported. On the basis of array data retrieved from Oncomine and Gene Expression Omnibus (GEO) online database, we found that the mRNA expression of HNF1B in 586 ovarian serous cystadenocarcinomas and in platinum-resistant A2780 epithelial ovarian cancer cells was significantly decreased, indicating a potential role of HNF1B in drug resistance in ovarian cancer. Based on this finding, comprehensive bioinformatics analyses, including protein/gene interaction, protein-small molecule/chemical interaction, biological process annotation, gene co-occurrence and pathway enrichment analysis and microRNA-mRNA interaction, were performed to illustrate the association of HNF1B with drug resistance in ovarian cancer. We found that among the proteins/genes, small molecules/chemicals and microRNAs which directly interacted with HNF1B, the majority was associated with drug resistance in cancer, particularly in ovarian cancer. Biological process annotation revealed that HNF1B closely related to 24 biological processes which were all notably associated with ovarian cancer and drug resistance. These results indicated that the downregulation of HNF1B may contribute to drug resistance in ovarian cancer, via its direct interactions with these drug resistance-related proteins/genes, small molecules/chemicals and microRNAs, and via its regulations on the drug resistance-related biological processes. Pathway enrichment analysis of 36 genes which co-occurred with HNF1B, ovarian cancer and drug resistance indicated that the HNF1B may perform its drug resistance-related functions through 4 pathways including ErbB signaling, focal adhesion, apoptosis and p53 signaling. Collectively, in this study, we illustrated for the first time that HNF1B may contribute to drug resistance in ovarian cancer, potentially through the 4 pathways. The present study may pave the way for further investigation of the drug resistance-related functions of HNF1B in ovarian cancer.
Collapse
Affiliation(s)
- Jianchao Li
- Department of Obstetrics and Gynecology, Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, P.R. China
| | - Yonghong Zhang
- Department of Obstetrics and Gynecology, Muping Traditional Chinese Medicine Hospital, Yantai, Shandong, P.R. China
| | - Yutao Gao
- Department of Obstetrics and Gynecology, Beijing Chao-Yang Hospital, Affiliated to Capital Medical University, Beijing, P.R. China
| | - Yuqian Cui
- Center for Reproductive Medicine, Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, P.R. China
| | - Hua Liu
- Department of Obstetrics and Gynecology, Affiliated Hospital of Weifang Medical University, Weifang, Shandong, P.R. China
| | - Mi Li
- Department of Nursing, Shandong College of Traditional Chinese Medicine, Yantai, Shandong, P.R. China
| | - Yongjie Tian
- Department of Obstetrics and Gynecology, Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, P.R. China
| |
Collapse
|
22
|
Tatsi C, Kanaka-Gantenbein C, Vazeou-Gerassimidi A, Chrysis D, Delis D, Tentolouris N, Dacou-Voutetakis C, Chrousos GP, Sertedaki A. The spectrum of HNF1A gene mutations in Greek patients with MODY3: relative frequency and identification of seven novel germline mutations. Pediatr Diabetes 2013; 14:526-34. [PMID: 23517481 DOI: 10.1111/pedi.12032] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2012] [Revised: 01/31/2013] [Accepted: 02/06/2013] [Indexed: 11/27/2022] Open
Abstract
OBJECTIVE Maturity-Onset Diabetes of the Young (MODY) is the most common type of monogenic diabetes accounting for 1-2% of the population with diabetes. The relative incidence of HNF1A-MODY (MODY3) is high in European countries; however, data are not available for the Greek population. The aims of this study were to determine the relative frequency of MODY3 in Greece, the type of the mutations observed, and their relation to the phenotype of the patients. DESIGN AND METHODS Three hundred ninety-five patients were referred to our center because of suspected MODY during a period of 15 yr. The use of Denaturing Gradient Gel Electrophoresis of polymerase chain reaction amplified DNA revealed 72 patients carrying Glucokinase gene mutations (MODY2) and 8 patients carrying HNF1A gene mutations (MODY3). After using strict criteria, 54 patients were selected to be further evaluated by direct sequencing or by multiplex ligation probe amplification (MLPA) for the presence of HNF1A gene mutations. RESULTS In 16 unrelated patients and 13 of their relatives, 15 mutations were identified in the HNF1A gene. Eight of these mutations were previously reported, whereas seven were novel. Clinical features, such as age of diabetes at diagnosis or severity of hyperglycemia, were not related to the mutation type or location. CONCLUSIONS In our cohort of patients fulfilling strict clinical criteria for MODY, 12% carried an HNF1A gene mutation, suggesting that defects of this gene are responsible for a significant proportion of monogenic diabetes in the Greek population. No clear phenotype-genotype correlations were identified.
Collapse
Affiliation(s)
- Christina Tatsi
- Division of Endocrinology, Diabetes and Metabolism, First Department of Pediatrics, Athens University School of Medicine, 'Agia Sophia' Children's Hospital, Athens, Greece
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Colclough K, Bellanne-Chantelot C, Saint-Martin C, Flanagan SE, Ellard S. Mutations in the genes encoding the transcription factors hepatocyte nuclear factor 1 alpha and 4 alpha in maturity-onset diabetes of the young and hyperinsulinemic hypoglycemia. Hum Mutat 2013; 34:669-85. [PMID: 23348805 DOI: 10.1002/humu.22279] [Citation(s) in RCA: 159] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2012] [Accepted: 01/08/2013] [Indexed: 12/16/2022]
Abstract
Maturity-onset diabetes of the young (MODY) is a monogenic disorder characterized by autosomal dominant inheritance of young-onset (typically <25 years), noninsulin-dependent diabetes due to defective insulin secretion. MODY is both clinically and genetically heterogeneous with mutations in at least 10 genes. Mutations in the HNF1A gene encoding hepatocyte nuclear factor-1 alpha are the most common cause of MODY in most adult populations studied. The number of different pathogenic HNF1A mutations totals 414 in 1,247 families. Mutations in the HNF4A gene encoding hepatocyte nuclear factor-4 alpha are a rarer cause of MODY with 103 different mutations reported in 173 families to date. Sensitivity to treatment with sulfonylurea tablets is a feature of both HNF1A and HNF4A mutations. The HNF4A MODY phenotype has been expanded by the reports of macrosomia in ∼50% of babies, and more rarely, neonatal hyperinsulinemic hypoglycemia. The identification of an HNF1A or HNF4A gene mutation has important implications for clinical management in diabetes and pregnancy, but MODY is significantly underdiagnosed. Current research is focused on identifying biomarkers and developing probability models to identify those patients most likely to have MODY, until next generation sequencing technology enables cost-effective gene analysis for all patients with young onset diabetes.
Collapse
Affiliation(s)
- Kevin Colclough
- Department of Molecular Genetics, Royal Devon & Exeter NHS Foundation Trust, Exeter, UK
| | | | | | | | | |
Collapse
|
24
|
Iiritano S, Chiefari E, Ventura V, Arcidiacono B, Possidente K, Nocera A, Nevolo MT, Fedele M, Greco A, Greco M, Brunetti G, Fusco A, Foti D, Brunetti A. The HMGA1-IGF-I/IGFBP system: a novel pathway for modulating glucose uptake. Mol Endocrinol 2012; 26:1578-89. [PMID: 22745191 DOI: 10.1210/me.2011-1379] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
We previously showed that loss of the high mobility group A1 (HMGA1) protein expression, induced in mice by disrupting the Hmga1 gene, considerably decreased insulin receptor expression in the major target tissues of insulin action, causing a type 2-like diabetic phenotype, in which, however, glucose intolerance was paradoxically associated with increased peripheral insulin sensitivity. Insulin hypersensitivity despite impairment of insulin action supports the existence of molecular adaptation mechanisms promoting glucose disposal via insulin-independent processes. Herein, we provide support for these compensatory pathways/circuits of glucose uptake in vivo, the activation of which under certain adverse metabolic conditions may protect against hyperglycemia. Using chromatin immunoprecipitation combined with protein-protein interaction studies of nuclear proteins in vivo, and transient transcription assays in living cells, we show that HMGA1 is required for gene activation of the IGF-binding proteins 1 (IGFBP1) and 3 (IGFBP3), two major members of the IGF-binding protein superfamily. Furthermore, by using positron emission tomography with (18)F-labeled 2-fluoro-2-deoxy-d-glucose, in combination with the euglycemic clamp with IGF-I, we demonstrated that IGF-I's bioactivity was increased in Hmga1-knockout mice, in which both skeletal muscle Glut4 protein expression and glucose uptake were enhanced compared with wild-type littermates. We propose that, by affecting the expression of both IGFBP protein species, HMGA1 can serve as a modulator of IGF-I activity, thus representing an important novel mediator of glucose disposal.
