1
|
Kim HJ, Yang D, Hong JH. Various Cellular Components and Its Signaling Cascades Through the Involvement of Signaling Messengers in Keratinocyte Differentiation. Antioxidants (Basel) 2025; 14:426. [PMID: 40298779 PMCID: PMC12023943 DOI: 10.3390/antiox14040426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2025] [Revised: 03/28/2025] [Accepted: 03/30/2025] [Indexed: 04/30/2025] Open
Abstract
Skin is a highly differentiated tissue, in which various signaling molecules play critical roles in the differentiation and proliferation of keratinocytes. Among these, the second messenger calcium and its gradient across skin layers are pivotal in regulating keratinocyte differentiation. Additionally, a diverse array of cellular signaling molecules has been identified as essential for promoting keratinocyte differentiation, thereby maintaining skin integrity and barrier function. The barrier function of the skin provides essential protection against exogenous stimuli and pathogens while maintaining structural stability. The homeostatic processes of skin differentiation are modulated by these second messengers and various signaling molecules. Thus, this review highlights the components associated with keratinocyte differentiation and their biological and pathophysiological roles, as well as redox-sensitive differentiation factors in the modulation of skin homeostasis. This review aims to enhance our understanding of skin physiology and provide insights that may facilitate the development of novel therapeutic strategies for skin diseases.
Collapse
Affiliation(s)
| | - Dongki Yang
- Department of Physiology, Lee Gil Ya Cancer and Diabetes Institute, College of Medicine, Gachon University, 155 Getbeolro, Yeonsu-gu, Incheon 21999, Republic of Korea;
| | - Jeong Hee Hong
- Department of Physiology, Lee Gil Ya Cancer and Diabetes Institute, College of Medicine, Gachon University, 155 Getbeolro, Yeonsu-gu, Incheon 21999, Republic of Korea;
| |
Collapse
|
2
|
Rufail ML, Bassi R, Giussani P. Sphingosine-1-Phosphate Metabolic Pathway in Cancer: Implications for Therapeutic Targets. Int J Mol Sci 2025; 26:1056. [PMID: 39940821 PMCID: PMC11817292 DOI: 10.3390/ijms26031056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 01/23/2025] [Accepted: 01/24/2025] [Indexed: 02/16/2025] Open
Abstract
Cancer biology revolves around understanding how cells undergo uncontrolled proliferation leading to the formation of malignant tumors. Key aspects include self-sufficiency in growth signals, the lack of response to signals of growth inhibition, the evasion of apoptosis, sustained angiogenesis, the evasion of immune response, the capacity to invade and metastasize, and alterations in cellular metabolism. A vast amount of research, which is exponentially growing, over the past few decades highlights the role of sphingolipids in cancer. They act not only as structural membrane components but also as bioactive molecules that regulate cell fate in different physio-pathological conditions. In cancer, sphingolipid metabolism is dysregulated, contributing to tumor progression, metastasis, and drug resistance. In this review, we outline the impact of sphingosine-1-phosphate (S1P) as a key bioactive sphingolipid in cancer. We give an overview of its metabolism summarizing the role of S1P as an intracellular and extracellular mediator through specific plasma membrane receptors in different cancers. We also describe previous findings on how the disruption in the balance between S1P and ceramide (Cer) is common in cancer cells and can contribute to tumorigenesis and resistance to chemotherapy. We finally consider the potential of targeting the metabolic pathways of S1P as well as its receptors and transporters as a promising therapeutic approach in cancer treatments.
Collapse
Affiliation(s)
- Miguel L. Rufail
- Department of Pathology, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Rosaria Bassi
- Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, LITA Segrate, Via Fratelli Cervi, 93, 20054 Segrate, Italy
| | - Paola Giussani
- Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, LITA Segrate, Via Fratelli Cervi, 93, 20054 Segrate, Italy
| |
Collapse
|
3
|
Phan F, Bourron O, Foufelle F, Le Stunff H, Hajduch E. Sphingosine-1-phosphate signalling in the heart: exploring emerging perspectives in cardiopathology. FEBS Lett 2024; 598:2641-2655. [PMID: 38965662 DOI: 10.1002/1873-3468.14973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/23/2024] [Accepted: 06/12/2024] [Indexed: 07/06/2024]
Abstract
Cardiometabolic disorders contribute to the global burden of cardiovascular diseases. Emerging sphingolipid metabolites like sphingosine-1-phosphate (S1P) and its receptors, S1PRs, present a dynamic signalling axis significantly impacting cardiac homeostasis. S1P's intricate mechanisms extend to its transportation in the bloodstream by two specific carriers: high-density lipoprotein particles and albumin. This intricate transport system ensures the accessibility of S1P to distant target tissues, influencing several physiological processes critical for cardiovascular health. This review delves into the diverse functions of S1P and S1PRs in both physiological and pathophysiological conditions of the heart. Emphasis is placed on their diverse roles in modulating cardiac health, spanning from cardiac contractility, angiogenesis, inflammation, atherosclerosis and myocardial infarction. The intricate interplays involving S1P and its receptors are analysed concerning different cardiac cell types, shedding light on their respective roles in different heart diseases. We also review the therapeutic applications of targeting S1P/S1PRs in cardiac diseases, considering existing drugs like Fingolimod, as well as the prospects and challenges in developing novel therapies that selectively modulate S1PRs.
Collapse
Affiliation(s)
- Franck Phan
- INSERM, Centre de Recherche des Cordeliers, Sorbonne Université, Paris, France
- Diabetology Department, Assistance Publique-Hôpitaux de Paris (APHP), La Pitié-Salpêtrière-Charles Foix University Hospital, Paris, France
- Institut Hospitalo-Universitaire ICAN, Paris, France
| | - Olivier Bourron
- INSERM, Centre de Recherche des Cordeliers, Sorbonne Université, Paris, France
- Diabetology Department, Assistance Publique-Hôpitaux de Paris (APHP), La Pitié-Salpêtrière-Charles Foix University Hospital, Paris, France
- Institut Hospitalo-Universitaire ICAN, Paris, France
| | - Fabienne Foufelle
- INSERM, Centre de Recherche des Cordeliers, Sorbonne Université, Paris, France
- Institut Hospitalo-Universitaire ICAN, Paris, France
| | - Hervé Le Stunff
- Institut des Neurosciences Paris-Saclay, CNRS UMR 9197, Université Paris-Saclay, France
| | - Eric Hajduch
- INSERM, Centre de Recherche des Cordeliers, Sorbonne Université, Paris, France
- Institut Hospitalo-Universitaire ICAN, Paris, France
| |
Collapse
|
4
|
Shen H, Yu Y, Wang J, Nie Y, Tang Y, Qu M. Plasma lipidomic signatures of dementia with Lewy bodies revealed by machine learning, and compared to alzheimer's disease. Alzheimers Res Ther 2024; 16:226. [PMID: 39407312 PMCID: PMC11476188 DOI: 10.1186/s13195-024-01585-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 09/29/2024] [Indexed: 10/19/2024]
Abstract
BACKGROUND Dementia with Lewy Bodies (DLB) is a complex neurodegenerative disorder that often overlaps clinically with Alzheimer's disease (AD), presenting challenges in accurate diagnosis and underscoring the need for novel biomarkers. Lipidomic emerges as a promising avenue for uncovering disease-specific metabolic alterations and potential biomarkers, particularly as the lipidomics landscape of DLB has not been previously explored. We aim to identify potential diagnostic biomarkers and elucidate the disease's pathophysiological mechanisms. METHODS This study conducted a lipidomic analysis of plasma samples from patients with DLB, AD, and healthy controls (HCs) at Xuanwu Hospital. Untargeted plasma lipidomic profiling was conducted via liquid chromatography coupled with mass spectrometry. Machine learning methods were employed to discern lipidomic signatures specific to DLB and to differentiate it from AD. RESULTS The study enrolled 159 participants, including 57 with AD, 48 with DLB, and 54 HCs. Significant differences in lipid profiles were observed between the DLB and HC groups, particularly in the classes of sphingolipids and phospholipids. A total of 55 differentially expressed lipid species were identified between DLB and HCs, and 17 between DLB and AD. Correlations were observed linking these lipidomic profiles to clinical parameters like Unified Parkinson's Disease Rating Scale III (UPDRS III) and cognitive scores. Machine learning models demonstrated to be highly effective in distinguishing DLB from both HCs and AD, achieving substantial accuracy through the utilization of specific lipidomic signatures. These include PC(15:0_18:2), PC(15:0_20:5), and SPH(d16:0) for differentiation between DLB and HCs; and a panel includes 13 lipid molecules: four PCs, two PEs, three SPHs, two Cers, and two Hex1Cers for distinguishing DLB from AD. CONCLUSIONS This study presents a novel and comprehensive lipidomic profile of DLB, distinguishing it from AD and HCs. Predominantly, sphingolipids (e.g., ceramides and SPHs) and phospholipids (e.g., PE and PC) were the most dysregulated lipids in relation to DLB patients. The lipidomics panels identified through machine learning may serve as effective plasma biomarkers for diagnosing DLB and differentiating it from AD dementia.
Collapse
Affiliation(s)
- Huixin Shen
- Departments of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
| | - Yueyi Yu
- Innovation Center for Neurological Disorders, Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Jing Wang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Yuting Nie
- Departments of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
| | - Yi Tang
- Department of Neurology & Innovation Center for Neurological Disorders, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China.
| | - Miao Qu
- Departments of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China.
- Departments of Chinese Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
5
|
Sikdar S, Mitra D, Das O, Bhaumik M, Dutta S. The functional antagonist of sphingosine-1-phosphate, FTY720, impairs gut barrier function. Front Pharmacol 2024; 15:1407228. [PMID: 39224783 PMCID: PMC11366638 DOI: 10.3389/fphar.2024.1407228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 07/29/2024] [Indexed: 09/04/2024] Open
Abstract
FTY720 or fingolimod is a known functional antagonist of sphingosine-1-phosphate (S1P), and it is effective in treating multiple sclerosis and preventing inflammatory bowel disease (IBD). Evidence shows that its use in mice can increase the susceptibility to mucosal infections. Despite the significant contribution of S1P to barrier function, the effect of the administration of FTY720 on the mucosal barrier has never been investigated. In this study, we looked into how FTY720 therapy affected the function of the gut barrier susceptibility. Administration of FTY720 to C57BL/6 mice enhances the claudin-2 expression and reduces the expression of claudin-4 and occludin, as studied by qPCR, Western blot, and immunofluorescence. FTY720 inhibits the Akt-mTOR pathway to decrease occludin and claudin-4 expression and increase claudin-2 expression. FTY720 treatment induced increased colonic inflammation, with notably greater immune cell infiltration, colon histopathology, and increased production of TNF-α, IFN-γ, CXCL-1, and CXCL-2 than that in control mice. Taking into account the close association of "the leaky gut" and gut dysbiosis among the major diseases, we therefore can infer that the vigilance of gut pathology should be maintained, where FTY720 is used as a treatment option.
Collapse
Affiliation(s)
- Sohini Sikdar
- Division of Immunology , ICMR-National Institute for Research in Bacterial Infections (NIRBI), Kolkata, India
| | - Debmalya Mitra
- Center of Radiological Research, Columbia University Irving Medical Center, New York, NY, United States
| | - Oishika Das
- Division of Immunology , ICMR-National Institute for Research in Bacterial Infections (NIRBI), Kolkata, India
| | - Moumita Bhaumik
- Division of Immunology , ICMR-National Institute for Research in Bacterial Infections (NIRBI), Kolkata, India
| | - Shanta Dutta
- Division of Immunology , ICMR-National Institute for Research in Bacterial Infections (NIRBI), Kolkata, India
| |
Collapse
|
6
|
Giussani P, Brioschi L, Gjoni E, Riccitelli E, Viani P. Sphingosine 1-Phosphate Stimulates ER to Golgi Ceramide Traffic to Promote Survival in T98G Glioma Cells. Int J Mol Sci 2024; 25:8270. [PMID: 39125841 PMCID: PMC11312410 DOI: 10.3390/ijms25158270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/04/2024] [Accepted: 07/26/2024] [Indexed: 08/12/2024] Open
Abstract
Glioblastoma multiforme is the most common and fatal brain tumor among human cancers. Ceramide (Cer) and Sphingosine 1-phosphate (S1P) have emerged as bioeffector molecules that control several biological processes involved in both cancer development and resistance. Cer acts as a tumor suppressor, inhibiting cancer progression, promoting apoptosis, enhancing immunotherapy and sensitizing cells to chemotherapy. In contrast, S1P functions as an onco-promoter molecule, increasing proliferation, survival, invasiveness, and resistance to drug-induced apoptosis. The pro-survival PI3K/Akt pathway is a recognized downstream target of S1P, and we have previously demonstrated that in glioma cells it also improves Cer transport and metabolism towards complex sphingolipids in glioma cells. Here, we first examined the possibility that, in T98G glioma cells, S1P may regulate Cer metabolism through PI3K/Akt signaling. Our research showed that exogenous S1P increases the rate of vesicular trafficking of Cer from the endoplasmic reticulum (ER) to the Golgi apparatus through S1P receptor-mediated activation of the PI3K/Akt pathway. Interestingly, the effect of S1P results in cell protection against toxicity arising from Cer accumulation in the ER, highlighting the role of S1P as a survival factor to escape from the Cer-generating cell death response.
Collapse
Affiliation(s)
| | | | | | | | - Paola Viani
- Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, LITA Segrate, Via Fratelli Cervi, 93, 20054 Segrate, Italy; (P.G.); (L.B.); (E.G.); (E.R.)
| |
Collapse
|
7
|
Misiti F, Diotaiuti P, Lombardo GE, Tellone E. Sphingosine-1-phosphate Decreases Erythrocyte Dysfunction Induced by β-Amyloid. Int J Mol Sci 2024; 25:5184. [PMID: 38791223 PMCID: PMC11121638 DOI: 10.3390/ijms25105184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/28/2024] [Accepted: 05/08/2024] [Indexed: 05/26/2024] Open
Abstract
Amyloid beta peptides (Aβ) have been identified as the main pathogenic agents in Alzheimer's disease (AD). Soluble Aβ oligomers, rather than monomer or insoluble amyloid fibrils, show red blood cell (RBC) membrane-binding capacity and trigger several morphological and functional alterations in RBCs that can result in impaired oxygen transport and delivery. Since bioactive lipids have been recently proposed as potent protective agents against Aβ toxicity, we investigated the role of sphingosine-1-phosphate (S1P) in signaling pathways involved in the mechanism underlying ATP release in Ab-treated RBCs. In RBCs following different treatments, the ATP, 2,3 DPG and cAMP levels and caspase 3 activity were determined by spectrophotometric and immunoassay. S1P rescued the inhibition of ATP release from RBCs triggered by Ab, through a mechanism involving caspase-3 and restoring 2,3 DPG and cAMP levels within the cell. These findings reveal the molecular basis of S1P protection against Aβ in RBCs and suggest new therapeutic avenues in AD.
Collapse
Affiliation(s)
- Francesco Misiti
- Human Sciences, Social and Health Department, University of Cassino and Lazio Meridionale, V. S. Angelo, Loc. Folcara, 03043 Cassino, Italy;
| | - Pierluigi Diotaiuti
- Human Sciences, Social and Health Department, University of Cassino and Lazio Meridionale, V. S. Angelo, Loc. Folcara, 03043 Cassino, Italy;
| | - Giovanni Enrico Lombardo
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d’Alcontres 31, 98166 Messina, Italy; (G.E.L.); (E.T.)
| | - Ester Tellone
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d’Alcontres 31, 98166 Messina, Italy; (G.E.L.); (E.T.)
| |
Collapse
|
8
|
Garella R, Bernacchioni C, Chellini F, Tani A, Palmieri F, Parigi M, Guasti D, Cassioli E, Castellini G, Ricca V, Bani D, Sassoli C, Donati C, Squecco R. Adiponectin Modulates Smooth Muscle Cell Morpho-Functional Properties in Murine Gastric Fundus via Sphingosine Kinase 2 Activation. Life (Basel) 2023; 13:1812. [PMID: 37763216 PMCID: PMC10532860 DOI: 10.3390/life13091812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/31/2023] [Accepted: 08/15/2023] [Indexed: 09/29/2023] Open
Abstract
Adipokines are peptide hormones produced by the adipose tissue involved in several biological functions. Among adipokines, adiponectin (ADPN) has antidiabetic and anti-inflammatory properties. It can also modulate food intake at central and peripheral levels, acting on hypothalamus and facilitating gastric relaxation. ADPN exerts its action interacting with two distinct membrane receptors and triggering some well-defined signaling cascades. The ceramidase activity of ADPN receptor has been reported in many tissues: it converts ceramide into sphingosine. In turn, sphingosine kinase (SK) phosphorylates it into sphingosine-1 phosphate (S1P), a crucial mediator of many cellular processes including contractility. Using a multidisciplinary approach that combined biochemical, electrophysiological and morphological investigations, we explored for the first time the possible role of S1P metabolism in mediating ADPN effects on the murine gastric fundus muscle layer. By using a specific pharmacological inhibitor of SK2, we showed that ADPN affects smooth muscle cell membrane properties and contractile machinery via SK2 activation in gastric fundus, adding a piece of knowledge to the action mechanisms of this hormone. These findings help to identify ADPN and its receptors as new therapeutic targets or as possible prognostic markers for diseases with altered energy balance and for pathologies with fat mass content alterations.
