1
|
Farhadi P, Park T. The p130Cas-Crk/CrkL Axis: A Therapeutic Target for Invasive Cancers Unveiled by Collaboration Among p130Cas, Crk, and CrkL. Int J Mol Sci 2025; 26:4017. [PMID: 40362257 PMCID: PMC12071665 DOI: 10.3390/ijms26094017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2025] [Revised: 04/15/2025] [Accepted: 04/16/2025] [Indexed: 05/15/2025] Open
Abstract
Numerous studies have documented the involvement of p130Cas (Crk-associated substrate) in a wide range of cellular processes across different types of cells. These processes encompass cell transformation, the connection between the extracellular matrix and the actin cytoskeleton, cell migration and invasion, and cardiovascular development. Moreover, p130Cas has been associated with the regulation of various physiological processes, including mammary, bone, brain, muscle, and liver homeostasis. The diverse functions of p130Cas can be attributed to its possession of multiple protein-protein interaction domains, which sets it apart as a unique class of adaptor protein. It is well established that p130Cas interacts critically with the CT10 regulator of kinase (Crk) adaptor protein family members, including CrkII, CrkI, and Crk-like (CrkL), which is the basis for the naming of the Cas family. The Crk family proteins play a crucial role in integrating signals from various sources, such as growth factors, extracellular matrix molecules, bacterial pathogens, and apoptotic cells. An increasing body of evidence suggests that the dysregulation of Crk family proteins is linked to various human diseases, including cancer and increased susceptibility to pathogen infections. This review focuses primarily on the structural and functional aspects of the interaction between p130Cas and the Crk family proteins, providing insights into how these proteins regulate specific signaling events. Furthermore, we delve into the functions of p130Cas and the Crk family proteins in both normal and tumor cells to gain a comprehensive understanding of their collaborative roles in cellular physiology and pathology. This review demonstrates that tumor cell migration and invasion are the two cellular functions that have been studied the most for the p130Cas-Crk/CrkL axis. Understanding the tumor cell migration and invasion that require both p130Cas and Crk/CrkL is necessary to further evaluate the role of the p130Cas-Crk/CrkL axis in cancer. Establishing the contribution of the p130Cas-Crk/CrkL axis to cancer will facilitate the development of cancer drugs targeting the axis to inhibit cancer cell dissemination and improve patient outcomes.
Collapse
Affiliation(s)
- Pegah Farhadi
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah 67155, Iran
| | - Taeju Park
- Children’s Mercy Research Institute, Children’s Mercy Kansas City, Kansas City, MO 64108, USA
- Department of Pediatrics, University of Missouri-Kansas City School of Medicine, Kansas City, MO 64108, USA
| |
Collapse
|
2
|
Lu Y, Li H, Chen M, Lin Y, Zhang X. LOX-induced tubulointerstitial fibrosis via the TGF-β/LOX/Snail axis in diabetic mice. J Transl Med 2025; 23:35. [PMID: 39789539 PMCID: PMC11716213 DOI: 10.1186/s12967-024-06056-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Accepted: 12/24/2024] [Indexed: 01/30/2025] Open
Abstract
BACKGROUND The partial epithelial-mesenchymal transition (EMT) is emerging as a significant mechanism in diabetic nephropathy (DN). LOX is a copper amine oxidase conventionally thought to act by crosslinking collagen. However, the role of LOX in partial EMT and fibrotic progression in diabetic nephropathy has not been investigated experimentally. METHODS The bulk RNA sequencing and single-nuclei RNA sequencing (snRNA-seq) analysis were explored to find the role of LOX in diabetic nephropathy. We then investigated the partial EMT and the possible signaling pathway of LOX, both in vivo and in vitro by LOX inhibition experiments in diabetic mice and HK-2 cells. Besides, we further assessed kidney fibrosis and renal function. RESULTS LOX expression was elevated in kidneys of diabetic mice. Additionally, snRNA-seq results indicated that LOX expression was higher in partial epithelial-mesenchymal transition proximal tubular (PemtPT) epithelial cells. Moreover, we found that increased LOX prompted partial EMT of renal tubular epithelial cells (RTECs) by modulating the transcription factor Snail both in vivo and in vitro. Remarkably, inhibition of LOX effectively mitigated the partial EMT of RTECs in diabetic mice, thereby attenuating kidney fibrosis and enhancing renal function. Additionally, we identified the TGF-β signaling pathway as an upstream regulator of LOX, and inhibiting LOX partially reversed the partial EMT program in HK-2 cells induced by the TGF-β signaling pathway. CONCLUSIONS Hyperglycemia induces partial EMT of RTECs via the TGF-β/LOX/Snail axis, thereby contributing to diabetic kidney fibrosis. Inhibiting LOX can effectively reverse the partial EMT of RTECs, diminish diabetic kidney fibrosis, and improve renal function.