Collapse
Affiliation(s)
- Stefania Iiritano
- Dipartimento di Scienze della Salute, Università di Catanzaro Magna Græcia, 88100 Catanzaro, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Setiawan VW, Haessler J, Schumacher F, Cote ML, Deelman E, Fesinmeyer MD, Henderson BE, Jackson RD, Vöckler JS, Wilkens LR, Yasmeen S, Haiman CA, Peters U, Le Marchand L, Kooperberg C. HNF1B and endometrial cancer risk: results from the PAGE study. PLoS One 2012; 7:e30390. [PMID: 22299039 PMCID: PMC3267708 DOI: 10.1371/journal.pone.0030390] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2011] [Accepted: 12/20/2011] [Indexed: 11/19/2022] Open
Abstract
We examined the association between HNF1B variants identified in a recent genome-wide association study and endometrial cancer in two large case-control studies nested in prospective cohorts: the Multiethnic Cohort Study (MEC) and the Women's Health Initiative (WHI) as part of the Population Architecture using Genomics and Epidemiology (PAGE) study. A total of 1,357 incident cases of invasive endometrial cancer and 7,609 controls were included in the analysis (MEC: 426 cases/3,854 controls; WHI: 931 cases/3,755 controls). The majority of women in the WHI were European American, while the MEC included sizable numbers of African Americans, Japanese and Latinos. We estimated the odds ratios (ORs) per allele and 95% confidence intervals (CIs) of each SNP using unconditional logistic regression adjusting for age, body mass index, and four principal components of ancestry informative markers. The combined ORs were estimated using fixed effect models. Rs4430796 and rs7501939 were associated with endometrial cancer risk in MEC and WHI with no heterogeneity observed across racial/ethnic groups (P ≥ 0.21) or between studies (P ≥ 0.70). The OR(per allele) was 0.82 (95% CI: 0.75, 0.89; P = 5.63 × 10(-6)) for rs4430796 (G allele) and 0.79 (95% CI: 0.73, 0.87; P = 3.77 × 10(-7)) for rs7501939 (A allele). The associations with the risk of Type I and Type II tumors were similar (P ≥ 0.19). Adjustment for additional endometrial cancer risk factors such as parity, oral contraceptive use, menopausal hormone use, and smoking status had little effect on the results. In conclusion, HNF1B SNPs are associated with risk of endometrial cancer and that the associated relative risks are similar for Type I and Type II tumors.
Collapse
Affiliation(s)
- Veronica Wendy Setiawan
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Jeffrey Haessler
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Fredrick Schumacher
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Michele L. Cote
- Department of Oncology, Wayne State University School of Medicine and Population Studies and Disparities Research, Karmanos Cancer Institute, Detroit, Michigan, United States of America
| | - Ewa Deelman
- Information Sciences Institute, University of Southern California, Marina Del Rey, California, United States of America
| | - Megan D. Fesinmeyer
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Brian E. Henderson
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Rebecca D. Jackson
- Center for Clinical and Translational Science, The Ohio State University, Columbus, Ohio, United States of America
| | - Jens-S Vöckler
- Information Sciences Institute, University of Southern California, Marina Del Rey, California, United States of America
| | - Lynne R. Wilkens
- Epidemiology Program, University of Hawaii Cancer Center, Honolulu, Hawaii, United States of America
| | - Shagufta Yasmeen
- Department of Obstetrics and Gynecology, University of California Davis, Davis, California, United States of America
| | - Christopher A. Haiman
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Ulrike Peters
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Loïc Le Marchand
- Epidemiology Program, University of Hawaii Cancer Center, Honolulu, Hawaii, United States of America
| | - Charles Kooperberg
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
- * E-mail:
| |
Collapse
|
26
|
Berndt SI, Sampson J, Yeager M, Jacobs KB, Wang Z, Hutchinson A, Chung C, Orr N, Wacholder S, Chatterjee N, Yu K, Kraft P, Feigelson HS, Thun MJ, Diver WR, Albanes D, Virtamo J, Weinstein S, Schumacher FR, Cancel-Tassin G, Cussenot O, Valeri A, Andriole GL, Crawford ED, Haiman C, Henderson B, Kolonel L, Le Marchand L, Siddiq A, Riboli E, Travis RC, Kaaks R, Isaacs W, Isaacs S, Wiley KE, Gronberg H, Wiklund F, Stattin P, Xu J, Zheng SL, Sun J, Vatten LJ, Hveem K, Njølstad I, Gerhard DS, Tucker M, Hayes RB, Hoover RN, Fraumeni JF, Hunter DJ, Thomas G, Chanock SJ. Large-scale fine mapping of the HNF1B locus and prostate cancer risk. Hum Mol Genet 2011; 20:3322-9. [PMID: 21576123 DOI: 10.1093/hmg/ddr213] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Previous genome-wide association studies have identified two independent variants in HNF1B as susceptibility loci for prostate cancer risk. To fine-map common genetic variation in this region, we genotyped 79 single nucleotide polymorphisms (SNPs) in the 17q12 region harboring HNF1B in 10 272 prostate cancer cases and 9123 controls of European ancestry from 10 case-control studies as part of the Cancer Genetic Markers of Susceptibility (CGEMS) initiative. Ten SNPs were significantly related to prostate cancer risk at a genome-wide significance level of P < 5 × 10(-8) with the most significant association with rs4430796 (P = 1.62 × 10(-24)). However, risk within this first locus was not entirely explained by rs4430796. Although modestly correlated (r(2)= 0.64), rs7405696 was also associated with risk (P = 9.35 × 10(-23)) even after adjustment for rs4430769 (P = 0.007). As expected, rs11649743 was related to prostate cancer risk (P = 3.54 × 10(-8)); however, the association within this second locus was stronger for rs4794758 (P = 4.95 × 10(-10)), which explained all of the risk observed with rs11649743 when both SNPs were included in the same model (P = 0.32 for rs11649743; P = 0.002 for rs4794758). Sequential conditional analyses indicated that five SNPs (rs4430796, rs7405696, rs4794758, rs1016990 and rs3094509) together comprise the best model for risk in this region. This study demonstrates a complex relationship between variants in the HNF1B region and prostate cancer risk. Further studies are needed to investigate the biological basis of the association of variants in 17q12 with prostate cancer.