Collapse
Affiliation(s)
- Rachele Garella
- Department of Experimental and Clinical Medicine, Section of Physiological Sciences, University of Florence, 50134 Florence, Italy; (F.P.); (R.S.)
| | - Caterina Bernacchioni
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, 50134 Florence, Italy;
| | - Flaminia Chellini
- Department of Experimental and Clinical Medicine, Section of Anatomy and Histology, Imaging Platform, University of Florence, 50134 Florence, Italy; (F.C.); (A.T.); (M.P.); (D.G.); (D.B.); (C.S.)
| | - Alessia Tani
- Department of Experimental and Clinical Medicine, Section of Anatomy and Histology, Imaging Platform, University of Florence, 50134 Florence, Italy; (F.C.); (A.T.); (M.P.); (D.G.); (D.B.); (C.S.)
| | - Francesco Palmieri
- Department of Experimental and Clinical Medicine, Section of Physiological Sciences, University of Florence, 50134 Florence, Italy; (F.P.); (R.S.)
| | - Martina Parigi
- Department of Experimental and Clinical Medicine, Section of Anatomy and Histology, Imaging Platform, University of Florence, 50134 Florence, Italy; (F.C.); (A.T.); (M.P.); (D.G.); (D.B.); (C.S.)
| | - Daniele Guasti
- Department of Experimental and Clinical Medicine, Section of Anatomy and Histology, Imaging Platform, University of Florence, 50134 Florence, Italy; (F.C.); (A.T.); (M.P.); (D.G.); (D.B.); (C.S.)
| | - Emanuele Cassioli
- Psychiatry Unit, Department of Health Sciences, University of Florence, 50134 Florence, Italy; (E.C.); (G.C.); (V.R.)
| | - Giovanni Castellini
- Psychiatry Unit, Department of Health Sciences, University of Florence, 50134 Florence, Italy; (E.C.); (G.C.); (V.R.)
| | - Valdo Ricca
- Psychiatry Unit, Department of Health Sciences, University of Florence, 50134 Florence, Italy; (E.C.); (G.C.); (V.R.)
| | - Daniele Bani
- Department of Experimental and Clinical Medicine, Section of Anatomy and Histology, Imaging Platform, University of Florence, 50134 Florence, Italy; (F.C.); (A.T.); (M.P.); (D.G.); (D.B.); (C.S.)
| | - Chiara Sassoli
- Department of Experimental and Clinical Medicine, Section of Anatomy and Histology, Imaging Platform, University of Florence, 50134 Florence, Italy; (F.C.); (A.T.); (M.P.); (D.G.); (D.B.); (C.S.)
| | - Chiara Donati
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, 50134 Florence, Italy;
| | - Roberta Squecco
- Department of Experimental and Clinical Medicine, Section of Physiological Sciences, University of Florence, 50134 Florence, Italy; (F.P.); (R.S.)
| |
Collapse
|
9
|
Wang N, Li JY, Zeng B, Chen GL. Sphingosine-1-Phosphate Signaling in Cardiovascular Diseases. Biomolecules 2023; 13:biom13050818. [PMID: 37238688 DOI: 10.3390/biom13050818] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/07/2023] [Accepted: 05/10/2023] [Indexed: 05/28/2023] Open
Abstract
Sphingosine-1-phosphate (S1P) is an important sphingolipid molecule involved in regulating cardiovascular functions in physiological and pathological conditions by binding and activating the three G protein-coupled receptors (S1PR1, S1PR2, and S1PR3) expressed in endothelial and smooth muscle cells, as well as cardiomyocytes and fibroblasts. It exerts its actions through various downstream signaling pathways mediating cell proliferation, migration, differentiation, and apoptosis. S1P is essential for the development of the cardiovascular system, and abnormal S1P content in the circulation is involved in the pathogenesis of cardiovascular disorders. This article reviews the effects of S1P on cardiovascular function and signaling mechanisms in different cell types in the heart and blood vessels under diseased conditions. Finally, we look forward to more clinical findings with approved S1PR modulators and the development of S1P-based therapies for cardiovascular diseases.
Collapse
Affiliation(s)
- Na Wang
- Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou 646000, China
| | - Jing-Yi Li
- Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou 646000, China
| | - Bo Zeng
- Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou 646000, China
| | - Gui-Lan Chen
- Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou 646000, China
| |
Collapse
|
10
|
Velasco MG, Satué K, Chicharro D, Martins E, Torres-Torrillas M, Peláez P, Miguel-Pastor L, Del Romero A, Damiá E, Cuervo B, Carrillo JM, Cugat R, Sopena JJ, Rubio M. Multilineage-Differentiating Stress-Enduring Cells (Muse Cells): The Future of Human and Veterinary Regenerative Medicine. Biomedicines 2023; 11:biomedicines11020636. [PMID: 36831171 PMCID: PMC9953712 DOI: 10.3390/biomedicines11020636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/13/2023] [Accepted: 02/17/2023] [Indexed: 02/22/2023] Open
Abstract
In recent years, several studies have been conducted on Muse cells mainly due to their pluripotency, high tolerance to stress, self-renewal capacity, ability to repair DNA damage and not being tumoral. Additionally, since these stem cells can be isolated from different tissues in the adult organism, obtaining them is not considered an ethical problem, providing an advantage over embryonic stem cells. Regarding their therapeutic potential, few studies have reported clinical applications in the treatment of different diseases, such as aortic aneurysm and chondral injuries in the mouse or acute myocardial infarction in the swine, rabbit, sheep and in humans. This review aims to describe the characterization of Muse cells, show their biological characteristics, explain the differences between Muse cells and mesenchymal stem cells, and present their contribution to the treatment of some diseases.
Collapse
Affiliation(s)
- María Gemma Velasco
- Bioregenerative Medicine and Applied Surgery Research Group, Department of Animal Medicine and Surgery, CEU Cardenal Herrera University, CEU Universities, C/Tirant lo Blanc, 7, Alfara del Patriarca, 46115 Valencia, Spain
| | - Katy Satué
- Bioregenerative Medicine and Applied Surgery Research Group, Department of Animal Medicine and Surgery, CEU Cardenal Herrera University, CEU Universities, C/Tirant lo Blanc, 7, Alfara del Patriarca, 46115 Valencia, Spain
| | - Deborah Chicharro
- Bioregenerative Medicine and Applied Surgery Research Group, Department of Animal Medicine and Surgery, CEU Cardenal Herrera University, CEU Universities, C/Tirant lo Blanc, 7, Alfara del Patriarca, 46115 Valencia, Spain
| | - Emma Martins
- Bioregenerative Medicine and Applied Surgery Research Group, Department of Animal Medicine and Surgery, CEU Cardenal Herrera University, CEU Universities, C/Tirant lo Blanc, 7, Alfara del Patriarca, 46115 Valencia, Spain
| | - Marta Torres-Torrillas
- Bioregenerative Medicine and Applied Surgery Research Group, Department of Animal Medicine and Surgery, CEU Cardenal Herrera University, CEU Universities, C/Tirant lo Blanc, 7, Alfara del Patriarca, 46115 Valencia, Spain
| | - Pau Peláez
- Bioregenerative Medicine and Applied Surgery Research Group, Department of Animal Medicine and Surgery, CEU Cardenal Herrera University, CEU Universities, C/Tirant lo Blanc, 7, Alfara del Patriarca, 46115 Valencia, Spain
| | - Laura Miguel-Pastor
- Bioregenerative Medicine and Applied Surgery Research Group, Department of Animal Medicine and Surgery, CEU Cardenal Herrera University, CEU Universities, C/Tirant lo Blanc, 7, Alfara del Patriarca, 46115 Valencia, Spain
| | - Ayla Del Romero
- Bioregenerative Medicine and Applied Surgery Research Group, Department of Animal Medicine and Surgery, CEU Cardenal Herrera University, CEU Universities, C/Tirant lo Blanc, 7, Alfara del Patriarca, 46115 Valencia, Spain
| | - Elena Damiá
- Bioregenerative Medicine and Applied Surgery Research Group, Department of Animal Medicine and Surgery, CEU Cardenal Herrera University, CEU Universities, C/Tirant lo Blanc, 7, Alfara del Patriarca, 46115 Valencia, Spain
| | - Belén Cuervo
- Bioregenerative Medicine and Applied Surgery Research Group, Department of Animal Medicine and Surgery, CEU Cardenal Herrera University, CEU Universities, C/Tirant lo Blanc, 7, Alfara del Patriarca, 46115 Valencia, Spain
| | - José María Carrillo
- Bioregenerative Medicine and Applied Surgery Research Group, Department of Animal Medicine and Surgery, CEU Cardenal Herrera University, CEU Universities, C/Tirant lo Blanc, 7, Alfara del Patriarca, 46115 Valencia, Spain
- Garcia Cugat Foundation CEU-UCH Chair of Medicine and Regenerative Surgery, 08006 Barcelona, Spain
| | - Ramón Cugat
- Garcia Cugat Foundation CEU-UCH Chair of Medicine and Regenerative Surgery, 08006 Barcelona, Spain
| | - Joaquín Jesús Sopena
- Bioregenerative Medicine and Applied Surgery Research Group, Department of Animal Medicine and Surgery, CEU Cardenal Herrera University, CEU Universities, C/Tirant lo Blanc, 7, Alfara del Patriarca, 46115 Valencia, Spain
- Garcia Cugat Foundation CEU-UCH Chair of Medicine and Regenerative Surgery, 08006 Barcelona, Spain
- Correspondence:
| | - Mónica Rubio
- Bioregenerative Medicine and Applied Surgery Research Group, Department of Animal Medicine and Surgery, CEU Cardenal Herrera University, CEU Universities, C/Tirant lo Blanc, 7, Alfara del Patriarca, 46115 Valencia, Spain
- Garcia Cugat Foundation CEU-UCH Chair of Medicine and Regenerative Surgery, 08006 Barcelona, Spain
| |
Collapse
|
11
|
Piccoli M, Cirillo F, Ghiroldi A, Rota P, Coviello S, Tarantino A, La Rocca P, Lavota I, Creo P, Signorelli P, Pappone C, Anastasia L. Sphingolipids and Atherosclerosis: The Dual Role of Ceramide and Sphingosine-1-Phosphate. Antioxidants (Basel) 2023; 12:antiox12010143. [PMID: 36671005 PMCID: PMC9855164 DOI: 10.3390/antiox12010143] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 12/28/2022] [Accepted: 01/04/2023] [Indexed: 01/11/2023] Open
Abstract
Sphingolipids are bioactive molecules that play either pro- and anti-atherogenic roles in the formation and maturation of atherosclerotic plaques. Among SLs, ceramide and sphingosine-1-phosphate showed antithetic properties in regulating various molecular mechanisms and have emerged as novel potential targets for regulating the development of atherosclerosis. In particular, maintaining the balance of the so-called ceramide/S1P rheostat is important to prevent the occurrence of endothelial dysfunction, which is the trigger for the entire atherosclerotic process and is strongly associated with increased oxidative stress. In addition, these two sphingolipids, together with many other sphingolipid mediators, are directly involved in the progression of atherogenesis and the formation of atherosclerotic plaques by promoting the oxidation of low-density lipoproteins (LDL) and influencing the vascular smooth muscle cell phenotype. The modulation of ceramide and S1P levels may therefore allow the development of new antioxidant therapies that can prevent or at least impair the onset of atherogenesis, which would ultimately improve the quality of life of patients with coronary artery disease and significantly reduce their mortality.
Collapse
Affiliation(s)
- Marco Piccoli
- Laboratory of Stem Cells for Tissue Engineering, IRCCS Policlinico San Donato, Piazza Malan 2, San Donato Milanese, 20097 Milan, Italy
- Institute for Molecular and Translational Cardiology (IMTC), San Donato Milanese, 20097 Milan, Italy
| | - Federica Cirillo
- Laboratory of Stem Cells for Tissue Engineering, IRCCS Policlinico San Donato, Piazza Malan 2, San Donato Milanese, 20097 Milan, Italy
- Institute for Molecular and Translational Cardiology (IMTC), San Donato Milanese, 20097 Milan, Italy
| | - Andrea Ghiroldi
- Laboratory of Stem Cells for Tissue Engineering, IRCCS Policlinico San Donato, Piazza Malan 2, San Donato Milanese, 20097 Milan, Italy
- Institute for Molecular and Translational Cardiology (IMTC), San Donato Milanese, 20097 Milan, Italy
| | - Paola Rota
- Institute for Molecular and Translational Cardiology (IMTC), San Donato Milanese, 20097 Milan, Italy
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, 20133 Milan, Italy
| | - Simona Coviello
- Laboratory of Stem Cells for Tissue Engineering, IRCCS Policlinico San Donato, Piazza Malan 2, San Donato Milanese, 20097 Milan, Italy
- Institute for Molecular and Translational Cardiology (IMTC), San Donato Milanese, 20097 Milan, Italy
| | - Adriana Tarantino
- Laboratory of Stem Cells for Tissue Engineering, IRCCS Policlinico San Donato, Piazza Malan 2, San Donato Milanese, 20097 Milan, Italy
- Institute for Molecular and Translational Cardiology (IMTC), San Donato Milanese, 20097 Milan, Italy
- Faculty of Medicine and Surgery, University Vita-Salute San Raffaele, Via Olgettina 58, 20132 Milan, Italy
| | - Paolo La Rocca
- Institute for Molecular and Translational Cardiology (IMTC), San Donato Milanese, 20097 Milan, Italy
- Department of Biomedical Sciences for Health, University of Milan, Via Mangiagalli 31, 20133 Milan, Italy
| | - Ivana Lavota
- Laboratory of Stem Cells for Tissue Engineering, IRCCS Policlinico San Donato, Piazza Malan 2, San Donato Milanese, 20097 Milan, Italy
- Institute for Molecular and Translational Cardiology (IMTC), San Donato Milanese, 20097 Milan, Italy
| | - Pasquale Creo
- Laboratory of Stem Cells for Tissue Engineering, IRCCS Policlinico San Donato, Piazza Malan 2, San Donato Milanese, 20097 Milan, Italy
- Institute for Molecular and Translational Cardiology (IMTC), San Donato Milanese, 20097 Milan, Italy
| | - Paola Signorelli
- Institute for Molecular and Translational Cardiology (IMTC), San Donato Milanese, 20097 Milan, Italy
- Aldo Ravelli Center for Neurotechnology and Experimental Brain Therapeutics, Department of Health Sciences, University of Milan, Via Antonio di Rudinì 8, 20142 Milan, Italy
| | - Carlo Pappone
- Institute for Molecular and Translational Cardiology (IMTC), San Donato Milanese, 20097 Milan, Italy
- Faculty of Medicine and Surgery, University Vita-Salute San Raffaele, Via Olgettina 58, 20132 Milan, Italy
- Arrhythmology Department, IRCCS Policlinico San Donato, Piazza Malan 2, San Donato Milanese, 20097 Milan, Italy
| | - Luigi Anastasia
- Laboratory of Stem Cells for Tissue Engineering, IRCCS Policlinico San Donato, Piazza Malan 2, San Donato Milanese, 20097 Milan, Italy
- Institute for Molecular and Translational Cardiology (IMTC), San Donato Milanese, 20097 Milan, Italy
- Faculty of Medicine and Surgery, University Vita-Salute San Raffaele, Via Olgettina 58, 20132 Milan, Italy
- Correspondence: ; Tel.: +39-0226437765
| |
Collapse
|
12
|
Tolksdorf C, Moritz E, Wolf R, Meyer U, Marx S, Bien-Möller S, Garscha U, Jedlitschky G, Rauch BH. Platelet-Derived S1P and Its Relevance for the Communication with Immune Cells in Multiple Human Diseases. Int J Mol Sci 2022; 23:ijms231810278. [PMID: 36142188 PMCID: PMC9499465 DOI: 10.3390/ijms231810278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 09/02/2022] [Accepted: 09/03/2022] [Indexed: 11/16/2022] Open
Abstract
Sphingosine-1-phosphate (S1P) is a versatile signaling lipid involved in the regulation of numerous cellular processes. S1P regulates cellular proliferation, migration, and apoptosis as well as the function of immune cells. S1P is generated from sphingosine (Sph), which derives from the ceramide metabolism. In particular, high concentrations of S1P are present in the blood. This originates mainly from erythrocytes, endothelial cells (ECs), and platelets. While erythrocytes function as a storage pool for circulating S1P, platelets can rapidly generate S1P de novo, store it in large quantities, and release it when the platelet is activated. Platelets can thus provide S1P in a short time when needed or in the case of an injury with subsequent platelet activation and thereby regulate local cellular responses. In addition, platelet-dependently generated and released S1P may also influence long-term immune cell functions in various disease processes, such as inflammation-driven vascular diseases. In this review, the metabolism and release of platelet S1P are presented, and the autocrine versus paracrine functions of platelet-derived S1P and its relevance in various disease processes are discussed. New pharmacological approaches that target the auto- or paracrine effects of S1P may be therapeutically helpful in the future for pathological processes involving S1P.
