1
|
Hopkinson M, Pitsillides AA. Extracellular matrix: Dystroglycan interactions-Roles for the dystrophin-associated glycoprotein complex in skeletal tissue dynamics. Int J Exp Pathol 2025; 106:e12525. [PMID: 39923120 PMCID: PMC11807010 DOI: 10.1111/iep.12525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 12/23/2024] [Accepted: 12/29/2024] [Indexed: 02/10/2025] Open
Abstract
Contributions made by the dystrophin-associated glycoprotein complex (DGC) to cell-cell and cell-extracellular matrix (ECM) interactions are vital in development, homeostasis and pathobiology. This review explores how DGC functions may extend to skeletal pathophysiology by appraising the known roles of its major ECM ligands, and likely associated DGC signalling pathways, in regulating cartilage and bone cell behaviour and emergent skeletal phenotypes. These considerations will be contextualised by highlighting the potential of studies into the role of the DGC in isolated chondrocytes, osteoblasts and osteoclasts, and by fuller deliberation of skeletal phenotypes that may emerge in very young mice lacking vital, yet diverse core elements of the DGC. Our review points to roles for individual DGC components-including the glycosylation of dystroglycan itself-beyond the establishment of membrane stability which clearly accounts for severe muscle phenotypes in muscular dystrophy. It implies that the short stature, low bone mineral density, poor bone health and greater fracture risk in these patients, which has been attributed due to primary deficiencies in muscle-evoked skeletal loading, may instead arise due to primary roles for the DGC in controlling skeletal tissue (re)modelling.
Collapse
Affiliation(s)
- Mark Hopkinson
- Skeletal Biology Group, Comparative Biomedical SciencesRoyal Veterinary CollegeLondonUK
| | - Andrew A. Pitsillides
- Skeletal Biology Group, Comparative Biomedical SciencesRoyal Veterinary CollegeLondonUK
| |
Collapse
|
2
|
Dilawar M, Yu X, Jin Y, Yang J, Lin S, Liao J, Dai Q, Zhang X, Nisar MF, Chen G. Notch signaling pathway in osteogenesis, bone development, metabolism, and diseases. FASEB J 2025; 39:e70417. [PMID: 39985304 DOI: 10.1096/fj.202402545r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 01/18/2025] [Accepted: 02/14/2025] [Indexed: 02/24/2025]
Abstract
The skeletal system provides vital importance to support organ development and functions. The Notch signaling pathway possesses well-established functions in organ development and cellular homeostasis. The Notch signaling pathway comprises five typical ligands (JAG1, JAG2, DLL1, DLL3, and DLL4), four receptors (Notch1-4), and four intracellular domains (NICD1-4). Each component of the Notch signaling pathway has been demonstrated to be fundamental in osteoblast differentiation and bone formation. The dysregulation in the Notch signaling pathway is highly linked with skeletal disorders or diseases at the developmental and postnatal stages. Recent studies have highlighted the importance of the elements of the Notch signaling pathway in the skeletal system, as well as its interaction with signaling, such as Wnt/β-catenin, BMP, TGF-β, FGF, autophagy, and hedgehog (Hh) to construct a potential gene regulatory network to orchestrate osteogenesis and ossification. Our review has provided a comprehensive summary of the Notch signaling pathway in the skeletal system, as well as the insights targeting Notch signaling for innovative potential drug discovery targets or therapeutic interventions to treat bone disorders, such as osteoporosis and osteoarthritis. An in-depth molecular mechanistic strategy to modulate the Notch signaling pathway and its associated signaling pathway will be encouraged for consideration to trigger enhanced therapeutic approaches for bone disorders by defining Notch-regulating drugs for clinical use.
Collapse
Affiliation(s)
- Muhammad Dilawar
- Department of Biopharmaceutics, Zhejiang Provincial Engineering Research Center of New Technologies and Applications for Targeted Therapy of Major Diseases, College of Life Science and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Xuan Yu
- Department of Biopharmaceutics, Zhejiang Provincial Engineering Research Center of New Technologies and Applications for Targeted Therapy of Major Diseases, College of Life Science and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Yuanyuan Jin
- Department of Biopharmaceutics, Zhejiang Provincial Engineering Research Center of New Technologies and Applications for Targeted Therapy of Major Diseases, College of Life Science and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Jing Yang
- Department of Biopharmaceutics, Zhejiang Provincial Engineering Research Center of New Technologies and Applications for Targeted Therapy of Major Diseases, College of Life Science and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Sisi Lin
- Department of Biopharmaceutics, Zhejiang Provincial Engineering Research Center of New Technologies and Applications for Targeted Therapy of Major Diseases, College of Life Science and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Junguang Liao
- Department of Biopharmaceutics, Zhejiang Provincial Engineering Research Center of New Technologies and Applications for Targeted Therapy of Major Diseases, College of Life Science and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Qi Dai
- Department of Biopharmaceutics, Zhejiang Provincial Engineering Research Center of New Technologies and Applications for Targeted Therapy of Major Diseases, College of Life Science and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Xingen Zhang
- Department of Orthopedics, Jiaxing Key Laboratory for Minimally Invasive Surgery in Orthopaedics & Skeletal Regenerative Medicine, Zhejiang Rongjun Hospital, Jiaxing, China
| | - Muhammad Farrukh Nisar
- Department of Physiology & Biochemistry, Cholistan University of Veterinary and Animal Sciences, Bahawalpur, Pakistan
- Ministry of Education and Jiangxi Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Jiangxi Agricultural University, Nanchang, China
| | - Guiqian Chen
- Department of Biopharmaceutics, Zhejiang Provincial Engineering Research Center of New Technologies and Applications for Targeted Therapy of Major Diseases, College of Life Science and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| |
Collapse
|
3
|
Jiménez-Ortega RF, Ortega-Meléndez AI, Patiño N, Rivera-Paredez B, Hidalgo-Bravo A, Velázquez-Cruz R. The Involvement of microRNAs in Bone Remodeling Signaling Pathways and Their Role in the Development of Osteoporosis. BIOLOGY 2024; 13:505. [PMID: 39056698 PMCID: PMC11273958 DOI: 10.3390/biology13070505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 06/26/2024] [Accepted: 07/05/2024] [Indexed: 07/28/2024]
Abstract
Bone remodeling, crucial for maintaining the balance between bone resorption and formation, relies on the coordinated activity of osteoclasts and osteoblasts. During osteoclastogenesis, hematopoietic stem cells (HSCs) differentiate into the osteoclast lineage through the signaling pathways OPG/RANK/RANKL. On the other hand, during osteoblastogenesis, mesenchymal stem cells (MSCs) differentiate into the osteoblast lineage through activation of the signaling pathways TGF-β/BMP/Wnt. Recent studies have shown that bone remodeling is regulated by post-transcriptional mechanisms including microRNAs (miRNAs). miRNAs are small, single-stranded, noncoding RNAs approximately 22 nucleotides in length. miRNAs can regulate virtually all cellular processes through binding to miRNA-response elements (MRE) at the 3' untranslated region (3'UTR) of the target mRNA. miRNAs are involved in controlling gene expression during osteogenic differentiation through the regulation of key signaling cascades during bone formation and resorption. Alterations of miRNA expression could favor the development of bone disorders, including osteoporosis. This review provides a general description of the miRNAs involved in bone remodeling and their significance in osteoporosis development.
Collapse
Affiliation(s)
- Rogelio F. Jiménez-Ortega
- Laboratorio de Genómica del Metabolismo Óseo, Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City 14610, Mexico;
- Unidad de Acupuntura Humana Rehabilitatoria, Universidad Estatal del Valle de Ecatepec (UNEVE), Ecatepec de Morelos 55210, Mexico
| | - Alejandra I. Ortega-Meléndez
- Unidad Académica de Ciencias de la Salud, Universidad ETAC Campus Coacalco, Coacalco de Berriozábal 55700, Mexico;
| | - Nelly Patiño
- Unidad de Citometría de Flujo (UCiF), Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City 14610, Mexico;
| | - Berenice Rivera-Paredez
- Centro de Investigación en Políticas, Población y Salud, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico;
| | - Alberto Hidalgo-Bravo
- Departamento de Medicina Genómica, Instituto Nacional de Rehabilitación, Mexico City 14389, Mexico;
| | - Rafael Velázquez-Cruz
- Laboratorio de Genómica del Metabolismo Óseo, Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City 14610, Mexico;
| |
Collapse
|
4
|
Torres HM, Hinojosa L, VanCleave AM, Rodezno T, Westendorf JJ, Tao J. Hdac1 and Hdac2 positively regulate Notch1 gain-of-function pathogenic signaling in committed osteoblasts of male mice. Birth Defects Res 2024; 116:e2266. [PMID: 37921375 PMCID: PMC10842522 DOI: 10.1002/bdr2.2266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 10/18/2023] [Accepted: 10/19/2023] [Indexed: 11/04/2023]
Abstract
BACKGROUND Skeletal development requires precise extrinsic and intrinsic signals to regulate processes that form and maintain bone and cartilage. Notch1 is a highly conserved signaling receptor that regulates cell fate decisions by controlling the duration of transcriptional bursts. Epigenetic molecular events reversibly modify DNA and histone tails by influencing the spatial organization of chromatin and can fine-tune the outcome of a Notch1 transcriptional response. Histone deacetylase 1 and 2 (HDAC1 and HDAC2) are chromatin modifying enzymes that mediate osteoblast differentiation. While an HDAC1-Notch interaction has been studied in vitro and in Drosophila, its role in mammalian skeletal development and disorders is unclear. Osteosclerosis is a bone disorder with an abnormal increase in the number of osteoblasts and excessive bone formation. METHODS Here, we tested whether Hdac1/2 contribute to the pathogenesis of osteosclerosis in a murine model of the disease owing to conditionally cre-activated expression of the Notch1 intracellular domain in immature osteoblasts. RESULTS Importantly, selective homozygous deletions of Hdac1/2 in osteoblasts partially alleviate osteosclerotic phenotypes (Col2.3kb-Cre; TGRosaN1ICD/+ ; Hdac1flox/flox ; Hdac2flox/flox ) with a 40% decrease in bone volume and a 22% decrease in trabecular thickness in 4 weeks old when compared to male mice with heterozygous deletions of Hdac1/2 (Col2.3 kb-Cre; TGRosaN1ICD/+ ; Hdac1flox/+ ; Hdac2flox/+ ). Osteoblast-specific deletion of Hdac1/2 in male and female mice results in no overt bone phenotype in the absence of the Notch1 gain-of-function (GOF) allele. CONCLUSIONS These results provide evidence that Hdac1/2 contribute to Notch1 pathogenic signaling in the mammalian skeleton. Our study on epigenetic regulation of Notch1 GOF-induced osteosclerosis may facilitate further mechanistic studies of skeletal birth defects caused by Notch-related GOF mutations in human patients, such as Adams-Oliver disease, congenital heart disease, and lateral meningocele syndrome.
Collapse
Affiliation(s)
- Haydee M. Torres
- Cancer Biology and Immunotherapies Group, Sanford Research, Sioux Falls, South Dakota, USA
- Department of Chemistry and Biochemistry, South Dakota State University, Brookings, South Dakota, USA
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota, USA
| | - Leetoria Hinojosa
- Cancer Biology and Immunotherapies Group, Sanford Research, Sioux Falls, South Dakota, USA
| | - Ashley M. VanCleave
- Cancer Biology and Immunotherapies Group, Sanford Research, Sioux Falls, South Dakota, USA
| | - Tania Rodezno
- Cancer Biology and Immunotherapies Group, Sanford Research, Sioux Falls, South Dakota, USA
| | - Jennifer J. Westendorf
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota, USA
- Department of Biochemistry & Molecular Biology, Mayo Clinic, Rochester, Minnesota, USA
| | - Jianning Tao
- Cancer Biology and Immunotherapies Group, Sanford Research, Sioux Falls, South Dakota, USA
- Department of Chemistry and Biochemistry, South Dakota State University, Brookings, South Dakota, USA
- Department of Pediatrics and Biomedical Engineering at the University of South Dakota, Sioux Falls, South Dakota, USA
| |
Collapse
|
5
|
Liu G, Wei J, Xiao W, Xie W, Ru Q, Chen L, Wu Y, Mobasheri A, Li Y. Insights into the Notch signaling pathway in degenerative musculoskeletal disorders: Mechanisms and perspectives. Biomed Pharmacother 2023; 169:115884. [PMID: 37981460 DOI: 10.1016/j.biopha.2023.115884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 11/08/2023] [Accepted: 11/13/2023] [Indexed: 11/21/2023] Open
Abstract
Degenerative musculoskeletal disorders are a group of age-related diseases of the locomotive system that severely affects the patient's ability to work and cause adverse sequalae such as fractures and even death. The incidence and prevalence of degenerative musculoskeletal disorders is rising owing to the aging of the world's population. The Notch signaling pathway, which is expressed in almost all organ systems, extensively regulates cell proliferation and differentiation as well as cellular fate. Notch signaling shows increased activity in degenerative musculoskeletal disorders and retards the progression of degeneration to some extent. The review focuses on four major degenerative musculoskeletal disorders (osteoarthritis, intervertebral disc degeneration, osteoporosis, and sarcopenia) and summarizes the pathophysiological functions of Notch signaling in these disorders, especially its role in stem/progenitor cells in each disorder. Finally, a conclusion will be presented to explore the research and application of the perspectives on Notch signaling in degenerative musculoskeletal disorders.
Collapse
Affiliation(s)
- Gaoming Liu
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha 410011, China
| | - Jun Wei
- Department of Clinical Medical School, Xinjiang Medical University, Urumqi 830054, China
| | - Wenfeng Xiao
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha 410011, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Wenqing Xie
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha 410011, China
| | - Qin Ru
- Department of Health and Physical Education, Jianghan University, Wuhan 430056, China
| | - Lin Chen
- Department of Health and Physical Education, Jianghan University, Wuhan 430056, China
| | - Yuxiang Wu
- Department of Health and Physical Education, Jianghan University, Wuhan 430056, China.
| | - Ali Mobasheri
- Research Unit of Medical Imaging, Physics and Technology, Faculty of Medicine, University of Oulu, Oulu, Finland; Department of Regenerative Medicine, State Research Institute Centre for Innovative Medicine, Vilnius, Lithuania; Department of Orthopedics, University Medical Center Utrecht, Utrecht, the Netherlands; Department of Rheumatology and Clinical Immunology, University Medical Center Utrecht, Utrecht, the Netherlands; Department of Joint Surgery, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China; World Health Organization Collaborating Center for Public Health Aspects of Musculoskeletal Health and Aging, Université de Liège, Liège, Belgium.
| | - Yusheng Li
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha 410011, China; Department of Clinical Medical School, Xinjiang Medical University, Urumqi 830054, China.
| |
Collapse
|
6
|
Hermosilla Aguayo V, Martin P, Tian N, Zheng J, Aho R, Losa M, Selleri L. ESCRT-dependent control of craniofacial morphogenesis with concomitant perturbation of NOTCH signaling. Dev Biol 2023; 503:25-42. [PMID: 37573008 DOI: 10.1016/j.ydbio.2023.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 08/08/2023] [Accepted: 08/09/2023] [Indexed: 08/14/2023]
Abstract
Craniofacial development is orchestrated by transcription factor-driven regulatory networks, epigenetic modifications, and signaling pathways. Signaling molecules and their receptors rely on endo-lysosomal trafficking to prevent accumulation on the plasma membrane. ESCRT (Endosomal Sorting Complexes Required for Transport) machinery is recruited to endosomal membranes enabling degradation of such endosomal cargoes. Studies in vitro and in invertebrate models established the requirements of the ESCRT machinery in membrane remodeling, endosomal trafficking, and lysosomal degradation of activated membrane receptors. However, investigations during vertebrate development have been scarce. By ENU-induced mutagenesis, we isolated a mouse line, Vps25ENU/ENU, carrying a hypomorphic allele of the ESCRT-II component Vps25, with craniofacial anomalies resembling features of human congenital syndromes. Here, we assessed the spatiotemporal dynamics of Vps25 and additional ESCRT-encoding genes during murine development. We show that these genes are ubiquitously expressed although enriched in discrete domains of the craniofacial complex, heart, and limbs. ESCRT-encoding genes, including Vps25, are expressed in both cranial neural crest-derived mesenchyme and epithelium. Unlike constitutive ESCRT mutants, Vps25ENU/ENU embryos display late lethality. They exhibit hypoplastic lower jaw, stunted snout, dysmorphic ear pinnae, and secondary palate clefting. Thus, we provide the first evidence for critical roles of ESCRT-II in craniofacial morphogenesis and report perturbation of NOTCH signaling in craniofacial domains of Vps25ENU/ENU embryos. Given the known roles of NOTCH signaling in the developing cranium, and notably the lower jaw, we propose that the NOTCH pathway partly mediates the craniofacial defects of Vps25ENU/ENU mouse embryos.