Collapse
Affiliation(s)
- Sonja I Berndt
- Division of Cancer Epidemiology and Genetics, Department of Health and Human Services, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892-7240, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Spurdle AB, Thompson DJ, Ahmed S, Ferguson K, Healey CS, O'Mara T, Walker LC, Montgomery SB, Dermitzakis ET, Fahey P, Montgomery GW, Webb PM, Fasching PA, Beckmann MW, Ekici AB, Hein A, Lambrechts D, Coenegrachts L, Vergote I, Amant F, Salvesen HB, Trovik J, Njolstad TS, Helland H, Scott RJ, Ashton K, Proietto T, Otton G, Tomlinson I, Gorman M, Howarth K, Hodgson S, Garcia-Closas M, Wentzensen N, Yang H, Chanock S, Hall P, Czene K, Liu J, Li J, Shu XO, Zheng W, Long J, Xiang YB, Shah M, Morrison J, Michailidou K, Pharoah PD, Dunning AM, Easton DF. Genome-wide association study identifies a common variant associated with risk of endometrial cancer. Nat Genet 2011; 43:451-4. [PMID: 21499250 PMCID: PMC3770523 DOI: 10.1038/ng.812] [Citation(s) in RCA: 124] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2010] [Accepted: 03/24/2011] [Indexed: 12/15/2022]
Abstract
Endometrial cancer is the most common malignancy of the female genital tract in developed countries. To identify genetic variants associated with endometrial cancer risk, we performed a genome-wide association study involving 1,265 individuals with endometrial cancer (cases) from Australia and the UK and 5,190 controls from the Wellcome Trust Case Control Consortium. We compared genotype frequencies in cases and controls for 519,655 SNPs. Forty seven SNPs that showed evidence of association with endometrial cancer in stage 1 were genotyped in 3,957 additional cases and 6,886 controls. We identified an endometrial cancer susceptibility locus close to HNF1B at 17q12 (rs4430796, P = 7.1 × 10(-10)) that is also associated with risk of prostate cancer and is inversely associated with risk of type 2 diabetes.
Collapse
Affiliation(s)
- Amanda B Spurdle
- Division of Genetics and Population Health, Queensland Institute of Medical Research, Brisbane, Queensland, Australia.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Tanaka K, Terryn S, Geffers L, Garbay S, Pontoglio M, Devuyst O. The transcription factor HNF1α regulates expression of chloride-proton exchanger ClC-5 in the renal proximal tubule. Am J Physiol Renal Physiol 2010; 299:F1339-47. [DOI: 10.1152/ajprenal.00077.2010] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The Cl−/H+ exchanger ClC-5 is essential for the endocytic activity of the proximal tubule cells and the tubular clearance of proteins filtered in the glomeruli. The mechanisms that regulate the expression of ClC-5 in general and its specific expression in the proximal tubule are unknown. In this study, we investigated the hypothesis that the hepatocyte nuclear transcription factor HNF1α, which is predominantly expressed in proximal tubule segments, may directly regulate the expression of ClC-5. In situ hybridization demonstrated that the expression of Clcn5 overlaps with that of Hnf1α in the developing kidney as well as in absorptive epithelia, including the digestive tract and yolk sac. Multiple binding sites for HNF1 were mapped in the 5′-regulatory sequences of the mouse and human Clcn5/CLCN5 genes. The transactivation of the Clcn5/CLCN5 promoter by HNF1α was verified in vitro, and the binding of HNF1α to the Clcn5 promoter in vivo was confirmed by chromatin immunoprecipitation in mouse kidney. The expression of Clcn5 was reduced in the proximal tubule segments of HNF1α-null kidneys, and it was rescued upon transfection of HNF1α-null cells with wild-type but not with mutant HNF1α. These data demonstrate that HNF1α directly regulates the expression of ClC-5 in the renal proximal tubule and yield insights into the mechanisms governing epithelial differentiation and specialized transport activities in the kidney.
Collapse
Affiliation(s)
- Karo Tanaka
- Department of Pharmacology, Teikyo University School of Medicine, Tokyo, Japan
| | - Sara Terryn
- Nephrology Unit, Université Catholique de Louvain Medical School, Brussels, Belgium
| | - Lars Geffers
- Department of Genes and Behavior, Max-Planck-Institute for Biophysical Chemistry, Göttingen, Germany; and
| | - Serge Garbay
- INSERM U567, CNRS UMR 8104, Université Paris-Descartes, Team 26, Institut Cochin, Paris, France
| | - Marco Pontoglio
- INSERM U567, CNRS UMR 8104, Université Paris-Descartes, Team 26, Institut Cochin, Paris, France
| | - Olivier Devuyst
- Nephrology Unit, Université Catholique de Louvain Medical School, Brussels, Belgium
| |
Collapse
|
29
|
Harries LW, Perry JRB, McCullagh P, Crundwell M. Alterations in LMTK2, MSMB and HNF1B gene expression are associated with the development of prostate cancer. BMC Cancer 2010; 10:315. [PMID: 20569440 PMCID: PMC2908099 DOI: 10.1186/1471-2407-10-315] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2010] [Accepted: 06/22/2010] [Indexed: 12/21/2022] Open
Abstract
Background Genome wide association studies (GWAS) have identified several genetic variants that are associated with prostate cancer. Most of these variants, like other GWAS association signals, are located in non-coding regions of potential candidate genes, and thus could act at the level of the mRNA transcript. Methods We measured the expression and isoform usage of seven prostate cancer candidate genes in benign and malignant prostate by real-time PCR, and correlated these factors with cancer status and genotype at the GWAS risk variants. Results We determined that levels of LMTK2 transcripts in prostate adenocarcinomas were only 32% of those in benign tissues (p = 3.2 × 10-7), and that an independent effect of genotype at variant rs6465657 on LMTK2 expression in benign (n = 39) and malignant tissues (n = 21) was also evident (P = 0.002). We also identified that whilst HNF1B(C) and MSMB2 comprised the predominant isoforms in benign tissues (90% and 98% of total HNF1B or MSMB expression), HNF1B(B) and MSMB1 were predominant in malignant tissue (95% and 96% of total HNF1B or MSMB expression; P = 1.7 × 10-7 and 4 × 10-4 respectively), indicating major shifts in isoform usage. Conclusions Our results indicate that the amount or nature of mRNA transcripts expressed from the LMTK2, HNF1B and MSMB candidate genes is altered in prostate cancer, and provides further evidence for a role for these genes in this disorder. The alterations in isoform usage we detect highlights the potential importance of alternative mRNA processing and moderation of mRNA stability as potentially important disease mechanisms.
Collapse
Affiliation(s)
- Lorna W Harries
- Institute of Biomedical and Clinical Sciences, Peninsula NIHR Clinical Research Facility, University of Exeter, Peninsula Medical School, Exeter, Devon, UK.
| | | | | | | |
Collapse
|
30
|
Donelan W, Koya V, Li SW, Yang LJ. Distinct regulation of hepatic nuclear factor 1alpha by NKX6.1 in pancreatic beta cells. J Biol Chem 2010; 285:12181-9. [PMID: 20106981 PMCID: PMC2852957 DOI: 10.1074/jbc.m109.064238] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2009] [Revised: 01/19/2010] [Indexed: 01/12/2023] Open
Abstract
Hepatic nuclear factor 1alpha (HNF1alpha) is a key regulator of development and function in pancreatic beta cells and is specifically involved in regulation of glycolysis and glucose-stimulated insulin secretion. Abnormal expression of HNF1alpha leads to development of MODY3 (maturity-onset diabetes of the young 3). We report that NK6 homeodomain 1 (NKX6.1) binds to a cis-regulatory element in the HNF1alpha promoter and is a major regulator of this gene in beta cells. We identified an NKX6.1 recognition sequence in the distal region of the HNF1alpha promoter and demonstrated specific binding of NKX6.1 in beta cells by electrophoretic mobility shift and chromatin immunoprecipitation assays. Site-directed mutagenesis of the NKX6.1 core-binding sequence eliminated NKX6.1-mediated activation and substantially decreased activity of the HNF1alpha promoter in beta cells. Overexpression or small interfering RNA-mediated knockdown of the Nkx6.1 gene resulted in increased or diminished HNF1alpha gene expression, respectively, in beta cells. We conclude that NKX6.1 is a novel regulator of HNF1alpha in pancreatic beta cells. This novel regulatory mechanism for HNF1alpha in beta cells may provide new molecular targets for the diagnosis of MODY3.