Collapse
Affiliation(s)
- Céline Tolksdorf
- Division of Pharmacology and Toxicology, School of Medicine and Health Sciences, Carl von Ossietzky University Oldenburg, 26129 Oldenburg, Germany
- Department of General Pharmacology, University Medicine Greifswald, 17489 Greifswald, Germany
| | - Eileen Moritz
- Department of General Pharmacology, University Medicine Greifswald, 17489 Greifswald, Germany
| | - Robert Wolf
- Department of General Pharmacology, University Medicine Greifswald, 17489 Greifswald, Germany
| | - Ulrike Meyer
- Division of Pharmacology and Toxicology, School of Medicine and Health Sciences, Carl von Ossietzky University Oldenburg, 26129 Oldenburg, Germany
| | - Sascha Marx
- Department of Neurosurgery, University Medicine Greifswald, 17489 Greifswald, Germany
| | - Sandra Bien-Möller
- Department of General Pharmacology, University Medicine Greifswald, 17489 Greifswald, Germany
- Department of Neurosurgery, University Medicine Greifswald, 17489 Greifswald, Germany
| | - Ulrike Garscha
- Institute of Pharmacy, University of Greifswald, 17489 Greifswald, Germany
| | - Gabriele Jedlitschky
- Department of General Pharmacology, University Medicine Greifswald, 17489 Greifswald, Germany
| | - Bernhard H. Rauch
- Division of Pharmacology and Toxicology, School of Medicine and Health Sciences, Carl von Ossietzky University Oldenburg, 26129 Oldenburg, Germany
- Correspondence:
| |
Collapse
|
13
|
Keul P, Peters S, von Wnuck Lipinski K, Schröder NH, Nowak MK, Duse DA, Polzin A, Weske S, Gräler MH, Levkau B. Sphingosine-1-Phosphate (S1P) Lyase Inhibition Aggravates Atherosclerosis and Induces Plaque Rupture in ApoE−/− Mice. Int J Mol Sci 2022; 23:ijms23179606. [PMID: 36077004 PMCID: PMC9455951 DOI: 10.3390/ijms23179606] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 08/09/2022] [Accepted: 08/20/2022] [Indexed: 11/17/2022] Open
Abstract
Altered plasma sphingosine-1-phosphate (S1P) concentrations are associated with clinical manifestations of atherosclerosis. However, whether long-term elevation of endogenous S1P is pro- or anti-atherogenic remains unclear. Here, we addressed the impact of permanently high S1P levels on atherosclerosis in cholesterol-fed apolipoprotein E-deficient (ApoE−/−) mice over 12 weeks. This was achieved by pharmacological inhibition of the S1P-degrading enzyme S1P lyase with 4-deoxypyridoxine (DOP). DOP treatment dramatically accelerated atherosclerosis development, propagated predominantly unstable plaque phenotypes, and resulted in frequent plaque rupture with atherothrombosis. Macrophages from S1P lyase-inhibited or genetically deficient mice had a defect in cholesterol efflux to apolipoprotein A-I that was accompanied by profoundly downregulated cholesterol transporters ATP-binding cassette transporters ABCA1 and ABCG1. This was dependent on S1P signaling through S1PR3 and resulted in dramatically enhanced atherosclerosis in ApoE−/−/S1PR3−/− mice, where DOP treatment had no additional effect. Thus, high endogenous S1P levels promote atherosclerosis, compromise cholesterol efflux, and cause genuine plaque rupture.
Collapse
Affiliation(s)
- Petra Keul
- Institute for Molecular Medicine III, University Hospital Düsseldorf, University of Düsseldorf, 40225 Düsseldorf, Germany
| | - Susann Peters
- Institute for Molecular Medicine III, University Hospital Düsseldorf, University of Düsseldorf, 40225 Düsseldorf, Germany
| | - Karin von Wnuck Lipinski
- Institute for Molecular Medicine III, University Hospital Düsseldorf, University of Düsseldorf, 40225 Düsseldorf, Germany
| | - Nathalie H. Schröder
- Institute for Molecular Medicine III, University Hospital Düsseldorf, University of Düsseldorf, 40225 Düsseldorf, Germany
| | - Melissa K. Nowak
- Institute for Molecular Medicine III, University Hospital Düsseldorf, University of Düsseldorf, 40225 Düsseldorf, Germany
| | - Dragos A. Duse
- Institute for Molecular Medicine III, University Hospital Düsseldorf, University of Düsseldorf, 40225 Düsseldorf, Germany
| | - Amin Polzin
- Division of Cardiology, Pulmonology, and Vascular Medicine, Heinrich Heine University Medical Center Düsseldorf, 40225 Düsseldorf, Germany
| | - Sarah Weske
- Institute for Molecular Medicine III, University Hospital Düsseldorf, University of Düsseldorf, 40225 Düsseldorf, Germany
| | - Markus H. Gräler
- Department of Anesthesiology and Intensive Care Medicine, Center for Sepsis Control and Care and Center for Molecular Biomedicine, University Hospital Jena, 07743 Jena, Germany
| | - Bodo Levkau
- Institute for Molecular Medicine III, University Hospital Düsseldorf, University of Düsseldorf, 40225 Düsseldorf, Germany
- Correspondence: ; Tel.: +49-211-88-12611
| |
Collapse
|
14
|
Wollny T, Wnorowska U, Piktel E, Suprewicz Ł, Król G, Głuszek K, Góźdź S, Kopczyński J, Bucki R. Sphingosine-1-Phosphate-Triggered Expression of Cathelicidin LL-37 Promotes the Growth of Human Bladder Cancer Cells. Int J Mol Sci 2022; 23:7443. [PMID: 35806446 PMCID: PMC9267432 DOI: 10.3390/ijms23137443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 06/30/2022] [Accepted: 07/01/2022] [Indexed: 02/04/2023] Open
Abstract
It has been proven that tumour growth and progression are regulated by a variety of mediators released during the inflammatory process preceding the tumour appearance, but the role of inflammation in the development of bladder cancer is ambiguous. This study was designed around the hypothesis that sphingosine-1-phosphate (S1P), as a regulator of several cellular processes important in both inflammation and cancer development, may exert some of the pro-tumorigenic effects indirectly due to its ability to regulate the expression of human cathelicidin (hCAP-18). LL-37 peptide released from hCAP-18 is involved in the development of various types of cancer in humans, especially those associated with infections. Using immunohistological staining, we showed high expression of hCAP-18/LL-37 and sphingosine kinase 1 (the enzyme that forms S1P from sphingosine) in human bladder cancer cells. In a cell culture model, S1P was able to stimulate the expression and release of hCAP-18/LL-37 from human bladder cells, and the addition of LL-37 peptide dose-dependently increased their proliferation. Additionally, the effect of S1P on LL-37 release was inhibited in the presence of FTY720P, a synthetic immunosuppressant that blocks S1P receptors. Together, this study presents the possibility of paracrine relation in which LL-37 production following cell stimulation by S1P promotes the development and growth of bladder cancer.
Collapse
Affiliation(s)
- Tomasz Wollny
- Holy Cross Oncology Center of Kielce, Artwińskiego 3, 25-734 Kielce, Poland; (T.W.); (K.G.); (S.G.); (J.K.)
| | - Urszula Wnorowska
- Department of Medical Microbiology and Nanobiomedical Engineering, Medical University of Bialystok, Mickiewicza 2C, 15-222 Bialystok, Poland; (U.W.); (Ł.S.)
| | - Ewelina Piktel
- Independent Laboratory of Nanomedicine, Medical University of Bialystok, Mickiewicza 2B, 15-222 Bialystok, Poland;
| | - Łukasz Suprewicz
- Department of Medical Microbiology and Nanobiomedical Engineering, Medical University of Bialystok, Mickiewicza 2C, 15-222 Bialystok, Poland; (U.W.); (Ł.S.)
| | - Grzegorz Król
- Department of Microbiology and Immunology, Institute of Medical Science, Collegium Medicum, Jan Kochanowski University of Kielce, IX Wieków Kielc 19A, 25-317 Kielce, Poland;
| | - Katarzyna Głuszek
- Holy Cross Oncology Center of Kielce, Artwińskiego 3, 25-734 Kielce, Poland; (T.W.); (K.G.); (S.G.); (J.K.)
| | - Stanisław Góźdź
- Holy Cross Oncology Center of Kielce, Artwińskiego 3, 25-734 Kielce, Poland; (T.W.); (K.G.); (S.G.); (J.K.)
- Department of Microbiology and Immunology, Institute of Medical Science, Collegium Medicum, Jan Kochanowski University of Kielce, IX Wieków Kielc 19A, 25-317 Kielce, Poland;
| | - Janusz Kopczyński
- Holy Cross Oncology Center of Kielce, Artwińskiego 3, 25-734 Kielce, Poland; (T.W.); (K.G.); (S.G.); (J.K.)
| | - Robert Bucki
- Department of Medical Microbiology and Nanobiomedical Engineering, Medical University of Bialystok, Mickiewicza 2C, 15-222 Bialystok, Poland; (U.W.); (Ł.S.)
- Department of Microbiology and Immunology, Institute of Medical Science, Collegium Medicum, Jan Kochanowski University of Kielce, IX Wieków Kielc 19A, 25-317 Kielce, Poland;
| |
Collapse
|
15
|
Ngo PA, Neurath MF, López-Posadas R. Impact of Epithelial Cell Shedding on Intestinal Homeostasis. Int J Mol Sci 2022; 23:ijms23084160. [PMID: 35456978 PMCID: PMC9027054 DOI: 10.3390/ijms23084160] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 04/05/2022] [Accepted: 04/06/2022] [Indexed: 02/04/2023] Open
Abstract
The gut barrier acts as a first line of defense in the body, and plays a vital role in nutrition and immunoregulation. A layer of epithelial cells bound together via intercellular junction proteins maintains intestinal barrier integrity. Based on a tight equilibrium between cell extrusion and cell restitution, the renewal of the epithelium (epithelial turnover) permits the preservation of cell numbers. As the last step within the epithelial turnover, cell shedding occurs due to the pressure of cell division and migration from the base of the crypt. During this process, redistribution of tight junction proteins enables the sealing of the epithelial gap left by the extruded cell, and thereby maintains barrier function. Disturbance in cell shedding can create transient gaps (leaky gut) or cell accumulation in the epithelial layer. In fact, numerous studies have described the association between dysregulated cell shedding and infection, inflammation, and cancer; thus epithelial cell extrusion is considered a key defense mechanism. In the gastrointestinal tract, altered cell shedding has been observed in mouse models of intestinal inflammation and appears as a potential cause of barrier loss in human inflammatory bowel disease (IBD). Despite the relevance of this process, there are many unanswered questions regarding cell shedding. The investigation of those mechanisms controlling cell extrusion in the gut will definitely contribute to our understanding of intestinal homeostasis. In this review, we summarized the current knowledge about intestinal cell shedding under both physiological and pathological circumstances.
Collapse
Affiliation(s)
- Phuong A. Ngo
- Department of Medicine 1, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany; (P.A.N.); (M.F.N.)
- Deutsches Zentrum Immuntherapie (DZI), 91054 Erlangen, Germany
| | - Markus F. Neurath
- Department of Medicine 1, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany; (P.A.N.); (M.F.N.)
- Deutsches Zentrum Immuntherapie (DZI), 91054 Erlangen, Germany
| | - Rocío López-Posadas
- Department of Medicine 1, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany; (P.A.N.); (M.F.N.)
- Deutsches Zentrum Immuntherapie (DZI), 91054 Erlangen, Germany
- Correspondence:
| |
Collapse
|
16
|
Olesch C, Brüne B, Weigert A. Keep a Little Fire Burning-The Delicate Balance of Targeting Sphingosine-1-Phosphate in Cancer Immunity. Int J Mol Sci 2022; 23:ijms23031289. [PMID: 35163211 PMCID: PMC8836181 DOI: 10.3390/ijms23031289] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/21/2022] [Accepted: 01/21/2022] [Indexed: 11/16/2022] Open
Abstract
The sphingolipid sphingosine-1-phosphate (S1P) promotes tumor development through a variety of mechanisms including promoting proliferation, survival, and migration of cancer cells. Moreover, S1P emerged as an important regulator of tumor microenvironmental cell function by modulating, among other mechanisms, tumor angiogenesis. Therefore, S1P was proposed as a target for anti-tumor therapy. The clinical success of current cancer immunotherapy suggests that future anti-tumor therapy needs to consider its impact on the tumor-associated immune system. Hereby, S1P may have divergent effects. On the one hand, S1P gradients control leukocyte trafficking throughout the body, which is clinically exploited to suppress auto-immune reactions. On the other hand, S1P promotes pro-tumor activation of a diverse range of immune cells. In this review, we summarize the current literature describing the role of S1P in tumor-associated immunity, and we discuss strategies for how to target S1P for anti-tumor therapy without causing immune paralysis.
Collapse
Affiliation(s)
- Catherine Olesch
- Institute of Biochemistry I, Faculty of Medicine, Goethe-University Frankfurt, 60590 Frankfurt, Germany; (C.O.); (B.B.)
- Bayer Joint Immunotherapeutics Laboratory, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Bernhard Brüne
- Institute of Biochemistry I, Faculty of Medicine, Goethe-University Frankfurt, 60590 Frankfurt, Germany; (C.O.); (B.B.)
- Frankfurt Cancer Institute, Goethe-University Frankfurt, 60596 Frankfurt, Germany
- German Cancer Consortium (DKTK), Partner Site Frankfurt, 60596 Frankfurt, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology, Theodor-Stern-Kai 7, 60596 Frankfurt, Germany
| | - Andreas Weigert
- Institute of Biochemistry I, Faculty of Medicine, Goethe-University Frankfurt, 60590 Frankfurt, Germany; (C.O.); (B.B.)
- Frankfurt Cancer Institute, Goethe-University Frankfurt, 60596 Frankfurt, Germany
- German Cancer Consortium (DKTK), Partner Site Frankfurt, 60596 Frankfurt, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology, Theodor-Stern-Kai 7, 60596 Frankfurt, Germany
- Correspondence:
| |
Collapse
|
17
|
Gray N, Limberg MM, Bräuer AU, Raap U. Novel functions of S1P in chronic itchy and inflammatory skin diseases. J Eur Acad Dermatol Venereol 2021; 36:365-372. [PMID: 34679239 DOI: 10.1111/jdv.17764] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 08/12/2021] [Indexed: 12/18/2022]
Abstract
S1P is a pleotropic sphingolipid signalling molecule that acts through binding to five high-affinity G-protein coupled receptors. S1P-signaling affects cell fate in a multitude of ways, e.g. influencing cell differentiation, proliferation, and apoptosis, as well as playing an important role in immune cell trafficking. Though many effects of S1P-signaling in the human body have been discovered, the full range of functions is yet to be understood. For inflammatory skin diseases such as atopic dermatitis and psoriasis, evidence is emerging that dysfunction and imbalance of the S1P-axis is a contributing factor. Multiple studies investigating the efficacy of S1PR modulators in alleviating the severity and symptoms of skin conditions in various animal models and human clinical trials have shown promising results and validated the interest in the S1P-axis as a potential therapeutic target. Even though the involvement of S1P-signalling in inflammatory skin diseases still requires further clarification, the implications of the recent findings may prompt expansion of research to additional skin conditions and more S1P-axis modulatory pharmaceuticals.
Collapse
Affiliation(s)
- N Gray
- Division of Experimental Allergy and Immunodermatology, School of Medicine and Health Sciences, Carl von Ossietzky University Oldenburg, Oldenburg, Germany.,Division of Anatomy, School of Medicine and Health Sciences, Carl von Ossietzky University Oldenburg, Oldenburg, Germany
| | - M M Limberg
- Division of Experimental Allergy and Immunodermatology, School of Medicine and Health Sciences, Carl von Ossietzky University Oldenburg, Oldenburg, Germany
| | - A U Bräuer
- Division of Anatomy, School of Medicine and Health Sciences, Carl von Ossietzky University Oldenburg, Oldenburg, Germany.,Research Center for Neurosensory Science, Carl von Ossietzky University Oldenburg, Oldenburg, Germany
| | - U Raap
- Division of Experimental Allergy and Immunodermatology, School of Medicine and Health Sciences, Carl von Ossietzky University Oldenburg, Oldenburg, Germany.,Research Center for Neurosensory Science, Carl von Ossietzky University Oldenburg, Oldenburg, Germany
| |
Collapse
|
18
|
Ali T, Lei X, Barbour SE, Koizumi A, Chalfant CE, Ramanadham S. Alterations in β-Cell Sphingolipid Profile Associated with ER Stress and iPLA 2β: Another Contributor to β-Cell Apoptosis in Type 1 Diabetes. Molecules 2021; 26:molecules26216361. [PMID: 34770770 PMCID: PMC8587436 DOI: 10.3390/molecules26216361] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 10/11/2021] [Accepted: 10/11/2021] [Indexed: 02/06/2023] Open
Abstract
Type 1 diabetes (T1D) development, in part, is due to ER stress-induced β-cell apoptosis. Activation of the Ca2+-independent phospholipase A2 beta (iPLA2β) leads to the generation of pro-inflammatory eicosanoids, which contribute to β-cell death and T1D. ER stress induces iPLA2β-mediated generation of pro-apoptotic ceramides via neutral sphingomyelinase (NSMase). To gain a better understanding of the impact of iPLA2β on sphingolipids (SLs), we characterized their profile in β-cells undergoing ER stress. ESI/MS/MS analyses followed by ANOVA/Student’s t-test were used to assess differences in sphingolipids molecular species in Vector (V) control and iPLA2β-overexpressing (OE) INS-1 and Akita (AK, spontaneous model of ER stress) and WT-littermate (AK-WT) β-cells. As expected, iPLA2β induction was greater in the OE and AK cells in comparison with V and WT cells. We report here that ER stress led to elevations in pro-apoptotic and decreases in pro-survival sphingolipids and that the inactivation of iPLA2β restores the sphingolipid species toward those that promote cell survival. In view of our recent finding that the SL profile in macrophages—the initiators of autoimmune responses leading to T1D—is not significantly altered during T1D development, we posit that the iPLA2β-mediated shift in the β-cell sphingolipid profile is an important contributor to β-cell death associated with T1D.
