1
|
Chermside-Scabbo CJ, Shuster JT, Erdmann-Gilmore P, Tycksen E, Zhang Q, Townsend RR, Silva MJ. A proteomics approach to study mouse long bones: examining baseline differences and mechanical loading-induced bone formation in young-adult and old mice. Aging (Albany NY) 2024; 16:12726-12768. [PMID: 39400554 PMCID: PMC11501390 DOI: 10.18632/aging.206131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 09/23/2024] [Indexed: 10/15/2024]
Abstract
With aging, bone mass declines and the anabolic effects of skeletal loading diminish. While much research has focused on gene transcription, how bone ages and loses its mechanoresponsiveness at the protein level remains unclear. We developed a novel proteomics approach and performed a paired mass spectrometry and RNA-seq analysis on tibias from young-adult (5-month) and old (22-month) mice. We report the first correlation estimate between the bone proteome and transcriptome (Spearman ρ = 0.40), which is in line with other tissues but indicates that a relatively low amount of variation in protein levels is explained by the variation in transcript levels. Of 71 shared targets that differed with age, eight were associated with bone mineral density in previous GWAS, including understudied targets Asrgl1 and Timp2. We used complementary RNA in situ hybridization to confirm that Asrgl1 and Timp2 had reduced expression in osteoblasts/osteocytes in old bones. We also found evidence for reduced TGF-beta signaling with aging, in particular Tgfb2. Next, we defined proteomic changes following mechanical loading. At the protein level, bone differed more with age than with loading, and aged bone had fewer loading-induced changes. Overall, our findings underscore the need for complementary protein-level assays in skeletal biology research.
Collapse
Affiliation(s)
- Christopher J. Chermside-Scabbo
- Department of Orthopaedic Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA
- Medical Scientist Training Program, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - John T. Shuster
- Department of Orthopaedic Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Petra Erdmann-Gilmore
- Department of Medicine, Proteomics Core, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Eric Tycksen
- Department of Genetics, McDonnell Genome Institute, Washington University School of Medicine, St. Louis, MO 63108, USA
| | - Qiang Zhang
- Department of Medicine, Proteomics Core, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - R. Reid Townsend
- Department of Medicine, Proteomics Core, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Matthew J. Silva
- Department of Orthopaedic Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA
- Department of Biomedical Engineering, Washington University, St. Louis, MO 63105, USA
| |
Collapse
|
2
|
Karacan I, Türker KS. Exploring neuronal mechanisms of osteosarcopenia in older adults. J Physiol 2024. [PMID: 39119811 DOI: 10.1113/jp285666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 07/24/2024] [Indexed: 08/10/2024] Open
Abstract
Until recently, research on the pathogenesis and treatment of osteoporosis and sarcopenia has primarily focused on local and systemic humoral mechanisms, often overlooking neuronal mechanisms. However, there is a growing body of literature on the neuronal regulation of bone and skeletal muscle structure and function, which may provide insights into the pathogenesis of osteosarcopenia. This review aims to integrate these neuronal regulatory mechanisms to form a comprehensive understanding and inspire future research that could uncover novel strategies for preventing and treating osteosarcopenia. Specifically, the review explores the functional adaptation of weight-bearing bone to mechanical loading throughout evolutionary development, from Wolff's law and Frost's mechanostat theory to the mosaic hypothesis, which emphasizes neuronal regulation. The recently introduced bone osteoregulation reflex points to the importance of the osteocytic mechanoreceptive network as a receptor in this neuronal regulation mechanism. Finally, the review focuses on the bone myoregulation reflex, which is known as a mechanism by which bone loading regulates muscle functions neuronally. Considering the ageing-related regressive changes in the nerve fibres that provide both structural and functional regulation in bone and skeletal muscle tissue and the bone and muscle tissues they innervate, it is suggested that neuronal mechanisms might play a central role in explaining osteosarcopenia in older adults.
Collapse
Affiliation(s)
- Ilhan Karacan
- Physical Medicine and Rehabilitation Department, Hamidiye Medical School, Health Science University Istanbul, Istanbul, Turkey
- Istanbul Physical Therapy Rehabilitation Training and Research Hospital, Istanbul, Turkey
| | - Kemal Sıtkı Türker
- Physiology, Faculty of Dentistry, Istanbul Gelisim University, Istanbul, Turkey
| |
Collapse
|
3
|
Lewis JW, Frost K, Neag G, Wahid M, Finlay M, Northall EH, Abudu O, Kemble S, Davis ET, Powell E, Palmer C, Lu J, Rainger GE, Iqbal AJ, Chimen M, Mahmood A, Jones SW, Edwards JR, Naylor AJ, McGettrick HM. Therapeutic avenues in bone repair: Harnessing an anabolic osteopeptide, PEPITEM, to boost bone growth and prevent bone loss. Cell Rep Med 2024; 5:101574. [PMID: 38776873 PMCID: PMC11148860 DOI: 10.1016/j.xcrm.2024.101574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 02/29/2024] [Accepted: 04/23/2024] [Indexed: 05/25/2024]
Abstract
The existing suite of therapies for bone diseases largely act to prevent further bone loss but fail to stimulate healthy bone formation and repair. We describe an endogenous osteopeptide (PEPITEM) with anabolic osteogenic activity, regulating bone remodeling in health and disease. PEPITEM acts directly on osteoblasts through NCAM-1 signaling to promote their maturation and formation of new bone, leading to enhanced trabecular bone growth and strength. Simultaneously, PEPITEM stimulates an inhibitory paracrine loop: promoting osteoblast release of the decoy receptor osteoprotegerin, which sequesters RANKL, thereby limiting osteoclast activity and bone resorption. In disease models, PEPITEM therapy halts osteoporosis-induced bone loss and arthritis-induced bone damage in mice and stimulates new bone formation in osteoblasts derived from patient samples. Thus, PEPITEM offers an alternative therapeutic option in the management of diseases with excessive bone loss, promoting an endogenous anabolic pathway to induce bone remodeling and redress the imbalance in bone turnover.
Collapse
Affiliation(s)
- Jonathan W Lewis
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham B15 2WB, UK
| | - Kathryn Frost
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham B15 2WB, UK
| | - Georgiana Neag
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham B15 2WB, UK
| | - Mussarat Wahid
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham B15 2WB, UK
| | - Melissa Finlay
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham B15 2WB, UK
| | - Ellie H Northall
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham B15 2WB, UK
| | - Oladimeji Abudu
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham B15 2WB, UK
| | - Samuel Kemble
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham B15 2WB, UK
| | - Edward T Davis
- Royal Orthopaedic Hospital, Bristol Road, Birmingham B31 2AP, UK
| | - Emily Powell
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham B15 2WB, UK
| | - Charlotte Palmer
- Botnar Research Centre, University of Oxford, Oxford OX3 7LD, UK
| | - Jinsen Lu
- Botnar Research Centre, University of Oxford, Oxford OX3 7LD, UK
| | - G Ed Rainger
- Institute of Cardiovascular Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Asif J Iqbal
- Institute of Cardiovascular Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Myriam Chimen
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham B15 2WB, UK
| | - Ansar Mahmood
- Department of Trauma and Orthopaedics, University Hospitals NHS Foundation Trust, Edgbaston, Birmingham B15 2GW, UK
| | - Simon W Jones
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham B15 2WB, UK
| | - James R Edwards
- Botnar Research Centre, University of Oxford, Oxford OX3 7LD, UK
| | - Amy J Naylor
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham B15 2WB, UK
| | - Helen M McGettrick
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham B15 2WB, UK.
| |
Collapse
|
4
|
Ravera F, Efeoglu E, Byrne HJ. Monitoring stem cell differentiation using Raman microspectroscopy: chondrogenic differentiation, towards cartilage formation. Analyst 2021; 146:322-337. [PMID: 33155580 DOI: 10.1039/d0an01983f] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Mesenchymal Stem Cells (MSCs) have the ability to differentiate into chondrocytes, the only cellular components of cartilage and are therefore ideal candidates for cartilage and tissue repair technologies. Chondrocytes are surrounded by cartilage-like extracellular matrix (ECM), a complex network rich in glycosaminoglycans, proteoglycans, and collagen, which, together with a multitude of intracellular signalling molecules, trigger the chondrogenesis and allow the chondroprogenitor to acquire the spherical morphology of the chondrocytes. However, although the mechanisms of the differentiation of MSCs have been extensively explored, it has been difficult to provide a holistic picture of the process, in situ. Raman Micro Spectroscopy (RMS) has been demonstrated to be a powerful analytical tool, which provides detailed label free biochemical fingerprint information in a non-invasive way, for analysis of cells, tissues and body fluids. In this work, RMS is explored to monitor the process of Mesenchymal Stem Cell (MSC) differentiation into chondrocytes in vitro, providing a holistic molecular picture of cellular events governing the differentiation. Spectral signatures of the subcellular compartments, nucleolus, nucleus and cytoplasm were initially probed and characteristic molecular changes between differentiated and undifferentiated were identified. Moreover, high density cell micromasses were cultured over a period of three weeks, and a systematic monitoring of cellular molecular components and the progress of the ECM formation, associated with the chondrogenic differentiation, was performed. This study shows the potential applicability of RMS as a powerful tool to monitor and better understand the differentiation pathways and process.