Collapse
Affiliation(s)
- William Donelan
- From the Department of Pathology, Immunology, and Laboratory Medicine, University of Florida College of Medicine, Gainesville, Florida 32610
| | - Vijay Koya
- From the Department of Pathology, Immunology, and Laboratory Medicine, University of Florida College of Medicine, Gainesville, Florida 32610
| | - Shi-Wu Li
- From the Department of Pathology, Immunology, and Laboratory Medicine, University of Florida College of Medicine, Gainesville, Florida 32610
| | - Li-Jun Yang
- From the Department of Pathology, Immunology, and Laboratory Medicine, University of Florida College of Medicine, Gainesville, Florida 32610
| |
Collapse
|
31
|
Huang WT, Weng CF. Roles of hepatocyte nuclear factors (HNF) in the regulation of reproduction in teleosts. JOURNAL OF FISH BIOLOGY 2010; 76:225-239. [PMID: 20738706 DOI: 10.1111/j.1095-8649.2009.02480.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Hepatocyte nuclear factor (HNF) families are composed of liver-enriched transcription factors and upstream regulators of many liver-specific genes. HNF are involved in liver-specific gene expression, metabolism, development, cell growth and many cellular functions in the body. HNF genes can be activated or influenced by several hormones and insulin-like growth factors (IGF), and different combinations of the four HNF factors form a network in controlling the expression of liver-specific or liver-enriched genes. The functions of these factors and their interactions within the gonads of bony fishes, however, are not well understood, and the related literature is scant. Recently, several members of the HNF families have been detected in teleost gonads together with their downstream genes (IGF-I and IGF-II), suggesting that these HNF could be upregulated in vitro by steroid hormones. Thus, the hormone-HNF-IGF-gonad interaction may be an alternative axis in the reproductive mechanism that acts in concert with the conventional hypothalamus-pituitary-gonad pathway. This may help the early development and maturation of the gonad or gamete, sexual maturity or reversion and spawning-regulating mechanisms among fishes to be understood.
Collapse
Affiliation(s)
- W-T Huang
- Department of Molecular Biotechnology, Da-Yeh University, Chang-Hua 515, Taiwan
| | | |
Collapse
|
32
|
Harries LW, Brown JE, Gloyn AL. Species-specific differences in the expression of the HNF1A, HNF1B and HNF4A genes. PLoS One 2009; 4:e7855. [PMID: 19924231 PMCID: PMC2773013 DOI: 10.1371/journal.pone.0007855] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2009] [Accepted: 10/21/2009] [Indexed: 11/19/2022] Open
Abstract
Background The HNF1A, HNF1B and HNF4A genes are part of an autoregulatory network in mammalian pancreas, liver, kidney and gut. The layout of this network appears to be similar in rodents and humans, but inactivation of HNF1A, HNF1B or HNF4A genes in animal models cause divergent phenotypes to those seen in man. We hypothesised that some differences may arise from variation in the expression profile of alternatively processed isoforms between species. Methodology/Principal Findings We measured the expression of the major isoforms of the HNF1A, HNF1B and HNF4A genes in human and rodent pancreas, islet, liver and kidney by isoform-specific quantitative real-time PCR and compared their expression by the comparative Ct (ΔΔCt) method. We found major changes in the expression profiles of the HNF genes between humans and rodents. The principal difference lies in the expression of the HNF1A gene, which exists as three isoforms in man, but as a single isoform only in rodents. More subtle changes were to the balance of HNF1B and HNF4A isoforms between species; the repressor isoform HNF1B(C) comprised only 6% in human islets compared with 24–26% in rodents (p = 0.006) whereas HNF4A9 comprised 22% of HNF4A expression in human pancreas but only 11% in rodents (p = 0.001). Conclusions/Significance The differences we note in the isoform-specific expression of the human and rodent HNF1A, HNF1B and HNF4A genes may impact on the absolute activity of these genes, and therefore on the activity of the pancreatic transcription factor network as a whole. We conclude that alterations to expression of HNF isoforms may underlie some of the phenotypic variation caused by mutations in these genes.
Collapse
Affiliation(s)
- Lorna W Harries
- Institute of Biomedical and Clinical Sciences, Peninsula Medical School, University of Exeter, Exeter, United Kingdom.
| | | | | |
Collapse
|
33
|
Jafar-Mohammadi B, Groves CJ, Owen KR, Frayling TM, Hattersley AT, McCarthy MI, Gloyn AL. Low frequency variants in the exons only encoding isoform A of HNF1A do not contribute to susceptibility to type 2 diabetes. PLoS One 2009; 4:e6615. [PMID: 19672314 PMCID: PMC2720540 DOI: 10.1371/journal.pone.0006615] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2009] [Accepted: 07/08/2009] [Indexed: 12/04/2022] Open
Abstract
Background There is considerable interest in the hypothesis that low frequency, intermediate penetrance variants contribute to the proportion of Type 2 Diabetes (T2D) susceptibility not attributable to the common variants uncovered through genome-wide association approaches. Genes previously implicated in monogenic and multifactorial forms of diabetes are obvious candidates in this respect. In this study, we focussed on exons 8–10 of the HNF1A gene since rare, penetrant mutations in these exons (which are only transcribed in selected HNF1A isoforms) are associated with a later age of diagnosis of Maturity onset diabetes of the young (MODY) than mutations in exons 1–7. The age of diagnosis in the subgroup of HNF1A-MODY individuals with exon 8–10 mutations overlaps with that of early multifactorial T2D, and we set out to test the hypothesis that these exons might also harbour low-frequency coding variants of intermediate penetrance that contribute to risk of multifactorial T2D. Methodology and Principal Findings We performed targeted capillary resequencing of HNF1A exons 8–10 in 591 European T2D subjects enriched for genetic aetiology on the basis of an early age of diagnosis (≤45 years) and/or family history of T2D (≥1 affected sibling). PCR products were sequenced and compared to the published HNF1A sequence. We identified several variants (rs735396 [IVS9−24T>C], rs1169304 [IVS8+29T>C], c.1768+44C>T [IVS9+44C>T] and rs61953349 [c.1545G>A, p.T515T] but no novel non-synonymous coding variants were detected. Conclusions and Significance We conclude that low frequency, nonsynonymous coding variants in the terminal exons of HNF1A are unlikely to contribute to T2D-susceptibility in European samples. Nevertheless, the rationale for seeking low-frequency causal variants in genes known to contain rare, penetrant mutations remains strong and should motivate efforts to screen other genes in a similar fashion.