Collapse
Affiliation(s)
- Tomader Ali
- Research Department, Imperial College London Diabetes Center, Abu Dhabi 51133, United Arab Emirates;
| | - Xiaoyong Lei
- Department of Cell, Developmental, and Integrative Biology and Comprehensive Diabetes Center, University of Alabama at Birmingham, Birmingham, AL 35294, USA;
| | - Suzanne E. Barbour
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA;
| | - Akio Koizumi
- Department of Health and Environmental Sciences, Kyoto Graduate School of Medicine, Kyoto 606-8501, Japan;
| | - Charles E. Chalfant
- Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, Tampa, FL 33620, USA;
| | - Sasanka Ramanadham
- Department of Cell, Developmental, and Integrative Biology and Comprehensive Diabetes Center, University of Alabama at Birmingham, Birmingham, AL 35294, USA;
- Correspondence: ; Tel.: +1-205-996-5973; Fax: +1-205-996-5220
| |
Collapse
|
19
|
Tian J, Huang T, Chang S, Wang Y, Fan W, Ji H, Wang J, Yang J, Kang J, Zhou Y. Role of sphingosine-1-phosphate mediated signalling in systemic lupus erythematosus. Prostaglandins Other Lipid Mediat 2021; 156:106584. [PMID: 34352381 DOI: 10.1016/j.prostaglandins.2021.106584] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 07/02/2021] [Accepted: 07/26/2021] [Indexed: 12/17/2022]
Abstract
Systemic lupus erythematosus (SLE) is a highly prevalent autoimmune disease characterized by the malfunction of the immune system and the persistent presence of an inflammatory environment. Multiple organs can be affected during SLE, leading to heterogeneous manifestations, which eventually result in the death of patients. Due to the lack of understanding regarding the pathogenesis of SLE, the currently available treatments remain suboptimal. Sphingosine-1-phosphate (S1P) is a central bioactive lipid of sphingolipid metabolism, which serves a pivotal role in regulating numerous physiological and pathological processes. As a well-recognized regulator of lymphocyte trafficking, S1P has been shown to be closely associated with autoimmune diseases, including SLE. Importantly, S1P levels have been found to be elevated in patients with SLE. In murine models of lupus, the increased levels of S1P also contribute to disease activity and organ impairment. Moreover, data from several studies also support the hypothesis that S1P receptors and its producer-sphingosine kinases (SPHK) may serve as the potential targets for the treatment of SLE and its co-morbidities. Given the significant success that intervening with S1P signaling has achieved in treating multiple sclerosis, further exploration of its role in SLE is necessary. Therefore, the aim of the present review is to summarize the recent advances in understanding the potential mechanism by which S1P influences SLE, with a primary focus on its role in immune regulation and inflammatory responses.
Collapse
Affiliation(s)
- Jihua Tian
- Department of Microbiology and Immunology, Shanxi Medical University, Taiyuan, Shanxi, China.
| | - Taiping Huang
- Department of Microbiology and Immunology, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Sijia Chang
- Department of Microbiology and Immunology, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Yanhong Wang
- Department of Microbiology and Immunology, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Weiping Fan
- Department of Microbiology and Immunology, Shanxi Medical University, Taiyuan, Shanxi, China
| | - He Ji
- Department of Microbiology and Immunology, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Juanjuan Wang
- Department of Microbiology and Immunology, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Jia Yang
- Department of Microbiology and Immunology, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Jing Kang
- Department of Microbiology and Immunology, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Yun Zhou
- Department of Nephrology, The Affiliated People's Hospital of Shanxi Medical University, Shanxi Provincial People's Hospital, Shanxi Kidney Disease Institute, Taiyuan, Shanxi, China.
| |
Collapse
|
20
|
Xu G, Yang Z, Sun Y, Dong H, Ma J. Interaction of microRNAs with sphingosine kinases, sphingosine-1 phosphate, and sphingosine-1 phosphate receptors in cancer. Discov Oncol 2021; 12:33. [PMID: 35201458 PMCID: PMC8777508 DOI: 10.1007/s12672-021-00430-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Accepted: 09/03/2021] [Indexed: 12/12/2022] Open
Abstract
Sphingosine-1-phosphate (S1P), a pleiotropic lipid mediator, participates in various cellular processes during tumorigenesis, including cell proliferation, survival, drug resistance, metastasis, and angiogenesis. S1P is formed by two sphingosine kinases (SphKs), SphK1 and SphK2. The intracellularly produced S1P is delivered to the extracellular space by ATP-binding cassette (ABC) transporters and spinster homolog 2 (SPNS2), where it binds to five transmembrane G protein-coupled receptors to mediate its oncogenic functions (S1PR1-S1PR5). MicroRNAs (miRNAs) are small non-coding RNAs, 21-25 nucleotides in length, that play numerous crucial roles in cancer, such as tumor initiation, progression, apoptosis, metastasis, and angiogenesis via binding to the 3'-untranslated region (3'-UTR) of the target mRNA. There is growing evidence that various miRNAs modulate tumorigenesis by regulating the expression of SphKs, and S1P receptors. We have reviewed various roles of miRNAs, SphKs, S1P, and S1P receptors (S1PRs) in malignancies and how notable miRNAs like miR-101, miR-125b, miR-128, and miR-506, miR-1246, miR-21, miR-126, miR499a, miR20a-5p, miR-140-5p, miR-224, miR-137, miR-183-5p, miR-194, miR181b, miR136, and miR-675-3p, modulate S1P signaling. These tumorigenesis modulating miRNAs are involved in different cancers including breast, gastric, hepatocellular carcinoma, prostate, colorectal, cervical, ovarian, and lung cancer via cell proliferation, invasion, angiogenesis, apoptosis, metastasis, immune evasion, chemoresistance, and chemosensitivity. Therefore, understanding the interaction of SphKs, S1P, and S1P receptors with miRNAs in human malignancies will lead to better insights for miRNA-based cancer therapy.
Collapse
Affiliation(s)
- Guangmeng Xu
- Department of Colorectal Surgery, The Second Hospital of Jilin University, Changchun, 130000 China
| | - Zecheng Yang
- Department of Gastrointestinal Surgery, The Second Hospital of Jilin University, Changchun, 130000 China
| | - Yamin Sun
- Department of Gastrointestinal Surgery, The Second Hospital of Jilin University, Changchun, 130000 China
| | - Hongmei Dong
- Department of Gastrointestinal Surgery, The Second Hospital of Jilin University, Changchun, 130000 China
| | - Jingru Ma
- Clinical Laboratory, The Second Hospital of Jilin University, Changchun, 130000 China
| |
Collapse
|
21
|
Extracellular Sphingosine-1-Phosphate Downstream of EGFR Increases Human Glioblastoma Cell Survival. Int J Mol Sci 2021; 22:ijms22136824. [PMID: 34201962 PMCID: PMC8268299 DOI: 10.3390/ijms22136824] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 06/21/2021] [Accepted: 06/23/2021] [Indexed: 11/22/2022] Open
Abstract
Sphingosine-1-phosphate (S1P) is a crucial mediator involved in the progression of different cancers, including glioblastoma multiforme (GBM), the most frequent and deadly human brain tumor, characterized by extensive invasiveness and rapid cell growth. Most of GBMs overexpress the epidermal growth factor receptor (EGFR), and we investigated the possible link between S1P and EGFR signaling pathways, focusing on its role in GBM survival, using the U87MG human cell line overexpressing EGFR (EGFR+). We previously demonstrated that EGFR+ cells have higher levels of extracellular S1P and increased sphingosine kinase-1 (SK1) activity than empty vector expressing cells. Notably, we demonstrated that EGFR+ cells are resistant to temozolomide (TMZ), the standard chemotherapeutic drug in GBM treatment, and the inhibition of SK1 or S1P receptors made EGFR+ cells sensitive to TMZ; moreover, exogenous S1P reverted this effect, thus involving extracellular S1P as a survival signal in TMZ resistance in GBM cells. In addition, both PI3K/AKT and MAPK inhibitors markedly reduced cell survival, suggesting that the enhanced resistance to TMZ of EGFR+ cells is dependent on the increased S1P secretion, downstream of the EGFR-ERK-SK1-S1P pathway. Altogether, our study provides evidence of a functional link between S1P and EGFR signaling pathways enhancing the survival properties of GBM cells.
Collapse
|
22
|
Motyl JA, Strosznajder JB, Wencel A, Strosznajder RP. Recent Insights into the Interplay of Alpha-Synuclein and Sphingolipid Signaling in Parkinson's Disease. Int J Mol Sci 2021; 22:ijms22126277. [PMID: 34207975 PMCID: PMC8230587 DOI: 10.3390/ijms22126277] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 06/01/2021] [Accepted: 06/02/2021] [Indexed: 01/22/2023] Open
Abstract
Molecular studies have provided increasing evidence that Parkinson’s disease (PD) is a protein conformational disease, where the spread of alpha-synuclein (ASN) pathology along the neuraxis correlates with clinical disease outcome. Pathogenic forms of ASN evoke oxidative stress (OS), neuroinflammation, and protein alterations in neighboring cells, thereby intensifying ASN toxicity, neurodegeneration, and neuronal death. A number of evidence suggest that homeostasis between bioactive sphingolipids with opposing function—e.g., sphingosine-1-phosphate (S1P) and ceramide—is essential in pro-survival signaling and cell defense against OS. In contrast, imbalance of the “sphingolipid biostat” favoring pro-oxidative/pro-apoptotic ceramide-mediated changes have been indicated in PD and other neurodegenerative disorders. Therefore, we focused on the role of sphingolipid alterations in ASN burden, as well as in a vast range of its neurotoxic effects. Sphingolipid homeostasis is principally directed by sphingosine kinases (SphKs), which synthesize S1P—a potent lipid mediator regulating cell fate and inflammatory response—making SphK/S1P signaling an essential pharmacological target. A growing number of studies have shown that S1P receptor modulators, and agonists are promising protectants in several neurological diseases. This review demonstrates the relationship between ASN toxicity and alteration of SphK-dependent S1P signaling in OS, neuroinflammation, and neuronal death. Moreover, we discuss the S1P receptor-mediated pathways as a novel promising therapeutic approach in PD.
Collapse
Affiliation(s)
- Joanna A. Motyl
- Department of Hybrid Microbiosystems Engineering, Nalecz Institute of Biocybernetics and Biomedical Engineering, Polish Academy of Sciences, Ks. Trojdena 4 St., 02-109 Warsaw, Poland; (J.A.M.); (A.W.)
| | - Joanna B. Strosznajder
- Department of Cellular Signalling, Mossakowski Medical Research Institute, Polish Academy of Sciences, 5 Pawinskiego St., 02-106 Warsaw, Poland;
| | - Agnieszka Wencel
- Department of Hybrid Microbiosystems Engineering, Nalecz Institute of Biocybernetics and Biomedical Engineering, Polish Academy of Sciences, Ks. Trojdena 4 St., 02-109 Warsaw, Poland; (J.A.M.); (A.W.)
| | - Robert P. Strosznajder
- Laboratory of Preclinical Research and Environmental Agents, Mossakowski Medical Research Institute, Polish Academy of Sciences, 5 Pawinskiego St., 02-106 Warsaw, Poland
- Correspondence:
| |
Collapse
|
23
|
Wiendl M, Becker E, Müller TM, Voskens CJ, Neurath MF, Zundler S. Targeting Immune Cell Trafficking - Insights From Research Models and Implications for Future IBD Therapy. Front Immunol 2021; 12:656452. [PMID: 34017333 PMCID: PMC8129496 DOI: 10.3389/fimmu.2021.656452] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 04/16/2021] [Indexed: 12/12/2022] Open
Abstract
Inflammatory bowel diseases (IBDs), including Crohn's disease (CD) and ulcerative colitis (UC) are multifactorial diseases with still unknown aetiology and an increasing prevalence and incidence worldwide. Despite plentiful therapeutic options for IBDs, the lack or loss of response in certain patients demands the development of further treatments to tackle this unmet medical need. In recent years, the success of the anti-α4β7 antibody vedolizumab highlighted the potential of targeting the homing of immune cells, which is now an important pillar of IBD therapy. Due to its complexity, leukocyte trafficking and the involved molecules offer a largely untapped resource for a plethora of potential therapeutic interventions. In this review, we aim to summarise current and future directions of specifically interfering with immune cell trafficking. We will comment on concepts of homing, retention and recirculation and particularly focus on the role of tissue-derived chemokines. Moreover, we will give an overview of the mode of action of drugs currently in use or still in the pipeline, highlighting their mechanisms and potential to reduce disease burden.
Collapse
Affiliation(s)
- Maximilian Wiendl
- Department of Medicine 1, Deutsches Zentrum Immuntherapie (DZI), University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Emily Becker
- Department of Medicine 1, Deutsches Zentrum Immuntherapie (DZI), University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Tanja M. Müller
- Department of Medicine 1, Deutsches Zentrum Immuntherapie (DZI), University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Caroline J. Voskens
- Department of Dermatology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Markus F. Neurath
- Department of Medicine 1, Deutsches Zentrum Immuntherapie (DZI), University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Sebastian Zundler
- Department of Medicine 1, Deutsches Zentrum Immuntherapie (DZI), University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
24
|
Yamashita T, Kushida Y, Abe K, Dezawa M. Non-Tumorigenic Pluripotent Reparative Muse Cells Provide a New Therapeutic Approach for Neurologic Diseases. Cells 2021; 10:cells10040961. [PMID: 33924240 PMCID: PMC8074773 DOI: 10.3390/cells10040961] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/15/2021] [Accepted: 04/17/2021] [Indexed: 02/06/2023] Open
Abstract
Muse cells are non-tumorigenic endogenous reparative pluripotent cells with high therapeutic potential. They are identified as cells positive for the pluripotent surface marker SSEA-3 in the bone marrow, peripheral blood, and connective tissue. Muse cells also express other pluripotent stem cell markers, are able to differentiate into cells representative of all three germ layers, self-renew from a single cell, and are stress tolerant. They express receptors for sphingosine-1-phosphate (S1P), which is actively produced by damaged cells, allowing circulating cells to selectively home to damaged tissue. Muse cells spontaneously differentiate on-site into multiple tissue-constituent cells with few errors and replace damaged/apoptotic cells with functional cells, thereby contributing to tissue repair. Intravenous injection of exogenous Muse cells to increase the number of circulating Muse cells enhances their reparative activity. Muse cells also have a specific immunomodulatory system, represented by HLA-G expression, allowing them to be directly administered without HLA-matching or immunosuppressant treatment. Owing to these unique characteristics, clinical trials using intravenously administered donor-Muse cells have been conducted for myocardial infarction, stroke, epidermolysis bullosa, spinal cord injury, perinatal hypoxic ischemic encephalopathy, and amyotrophic lateral sclerosis. Muse cells have the potential to break through the limitations of current cell therapies for neurologic diseases, including amyotrophic lateral sclerosis. Muse cells provide a new therapeutic strategy that requires no HLA-matching or immunosuppressant treatment for administering donor-derived cells, no gene introduction or differentiation induction for cell preparation, and no surgery for delivering the cells to patients.
Collapse
Affiliation(s)
- Toru Yamashita
- Department of Neurology, School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8558, Japan; (T.Y.); (K.A.)
| | - Yoshihiro Kushida
- Department of Stem Cell Biology and Histology, School of Medicine, Tohoku University, Sendai 980-8575, Japan;
| | - Koji Abe
- Department of Neurology, School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8558, Japan; (T.Y.); (K.A.)
| | - Mari Dezawa
- Department of Stem Cell Biology and Histology, School of Medicine, Tohoku University, Sendai 980-8575, Japan;
- Correspondence: ; Tel.: +81-22-717-8025; Fax: +81-22-717-8030
| |
Collapse
|
25
|
He Q, Bo J, Shen R, Li Y, Zhang Y, Zhang J, Yang J, Liu Y. S1P Signaling Pathways in Pathogenesis of Type 2 Diabetes. J Diabetes Res 2021; 2021:1341750. [PMID: 34751249 PMCID: PMC8571914 DOI: 10.1155/2021/1341750] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Revised: 12/24/2020] [Accepted: 01/04/2021] [Indexed: 02/06/2023] Open
Abstract
The pathogenesis of type 2 diabetes mellitus (T2DM) is very complicated. The currently well-accepted etiology is the "Ominous Octet" theory proposed by Professor Defronzo. Since presently used drugs for T2DM have limitations and harmful side effects, studies regarding alternative treatments are being conducted. Analyzing the pharmacological mechanism of biomolecules in view of pathogenesis is an effective way to assess new drugs. Sphingosine 1 phosphate (S1P), an endogenous lipid substance in the human body, has attracted increasing attention in the T2DM research field. This article reviews recent study updates of S1P, summarizing its effects on T2DM with respect to pathogenesis, promoting β cell proliferation and inhibiting apoptosis, reducing insulin resistance, protecting the liver and pancreas from lipotoxic damage, improving intestinal incretin effects, lowering basal glucagon levels, etc. With increasing research, S1P may help treat and prevent T2DM in the future.