Collapse
Affiliation(s)
- Francesca Ravera
- School of Physics and Clinical and Optometric Sciences, TU Dublin, City Campus, Dublin 8, Ireland.
| | | | | |
Collapse
|
5
|
Galea GL, Zein MR, Allen S, Francis-West P. Making and shaping endochondral and intramembranous bones. Dev Dyn 2020; 250:414-449. [PMID: 33314394 PMCID: PMC7986209 DOI: 10.1002/dvdy.278] [Citation(s) in RCA: 101] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 11/13/2020] [Accepted: 11/20/2020] [Indexed: 12/13/2022] Open
Abstract
Skeletal elements have a diverse range of shapes and sizes specialized to their various roles including protecting internal organs, locomotion, feeding, hearing, and vocalization. The precise positioning, size, and shape of skeletal elements is therefore critical for their function. During embryonic development, bone forms by endochondral or intramembranous ossification and can arise from the paraxial and lateral plate mesoderm or neural crest. This review describes inductive mechanisms to position and pattern bones within the developing embryo, compares and contrasts the intrinsic vs extrinsic mechanisms of endochondral and intramembranous skeletal development, and details known cellular processes that precisely determine skeletal shape and size. Key cellular mechanisms are employed at distinct stages of ossification, many of which occur in response to mechanical cues (eg, joint formation) or preempting future load‐bearing requirements. Rapid shape changes occur during cellular condensation and template establishment. Specialized cellular behaviors, such as chondrocyte hypertrophy in endochondral bone and secondary cartilage on intramembranous bones, also dramatically change template shape. Once ossification is complete, bone shape undergoes functional adaptation through (re)modeling. We also highlight how alterations in these cellular processes contribute to evolutionary change and how differences in the embryonic origin of bones can influence postnatal bone repair. Compares and contrasts Endochondral and intramembranous bone development Reviews embryonic origins of different bones Describes the cellular and molecular mechanisms of positioning skeletal elements. Describes mechanisms of skeletal growth with a focus on the generation of skeletal shape
Collapse
Affiliation(s)
- Gabriel L Galea
- Developmental Biology and Cancer, UCL GOS Institute of Child Health, London, UK.,Comparative Bioveterinary Sciences, Royal Veterinary College, London, UK
| | - Mohamed R Zein
- Centre for Craniofacial and Regenerative Biology, Faculty of Dentistry, Oral and Craniofacial Sciences, King's College London, London, UK
| | - Steven Allen
- Comparative Bioveterinary Sciences, Royal Veterinary College, London, UK
| | - Philippa Francis-West
- Centre for Craniofacial and Regenerative Biology, Faculty of Dentistry, Oral and Craniofacial Sciences, King's College London, London, UK
| |
Collapse
|
6
|
The osteogenic commitment of CD271+CD56+ bone marrow stromal cells (BMSCs) in osteoarthritic femoral head bone. Sci Rep 2020; 10:11145. [PMID: 32636407 PMCID: PMC7341749 DOI: 10.1038/s41598-020-67998-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 06/04/2020] [Indexed: 12/13/2022] Open
Abstract
Osteoarthritis (OA), the most common joint disorder, is characterised by progressive structural changes in both the cartilage and the underlying subchondral bone. In late disease stages, subchondral bone sclerosis has been linked to heightened osteogenic commitment of bone marrow stromal cells (BMSCs). This study utilised cell sorting and immunohistochemistry to identify a phenotypically-distinct, osteogenically-committed BMSC subset in human OA trabecular bone. Femoral head trabecular bone tissue digests were sorted into CD45-CD271+CD56+CD146-, CD45-CD271+CD56-CD146+ and CD45-CD271+CD56-CD146-(termed double-negative, DN) subsets, and CD45+CD271-hematopoietic-lineage cells served as control. Compared to the CD146+ subset, the CD56+ subset possessed a lower-level expression of adipocyte-associated genes and significantly over 100-fold higher-level expression of many osteoblast-related genes including osteopontin and osteocalcin, whilst the DN subset presented a transcriptionally ‘intermediate’ BMSC population. All subsets were tri-potential following culture-expansion and were present in control non-OA trabecular bone. However, while in non-OA bone CD56+ cells only localised on the bone surface, in OA bone they were additionally present in the areas of new bone formation rich in osteoblasts and newly-embedded osteocytes. In summary, this study reveals a distinct osteogenically-committed CD271+CD56+ BMSC subset and implicates it in subchondral bone sclerosis in hip OA. CD271+CD56+ subset may represent a future therapeutic target for OA and other bone-associated pathologies.
Collapse
|
7
|
Limraksasin P, Kondo T, Zhang M, Okawa H, Osathanon T, Pavasant P, Egusa H. In Vitro Fabrication of Hybrid Bone/Cartilage Complex Using Mouse Induced Pluripotent Stem Cells. Int J Mol Sci 2020; 21:ijms21020581. [PMID: 31963264 PMCID: PMC7014254 DOI: 10.3390/ijms21020581] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Revised: 01/10/2020] [Accepted: 01/14/2020] [Indexed: 11/25/2022] Open
Abstract
Cell condensation and mechanical stimuli play roles in osteogenesis and chondrogenesis; thus, they are promising for facilitating self-organizing bone/cartilage tissue formation in vitro from induced pluripotent stem cells (iPSCs). Here, single mouse iPSCs were first seeded in micro-space culture plates to form 3-dimensional spheres. At day 12, iPSC spheres were subjected to shaking culture and maintained in osteogenic induction medium for 31 days (Os induction). In another condition, the osteogenic induction medium was replaced by chondrogenic induction medium at day 22 and maintained for a further 21 days (Os-Chon induction). Os induction produced robust mineralization and some cartilage-like tissue, which promoted expression of osteogenic and chondrogenic marker genes. In contrast, Os-Chon induction resulted in partial mineralization and a large area of cartilage tissue, with greatly increased expression of chondrogenic marker genes along with osterix and collagen 1a1. Os-Chon induction enhanced mesodermal lineage commitment with brachyury expression followed by high expression of lateral plate and paraxial mesoderm marker genes. These results suggest that combined use of micro-space culture and mechanical stimuli facilitates hybrid bone/cartilage tissue formation from iPSCs, and that the bone/cartilage tissue ratio in iPSC constructs could be manipulated through the induction protocol.