Collapse
Affiliation(s)
- Bahram Jafar-Mohammadi
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford, United Kingdom
- Oxford Biomedical Research Centre, Churchill Hospital, Oxford, United Kingdom
| | - Christopher J. Groves
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford, United Kingdom
| | - Katharine R. Owen
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford, United Kingdom
- Oxford Biomedical Research Centre, Churchill Hospital, Oxford, United Kingdom
| | - Timothy M. Frayling
- Institute of Biomedical and Clinical Science, Peninsula Medical School, Exeter, United Kingdom
| | - Andrew T. Hattersley
- Institute of Biomedical and Clinical Science, Peninsula Medical School, Exeter, United Kingdom
| | - Mark I. McCarthy
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford, United Kingdom
- Oxford Biomedical Research Centre, Churchill Hospital, Oxford, United Kingdom
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Anna L. Gloyn
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford, United Kingdom
- Oxford Biomedical Research Centre, Churchill Hospital, Oxford, United Kingdom
- * E-mail:
| |
Collapse
|
34
|
Reiner AP, Gross MD, Carlson CS, Bielinski SJ, Lange LA, Fornage M, Jenny NS, Walston J, Tracy RP, Williams OD, Jacobs DR, Nickerson DA. Common coding variants of the HNF1A gene are associated with multiple cardiovascular risk phenotypes in community-based samples of younger and older European-American adults: the Coronary Artery Risk Development in Young Adults Study and The Cardiovascular Health Study. CIRCULATION. CARDIOVASCULAR GENETICS 2009; 2:244-54. [PMID: 20031592 PMCID: PMC2841292 DOI: 10.1161/circgenetics.108.839506] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
BACKGROUND The transcription factor hepatocyte nuclear factor (HNF)-1 alpha regulates the activity of a number of genes involved in innate immunity, blood coagulation, lipid and glucose transport and metabolism, and cellular detoxification. Common polymorphisms of the HNF-1 alpha gene (HNF1A) were recently associated with plasma C-reactive protein and gamma-glutamyl transferase concentration in middle-aged to older European Americans (EA). METHODS AND RESULTS We assessed whether common variants of HNF1A are associated with C-reactive protein, gamma-glutamyl transferase, and other atherosclerotic and metabolic risk factors, in the large, population-based Coronary Artery Risk Development in Young Adults Study of healthy young EA (n=2154) and African American (AA; n=2083) adults. The minor alleles of Ile27Leu (rs1169288) and Ser486Asn (rs2464196) were associated with 0.10 to 0.15 standard deviation units lower C-reactive protein and gamma-glutamyl transferase levels in EA. The same HNF1A coding variants were associated with higher low-density lipoprotein cholesterol, apolipoprotein B, creatinine, and fibrinogen in EA. We replicated the associations between HNF1A coding variants and C-reactive protein, fibrinogen, low-density lipoprotein cholesterol, and renal function in a second population-based sample of EA adults 65 years and older from the Cardiovascular Health Study. The HNF1A Ser486Asn and/or Ile27Leu variants were also associated with increased risk of subclinical coronary atherosclerosis in Coronary Artery Risk Development in Young Adults and with incident coronary heart disease in Cardiovascular Health Study. The Ile27Leu and Ser486Asn variants were 3-fold less common in AA than in EA. There was little evidence of association between HNF1A genotype and atherosclerosis-related phenotypes in AA. CONCLUSIONS Common polymorphisms of HNF1A seem to influence multiple phenotypes related to cardiovascular risk in the general population of younger and older EA adults.
Collapse
Affiliation(s)
- Alexander P Reiner
- Department of Epidemiology, University of Washington, Seattle, WA 98195, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Kimura Y, Nishimura FT, Abe S, Fukunaga T, Tanii H, Saijoh K. Polymorphisms in the promoter region of the human class II alcohol dehydrogenase (ADH4) gene affect both transcriptional activity and ethanol metabolism in Japanese subjects. J Toxicol Sci 2009; 34:89-97. [PMID: 19182438 DOI: 10.2131/jts.34.89] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Class II alcohol dehydrogenase (pi-ADH), encoded by alcohol dehydrogenase (ADH4), is considered to contribute to ethanol (EtOH) oxidation in the liver at high concentration. Four single nucleotide polymorphisms (SNPs) were found in the promoter region of this gene. Analysis of genotype distribution in 102 unrelated Japanese subjects revealed that four loci were in strong linkage disequilibrium and could be classified into three haplotypes. The effects of these polymorphisms on transcriptional activity were investigated in HepG2 cells. Transcriptional activity was significantly higher in cells with the -136A allele than in those with the -136C allele. To investigate whether this difference in transcriptional activity caused a difference in EtOH elimination, previous data on blood EtOH changes after 0.4 g/kg body weight alcohol ingestion were analyzed. When analyzed based on aldehyde dehydrogenase-2 gene (ALDH2) (487)Glu/Lys genotype, the significantly lower level of EtOH at peak in subjects with -136C/A and -136A/A genotype compared with subjects with -136C/C genotype indicated that -136 bp was a suggestive locus for differences in EtOH oxidation. This effect was observed only in subjects with ALDH2 (487)Glu/Glu. These results suggested that the SNP at -136bp in the ADH4 promoter had an effect on transcriptional regulation, and that the higher activity of the -136A allele compared with the -136C allele caused a lower level of blood EtOH after alcohol ingestion; that is, individuals with the -136A allele may consume more EtOH and might have a higher risk for development of alcohol dependence than those without the -136A allele.
Collapse
Affiliation(s)
- Yukiko Kimura
- Department of Hygiene, Kanazawa University Graduate School of Medical Science, 13-1 Takara-machi, Kanazawa 920-8640, Japan.
| | | | | | | | | | | |
Collapse
|
36
|
Locke JM, Ellard S, Norwood VF, Harries LW. Variants in the isoform-specific coding regions of the HNF1A, HNF4A and HNF1B genes are not a common cause of familial, young-onset diabetes or renal cysts and diabetes (RCAD). Diabet Med 2009; 26:569-70. [PMID: 19646202 DOI: 10.1111/j.1464-5491.2009.02705.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
37
|
Locke JM, Harries LW. RNA processing and mRNA surveillance in monogenic diabetes. GENE REGULATION AND SYSTEMS BIOLOGY 2008; 2:203-12. [PMID: 19787084 PMCID: PMC2733086 DOI: 10.4137/grsb.s782] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
In the eukaryotic cell a number of molecular mechanisms exist to regulate the nature and quantity of transcripts intended for translation. For monogenic diabetes an understanding of these processes is aiding scientists and clinicians in studying and managing this disease. Knowledge of RNA processing and mRNA surveillance pathways is helping to explain disease mechanisms, form genotype-phenotype relationships, and identifying new regions within genes to screen for mutations. Furthermore, recent insights into the regulatory role of micro RNAs (miRNAs) and RNA editing in the pancreas suggests that these mechanisms may also be important in the progression to the diabetic state.
Collapse
Affiliation(s)
- Jonathan M Locke
- Institute of Biomedical and Clinical Sciences, Peninsula Medical School, Exeter, UK
| | | |
Collapse
|
38
|
Abstract
The importance of hepatocyte nuclear factors (HNFs), as well as other transcription factors in β-cell development and function, was underlined by the characterization of human mutations causing maturity-onset diabetes of the young (MODY). HNF1A and HNF1B mutations lead to MODY forms 3 and 5, respectively. Thus, transcriptional control is an essential mechanism underlying the precise metabolic control exerted by β-cells in regulating insulin release. The diabetes phenotype of MODY3 (HNF1α) and the phenotypes of MODY5 (HNF1β), which can also include renal disease and genitourinary malformations, as well as neonatal diabetes and pancreatic agenesis, have now been described. However, detailed molecular pathology remains elusive. The large array of dominant-negative and deletion mutations, and the lack of structure-phenotype relationships for most mutations, have not helped us to formulate a mechanistic understanding. Further molecular studies of HNF1 actions and gene regulation are anticipated to provide useful insights into β-cell biology and potential therapeutic tools.
Collapse
Affiliation(s)
- David B Rhoads
- a Director, Pediatric Endocrine Research Laboratory, MassGeneral Hospital for Children, 55 Fruit Street - BHX410, Boston, MA 02114-2696, USA.
| | - Lynne L Levitsky
- b Chief, Pediatric Endocrine Unit, MassGeneral Hospital for Children, 175 Cambridge Street - CPZS-5, Boston, MA 02114-2696, USA.
| |
Collapse
|
39
|
Grove CA, Walhout AJM. Transcription factor functionality and transcription regulatory networks. MOLECULAR BIOSYSTEMS 2008; 4:309-14. [PMID: 18354784 DOI: 10.1039/b715909a] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Now that numerous high-quality complete genome sequences are available, many efforts are focusing on the "second genomic code", namely the code that determines how the precise temporal and spatial expression of each gene in the genome is achieved. In this regard, the elucidation of transcription regulatory networks that describe combined transcriptional circuits for an organism of interest has become valuable to our understanding of gene expression at a systems level. Such networks describe physical and regulatory interactions between transcription factors (TFs) and the target genes they regulate under different developmental, physiological, or pathological conditions. The mapping of high-quality transcription regulatory networks depends not only on the accuracy of the experimental or computational method chosen, but also relies on the quality of TF predictions. Moreover, the total repertoire of TFs is not only determined by the protein-coding capacity of the genome, but also by different protein properties, including dimerization, co-factor interactions and post-translational modifications. Here, we discuss the factors that influence TF functionality and, hence, the functionality of the networks in which they operate.