Collapse
Affiliation(s)
- Yicheng Lu
- School of Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Heyangzi Li
- Department of Pathology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, China
| | - Mohan Chen
- School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Yicheng Lin
- Xiangya School of Medicine, Central South University, Changsha, 410083, China
| | - Xiaoming Zhang
- Department of Basic Medical Sciences, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
3
|
Usman K, Fouadi M, Nwozor KO, Aminazadeh F, Nair P, Luo H, Sin DD, Osei ET, Hackett TL. Interleukin-1α inhibits transforming growth factor-β1 and β2-induced extracellular matrix production, remodeling and signaling in human lung fibroblasts: Master regulator in lung mucosal repair. Matrix Biol 2024; 132:47-58. [PMID: 39147560 DOI: 10.1016/j.matbio.2024.06.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 06/28/2024] [Accepted: 06/30/2024] [Indexed: 08/17/2024]
Abstract
BACKGROUND Lung fibroblasts play a central role in maintaining lung homeostasis and facilitating repair through the synthesis and organization of the extracellular matrix (ECM). This study investigated the cross-talk between interleukin-1 alpha (IL-1α) and transforming growth factor-β (TGF-β) signaling, two key regulators in tissue repair and fibrosis, in the context of lung fibroblast repair in the healthy lung. RESULTS Stimulation of lung fibroblasts with TGF-β1 and TGF-β2 induced collagen-I and fibronectin protein expression (p < 0.05), a response inhibited with co-treatment with IL-1α (p < 0.05). Additionally, TGF-β1 and TGF-β2 induced myofibroblast differentiation, and collagen-I gel contraction, which were both suppressed by IL-1α (p < 0.05). In contrast, interleukin (IL)-6, IL-8 and thymic stromal lymphopoietin induced by IL-1α, were unaffected by TGF-β1 or TGF-β2. Mechanistically, IL-1α administration led to the suppression of TGF-β1 and TGF-β2 signaling, through downregulation of mRNA and protein for TGF-β receptor II and the downstream adaptor protein TRAF6, but not through miR-146a that is known to be induced by IL-1α. DISCUSSION IL-1α acts as a master regulator, modulating TGF-β1 and TGF-β2-induced ECM production, remodeling, and myofibroblast differentiation in human lung fibroblasts, playing a vital role in balancing tissue repair versus fibrosis. Further research is required to understand the dysregulated cross-talk between IL-1α and TGF-β signaling in chronic lung diseases and the exploration of therapeutic opportunities. METHODS Primary human lung fibroblasts (PHLF) were treated with media control, or 1 ng/ml IL-1α with or without 50 ng/ml TGF-β1 or TGF-β2 for 1, 6 and 72 h. Cell lysates were assessed for the expression of ECM proteins and signaling molecules by western blot, miRNA by qPCR, mRNA by RNA sequencing and cell supernatants for cytokine production by ELISA. PHLFs were also seeded in non-tethered collagen-I gels to measure contraction, and myofibroblast differentiation using confocal microscopy.
Collapse
Affiliation(s)
- Kauna Usman
- Centre for Heart Lung Innovation, St. Paul's Hospital, Vancouver, BC V6Z 1Y6, Canada; Department of Anesthesiology, Pharmacology and Therapeutics, University of British Columbia, Vancouver, BC V5Z 1M9, Canada.