Collapse
Affiliation(s)
- Viviana Hermosilla Aguayo
- Program in Craniofacial Biology, Institute for Human Genetics, Eli and Edythe Broad Center of Regeneration Medicine & Stem Cell Research, Dept of Orofacial Sciences and Dept of Anatomy, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Peter Martin
- Program in Craniofacial Biology, Institute for Human Genetics, Eli and Edythe Broad Center of Regeneration Medicine & Stem Cell Research, Dept of Orofacial Sciences and Dept of Anatomy, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Nuo Tian
- Program in Craniofacial Biology, Institute for Human Genetics, Eli and Edythe Broad Center of Regeneration Medicine & Stem Cell Research, Dept of Orofacial Sciences and Dept of Anatomy, University of California, San Francisco, San Francisco, CA 94143, USA
| | - James Zheng
- Program in Craniofacial Biology, Institute for Human Genetics, Eli and Edythe Broad Center of Regeneration Medicine & Stem Cell Research, Dept of Orofacial Sciences and Dept of Anatomy, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Robert Aho
- Program in Craniofacial Biology, Institute for Human Genetics, Eli and Edythe Broad Center of Regeneration Medicine & Stem Cell Research, Dept of Orofacial Sciences and Dept of Anatomy, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Marta Losa
- Program in Craniofacial Biology, Institute for Human Genetics, Eli and Edythe Broad Center of Regeneration Medicine & Stem Cell Research, Dept of Orofacial Sciences and Dept of Anatomy, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Licia Selleri
- Program in Craniofacial Biology, Institute for Human Genetics, Eli and Edythe Broad Center of Regeneration Medicine & Stem Cell Research, Dept of Orofacial Sciences and Dept of Anatomy, University of California, San Francisco, San Francisco, CA 94143, USA.
| |
Collapse
|
7
|
Kaimari S, Kamalakar A, Goudy SL. Biomedical engineering approaches for the delivery of JAGGED1 as a potential tissue regenerative therapy. Front Bioeng Biotechnol 2023; 11:1217211. [PMID: 37781534 PMCID: PMC10534981 DOI: 10.3389/fbioe.2023.1217211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 08/31/2023] [Indexed: 10/03/2023] Open
Abstract
JAG1 is a ligand that activates the NOTCH signaling pathway which plays a crucial role in determining cell fate behavior through cell-to-cell signaling. JAG1-NOTCH signaling is required for mesenchymal stem cell (MSC) differentiation into cardiomyocytes and cranial neural crest (CNC) cells differentiation into osteoblasts, making it a regenerative candidate for clinical therapy to treat craniofacial bone loss and myocardial infarction. However, delivery of soluble JAG1 has been found to inhibit NOTCH signaling due to the requirement of JAG1 presentation in a bound form. For JAG1-NOTCH signaling to occur, JAG1 must be immobilized within a scaffold and the correct orientation between the NOTCH receptor and JAG1 must be achieved. The lack of clinically translatable JAG1 delivery methods has driven the exploration of alternative immobilization approaches. This review discusses the role of JAG1 in disease, the clinical role of JAG1 as a treatment, and summarizes current approaches for JAG1 delivery. An in-depth review was conducted on literature that used both in vivo and in vitro delivery models and observed the canonical versus non-canonical NOTCH pathway activated by JAG1. Studies were then compared and evaluated based on delivery success, functional outcomes, and translatability. Delivering JAG1 to harness its ability to control cell fate has the potential to serve as a therapeutic for many diseases.
Collapse
Affiliation(s)
- Sundus Kaimari
- Department of Pediatric Otolaryngology, Emory University, Atlanta, GA, United States
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, United States
| | - Archana Kamalakar
- Department of Pediatric Otolaryngology, Emory University, Atlanta, GA, United States
| | - Steven L. Goudy
- Department of Pediatric Otolaryngology, Emory University, Atlanta, GA, United States
- Department of Pediatric Otolaryngology, Children’s Healthcare of Atlanta, Atlanta, GA, United States
| |
Collapse
|
8
|
Ren LJ, Zhu XH, Tan JT, Lv XY, Liu Y. MiR-210 improves postmenopausal osteoporosis in ovariectomized rats through activating VEGF/Notch signaling pathway. BMC Musculoskelet Disord 2023; 24:393. [PMID: 37198572 DOI: 10.1186/s12891-023-06473-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 04/27/2023] [Indexed: 05/19/2023] Open
Abstract
BACKGROUND To explore the effect and mechanism of action of miR-210 on postmenopausal osteoporosis (PMPO) in ovariectomized rats in vivo. METHODS An ovariectomized (OVX) rat model was established by ovariectomy. Tail vein injection was performed to overexpress and knock down miR-210 in OVX rats, followed by the collection of blood and femoral tissues from each group of rats. And quantitative real-time polymerase chain reaction (qRT-PCR) was applied to assess the expression level of miR-210 in femoral tissues of each group. Micro computed tomography (Micro CT) was adopted to scan the microstructure of the femoral trabecula in each group to obtain relevant data like bone mineral density (BMD), bone mineral content (BMC), trabecular bone volume fraction (BV/TV), trabecular thickness (Tb.Th), bone surface-to-volume ratio (BS/BV), and trabecular separation (Tb.Sp). ELISA was used for determining the level of bone alkaline phosphatase (BALP), amino-terminal propeptide of type I procollagen (PINP), osteocalcin (OCN), and C-terminal telopeptide of type I collagen (CTX-1) in serum; and Western blot for the protein level of Runt-related transcription factor 2 (Runx2), osteopontin (OPN), and collagen type I alpha 1 (COL1A1) in femoral tissues. RESULTS MiR-210 expression was significantly decreased in femoral tissues of OVX rats. Overexpression of miR-210 could obviously increase BMD, BMC, BV/TV and Tb.Th, whereas significantly decrease BS/BV and Tb.Sp in femurs of OVX rats. Moreover, miR-210 also downregulated BALP and CTX-1 level, upregulated PINP and OCN level in the serum of OVX rats promoted the expression of osteogenesis-related markers (Runx2, OPN and COL1A1) in the femur of OVX rats. Additionally, further pathway analysis revealed that high expression of miR-210 activated the vascular endothelial growth factor (VEGF)/Notch1 signaling pathway in the femur of OVX rats. CONCLUSION High expression of miR-210 may improve the micromorphology of bone tissue and modulate bone formation and resorption in OVX rats by activating the VEGF/Notch1 signaling pathway, thereby alleviating osteoporosis. Consequently, miR-210 can serve as a biomarker for the diagnosis and treatment of osteoporosis in postmenopausal rats.
Collapse
Affiliation(s)
- Li-Jue Ren
- Department of Endocrinology, The First Affiliated Hospital of Baotou Medical College, Inner Mongolia University of Science and Technology, Baotou, Inner Mongolia, China.
| | - Xiao-Hui Zhu
- Soochow University, Gusu District, Suzhou City, Jiangsu Province, China
| | - Jiu-Ting Tan
- Soochow University, Gusu District, Suzhou City, Jiangsu Province, China
| | - Xiang-Yu Lv
- Department of Endocrinology, The First Affiliated Hospital of Baotou Medical College, Inner Mongolia University of Science and Technology, Baotou, Inner Mongolia, China
| | - Yan Liu
- Department of Endocrinology, The First Affiliated Hospital of Baotou Medical College, Inner Mongolia University of Science and Technology, Baotou, Inner Mongolia, China
| |
Collapse
|
9
|
Ahi EP, Richter F, Sefc KM. Gene expression patterns associated with caudal fin shape in the cichlid Lamprologus tigripictilis. HYDROBIOLOGIA 2022; 850:2257-2273. [PMID: 37325486 PMCID: PMC10261199 DOI: 10.1007/s10750-022-05068-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 10/12/2022] [Accepted: 10/18/2022] [Indexed: 06/17/2023]
Abstract
Variation in fin shape is one of the most prominent features of morphological diversity among fish. Regulation of fin growth has mainly been studied in zebrafish, and it is not clear whether the molecular mechanisms underlying shape variation are equally diverse or rather conserved across species. In the present study, expression levels of 37 candidate genes were tested for association with fin shape in the cichlid fish Lamprologus tigripictilis. The tested genes included members of a fin shape-associated gene regulatory network identified in a previous study and novel candidates selected within this study. Using both intact and regenerating fin tissue, we tested for expression differences between the elongated and the short regions of the spade-shaped caudal fin and identified 20 genes and transcription factors (including angptl5, cd63, csrp1a, cx43, esco2, gbf1, and rbpj), whose expression patterns were consistent with a role in fin growth. Collated with available gene expression data of two other cichlid species, our study not only highlights several genes that were correlated with fin growth in all three species (e.g., angptl5, cd63, cx43, and mmp9), but also reveals species-specific gene expression and correlation patterns, which indicate considerable divergence in the regulatory mechanisms of fin growth across cichlids. Supplementary Information The online version contains supplementary material available at 10.1007/s10750-022-05068-4.
Collapse
Affiliation(s)
- Ehsan Pashay Ahi
- Institute of Biology, University of Graz, Universitätsplatz 2, 8010 Graz, Austria
- Organismal and Evolutionary Biology Research Programme, University of Helsinki, Viikinkaari 9, 00014 Helsinki, Finland
| | - Florian Richter
- Institute of Biology, University of Graz, Universitätsplatz 2, 8010 Graz, Austria
| | - Kristina M. Sefc
- Institute of Biology, University of Graz, Universitätsplatz 2, 8010 Graz, Austria
| |
Collapse
|
10
|
Filipović M, Flegar D, Šućur A, Šisl D, Kavazović I, Antica M, Kelava T, Kovačić N, Grčević D. Inhibition of Notch Signaling Stimulates Osteoclastogenesis From the Common Trilineage Progenitor Under Inflammatory Conditions. Front Immunol 2022; 13:902947. [PMID: 35865541 PMCID: PMC9294223 DOI: 10.3389/fimmu.2022.902947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 05/25/2022] [Indexed: 11/13/2022] Open
Abstract
Osteoclasts, macrophages and dendritic cells (DCs) can be derived from a common trilineage myeloid progenitor of hematopoietic origin. Progenitor commitment is susceptible to regulation through Notch signaling. Our aim was to determine the effects of Notch modulation on trilineage progenitor commitment and functional properties of differentiated cells under inflammatory conditions. We used the conditional inducible CX3CR1CreERT2 mouse strain to achieve overexpression of the Notch 1 intracellular domain (NICD1) or to inhibit Notch signaling via deletion of the transcription factor RBP-J in a bone marrow population, used as a source of the trilineage progenitor (CD45+Ly6G−CD3−B220−NK1.1−CD11b–/loCD115+). Cre-recombinase, under the control of the CX3CR1 promoter, expressed in the monocyte/macrophage lineage, was induced in vitro by 4-hydroxytamoxifen. Differentiation of osteoclasts was induced by M-CSF/RANKL; macrophages by M-CSF; DCs by IL-4/GM-CSF, and inflammation by LPS. Functionally, DCs were tested for the ability to process and present antigen, macrophages to phagocytose E. coli particles, and osteoclasts to resorb bone and express tartrate-resistant acid phosphatase (TRAP). We found that Notch 1 signal activation suppressed osteoclast formation, whereas disruption of the Notch canonical pathway enhanced osteoclastogenesis, resulting in a higher number and size of osteoclasts. RANK protein and Ctsk gene expression were upregulated in osteoclastogenic cultures from RBP-J+ mice, with the opposing results in NICD1+ mice. Notch modulation did not affect the number of in vitro differentiated macrophages and DCs. However, RBP-J deletion stimulated Il12b and Cd86 expression in macrophages and DCs, respectively. Functional assays under inflammatory conditions confirmed that Notch silencing amplifies TRAP expression by osteoclasts, whereas the enhanced phagocytosis by macrophages was observed in both NICD1+ and RBP-J+ strains. Finally, antigen presentation by LPS-stimulated DCs was significantly downregulated with NICD1 overexpression. This experimental setting allowed us to define a cell-autonomous response to Notch signaling at the trilineage progenitor stage. Although Notch signaling modulation affected the activity of all three lineages, the major effect was observed in osteoclasts, resulting in enhanced differentiation and function with inhibition of canonical Notch signaling. Our results indicate that Notch signaling participates as the negative regulator of osteoclast activity during inflammation, which may be relevant in immune and bone diseases.
Collapse
Affiliation(s)
- Maša Filipović
- Department of Physiology and Immunology, University of Zagreb School of Medicine, Zagreb, Croatia
- Laboratory for Molecular Immunology, Croatian Institute for Brain Research, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Darja Flegar
- Department of Physiology and Immunology, University of Zagreb School of Medicine, Zagreb, Croatia
- Laboratory for Molecular Immunology, Croatian Institute for Brain Research, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Alan Šućur
- Department of Physiology and Immunology, University of Zagreb School of Medicine, Zagreb, Croatia
- Laboratory for Molecular Immunology, Croatian Institute for Brain Research, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Dino Šisl
- Department of Physiology and Immunology, University of Zagreb School of Medicine, Zagreb, Croatia
- Laboratory for Molecular Immunology, Croatian Institute for Brain Research, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Inga Kavazović
- Department of Histology and Embryology, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | | | - Tomislav Kelava
- Department of Physiology and Immunology, University of Zagreb School of Medicine, Zagreb, Croatia
- Laboratory for Molecular Immunology, Croatian Institute for Brain Research, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Nataša Kovačić
- Laboratory for Molecular Immunology, Croatian Institute for Brain Research, University of Zagreb School of Medicine, Zagreb, Croatia
- Department of Anatomy, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Danka Grčević
- Department of Physiology and Immunology, University of Zagreb School of Medicine, Zagreb, Croatia
- Laboratory for Molecular Immunology, Croatian Institute for Brain Research, University of Zagreb School of Medicine, Zagreb, Croatia
- *Correspondence: Danka Grčević,
| |
Collapse
|
11
|
Heat Shock Alters the Proteomic Profile of Equine Mesenchymal Stem Cells. Int J Mol Sci 2022; 23:ijms23137233. [PMID: 35806237 PMCID: PMC9267023 DOI: 10.3390/ijms23137233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 06/12/2022] [Accepted: 06/27/2022] [Indexed: 12/10/2022] Open
Abstract
The aim of this research was to determine the impact of heat stress on cell differentiation in an equine mesenchymal stem cell model (EMSC) through the application of heat stress to primary EMSCs as they progressed through the cell specialization process. A proteomic analysis was performed using mass spectrometry to compare relative protein abundances among the proteomes of three cell types: progenitor EMSCs and differentiated osteoblasts and adipocytes, maintained at 37 °C and 42 °C during the process of cell differentiation. A cell-type and temperature-specific response to heat stress was observed, and many of the specific differentially expressed proteins were involved in cell-signaling pathways such as Notch and Wnt signaling, which are known to regulate cellular development. Furthermore, cytoskeletal proteins profilin, DSTN, SPECC1, and DAAM2 showed increased protein levels in osteoblasts differentiated at 42 °C as compared with 37 °C, and these cells, while they appeared to accumulate calcium, did not organize into a whorl agglomerate as is typically seen at physiological temperatures. This altered proteome composition observed suggests that heat stress could have long-term impacts on cellular development. We propose that this in vitro stem cell culture model of cell differentiation is useful for investigating molecular mechanisms that impact cell development in response to stressors.