Collapse
Affiliation(s)
- Christian A Grove
- Program in Gene Function and Expression, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | | |
Collapse
|
40
|
Huang WT, Yu HC, Hsu CC, Liao CF, Gong HY, Lin CJF, Wu JL, Weng CF. Steroid hormones (17β-estradiol and hydrocortisone) upregulate hepatocyte nuclear factor (HNF)-3β and insulin-like growth factors I and II expression in the gonads of tilapia (Oreochromis mossambicus) in vitro. Theriogenology 2007; 68:988-1002. [PMID: 17804049 DOI: 10.1016/j.theriogenology.2007.07.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2007] [Accepted: 07/04/2007] [Indexed: 11/28/2022]
Abstract
Hepatocyte nuclear factors (HNF-1alpha, -1beta and -3beta) and insulin-like growth factors (IGF-I and -II), which are involved in liver-specific gene expression, metabolism, development and cell growth, have been found in the gonads of tilapia (Oreochromis mossambicus). However, the functions of these factors and how they interact within the gonads of bony fish are not understood. In the present study, we provided experimental evidence that the expression of HNF-3beta in the gonads of tilapia, but not HNF-1alpha and -1beta, was affected in vitro by 17beta-estradiol and hydrocortisone. Immunohistochemical staining confirmed that tilapia HNF-3beta was mainly found in the nuclei of hepatocytes, the follicular granulosa cells of the ovaries, and the interstitial cells of the testes of adult tilapia. Further data were gathered at various steroid concentrations (0.1, 1, 10, 100, and 1000 nM) over various culture intervals (6, 12, 18, 24, 30, and 36 h) and subjected to semi-quantitative RT-PCR analysis. The expression of downstream genes (IGF-I and -II) followed the same temporal patterns as HNF-3beta, albeit at decreased levels for 30 and 36 h culture intervals. Both hormones upregulated HNF-3beta mRNA expression at concentrations of 0.1-10 nM, and reached optimal physiological concentrations for induction of IGFs at 1-10 nM. The identity of the PCR fragments was concurrently verified by sequencing and PCR-Southern hybridization. We inferred that HNF-3beta and IGFs may play a regulatory role in tilapia gonads during oocyte maturation and spermatogenesis.
Collapse
Affiliation(s)
- Wei-Tung Huang
- Department of Molecular Biotechnology, Da-Yeh University, 515, Chang-Hua, Taiwan
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Yamamoto S, Tsuda H, Aida S, Shimazaki H, Tamai S, Matsubara O. Immunohistochemical detection of hepatocyte nuclear factor 1β in ovarian and endometrial clear-cell adenocarcinomas and nonneoplastic endometrium. Hum Pathol 2007; 38:1074-1080. [PMID: 17442376 DOI: 10.1016/j.humpath.2006.12.018] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2006] [Revised: 12/08/2006] [Accepted: 12/08/2006] [Indexed: 01/13/2023]
Abstract
Recent studies have noted specific expression of hepatocyte nuclear factor (HNF) 1beta in ovarian clear-cell adenocarcinoma (CCA). In this study, we aimed to determine whether HNF-1beta can be a specific marker of CCA in both the ovary and the endometrium and to assess the pathological significance of HNF-1beta expression in CCAs. We examined HNF-1beta expression immunohistochemically in 186 ovarian carcinomas, including 40 CCAs; 33 endometrial carcinomas, including 5 CCAs; 22 endometria at different stages of the menstrual cycle (5 in the proliferative, 12 in the secretory, and 5 in the menstrual phases); and 7 gestational endometria. The incidence of HNF-1beta immunoreactivity differed significantly between CCAs and other histology in both the ovary (100% in the former versus 2% in the latter) and the endometrium (100% in the former versus 0% in the latter) (P < .0001 each). In nonneoplastic endometrium, 25% or more immunoreactive cells were confined to the mid-to-late secretory phase of the menstrual cycle and gestational endometrium. HNF-1beta would be an excellent marker for distinguishing CCAs from other lesions in both the ovary and the endometrium. HNF-1beta expression seems to be associated with physiopathological cytoplasmic glycogen accumulation in these organs.
Collapse
Affiliation(s)
- Sohei Yamamoto
- Department of Basic Pathology, National Defense Medical College, Tokorozawa, Saitama 359-8513, Japan
| | - Hitoshi Tsuda
- Department of Basic Pathology, National Defense Medical College, Tokorozawa, Saitama 359-8513, Japan.
| | - Shinsuke Aida
- Department of Laboratory Medicine, National Defense Medical College, Saitama 359-8513, Japan
| | - Hideyuki Shimazaki
- Department of Laboratory Medicine, National Defense Medical College, Saitama 359-8513, Japan
| | - Seiichi Tamai
- Department of Laboratory Medicine, National Defense Medical College, Saitama 359-8513, Japan
| | - Osamu Matsubara
- Department of Basic Pathology, National Defense Medical College, Tokorozawa, Saitama 359-8513, Japan
| |
Collapse
|
42
|
Ramírez J, Mirkov S, Zhang W, Chen P, Das S, Liu W, Ratain MJ, Innocenti F. Hepatocyte nuclear factor-1 alpha is associated with UGT1A1, UGT1A9 and UGT2B7 mRNA expression in human liver. THE PHARMACOGENOMICS JOURNAL 2007; 8:152-61. [PMID: 17440429 DOI: 10.1038/sj.tpj.6500454] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Experimental evidence suggests HNF1alpha regulates UGT expression. This study investigates (1) whether the variability in HNF1alpha expression is associated with the variability in UGT1A1, UGT1A9 and UGT2B7 expression in human livers and (2) the functionality of 12 HNF1alpha variants using mRNA expression as phenotype. Controlling for known UGT variation in cis-acting elements known to affect UGT expression, we demonstrate that a combination of HNF1alpha mRNA levels and UGT genotype predicts variance in UGT expression to a higher extent than UGT genotype alone. None of the HNF1alpha polymorphisms studied, however, seem to have an effect on HNF1alpha, UGT1A1, UGT1A9 and UGT2B7 expression, ruling out their functional role. Our data provide evidence for HNF1alpha being a determinant of UGT1A1, UGT1A9 and UGT2B7 mRNA expression. However, the amount of UGT intergenotype variability explained by HNF1alpha expression appears to be modest, and further studies should investigate the role of multiple transcription factors.