Collapse
Affiliation(s)
- Phoonsuk Limraksasin
- Division of Molecular and Regenerative Prosthodontics, Tohoku University Graduate School of Dentistry, Sendai, Miyagi 980-8575, Japan
| | - Takeru Kondo
- Division of Molecular and Regenerative Prosthodontics, Tohoku University Graduate School of Dentistry, Sendai, Miyagi 980-8575, Japan
| | - Maolin Zhang
- Division of Molecular and Regenerative Prosthodontics, Tohoku University Graduate School of Dentistry, Sendai, Miyagi 980-8575, Japan
| | - Hiroko Okawa
- Division of Molecular and Regenerative Prosthodontics, Tohoku University Graduate School of Dentistry, Sendai, Miyagi 980-8575, Japan
- Weintraub Center for Reconstructive Biotechnology, UCLA (University of California, Los Angeles) School of Dentistry, Los Angeles, CA 90095-1668, USA
| | - Thanaphum Osathanon
- Center of Excellence for Regenerative Dentistry and Department of Anatomy, Faculty of Dentistry, Chulalongkorn University, Bangkok 10330, Thailand
| | - Prasit Pavasant
- Center of Excellence for Regenerative Dentistry and Department of Anatomy, Faculty of Dentistry, Chulalongkorn University, Bangkok 10330, Thailand
| | - Hiroshi Egusa
- Division of Molecular and Regenerative Prosthodontics, Tohoku University Graduate School of Dentistry, Sendai, Miyagi 980-8575, Japan
- Center for Advanced Stem Cell and Regenerative Research, Tohoku University Graduate School of Dentistry, Sendai, Miyagi 980-8575, Japan
- Correspondence:
| |
Collapse
|
8
|
Kimura R, Yoneshige A, Hagiyama M, Otani T, Inoue T, Shiraishi N, Yanagihara K, Wakayama T, Ito A. Expression of cell adhesion molecule 1 in gastric neck and base glandular cells: Possible involvement in peritoneal dissemination of signet ring cells. Life Sci 2018; 213:206-213. [PMID: 30312702 DOI: 10.1016/j.lfs.2018.10.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2018] [Revised: 09/22/2018] [Accepted: 10/08/2018] [Indexed: 01/27/2023]
Abstract
AIMS To determine cellular distribution of cell adhesion molecule 1 (CADM1), an immunoglobulin superfamily member, in the human oxyntic gastric mucosa, and to explore possible involvement in the development and peritoneal dissemination of signet ring cell (SRC) gastric carcinoma, which often develops in the oxyntic mucosa. MAIN METHODS Immunohistochemistry and double immunofluorescence were conducted on surgical specimens of normal and SRC-bearing stomachs and peritoneal metastatic foci of SRCs. KATO-III (lacking CADM1) and HSC-43 (expressing CADM1) SRC cell lines were cocultured on a Met-5A mesothelial or TIG-1 fibroblastic cell monolayer. KEY FINDINGS In the oxyntic gland, some neck and nearly all base glandular cells were CADM1-positive, and mucin 5AC-positive cells were CADM1-negative, while some mucin 6-positive neck cells were CADM1-positive. Foveolar-epithelial, parietal, and endocrine cells were CADM1-negative. CADM1 was negative in all SRC carcinomas that were confined within the submucosa (n = 11) and all but one of those invading deeper (n = 15). In contrast, peritoneal metastatic foci of SRCs were CADM1-positive in five out of eleven cases (P < 0.01). In the cocultures, exogenous CADM1 made KATO-III cells adhere more and grow faster on a Met-5A monolayer, not on TIG-1 monolayers. HSC-43 cells adhered more and grew faster on Met-5A than on TIG-1 monolayers, which were partly counteracted by a function-neutralizing anti-CADM1 antibody. SIGNIFICANCE Nearly all chief cells and a part of mucous neck cells express CADM1. SRC gastric carcinoma appears to emerge as a CADM1-negative tumor, but CADM1 may help SRCs develop peritoneal dissemination through promoting their adhesion and growth in the serosal tissue.
Collapse
Affiliation(s)
- Ryuichiro Kimura
- Department of Pathology, Faculty of Medicine, Kindai University, Osaka, Japan
| | - Azusa Yoneshige
- Department of Pathology, Faculty of Medicine, Kindai University, Osaka, Japan
| | - Man Hagiyama
- Department of Pathology, Faculty of Medicine, Kindai University, Osaka, Japan
| | - Tomoyuki Otani
- Department of Pathology, Faculty of Medicine, Kindai University, Osaka, Japan
| | - Takao Inoue
- Department of Pathology, Faculty of Medicine, Kindai University, Osaka, Japan
| | - Naoki Shiraishi
- Hospital Pathology, Faculty of Medicine, Kindai University, Osaka, Japan
| | - Kazuyoshi Yanagihara
- Division of Biomarker Discovery, Exploratory Oncology Research & Clinical Trial Center, National Cancer Center, Chiba, Japan
| | - Tomohiko Wakayama
- Department of Histology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Akihiko Ito
- Department of Pathology, Faculty of Medicine, Kindai University, Osaka, Japan.
| |
Collapse
|
9
|
Differential Expression Profiling of Long Noncoding RNA and mRNA during Osteoblast Differentiation in Mouse. Int J Genomics 2018; 2018:7691794. [PMID: 29765976 PMCID: PMC5885395 DOI: 10.1155/2018/7691794] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 12/22/2017] [Accepted: 01/17/2018] [Indexed: 12/20/2022] Open
Abstract
Long noncoding RNAs (lncRNAs) are emerging as an important controller affecting metabolic tissue development, signaling, and function. However, little is known about the function and profile of lncRNAs in osteoblastic differentiation in mice. Here, we analyzed the RNA-sequencing (RNA-Seq) datasets obtained for 18 days in two-day intervals from neonatal mouse calvarial pre-osteoblast-like cells. Over the course of osteoblast differentiation, 4058 mRNAs and 3948 lncRNAs were differentially expressed, and they were grouped into 12 clusters according to the expression pattern by fuzzy c-means clustering. Using weighted gene coexpression network analysis, we identified 9 modules related to the early differentiation stage (days 2–8) and 7 modules related to the late differentiation stage (days 10–18). Gene ontology and KEGG pathway enrichment analysis revealed that the mRNA and lncRNA upregulated in the late differentiation stage are highly associated with osteogenesis. We also identified 72 mRNA and 89 lncRNAs as potential markers including several novel markers for osteoblast differentiation and activation. Our findings provide a valuable resource for mouse lncRNA study and improves our understanding of the biology of osteoblastic differentiation in mice.
Collapse
|
10
|
Skog MS, Nystedt J, Korhonen M, Anderson H, Lehti TA, Pajunen MI, Finne J. Expression of neural cell adhesion molecule and polysialic acid in human bone marrow-derived mesenchymal stromal cells. Stem Cell Res Ther 2016; 7:113. [PMID: 27528376 PMCID: PMC4986182 DOI: 10.1186/s13287-016-0373-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Revised: 06/28/2016] [Accepted: 07/21/2016] [Indexed: 01/27/2023] Open
Abstract
BACKGROUND In order to develop novel clinical applications and to gain insights into possible therapeutic mechanisms, detailed molecular characterization of human bone marrow-derived mesenchymal stromal cells (hBM-MSCs) is needed. Neural cell adhesion molecule (NCAM, CD56) is a transmembrane glycoprotein modulating cell-cell and cell-matrix interactions. An additional post-translational modification of NCAM is the α2,8-linked polysialic acid (polySia). Because of its background, NCAM is often considered a marker of neural lineage commitment. Generally, hBM-MSCs are considered to be devoid of NCAM expression, but more rigorous characterization is needed. METHODS We have studied NCAM and polySia expression in five hBM-MSC lines at mRNA and protein levels. Cell surface localization was confirmed by immunofluorescence staining and expression frequency in the donor-specific lines by flow cytometry. For the detection of poorly immunogenic polySia, a fluorochrome-tagged catalytically defective enzyme was employed. RESULTS All five known NCAM isoforms are expressed in these cells at mRNA level and the three main isoforms are present at protein level. Both polysialyltransferases, generally responsible for NCAM polysialylation, are expressed at mRNA level, but only very few cells express polySia at the cell surface. CONCLUSIONS Our results underline the need for a careful control of methods and conditions in the characterization of MSCs. This study shows that, against the generally held view, clinical-grade hBM-MSCs do express NCAM. In contrast, although both polysialyltransferase genes are transcribed in these cells, very few express polySia at the cell surface. NCAM and polySia represent new candidate molecules for influencing MSC interactions.