Collapse
Affiliation(s)
- Qiong He
- Department of Endocrinology, First Hospital of Shanxi Medical University, Taiyuan 030001, Shanxi Province, China
| | - Jiaqi Bo
- Department of Second Medical College, Shanxi Medical University, Taiyuan 030001, Shanxi Province, China
| | - Ruihua Shen
- Department of Second Medical College, Shanxi Medical University, Taiyuan 030001, Shanxi Province, China
| | - Yan Li
- Department of Second Medical College, Shanxi Medical University, Taiyuan 030001, Shanxi Province, China
| | - Yi Zhang
- Department of Pharmacology, Shanxi Medical University, Taiyuan 030001, Shanxi Province, China
- Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan 030001, Shanxi Province, China
| | - Jiaxin Zhang
- Department of Endocrinology, First Hospital of Shanxi Medical University, Taiyuan 030001, Shanxi Province, China
| | - Jing Yang
- Department of Endocrinology, First Hospital of Shanxi Medical University, Taiyuan 030001, Shanxi Province, China
| | - Yunfeng Liu
- Department of Endocrinology, First Hospital of Shanxi Medical University, Taiyuan 030001, Shanxi Province, China
| |
Collapse
|
26
|
Doyle TM, Hutchinson MR, Braden K, Janes K, Staikopoulos V, Chen Z, Neumann WL, Spiegel S, Salvemini D. Sphingosine-1-phosphate receptor subtype 1 activation in the central nervous system contributes to morphine withdrawal in rodents. J Neuroinflammation 2020; 17:314. [PMID: 33092620 PMCID: PMC7584082 DOI: 10.1186/s12974-020-01975-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 09/30/2020] [Indexed: 01/08/2023] Open
Abstract
Opioid therapies for chronic pain are undermined by many adverse side effects that reduce their efficacy and lead to dependence, abuse, reduced quality of life, and even death. We have recently reported that sphingosine-1-phosphate (S1P) 1 receptor (S1PR1) antagonists block the development of morphine-induced hyperalgesia and analgesic tolerance. However, the impact of S1PR1 antagonists on other undesirable side effects of opioids, such as opioid-induced dependence, remains unknown. Here, we demonstrate that naloxone-precipitated morphine withdrawal in mice altered de novo sphingolipid metabolism in the dorsal horn of the spinal cord and increased S1P that accompanied the manifestation of several withdrawal behaviors. Blocking de novo sphingolipid metabolism with intrathecal administration of myriocin, an inhibitor of serine palmitoyltransferase, blocked naloxone-precipitated withdrawal. Noteworthy, we found that competitive (NIBR-15) and functional (FTY720) S1PR1 antagonists attenuated withdrawal behaviors in mice. Mechanistically, at the level of the spinal cord, naloxone-precipitated withdrawal was associated with increased glial activity and formation of the potent inflammatory/neuroexcitatory cytokine interleukin-1β (IL-1β); these events were attenuated by S1PR1 antagonists. These results provide the first molecular insight for the role of the S1P/S1PR1 axis during opioid withdrawal. Our data identify S1PR1 antagonists as potential therapeutics to mitigate opioid-induced dependence and support repurposing the S1PR1 functional antagonist FTY720, which is FDA-approved for multiple sclerosis, as an opioid adjunct.
Collapse
Affiliation(s)
- Timothy M Doyle
- Henry and Amelia Nasrallah Center for Neuroscience, Saint Louis University School of Medicine, 1402 South Grand Blvd, St. Louis, MO, 63104, USA.,Department of Pharmacology and Physiology, Saint Louis University School of Medicine, 1402 South Grand Blvd, St. Louis, MO, 63104, USA
| | - Mark R Hutchinson
- Discipline of Physiology, University of Adelaide, Adelaide, South Australia, 5005, Australia.,Institute for Photonics and Advanced Sensing, University of Adelaide, Adelaide, South Australia, 5005, Australia.,ARC Centre of Excellence for Nanoscale BioPhotonics, University of Adelaide, Adelaide, South Australia, 5005, Australia
| | - Kathryn Braden
- Henry and Amelia Nasrallah Center for Neuroscience, Saint Louis University School of Medicine, 1402 South Grand Blvd, St. Louis, MO, 63104, USA.,Department of Pharmacology and Physiology, Saint Louis University School of Medicine, 1402 South Grand Blvd, St. Louis, MO, 63104, USA
| | - Kali Janes
- Department of Pharmacology and Physiology, Saint Louis University School of Medicine, 1402 South Grand Blvd, St. Louis, MO, 63104, USA
| | - Vicky Staikopoulos
- Discipline of Physiology, University of Adelaide, Adelaide, South Australia, 5005, Australia.,Institute for Photonics and Advanced Sensing, University of Adelaide, Adelaide, South Australia, 5005, Australia.,ARC Centre of Excellence for Nanoscale BioPhotonics, University of Adelaide, Adelaide, South Australia, 5005, Australia
| | - Zhoumou Chen
- Henry and Amelia Nasrallah Center for Neuroscience, Saint Louis University School of Medicine, 1402 South Grand Blvd, St. Louis, MO, 63104, USA.,Department of Pharmacology and Physiology, Saint Louis University School of Medicine, 1402 South Grand Blvd, St. Louis, MO, 63104, USA
| | - William L Neumann
- Department of Pharmaceutical Sciences, School of Pharmacy, Southern Illinois University Edwardsville, 200 University Park, Edwardsville, IL, 62026, USA
| | - Sarah Spiegel
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, School of Medicine, 1101 E Marshall St, Richmond, VA, 23298, USA
| | - Daniela Salvemini
- Henry and Amelia Nasrallah Center for Neuroscience, Saint Louis University School of Medicine, 1402 South Grand Blvd, St. Louis, MO, 63104, USA. .,Department of Pharmacology and Physiology, Saint Louis University School of Medicine, 1402 South Grand Blvd, St. Louis, MO, 63104, USA.
| |
Collapse
|
27
|
Campanella R, Guarnaccia L, Caroli M, Zarino B, Carrabba G, La Verde N, Gaudino C, Rampini A, Luzzi S, Riboni L, Locatelli M, Navone SE, Marfia G. Personalized and translational approach for malignant brain tumors in the era of precision medicine: the strategic contribution of an experienced neurosurgery laboratory in a modern neurosurgery and neuro-oncology department. J Neurol Sci 2020; 417:117083. [PMID: 32784071 DOI: 10.1016/j.jns.2020.117083] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 07/16/2020] [Accepted: 08/04/2020] [Indexed: 12/20/2022]
Abstract
Personalized medicine (PM) aims to optimize patient management, taking into account the individual traits of each patient. The main purpose of PM is to obtain the best response, improving health care and lowering costs. Extending traditional approaches, PM introduces novel patient-specific paradigms from diagnosis to treatment, with greater precision. In neuro-oncology, the concept of PM is well established. Indeed, every neurosurgical intervention for brain tumors has always been highly personalized. In recent years, PM has been introduced in neuro-oncology also to design and prescribe specific therapies for the patient and the patient's tumor. The huge advances in basic and translational research in the fields of genetics, molecular and cellular biology, transcriptomics, proteomics, and metabolomics have led to the introduction of PM into clinical practice. The identification of a patient's individual variation map may allow to design selected therapeutic protocols that ensure successful outcomes and minimize harmful side effects. Thus, clinicians can switch from the "one-size-fits-all" approach to PM, ensuring better patient care and high safety margin. Here, we review emerging trends and the current literature about the development of PM in neuro-oncology, considering the positive impact of innovative advanced researches conducted by a neurosurgical laboratory.
Collapse
Affiliation(s)
- Rolando Campanella
- Laboratory of Experimental Neurosurgery and Cell Therapy, Neurosurgery Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Laura Guarnaccia
- Laboratory of Experimental Neurosurgery and Cell Therapy, Neurosurgery Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy; Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Manuela Caroli
- Laboratory of Experimental Neurosurgery and Cell Therapy, Neurosurgery Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Barbara Zarino
- Laboratory of Experimental Neurosurgery and Cell Therapy, Neurosurgery Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Giorgio Carrabba
- Laboratory of Experimental Neurosurgery and Cell Therapy, Neurosurgery Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | | | - Chiara Gaudino
- Department of Neuroradiology, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Angela Rampini
- Neurosurgery Unit, Department of Clinical-Surgical, Diagnostic and Pediatric Sciences, University of Pavia, Pavia, Italy
| | - Sabino Luzzi
- Neurosurgery Unit, Department of Clinical-Surgical, Diagnostic and Pediatric Sciences, University of Pavia, Pavia, Italy; Neurosurgery Unit, Department of Surgical Sciences, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Laura Riboni
- Department of Medical Biotechnology and Translational Medicine, LITA-Segrate, University of Milan, Milan, Italy
| | - Marco Locatelli
- Laboratory of Experimental Neurosurgery and Cell Therapy, Neurosurgery Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy; Aldo Ravelli" Research Center, Milan, Italy; Department of Medical-Surgical Physiopathology and Transplantation, University of Milan, Milan, Italy
| | - Stefania Elena Navone
- Laboratory of Experimental Neurosurgery and Cell Therapy, Neurosurgery Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy; Aldo Ravelli" Research Center, Milan, Italy.
| | - Giovanni Marfia
- Laboratory of Experimental Neurosurgery and Cell Therapy, Neurosurgery Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy; Aldo Ravelli" Research Center, Milan, Italy; Clinical Pathology Unit, Istituto di Medicina Aerospaziale "A. Moosso", Aeronautica Militare, Milan, Italy
| |
Collapse
|
28
|
Park SB, Choi BI, Lee BJ, Kim NJ, Jeong YA, Joo MK, Kim HJ, Park JJ, Kim JS, Noh YS, Lee HJ. Intestinal Epithelial Deletion of Sphk1 Prevents Colitis-Associated Cancer Development by Inhibition of Epithelial STAT3 Activation. Dig Dis Sci 2020; 65:2284-2293. [PMID: 31776862 DOI: 10.1007/s10620-019-05971-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Accepted: 11/16/2019] [Indexed: 01/12/2023]
Abstract
BACKGROUND AND AIMS Colitis-associated cancer (CAC) is one of the most serious complications in patients with inflammatory bowel disease. Sphingosine kinase 1 (Sphk1) is a key enzyme in the sphingolipid pathway and has oncogene potential for inducing both initiation and progression of tumors. The aim of this work is to characterize the role of epithelial Sphk1 in mouse colitis and CAC models. METHODS We investigated the roles of Sphk1 in CAC by conditional deletion of Sphk1 in intestinal epithelial cells (IECs). RESULTS CAC was induced in both Sphk1ΔIEC/ApcMin/+ and Sphk1IEC/ApcMin/+ mice by administration of 2% dextran sodium sulfate (DSS) for 7 days. Genetic deletion of Sphk1 significantly reduced the number and size of tumors in ApcMin/+ mice. Histologic grade was more severe in Sphk1ΔIEC/ApcMin/+ mice compared with Sphk1IEC/ApcMin/+ mice (invasive carcinoma, 71% versus 13%, p < 0.05). Deletion of Sphk1 decreased mucosal proliferation and inhibited STAT3 activation and genetic expression of cyclin D1 and cMyc in tumor cells. Conditional deletion of Sphk1 using CRISPR-Cas9 in HCT 116 cells inhibited interleukin (IL)-6-mediated STAT3 activation. CONCLUSIONS Epithelial conditional deletion of Sphk1 inhibits CAC in ApcMin/+-DSS models in mice by inhibiting STAT3 activation and its target signaling pathways.
Collapse
Affiliation(s)
- Seung Bin Park
- Division of Gastroenterology, Department of Internal Medicine, Korea University Guro Hospital, College of Medicine, Korea University, 80, Guro-dong, Guro-gu, Seoul, Korea
| | - Byung-Il Choi
- Division of Gastroenterology, Department of Internal Medicine, Korea University Guro Hospital, College of Medicine, Korea University, 80, Guro-dong, Guro-gu, Seoul, Korea
| | - Beom Jae Lee
- Division of Gastroenterology, Department of Internal Medicine, Korea University Guro Hospital, College of Medicine, Korea University, 80, Guro-dong, Guro-gu, Seoul, Korea.
| | - Nam Joo Kim
- Division of Gastroenterology, Department of Internal Medicine, Korea University Guro Hospital, College of Medicine, Korea University, 80, Guro-dong, Guro-gu, Seoul, Korea
| | - Yoon A Jeong
- Division of Gastroenterology, Department of Internal Medicine, Korea University Guro Hospital, College of Medicine, Korea University, 80, Guro-dong, Guro-gu, Seoul, Korea
| | - Moon Kyung Joo
- Division of Gastroenterology, Department of Internal Medicine, Korea University Guro Hospital, College of Medicine, Korea University, 80, Guro-dong, Guro-gu, Seoul, Korea
| | - Hyo Jung Kim
- Division of Gastroenterology, Department of Internal Medicine, Korea University Guro Hospital, College of Medicine, Korea University, 80, Guro-dong, Guro-gu, Seoul, Korea
| | - Jong-Jae Park
- Division of Gastroenterology, Department of Internal Medicine, Korea University Guro Hospital, College of Medicine, Korea University, 80, Guro-dong, Guro-gu, Seoul, Korea
| | - Jae Seon Kim
- Division of Gastroenterology, Department of Internal Medicine, Korea University Guro Hospital, College of Medicine, Korea University, 80, Guro-dong, Guro-gu, Seoul, Korea
| | - Yoon-Seok Noh
- College of Pharmacy, Chungbuk National University, Cheongju, Korea
| | - Hyun Joo Lee
- Department of Pathology, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Korea
| |
Collapse
|
29
|
Modulation of DNA Damage Response by Sphingolipid Signaling: An Interplay that Shapes Cell Fate. Int J Mol Sci 2020; 21:ijms21124481. [PMID: 32599736 PMCID: PMC7349968 DOI: 10.3390/ijms21124481] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 05/07/2020] [Accepted: 05/08/2020] [Indexed: 12/11/2022] Open
Abstract
Although once considered as structural components of eukaryotic biological membranes, research in the past few decades hints at a major role of bioactive sphingolipids in mediating an array of physiological processes including cell survival, proliferation, inflammation, senescence, and death. A large body of evidence points to a fundamental role for the sphingolipid metabolic pathway in modulating the DNA damage response (DDR). The interplay between these two elements of cell signaling determines cell fate when cells are exposed to metabolic stress or ionizing radiation among other genotoxic agents. In this review, we aim to dissect the mediators of the DDR and how these interact with the different sphingolipid metabolites to mount various cellular responses.
Collapse
|
30
|
Bahlas S, Damiati LA, Al-Hazmi AS, Pushparaj PN. Decoding the Role of Sphingosine-1-Phosphate in Asthma and Other Respiratory System Diseases Using Next Generation Knowledge Discovery Platforms Coupled With Luminex Multiple Analyte Profiling Technology. Front Cell Dev Biol 2020; 8:444. [PMID: 32637407 PMCID: PMC7317666 DOI: 10.3389/fcell.2020.00444] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 05/12/2020] [Indexed: 12/20/2022] Open
Abstract
Sphingosine-1-phosphate (S1P) is a pleiotropic sphingolipid derived by the phosphorylation of sphingosine either by sphingosine kinase 1 (SPHK1) or SPHK2. Importantly, S1P acts through five different types of G-protein coupled S1P receptors (S1PRs) in immune cells to elicit inflammation and other immunological processes by enhancing the production of various cytokines, chemokines, and growth factors. The airway inflammation in asthma and other respiratory diseases is augmented by the activation of immune cells and the induction of T-helper cell type 2 (Th2)-associated cytokines and chemokines. Therefore, studying the S1P mediated signaling in airway inflammation is crucial to formulate effective treatment and management strategies for asthma and other respiratory diseases. The central aim of this study is to characterize the molecular targets induced through the S1P/S1PR axis and dissect the therapeutic importance of this key axis in asthma, airway inflammation, and other related respiratory diseases. To achieve this, we have adopted both high throughput next-generation knowledge discovery platforms such as SwissTargetPrediction, WebGestalt, Open Targets Platform, and Ingenuity Pathway Analysis (Qiagen, United States) to delineate the molecular targets of S1P and further validated the upstream regulators of S1P signaling using cutting edge multiple analyte profiling (xMAP) technology (Luminex Corporation, United States) to define the importance of S1P signaling in asthma and other respiratory diseases in humans.