Collapse
|
12
|
Bae Y, Zeng H, Chen Y, Ketkar S, Munivez E, Yu Z, Gannon FH, Lee BH.
miRNA
‐34c
suppresses osteosarcoma progression
in vivo
by targeting Notch and
E2F. JBMR Plus 2022; 6:e10623. [PMID: 35509638 PMCID: PMC9059472 DOI: 10.1002/jbm4.10623] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 03/09/2022] [Indexed: 11/16/2022] Open
Abstract
The expression of microRNAs (miRNAs) is dysregulated in many types of cancers including osteosarcoma (OS) due to genetic and epigenetic alterations. Among these, miR‐34c, an effector of tumor suppressor P53 and an upstream negative regulator of Notch signaling in osteoblast differentiation, is dysregulated in OS. Here, we demonstrated a tumor suppressive role of miR‐34c in OS progression using in vitro assays and in vivo genetic mouse models. We found that miR‐34c inhibits the proliferation and the invasion of metastatic OS cells, which resulted in reduction of the tumor burden and increased overall survival in an orthotopic xenograft model. Moreover, the osteoblast‐specific overexpression of miR‐34c increased survival in the osteoblast specific p53 mutant OS mouse model. We found that miR‐34c regulates the transcription of several genes in Notch signaling (NOTCH1, JAG1, and HEY2) and in p53‐mediated cell cycle and apoptosis (CCNE2, E2F5, E2F2, and HDAC1). More interestingly, we found that the metastatic‐free survival probability was increased among a patient cohort from Therapeutically Applicable Research to Generate Effective Treatments (TARGET) OS, which has lower expression of direct targets of miR‐34c that was identified in our transcriptome analysis, such as E2F5 and NOTCH1. In conclusion, we demonstrate that miR‐34c is a tumor suppressive miRNA in OS progression in vivo. In addition, we highlight the therapeutic potential of targeting miR‐34c in OS. © 2022 The Authors. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Yangjin Bae
- Department of Molecular and Human Genetics Baylor College of Medicine Houston TX
| | - Huan‐Chang Zeng
- Department of Molecular and Human Genetics Baylor College of Medicine Houston TX
| | - Yi‐Ting Chen
- Integrative Molecular and Biomedical Sciences Program Baylor College of Medicine Houston TX
| | - Shamika Ketkar
- Department of Molecular and Human Genetics Baylor College of Medicine Houston TX
| | - Elda Munivez
- Department of Molecular and Human Genetics Baylor College of Medicine Houston TX
| | - Zhiyin Yu
- Department of Molecular and Human Genetics Baylor College of Medicine Houston TX
| | - Francis H. Gannon
- Department of Pathology and Immunology Baylor College of Medicine Houston TX
| | - Brendan H. Lee
- Department of Molecular and Human Genetics Baylor College of Medicine Houston TX
| |
Collapse
|
13
|
Thomas S, Jaganathan BG. Signaling network regulating osteogenesis in mesenchymal stem cells. J Cell Commun Signal 2022; 16:47-61. [PMID: 34236594 PMCID: PMC8688675 DOI: 10.1007/s12079-021-00635-1] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 06/30/2021] [Indexed: 02/06/2023] Open
Abstract
Osteogenesis is an important developmental event that results in bone formation. Bone forming cells or osteoblasts develop from mesenchymal stem cells (MSCs) through a highly controlled process regulated by several signaling pathways. The osteogenic lineage commitment of MSCs is controlled by cell-cell interactions, paracrine factors, mechanical signals, hormones, and cytokines present in their niche, which activate a plethora of signaling molecules belonging to bone morphogenetic proteins, Wnt, Hedgehog, and Notch signaling. These signaling pathways individually as well as in coordination with other signaling molecules, regulate the osteogenic lineage commitment of MSCs by activating several osteo-lineage specific transcription factors. Here, we discuss the key signaling pathways that regulate osteogenic differentiation of MSCs and the cross-talk between them during osteogenic differentiation. We also discuss how these signaling pathways can be modified for therapy for bone repair and regeneration.
Collapse
Affiliation(s)
- Sachin Thomas
- Stem Cells and Cancer Biology Research Group, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India
| | - Bithiah Grace Jaganathan
- Stem Cells and Cancer Biology Research Group, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India.
| |
Collapse
|
14
|
Torres HM, Rodezno-Antunes T, VanCleave A, Cao Y, Callahan DL, Westendorf JJ, Tao J. Precise detection of a murine germline mutation of the Notch3 gene associated with kyphosis and developmental disorders. J Adv Vet Anim Res 2021; 8:7-13. [PMID: 33860007 PMCID: PMC8043348 DOI: 10.5455/javar.2021.h479] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 12/24/2020] [Accepted: 12/30/2020] [Indexed: 11/21/2022] Open
Abstract
Objective: Humpback (hpbk) mice harbor a pathogenic mutation in the Notch3 gene and can serve as a beneficial animal model for investigating human myopathy, kyphosis, and developmental disorders, including lateral meningocele syndrome. Detection of the point mutation in hpbk mice is important for maintaining strains and scrutinizing genetic rescues, especially considering that homozygous mice are infertile and indistinguishable from their littermates at a young age. This study aimed for the development of a novel, precise, and time-saving genotyping method to identify the mutation in hpbk mice. Materials and Methods: In order to study the hpbk mouse line, we describe how we applied several tools, including quantitative polymerase chain reaction (qPCR), multiplex tetra-primer amplification-refractory mutation system (ARMS-PCR) and Sanger sequencing, toward the recognition of heterozygous and homozygous mice. Results: The Notch3 mutation was clearly identified using qPCR and ARMS assays, but the latter was a more precise and cost-effective approach. The lengths of the ARMS-PCR amplicons are 210 bp and 164 bp for the wild-type and hpbk alleles, respectively. Moreover, the genotyping results for each mouse were corroborated by Sanger DNA sequencing. Conclusion: Our newly developed PCR-based ARMS system affords a swift and precise way to genotype the hpbk mice. ARMS-PCR does not rely on any advanced equipment and is useful as a genotyping method for other model organisms that harbor a pathogenic variant.
Collapse
Affiliation(s)
- Haydee M Torres
- Cancer Biology & Rare Diseases Groups, Sanford Research, Sioux Falls, SD, USA.,Department of Chemistry & Biochemistry, The South Dakota State University, Brookings, SD, USA
| | | | - Ashley VanCleave
- Cancer Biology & Rare Diseases Groups, Sanford Research, Sioux Falls, SD, USA
| | - Yuxia Cao
- Cancer Biology & Rare Diseases Groups, Sanford Research, Sioux Falls, SD, USA
| | - Dakota L Callahan
- Cancer Biology & Rare Diseases Groups, Sanford Research, Sioux Falls, SD, USA.,Sanford Program for Undergraduate Research, University of Sioux Falls, Sioux Falls, SD, USA
| | | | - Jianning Tao
- Cancer Biology & Rare Diseases Groups, Sanford Research, Sioux Falls, SD, USA.,Department of Chemistry & Biochemistry, The South Dakota State University, Brookings, SD, USA.,Department of Biomedical Engineering, the University of South Dakota, Sioux Falls, SD, USA.,Department of Pediatrics the University of South Dakota, Sioux Falls, SD, USA
| |
Collapse
|
15
|
Insights into the mechanism of vascular endothelial cells on bone biology. Biosci Rep 2021; 41:227494. [PMID: 33403387 PMCID: PMC7816070 DOI: 10.1042/bsr20203258] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 12/25/2020] [Accepted: 01/04/2021] [Indexed: 12/16/2022] Open
Abstract
In the skeletal system, blood vessels not only function as a conduit system for transporting gases, nutrients, metabolic waste, or cells but also provide multifunctional signal molecules regulating bone development, regeneration, and remodeling. Endothelial cells (ECs) in bone tissues, unlike in other organ tissues, are in direct contact with the pericytes of blood vessels, resulting in a closer connection with peripheral connective tissues. Close-contact ECs contribute to osteogenesis and osteoclastogenesis by secreting various cytokines in the paracrine or juxtacrine pathways. An increasing number of studies have revealed that extracellular vesicles (EVs) derived from ECs can directly regulate maturation process of osteoblasts and osteoclasts. The different pathways focus on targets at different distances, forming the basis of the intimate spatial and temporal link between bone tissue and blood vessels. Here, we provide a systematic review to elaborate on the function of ECs in bone biology and its underlying mechanisms based on three aspects: paracrine, EVs, and juxtacrine. This review proposes the possibility of a therapeutic strategy targeting blood vessels, as an adjuvant treatment for bone disorders.
Collapse
|
16
|
Yu J, Canalis E. Notch and the regulation of osteoclast differentiation and function. Bone 2020; 138:115474. [PMID: 32526405 PMCID: PMC7423683 DOI: 10.1016/j.bone.2020.115474] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 06/05/2020] [Accepted: 06/05/2020] [Indexed: 12/30/2022]
Abstract
Notch 1 through 4 are transmembrane receptors that play a pivotal role in cell differentiation and function; this review addresses the role of Notch signaling in osteoclastogenesis and bone resorption. Notch receptors are activated following interactions with their ligands of the Jagged and Delta-like families. In the skeleton, Notch signaling controls osteoclast differentiation and bone-resorbing activity either directly acting on osteoclast precursors, or indirectly acting on cells of the osteoblast lineage and cells of the immune system. NOTCH1 inhibits osteoclastogenesis, whereas NOTCH2 enhances osteoclast differentiation and function by direct and indirect mechanisms. NOTCH3 induces the expression of RANKL in osteoblasts and osteocytes and as a result induces osteoclast differentiation. There is limited expression of NOTCH4 in skeletal cells. Selected congenital disorders and skeletal malignancies are associated with dysregulated Notch signaling and enhanced bone resorption. In conclusion, Notch signaling is a critical pathway that controls osteoblast and osteoclast differentiation and function and regulates skeletal homeostasis in health and disease.
Collapse
Affiliation(s)
- Jungeun Yu
- Departments of Orthopaedic Surgery, UConn Musculoskeletal Institute, Farmington, CT 06030, USA; UConn Musculoskeletal Institute, UConn Health, Farmington, CT 06030, USA
| | - Ernesto Canalis
- Departments of Orthopaedic Surgery, UConn Musculoskeletal Institute, Farmington, CT 06030, USA; Medicine, UConn Musculoskeletal Institute, Farmington, CT 06030, USA; UConn Musculoskeletal Institute, UConn Health, Farmington, CT 06030, USA.
| |
Collapse
|
17
|
Pakvasa M, Haravu P, Boachie-Mensah M, Jones A, Coalson E, Liao J, Zeng Z, Wu D, Qin K, Wu X, Luo H, Zhang J, Zhang M, He F, Mao Y, Zhang Y, Niu C, Wu M, Zhao X, Wang H, Huang L, Shi D, Liu Q, Ni N, Fu K, Lee MJ, Wolf JM, Athiviraham A, Ho SS, He TC, Hynes K, Strelzow J, El Dafrawy M, Reid RR. Notch signaling: Its essential roles in bone and craniofacial development. Genes Dis 2020; 8:8-24. [PMID: 33569510 PMCID: PMC7859553 DOI: 10.1016/j.gendis.2020.04.006] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 03/25/2020] [Accepted: 04/03/2020] [Indexed: 02/08/2023] Open
Abstract
Notch is a cell–cell signaling pathway that is involved in a host of activities including development, oncogenesis, skeletal homeostasis, and much more. More specifically, recent research has demonstrated the importance of Notch signaling in osteogenic differentiation, bone healing, and in the development of the skeleton. The craniofacial skeleton is complex and understanding its development has remained an important focus in biology. In this review we briefly summarize what recent research has revealed about Notch signaling and the current understanding of how the skeleton, skull, and face develop. We then discuss the crucial role that Notch plays in both craniofacial development and the skeletal system, and what importance it may play in the future.
Collapse
Affiliation(s)
- Mikhail Pakvasa
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA.,Pritzker School of Medicine, University of Chicago, Chicago, IL 60637, USA.,Section of Plastic and Reconstructive Surgery, Department of Surgery, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Pranav Haravu
- Pritzker School of Medicine, University of Chicago, Chicago, IL 60637, USA
| | - Michael Boachie-Mensah
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA.,Pritzker School of Medicine, University of Chicago, Chicago, IL 60637, USA
| | - Alonzo Jones
- Pritzker School of Medicine, University of Chicago, Chicago, IL 60637, USA
| | - Elam Coalson
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA.,Pritzker School of Medicine, University of Chicago, Chicago, IL 60637, USA
| | - Junyi Liao
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA.,Departments of Orthopaedic Surgery, Gastrointestinal Surgery, Obstetrics and Gynecology, and Nephrology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, PR China
| | - Zongyue Zeng
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA.,Ministry of Education Key Laboratory of Diagnostic Medicine, and School of Laboratory and Diagnostic Medicine, Chongqing Medical University, Chongqing, 400016, PR China
| | - Di Wu
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Kevin Qin
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Xiaoxing Wu
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA.,Departments of Orthopaedic Surgery, Gastrointestinal Surgery, Obstetrics and Gynecology, and Nephrology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, PR China
| | - Huaxiu Luo
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA.,Department of Burn and Plastic Surgery, West China Hospital of Sichuan University, Chengdu, Sichuan, 610041, PR China
| | - Jing Zhang
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA.,Departments of Orthopaedic Surgery, Gastrointestinal Surgery, Obstetrics and Gynecology, and Nephrology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, PR China
| | - Meng Zhang
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA.,Department of Orthopaedic Surgery, The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510405, PR China
| | - Fang He
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA.,Departments of Orthopaedic Surgery, Gastrointestinal Surgery, Obstetrics and Gynecology, and Nephrology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, PR China
| | - Yukun Mao
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA.,Departments of Orthopaedic Surgery and Neurosurgery, The Affiliated Zhongnan Hospital of Wuhan University, Wuhan, Hubei, 430072, PR China
| | - Yongtao Zhang
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA.,Department of Orthopaedic Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, 266061, PR China
| | - Changchun Niu
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA.,Department of Laboratory Diagnostic Medicine, Chongqing General Hospital, Chongqing, 400021, PR China
| | - Meng Wu
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA.,Institute of Bone and Joint Research, and the Department of Orthopaedic Surgery, The Second Hospitals of Lanzhou University, Gansu, Lanzhou, 730030, PR China
| | - Xia Zhao
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA.,Department of Orthopaedic Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, 266061, PR China
| | - Hao Wang
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA.,Ministry of Education Key Laboratory of Diagnostic Medicine, and School of Laboratory and Diagnostic Medicine, Chongqing Medical University, Chongqing, 400016, PR China
| | - Linjuan Huang
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA.,Departments of Orthopaedic Surgery, Gastrointestinal Surgery, Obstetrics and Gynecology, and Nephrology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, PR China
| | - Deyao Shi
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA.,Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430072, PR China
| | - Qing Liu
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA.,Department of Spine Surgery, Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, PR China
| | - Na Ni
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA.,Ministry of Education Key Laboratory of Diagnostic Medicine, and School of Laboratory and Diagnostic Medicine, Chongqing Medical University, Chongqing, 400016, PR China
| | - Kai Fu
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA.,Departments of Orthopaedic Surgery and Neurosurgery, The Affiliated Zhongnan Hospital of Wuhan University, Wuhan, Hubei, 430072, PR China
| | - Michael J Lee
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Jennifer Moriatis Wolf
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Aravind Athiviraham
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Sherwin S Ho
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Tong-Chuan He
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Kelly Hynes
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Jason Strelzow
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Mostafa El Dafrawy
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Russell R Reid
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA.,Section of Plastic and Reconstructive Surgery, Department of Surgery, The University of Chicago Medical Center, Chicago, IL 60637, USA
| |
Collapse
|
18
|
Luo Z, Shang X, Zhang H, Wang G, Massey PA, Barton SR, Kevil CG, Dong Y. Notch Signaling in Osteogenesis, Osteoclastogenesis, and Angiogenesis. THE AMERICAN JOURNAL OF PATHOLOGY 2020; 189:1495-1500. [PMID: 31345466 DOI: 10.1016/j.ajpath.2019.05.005] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 05/02/2019] [Indexed: 12/21/2022]
Abstract
Skeletal tissue development and regeneration in mammals are intricate, multistep, and highly regulated processes. Various signaling pathways have been implicated in the regulation of these processes, including Notch. Notch signaling is a highly conserved, intercellular signaling pathway that regulates cell proliferation and differentiation, determines cell fate decision, and participates in cellular process in embryonic and adult tissue. Here, we review recent data showing the regulation of Notch signaling in osteogenesis, osteoclastogenesis, and angiogenesis. These processes are cell-context-dependent via direct or indirect mechanisms. Furthermore, Notch signaling may be highly beneficial for efficient coupling of osteogenesis and angiogenesis for tissue engineering and skeletal repair, which is critical to develop clinically therapeutic options.