Collapse
Affiliation(s)
- Maria S Skog
- Biochemistry and Biotechnology, Department of Biosciences, University of Helsinki, P.O. Box 56, FI-00014, Helsinki, Finland.
| | - Johanna Nystedt
- Cell Therapy Services, Finnish Red Cross Blood Service, Kivihaantie 7, FI-00310, Helsinki, Finland
| | - Matti Korhonen
- Cell Therapy Services, Finnish Red Cross Blood Service, Kivihaantie 7, FI-00310, Helsinki, Finland
| | - Heidi Anderson
- Biochemistry and Biotechnology, Department of Biosciences, University of Helsinki, P.O. Box 56, FI-00014, Helsinki, Finland.,Present Address: Genoscoper Laboratories Oy, P.O. Box 1040, FI-00251, Helsinki, Finland
| | - Timo A Lehti
- Biochemistry and Biotechnology, Department of Biosciences, University of Helsinki, P.O. Box 56, FI-00014, Helsinki, Finland
| | - Maria I Pajunen
- Biochemistry and Biotechnology, Department of Biosciences, University of Helsinki, P.O. Box 56, FI-00014, Helsinki, Finland.,Present Address: Department of Bacteriology and Immunology, Medicum, Research Programs Unit, Immunobiology, University of Helsinki, P.O. Box 21, FI-00014, Helsinki, Finland
| | - Jukka Finne
- Biochemistry and Biotechnology, Department of Biosciences, University of Helsinki, P.O. Box 56, FI-00014, Helsinki, Finland
| |
Collapse
|
11
|
Andersen TL, Abdelgawad ME, Kristensen HB, Hauge EM, Rolighed L, Bollerslev J, Kjærsgaard-Andersen P, Delaisse JM. Understanding coupling between bone resorption and formation: are reversal cells the missing link? THE AMERICAN JOURNAL OF PATHOLOGY 2013; 183:235-46. [PMID: 23747107 DOI: 10.1016/j.ajpath.2013.03.006] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2012] [Revised: 02/27/2013] [Accepted: 03/04/2013] [Indexed: 12/25/2022]
Abstract
Bone remodeling requires bone resorption by osteoclasts, bone formation by osteoblasts, and a poorly investigated reversal phase coupling resorption to formation. Likely players of the reversal phase are the cells recruited into the lacunae vacated by the osteoclasts and presumably preparing these lacunae for bone formation. These cells, called herein reversal cells, cover >80% of the eroded surfaces, but their nature is not identified, and it is not known whether malfunction of these cells may contribute to bone loss in diseases such as postmenopausal osteoporosis. Herein, we combined histomorphometry and IHC on human iliac biopsy specimens, and showed that reversal cells are immunoreactive for factors typically expressed by osteoblasts, but not for monocytic markers. Furthermore, a subpopulation of reversal cells showed several distinctive characteristics suggestive of an arrested physiological status. Their prevalence correlated with decreased trabecular bone volume and osteoid and osteoblast surfaces in postmenopausal osteoporosis. They were, however, virtually absent in primary hyperparathyroidism, in which the transition between bone resorption and formation occurs optimally. Collectively, our observations suggest that arrested reversal cells reflect aborted remodeling cycles that did not progress to the bone formation step. We, therefore, propose that bone loss in postmenopausal osteoporosis does not only result from a failure of the bone formation step, as commonly believed, but also from a failure at the reversal step.
Collapse
Affiliation(s)
- Thomas L Andersen
- Department of Clinical Cell Biology, Institute of Regional Health Services Research, University of Southern Denmark, Vejle-Lillebaelt Hospital, Vejle, Denmark.
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Solid-supported lipid bilayers to drive stem cell fate and tissue architecture using periosteum derived progenitor cells. Biomaterials 2013; 34:1878-87. [DOI: 10.1016/j.biomaterials.2012.09.024] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2012] [Accepted: 09/13/2012] [Indexed: 12/25/2022]
|
13
|
Kristensen HB, Andersen TL, Marcussen N, Rolighed L, Delaisse JM. Increased presence of capillaries next to remodeling sites in adult human cancellous bone. J Bone Miner Res 2013; 28:574-85. [PMID: 22991221 DOI: 10.1002/jbmr.1760] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2012] [Revised: 08/24/2012] [Accepted: 09/07/2012] [Indexed: 12/22/2022]
Abstract
Vascularization is a prerequisite for osteogenesis in a number of situations, including bone development, fracture healing, and cortical bone remodeling. It is unknown whether a similar link exists between cancellous bone remodeling and vascularization. Here, we show an association between remodeling sites, capillaries, proliferative cells, and putative osteoblast progenitors. Iliac crest biopsies from normal human individuals were subjected to histomorphometry and immunohistochemistry to identify the respective positions of bone remodeling sites, CD34-positive capillaries, smooth muscle actin (SMA)-positive putative osteoblast progenitors, including pericytes, Ki67-positive proliferative cells, and bone remodeling compartment (BRC) canopies. The BRC canopy is a recently described structure separating remodeling sites from the bone marrow, consisting of CD56-positive osteoblasts at an early differentiation stage. We found that bone remodeling sites were associated with a significantly increased presence of capillaries, putative osteoblast progenitors, and proliferative cells in a region within 50 µm of the bone or the canopy surface. The increases were the highest above eroded surfaces and at the level of the light-microscopically assessed contact of these three entities with the bone or canopy surfaces. Between 51 and 100 µm, their densities leveled to that found above quiescent surfaces. Electron microscopy asserted the close proximity between BRC canopies and capillaries lined by pericytes. Furthermore, the BRC canopy cells were found to express SMA. These ordered distributions support the existence of an osteogenic-vascular interface in adult human cancellous bone. The organization of this interface fits the current knowledge on the mode of action of vasculature on osteogenesis, and points to the BRC canopy as a central player in this mechanism. We propose a model where initiation of bone remodeling coincides with the induction of proximity of the vasculature to endosteal surfaces, thereby allowing capillary-BRC canopy interactions that activate marrow events, including recruitment of osteoblast progenitors to bone remodeling sites.
Collapse
Affiliation(s)
- Helene Bjoerg Kristensen
- Department of Clinical Cell Biology, Lillebaelt/Vejle Hospital, IRS, University of Southern Denmark, Vejle, Denmark.
| | | | | | | | | |
Collapse
|
14
|
Ohara N, Hayashi Y, Yamada S, Kim SK, Matsunaga T, Yanagiguchi K, Ikeda T. Early gene expression analyzed by cDNA microarray and RT-PCR in osteoblasts cultured with water-soluble and low molecular chitooligosaccharide. Biomaterials 2004; 25:1749-54. [PMID: 14738837 DOI: 10.1016/j.biomaterials.2003.08.022] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Chitosan has a variety of biological activities. However, little is known about how chitosan modulates the hard tissue forming cells. When we cultured an osteoblastic cell line in alpha-MEM supplemented with 10% FBS and 0.005% chitooligosaccharide for 3 days, alkaline phosphatase (ALP) activity was significantly high compared with the control culture group (p<0.05). This study was focused on gene expression in osteoblasts cultured with water-soluble chitooligosaccharide. cDNA probes were synthesized from isolated RNA and labeled with fluorescent dye. They were hybridized with Human 1.0((R)) cDNA microarray, and fluorescent signal was analyzed. cDNA microarray analysis revealed that 16 genes were expressed at >/=1.5-fold higher signal ratio levels in the experimental group compared with the control group after 3 days. RT-PCR analysis showed that chitosan oligomer induced an increase in the expression of two genes, CD56 antigen and tissue-type plasminogen activator. Furthermore, the expression of mRNAs for BMP-2 was almost identical in the experimental and control groups after 3 days of culture, but slightly increased after 7 days of culture with chitosan oligomer. These results suggest that a super-low concentration of chitooligosaccharide could modulate the activity of osteoblastic cells through mRNA levels and that the genes concerning cell proliferation and differentiation can be controlled by water-soluble chitosan.
Collapse
Affiliation(s)
- Naoko Ohara
- Division of Cariology, Nagasaki University Graduate School of Biomedical Sciences, 852-8588, Nagasaki, Japan
| | | | | | | | | | | | | |
Collapse
|
15
|
Ely SA, Knowles DM. Expression of CD56/neural cell adhesion molecule correlates with the presence of lytic bone lesions in multiple myeloma and distinguishes myeloma from monoclonal gammopathy of undetermined significance and lymphomas with plasmacytoid differentiation. THE AMERICAN JOURNAL OF PATHOLOGY 2002; 160:1293-9. [PMID: 11943714 PMCID: PMC1867213 DOI: 10.1016/s0002-9440(10)62556-4] [Citation(s) in RCA: 115] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Unlike monoclonal gammopathy of undetermined significance (MGUS) or non-Hodgkin's lymphomas (NHLs) with plasmacytoid differentiation, multiple myeloma (MM) is commonly associated with lytic bone lesions. Although the mechanisms of increased osteoclast activity are partially understood, comparatively little is known about the mechanisms that lead to the observed decrease in osteoblast function. Studies have shown neural cell adhesion molecule (NCAM) homophilic binding between MM cell lines and osteosarcoma cell lines, and that binding results in decreased osteoid production in vitro. Thus, we postulated that the expression of NCAM by MM cells contributes to lytic lesion formation by causing decreased osteoid production in vivo. We used immunohistochemistry in bone marrow core biopsies to assess NCAM expression in osteoblasts and plasma cells (PCs) in vitro. We found consistent, strong, uniform NCAM expression by the osteoblasts in all bone marrow core biopsies (352 of 352, 100%). Strong expression of NCAM by PCs correlated with the presence of lytic bone lesions (chi-square, 33.39: P <0.000; odds ratio, 16.9). There was also a strong correlation between NCAM expression and the diagnosis of MM in comparison to reactive PCs, MGUS, or NHLs with plasmacytoid differentiation (all P values <0.000). In conclusion, using immunohistochemistry, we found strong expression of NCAM by osteoblasts and that when equal to the intensity of osteoblast expression, NCAM expression by PCs correlates with the presence of lytic bone lesions and distinguishes MM from reactive plasmacytosis, NHLs with plasmacytoid differentiation, and most cases of MGUS.