Collapse
Affiliation(s)
- J Ramírez
- Department of Medicine, University of Chicago, Chicago, IL 60637, USA
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Gu N, Adachi T, Matsunaga T, Tsujimoto G, Ishihara A, Yasuda K, Tsuda K. HNF-1α participates in glucose regulation of sucrase–isomaltase gene expression in epithelial intestinal cells. Biochem Biophys Res Commun 2007; 353:617-22. [PMID: 17194452 DOI: 10.1016/j.bbrc.2006.12.065] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2006] [Accepted: 12/11/2006] [Indexed: 11/23/2022]
Abstract
Sucrase-isomaltase (SI) gene expression is negatively regulated by glucose, but its molecular mechanism is not completely clear. The purpose of this study is to investigate whether HNF-1alpha and HNF-1beta contribute to glucose regulation of SI gene expression. To explore this question, we examined the association of gene expressions between SI and HNF-1alpha and HNF-1beta in Caco-2 cells cultured in medium containing 2.0 and 16.7 mM glucose. We found that gene expression of HNF-1alpha but not HNF-1beta exhibits a positive correlation with that of SI regulated by glucose. Moreover, to elucidate whether glucose regulation of SI gene expression is changed when HNF-1alpha and HNF-1beta are inhibited, we produced three stable cell lines, in which dominant-negative mutant HNF-1alphaT539fsdelC, mutant HNF-1betaR177X, and empty vector (as a control), respectively, were stably expressed. We found that the glucose regulation of SI gene expression was significantly attenuated in HNF-1alphaT539fsdelC cells, but it was well maintained in empty vector and HNF-1betaR177X cells. These results suggest that HNF-1alpha participates in glucose regulation of SI gene expression.
Collapse
Affiliation(s)
- Ning Gu
- Laboratory of Metabolism, Graduate School of Human and Environmental Studies, Kyoto University, Kyoto, Japan
| | | | | | | | | | | | | |
Collapse
|
44
|
Ng L, Nichols K, O'Rourke K, Maslen A, Kirby GM. Repression of human GSTA1 by interleukin-1beta is mediated by variant hepatic nuclear factor-1C. Mol Pharmacol 2007; 71:201-8. [PMID: 17021248 DOI: 10.1124/mol.106.028563] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Down-regulation of glutathione transferase A1 (GSTA1) expression has profound implications in cytoprotection against toxic by-products of lipid peroxidation produced during inflammation. We investigated the role of hepatic nuclear factor 1 (HNF-1) in repression of human GSTA1 expression by interleukin (IL)-1beta in Caco-2 cells. In luciferase reporter assays, overexpression of HNF-1alpha increased GSTA1 transcriptional activity via an HNF-1 response element (HRE) in the proximal promoter. In addition, constitutive mRNA levels of GSTA1 and HNF-1alpha rose concurrently in Caco-2 cells with increasing stage of confluence. IL-1beta reduced GSTA1 mRNA levels at all stages of confluence; however, HNF-1alpha mRNA levels were not altered. IL-1beta repressed GSTA1 transcriptional activity, an effect that was abolished by mutating the HRE. Similar results were observed in HT-29 and HepG2 cells. Overexpression of HNF-1alpha did not counteract IL-1beta-mediated repression of GSTA1 transcription either in reporter assays or at the mRNA level. Involvement of the transdominant repressor C isoform of variant HNF-1 (vHNF-1C) in GSTA1 repression was demonstrated, because vHNF-1C overexpression significantly reduced GSTA1 transcriptional activity. Finally, IL-1beta caused concentration-related up-regulation of vHNF-1C mRNA levels and increased binding of vHNF-1C protein to the HRE, whereas HNF-1alpha-HRE complex formation was reduced. These findings indicate that IL-1beta represses GSTA1 transcription via a mechanism involving overexpression of vHNF-1C.
Collapse
Affiliation(s)
- Lorraine Ng
- Department of Biomedical Sciences, University of Guelph, Guelph, ON, Canada N1G 2W1
| | | | | | | | | |
Collapse
|
45
|
Harries LW. Alternate mRNA processing of the hepatocyte nuclear factor genes and its role in monogenic diabetes. Expert Rev Endocrinol Metab 2006; 1:715-726. [PMID: 30754156 DOI: 10.1586/17446651.1.6.715] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Variation in mRNA processing has the capacity to exert fine control over gene expression in most cell types. The hepatic nuclear factor genes, like approximately 74% of the genome, produce multiple transcripts. Hepatic nuclear factor isoforms exhibit both spatial and temporal variation in expression. In this review, the known isoforms of the hepatocyte nuclear factor-1α, hepatocyte nuclear factor-1β and hepatocyte nuclear factor-4α genes are described and their properties are compared. Finally, data are discussed regarding the influence of hepatocyte nuclear factor-1α alternate mRNA processing on the clinical phenotype of maturity-onset diabetes of the young.
Collapse
Affiliation(s)
- Lorna W Harries
- a RCUK Diabetes and Metabolism Academic Fellow, Institute of Biomedical and Clinical Sciences, Peninsula Medical School, Barrack Road, Exeter, EX2 5DW, UK.
| |
Collapse
|
46
|
Ellard S, Colclough K. Mutations in the genes encoding the transcription factors hepatocyte nuclear factor 1 alpha (HNF1A) and 4 alpha (HNF4A) in maturity-onset diabetes of the young. Hum Mutat 2006; 27:854-69. [PMID: 16917892 DOI: 10.1002/humu.20357] [Citation(s) in RCA: 140] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Maturity-onset diabetes of the young (MODY) is a monogenic form of diabetes mellitus characterized by autosomal dominant inheritance, early age of onset (often <25 years of age), and pancreatic beta-cell dysfunction. MODY is both clinically and genetically heterogeneous, with six different genes identified to date; glucokinase (GCK), hepatocyte nuclear factor-1 alpha (HNF1A, or TCF1), hepatocyte nuclear factor-4 alpha (HNF4A), insulin promoter factor-1 (IPF1 or PDX1), hepatocyte nuclear factor-1 beta (HNF1B or TCF2), and neurogenic differentiation 1 (NEUROD1). Mutations in the HNF1A gene are a common cause of MODY in the majority of populations studied. A total of 193 different mutations have been described in 373 families. The most common mutation is Pro291fs (P291fsinsC) in the polycytosine (poly C) tract of exon 4, which has been reported in 65 families. HNF4A mutations are rarer; 31 mutations reported in 40 families. Sensitivity to treatment with sulfonylurea tablets is a feature of both HNF1A and HNF4A mutations. The identification of an HNF1A or 4A gene mutation confirms a diagnosis of MODY and has important implications for clinical management.
Collapse
Affiliation(s)
- Sian Ellard
- Department of Molecular Genetics, Royal Devon & Exeter NHS Foundation Trust, Exeter, United Kingdom.
| | | |
Collapse
|
47
|
Gu N, Adachi T, Matsunaga T, Takeda J, Tsujimoto G, Ishihara A, Yasuda K, Tsuda K. Mutant HNF-1α and mutant HNF-1β identified in MODY3 and MODY5 downregulate DPP-IV gene expression in Caco-2 cells. Biochem Biophys Res Commun 2006; 346:1016-23. [PMID: 16781669 DOI: 10.1016/j.bbrc.2006.06.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2006] [Accepted: 06/02/2006] [Indexed: 11/26/2022]
Abstract
Dipeptidylpeptidase IV (DPP-IV) is a well-documented drug target for the treatment of type 2 diabetes. Hepatocyte nuclear factors (HNF)-1alpha and HNF-1beta, known as the causal genes of MODY3 and MODY5, respectively, have been reported to be involved in regulation of DPP-IV gene expression. But, it is not completely clear (i) that they play roles in regulation of DPP-IV gene expression, and (ii) whether DPP-IV gene activity is changed by mutant HNF-1alpha and mutant HNF-1beta in MODY3 and MODY5. To explore these questions, we investigated transactivation effects of wild HNF-1alpha and 13 mutant HNF-1alpha, as well as wild HNF-1beta and 2 mutant HNF-1beta, on DPP-IV promoter luciferase gene in Caco-2 cells by means of a transient experiment. Both wild HNF-1alpha and wild HNF-1beta significantly transactivated DPP-IV promoter, but mutant HNF-1alpha and mutant HNF-1beta exhibited low transactivation activity. Moreover, to study whether mutant HNF-1alpha and mutant HNF-1beta change endogenous DPP-IV enzyme activity, we produced four stable cell lines from Caco-2 cells, in which wild HNF-1alpha or wild HNF-1beta, or else respective dominant-negative mutant HNF-1alphaT539fsdelC or dominant-negative mutant HNF-1betaR177X, was stably expressed. We found that DPP-IV gene expression and enzyme activity were significantly increased in wild HNF-1alpha cells and wild HNF-1beta cells, whereas they decreased in HNF-1alphaT539fsdelC cells and HNF-1betaR177X cells, compared with DPP-IV gene expression and enzyme activity in Caco-2 cells. These results suggest that both wild HNF-1alpha and wild HNF-1beta have a stimulatory effect on DPP-IV gene expression, but that mutant HNF-1alpha and mutant HNF-1beta attenuate the stimulatory effect.