Collapse
Affiliation(s)
- Sami Bahlas
- Department of Internal Medicine, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Laila A Damiati
- Department of Biology, Faculty of Biological Sciences, University of Jeddah, Jeddah, Saudi Arabia
| | - Ayman S Al-Hazmi
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, Makkah, Saudi Arabia
| | - Peter Natesan Pushparaj
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia.,Center of Excellence in Genomic Medicine Research, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
31
|
Abstract
The signaling lipid sphingosine 1-phosphate (S1P) plays critical roles in an immune response. Drugs targeting S1P signaling have been remarkably successful in treatment of multiple sclerosis, and they have shown promise in clinical trials for colitis and psoriasis. One mechanism of these drugs is to block lymphocyte exit from lymph nodes, where lymphocytes are initially activated, into circulation, from which lymphocytes can reach sites of inflammation. Indeed, S1P can be considered a circulation marker, signaling to immune cells to help them find blood and lymphatic vessels, and to endothelial cells to stabilize the vasculature. That said, S1P plays pleiotropic roles in the immune response, and it will be important to build an integrated view of how S1P shapes inflammation. S1P can function so effectively because its distribution is exquisitely tightly controlled. Here we review how S1P gradients regulate immune cell exit from tissues, with particular attention to key outstanding questions in the field.
Collapse
Affiliation(s)
- Audrey A.L. Baeyens
- Skirball Institute of Biomolecular Medicine, New York University School of Medicine, New York, NY 10016, USA;,
| | - Susan R. Schwab
- Skirball Institute of Biomolecular Medicine, New York University School of Medicine, New York, NY 10016, USA;,
| |
Collapse
|
32
|
Rothe R, Schulze S, Neuber C, Hauser S, Rammelt S, Pietzsch J. Adjuvant drug-assisted bone healing: Part II - Modulation of angiogenesis. Clin Hemorheol Microcirc 2020; 73:409-438. [PMID: 31177206 DOI: 10.3233/ch-199103] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The treatment of critical-size bone defects following complicated fractures, infections or tumor resections is a major challenge. The same applies to fractures in patients with impaired bone healing due to systemic inflammatory and metabolic diseases. Despite considerable progress in development and establishment of new surgical techniques, design of bone graft substitutes and imaging techniques, these scenarios still represent unresolved clinical problems. However, the development of new active substances offers novel potential solutions for these issues. This work discusses therapeutic approaches that influence angiogenesis or hypoxic situations in healing bone and surrounding tissue. In particular, literature on sphingosine-1-phosphate receptor modulators and nitric oxide (NO•) donors, including bi-functional (hybrid) compounds like NO•-releasing cyclooxygenase-2 inhibitors, was critically reviewed with regard to their local and systemic mode of action.
Collapse
Affiliation(s)
- Rebecca Rothe
- Department of Radiopharmaceutical and Chemical Biology, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Institute of Radiopharmaceutical Cancer Research, Dresden, Germany
| | - Sabine Schulze
- University Center of Orthopaedics and Traumatology (OUC), University Hospital Carl Gustav Carus, Dresden, Germany.,Center for Translational Bone, Joint and Soft Tissue Research, University Hospital Carl Gustav Carus and Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Christin Neuber
- Department of Radiopharmaceutical and Chemical Biology, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Institute of Radiopharmaceutical Cancer Research, Dresden, Germany
| | - Sandra Hauser
- Department of Radiopharmaceutical and Chemical Biology, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Institute of Radiopharmaceutical Cancer Research, Dresden, Germany
| | - Stefan Rammelt
- University Center of Orthopaedics and Traumatology (OUC), University Hospital Carl Gustav Carus, Dresden, Germany.,Center for Translational Bone, Joint and Soft Tissue Research, University Hospital Carl Gustav Carus and Faculty of Medicine, Technische Universität Dresden, Dresden, Germany.,Center for Regenerative Therapies Dresden (CRTD), Tatzberg 4, Dresden, Germany
| | - Jens Pietzsch
- Department of Radiopharmaceutical and Chemical Biology, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Institute of Radiopharmaceutical Cancer Research, Dresden, Germany.,Technische Universität Dresden, School of Science, Faculty of Chemistry and Food Chemistry, Dresden, Germany
| |
Collapse
|
33
|
Argollo M, Furfaro F, Gilardi D, Roda G, Allocca M, Peyrin-Biroulet L, Danese S. Modulation of sphingosine-1-phosphate in ulcerative colitis. Expert Opin Biol Ther 2020; 20:413-420. [PMID: 32093531 DOI: 10.1080/14712598.2020.1732919] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Introduction: Sphingosine-1-phosphate (S1P) is a membrane-derived lysophospholipid signaling molecule implicated in various physiological and pathological processes, such as regulation of the immune, cardiovascular, pulmonary, and nervous systems and theoretical cancer-related risks, through extracellular activation of S1P1-5 receptors.Areas covered: S1P receptor agonism is a novel strategy for the treatment of UC targeting lymphocyte recirculation, through blockade of lymphocyte egress from lymph nodes. We conducted an extensive literature review on PUBMED on currently available data on molecular aspects of S1P modulation, the mechanisms of action of S1PR agonists (fingolimod, ozanimod, etrasimod, and KRP-203), and their potential efficacy and safety for the treatment of patients with ulcerative colitis.Expert opinion: Selective S1P modulators have emerged to enlarge the efficacy and safety profile of this class of agents. Phase 3 programs should add the potential body of evidence to prove their benefit for the management of UC patients.
Collapse
Affiliation(s)
- Marjorie Argollo
- Department of Gastroenterology, Universidade Federal de São Paulo, São Paulo, Brazil.,IBD Centre, Humanitas Clinical and Research Centre, Milan, Italy
| | - Federica Furfaro
- IBD Centre, Humanitas Clinical and Research Centre, Milan, Italy
| | - Daniela Gilardi
- IBD Centre, Humanitas Clinical and Research Centre, Milan, Italy
| | - Giulia Roda
- IBD Centre, Humanitas Clinical and Research Centre, Milan, Italy
| | - Mariangela Allocca
- IBD Centre, Humanitas Clinical and Research Centre, Milan, Italy.,Department of Biomedical Sciences, Humanitas University, Milan, Italy
| | - Laurent Peyrin-Biroulet
- Department of Gastroenterology and Inserm U954, Nancy University Hospital, Lorraine University, Vandoeuvre, France
| | - Silvio Danese
- IBD Centre, Humanitas Clinical and Research Centre, Milan, Italy.,Department of Biomedical Sciences, Humanitas University, Milan, Italy
| |
Collapse
|
34
|
Sakai E, Kurano M, Morita Y, Aoki J, Yatomi Y. Establishment of a Measurement System for Sphingolipids in the Cerebrospinal Fluid Based on Liquid Chromatography-Tandem Mass Spectrometry, and Its Application in the Diagnosis of Carcinomatous Meningitis. J Appl Lab Med 2020; 5:656-670. [DOI: 10.1093/jalm/jfaa022] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 11/19/2019] [Indexed: 12/14/2022]
Abstract
Abstract
Objectives
Sphingolipids have been demonstrated to be involved in many human diseases. However, measurement of sphingolipids, especially of sphingosine 1-phosphate (S1P) and dihydro-sphingosine 1-phosphate (dhS1P), in blood samples requires strict sampling, since blood cells easily secrete these substances during sampling and storage, making it difficult to introduce measurement of sphingolipids in clinical laboratory medicine. On the other hand, cerebrospinal fluid (CSF) contains few blood cells. Therefore, we attempted to establish a system based on liquid chromatography-tandem mass spectrometry (LC-MS/MS) for the measurement of sphingolipids in the CSF, and applied it for the diagnosis of carcinomatous meningitis.
Methods
We developed and validated a LC-MS/MS-based measurement system for S1P and dhS1P and for ceramides and sphingosines, used this system to measure the levels of these sphingolipids in the CSF collected from the subjects with cancerous meningitis, and compared the levels with those in normal routine CSF samples.
Results
Both the measurement systems for S1P/dhS1P and for ceramides/sphingosines provided precision with the coefficient of variation below 20% for sphingolipids in the CSF samples. We also confirmed that the levels of S1P, as well as ceramides/sphingosines, in the CSF samples did not increase after the sampling. In the CSF samples collected from patients with cancerous meningitis, we observed that the ratio of S1P to ceramides/sphingosine and that of dhS1P to dihydro-sphingosine were higher than those in control samples.
Conclusions
We established and validated a measurement system for sphingolipids in the CSF. The system offers promise for being introduced into clinical laboratory testing.
Collapse
Affiliation(s)
- Eri Sakai
- Department of Clinical Laboratory Medicine, Graduate School of Medicine, Tokyo, Japan
| | - Makoto Kurano
- Department of Clinical Laboratory Medicine, Graduate School of Medicine, Tokyo, Japan
| | - Yoshifumi Morita
- Department of Clinical Laboratory, The University of Tokyo Hospital, Tokyo, Japan
| | - Junken Aoki
- Laboratory of Molecular and Cellular Biochemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Miyagi, Japan
| | - Yutaka Yatomi
- Department of Clinical Laboratory Medicine, Graduate School of Medicine, Tokyo, Japan
| |
Collapse
|
35
|
Yang CH, Di Antonio A, Kirschen GW, Varma P, Hsieh J, Ge S. Circuit Integration Initiation of New Hippocampal Neurons in the Adult Brain. Cell Rep 2020; 30:959-968.e3. [PMID: 31995766 PMCID: PMC7011119 DOI: 10.1016/j.celrep.2019.12.084] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 10/18/2019] [Accepted: 12/19/2019] [Indexed: 11/28/2022] Open
Abstract
In the adult brain, new dentate granule cells integrate into neural circuits and participate in hippocampal functioning. However, when and how they initiate this integration remain poorly understood. Using retroviral and live-imaging methods, we find that new neurons undergo neurite remodeling for competitive horizontal-to-radial repositioning in the dentate gyrus prior to circuit integration. Gene expression profiling, lipidomics analysis, and molecular interrogation of new neurons during this period reveal a rapid activation of sphingolipid signaling mediated by sphingosine-1-phosphate receptor 1. Genetic manipulation of this G protein-coupled receptor reveals its requirement for successful repositioning of new neurons. This receptor is also activated by hippocampus-engaged behaviors, which enhances repositioning efficiency. These findings reveal that activity-dependent sphingolipid signaling regulates cellular repositioning of new dentate granule cells. The competitive horizontal-to-radial repositioning of new neurons may provide a gating strategy in the adult brain to limit the integration of new neurons into pre-existing circuits.
Collapse
Affiliation(s)
- Chih-Hao Yang
- Department of Pharmacology, School of Medicine, College of Medicine, Taipei Medical University, Taiwan; Department of Neurobiology & Behavior, SUNY at Stony Brook, Stony Brook, NY 11794, USA
| | - Adrian Di Antonio
- Program in Neuroscience, SUNY at Stony Brook, Stony Brook, NY 11794, USA
| | - Gregory W Kirschen
- Medical Science Training Program, Renaissance School of Medicine at Stony Brook University, Stony Brook, NY 11794, USA
| | - Parul Varma
- Department of Biology and Brain Health Consortium, The University of Texas at San Antonio, San Antonio, TX 78249, USA
| | - Jenny Hsieh
- Department of Biology and Brain Health Consortium, The University of Texas at San Antonio, San Antonio, TX 78249, USA
| | - Shaoyu Ge
- Department of Neurobiology & Behavior, SUNY at Stony Brook, Stony Brook, NY 11794, USA.
| |
Collapse
|
36
|
Wang P, Yuan Y, Lin W, Zhong H, Xu K, Qi X. Roles of sphingosine-1-phosphate signaling in cancer. Cancer Cell Int 2019; 19:295. [PMID: 31807117 PMCID: PMC6857321 DOI: 10.1186/s12935-019-1014-8] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 11/01/2019] [Indexed: 12/15/2022] Open
Abstract
The potent pleiotropic lipid mediator sphingosine-1-phosphate (S1P) participates in numerous cellular processes, including angiogenesis and cell survival, proliferation, and migration. It is formed by one of two sphingosine kinases (SphKs), SphK1 and SphK2. These enzymes largely exert their various biological and pathophysiological actions through one of five G protein-coupled receptors (S1PR1–5), with receptor activation setting in motion various signaling cascades. Considerable evidence has been accumulated on S1P signaling and its pathogenic roles in diseases, as well as on novel modulators of S1P signaling, such as SphK inhibitors and S1P agonists and antagonists. S1P and ceramide, composed of sphingosine and a fatty acid, are reciprocal cell fate regulators, and S1P signaling plays essential roles in several diseases, including inflammation, cancer, and autoimmune disorders. Thus, targeting of S1P signaling may be one way to block the pathogenesis and may be a therapeutic target in these conditions. Increasingly strong evidence indicates a role for the S1P signaling pathway in the progression of cancer and its effects. In the present review, we discuss recent progress in our understanding of S1P and its related proteins in cancer progression. Also described is the therapeutic potential of S1P receptors and their downstream signaling cascades as targets for cancer treatment.
Collapse
Affiliation(s)
- Peng Wang
- 1Key Laboratory of Diagnostic Imaging and Interventional Radiology of Liaoning Province, Department of Radiology, The First Affiliated Hospital of China Medical University, Shenyang, 110001 Liaoning China
| | - Yonghui Yuan
- 1Key Laboratory of Diagnostic Imaging and Interventional Radiology of Liaoning Province, Department of Radiology, The First Affiliated Hospital of China Medical University, Shenyang, 110001 Liaoning China.,2Research and Academic Department, Cancer Hospital of China Medical University Liaoning Cancer Hospital & Institute, Shenyang, 110042 Liaoning China
| | - Wenda Lin
- 1Key Laboratory of Diagnostic Imaging and Interventional Radiology of Liaoning Province, Department of Radiology, The First Affiliated Hospital of China Medical University, Shenyang, 110001 Liaoning China
| | - Hongshan Zhong
- 1Key Laboratory of Diagnostic Imaging and Interventional Radiology of Liaoning Province, Department of Radiology, The First Affiliated Hospital of China Medical University, Shenyang, 110001 Liaoning China
| | - Ke Xu
- 1Key Laboratory of Diagnostic Imaging and Interventional Radiology of Liaoning Province, Department of Radiology, The First Affiliated Hospital of China Medical University, Shenyang, 110001 Liaoning China
| | - Xun Qi
- 1Key Laboratory of Diagnostic Imaging and Interventional Radiology of Liaoning Province, Department of Radiology, The First Affiliated Hospital of China Medical University, Shenyang, 110001 Liaoning China
| |
Collapse
|
37
|
Weske S, Vaidya M, von Wnuck Lipinski K, Keul P, Manthe K, Burkhart C, Haberhauer G, Heusch G, Levkau B. Agonist-induced activation of the S1P receptor 2 constitutes a novel osteoanabolic therapy for the treatment of osteoporosis in mice. Bone 2019; 125:1-7. [PMID: 31028959 DOI: 10.1016/j.bone.2019.04.015] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 04/09/2019] [Accepted: 04/23/2019] [Indexed: 02/07/2023]
Abstract
BACKGROUND AND PURPOSE Osteoporosis is a worldwide epidemic but pharmacological agents to stimulate new bone formation are scarce. We have shown that increasing tissue levels of sphingosine-1-phosphate (S1P) by blocking its degradation by the S1P lyase has pronounced osteoanabolic effect in mouse osteoporosis models by stimulating osteoblast differentiation through the S1P receptor 2 (S1P2). However, S1P lyase inhibitors have side effects complicating potential clinical use. Here, we tested whether direct S1P2 engagement by the S1P2 agonist CYM5520 exerted osteoanabolic potential in estrogen deficiency-induced osteopenia in mice. We compared its efficacy to LX2931, a novel S1P lyase inhibitor currently tested in rheumatoid arthritis. EXPERIMENTAL APPROACH CYM5520, LX2931 or vehicle were administered to ovariectomized mice for 6 weeks beginning 5 weeks after ovariectomy, Bone mass, cellular composition and mechanical strength were assessed by microCT, histomorphometry and three point bending tests. Plasma markers of bone metabolism were analyzed by ELISA. KEY RESULTS Therapeutic treatment with CYM5520 and LX2931 clearly increased long bone and vertebral bone mass to impressive 3-5 fold over vehicle in osteopenic ovariectomized mice. As expected, lymphopenia was a side effect of LX2931, whereas none occurred with CYM5520. Consistent with an osteoanabolic effect, CYM5520 increased osteoblast number, osteoid surface and alkaline phosphatase area 2-3 fold over vehicle. Plasma concentrations of the osteoanabolic marker procollagen I C-terminal propeptide were also elevated by CYM5520 and LX2931. LX2931 but not yet CYM5520 increased cortical thickness and mechanical strength without affecting mineral density. CONCLUSION AND IMPLICATIONS Treatment with a pharmacological S1P2 agonist corrected ovariectomy-induced osteopenia in mice by inducing new bone formation thus constituting a novel osteoanabolic approach to osteoporosis.