Collapse
Affiliation(s)
- Zhengliang Luo
- Department of Orthopedic Surgery, Louisiana State University Health Sciences Center, Shreveport, Louisiana; Department of Orthopedic Surgery, the First Affiliated Hospital of University of Science and Technology of China, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Xifu Shang
- Department of Orthopedic Surgery, the First Affiliated Hospital of University of Science and Technology of China, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.
| | - Hao Zhang
- Department of Orthopedic Surgery, Louisiana State University Health Sciences Center, Shreveport, Louisiana
| | - Guangxi Wang
- Department of Orthopedics, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Patrick A Massey
- Department of Orthopedic Surgery, Louisiana State University Health Sciences Center, Shreveport, Louisiana
| | - Shane R Barton
- Department of Orthopedic Surgery, Louisiana State University Health Sciences Center, Shreveport, Louisiana
| | - Christopher G Kevil
- Department of Pathology, Louisiana State University Health Sciences Center, Shreveport, Louisiana
| | - Yufeng Dong
- Department of Orthopedic Surgery, Louisiana State University Health Sciences Center, Shreveport, Louisiana.
| |
Collapse
|
19
|
Liang ST, Chen JR, Tsai JJ, Lai YH, Hsiao CD. Overexpression of Notch Signaling Induces Hyperosteogeny in Zebrafish. Int J Mol Sci 2019; 20:ijms20153613. [PMID: 31344827 PMCID: PMC6696610 DOI: 10.3390/ijms20153613] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2019] [Revised: 07/03/2019] [Accepted: 07/18/2019] [Indexed: 12/13/2022] Open
Abstract
Notch signaling is one of the evolutionarily conserved signaling pathways in multicellular organisms. It plays an important role in embryonic development. During skeletal development of vertebrates, it regulates bone homeostasis by manipulating both osteoblastogenesis and osteoclastogenesis through different mechanisms. However, due to the different nature of Notch signaling in mesenchymal stem cell and osteoblast, regulation of Notch signaling in bone-related diseases remains unsettled. Previous studies by cell culture and mouse models showed contradictory results regarding the role of Notch signaling in bone homeostasis. To clarify the role of Notch signaling in osteogenesis, we established a zebrafish model, in which Notch1a intracellular domain (N1aICD) was specifically expressed in the osteoblasts. We found that overexpression of N1aICD in osteoblasts caused hyperosteogeny in the column region of zebrafish with the morphology of narrowed neural/hemal canals. Moreover, increased metabolic activity of osteoblasts instead of augmenting osteoblast number led to hyperosteogeny in N1aICD-overexpressed zebrafish. In summary, we successfully established a transgenic zebrafish line overexpressing N1aICD to clarify the in-vivo function of Notch signaling during osteoblastogenesis. In the future, this fish line can serve as a valuable tool to test the therapeutic drugs for hyperosteogeny.
Collapse
Affiliation(s)
- Sung-Tzu Liang
- Department of Bioscience Technology, Chung Yuan Christian University, Chung-Li 32023, Taiwan
| | - Jung-Ren Chen
- Department of Biological Science & Technology College of Medicine, I-Shou University, Kaohsiung 84001, Taiwan
| | - Jhih-Jie Tsai
- Department of Bioscience Technology, Chung Yuan Christian University, Chung-Li 32023, Taiwan
| | - Yu-Heng Lai
- Department of Chemistry, Chinese Culture University, Taipei 11114, Taiwan.
| | - Chung-Der Hsiao
- Department of Bioscience Technology, Chung Yuan Christian University, Chung-Li 32023, Taiwan.
- Center for Biomedical Technology, Chung Yuan Christian University, Chung-Li 32023, Taiwan.
- Center for Nanotechnology, Chung Yuan Christian University, Chung-Li 32023, Taiwan.
| |
Collapse
|
20
|
Tian J, Shao J, Liu C, Hou HY, Chou CW, Shboul M, Li GQ, El-Khateeb M, Samarah OQ, Kou Y, Chen YH, Chen MJ, Lyu Z, Chen WL, Chen YF, Sun YH, Liu YW. Deficiency of lrp4 in zebrafish and human LRP4 mutation induce aberrant activation of Jagged-Notch signaling in fin and limb development. Cell Mol Life Sci 2019; 76:163-178. [PMID: 30327840 PMCID: PMC11105680 DOI: 10.1007/s00018-018-2928-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 09/21/2018] [Accepted: 09/25/2018] [Indexed: 12/26/2022]
Abstract
Low-density lipoprotein receptor-related protein 4 (LRP4) is a multi-functional protein implicated in bone, kidney and neurological diseases including Cenani-Lenz syndactyly (CLS), sclerosteosis, osteoporosis, congenital myasthenic syndrome and myasthenia gravis. Why different LRP4 mutation alleles cause distinct and even contrasting disease phenotypes remain unclear. Herein, we utilized the zebrafish model to search for pathways affected by a deficiency of LRP4. The lrp4 knockdown in zebrafish embryos exhibits cyst formations at fin structures and the caudal vein plexus, malformed pectoral fins, defective bone formation and compromised kidney morphogenesis; which partially phenocopied the human LRP4 mutations and were reminiscent of phenotypes resulting form a perturbed Notch signaling pathway. We discovered that the Lrp4-deficient zebrafish manifested increased Notch outputs in addition to enhanced Wnt signaling, with the expression of Notch ligand jagged1b being significantly elevated at the fin structures. To examine conservatism of signaling mechanisms, the effect of LRP4 missense mutations and siRNA knockdowns, including a novel missense mutation c.1117C > T (p.R373W) of LRP4, were tested in mammalian kidney and osteoblast cells. The results showed that LRP4 suppressed both Wnt/β-Catenin and Notch signaling pathways, and these activities were perturbed either by LRP4 missense mutations or by a knockdown of LRP4. Our finding underscore that LRP4 is required for limiting Jagged-Notch signaling throughout the fin/limb and kidney development, whose perturbation representing a novel mechanism for LRP4-related diseases. Moreover, our study reveals an evolutionarily conserved relationship between LRP4 and Jagged-Notch signaling, which may shed light on how the Notch signaling is fine-tuned during fin/limb development.
Collapse
Affiliation(s)
- Jing Tian
- The College of Life Sciences, Northwest University, #229 Taibai North Road, Xi'an, 710069, China.
- State Key Laboratory of Freshwater Ecology and Biotechnology, Wuhan, China.
| | - Jinhui Shao
- The College of Life Sciences, Northwest University, #229 Taibai North Road, Xi'an, 710069, China
| | - Cong Liu
- The College of Life Sciences, Northwest University, #229 Taibai North Road, Xi'an, 710069, China
| | - Hsin-Yu Hou
- Department of Life Science, Tunghai University, No. 1727, Sec. 4, Taiwan Boulevard, Xitun District, Taichung, 40704, Taiwan
| | - Chih-Wei Chou
- Department of Life Science, Tunghai University, No. 1727, Sec. 4, Taiwan Boulevard, Xitun District, Taichung, 40704, Taiwan
| | - Mohammad Shboul
- Department of Medical Laboratory Sciences, Jordan University of Science and Technology, Irbid, Jordan
| | - Guo-Qing Li
- The College of Life Sciences, Northwest University, #229 Taibai North Road, Xi'an, 710069, China
| | | | - Omar Q Samarah
- Orthopedic Division, Special Surgery Department, School of Medicine, The University of Jordan, Amman, Jordan
| | - Yao Kou
- The College of Life Sciences, Northwest University, #229 Taibai North Road, Xi'an, 710069, China
| | - Yu-Hsuan Chen
- Department of Life Science, Tunghai University, No. 1727, Sec. 4, Taiwan Boulevard, Xitun District, Taichung, 40704, Taiwan
| | - Mei-Jen Chen
- Department of Life Science, Tunghai University, No. 1727, Sec. 4, Taiwan Boulevard, Xitun District, Taichung, 40704, Taiwan
| | - Zhaojie Lyu
- The College of Life Sciences, Northwest University, #229 Taibai North Road, Xi'an, 710069, China
| | - Wei-Leng Chen
- Department of Life Science, Tunghai University, No. 1727, Sec. 4, Taiwan Boulevard, Xitun District, Taichung, 40704, Taiwan
| | - Yu-Fu Chen
- Department of Life Science, Tunghai University, No. 1727, Sec. 4, Taiwan Boulevard, Xitun District, Taichung, 40704, Taiwan
| | - Yong-Hua Sun
- State Key Laboratory of Freshwater Ecology and Biotechnology, Wuhan, China
| | - Yi-Wen Liu
- Department of Life Science, Tunghai University, No. 1727, Sec. 4, Taiwan Boulevard, Xitun District, Taichung, 40704, Taiwan.
| |
Collapse
|
21
|
Shao J, Zhou Y, Xiao Y. The regulatory roles of Notch in osteocyte differentiation via the crosstalk with canonical Wnt pathways during the transition of osteoblasts to osteocytes. Bone 2018; 108:165-178. [PMID: 29331299 DOI: 10.1016/j.bone.2018.01.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Revised: 01/05/2018] [Accepted: 01/09/2018] [Indexed: 12/17/2022]
Abstract
Osteocytes comprise more than 90% of the cells in bone and are differentiated from osteoblasts via an unknown mechanism. Recently, it was shown that Notch signaling plays an important role in osteocyte functions. To gain insights into the mechanisms underlying the functions of Notch in regulating the transition of osteoblasts to osteocytes, we performed a luciferase assay by cloning the proximal E11 and dentin matrix acidic phosphoprotein 1 (DMP1) promotor regions into pGluc-Basic 2 vectors, which were subsequently transfected into the IDG-SW3 (osteocytes), MC3T3 (osteoblasts) and 293T (non-osteoblastic cells) cell lines. Two approaches were used to activate Notch signaling in vitro. One was a Notch1 extracellular antibody-coated cell culture plate, and the other was transfection of a Hairy/Enhancer of Split 1 (Hes1) overexpression vector. The interaction between the Notch and Wnt signaling pathways was probed by assessing the expression of a series of phosphorylated proteins involved in the cascade of both signaling pathways. Our data suggested that Notch signaling regulates E11 expression through Hes1 activity, while Hes1 solely did not initiate the expression of DMP1. The regulatory function of E11 by Hes1 was not observed in the 293T cell line, indicating a cell context-dependent manner of the Notch signaling pathway. Additionally, we found that Notch inhibited Wnt signaling at the late differentiation stage of osteocytes by both directly repressing phosphorylated Akt and preventing the nuclear aggregation of β-catenin. These findings provide profound understandings of Notch's regulatory function in osteocyte differentiation.
Collapse
Affiliation(s)
- Jin Shao
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD 4059, Australia; The Australia-China Centre for Tissue Engineering and Regenerative Medicine (ACCTERM), Queensland University of Technology, Brisbane, QLD 4059, Australia
| | - Yinghong Zhou
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD 4059, Australia; The Australia-China Centre for Tissue Engineering and Regenerative Medicine (ACCTERM), Queensland University of Technology, Brisbane, QLD 4059, Australia
| | - Yin Xiao
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD 4059, Australia; The Australia-China Centre for Tissue Engineering and Regenerative Medicine (ACCTERM), Queensland University of Technology, Brisbane, QLD 4059, Australia.
| |
Collapse
|
22
|
Abstract
Osteosarcoma is the predominant form of bone cancer, affecting mostly adolescents. Recent progress made in molecular genetic studies of osteosarcoma has changed our view on the cause of the disease and ongoing therapeutic approaches for patients. As we draw closer to gaining more complete catalogs of candidate cancer driver genes in common forms of cancer, the landscape of somatic mutations in osteosarcoma is emerging from its first phase. In this review, we summarize recent whole genome and/or whole exome genomic studies, and then put these findings in the context of genetic hallmarks of somatic mutations and mutational processes in human osteosarcoma. One of the lessons learned here is that the extent of somatic mutations and complexity of the osteosarcoma genome are similar to that of common forms of adult cancer. Thus, a much higher number of samples than those currently obtained are needed to complete the catalog of driver mutations in human osteosarcoma. In parallel, genetic studies in other species have revealed candidate driver genes and their roles in the genesis of osteosarcoma. This review also summarizes newly identified drivers in genetically engineered mouse models (GEMMs) and discusses our understanding of the impact of nature and number of drivers on tumor latency, subtypes, and metastatic potentials of osteosarcoma. It is becoming apparent that a synergistic team composed of three drivers (one 'first driver' and two 'synergistic drivers') may be required to generate an animal model that recapitulates aggressive osteosarcoma with a short latency. Finally, new cancer therapies are urgently needed to improve survival rate and quality of life for osteosarcoma patients. Several vulnerabilities in osteosarcoma are illustrated in this review to exemplify the opportunities for next generation molecularly targeted therapies. However, much work remains in order to complete our understanding of the somatic mutation basis of osteosarcoma, to develop reliable animal models of human disease, and to apply this information to guide new therapeutic approaches for reducing morbidity and mortality of this rare disease.
Collapse
Affiliation(s)
- Kirby Rickel
- Sanford Children's Health Research Center, Sanford Research, Sioux Falls, SD 57104, USA
| | - Fang Fang
- Sanford Children's Health Research Center, Sanford Research, Sioux Falls, SD 57104, USA
| | - Jianning Tao
- Sanford Children's Health Research Center, Sanford Research, Sioux Falls, SD 57104, USA; Department of Pediatrics, Sanford School of Medicine, University of South Dakota, Sioux Falls, SD 57105, USA.
| |
Collapse
|
23
|
Cao J, Wei Y, Lian J, Yang L, Zhang X, Xie J, Liu Q, Luo J, He B, Tang M. Notch signaling pathway promotes osteogenic differentiation of mesenchymal stem cells by enhancing BMP9/Smad signaling. Int J Mol Med 2017; 40:378-388. [PMID: 28656211 PMCID: PMC5504972 DOI: 10.3892/ijmm.2017.3037] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Accepted: 04/26/2017] [Indexed: 12/19/2022] Open
Abstract
Notch is an important pathway in that it regulates cell-to-cell signal transduction, which plays an essential role in skeletal remodeling. Bone morphogenetic protein (BMP)9 has been regarded as one of the most efficient BMPs by which to induce osteogenic differentiation in mesenchymal stem cells (MSCs). Understanding the interaction between Notch and BMP9 signaling is a critical issue for optimizing the application of MSCs and BMPs in bone tissue engineering. In the present study, we investigated the role of Notch signaling in the BMP9‑induced osteogenic differentiation of MSCs. Our data demonstrated that Notch signaling obviously enhanced BMP9‑induced osteogenic differentiation in MSCs in vitro and in vivo. Notch signaling augmented the activity of BMP9‑induced BMP/Smad signaling and increased the gene expression of essential osteogenic factors induced by BMP9 in MSCs, such as runt‑related transcription factor 2 (Runx2), type I collagen (Colla1) and inhibitor of differentiation (Id)1. We also found that Notch signaling promoted the expression of activin‑like kinase 2 (ALK2) induced by BMP9, and the inhibitory effect of dnALK2 on BMP9‑induced osteogenic differentiation was rescued by constitutive overexpression of Delta‑like 1 (DLL1). Notch signaling also exhibited an apparent effect on the proliferation of mouse embryo fibroblasts (MEFs) during BMP9‑induced osteogenic differentiation. These results indicate that Notch plays a significant role in mediating BMP9‑induced osteogenic differentiation in MSCs, which may be partly regulated by upregulation of the expression of ALK2.
Collapse
Affiliation(s)
- Junjie Cao
- Key Laboratory of Diagnostic Medicine Designated by the Chinese Ministry of Education, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Yalin Wei
- Key Laboratory of Diagnostic Medicine Designated by the Chinese Ministry of Education, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Jing Lian
- Key Laboratory of Diagnostic Medicine Designated by the Chinese Ministry of Education, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Lunyun Yang
- Key Laboratory of Diagnostic Medicine Designated by the Chinese Ministry of Education, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Xiaoyan Zhang
- Key Laboratory of Diagnostic Medicine Designated by the Chinese Ministry of Education, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Jiaying Xie
- Key Laboratory of Diagnostic Medicine Designated by the Chinese Ministry of Education, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Qiang Liu
- Key Laboratory of Diagnostic Medicine Designated by the Chinese Ministry of Education, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Jinyong Luo
- Key Laboratory of Diagnostic Medicine Designated by the Chinese Ministry of Education, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Baicheng He
- Department of Pharmacology, School of Pharmacy, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Min Tang
- Key Laboratory of Diagnostic Medicine Designated by the Chinese Ministry of Education, Chongqing Medical University, Chongqing 400016, P.R. China
| |
Collapse
|
24
|
Abstract
PURPOSE OF REVIEW The mechanisms involved in the TNF-mediated deregulated bone remodeling are little appreciated. This review will discuss and summarize the impact of TNF, Notch, and RBP-J signaling on bone remodeling. RECENT FINDINGS The integrity of the adult skeleton undergoes constant and dynamic remodeling throughout life to maintain a proper bone homeostasis, which is achieved by the essential tight control of coupling between osteoclast-mediated bone resorption and osteoblast-mediated bone formation. The studies in this field include not only the differentiation and function of osteoblasts and osteoclasts, but also the mechanisms that simultaneously control both cell types during bone remodeling. Chronic inflammation is one of the most evident and common pathological settings that often leads to deregulated bone remodeling. The resounding success of TNF blockade therapy has demonstrated a key role for TNF in inflammation and the pathogenesis of inflammatory bone resorption associated with diseases such as rheumatoid arthritis and periodontitis. Recent studies have highlighted the function of Notch and RBP-J signaling in both physiological and TNF-mediated inflammatory bone remodeling.