| | - May Fouadi
- Centre for Heart Lung Innovation, St. Paul's Hospital, Vancouver, BC V6Z 1Y6, Canada; Department of Anesthesiology, Pharmacology and Therapeutics, University of British Columbia, Vancouver, BC V5Z 1M9, Canada
| | - Kingsley Okechukwu Nwozor
- Centre for Heart Lung Innovation, St. Paul's Hospital, Vancouver, BC V6Z 1Y6, Canada; Department of Anesthesiology, Pharmacology and Therapeutics, University of British Columbia, Vancouver, BC V5Z 1M9, Canada
| | - Fatemeh Aminazadeh
- Centre for Heart Lung Innovation, St. Paul's Hospital, Vancouver, BC V6Z 1Y6, Canada; Department of Anesthesiology, Pharmacology and Therapeutics, University of British Columbia, Vancouver, BC V5Z 1M9, Canada
| | - Parameswaran Nair
- Division of Respirology, St Joseph's Healthcare Hamilton & McMaster University, ON L8N 4A6, Canada
| | - Honglin Luo
- Centre for Heart Lung Innovation, St. Paul's Hospital, Vancouver, BC V6Z 1Y6, Canada; Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC V5Z 1M9, Canada
| | - Don D Sin
- Centre for Heart Lung Innovation, St. Paul's Hospital, Vancouver, BC V6Z 1Y6, Canada; Department of Medicine, University of British Columbia, Vancouver, BC V5Z 1M9, Canada
| | - Emmanuel Twumasi Osei
- Centre for Heart Lung Innovation, St. Paul's Hospital, Vancouver, BC V6Z 1Y6, Canada; Department of Biology, University of British Columbia, Okanagan, BC V1V 1V7, Canada
| | - Tillie-Louise Hackett
- Centre for Heart Lung Innovation, St. Paul's Hospital, Vancouver, BC V6Z 1Y6, Canada; Department of Anesthesiology, Pharmacology and Therapeutics, University of British Columbia, Vancouver, BC V5Z 1M9, Canada
| |
Collapse
|
4
|
Danielpour D. Advances and Challenges in Targeting TGF-β Isoforms for Therapeutic Intervention of Cancer: A Mechanism-Based Perspective. Pharmaceuticals (Basel) 2024; 17:533. [PMID: 38675493 PMCID: PMC11054419 DOI: 10.3390/ph17040533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 04/11/2024] [Accepted: 04/16/2024] [Indexed: 04/28/2024] Open
Abstract
The TGF-β family is a group of 25 kDa secretory cytokines, in mammals consisting of three dimeric isoforms (TGF-βs 1, 2, and 3), each encoded on a separate gene with unique regulatory elements. Each isoform plays unique, diverse, and pivotal roles in cell growth, survival, immune response, and differentiation. However, many researchers in the TGF-β field often mistakenly assume a uniform functionality among all three isoforms. Although TGF-βs are essential for normal development and many cellular and physiological processes, their dysregulated expression contributes significantly to various diseases. Notably, they drive conditions like fibrosis and tumor metastasis/progression. To counter these pathologies, extensive efforts have been directed towards targeting TGF-βs, resulting in the development of a range of TGF-β inhibitors. Despite some clinical success, these agents have yet to reach their full potential in the treatment of cancers. A significant challenge rests in effectively targeting TGF-βs' pathological functions while preserving their physiological roles. Many existing approaches collectively target all three isoforms, failing to target just the specific deregulated ones. Additionally, most strategies tackle the entire TGF-β signaling pathway instead of focusing on disease-specific components or preferentially targeting tumors. This review gives a unique historical overview of the TGF-β field often missed in other reviews and provides a current landscape of TGF-β research, emphasizing isoform-specific functions and disease implications. The review then delves into ongoing therapeutic strategies in cancer, stressing the need for more tools that target specific isoforms and disease-related pathway components, advocating mechanism-based and refined approaches to enhance the effectiveness of TGF-β-targeted cancer therapies.
Collapse
Affiliation(s)
- David Danielpour
- Case Comprehensive Cancer Center Research Laboratories, The Division of General Medical Sciences-Oncology, Case Western Reserve University, Cleveland, OH 44106, USA; ; Tel.: +1-216-368-5670; Fax: +1-216-368-8919
- Department of Pharmacology, Case Western Reserve University, Cleveland, OH 44106, USA
- Institute of Urology, University Hospitals, Cleveland, OH 44106, USA
| |
Collapse
|
5
|
Hou Y, Li Y, Li Y, Li D, Guo T, Deng X, Zhang H, Xie C, Lu X. Tuning Water-Resistant Networks in Mussel-Inspired Hydrogels for Robust Wet Tissue and Bioelectronic Adhesion. ACS NANO 2023; 17:2745-2760. [PMID: 36734875 DOI: 10.1021/acsnano.2c11053] [Citation(s) in RCA: 65] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Hydrogels with robust wet adhesion are desirable for applications in aqueous environments. Wet adhesion arising from synergy between hydrophobic and catechol components in mussel foot proteins has been highlighted. However, optimizing hydrogels with multiple components is challenging because of their complex structure-property relationships. Herein, high-throughput screening of a series of hydrophobic alkyl monomers and adhesive catechol derivatives was used to systematically develop wet adhesive hydrogels. Short alkyl chains promote wet adhesion by repelling water at the adhesive interface, whereas long alkyl chains form strong hydrophobic interactions inside the hydrogel network that impede or dissipate energy for wet adhesion. The optimized wet adhesive hydrogel, containing short alkyl chain, was applied for rapid hemostasis and wound healing because of the synergistic effect of catechol and alkyl groups and its immunomodulation ability, which is revealed through a transcriptomic analysis. Conductive nanocomponents were incorporated into the optimized hydrogel to produce a wearable device, which was used for continuous monitoring human electrocardiogram (ECG) during swimming, and in situ epicardial ECG on a porcine living and beating heart. This study demonstrated an efficient and generalized molecular design strategy for multifunctional wet adhesive hydrogels.