Collapse
Affiliation(s)
- Sarah Weske
- Institute for Pathophysiology, University Hospital Essen, University of Duisburg-Essen, Germany
| | - Mithila Vaidya
- Institute for Pathophysiology, University Hospital Essen, University of Duisburg-Essen, Germany
| | | | - Petra Keul
- Institute for Pathophysiology, University Hospital Essen, University of Duisburg-Essen, Germany
| | - Kristina Manthe
- Institute for Pathophysiology, University Hospital Essen, University of Duisburg-Essen, Germany
| | | | | | - Gerd Heusch
- Institute for Pathophysiology, University Hospital Essen, University of Duisburg-Essen, Germany
| | - Bodo Levkau
- Institute for Pathophysiology, University Hospital Essen, University of Duisburg-Essen, Germany.
| |
Collapse
|
38
|
Le Stunff H, Véret J, Kassis N, Denom J, Meneyrol K, Paul JL, Cruciani-Guglielmacci C, Magnan C, Janel N. Deciphering the Link Between Hyperhomocysteinemia and Ceramide Metabolism in Alzheimer-Type Neurodegeneration. Front Neurol 2019; 10:807. [PMID: 31417486 PMCID: PMC6684947 DOI: 10.3389/fneur.2019.00807] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 07/15/2019] [Indexed: 12/13/2022] Open
Abstract
Aging is one of the strongest risk factor for Alzheimer's disease (AD). However, several data suggest that dyslipidemia can either contribute or serve as co-factors in AD appearance. AD could be examined as a metabolic disorder mediated by peripheral insulin resistance. Insulin resistance is associated with dyslipidemia, which results in increased hepatic ceramide generation. Hepatic steatosis induces pro-inflammatory cytokine activation which is mediated by the increased ceramides production. Ceramides levels increased in cells due to perturbation in sphingolipid metabolism and upregulated expression of enzymes involved in ceramide synthesis. Cytotoxic ceramides and related molecules generated in liver promote insulin resistance, traffic through the circulation due to injury or cell death caused by local liver inflammation, and because of their hydrophobic nature, they can cross the blood-brain barrier and thereby exert neurotoxic responses as reducing insulin signaling and increasing pro-inflammatory cytokines. These abnormalities propagate a cascade of neurodegeneration associated with oxidative stress and ceramide generation, which potentiate brain insulin resistance, apoptosis, myelin degeneration, and neuro-inflammation. Therefore, excess of toxic lipids generated in liver can cause neurodegeneration. Elevated homocysteine level is also a risk factor for AD pathology and is narrowly associated with metabolic diseases and non-alcoholic fatty liver disease. The existence of a homocysteine/ceramides signaling pathway suggests that homocysteine toxicity could be partly mediated by intracellular ceramide accumulation due to stimulation of ceramide synthase. In this article, we briefly examined the role of homocysteine and ceramide metabolism linking metabolic diseases and non-alcoholic fatty liver disease to AD. We therefore analyzed the expression of mainly enzymes implicated in ceramide and sphingolipid metabolism and demonstrated deregulation of de novo ceramide biosynthesis and S1P metabolism in liver and brain of hyperhomocysteinemic mice.
Collapse
Affiliation(s)
- Hervé Le Stunff
- Université de Paris, BFA, UMR 8251, CNRS, Paris, France.,Institut des Neurosciences Paris-Saclay (Neuro-PSI), Université Paris-Sud, CNRS UMR 9197, Orsay, France
| | - Julien Véret
- Université de Paris, BFA, UMR 8251, CNRS, Paris, France
| | - Nadim Kassis
- Université de Paris, BFA, UMR 8251, CNRS, Paris, France
| | - Jessica Denom
- Université de Paris, BFA, UMR 8251, CNRS, Paris, France
| | | | - Jean-Louis Paul
- AP-HP, Hôpital Européen Georges Pompidou, Service de Biochimie, Paris, France
| | | | | | | |
Collapse
|
39
|
Gao Y, Wang Z, Tang J, Liu X, Shi W, Qin N, Wang X, Pang Y, Li R, Zhang Y, Wang J, Niu M, Bai Z, Xiao X. New incompatible pair of TCM: Epimedii Folium combined with Psoraleae Fructus induces idiosyncratic hepatotoxicity under immunological stress conditions. Front Med 2019; 14:68-80. [PMID: 30924023 DOI: 10.1007/s11684-019-0690-z] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 12/27/2018] [Indexed: 12/19/2022]
Abstract
Epimedii Folium (EF) combined with Psoraleae Fructus (PF) is a common modern preparation, but liver injury caused by Chinese patent medicine preparations containing EF and PF has been frequently reported in recent years. Zhuangguguanjiewan pills (ZGW), which contain EF and PF, could induce immune idiosyncratic liver injury according to clinical case reports and a nonhepatotoxic dose of lipopolysaccharide (LPS) model. This present study evaluated the liver injury induced by EF or PF alone or in combination and investigated the related mechanism by using the LPS model. Liver function indexes and pathological results showed that either EF or PF alone or in combination led to liver injury in normal rats; however, EF or PF alone could lead to liver injury in LPS-treated rats. Moreover, EF combined with PF could induce a greater degree of injury than that caused by EF or PF alone in LPS-treated rats. Furthermore, EF or PF alone or in combination enhanced the LPS-stimulated inflammatory cytokine production, implying that IL-1β, which is processed and released by activating the NLRP3 inflammasome, is a specific indicator of EF-induced immune idiosyncratic hepatotoxicity. Thus, EF may induce liver injury through enhancing the LPS-mediated proinflammatory cytokine production and activating the NLRP3 inflammasome. In addition, the metabolomics analysis results showed that PF affected more metabolites in glycerophospholipid and sphingolipid metabolic pathways compared with EF in LPS model, suggesting that PF increased the responsiveness of the liver to LPS or other inflammatory mediators via modulation of multiple metabolic pathways. Therefore, EF and PF combination indicates traditional Chinese medicine incompatibility, considering that it induces idiosyncratic hepatotoxicity under immunological stress conditions.
Collapse
Affiliation(s)
- Yuan Gao
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
- China Military Institute of Chinese Materia, the Fifth Medical Centre, Chinese PLA General Hospital, Beijing, 100039, China
| | - Zhilei Wang
- China Military Institute of Chinese Materia, the Fifth Medical Centre, Chinese PLA General Hospital, Beijing, 100039, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Jinfa Tang
- The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, 450000, China
| | - Xiaoyi Liu
- China Military Institute of Chinese Materia, the Fifth Medical Centre, Chinese PLA General Hospital, Beijing, 100039, China
| | - Wei Shi
- China Military Institute of Chinese Materia, the Fifth Medical Centre, Chinese PLA General Hospital, Beijing, 100039, China
- School of Pharmacy, Jiangxi University of Traditional Chinese Medicine, Jiangxi, 330004, China
| | - Nan Qin
- China Military Institute of Chinese Materia, the Fifth Medical Centre, Chinese PLA General Hospital, Beijing, 100039, China
- School of Pharmacy, Jiangxi University of Traditional Chinese Medicine, Jiangxi, 330004, China
| | - Xiaoyan Wang
- The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, 450000, China
| | - Yu Pang
- National Institutes for Food and Drug Control, Beijing, 100050, China
| | - Ruisheng Li
- Research Center for Clinical and Translational Medicine, the Fifth Medical Centre, Chinese PLA General Hospital, Beijing, 100039, China
| | - Yaming Zhang
- China Military Institute of Chinese Materia, the Fifth Medical Centre, Chinese PLA General Hospital, Beijing, 100039, China
| | - Jiabo Wang
- China Military Institute of Chinese Materia, the Fifth Medical Centre, Chinese PLA General Hospital, Beijing, 100039, China
| | - Ming Niu
- China Military Institute of Chinese Materia, the Fifth Medical Centre, Chinese PLA General Hospital, Beijing, 100039, China.
| | - Zhaofang Bai
- China Military Institute of Chinese Materia, the Fifth Medical Centre, Chinese PLA General Hospital, Beijing, 100039, China.
| | - Xiaohe Xiao
- Integrative Medical Centre, the Fifth Medical Centre, Chinese PLA General Hospital, Beijing, 100039, China.
| |
Collapse
|
40
|
Pérez-Jeldres T, Tyler CJ, Boyer JD, Karuppuchamy T, Yarur A, Giles DA, Yeasmin S, Lundborg L, Sandborn WJ, Patel DR, Rivera-Nieves J. Targeting Cytokine Signaling and Lymphocyte Traffic via Small Molecules in Inflammatory Bowel Disease: JAK Inhibitors and S1PR Agonists. Front Pharmacol 2019; 10:212. [PMID: 30930775 PMCID: PMC6425155 DOI: 10.3389/fphar.2019.00212] [Citation(s) in RCA: 100] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Accepted: 02/19/2019] [Indexed: 12/11/2022] Open
Abstract
The inflammatory Bowel diseases (IBDs) are a chronic, relapsing inflammatory diseases of the gastrointestinal tract with heterogeneous behavior and prognosis. The introduction of biological therapies including anti-TNF, anti-IL-12/23, and anti-integrins, has revolutionized the treatment of IBD, but these drugs are not universally effective. Due to the complex molecular structures of biologics, they are uniformly immunogenic. New discoveries concerning the underlying mechanisms involved in the pathogenesis of IBD have allowed for progress in the development of new treatment options. The advantage of small molecules (SMs) over biological therapies includes their lack of immunogenicity, short half-life, oral administration, and low manufacturing cost. Among these, the Janus Kinases (JAKs) inhibition has emerged as a novel strategy to modulate downstream cytokine signaling during immune-mediated diseases. These drugs target various cytokine signaling pathways that participate in the pathogenesis of IBD. Tofacitinib, a JAK inhibitor targeting predominantly JAK1 and JAK3, has been approved for the treatment of ulcerative colitis (UC), and there are other specific JAK inhibitors under development that may be effective in Crohn's. Similarly, the traffic of lymphocytes can now be targeted by another SM. Sphingosine-1-phosphate receptor (S1PR) agonism is a novel strategy that acts, in part, by interfering with lymphocyte recirculation, through blockade of lymphocyte egress from lymph nodes. S1PR agonists are being studied in IBD and other immune-mediated disorders. This review will focus on SM drugs approved and under development, including JAK inhibitors (tofacitinib, filgotinib, upadacitinib, peficitinib) and S1PR agonists (KRP-203, fingolimod, ozanimod, etrasimod, amiselimod), and their mechanism of action.
Collapse
Affiliation(s)
- Tamara Pérez-Jeldres
- Inflammatory Bowel Disease Center, Division of Gastroenterology, University of California, San Diego, La Jolla, CA, United States
- Department of Medicine, Pontifical Universidad Católica de Chile, Santiago, Chile
- San Borja Arriarán Clinic Hospital, Santiago, Chile
| | - Christopher J. Tyler
- Inflammatory Bowel Disease Center, Division of Gastroenterology, University of California, San Diego, La Jolla, CA, United States
- VA San Diego Healthcare System, San Diego, CA, United States
| | - Joshua D. Boyer
- Inflammatory Bowel Disease Center, Division of Gastroenterology, University of California, San Diego, La Jolla, CA, United States
- VA San Diego Healthcare System, San Diego, CA, United States
| | - Thangaraj Karuppuchamy
- Inflammatory Bowel Disease Center, Division of Gastroenterology, University of California, San Diego, La Jolla, CA, United States
- VA San Diego Healthcare System, San Diego, CA, United States
| | - Andrés Yarur
- Division of Gastroenterology and Hepatology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Daniel A. Giles
- La Jolla Institute for Allergy and Immunology, San Diego, CA, United States
| | - Shaila Yeasmin
- Inflammatory Bowel Disease Center, Division of Gastroenterology, University of California, San Diego, La Jolla, CA, United States
| | - Luke Lundborg
- Inflammatory Bowel Disease Center, Division of Gastroenterology, University of California, San Diego, La Jolla, CA, United States
| | - William J. Sandborn
- Inflammatory Bowel Disease Center, Division of Gastroenterology, University of California, San Diego, La Jolla, CA, United States
| | - Derek R. Patel
- Inflammatory Bowel Disease Center, Division of Gastroenterology, University of California, San Diego, La Jolla, CA, United States
| | - Jesús Rivera-Nieves
- Inflammatory Bowel Disease Center, Division of Gastroenterology, University of California, San Diego, La Jolla, CA, United States
- VA San Diego Healthcare System, San Diego, CA, United States
| |
Collapse
|
41
|
Pérez-Jeldres T, Tyler CJ, Boyer JD, Karuppuchamy T, Bamias G, Dulai PS, Boland BS, Sandborn WJ, Patel DR, Rivera-Nieves J. Cell Trafficking Interference in Inflammatory Bowel Disease: Therapeutic Interventions Based on Basic Pathogenesis Concepts. Inflamm Bowel Dis 2019; 25:270-282. [PMID: 30165490 PMCID: PMC6327230 DOI: 10.1093/ibd/izy269] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Indexed: 12/27/2022]
Abstract
After 20 years of successful targeting of pro-inflammatory cytokines for the treatment of IBD, an alternative therapeutic strategy has emerged, based on several decades of advances in understanding the pathogenesis of IBD. The targeting of molecules involved in leukocyte traffic has recently become a safe and effective alternative. With 2 currently approved drugs (ie, natalizumab, vedolizumab) and several others in phase 3 trials (eg, etrolizumab, ozanimod, anti-MAdCAM-1), the blockade of trafficking molecules has firmly emerged as a new therapeutic era for IBD. We discuss the targets that have been explored in clinical trials: chemokines and its receptors (eg, IP10, CCR9), integrins (eg, natalizumab, AJM300, vedolizumab, and etrolizumab), and its endothelial ligands (MAdCAM-1, ICAM-1). We also discuss a distinct strategy that interferes with lymphocyte recirculation by blocking lymphocyte egress from lymph nodes (small molecule sphingosine-phosphate receptor [S1PR] agonists: fingolimod, ozanimod, etrasimod, amiselimod). Strategies on the horizon include additional small molecules, allosteric inhibitors that specifically bind to the active integrin form and nanovectors that allow for the use of RNA interference in the quest to modulate pro-inflammatory leukocyte trafficking in IBD.
Collapse
Affiliation(s)
- Tamara Pérez-Jeldres
- Inflammatory Bowel Disease Center, Division of Gastroenterology, University of California San Diego, La Jolla, CA, USA
- Hospital San Borja Arriarán, Santiago, Chile
- Universidad Católica de Chile, Santiago, Chile
| | - Christopher J Tyler
- Inflammatory Bowel Disease Center, Division of Gastroenterology, University of California San Diego, La Jolla, CA, USA
- VA San Diego Healthcare System, San Diego, CA, USA
| | - Joshua D Boyer
- Inflammatory Bowel Disease Center, Division of Gastroenterology, University of California San Diego, La Jolla, CA, USA
- VA San Diego Healthcare System, San Diego, CA, USA
| | - Thangaraj Karuppuchamy
- Inflammatory Bowel Disease Center, Division of Gastroenterology, University of California San Diego, La Jolla, CA, USA
- VA San Diego Healthcare System, San Diego, CA, USA
| | - Giorgos Bamias
- GI Unit, 3rd Academic Department of Internal Medicine, National and Kapodistrian University of Athens, Sotiria Hospital, Athens, Greece
| | - Parambir S Dulai
- Inflammatory Bowel Disease Center, Division of Gastroenterology, University of California San Diego, La Jolla, CA, USA
- VA San Diego Healthcare System, San Diego, CA, USA
| | - Brigid S Boland
- Inflammatory Bowel Disease Center, Division of Gastroenterology, University of California San Diego, La Jolla, CA, USA
| | - William J Sandborn
- Inflammatory Bowel Disease Center, Division of Gastroenterology, University of California San Diego, La Jolla, CA, USA
| | - Derek R Patel
- Inflammatory Bowel Disease Center, Division of Gastroenterology, University of California San Diego, La Jolla, CA, USA
| | - Jesús Rivera-Nieves
- Inflammatory Bowel Disease Center, Division of Gastroenterology, University of California San Diego, La Jolla, CA, USA
- VA San Diego Healthcare System, San Diego, CA, USA
| |
Collapse
|
42
|
Kajimoto T, Caliman AD, Tobias IS, Okada T, Pilo CA, Van AAN, Andrew McCammon J, Nakamura SI, Newton AC. Activation of atypical protein kinase C by sphingosine 1-phosphate revealed by an aPKC-specific activity reporter. Sci Signal 2019; 12:eaat6662. [PMID: 30600259 PMCID: PMC6657501 DOI: 10.1126/scisignal.aat6662] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Atypical protein kinase C (aPKC) isozymes are unique in the PKC superfamily in that they are not regulated by the lipid second messenger diacylglycerol, which has led to speculation about whether a different second messenger acutely controls their function. Here, using a genetically encoded reporter that we designed, aPKC-specific C kinase activity reporter (aCKAR), we found that the lipid mediator sphingosine 1-phosphate (S1P) promoted the cellular activity of aPKC. Intracellular S1P directly bound to the purified kinase domain of aPKC and relieved autoinhibitory constraints, thereby activating the kinase. In silico studies identified potential binding sites on the kinase domain, one of which was validated biochemically. In HeLa cells, S1P-dependent activation of aPKC suppressed apoptosis. Together, our findings identify a previously undescribed molecular mechanism of aPKC regulation, a molecular target for S1P in cell survival regulation, and a tool to further explore the biochemical and biological functions of aPKC.
Collapse
Affiliation(s)
- Taketoshi Kajimoto
- Department of Pharmacology, University of California at San Diego, La Jolla, CA 92037, USA.