Collapse
Affiliation(s)
- Scott A Ely
- Department of Pathology, Weill Medical College of Cornell University, New York, New York 10021, USA.
| | | |
Collapse
|
16
|
Abstract
Cell-cell adhesion mediated by cadherins is essential for the function of bone forming cells during osteogenesis. Here, the evidence that N-cadherin is an important regulator of osteoblast differentiation and osteogenesis is reviewed. Osteoblasts express a limited number of cadherins, including the classic N-cadherin. The expression profile of N-cadherin in osteoblasts during bone formation in vivo and in vitro suggests a role of this molecule in osteogenesis. Functional studies using neutralizing antibodies or antisense oligonucleotides indicate that N-cadherin is involved in the control the expression of osteoblast marker gene expression and differentiation. Cleavage of N-cadherin during osteoblast apoptosis also suggests a role of N-cadherin-mediated-cell-cell adhesion in osteoblast survival. Hormonal and local factors that regulate osteoblast function also regulate N-cadherin expression and subsequent cell-cell adhesion associated with osteoblast differentiation or survival. Signaling mechanisms involved in N-cadherin-mediated cell-cell adhesion and osteoblast gene expression have also been identified. Alterations of N-cadherin expression are associated with abnormal osteoblast differentiation and osteogenesis in pathological conditions. These findings indicate that N-cadherin plays a role in normal and pathological bone formation and provide some insight into the process involved in N-cadherin-mediated cell-cell adhesion and differentiation in osteoblasts.
Collapse
Affiliation(s)
- Pierre J Marie
- INSERM U 349, affiliated CNRS, Biology and Pathology of Osteoblast, Lariboisière Hospital, Paris, France.
| |
Collapse
|
17
|
Naka T, Oda Y, Iwamoto Y, Shinohara N, Chuman H, Fukui M, Tsuneyoshi M. Immunohistochemical analysis of E-cadherin, alpha-catenin, beta-catenin, gamma-catenin, and neural cell adhesion molecule (NCAM) in chordoma. J Clin Pathol 2001; 54:945-50. [PMID: 11729215 PMCID: PMC1731331 DOI: 10.1136/jcp.54.12.945] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
AIMS The epithelioid features seen in chordoma are unique among mesenchymal tumours. However, no detailed analysis regarding cell-cell communication has been conducted in this epithelioid tumour. The aims of this study were to investigate cell-cell communication in chordoma. METHODS By means of immunohistochemical techniques that incorporated a panel of monoclonal antibodies against cell adhesion molecules (CAMs), including E-cadherin, alpha-catenin, beta-catenin, gamma-catenin, and neural cell adhesion molecule (NCAM), the expression of CAMs was studied in 15 specimens of chordoma and eight specimens of chondrosarcoma. RESULTS Most chordoma specimens showed some positive immunoreactivity for all the CAMs examined. For the various CAMs investigated, between two and five cases showed diffuse immunoreactions, indicating well preserved expression. Well preserved expression of all the CAMs examined was limited to only one case, thus indicating that the expression of CAMs was decreased in most of the chordoma specimens; however, no significant correlation was found between the decreased expression of CAMs and the histological grade of malignancy, cellular growth pattern, or clinical parameters in chordoma. In chondrosarcoma, only a few specimens showed positive immunoreactivity for CAMs and the expression of E-cadherin, beta-catenin, gamma-catenin, and NCAM was seen more frequently in the chordoma specimens than in the chondrosarcoma specimens. CONCLUSIONS These results suggest that the expression of CAMs is associated with the formation and maintenance of chordoma tissue architecture, just as it is in other epithelial tumours or normal tissue. Immunohistochemistry for CAMs was found to be of diagnostic value for discriminating chordoma from chondrosarcoma, and these markers could be used along with the cytokeratins, which are already used for this purpose.
Collapse
Affiliation(s)
- T Naka
- Department of Anatomic Pathology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | | | | | | | | | | | | |
Collapse
|
18
|
Delannoy P, Lemonnier J, Haÿ E, Modrowski D, Marie PJ. Protein kinase C-dependent upregulation of N-cadherin expression by phorbol ester in human calvaria osteoblasts. Exp Cell Res 2001; 269:154-61. [PMID: 11525648 DOI: 10.1006/excr.2001.5301] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Cell-cell adhesion mediated by cadherins is believed to play an essential role in the control of cell differentiation and tissue formation. Our recent studies indicate that N-cadherin is involved in human osteoblast differentiation. However, the signalling molecules that regulate cadherins in osteoblasts are not known. We tested the possibility that N-cadherin expression and function may be regulated by direct activation of protein kinase C (PKC) in human osteoblasts. Treatment of immortalized human neonatal calvaria (IHNC) cells with phorbol 12,13-dibutyrate (100 nM) transiently increased PKC activity. RT-PCR analysis showed that transient treatment with phorbol ester transiently increased N-cadherin mRNA levels at 4-12 h. Western blot analysis showed that N-cadherin protein levels were increased by phorbol ester at 24-48 h, and this was confirmed by immunocytochemical analysis. In contrast, E-cadherin expression was not affected. Transient treatment of IHNC cells with phorbol ester increased cell-cell aggregation, which was suppressed by neutralizing N-cadherin antibody, showing that the increased N-cadherin induced by phorbol ester was functional. Finally, phorbol ester dose-dependently increased alkaline phosphatase activity, an early marker of osteoblast differentiation. This effect was comparable to the promoting effect of BMP-2, a potent activator of osteoblast differentiation. These data show that direct activation of PKC by phorbol ester increases N-cadherin expression and function, and promotes ALP activity in human calvaria osteoblasts, which provides a signaling mechanism by which N-cadherin is regulated and suggests a role for PKC in N-cadherin-mediated control of human osteoblast differentiation.
Collapse
Affiliation(s)
- P Delannoy
- INSERM U 349 affiliated CNRS, Lariboisière Hospital, Paris, France
| | | | | | | | | |
Collapse
|
19
|
Lemonnier J, Haÿ E, Delannoy P, Lomri A, Modrowski D, Caverzasio J, Marie PJ. Role of N-cadherin and protein kinase C in osteoblast gene activation induced by the S252W fibroblast growth factor receptor 2 mutation in Apert craniosynostosis. J Bone Miner Res 2001; 16:832-45. [PMID: 11341328 DOI: 10.1359/jbmr.2001.16.5.832] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Apert (Ap) syndrome is characterized by premature cranial suture ossification caused by fibroblast growth factor receptor 2 (FGFR-2) mutations. We studied the role of cadherins and signaling events in the phenotypic alterations induced by the Ap FGFR-2 S252W mutation in mutant immortalized fetal human calvaria osteoblasts. The FGFR-2 mutation caused increased expression of the osteoblast markers alkaline phosphatase (ALP), type 1 collagen (COLIA1), and osteocalcin (OC) in long-term culture. The mutation also increased cell-cell aggregation, which was suppressed by specific neutralizing anti-N- and anti-E-cadherin antibodies. Mutant osteoblasts showed increased N- and E-cadherin, but not N-cell adhesion molecule (N-CAM) messenger RNA (mRNA) and protein levels. This was confirmed in vivo by the abundant immunoreactive N- and E-cadherins in preosteoblasts in the Ap suture whereas N-CAM and alpha- and beta-catenins were unaffected. Neutralizing anti-N-cadherin antibody or N-cadherin antisense (AS) oligonucleotides but not anti-E-cadherin antibody or AS reduced ALP activity as well as ALP, COLIA1, and OC mRNA overexpression in mutant osteoblasts. Analysis of signal transduction revealed increased phospholipase Cgamma (PLCgamma) and protein kinase Calpha (PKCalpha) phosphorylation and increased PKC activity in mutant cells in basal conditions. Inhibition of PKC by calphostin C or the PKCalpha-specific inhibitor Gö6976 suppressed the increased N-cadherin mRNA and protein levels as well as the overexpression of ALP, COLIA1, and OC mRNA in mutant cells. Thus, N-cadherin plays a role in the activation of osteoblast differentiation marker genes in mutant osteoblasts and PKCalpha signaling appears to be involved in the increased N-cadherin and osteoblast gene expression induced by the S252W FGFR-2 mutation in human osteoblasts.