Collapse
Affiliation(s)
- Ning Gu
- Laboratory of Metabolism, Graduate School of Human and Environmental Studies, Kyoto University, Kyoto, Japan
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Narayana N, Phillips NB, Hua QX, Jia W, Weiss MA. Diabetes mellitus due to misfolding of a beta-cell transcription factor: stereospecific frustration of a Schellman motif in HNF-1alpha. J Mol Biol 2006; 362:414-29. [PMID: 16930618 DOI: 10.1016/j.jmb.2006.06.086] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2006] [Revised: 05/11/2006] [Accepted: 06/13/2006] [Indexed: 11/25/2022]
Abstract
Maturity-onset diabetes of the young (MODY3), a monogenic form of type II diabetes mellitus, results most commonly from mutations in hepatocyte nuclear factor 1alpha (HNF-1alpha). Diabetes-associated mutation G20R perturbs the dimerization domain of HNF-1alpha, an intertwined four-helix bundle. In the wild-type structure G20 participates in a Schellman motif to cap an alpha-helix; its dihedral angles lie in the right side of the Ramachandran plot (alpha(L) region; phi 97 degrees). Substitutions G20R and G20A lead to dimeric molten globules of low stability, suggesting that the impaired function of the diabetes-associated transcription factor is due in large part to a main-chain perturbation rather than to specific features of the Arg side-chain. This hypothesis is supported by the enhanced stability of non-standard analogues containing D-Ala or D-Ser at position 20. The crystal structure of the D-Ala20 analogue, determined to a resolution of 1.4 A, is essentially identical to the wild-type structure in the same crystal form. The mean root-mean-square deviation between equivalent C(alpha) atoms (residues 5-28) is 0.3 A; (phi, psi) angles of D-Ala20 are the same as those of G20 in the wild-type structure. Whereas the side-chain of A20 or R20 would be expected to clash with the preceding carbonyl oxygen (thus accounting for its frustrated energy landscape), the side-chain of D-Ala20 projects into solvent without perturbation of the Schellman motif. Calorimetric studies indicate that the increased stability of the D-Ala20 analogue (DeltaDeltaG(u) 1.5 kcal/mol) is entropic in origin, consistent with a conformational bias toward native-like conformations in the unfolded state. Studies of multiple substitutions at G20 and neighboring positions highlight the essential contributions of a glycine-specific tight turn and adjoining inter-subunit side-chain hydrogen bonds to the stability and architectural specificity of the intertwined dimer. Comparison of L- and D amino acid substitutions thus provides an example of the stereospecific control of an energy landscape by a helix-capping residue.
Collapse
Affiliation(s)
- Narendra Narayana
- Department of Biochemistry, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106-4935, USA
| | | | | | | | | |
Collapse
|
49
|
Tran YH, Xu Z, Kato A, Mistry AC, Goya Y, Taira M, Brandt SJ, Hirose S. Spliced Isoforms of LIM-Domain-Binding Protein (CLIM/NLI/Ldb) Lacking the LIM-Interaction Domain. ACTA ACUST UNITED AC 2006; 140:105-19. [PMID: 16815859 DOI: 10.1093/jb/mvj134] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
LIM-domain-binding proteins (CLIM/NLI/Ldb) are nuclear cofactors for LIM homeodomain transcription factors (LIM-HDs) and LIM-only proteins (LMOs). The LIM-interaction domain (LID) of Ldb is located in the carboxy-terminal region and encoded by the last exon (exon 10) of Ldb genes. It is known that the mammalian CLIM1/Ldb2 gene has a splice isoform, named CLIM1b, lacking the LID. However, little is known about the nature of CLIM1b or the evolutionary conservation of this type of alternative splicing in amphibians and teleost fish. Here, we demonstrate that splice isoforms lacking the LID are also present in the Ldb1 genes of mammals, chick, and Xenopus, as well as in fish paralog Ldb4. All these splicing variations occur in intron 9 and exon 10. We observed that Ldb4b (splice isoform lacking LID) is localized in the nucleus when expressed in mammalian culture cells, and binds to Ldb4a (splice isoform containing LID) but not directly to LIM proteins. However, Ldb4b binds to LMO4 via Ldb4a when coexpressed in culture cells. We also found that mouse Ldb1b lacks the ability to activate protein 4.2 promoter, which is stimulated by LMO2 and Ldb1. These findings suggest that splice isoforms of Ldb lacking LID are potential regulators of Ldb function.
Collapse
Affiliation(s)
- Yen Ha Tran
- Department of Biological Sciences, Tokyo Institute of Technology, Midori-ku, Yokohama 226-8501
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Romero L, Ng L, Kirby GM. Chemical inducers of rodent glutathione s-transferases down-regulate human GSTA1 transcription through a mechanism involving variant hepatic nuclear factor 1-C. Mol Pharmacol 2006; 70:277-86. [PMID: 16608922 DOI: 10.1124/mol.105.018622] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The regulation of human GSTA1 by chemical inducers of rodent glutathione S-transferases (GSTs) and the regulatory role of hepatic nuclear factor (HNF) 1 was investigated in Caco-2 cells. Treatment of preconfluent and confluent cells with 12-O-tetra-decanoyl phorbol-13-acetate (TPA), 3-methylcholanthrene (3-MC), 2-tert-butyl-4-hydroxy-anisol (BHA), and phenobarbital (PB) reduced GSTA1 mRNA levels in preconfluent and confluent cells. Constitutive levels of GSTA1 and HNF1alpha mRNA were elevated 6.25- and 50-fold, respectively, in postconfluent cells compared with preconfluent cells. Overexpression of HNF1alpha in cells transfected with a GSTA1 promoter-luciferase construct (pGSTA1-1591-luc) resulted in dose-related increases in reporter activity not observed when an HNF1 response element (HRE) in the proximal promoter was mutated (pGSTA1-DeltaHNF1-luc). TPA, 3-MC, BHA, and PB reduced HNF1alpha mRNA levels in preconfluent and confluent cells and caused marked reductions in luciferase activity in pGSTA1-1591-luc transfectants. Transcriptional repression was abrogated with pGSTA1-DeltaHNF1-luc and with truncated constructs that eliminated a functional HRE. Moreover, cotransfection of pHNF1alpha with pGSTA1-1591-luc partially prevented the reduction in luciferase activity by rodent GST inducers. Immunoblot analysis of DNA binding studies indicate that variant (v)HNF1-C binding to HRE is increased in preconfluent cells treated with 3-MC, BHA, and PB. In addition, overexpression of vHNF1-C repressed GSTA1 transcriptional activity in luciferase reporter assays. Finally, treatment with 3-MC, BHA, and PB increased vHNF1-C mRNA levels in preconfluent cells. These data demonstrate that repression of human GSTA1 transcription by chemical inducers of rodent GSTs occurs, in part, through a mechanism involving the repressive action of vHNF1-C.
Collapse
Affiliation(s)
- Laura Romero
- Department of Biomedical Sciences, University of Guelph, Guelph, ON, Canada N1G 2W1.
| | | | | |
Collapse
|