Collapse
Affiliation(s)
- Baohong Zhao
- Arthritis and Tissue Degeneration Program and David Z. Rosensweig Genomics Research Center, Hospital for Special Surgery, New York, NY, USA.
- Graduate Program in Biochemistry, Cell and Molecular Biology, Weill Cornell Graduate School of Medical Sciences, New York, NY, USA.
- Department of Medicine, Weill Cornell Medical College, New York, NY, USA.
| |
Collapse
|
25
|
Lawal RA, Zhu X, Batey K, Hoffman CM, Georger MA, Radtke F, Hilton MJ, Xing L, Frisch BJ, Calvi LM. The Notch Ligand Jagged1 Regulates the Osteoblastic Lineage by Maintaining the Osteoprogenitor Pool. J Bone Miner Res 2017; 32:1320-1331. [PMID: 28277610 PMCID: PMC5466455 DOI: 10.1002/jbmr.3106] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Revised: 01/30/2017] [Accepted: 02/01/2017] [Indexed: 12/16/2022]
Abstract
Notch signaling is critical for osteoblastic differentiation; however, the specific contribution of individual Notch ligands is unknown. Parathyroid hormone (PTH) regulates the Notch ligand Jagged1 in osteoblastic cells. To determine if osteolineage Jagged1 contributes to bone homeostasis, selective deletion of Jagged1 in osteolineage cells was achieved through the presence of Prx1 promoter-driven Cre recombinase expression, targeting mesenchymal stem cells (MSCs) and their progeny (PJag1 mice). PJag1 mice were viable and fertile and did not exhibit any skeletal abnormalities at 2 weeks of age. At 2 months of age, however, PJag1 mice had increased trabecular bone mass compared to wild-type (WT) littermates. Dynamic histomorphometric analysis showed increased osteoblastic activity and increased mineral apposition rate. Immunohistochemical analysis showed increased numbers of osteocalcin-positive mature osteoblasts in PJag1 mice. Also increased phenotypically defined Lin- /CD45- /CD31- /Sca1- /CD51+ osteoblastic cells were measured by flow cytometric analysis. Surprisingly, phenotypically defined Lin- /CD45- /CD31- /Sca1+ /CD51+ MSCs were unchanged in PJag1 mice as measured by flow cytometric analysis. However, functional osteoprogenitor (OP) cell frequency, measured by Von Kossa+ colony formation, was decreased, suggesting that osteolineage Jagged1 contributes to maintenance of the OP pool. The trabecular bone increases were not due to osteoclastic defects, because PJag1 mice had increased bone resorption. Because PTH increases osteoblastic Jagged1, we sought to understand if osteolineage Jagged1 modulates PTH-mediated bone anabolism. Intermittent PTH treatment resulted in a significantly greater increase in BV/TV in PJag1 hind limbs compared to WT. These findings demonstrate a critical role of osteolineage Jagged1 in bone homeostasis, where Jagged1 maintains the transition of OP to maturing osteoblasts. This novel role of Jagged1 not only identifies a regulatory loop maintaining appropriate populations of osteolineage cells, but also provides a novel approach to increase trabecular bone mass, particularly in combination with PTH, through modulation of Jagged1. © 2017 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Rialnat A Lawal
- Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
- Department of Pathology and Laboratory Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Xichao Zhu
- Department of Pathology and Laboratory Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Kaylind Batey
- Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Corey M Hoffman
- Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
- Department of Pharmacology and Physiology, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Mary A Georger
- Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Freddy Radtke
- Ecole Polytechnique Fédérale de Lausanne, School of Life Sciences, Swiss Institute for Experimental Cancer Research, Lausanne, Vaud, Switzerland
| | - Matthew J Hilton
- Duke Orthopedic, Cellular, and Developmental and Genome Laboratories, Duke University School of Medicine, Durham, NC, USA
| | - Lianping Xing
- Department of Pathology and Laboratory Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Benjamin J Frisch
- Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Laura M Calvi
- Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| |
Collapse
|
26
|
Wang H, Jiang Z, Zhang J, Xie Z, Wang Y, Yang G. Enhanced osteogenic differentiation of rat bone marrow mesenchymal stem cells on titanium substrates by inhibiting Notch3. Arch Oral Biol 2017; 80:34-40. [PMID: 28366784 DOI: 10.1016/j.archoralbio.2017.03.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Revised: 03/04/2017] [Accepted: 03/15/2017] [Indexed: 10/19/2022]
Abstract
OBJECTIVE The role of the Notch pathway has already been identified as a crucial regulator of bone development. However, the Notch signaling pathway has gone largely unexplored during osseointegration. This study aims to investigate the role of Notch signaling on osteogenic differentiation of rat derived bone marrow mesenchymal stem cells (BMSCs) on sandblasted, large-grit, acid-etched (SLA) treated Ti disks. METHODS The involved target genes in Notch pathways were identified by in vitro microarray and bioinformatics analyses with or without osteogenic induction. Adhesion, proliferation, and osteogenic related assay were subsequently conducted with target gene shRNA treatment. RESULTS We found that 11 genes in the Notch signaling pathway were differentially expressed after osteogenic induction on SLA-treated Ti disks, which included up-regulated genes (Notch2, Dll1, Dll3, Ncstn, Ncor2, and Hes5) and down-regulated genes (Notch3, Lfng, Mfng, Jag2 and Maml2). With Notch3 shRNA treatment, the adhesion and proliferation of BMSCs on SLA-treated Ti disks were inhibited. Moreover, the expression levels of alkaline phosphatase (ALP), osteocalcin (OCN), calcium deposition, BMP2 and Runx2 increased significantly compared with that observed in control groups, suggesting that the function of Notch3 was inhibitory in the osteogenic differentiation of BMSCs on SLA-treated titanium. CONCLUSIONS Inhibition Notch3 can enhance osteogenic differentiation of BMSCs on SLA-treated Ti disks, which potentially provides a gene target for improving osseointegration.
Collapse
Affiliation(s)
- Huiming Wang
- Department of Oral and Maxillofacial Surgery, Stomatology Hospital, School of Medical, Zhejiang University, Yan'an Road, Hangzhou, PR China
| | - Zhiwei Jiang
- Department of Implantology, Stomatology Hospital, School of Medical, Zhejiang University, Yan'an Road, Hangzhou, PR China
| | - Jing Zhang
- Department of Implantology, Stomatology Hospital, School of Medical, Zhejiang University, Yan'an Road, Hangzhou, PR China
| | - Zhijian Xie
- Department of Oral and Maxillofacial Surgery, Stomatology Hospital, School of Medical, Zhejiang University, Yan'an Road, Hangzhou, PR China
| | - Ying Wang
- Department of Oral Medicine, Stomatology Hospital, School of Medical, Zhejiang University, Yan'an Road, Hangzhou, PR China
| | - Guoli Yang
- Department of Implantology, Stomatology Hospital, School of Medical, Zhejiang University, Yan'an Road, Hangzhou, PR China.
| |
Collapse
|
27
|
Canalis E, Zanotti S. Hairy and Enhancer of Split-Related With YRPW Motif-Like (HeyL) Is Dispensable for Bone Remodeling in Mice. J Cell Biochem 2017; 118:1819-1826. [PMID: 28019674 DOI: 10.1002/jcb.25859] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 12/22/2016] [Indexed: 12/14/2022]
Abstract
Notch induces Hairy Enhancer of Split (Hes)1 and Hes-related with YRPW motif (Hey) Hey1, Hey2 and Hey-like (HeyL) expression in osteoblasts, but it is not known whether any of these target genes mediates the effect of Notch in the skeleton. We demonstrated that Notch1 activation in osteoblasts/osteocytes induces Hes1, Hey1, Hey2, and HeyL, but HeyL was induced to a greater extent than other target genes. To characterize HeyL null mice for their skeletal phenotype, microcomputed tomography (µCT) and histomorphometric analysis of HeyL null and sex-matched littermate controls was performed. µCT demonstrated modest cancellous bone osteopenia in 1 month old male mice and normal microarchitecture in 3 month old male HeyL null mice. Female HeyL null mice were not different from controls at either 1 or 3 months of age. Bone histomorphometry did not demonstrate differences between HeyL null mice of either sex and littermate controls. In conclusion, HeyL null mice do not exhibit an obvious skeletal phenotype demonstrating that HeyL is dispensable for skeletal homeostasis. J. Cell. Biochem. 118: 1819-1826, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Ernesto Canalis
- Departments of Orthopaedic Surgery and Medicine, and the UConn Musculoskeletal Institute, UConn Health, Farmington, Connecticut, 06030-5456
| | - Stefano Zanotti
- Departments of Orthopaedic Surgery and Medicine, and the UConn Musculoskeletal Institute, UConn Health, Farmington, Connecticut, 06030-5456
| |
Collapse
|
28
|
Qu X, Chen Z, Fan D, Sun C, Zeng Y, Guo Z, Qi Q, Li W. MiR-199b-5p inhibits osteogenic differentiation in ligamentum flavum cells by targeting JAG1 and modulating the Notch signalling pathway. J Cell Mol Med 2016; 21:1159-1170. [PMID: 27957826 PMCID: PMC5431140 DOI: 10.1111/jcmm.13047] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 10/30/2016] [Indexed: 12/20/2022] Open
Abstract
Ossification of the ligamentum flavum (OLF) is a pathology almost only reported in East Asian countries. The leading cause of OLF is thoracic spinal canal stenosis and myelopathy. In this study, the role of miR-199b-5p and jagged 1 (JAG1) in primary ligamentum flavum cell osteogenesis was examined. MiR-199b-5p was found to be down-regulated during osteogenic differentiation in ligamentum flavum cells, while miR-199b-5p overexpression inhibited osteogenic differentiation. In addition, JAG1 was found to be up-regulated during osteogenic differentiation in ligamentum flavum cells, while JAG1 knockdown via RNA interference caused an inhibition of Notch signalling and osteogenic differentiation. Moreover, target prediction analysis and dual luciferase reporter assays supported the notion that JAG1 was a direct target of miR-199b-5p, with miR-199b-5p found to down-regulate both JAG1 and Notch. Further, JAG1 knockdown was demonstrated to block the effect of miR-199b-5p inhibition. These findings imply that miR-199b-5p performs an inhibitory role in osteogenic differentiation in ligamentum flavum cells by potentially targeting JAG1 and influencing the Notch signalling pathway.
Collapse
Affiliation(s)
- Xiaochen Qu
- Department of Orthopaedics, Peking University Third Hospital, Beijing, China
| | - Zhongqiang Chen
- Department of Orthopaedics, Peking University Third Hospital, Beijing, China
| | - Dongwei Fan
- Department of Orthopaedics, Peking University Third Hospital, Beijing, China
| | - Chuiguo Sun
- Department of Orthopaedics, Peking University Third Hospital, Beijing, China
| | - Yan Zeng
- Department of Orthopaedics, Peking University Third Hospital, Beijing, China
| | - Zhaoqing Guo
- Department of Orthopaedics, Peking University Third Hospital, Beijing, China
| | - Qiang Qi
- Department of Orthopaedics, Peking University Third Hospital, Beijing, China
| | - Weishi Li
- Department of Orthopaedics, Peking University Third Hospital, Beijing, China
| |
Collapse
|
29
|
Dou XW, Park W, Lee S, Zhang QZ, Carrasco LR, Le AD. Loss of Notch3 Signaling Enhances Osteogenesis of Mesenchymal Stem Cells from Mandibular Torus. J Dent Res 2016; 96:347-354. [PMID: 27879421 DOI: 10.1177/0022034516680349] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Mandibular torus (MT) is a common intraoral osseous outgrowth located on the lingual surface of the mandible. Histologic features include hyperplastic bone consisting of mature cortical and trabecular bone. Some theories on the etiology of MT have been postulated, such as genetic factors, masticatory hyperfunction, trauma, and continued growth, but the underlying mechanism remains largely unknown. In this study, we investigated the potential role of mesenchymal stem cells (MSCs) derived from human MT in the pathogenesis of bone outgrowth. We demonstrated that MT harbored a distinct subpopulation of MSCs, with enhanced osteogenic and decreased adipogenic differentiation capacities, as compared with their counterparts from normal jaw bone. The increased osteogenic differentiation of mandibular torus MSCs was associated with the suppression of Notch3 signaling and its downstream target genes, Jag1 and Hey1, and a reciprocal increase in the transcriptional activation of ATF4 and NFATc1 genes. Targeted knockdown of Notch3 expression by transient siRNA transfection promoted the expression of osteogenic transcription factors in normal jaw bone MSCs. Our data suggest that the loss of Notch3 signaling may contribute partly to bone outgrowth in MT, as mediated by enhanced MSC-driven osteogenic differentiation in the jaw bone.
Collapse
Affiliation(s)
- X W Dou
- 1 Department of Oral and Maxillofacial Surgery and Pharmacology, University of Pennsylvania School of Dental Medicine, Philadelphia, PA, USA
| | - W Park
- 1 Department of Oral and Maxillofacial Surgery and Pharmacology, University of Pennsylvania School of Dental Medicine, Philadelphia, PA, USA.,2 Department of Advanced General Dentistry, College of Dentistry, Yonsei University, Seoul, South Korea
| | - S Lee
- 3 Department of Endodontics, University of Pennsylvania School of Dental Medicine, Philadelphia, PA, USA
| | - Q Z Zhang
- 1 Department of Oral and Maxillofacial Surgery and Pharmacology, University of Pennsylvania School of Dental Medicine, Philadelphia, PA, USA
| | - L R Carrasco
- 1 Department of Oral and Maxillofacial Surgery and Pharmacology, University of Pennsylvania School of Dental Medicine, Philadelphia, PA, USA.,4 Department of Oral and Maxillofacial Surgery, Penn Medicine Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| | - A D Le
- 1 Department of Oral and Maxillofacial Surgery and Pharmacology, University of Pennsylvania School of Dental Medicine, Philadelphia, PA, USA.,4 Department of Oral and Maxillofacial Surgery, Penn Medicine Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
30
|
Qu X, Chen Z, Fan D, Sun C, Zeng Y, Hou X, Ning S. Notch signaling pathways in human thoracic ossification of the ligamentum flavum. J Orthop Res 2016; 34:1481-91. [PMID: 27208800 DOI: 10.1002/jor.23303] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2015] [Accepted: 05/19/2016] [Indexed: 02/04/2023]
Abstract
This study investigated the pathological process of Notch signaling in the osteogenesis of ligamentum flavum tissues and cells, and the associated regulatory mechanisms. Notch receptors, ligands, and target genes were identified by quantitative polymerase chain reaction (qPCR) in ligamentum flavum cells and immunohistochemistry in ligamentum flavum sections from ossification of the ligamentum flavum (OLF) patients and controls. The temporospatial expression patterns of JAG1/Notch2/HES1 in human ligamentum flavum cells during osteogenic differentiation were determined by qPCR. Lentiviral vectors for Notch2 overexpression and knockdown were constructed and transfected into ligamentum flavum cells before osteogenic differentiation to examine the function of Notch signaling pathways in the osteogenic differentiation of ligamentum flavum cells. Alkaline phosphatase, Runx2, Osterix, osteocalcin, and osteopontin mRNA levels, alkaline phosphatase activity, and Alizarin Red staining were used as indicators of osteogenic differentiation. JAG1/Notch2/HES1 mRNA levels were up-regulated in ligamentum flavum cells from OLF patients, which increased during osteogenic differentiation. Immunohistochemical analysis suggested positive Notch2 expression at the ossification front. Down-regulation of Notch2 expression decelerated osteogenic differentiation of ligamentum flavum cells, and Notch2 overexpression promoted osteogenic differentiation of ligamentum flavum cells. Expression of Runx2 and Osterix increased in a manner similar to that of Notch2 during osteogenic differentiation of ligamentum flavum cells, and Notch2 knockdown and overexpression influenced their expression levels. Notch signaling plays an important role in OLF, and Notch may affect the osteogenic differentiation of ligamentum flavum cells via interactions with Runx2 and Osterix.© 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 34:1481-1491, 2016.