Collapse
Affiliation(s)
- J Lemonnier
- Institut National de la Santé et de la Recherche Médicale U 349, Centre National de la Recherche Scientifique, Lariboisière Hospital, Paris, France
| | | | | | | | | | | | | |
Collapse
|
20
|
Debiais F, Lemonnier J, Hay E, Delannoy P, Caverzasio J, Marie PJ. Fibroblast growth factor-2 (FGF-2) increases N-cadherin expression through protein kinase C and Src-kinase pathways in human calvaria osteoblasts. J Cell Biochem 2001; 81:68-81. [PMID: 11180398 DOI: 10.1002/1097-4644(20010401)81:1<68::aid-jcb1024>3.0.co;2-s] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Fibroblast growth factors (FGFs) are important factors regulating osteogenesis. However, the early mechanisms and signaling pathways involved in FGF actions in osteoblasts are unknown. We investigated the effects of FGF-2 on cell-cell adhesion and cadherin expression and the underlying signaling pathways in immortalized human neonatal calvaria (IHNC) cells. These cells express E- and N-cadherins, as shown by immunocytochemical and Western blot analyses. rhFGF-2 increased cell-cell adhesion at 24-72 h, as measured in a cell aggregation assay, and this effect was blocked by specific neutralizing anti-N-cadherin, but not anti-E-cadherin antibodies. Accordingly, ELISA and Western blot analyses showed that rhFGF-2 (10-100 ng/ml) dose dependently increased N-cadherin but not E-cadherin protein levels. RT-PCR analysis showed that rhFGF-2 transiently increased N-cadherin mRNA levels in IHNC cells. The RNA polymerase II inhibitor 5,6-dichloro-1-beta-D-ribofuranosyl benzimidazole prevented the rhFGF-2-induced up-regulation of N-cadherin mRNA, suggesting that transcription is necessary for this effect. Analysis of signaling molecules showed evidence that PLCgamma-PKC, Src, Erk 1/2 and p38 MAPK pathways are activated by rhFGF-2 in IHNC cells. The selective PKC inhibitors calphostin C, Ro-31-8220, Gö6976 and Gö6983 abrogated the stimulatory effect of rhFGF-2 on N-cadherin mRNA levels. The src-family tyrosine kinase inhibitor PP1 also blocked rhFGF-2-promoted N-cadherin expression. In contrast, the p38 MAP kinase inhibitor SB 203580 or the MEK inhibitor PD98059 had no effect on rhFGF-2-induced N-cadherin mRNA levels. Our data indicate that FGF-2 increases N-cadherin expression and function in human calvaria osteoblasts via activation of PKC and src-kinase pathways. This study identifies N-cadherin as a previously unrecognized target gene for FGF-2 signaling pathway that regulates cell-cell adhesion in human osteoblasts.
Collapse
Affiliation(s)
- F Debiais
- INSERM Unit 349 Affiliated CNRS, Lariboisiere Hospital, 2 rue Ambroise Paré, 75475 Paris Cedex 10, France
| | | | | | | | | | | |
Collapse
|
21
|
Loty S, Foll C, Forest N, Sautier JM. Association of enhanced expression of gap junctions with in vitro chondrogenic differentiation of rat nasal septal cartilage-released cells following their dedifferentiation and redifferentiation. Arch Oral Biol 2000; 45:843-56. [PMID: 10973558 DOI: 10.1016/s0003-9969(00)00062-5] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The nasal septum is an important centre of endochondral ossification during the development of the facial region. Previous studies have shown that it is possible to recapitulate the differentiation programme of 21-day-old rat nasal chondrocytes in vitro. The purpose now was to investigate, in vitro, the cell condensation phase that represents the earliest morphological event associated with cartilage differentiation in skeletal development. The study focuses on the ability of the cells to form condensations before overt differentiation, with special emphasis on gap-junction expression. The gap-junction protein connexin 43 was localized by indirect immunofluorescence as primarily intracellular and, on day 5, at the condensation stage, as spot-like contacts between cells. Intracellular injection of the permeable dye Lucifer yellow led to the staining of up to 20 neighbouring cells, indicating functional gap junctions and coupling. In contrast, treatment of cultures with the gap-junction blocker glycyrrhetinic acid inhibited dye coupling and reduced cartilage differentiation. Northern blotting of connexin 43 mRNA showed a faint band during the first days of culture, with a striking increase after day 4. In addition, the mRNA of the homeodomain-containing gene Cart-1 began to be expressed in prechondrogenic condensations and corresponded to the expression of type II collagen mRNA. These data indicate that the early stage of in vitro chondrocyte differentiation is the formation of cell condensations and the ability to establish cell-to-cell communication. Connexin 43, together with other molecular mechanisms, mediates the condensation phase of chondrogenesis and sets up the optimal environment in which nasal septal cells may terminally differentiate into chondrocytes.
Collapse
Affiliation(s)
- S Loty
- Laboratoire de Biologie-Odontologie, Université Paris VII, Institut Biomédical des Cordeliers, 15-21, rue de l'Ecole de Médecine, F-75270 06, Paris Cedex, France.
| | | | | | | |
Collapse
|
22
|
Haÿ E, Lemonnier J, Modrowski D, Lomri A, Lasmoles F, Marie PJ. N- and E-cadherin mediate early human calvaria osteoblast differentiation promoted by bone morphogenetic protein-2. J Cell Physiol 2000; 183:117-28. [PMID: 10699973 DOI: 10.1002/(sici)1097-4652(200004)183:1<117::aid-jcp14>3.0.co;2-#] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Bone morphogenetic protein-2 (BMP-2) stimulates the differentiation of osteoblastic cells. However, the mechanisms involved in this effect are not well characterized. In this study, we determined the role of the cell-cell adhesion molecules N-cadherin and E-cadherin in the promotion of osteoblast differentiation by BMP-2 in immortalized human neonatal calvaria (IHNC) cells. In cells cultured in aggregates, recombinant human BMP-2 (rhBMP-2) increased messenger RNA levels for alkaline phosphatase (ALP), the osteoblast specific transcription factor Osf2/Cbfa1 and osteocalcin, and enhanced in vitro osteogenesis in long-term culture. RT-PCR, immunocytochemical, and Western blot analyses showed that IHNC cells express E-cadherin, N-cadherin, and neural cell adhesion molecule (N-CAM) mRNA and protein. Treatment with rhBMP-2 induced a rapid and transient increase in N-cadherin and E-cadherin but not N-CAM, mRNA, and protein levels. Incubation with the RNA polymerase II inhibitor 5, 6-dichloro-1-beta-D-ribofuranosyl benzimidazole prevented the upregulation of N- and E-cadherins induced by rhBMP-2, suggesting that transcription is necessary for this effect. N- and E-cadherins were functional because rhBMP-2 increased cell-cell adhesion in a cell aggregation assay, and this effect was largely blocked by N-cadherin- and E-cadherin-neutralizing antibodies. In addition, N- and E-cadherin antibodies decreased the basal ALP activity and completely suppressed the rhBMP-2-induced increase in ALP activity and mRNA levels. Furthermore, anti-N-cadherin or anti-E-cadherin antibodies markedly decreased Osf2/Cbfa1 mRNA levels and abolished the rhBMP-2-induced increased Osf2/Cbfa1 expression, and reduced the increased osteocalcin mRNA levels induced by rhBMP-2. We conclude that rhBMP-2 rapidly and transiently increases N- and E-cadherin expression, and this effect mediates the rhBMP-2-induced early promotion of cell-cell adhesion and osteoblast marker gene expression in human calvaria cells.