- Division of Biochemistry, Department of Biochemistry and Molecular Biology, Graduate School of Medicine, Kobe University, Kobe 650-0017, Japan
| | - Alisha D Caliman
- Department of Pharmacology, University of California at San Diego, La Jolla, CA 92037, USA
| | - Irene S Tobias
- Department of Pharmacology, University of California at San Diego, La Jolla, CA 92037, USA
| | - Taro Okada
- Division of Biochemistry, Department of Biochemistry and Molecular Biology, Graduate School of Medicine, Kobe University, Kobe 650-0017, Japan
| | - Caila A Pilo
- Department of Pharmacology, University of California at San Diego, La Jolla, CA 92037, USA
| | - An-Angela N Van
- Department of Pharmacology, University of California at San Diego, La Jolla, CA 92037, USA
| | - J Andrew McCammon
- Department of Pharmacology, University of California at San Diego, La Jolla, CA 92037, USA
| | - Shun-Ichi Nakamura
- Division of Biochemistry, Department of Biochemistry and Molecular Biology, Graduate School of Medicine, Kobe University, Kobe 650-0017, Japan
| | - Alexandra C Newton
- Department of Pharmacology, University of California at San Diego, La Jolla, CA 92037, USA.
| |
Collapse
|
43
|
Dihydro-sphingosine 1-phosphate interacts with carrier proteins in a manner distinct from that of sphingosine 1-phosphate. Biosci Rep 2018; 38:BSR20181288. [PMID: 30279204 PMCID: PMC6209608 DOI: 10.1042/bsr20181288] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 09/17/2018] [Accepted: 09/26/2018] [Indexed: 01/02/2023] Open
Abstract
Dihydro-sphingosine 1-phosphate (DH-S1P) is an analog of sphingosine 1-phosphate (S1P), which is a potent lysophospholipid mediator. DH-S1P has been proposed to exert physiological properties similar to S1P. Although S1P is known to be carried on HDL via apolipoprotein M (apoM), the association between DH-S1P and HDL/apoM has not been fully elucidated. Therefore, in the present study, we aimed to elucidate this association and to compare it with that of S1P and HDL/apoM. First, we investigated the distributions of S1P and DH-S1P among lipoproteins and lipoprotein-depleted fractions in human serum and plasma samples and observed that both S1P and DH-S1P were detected on HDL; furthermore, elevated amounts of DH-S1P in serum samples were distributed to the lipoprotein-depleted fraction to a greater degree than to the HDL fraction. Concordantly, a preference for HDL over albumin was only observed for S1P, and not for DH-S1P, when the molecules were secreted from platelets. Regarding the association with HDL, although both S1P and DH-S1P prefer to bind to HDL, HDL preferentially accepts S1P over DH-S1P. For the association with apoM, S1P was not detected on HDL obtained from apoM knockout mice, while DH-S1P was detected. Moreover, apoM retarded the degradation of S1P, but not of DH-S1P. These results suggest that S1P binds to HDL via apoM, while DH-S1P binds to HDL in a non-specific manner. Thus, DH-S1P is not a mere analog of S1P and might possess unique clinical significance.
Collapse
|
44
|
Regulation of the metabolism of apolipoprotein M and sphingosine 1-phosphate by hepatic PPARγ activity. Biochem J 2018; 475:2009-2024. [PMID: 29712716 DOI: 10.1042/bcj20180052] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Revised: 04/19/2018] [Accepted: 04/27/2018] [Indexed: 02/06/2023]
Abstract
Apolipoprotein M (apoM) is a carrier and a modulator of sphingosine 1-phosphate (S1P), an important multifunctional bioactive lipid. Since peroxisome proliferator-activated receptor γ (PPARγ) is reportedly associated with the function and metabolism of S1P, we investigated the modulation of apoM/S1P homeostasis by PPARγ. First, we investigated the modulation of apoM and S1P homeostasis by the overexpression or knockdown of PPARγ in HepG2 cells and found that both the overexpression and the knockdown of PPARγ decreased apoM expression and S1P synthesis. When we activated or suppressed the PPARγ more mildly with pioglitazone or GW9662, we found that pioglitazone suppressed apoM expression and S1P synthesis, while GW9662 increased them. Next, we overexpressed PPARγ in mouse liver through adenoviral gene transfer and observed that both the plasma and hepatic apoM levels and the plasma S1P levels decreased, while the hepatic S1P levels increased, in the presence of enhanced sphingosine kinase activity. Treatment with pioglitazone decreased both the plasma and hepatic apoM and S1P levels only in diet-induced obese mice. Moreover, the overexpression of apoM increased, while the knockdown of apoM suppressed PPARγ activities in HepG2 cells. These results suggested that PPARγ regulates the S1P levels by modulating apoM in a bell-shaped manner, with the greatest levels of apoM/S1P observed when PPARγ was mildly expressed and that hepatic apoM/PPARγ axis might maintain the homeostasis of S1P metabolism.
Collapse
|
45
|
Sphingosine Kinase 1 Regulates Inflammation and Contributes to Acute Lung Injury in Pneumococcal Pneumonia via the Sphingosine-1-Phosphate Receptor 2. Crit Care Med 2018; 46:e258-e267. [DOI: 10.1097/ccm.0000000000002916] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
46
|
Cattaneo MG, Vanetti C, Samarani M, Aureli M, Bassi R, Sonnino S, Giussani P. Cross-talk between sphingosine-1-phosphate and EGFR signaling pathways enhances human glioblastoma cell invasiveness. FEBS Lett 2018; 592:949-961. [PMID: 29427528 DOI: 10.1002/1873-3468.13000] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 01/26/2018] [Accepted: 02/01/2018] [Indexed: 11/07/2022]
Abstract
We show that glioblastoma multiform (GBM) cells overexpressing the constitutively active form of the epidermal growth factor receptor [epidermal growth factor receptor variant III (EGFRvIII) and U87MG human GBM cell line overexpressing EGFRvIII (EGFR+) cells] possess greater invasive properties and have higher levels of extracellular sphingosine-1-phosphate (S1P) and increased sphingosine kinase-1 (SK1) activity than the empty vector-expressing cells. Notably, the inhibition of SK1 or S1P receptors decreases the invasiveness of EGFR+ cells. Moreover, EGFR and MEK1 inhibitors reduce both SK1 activation and cell invasion, suggesting that the enhanced invasiveness observed in the EGFR+ cells depends on the increased S1P secretion, downstream of the EGFRvIII-ERK-SK1-S1P pathway. Altogether, the results of the present study indicate that, in GBM cells, EGFRvIII is connected with the S1P signaling pathway to enhance cell invasiveness and tumor progression.
Collapse
Affiliation(s)
- Maria Grazia Cattaneo
- Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, Italy
| | - Claudia Vanetti
- Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, Italy
| | - Maura Samarani
- Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, LITA Segrate, Milano, Italy
| | - Massimo Aureli
- Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, LITA Segrate, Milano, Italy
| | - Rosaria Bassi
- Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, LITA Segrate, Milano, Italy
| | - Sandro Sonnino
- Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, LITA Segrate, Milano, Italy
| | - Paola Giussani
- Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, LITA Segrate, Milano, Italy
| |
Collapse
|
47
|
Korbecki J, Gutowska I, Kojder I, Jeżewski D, Goschorska M, Łukomska A, Lubkowska A, Chlubek D, Baranowska-Bosiacka I. New extracellular factors in glioblastoma multiforme development: neurotensin, growth differentiation factor-15, sphingosine-1-phosphate and cytomegalovirus infection. Oncotarget 2018; 9:7219-7270. [PMID: 29467963 PMCID: PMC5805549 DOI: 10.18632/oncotarget.24102] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Accepted: 01/02/2018] [Indexed: 11/25/2022] Open
Abstract
Recent years have seen considerable progress in understanding the biochemistry of cancer. For example, more significance is now assigned to the tumor microenvironment, especially with regard to intercellular signaling in the tumor niche which depends on many factors secreted by tumor cells. In addition, great progress has been made in understanding the influence of factors such as neurotensin, growth differentiation factor-15 (GDF-15), sphingosine-1-phosphate (S1P), and infection with cytomegalovirus (CMV) on the 'hallmarks of cancer' in glioblastoma multiforme. Therefore, in the present work we describe the influence of these factors on the proliferation and apoptosis of neoplastic cells, cancer stem cells, angiogenesis, migration and invasion, and cancer immune evasion in a glioblastoma multiforme tumor. In particular, we discuss the effect of neurotensin, GDF-15, S1P (including the drug FTY720), and infection with CMV on tumor-associated macrophages (TAM), microglial cells, neutrophil and regulatory T cells (Treg), on the tumor microenvironment. In order to better understand the role of the aforementioned factors in tumoral processes, we outline the latest models of intratumoral heterogeneity in glioblastoma multiforme. Based on the most recent reports, we discuss the problems of multi-drug therapy in treating glioblastoma multiforme.
Collapse
Affiliation(s)
- Jan Korbecki
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, 70-111 Szczecin, Poland.,Department of Biochemistry and Molecular Biology, Faculty of Health Sciences, University of Bielsko-Biała, 43-309 Bielsko-Biała, Poland
| | - Izabela Gutowska
- Department of Biochemistry and Human Nutrition, Pomeranian Medical University in Szczecin, 71-460 Szczecin, Poland
| | - Ireneusz Kojder
- Department of Applied Neurocognitivistics, Pomeranian Medical University in Szczecin, 71-252 Szczecin, Poland.,Department of Neurosurgery, Pomeranian Medical University in Szczecin, 71-252 Szczecin, Poland
| | - Dariusz Jeżewski
- Department of Applied Neurocognitivistics, Pomeranian Medical University in Szczecin, 71-252 Szczecin, Poland.,Department of Neurosurgery, Pomeranian Medical University in Szczecin, 71-252 Szczecin, Poland
| | - Marta Goschorska
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, 70-111 Szczecin, Poland
| | - Agnieszka Łukomska
- Department of Biochemistry and Human Nutrition, Pomeranian Medical University in Szczecin, 71-460 Szczecin, Poland
| | - Anna Lubkowska
- Department of Functional Diagnostics and Physical Medicine, Pomeranian Medical University in Szczecin, 71-210 Szczecin, Poland
| | - Dariusz Chlubek
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, 70-111 Szczecin, Poland
| | - Irena Baranowska-Bosiacka
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, 70-111 Szczecin, Poland
| |
Collapse
|
48
|
Badawy SMM, Okada T, Kajimoto T, Ijuin T, Nakamura SI. DHHC5-mediated palmitoylation of S1P receptor subtype 1 determines G-protein coupling. Sci Rep 2017; 7:16552. [PMID: 29185452 PMCID: PMC5707436 DOI: 10.1038/s41598-017-16457-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Accepted: 11/13/2017] [Indexed: 01/02/2023] Open
Abstract
Sphingosine 1-phosphate (S1P) is a pleiotropic lipid mediator involved in the regulation of immune cell trafficking and vascular permeability acting mainly through G-protein-coupled S1P receptors (S1PRs). However, mechanism underlying how S1PRs are coupled with G-proteins remains unknown. Here we have uncovered that palmitoylation of a prototypical subtype S1P1R is prerequisite for subsequent inhibitory G-protein (Gi) coupling. We have identified DHHC5 as an enzyme for palmitoylation of S1P1R. Under basal conditions, S1P1R was functionally associated with DHHC5 in the plasma membranes (PM) and was fully palmitoylated, enabling Gi coupling. Upon stimulation, the receptor underwent internalisation leaving DHHC5 in PM, resulting in depalmitoylation of S1P1R. We also revealed that while physiological agonist S1P-induced endocytosed S1P1R readily recycled back to PM, pharmacological FTY720-P-induced endocytosed S1P1R-positive vesicles became associated with DHHC5 in the later phase, persistently transmitting Gi signals there. This indicates that FTY720-P switches off the S1P signal in PM, while switching on its signal continuously inside the cells. We propose that DHHC5-mediated palmitoylation of S1P1R determines Gi coupling and its signalling in a spatio/temporal manner.
Collapse
Affiliation(s)
- Shaymaa Mohamed Mohamed Badawy
- Division of Biochemistry, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Kobe, 650-0017, Japan
| | - Taro Okada
- Division of Biochemistry, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Kobe, 650-0017, Japan
| | - Taketoshi Kajimoto
- Division of Biochemistry, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Kobe, 650-0017, Japan
| | - Takeshi Ijuin
- Division of Biochemistry, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Kobe, 650-0017, Japan
| | - Shun-Ichi Nakamura
- Division of Biochemistry, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Kobe, 650-0017, Japan.
| |
Collapse
|
49
|
Abou Daher A, El Jalkh T, Eid AA, Fornoni A, Marples B, Zeidan YH. Translational Aspects of Sphingolipid Metabolism in Renal Disorders. Int J Mol Sci 2017; 18:E2528. [PMID: 29186855 PMCID: PMC5751131 DOI: 10.3390/ijms18122528] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 11/16/2017] [Accepted: 11/17/2017] [Indexed: 12/13/2022] Open
Abstract
Sphingolipids, long thought to be passive components of biological membranes with merely a structural role, have proved throughout the past decade to be major players in the pathogenesis of many human diseases. The study and characterization of several genetic disorders like Fabry's and Tay Sachs, where sphingolipid metabolism is disrupted, leading to a systemic array of clinical symptoms, have indeed helped elucidate and appreciate the importance of sphingolipids and their metabolites as active signaling molecules. In addition to being involved in dynamic cellular processes like apoptosis, senescence and differentiation, sphingolipids are implicated in critical physiological functions such as immune responses and pathophysiological conditions like inflammation and insulin resistance. Interestingly, the kidneys are among the most sensitive organ systems to sphingolipid alterations, rendering these molecules and the enzymes involved in their metabolism, promising therapeutic targets for numerous nephropathic complications that stand behind podocyte injury and renal failure.
Collapse
Affiliation(s)
- Alaa Abou Daher
- Department of Anatomy, Cell Biology and Physiology, Faculty of Medicine, American University of Beirut, Beirut 1107 2020, Lebanon.
| | - Tatiana El Jalkh
- Department of Anatomy, Cell Biology and Physiology, Faculty of Medicine, American University of Beirut, Beirut 1107 2020, Lebanon.
| | - Assaad A Eid
- Department of Anatomy, Cell Biology and Physiology, Faculty of Medicine, American University of Beirut, Beirut 1107 2020, Lebanon.
| | - Alessia Fornoni
- Department of Medicine, Peggy and Harold Katz Family Drug Discovery Center, University of Miami, Miami, FL 33136, USA.
| | - Brian Marples
- Department of Radiation Oncology, Miller School of Medicine/Sylvester Cancer Center, University of Miami, Miami, FL 33136, USA.
| | - Youssef H Zeidan
- Department of Anatomy, Cell Biology and Physiology, Faculty of Medicine, American University of Beirut, Beirut 1107 2020, Lebanon.
- Department of Radiation Oncology, American University of Beirut Medical Center, Beirut 1107 2020, Lebanon.
| |
Collapse
|
50
|
Mahajan-Thakur S, Bien-Möller S, Marx S, Schroeder H, Rauch BH. Sphingosine 1-phosphate (S1P) signaling in glioblastoma multiforme-A systematic review. Int J Mol Sci 2017; 18:E2448. [PMID: 29149079 PMCID: PMC5713415 DOI: 10.3390/ijms18112448] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 11/09/2017] [Accepted: 11/14/2017] [Indexed: 12/22/2022] Open
Abstract
The multifunctional sphingosine-1-phosphate (S1P) is a lipid signaling molecule and central regulator in the development of several cancer types. In recent years, intriguing information has become available regarding the role of S1P in the progression of Glioblastoma multiforme (GBM), the most aggressive and common brain tumor in adults. S1P modulates numerous cellular processes in GBM, such as oncogenesis, proliferation and survival, invasion, migration, metastasis and stem cell behavior. These processes are regulated via a family of five G-protein-coupled S1P receptors (S1PR1-5) and may involve mainly unknown intracellular targets. Distinct expression patterns and multiple intracellular signaling pathways of each S1PR subtype enable S1P to exert its pleiotropic cellular actions. Several studies have demonstrated alterations in S1P levels, the involvement of S1PRs and S1P metabolizing enzymes in GBM pathophysiology. While the tumorigenic actions of S1P involve the activation of several kinases and transcription factors, the specific G-protein (Gi, Gq, and G12/13)-coupled signaling pathways and downstream mediated effects in GBM remain to be elucidated in detail. This review summarizes the recent findings concerning the role of S1P and its receptors in GBM. We further highlight the current insights into the signaling pathways considered fundamental for regulating the cellular processes in GMB and ultimately patient prognosis.
Collapse
Affiliation(s)
| | - Sandra Bien-Möller
- Department of Pharmacology, University Medicine Greifswald, 17487 Greifswald, Germany.
- Clinic of Neurosurgery, University Medicine Greifswald, 17487 Greifswald, Germany.
| | - Sascha Marx
- Clinic of Neurosurgery, University Medicine Greifswald, 17487 Greifswald, Germany.
| | - Henry Schroeder
- Clinic of Neurosurgery, University Medicine Greifswald, 17487 Greifswald, Germany.
| | - Bernhard H Rauch
- Department of Pharmacology, University Medicine Greifswald, 17487 Greifswald, Germany.
| |
Collapse
|