Collapse
Affiliation(s)
- Xiaochen Qu
- Department of Orthopaedics, Peking University Third Hospital, 49 North Garden Road, Haidian District, Beijing 100191, China
| | - Zhongqiang Chen
- Department of Orthopaedics, Peking University Third Hospital, 49 North Garden Road, Haidian District, Beijing 100191, China
| | - Dongwei Fan
- Department of Orthopaedics, Peking University Third Hospital, 49 North Garden Road, Haidian District, Beijing 100191, China
| | - Chuiguo Sun
- Department of Orthopaedics, Peking University Third Hospital, 49 North Garden Road, Haidian District, Beijing 100191, China
| | - Yan Zeng
- Department of Orthopaedics, Peking University Third Hospital, 49 North Garden Road, Haidian District, Beijing 100191, China
| | - Xiaofei Hou
- Department of Orthopaedics, Peking University Third Hospital, 49 North Garden Road, Haidian District, Beijing 100191, China
| | - Shanglong Ning
- Department of Orthopaedics, Peking University Third Hospital, 49 North Garden Road, Haidian District, Beijing 100191, China
| |
Collapse
|
31
|
Abstract
Notch 1 to 4 receptors are important determinants of cell fate and function, and Notch signaling plays an important role in skeletal development and bone remodeling. After direct interactions with ligands of the Jagged and Delta-like families, a series of cleavages release the Notch intracellular domain (NICD), which translocates to the nucleus where it induces transcription of Notch target genes. Classic gene targets of Notch are hairy and enhancer of split (Hes) and Hes-related with YRPW motif (Hey). In cells of the osteoblastic lineage, Notch activation inhibits cell differentiation and causes cancellous bone osteopenia because of impaired bone formation. In osteocytes, Notch1 has distinct effects that result in an inhibition of bone resorption secondary to an induction of osteoprotegerin and suppression of sclerostin with a consequent enhancement of Wnt signaling. Notch1 inhibits, whereas Notch2 enhances, osteoclastogenesis and bone resorption. Congenital disorders of loss- and gain-of-Notch function present with severe clinical manifestations, often affecting the skeleton. Enhanced Notch signaling is associated with osteosarcoma, and Notch can influence the invasive potential of carcinoma of the breast and prostate. Notch signaling can be controlled by the use of inhibitors of Notch activation, small peptides that interfere with the formation of a transcriptional complex, or antibodies to the extracellular domain of specific Notch receptors or to Notch ligands. In conclusion, Notch plays a critical role in skeletal development and homeostasis, and serious skeletal disorders can be attributed to alterations in Notch signaling.
Collapse
Affiliation(s)
- Stefano Zanotti
- Departments of Orthopaedic Surgery and Medicine and the UConn Musculoskeletal Institute, UConn Health, Farmington, Connecticut 06030
| | - Ernesto Canalis
- Departments of Orthopaedic Surgery and Medicine and the UConn Musculoskeletal Institute, UConn Health, Farmington, Connecticut 06030
| |
Collapse
|
32
|
Liu Z, Ren Y, Mirando AJ, Wang C, Zuscik MJ, O'Keefe RJ, Hilton MJ. Notch signaling in postnatal joint chondrocytes, but not subchondral osteoblasts, is required for articular cartilage and joint maintenance. Osteoarthritis Cartilage 2016; 24:740-51. [PMID: 26522700 PMCID: PMC4799757 DOI: 10.1016/j.joca.2015.10.015] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Revised: 10/15/2015] [Accepted: 10/22/2015] [Indexed: 02/02/2023]
Abstract
OBJECTIVE Notch signaling has been identified as a critical regulator in cartilage development and joint maintenance, and loss of Notch signaling in all joint tissues results in an early and progressive osteoarthritis (OA)-like pathology. This study investigated the targeted cell population within the knee joint in which Notch signaling is required for normal cartilage and joint integrity. METHODS Two loss-of-function mouse models were generated with tissue-specific knockout of the core Notch signaling component, RBPjκ. The AcanCre(ERT2) transgene specifically removed Rbpjκ floxed alleles in postnatal joint chondrocytes, while the Col1Cre(2.3kb) transgene deleted Rbpjκ in osteoblast populations, including subchondral osteoblasts. Mutant and control mice were analyzed via histology, immunohistochemistry (IHC), real-time quantitative polymerase chain reaction (qPCR), X-ray, and microCT imaging at multiple time-points. RESULTS Loss of Notch signaling in postnatal joint chondrocytes results in a progressive OA-like pathology, and triggered the recruitment of non-targeted fibrotic cells into the articular cartilage potentially due to mis-regulated chemokine expression from within the cartilage. Upon recruitment, these fibrotic cells produced degenerative enzymes that may lead to the observed cartilage degradation and contribute to a significant portion of the age-related OA-like pathology. On the contrary, loss of Notch signaling in subchondral osteoblasts did not affect normal cartilage development or joint maintenance. CONCLUSIONS RBPjκ-dependent Notch signaling in postnatal joint chondrocytes, but not subchondral osteoblasts, is required for articular cartilage and joint maintenance.
Collapse
MESH Headings
- Animals
- Arthritis, Experimental/genetics
- Arthritis, Experimental/metabolism
- Arthritis, Experimental/pathology
- Arthritis, Experimental/physiopathology
- Cartilage, Articular/growth & development
- Cartilage, Articular/metabolism
- Cartilage, Articular/pathology
- Cartilage, Articular/physiopathology
- Chondrocytes/metabolism
- Disease Progression
- Gene Expression Regulation, Developmental
- Mice
- Mice, Transgenic
- Osteoarthritis/genetics
- Osteoarthritis/metabolism
- Osteoarthritis/pathology
- Osteoarthritis/physiopathology
- Osteoblasts/metabolism
- Receptors, Notch/genetics
- Receptors, Notch/physiology
- Signal Transduction/physiology
Collapse
Affiliation(s)
- Z Liu
- Department of Orthopaedics and Rehabilitation, The Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY 14642, USA; Department of Biology, University of Rochester, Rochester, NY 14642, USA
| | - Y Ren
- Department of Orthopaedic Surgery, Duke Orthopaedic Cellular, Developmental, and Genome Laboratories, Duke University School of Medicine, Durham, NC 27710, USA
| | - A J Mirando
- Department of Orthopaedics and Rehabilitation, The Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY 14642, USA; Department of Orthopaedic Surgery, Duke Orthopaedic Cellular, Developmental, and Genome Laboratories, Duke University School of Medicine, Durham, NC 27710, USA
| | - C Wang
- Department of Orthopaedics and Rehabilitation, The Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY 14642, USA; Department of Orthopaedic Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - M J Zuscik
- Department of Orthopaedics and Rehabilitation, The Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - R J O'Keefe
- Department of Orthopaedics and Rehabilitation, The Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY 14642, USA; Department of Orthopaedic Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - M J Hilton
- Department of Orthopaedics and Rehabilitation, The Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY 14642, USA; Department of Orthopaedic Surgery, Duke Orthopaedic Cellular, Developmental, and Genome Laboratories, Duke University School of Medicine, Durham, NC 27710, USA; Department of Cell Biology, Duke University School of Medicine, Durham, NC 27710, USA.
| |
Collapse
|
33
|
Abstract
Notch controls skeletogenesis, but its role in the remodeling of adult bone remains conflicting. In mature mice, the skeleton can become osteopenic or osteosclerotic depending on the time point at which Notch is activated or inactivated. Using adult EGFP reporter mice, we find that Notch expression is localized to osteocytes embedded within bone matrix. Conditional activation of Notch signaling in osteocytes triggers profound bone formation, mainly due to increased mineralization, which rescues both age-associated and ovariectomy-induced bone loss and promotes bone healing following osteotomy. In parallel, mice rendered haploinsufficient in γ-secretase presenilin-1 (Psen1), which inhibits downstream Notch activation, display almost-absent terminal osteoblast differentiation. Consistent with this finding, pharmacologic or genetic disruption of Notch or its ligand Jagged1 inhibits mineralization. We suggest that stimulation of Notch signaling in osteocytes initiates a profound, therapeutically relevant, anabolic response.
Collapse
|
34
|
Wang C, Inzana JA, Mirando AJ, Ren Y, Liu Z, Shen J, O'Keefe RJ, Awad HA, Hilton MJ. NOTCH signaling in skeletal progenitors is critical for fracture repair. J Clin Invest 2016; 126:1471-81. [PMID: 26950423 DOI: 10.1172/jci80672] [Citation(s) in RCA: 93] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Accepted: 01/21/2016] [Indexed: 11/17/2022] Open
Abstract
Fracture nonunions develop in 10%-20% of patients with fractures, resulting in prolonged disability. Current data suggest that bone union during fracture repair is achieved via proliferation and differentiation of skeletal progenitors within periosteal and soft tissues surrounding bone, while bone marrow stromal/stem cells (BMSCs) and other skeletal progenitors may also contribute. The NOTCH signaling pathway is a critical maintenance factor for BMSCs during skeletal development, although the precise role for NOTCH and the requisite nature of BMSCs following fracture is unknown. Here, we evaluated whether NOTCH and/or BMSCs are required for fracture repair by performing nonstabilized and stabilized fractures on NOTCH-deficient mice with targeted deletion of RBPjk in skeletal progenitors, maturing osteoblasts, and committed chondrocytes. We determined that removal of NOTCH signaling in BMSCs and subsequent depletion of this population result in fracture nonunion, as the fracture repair process was normal in animals harboring either osteoblast- or chondrocyte-specific deletion of RBPjk. Together, this work provides a genetic model of a fracture nonunion and demonstrates the requirement for NOTCH and BMSCs in fracture repair, irrespective of fracture stability and vascularity.
Collapse
|
35
|
Canalis E, Bridgewater D, Schilling L, Zanotti S. Canonical Notch activation in osteocytes causes osteopetrosis. Am J Physiol Endocrinol Metab 2016; 310:E171-82. [PMID: 26578715 PMCID: PMC4719030 DOI: 10.1152/ajpendo.00395.2015] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Accepted: 11/12/2015] [Indexed: 01/01/2023]
Abstract
Activation of Notch1 in cells of the osteoblastic lineage inhibits osteoblast differentiation/function and causes osteopenia, whereas its activation in osteocytes causes a distinct osteopetrotic phenotype. To explore mechanisms responsible, we established the contributions of canonical Notch signaling (Rbpjκ dependent) to osteocyte function. Transgenics expressing Cre recombinase under the control of the dentin matrix protein-1 (Dmp1) promoter were crossed with Rbpjκ conditional mice to generate Dmp1-Cre(+/-);Rbpjκ(Δ/Δ) mice. These mice did not have a skeletal phenotype, indicating that Rbpjκ is dispensable for osteocyte function. To study the Rbpjκ contribution to Notch activation, Rosa(Notch) mice, where a loxP-flanked STOP cassette is placed between the Rosa26 promoter and the NICD coding sequence, were crossed with Dmp1-Cre transgenic mice and studied in the context (Dmp1-Cre(+/-);Rosa(Notch);Rbpjκ(Δ/Δ)) or not (Dmp1-Cre(+/-);Rosa(Notch)) of Rbpjκ inactivation. Dmp1-Cre(+/-);Rosa(Notch) mice exhibited increased femoral trabecular bone volume and decreased osteoclasts and bone resorption. The phenotype was reversed in the context of the Rbpjκ inactivation, demonstrating that Notch canonical signaling was accountable for the phenotype. Notch activation downregulated Sost and Dkk1 and upregulated Axin2, Tnfrsf11b, and Tnfsf11 mRNA expression, and these effects were not observed in the context of the Rbpjκ inactivation. In conclusion, Notch activation in osteocytes suppresses bone resorption and increases bone volume by utilization of canonical signals that also result in the inhibition of Sost and Dkk1 and upregulation of Wnt signaling.
Collapse
Affiliation(s)
- Ernesto Canalis
- Department of Orthopedic Surgery and the University of Connecticut Musculoskeletal Institute, Farmington, Connecticut; and Department of Medicine, University of Connecticut Health, Farmington, Connecticut
| | - David Bridgewater
- Department of Orthopedic Surgery and the University of Connecticut Musculoskeletal Institute, Farmington, Connecticut; and
| | - Lauren Schilling
- Department of Orthopedic Surgery and the University of Connecticut Musculoskeletal Institute, Farmington, Connecticut; and
| | - Stefano Zanotti
- Department of Orthopedic Surgery and the University of Connecticut Musculoskeletal Institute, Farmington, Connecticut; and Department of Medicine, University of Connecticut Health, Farmington, Connecticut
| |
Collapse
|
36
|
Wang C, Shen J, Yukata K, Inzana JA, O'Keefe RJ, Awad HA, Hilton MJ. Transient gamma-secretase inhibition accelerates and enhances fracture repair likely via Notch signaling modulation. Bone 2015; 73:77-89. [PMID: 25527421 PMCID: PMC4336841 DOI: 10.1016/j.bone.2014.12.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Revised: 12/05/2014] [Accepted: 12/11/2014] [Indexed: 12/21/2022]
Abstract
Approximately 10% of skeletal fractures result in healing complications and non-union, while most fractures repair with appropriate stabilization and without pharmacologic intervention. It is the latter injuries that cannot be underestimated as the expenses associated with their treatment and subsequent lost productivity are predicted to increase to over $74 billion by 2015. During fracture repair, local mesenchymal stem/progenitor cells (MSCs) differentiate to form new cartilage and bone, reminiscent of events during skeletal development. We previously demonstrated that permanent loss of gamma-secretase activity and Notch signaling accelerates bone and cartilage formation from MSC progenitors during skeletal development, leading to pathologic acquisition of bone and depletion of bone marrow derived MSCs. Here, we investigated whether transient and systemic gamma-secretase and Notch inhibition is capable of accelerating and enhancing fracture repair by promoting controlled MSC differentiation near the fracture site. Our radiographic, microCT, histological, cell and molecular analyses reveal that single and intermittent gamma-secretase inhibitor (GSI) treatments significantly enhance cartilage and bone callus formation via the promotion of MSC differentiation, resulting in only a moderate reduction of local MSCs. Biomechanical testing further demonstrates that GSI treated fractures exhibit superior strength earlier in the healing process, with single dose GSI treated fractures exhibiting bone strength approaching that of un-fractured tibiae. These data further establish that transient inhibition of gamma-secretase activity and Notch signaling temporarily increases osteoclastogenesis and accelerates bone remodeling, which coupled with the effects on MSCs likely explains the accelerated and enhanced fracture repair. Therefore, we propose that the Notch pathway serves as an important therapeutic target during skeletal fracture repair.
Collapse
Affiliation(s)
- Cuicui Wang
- Department of Orthopaedics and Rehabilitation, The Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY 14642, USA; Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Jie Shen
- Department of Orthopaedics and Rehabilitation, The Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Kiminori Yukata
- Department of Orthopaedics and Rehabilitation, The Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Jason A Inzana
- Department of Orthopaedics and Rehabilitation, The Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY 14642, USA; Department of Biomedical Engineering, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Regis J O'Keefe
- Department of Orthopaedics and Rehabilitation, The Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Hani A Awad
- Department of Orthopaedics and Rehabilitation, The Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY 14642, USA; Department of Biomedical Engineering, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Matthew J Hilton
- Department of Orthopaedics and Rehabilitation, The Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY 14642, USA; Department of Orthopaedic Surgery, Duke Orthopaedic Cellular, Developmental, and Genome Laboratories, Duke University School of Medicine, Durham, NC 27710, USA.
| |
Collapse
|
37
|
Gripp KW, Robbins KM, Sobreira NL, Witmer PD, Bird LM, Avela K, Makitie O, Alves D, Hogue JS, Zackai EH, Doheny KF, Stabley DL, Sol-Church K. Truncating mutations in the last exon of NOTCH3 cause lateral meningocele syndrome. Am J Med Genet A 2015; 167A:271-81. [PMID: 25394726 PMCID: PMC5589071 DOI: 10.1002/ajmg.a.36863] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Accepted: 10/15/2014] [Indexed: 12/30/2022]
Abstract
Lateral meningocele syndrome (LMS, OMIM%130720), also known as Lehman syndrome, is a very rare skeletal disorder with facial anomalies, hypotonia and meningocele-related neurologic dysfunction. The characteristic lateral meningoceles represent the severe end of the dural ectasia spectrum and are typically most severe in the lower spine. Facial features of LMS include hypertelorism and telecanthus, high arched eyebrows, ptosis, midfacial hypoplasia, micrognathia, high and narrow palate, low-set ears and a hypotonic appearance. Hyperextensibility, hernias and scoliosis reflect a connective tissue abnormality, and aortic dilation, a high-pitched nasal voice, wormian bones and osteolysis may be present. Lateral meningocele syndrome has phenotypic overlap with Hajdu-Cheney syndrome. We performed exome resequencing in five unrelated individuals with LMS and identified heterozygous truncating NOTCH3 mutations. In an additional unrelated individual Sanger sequencing revealed a deleterious variant in the same exon 33. In total, five novel de novo NOTCH3 mutations were identified in six unrelated patients. One had a 26 bp deletion (c.6461_6486del, p.G2154fsTer78), two carried the same single base pair insertion (c.6692_93insC, p.P2231fsTer11), and three individuals had a nonsense point mutation at c.6247A > T (pK2083*), c.6663C > G (p.Y2221*) or c.6732C > A, (p.Y2244*). All mutations cluster into the last coding exon, resulting in premature termination of the protein and truncation of the negative regulatory proline-glutamate-serine-threonine rich PEST domain. Our results suggest that mutant mRNA products escape nonsense mediated decay. The truncated NOTCH3 may cause gain-of-function through decreased clearance of the active intracellular product, resembling NOTCH2 mutations in the clinically related Hajdu-Cheney syndrome and contrasting the NOTCH3 missense mutations causing CADASIL.