Collapse
Affiliation(s)
- E Haÿ
- INSERM U 349, Affiliated CNRS, Cell and Molecular Biology of Bone and Cartilage, Paris, France
| | | | | | | | | | | |
Collapse
|
23
|
Stewart K, Walsh S, Screen J, Jefferiss CM, Chainey J, Jordan GR, Beresford JN. Further characterization of cells expressing STRO-1 in cultures of adult human bone marrow stromal cells. J Bone Miner Res 1999; 14:1345-56. [PMID: 10457267 DOI: 10.1359/jbmr.1999.14.8.1345] [Citation(s) in RCA: 143] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Primitive cells of the osteoblast lineage are not well characterized but are known to be present within the STRO-1+ fraction of adult human bone and marrow. A survey of human osteosarcoma cell lines revealed that STRO-1 is expressed by MG-63 but not SaOS-2. Among murine cell lines tested, expression of STRO-1 was detected in the bipotential (adipocyte/osteoblast) line BMS-2 but not the committed osteoblast precursor MC3T3-E1. A proportion of cultured adult human bone marrow stromal cells (BMSCs) consistently expressed the STRO-1 antigen. The expression of a range of cell surface antigens was studied in relation to STRO-1 by flow cytometry and several, including the bone/liver/kidney isoform of alkaline phosphatase (ALP), were found to subtype the STRO-1+ population of BMSCs. Further, BMSCs dual-labeled with antibodies recognizing STRO-1 and ALP could be assigned to one of four fractions: STRO-1-/ALP-, STRO-1+/ALP-, STRO-1+/ALP+, and STRO-1-/ALP+. Cells from each fraction could be isolated in high purity and, when recultured, remained viable and exhibited a limited degree of phenotypic stability. Using reverse transcriptase-polymerase chain reaction, cells in the four fractions were found to express different levels of transcripts for the parathyroid hormone receptor (PTHr) and bone sialoprotein (BSP). The expression of transcripts for the nuclear transcription factor core-binding factor alpha 1/osteoblast-specific factor-2 (CBFA1/OSF2) was restricted to those fractions expressing STRO-1 and/or ALP. Treatment with 10 nM dexamethasone consistently increased the proportion of cells present in those fractions which expressed the highest levels of transcripts for PTHr and BSP (STRO-1+/ALP+ and STRO-1-/ALP+) while simultaneously decreasing the proportion present in the STRO-1+/ALP- fraction. In conclusion, the expression of STRO-1 in vitro remains a characteristic of less well differentiated cells of the osteoblast lineage; in cultures of BMSCs and in established human osteosarcoma cell lines, there is an inverse association between the expression of STRO-1 and ALP; dual labeling of BMSCs with monoclonal antibodies recognizing STRO-1 and ALP permits the identification and isolation of cells of the osteoblast lineage at different stages of differentiation.
Collapse
Affiliation(s)
- K Stewart
- School of Pharmacy and Pharmacology, University of Bath, Bath, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
24
|
Boersma CJ, Bloemen M, Hendriks JM, van Berkel EA, Olijve W, van Zoelen EJ. Homeobox proteins as signal transduction intermediates in regulation of NCAM expression by recombinant human bone morphogenetic protein-2 in osteoblast-like cells. MOLECULAR CELL BIOLOGY RESEARCH COMMUNICATIONS : MCBRC 1999; 1:117-24. [PMID: 10356360 DOI: 10.1006/mcbr.1999.0115] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The role of homeobox genes in signaling of recombinant human bone morphogenetic protein-2 (rhBMP-2) was studied in osteoblast-like cells. Expression of several homeobox genes was decreased by rhBMP-2. The finding that this regulation of homeobox gene expression by rhBMP-2 was not dependent on protein synthesis suggests that homeobox proteins can act as direct intermediates in signal transduction of BMPs. Therefore, we studied the regulation of neural cell adhesion molecule (NCAM), which has previously been described as a target gene of both rhBMP-2 and homeobox proteins. We now show that in osteoblast-like cells, rhBMP-2 inhibits NCAM expression, while HOXC6 increases its expression, both acting via the same region of the promoter. As overexpression of HOXC6 could abolish effects of rhBMP-2 on NCAM promoter activity, these data show for the first time that members of the homeobox gene family may form direct functional intermediates in the signaling mechanism of the TGF-beta superfamily.
Collapse
Affiliation(s)
- C J Boersma
- Laboratory for Applied Biology, University of Nijmegen, The Netherlands
| | | | | | | | | | | |
Collapse
|
25
|
Rundus VR, Marshall GB, Parker SB, Bales ES, Hertzberg EL, Minkoff R. Association of cell and substrate adhesion molecules with connexin43 during intramembranous bone formation. THE HISTOCHEMICAL JOURNAL 1998; 30:879-96. [PMID: 10100730 DOI: 10.1023/a:1003449525619] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Prior studies in our laboratory have demonstrated an association of specific gap junction proteins with intramembranous bone formation in the avian mandible. The purpose of the present study was to extend these observations by determining if there was a relationship between the expression of one of the gap junction proteins examined previously (connexin43) and the expression of specific cell adhesion (CAM) and/or substrate adhesion (SAM) molecules [i.e. NCAM, A-CAM (N-cadherin) and tenascin (tenascin-C)] that have previously been shown to be associated with bone formation. Immunohistochemical localization of connexin43, tenascin, NCAM and N-cadherin was performed on serial sections of mandibles of chick embryos from 6 to 12 days of incubation. Analysis of adjacent serial sections revealed that the NCAM and tenascin immunostaining that appeared initially on the lateral aspect of Meckel's cartilage preceded the overt expression of trabecular bone. At subsequent stages, NCAM and tenascin staining gradually overlapped the region of connexin43 expression. In contrast, the expression of N-cadherin was found to colocalize with that of connexin43 from the first appearance of connexin43 expression. Most significantly, although the domains of NCAM and tenascin expression were initially separate from that of connexin43, bone formation originated only in the region where these domains intersected. These findings suggest that, of the CAMs and SAMs examined, N-cadherin appears to be associated with the establishment of cell contacts responsible for the presence and/or maintenance of connexin43-mediated gap junctional communication, while tenascin and NCAM appear to be associated, in a more specific manner, with processes that accompany the overt expression of the osteogenic phenotype.
Collapse
Affiliation(s)
- V R Rundus
- Department of Orthodontics and Dentofacial Orthopedics, University of Texas-Houston Health Science Center, 77225, USA
| | | | | | | | | | | |
Collapse
|
26
|
Bruder SP, Ricalton NS, Boynton RE, Connolly TJ, Jaiswal N, Zaia J, Barry FP. Mesenchymal stem cell surface antigen SB-10 corresponds to activated leukocyte cell adhesion molecule and is involved in osteogenic differentiation. J Bone Miner Res 1998; 13:655-63. [PMID: 9556065 DOI: 10.1359/jbmr.1998.13.4.655] [Citation(s) in RCA: 172] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Bone marrow contains a rare population of mesenchymal stem cells (MSCs) capable of giving rise to multiple mesodermal tissues including bone, cartilage, tendon, muscle, and fat. The cell surface antigen recognized by monoclonal antibody SB-10 is expressed on human MSCs but is lost during their developmental progression into differentiated phenotypes. Here we report on the immunopurification of the SB-10 antigen and its identification as activated leukocyte-cell adhesion molecule (ALCAM). Mass spectrometry establishes that the molecular mass of ALCAM is 80,303 +/- 193 Da and that it possesses 17,763 +/- 237 Da of N-linked oligosaccharide substituents. Molecular cloning of a full-length cDNA from a MSC expression library demonstrates nucleotide sequence identity with ALCAM. We also identified ALCAM homologs in rat, rabbit, and canine MSCs, each of which is over 90% identical to human ALCAM in their peptide sequence. The addition of antibody SB-10 Fab fragments to human MSCs undergoing osteogenic differentiation in vitro accelerated the process, thereby implicating a role for ALCAM during bone morphogenesis and adding ALCAM to the group of cell adhesion molecules involved in osteogenesis. Together, these results provide evidence that ALCAM plays a critical role in the differentiation of mesenchymal tissues in multiple species across the phylogenetic tree.
Collapse
Affiliation(s)
- S P Bruder
- Osiris Therapeutics, Inc., Baltimore, Maryland 21231-2001, USA.
| | | | | | | | | | | | | |
Collapse
|
27
|
Cell-Cell Communication in Bone. ACTA ACUST UNITED AC 1998. [DOI: 10.1016/s1569-2590(08)60135-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
28
|
Lee YS, Chuong CM. Activation of protein kinase A is a pivotal step involved in both BMP-2- and cyclic AMP-induced chondrogenesis. J Cell Physiol 1997; 170:153-65. [PMID: 9009144 DOI: 10.1002/(sici)1097-4652(199702)170:2<153::aid-jcp7>3.0.co;2-n] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
We studied the roles of protein kinase A (PKA) activation and cyclic AMP response element binding protein (CREB) phosphorylation in chondrogenesis using serum-free chicken limb bud micromass cultures as a model system. We showed the following points: 1) in micromass cultures, activation of PKA enhances chondrogenesis and increases the phosphorylation of CREB; 2) BMP-2, a chondrogenic stimulator, increases PKA activity and the level of phosphorylated CREB (P-CREB); 3) H8, a PKA inhibitor, inhibits chondrogenesis; 4) the chondrogenic activities of BMP-2 and cAMP are suppressed by H8; and 5) long-term TPA treatment (a protein kinase C (PKC) modulator) inhibits chondrogenesis and decreases the levels of CREB and P-CREB. These results suggest that activation of PKA is a physiological event during chondrogenesis that is involved in the chondrogenic effects of both BMP-2 and cyclic AMP (cAMP)-dependent pathways.
Collapse
Affiliation(s)
- Y S Lee
- Department of Pathology, University of Southern California, Los Angeles 90033, USA
| | | |
Collapse
|
29
|
Tanaka Y, Morimoto I, Nakano Y, Okada Y, Hirota S, Nomura S, Nakamura T, Eto S. Osteoblasts are regulated by the cellular adhesion through ICAM-1 and VCAM-1. J Bone Miner Res 1995; 10:1462-9. [PMID: 8686501 DOI: 10.1002/jbmr.5650101006] [Citation(s) in RCA: 87] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The two major processes of bone metabolism--bone formation and resorption--are regulated by cellular interactions. Osteoblasts and osteoclasts play a significant role in bone metabolism, which is known to be regulated by local soluble factors and systemic hormones. Although bone is a heterogeneous tissue comprised of osteogenic and hematopoietic cells, cellular adhesion of osteoblasts and its regulation remains to be understood. We first demonstrate that cellular adhesion by which osteoblasts communicate with opposing cells in bone milieu is involved in the osteoblast activation: (a) purified human osteoblasts obtained from osteoarthritis patients expressed particular adhesion molecules, ICAM-1, VCAM-1, and LFA-3; (b) toe osteoblasts adhered to T cells which were used as representative adhesive partners, since T cells possess all the receptors to these adhesion molecules; (c) mRNA transcription and secretion of IL-1beta and IL-6 were induced in the osteoblasts by the cellular adhesion to T cells and they were reduced by interrupting the adhesion; (d) cross-linking of ICAM-1 and VCAM-1 on the osteoblasts induced IL-6 secretion from the osteoblasts. These results indicate that osteoblasts adhere to opposing cells through particular adhesion molecules on their surface and that the adhesion molecules on the osteoblasts not only function as glue with opposing partners but transduce activation signals that facilitate the production of bone-resorbing cytokines. We propose that cellular adhesion of osteoblasts as well as soluble factors is significant for the regulation of bone metabolism.
Collapse
Affiliation(s)
- Y Tanaka
- First Department of Internal Medicine, University of Occupational and Environmental Health, School of Medicine, Kitakyushu, Japan
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Walsh S, Dodds RA, James IE, Bradbeer JN, Gowen M. Monoclonal antibodies with selective reactivity against osteoblasts and osteocytes in human bone. J Bone Miner Res 1994; 9:1687-96. [PMID: 7863819 DOI: 10.1002/jbmr.5650091104] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Monoclonal antibodies (MAb) may provide valuable tools for studying osteoblast differentiation. We therefore raised a panel of MAb reactive with cells of this phenotype using 1,25(OH)2D3-treated human trabecular osteoblast-like cells (HOBS) as the immunogen. Immunohistochemical studies on various tissues, including undecalcified cryostat sections of fetal and adult human bone, identified 11 bone cell-reactive MAb. Of these, 2 demonstrated particularly selective reactivities against osteocytes (OB/M) and osteoblasts (OB/L). These reactivities were also seen in developing bone from rat, rabbit, and marmoset. OB/L and OB/M demonstrated limited reactivity against a small number of human tissues from the extensive panel of substrates tested. Both MAb exhibited reactivity against discrete populations of cells in the large and small intestine. In addition, OB/L reacted with cells in the basal epidermis of skin and OB/M with cells in blood vessel walls. Both antibodies demonstrated reactivity against a variety of cultured osteoblast-like cell lines and other cultured cell types. These MAb may therefore provide a valuable means of studying osteoblast ontogeny.
Collapse
Affiliation(s)
- S Walsh
- Bath Institute for Rheumatic Diseases, University of Bath, England
| | | | | | | | | |
Collapse
|
31
|
|
32
|
Perides G, Safran R, Downing L, Charness M. Regulation of neural cell adhesion molecule and L1 by the transforming growth factor-beta superfamily. Selective effects of the bone morphogenetic proteins. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)42416-1] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
33
|
Babich M, Foti LR. E-cadherins identified in osteoblastic cells: effects of parathyroid hormone and extracellular calcium on localization. Life Sci 1994; 54:PL201-8. [PMID: 8107517 DOI: 10.1016/0024-3205(94)90169-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The presence and regulation of cadherin localization in osteoblastic cells were examined. Monoclonal antibody (ECCD-1) that interferes with E-cadherin function prevented cell adhesion in UMR 106-H5 rat osteosarcoma cells and non-tumorigenic mouse calvarial MC3T3-E1 cells, whereas CCL39 fibroblast adhesion was not affected. Immunofluorescent antibodies (ECCD-2 and polyclonal L-CAMP P1) revealed cadherins are localized along the osteoblastic cell-cell boundaries. Exposure of UMR 106-H5 cells to bovine parathyroid hormone (1-84) (PTH; 10 ng/ml x 1 hr) or low calcium medium (1.0-0.025 mM) produced cellular retraction accompanied by intense immunofluorescence for cadherins throughout cells with a corresponding loss of punctate localization at remaining cell-cell adhesion points. Western immunoblot analysis indicated 108 kd and 115 kd cadherins are present, with a smaller 29.5 kd band that became predominantly associated with the cytosolic fraction of cells treated with parathyroid hormone or lowered calcium. The results demonstrate E-like cadherins are present in osteoblastic cells and implicate a regulatory role for parathyroid hormone and calcium in cadherin function and localization.
Collapse
Affiliation(s)
- M Babich
- Department of Biomedical Sciences, University of Illinois College of Medicine, Rockford 61107-1897
| | | |
Collapse
|
34
|
Widelitz RB, Jiang TX, Murray BA, Chuong CM. Adhesion molecules in skeletogenesis: II. Neural cell adhesion molecules mediate precartilaginous mesenchymal condensations and enhance chondrogenesis. J Cell Physiol 1993; 156:399-411. [PMID: 8344994 DOI: 10.1002/jcp.1041560224] [Citation(s) in RCA: 116] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Neural cell adhesion molecules (NCAM) was expressed transiently by mesenchymal cells in precartilaginous condensations of the embryonic chicken limb but was lost upon differentiation into cartilage. Consequently, NCAM was present in the periphery of the limb anlagen but was absent in the cartilaginous center of the growing limb. To determine NCAM function in limb bud chondrogenesis we incubated dissociated stage 22/23 distal mesenchymal limb bud cells with Fab' fragments of antibodies to NCAM. Cell aggregation was inhibited by incubating the cells with anti-NCAM Fab'. These results suggest that NCAM may mediate the formation of precartilaginous condensations. This hypothesis was further tested using micromass cultures. NCAM expression in micromass cultures in vitro recapitulated that in vivo. NCAM was enriched in condensations of 2 day cultures, but was diminished and concentrically distributed around cartilage nodules in 4 day cultures. Anti-NCAM Fab' fragments reduced the area occupied by precartilaginous condensations and the degree of chondrogenic differentiation. Control antibody against chicken embryo fibroblasts had no effect. The effect of overexpressing NCAM was analyzed by electroporating expression vectors directing the synthesis of chicken NCAM. Limb bud cells cultured after electroporation with an NCAM expression vector displayed larger cartilage nodules and greater chondrogenic differentiation than cells electroporated with vector alone. The expression of NCAM in electroporated cells also increased. Control experiments using plasmids encoding beta-galactosidase indicated that approximately 10% of the limb bud cells were transfected under these conditions. The results suggest that NCAM is involved in the chondrogenesis pathway by mediating the formation of precartilaginous condensations.
Collapse
Affiliation(s)
- R B Widelitz
- Department of Pathology, School of Medicine, University of Southern California, Los Angeles 90033
| | | | | | | |
Collapse
|