Collapse
Affiliation(s)
- Karen W. Gripp
- Division of Medical Genetics, A.I. duPont Hospital for Children, Wilmington, Delaware, and Sidney Kimmel Medical School at T. Jefferson University, Philadelphia, Pennsylvania
| | - Katherine M. Robbins
- Department of Biomedical Research, A.I. duPont Hospital for Children, Wilmington, Delaware
- Department of Biological Sciences, University of Delaware, Newark, Delaware
| | - Nara L. Sobreira
- Johns Hopkins University School of Medicine, Institute of Genetic Medicine, Baltimore, Maryland
| | - P. Dane Witmer
- Center for Inherited Disease Research, Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Lynne M. Bird
- University of California San Diego and Rady Children's Hospital, San Diego, California
| | - Kristiina Avela
- Department of Clinical Genetics, Helsinki University Central Hospital, Helsinki, Finland
| | - Outi Makitie
- Children's Hospital, Helsinki University Central Hospital and University of Helsinki, and Folkhälsan Institute of Genetics, Helsinki, Finland
| | - Daniela Alves
- Neurogenetics Unit, Department of Medical Genetics, Centro Hospitalar de São João, Porto, Portugal
| | | | - Elaine H. Zackai
- Division of Human Genetics and Molecular Biology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Kimberly F. Doheny
- Center for Inherited Disease Research, Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Deborah L. Stabley
- Department of Biomedical Research, A.I. duPont Hospital for Children, Wilmington, Delaware
| | - Katia Sol-Church
- Department of Biomedical Research, A.I. duPont Hospital for Children, Wilmington, Delaware
| |
Collapse
|
38
|
Osteocytes mediate the anabolic actions of canonical Wnt/β-catenin signaling in bone. Proc Natl Acad Sci U S A 2015; 112:E478-86. [PMID: 25605937 DOI: 10.1073/pnas.1409857112] [Citation(s) in RCA: 205] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Osteocytes, >90% of the cells in bone, lie embedded within the mineralized matrix and coordinate osteoclast and osteoblast activity on bone surfaces by mechanisms still unclear. Bone anabolic stimuli activate Wnt signaling, and human mutations of components along this pathway underscore its crucial role in bone accrual and maintenance. However, the cell responsible for orchestrating Wnt anabolic actions has remained elusive. We show herein that activation of canonical Wnt signaling exclusively in osteocytes [dominant active (da)βcat(Ot) mice] induces bone anabolism and triggers Notch signaling without affecting survival. These features contrast with those of mice expressing the same daß-catenin in osteoblasts, which exhibit decreased resorption and perinatal death from leukemia. daßcat(Ot) mice exhibit increased bone mineral density in the axial and appendicular skeleton, and marked increase in bone volume in cancellous/trabecular and cortical compartments compared with littermate controls. daßcat(Ot) mice display increased resorption and formation markers, high number of osteoclasts and osteoblasts in cancellous and cortical bone, increased bone matrix production, and markedly elevated periosteal bone formation rate. Wnt and Notch signaling target genes, osteoblast and osteocyte markers, and proosteoclastogenic and antiosteoclastogenic cytokines are elevated in bones of daßcat(Ot) mice. Further, the increase in RANKL depends on Sost/sclerostin. Thus, activation of osteocytic β-catenin signaling increases both osteoclasts and osteoblasts, leading to bone gain, and is sufficient to activate the Notch pathway. These findings demonstrate disparate outcomes of β-catenin activation in osteocytes versus osteoblasts and identify osteocytes as central target cells of the anabolic actions of canonical Wnt/β-catenin signaling in bone.
Collapse
|
39
|
Dong Y, Long T, Wang C, Mirando AJ, Chen J, O'Keefe RJ, Hilton MJ. NOTCH-Mediated Maintenance and Expansion of Human Bone Marrow Stromal/Stem Cells: A Technology Designed for Orthopedic Regenerative Medicine. Stem Cells Transl Med 2014; 3:1456-66. [PMID: 25368376 DOI: 10.5966/sctm.2014-0034] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Human bone marrow-derived stromal/stem cells (BMSCs) have great therapeutic potential for treating skeletal disease and facilitating skeletal repair, although maintaining their multipotency and expanding these cells ex vivo have proven difficult. Because most stem cell-based applications to skeletal regeneration and repair in the clinic would require large numbers of functional BMSCs, recent research has focused on methods for the appropriate selection, expansion, and maintenance of BMSC populations during long-term culture. We describe here a novel biological method that entails selection of human BMSCs based on NOTCH2 expression and activation of the NOTCH signaling pathway in cultured BMSCs via a tissue culture plate coated with recombinant human JAGGED1 (JAG1) ligand. We demonstrate that transient JAG1-mediated NOTCH signaling promotes human BMSC maintenance and expansion while increasing their skeletogenic differentiation capacity, both ex vivo and in vivo. This study is the first of its kind to describe a NOTCH-mediated methodology for the maintenance and expansion of human BMSCs and will serve as a platform for future clinical or translational studies aimed at skeletal regeneration and repair.
Collapse
Affiliation(s)
- Yufeng Dong
- Department of Orthopaedics and Rehabilitation, Center for Musculoskeletal Research, and Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, New York, USA; Department of Orthopaedic Surgery, Louisiana State University Health Sciences Center, Shreveport, Louisiana, USA; Department of Orthopaedics, Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, People's Republic of China; Department of Orthopaedic Surgery, Duke Orthopaedic Cellular, Developmental, and Genome Laboratories, Duke University School of Medicine, Durham, North Carolina, USA
| | - Teng Long
- Department of Orthopaedics and Rehabilitation, Center for Musculoskeletal Research, and Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, New York, USA; Department of Orthopaedic Surgery, Louisiana State University Health Sciences Center, Shreveport, Louisiana, USA; Department of Orthopaedics, Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, People's Republic of China; Department of Orthopaedic Surgery, Duke Orthopaedic Cellular, Developmental, and Genome Laboratories, Duke University School of Medicine, Durham, North Carolina, USA
| | - Cuicui Wang
- Department of Orthopaedics and Rehabilitation, Center for Musculoskeletal Research, and Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, New York, USA; Department of Orthopaedic Surgery, Louisiana State University Health Sciences Center, Shreveport, Louisiana, USA; Department of Orthopaedics, Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, People's Republic of China; Department of Orthopaedic Surgery, Duke Orthopaedic Cellular, Developmental, and Genome Laboratories, Duke University School of Medicine, Durham, North Carolina, USA
| | - Anthony J Mirando
- Department of Orthopaedics and Rehabilitation, Center for Musculoskeletal Research, and Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, New York, USA; Department of Orthopaedic Surgery, Louisiana State University Health Sciences Center, Shreveport, Louisiana, USA; Department of Orthopaedics, Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, People's Republic of China; Department of Orthopaedic Surgery, Duke Orthopaedic Cellular, Developmental, and Genome Laboratories, Duke University School of Medicine, Durham, North Carolina, USA
| | - Jianquan Chen
- Department of Orthopaedics and Rehabilitation, Center for Musculoskeletal Research, and Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, New York, USA; Department of Orthopaedic Surgery, Louisiana State University Health Sciences Center, Shreveport, Louisiana, USA; Department of Orthopaedics, Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, People's Republic of China; Department of Orthopaedic Surgery, Duke Orthopaedic Cellular, Developmental, and Genome Laboratories, Duke University School of Medicine, Durham, North Carolina, USA
| | - Regis J O'Keefe
- Department of Orthopaedics and Rehabilitation, Center for Musculoskeletal Research, and Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, New York, USA; Department of Orthopaedic Surgery, Louisiana State University Health Sciences Center, Shreveport, Louisiana, USA; Department of Orthopaedics, Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, People's Republic of China; Department of Orthopaedic Surgery, Duke Orthopaedic Cellular, Developmental, and Genome Laboratories, Duke University School of Medicine, Durham, North Carolina, USA
| | - Matthew J Hilton
- Department of Orthopaedics and Rehabilitation, Center for Musculoskeletal Research, and Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, New York, USA; Department of Orthopaedic Surgery, Louisiana State University Health Sciences Center, Shreveport, Louisiana, USA; Department of Orthopaedics, Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, People's Republic of China; Department of Orthopaedic Surgery, Duke Orthopaedic Cellular, Developmental, and Genome Laboratories, Duke University School of Medicine, Durham, North Carolina, USA
| |
Collapse
|
40
|
Tao J, Jiang MM, Jiang L, Salvo JS, Zeng HC, Dawson B, Bertin TK, Rao PH, Chen R, Donehower LA, Gannon F, Lee BH. Notch activation as a driver of osteogenic sarcoma. Cancer Cell 2014; 26:390-401. [PMID: 25203324 PMCID: PMC4159617 DOI: 10.1016/j.ccr.2014.07.023] [Citation(s) in RCA: 103] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Revised: 05/21/2014] [Accepted: 07/26/2014] [Indexed: 12/22/2022]
Abstract
Osteogenic sarcoma (OS) is a deadly skeletal malignancy whose cause is unknown. We report here a mouse model of OS based on conditional expression of the intracellular domain of Notch1 (NICD). Expression of the NICD in immature osteoblasts was sufficient to drive the formation of bone tumors, including OS, with complete penetrance. These tumors display features of human OS; namely, histopathology, cytogenetic complexity, and metastatic potential. We show that Notch activation combined with loss of p53 synergistically accelerates OS development in mice, although p53-driven OS is not Rbpj dependent, which demonstrates a dual dominance of the Notch oncogene and p53 mutation in the development of OS. Using this model, we also reveal the osteoblasts as the potential sources of OS.
Collapse
Affiliation(s)
- Jianning Tao
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, R815, Houston, TX 77030, USA
| | - Ming-Ming Jiang
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, R815, Houston, TX 77030, USA
| | - Lichun Jiang
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, R815, Houston, TX 77030, USA; Human Genome Sequencing Center, Baylor College of Medicine, One Baylor Plaza, R815, Houston, TX 77030, USA
| | - Jason S Salvo
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, R815, Houston, TX 77030, USA; Human Genome Sequencing Center, Baylor College of Medicine, One Baylor Plaza, R815, Houston, TX 77030, USA
| | - Huan-Chang Zeng
- Program in Developmental Biology, Baylor College of Medicine, One Baylor Plaza, R815, Houston, TX 77030, USA
| | - Brian Dawson
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, R815, Houston, TX 77030, USA
| | - Terry K Bertin
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, R815, Houston, TX 77030, USA
| | - Pulivarthi H Rao
- Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, R815, Houston, TX 77030, USA
| | - Rui Chen
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, R815, Houston, TX 77030, USA; Human Genome Sequencing Center, Baylor College of Medicine, One Baylor Plaza, R815, Houston, TX 77030, USA
| | - Lawrence A Donehower
- Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, R815, Houston, TX 77030, USA; Department of Molecular Virology and Microbiology, Baylor College of Medicine, One Baylor Plaza, R815, Houston, TX 77030, USA
| | - Francis Gannon
- Department of Pathology, Baylor College of Medicine, One Baylor Plaza, R815, Houston, TX 77030, USA
| | - Brendan H Lee
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, R815, Houston, TX 77030, USA; Program in Developmental Biology, Baylor College of Medicine, One Baylor Plaza, R815, Houston, TX 77030, USA; Howard Hughes Medical Institute, Houston, TX 77030, USA.
| |
Collapse
|
41
|
Zanotti S, Canalis E. Notch1 and Notch2 expression in osteoblast precursors regulates femoral microarchitecture. Bone 2014; 62:22-8. [PMID: 24508387 PMCID: PMC3970724 DOI: 10.1016/j.bone.2014.01.023] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2013] [Revised: 01/14/2014] [Accepted: 01/29/2014] [Indexed: 12/19/2022]
Abstract
Notch receptors regulate cell differentiation and function. Notch1 and Notch2 inactivation in osteoblasts and osteocytes increases cancellous bone volume, but the function of Notch signaling in osteoblast precursors is unknown. To inactivate Notch signaling in immature osteoblastic cells, mice homozygous for conditional Notch1 and Notch2 alleles (Notch1(loxP/loxP);Notch2(loxP/loxP)) were crossed with mice where the osterix (Osx) promoter, regulated by a Tet-Off cassette, governs Cre expression (Osx-Cre). Notch1(loxP/loxP);Notch2(loxP/loxP) control and Osx-Cre(+/-);Notch1(Δ/Δ);Notch2(Δ/Δ) experimental littermate cohorts were obtained. To prevent the effects of embryonic Osx-Cre expression, doxycycline was administered to pregnant dams, but not to newborns. Recombination of conditional alleles was documented in calvarial DNA extracts from 1month old mice. Notch1 and Notch2 inactivation did not affect femoral microarchitecture at 1month of age. Cancellous bone volume was higher and structure model index was lower in 3 and 6 month old Osx-Cre(+/-);Notch1(Δ/Δ);Notch2(Δ/Δ) mice than in control littermates and the effect was more pronounced in female mice. One month old Osx-Cre(+/-);Notch1(Δ/Δ);Notch2(Δ/Δ) male mice transiently exhibited an increase in osteoblast number and a modest suppression in bone resorption. Osx-Cre(+/-);Notch1(Δ/Δ);Notch2(Δ/Δ) female mice displayed a tendency toward increased bone formation at 3months of age, although bone remodeling was suppressed in 6month old Osx-Cre(+/-);Notch1(Δ/Δ);Notch2(Δ/Δ) female mice. Notch1 and Notch2 inactivation increased porosity and reduced thickness of cortical bone. These effects were modest and more evident in 3 and 6 month old female than in male mice of the same age. In conclusion, Notch1 and Notch2 expression in osteoblast precursors regulates cancellous bone volume and microarchitecture.
Collapse
Affiliation(s)
- Stefano Zanotti
- Department of Research, Saint Francis Hospital and Medical Center, Hartford, CT, USA; University of Connecticut School of Medicine, Farmington, CT, USA
| | - Ernesto Canalis
- Department of Research, Saint Francis Hospital and Medical Center, Hartford, CT, USA; University of Connecticut School of Medicine, Farmington, CT, USA.
| |
Collapse
|
42
|
Mirando AJ, Liu Z, Moore T, Lang A, Kohn A, Osinski AM, O'Keefe RJ, Mooney RA, Zuscik MJ, Hilton MJ. RBP-Jκ-dependent Notch signaling is required for murine articular cartilage and joint maintenance. ACTA ACUST UNITED AC 2014; 65:2623-33. [PMID: 23839930 DOI: 10.1002/art.38076] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2012] [Accepted: 06/25/2013] [Indexed: 12/20/2022]
Abstract
OBJECTIVE Osteoarthritis (OA) is a degenerative disease resulting in severe joint cartilage destruction and disability. While the mechanisms underlying the development and progression of OA are poorly understood, gene mutations have been identified within cartilage-related signaling molecules, implicating impaired cell signaling in OA and joint disease. The Notch pathway has recently been identified as a crucial regulator of growth plate cartilage development, and components are expressed in joint tissue. This study was undertaken to investigate a novel role for Notch signaling in joint cartilage development, maintenance, and the pathogenesis of joint disease in a mouse model. METHODS We performed the first mouse gene study in which the core Notch signaling component, RBP-Jκ, was tissue specifically deleted within joints. The Prx1Cre transgene removed Rbpjk loxP-flanked alleles in mesenchymal joint precursor cells, while the Col2Cre(ERT2) transgene specifically deleted Rbpjk in postnatal chondrocytes. Murine articular chondrocyte cultures were also used to examine Notch regulation of gene expression. RESULTS Loss of Notch signaling in mesenchymal joint precursor cells did not affect embryonic joint development in mice, but rather, resulted in an early, progressive OA-like pathology. Additionally, partial loss of Notch signaling in murine postnatal cartilage resulted in progressive joint cartilage degeneration and an age-related OA-like pathology. Inhibition of Notch signaling altered the expression of the extracellular matrix (ECM)-related factors type II collagen (COL2A1), proteoglycan 4, COL10A1, matrix metalloproteinase 13, and ADAMTS. CONCLUSION Our findings indicate that the RBP-Jκ-dependent Notch pathway is a novel pathway involved in joint maintenance and articular cartilage homeostasis, a critical regulator of articular cartilage ECM-related molecules, and a potentially important therapeutic target for OA-like joint disease.
Collapse
Affiliation(s)
- Anthony J Mirando
- University of Rochester and University of Rochester Medical Center, Rochester, New York
| | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Abstract
The skeleton originates from stem cells residing in the sclerotome and neural crest that undergo proliferation, migration, and commitment. The development of the skeletal stem cells is influenced by many signaling pathways that govern cell fate determination, proliferation, differentiation, and apoptosis. This review will focus on Notch signaling functions in regulating the different cell types that form the skeletal system as well as the interplay between them to maintain homeostasis. Osteochondroprogenitors require Notch signaling to maintain multipotency and to prevent premature differentiation into osteoblasts. Subsequently, overactivation of Notch signaling suppresses osteoblast maturation. Moreover, Notch signaling in osteochondroprogenitors is required for chondrocyte proliferation and hypertrophy and suppresses terminal differentiation. Translational studies demonstrated a crucial role of Notch signaling in osteosarcoma and osteoarthritis, where concepts derived from developmental pathways are often recapitulated. This brings hope of taking advantage of the molecular mechanisms learned from development to approach the pathological processes underlying abnormal bone/cartilage metabolism or tumorigenesis. Pharmacological agents that target Notch receptors or ligands in a tissue-specific fashion would offer new opportunities for treating bone/cartilage diseases caused by dysregulation of Notch signaling.
Collapse
Affiliation(s)
- Shan Chen
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza Rm R814, Houston, TX, 77030, USA
| | | | | |
Collapse
|
44
|
Posey KL, Coustry F, Veerisetty AC, Liu P, Alcorn JL, Hecht JT. Chondrocyte-specific pathology during skeletal growth and therapeutics in a murine model of pseudoachondroplasia. J Bone Miner Res 2014; 29:1258-68. [PMID: 24194321 PMCID: PMC4075045 DOI: 10.1002/jbmr.2139] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2013] [Revised: 10/24/2013] [Accepted: 11/01/2013] [Indexed: 11/10/2022]
Abstract
Mutations in the gene encoding cartilage oligomeric matrix protein (COMP) cause pseudoachondroplasia (PSACH), a severe dwarfing condition. Pain, a significant complication, has generally been attributed to joint abnormalities and erosion and early onset osteoarthritis. Previously, we found that the inflammatory-related transcripts were elevated in growth plate and articular cartilages, indicating that inflammation plays an important role in the chondrocyte disease pathology and may contribute to the overall pain sequelae. Here, we describe the effects of D469-delCOMP expression on the skeleton and growth plate chondrocytes with the aim to define a treatment window and thereby reduce pain. Consistent with the human PSACH phenotype, skeletal development of D469del-COMP mice was normal and similar to controls at birth. By postnatal day 7 (P7), the D469del-COMP skeleton, limbs, skull and snout were reduced and this reduction was progressive during postnatal growth, resulting in a short-limbed dwarfed mouse. Modulation of prenatal and postnatal expression of D469del-COMP showed minimal retention/cell death at P7 with some retention/cell death by P14, suggesting that earlier treatment intervention at the time of PSACH diagnosis may produce optimal results. Important and novel findings were an increase in inflammatory proteins generally starting at P21 and that exercise exacerbates inflammation. These observations suggest that pain in PSACH may be related to an intrinsic inflammatory process that can be treated symptomatically and is not related to early joint erosion. We also show that genetic ablation of CHOP dampens the inflammatory response observed in mice expressing D469del-COMP. Toward identifying potential treatments, drugs known to decrease cellular stress (lithium, phenylbutyric acid, and valproate) were assessed. Interestingly, all diminished the chondrocyte pathology but had untoward outcomes on mouse growth, development, and longevity. Collectively, these results define an early treatment window in which chondrocytes can be salvaged, thereby potentially increasing skeletal growth and decreasing pain.
Collapse
Affiliation(s)
- Karen L Posey
- Department of Pediatrics, University of Texas Medical School at Houston, TX, USA
| | | | | | | | | | | |
Collapse
|
45
|
Dishowitz MI, Zhu F, Sundararaghavan HG, Ifkovits JL, Burdick JA, Hankenson KD. Jagged1 immobilization to an osteoconductive polymer activates the Notch signaling pathway and induces osteogenesis. J Biomed Mater Res A 2013; 102:1558-67. [PMID: 23775982 DOI: 10.1002/jbm.a.34825] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2013] [Revised: 05/16/2013] [Accepted: 05/31/2013] [Indexed: 12/21/2022]
Abstract
Treatment of nonunion fractures is a significant problem. Common therapeutics, including autologous bone grafts and bone morphogenetic proteins, show well-established limitations. Therefore, a need persists for the identification of novel clinical therapies to promote healing. The Notch signaling pathway regulates bone development. Clinically, loss-of-function mutations to the Notch ligand Jagged1 decrease bone mass and increase fracture risk. Jagged1 is also the most highly upregulated ligand during fracture repair, identifying it as a potential target to promote bone formation. Therefore, the objective of this study was to develop a clinically translatable construct comprised of Jagged1 and an osteoconductive scaffold, and characterize its activity in human mesenchymal stem cells (hMSC). We first evaluated the effects of Jagged1 directly immobilized to a novel poly(β-amino ester) relative to indirect coupling via antibody. Direct was more effective at activating hMSC Notch target gene expression and osteogenic activity. We then found that directly immobilized Jagged1 constructs induced osteoblast differentiation. This is the first study to demonstrate that Jagged1 delivery transiently activates Notch signaling and increases osteogenesis. A positive correlation was found between Jagged1-induced Notch and osteogenic expression. Collectively, these results indicate that Jagged1 coupled to an osteogenic biomaterial could promote bone tissue formation during fracture healing.
Collapse
Affiliation(s)
- Michael I Dishowitz
- Department of Bioengineering, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, Pennsylvania
| | | | | | | | | | | |
Collapse
|
46
|
Dishowitz MI, Mutyaba PL, Takacs JD, Barr AM, Engiles JB, Ahn J, Hankenson KD. Systemic inhibition of canonical Notch signaling results in sustained callus inflammation and alters multiple phases of fracture healing. PLoS One 2013; 8:e68726. [PMID: 23844237 PMCID: PMC3701065 DOI: 10.1371/journal.pone.0068726] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2012] [Accepted: 06/03/2013] [Indexed: 11/18/2022] Open
Abstract
The Notch signaling pathway is an important regulator of embryological bone development, and many aspects of development are recapitulated during bone repair. We have previously reported that Notch signaling components are upregulated during bone fracture healing. However, the significance of the Notch pathway in bone regeneration has not been described. Therefore, the objective of this study was to determine the importance of Notch signaling in regulating bone fracture healing by using a temporally controlled inducible transgenic mouse model (Mx1-Cre;dnMAMLf/-) to impair RBPjκ-mediated canonical Notch signaling. The Mx1 promoter was synthetically activated resulting in temporally regulated systemic dnMAML expression just prior to creation of bilateral tibial fractures. This allowed for mice to undergo unaltered embryological and post-natal skeletal development. Results showed that systemic Notch inhibition prolonged expression of inflammatory cytokines and neutrophil cell inflammation, and reduced the proportion of cartilage formation within the callus at 10 days-post-fracture (dpf) Notch inhibition did not affect early bone formation at 10dpf, but significantly altered bone maturation and remodeling at 20dpf. Increased bone volume fraction in dnMAML fractures, which was due to a moderate decrease in callus size with no change in bone mass, coincided with increased trabecular thickness but decreased connectivity density, indicating that patterning of bone was altered. Notch inhibition decreased total osteogenic cell density, which was comprised of more osteocytes rather than osteoblasts. dnMAML also decreased osteoclast density, suggesting that osteoclast activity may also be important for altered fracture healing. It is likely that systemic Notch inhibition had both direct effects within cell types as well as indirect effects initiated by temporally upstream events in the fracture healing cascade. Surprisingly, Notch inhibition did not alter cell proliferation. In conclusion, our results demonstrate that the Notch signaling pathway is required for the proper temporal progression of events required for successful bone fracture healing.
Collapse
Affiliation(s)
- Michael I. Dishowitz
- Department of Bioengineering, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Patricia L. Mutyaba
- Department of Clinical Studies-New Bolton Center, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Joel D. Takacs
- Department of Clinical Studies-New Bolton Center, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Andrew M. Barr
- Department of Bioengineering, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Julie B. Engiles
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Jaimo Ahn
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Kurt D. Hankenson
- Department of Clinical Studies-New Bolton Center, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
47
|
Zanotti S, Canalis E. Hairy and Enhancer of Split-related with YRPW motif (HEY)2 regulates bone remodeling in mice. J Biol Chem 2013; 288:21547-57. [PMID: 23782701 DOI: 10.1074/jbc.m113.489435] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Notch induces Hairy and Enhancer of Split-related with YRPW motif (Hey)1, Hey2, and HeyL expression in osteoblasts, but the contributions of these genes to the skeletal effects of Notch are not fully understood. HEY1 misexpression has limited skeletal impact, female HeyL null mice display increased bone mass, and Hey2 inactivation is developmentally lethal. To inactivate Hey2 in immature or mature osteoblasts, Hey2(loxP/loxP) mice were crossed with transgenics expressing CRE under the control of the osterix (Osx-Cre) or osteocalcin (Oc-Cre) promoters to generate Osx-Cre(+/-);Hey2(Δ/Δ) or Oc-Cre(+/-);Hey2(Δ/Δ) mice. Trabecular bone volume increased in 3-month-old Osx-Cre(+/-);Hey2(Δ/Δ) and Oc-Cre(+/-);Hey2(Δ/Δ) male mice and in 1-month-old Oc-Cre(+/-);Hey2(Δ/Δ) female mice, although 3-month-old Oc-Cre(+/-);Hey2(Δ/Δ) females developed osteopenia. Alkaline phosphatase liver/bone/kidney (ALPL) expression and activity were suppressed in osteoblasts from Oc-Cre(+/-);Hey2(Δ/Δ) mice of both sexes. To overexpress HEY2 in osteoblasts, transgenic mice where a 3.6-kb fragment of the rat collagen type-I α1 promoter directs HEY2 expression were created. Three-month-old Hey2 transgenic males exhibited decreased osteoblast activity and increased bone resorption and developed osteopenia at 6 months of age. Hey2 transgenic females exhibited reduced osteoblast number and function, but no changes in bone resorption. HEY2 overexpression in osteoblasts from mice of both sexes inhibited ALPL expression and activity and suppressed osteocalcin transcripts in cells from male mice only. HEY2 overexpression in osteoblasts from male mice enhanced bone resorption by co-cultured splenocytes and induced interleukin-6, a molecule that promotes osteoclastogenesis. In conclusion, HEY2 decreases skeletal mass and regulates bone remodeling in male mice.
Collapse
Affiliation(s)
- Stefano Zanotti
- Department of Research, Saint Francis Hospital and Medical Center, Hartford, Connecticut 06105-1299, USA
| | | |
Collapse
|
48
|
Abstract
Notch receptors are single-pass transmembrane proteins that determine cell fate. Upon Notch ligand interactions, proteolytic cleavages release the Notch intracellular domain, which translocates to the nucleus to regulate the transcription of target genes, including Hairy enhancer of split (Hes) and Hes related to YRPW motif (Hey). Notch is critical for skeletal development and activity of skeletal cells, and dysregulation of Notch signaling is associated with human diseases affecting the skeleton. Inherited or sporadic mutations in components of the Notch signaling pathway are associated with spondylocostal dysostosis, spondylothoracic dysostosis and recessive brachydactyly, diseases characterized by skeletal patterning defects. Inactivating mutations of the Notch ligand JAG1 or of NOTCH2 are associated with Alagille syndrome, and activating mutations in NOTCH2 are associated with Hajdu-Cheney syndrome (HCS). Individuals affected by HCS exhibit osteolysis in distal phalanges and osteoporosis. NOTCH is activated in selected tumors, such as osteosarcoma, and in breast cancer cells that form osteolytic bone metastases. In conclusion, Notch regulates skeletal development and bone remodeling, and gain- or loss-of-function mutations of Notch signaling result in important skeletal diseases.
Collapse
Affiliation(s)
- Stefano Zanotti
- Department of Research, Saint Francis Hospital and Medical Center, Hartford, CT 06105 USA
- The University of Connecticut School of Medicine, Farmington, CT 06030, USA
| | - Ernesto Canalis
- Department of Research, Saint Francis Hospital and Medical Center, Hartford, CT 06105 USA
- The University of Connecticut School of Medicine, Farmington, CT 06030, USA
- Address correspondence: Ernesto Canalis, M.D. Department of Research, Saint Francis Hospital and Medical Center, 114 Woodland Street, Hartford, CT 06105-1299, Tel: (860)714-4068, Fax: (860)714-8053,
| |
Collapse
|
49
|
Abstract
Notch signaling plays context-dependent roles in the development and maintenance of many cell types and tissues in mammals. In the skeleton, both osteoblasts and osteoclasts require Notch signaling for proper differentiation and function, and the specific roles of Notch are dependent on the differentiation status of the cell. The recent discovery of activating NOTCH2 mutations as the cause of Hajdu-Cheney syndrome has highlighted the significance of Notch signaling in human bone physiology.
Collapse
Affiliation(s)
- Jenna Regan
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Fanxin Long
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110, USA
- Correspondence:
| |
Collapse
|
50
|
Campeau P, Lenk G, Lu J, Bae Y, Burrage L, Turnpenny P, Román Corona-Rivera J, Morandi L, Mora M, Reutter H, Vulto-van Silfhout A, Faivre L, Haan E, Gibbs R, Meisler M, Lee B. Yunis-Varón syndrome is caused by mutations in FIG4, encoding a phosphoinositide phosphatase. Am J Hum Genet 2013; 92:781-91. [PMID: 23623387 DOI: 10.1016/j.ajhg.2013.03.020] [Citation(s) in RCA: 113] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Revised: 03/17/2013] [Accepted: 03/25/2013] [Indexed: 12/14/2022] Open
Abstract
Yunis-Varón syndrome (YVS) is an autosomal-recessive disorder with cleidocranial dysplasia, digital anomalies, and severe neurological involvement. Enlarged vacuoles are found in neurons, muscle, and cartilage. By whole-exome sequencing, we identified frameshift and missense mutations of FIG4 in affected individuals from three unrelated families. FIG4 encodes a phosphoinositide phosphatase required for regulation of PI(3,5)P(2) levels, and thus endosomal trafficking and autophagy. In a functional assay, both missense substitutions failed to correct the vacuolar phenotype of Fig4-null mouse fibroblasts. Homozygous Fig4-null mice exhibit features of YVS, including neurodegeneration and enlarged vacuoles in neurons. We demonstrate that Fig4-null mice also have small skeletons with reduced trabecular bone volume and cortical thickness and that cultured osteoblasts accumulate large vacuoles. Our findings demonstrate that homozygosity or compound heterozygosity for null mutations of FIG4 is responsible for YVS, the most severe known human phenotype caused by defective phosphoinositide metabolism. In contrast, in Charcot-Marie-Tooth disease type 4J (also caused by FIG4 mutations), one of the FIG4 alleles is hypomorphic and disease is limited to the peripheral nervous system. This genotype-phenotype correlation demonstrates that absence of FIG4 activity leads to central nervous system dysfunction and extensive skeletal anomalies. Our results describe a role for PI(3,5)P(2) signaling in skeletal development and maintenance.
Collapse
|