Collapse
Affiliation(s)
- Yue Hou
- Key Laboratory of Advanced Technologies of Materials Ministry of Education, Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu 610031, China
- School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Yazhen Li
- Department of Orthodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology; Shanghai Research Institute of Stomatology, Shanghai 200125, China
| | - Yingqi Li
- Key Laboratory of Advanced Technologies of Materials Ministry of Education, Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu 610031, China
- School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Da Li
- School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Tailin Guo
- Key Laboratory of Advanced Technologies of Materials Ministry of Education, Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu 610031, China
| | - Xu Deng
- Institute of Fundamental and Frontier Science, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Hongping Zhang
- School of Mechanical Engineering, Institute for Advanced Study, Chengdu University, Chengdu, Sichuan 610041, China
| | - Chaoming Xie
- Key Laboratory of Advanced Technologies of Materials Ministry of Education, Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu 610031, China
- School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Xiong Lu
- Key Laboratory of Advanced Technologies of Materials Ministry of Education, Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu 610031, China
- School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| |
Collapse
|
6
|
Maung MT, Carlson A, Olea-Flores M, Elkhadragy L, Schachtschneider KM, Navarro-Tito N, Padilla-Benavides T. The molecular and cellular basis of copper dysregulation and its relationship with human pathologies. FASEB J 2021; 35:e21810. [PMID: 34390520 DOI: 10.1096/fj.202100273rr] [Citation(s) in RCA: 87] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 06/23/2021] [Accepted: 07/07/2021] [Indexed: 12/16/2022]
Abstract
Copper (Cu) is an essential micronutrient required for the activity of redox-active enzymes involved in critical metabolic reactions, signaling pathways, and biological functions. Transporters and chaperones control Cu ion levels and bioavailability to ensure proper subcellular and systemic Cu distribution. Intensive research has focused on understanding how mammalian cells maintain Cu homeostasis, and how molecular signals coordinate Cu acquisition and storage within organs. In humans, mutations of genes that regulate Cu homeostasis or facilitate interactions with Cu ions lead to numerous pathologic conditions. Malfunctions of the Cu+ -transporting ATPases ATP7A and ATP7B cause Menkes disease and Wilson disease, respectively. Additionally, defects in the mitochondrial and cellular distributions and homeostasis of Cu lead to severe neurodegenerative conditions, mitochondrial myopathies, and metabolic diseases. Cu has a dual nature in carcinogenesis as a promotor of tumor growth and an inducer of redox stress in cancer cells. Cu also plays role in cancer treatment as a component of drugs and a regulator of drug sensitivity and uptake. In this review, we provide an overview of the current knowledge of Cu metabolism and transport and its relation to various human pathologies.
Collapse
Affiliation(s)
- May T Maung
- Department of Molecular Biology and Biochemistry, Wesleyan University, Middletown, CT, USA
| | - Alyssa Carlson
- Department of Molecular Biology and Biochemistry, Wesleyan University, Middletown, CT, USA
| | - Monserrat Olea-Flores
- Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Guerrero, Mexico
| | - Lobna Elkhadragy
- Department of Radiology, University of Illinois at Chicago, Chicago, IL, USA
| | - Kyle M Schachtschneider
- Department of Radiology, University of Illinois at Chicago, Chicago, IL, USA.,Department of Biochemistry & Molecular Genetics, University of Illinois at Chicago, Chicago, IL, USA.,National Center for Supercomputing Applications, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Napoleon Navarro-Tito
- Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Guerrero, Mexico
| | | |
Collapse
|
7
|
Baker LA, Momen M, McNally R, Berres ME, Binversie EE, Sample SJ, Muir P. Biologically Enhanced Genome-Wide Association Study Provides Further Evidence for Candidate Loci and Discovers Novel Loci That Influence Risk of Anterior Cruciate Ligament Rupture in a Dog Model. Front Genet 2021; 12:593515. [PMID: 33763109 PMCID: PMC7982834 DOI: 10.3389/fgene.2021.593515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 02/01/2021] [Indexed: 11/20/2022] Open
Abstract
Anterior cruciate ligament (ACL) rupture is a common condition that disproportionately affects young people, 50% of whom will develop knee osteoarthritis (OA) within 10 years of rupture. ACL rupture exhibits both hereditary and environmental risk factors, but the genetic basis of the disease remains unexplained. Spontaneous ACL rupture in the dog has a similar disease presentation and progression, making it a valuable genomic model for ACL rupture. We leveraged the dog model with Bayesian mixture model (BMM) analysis (BayesRC) to identify novel and relevant genetic variants associated with ACL rupture. We performed RNA sequencing of ACL and synovial tissue and assigned single nucleotide polymorphisms (SNPs) within differentially expressed genes to biological prior classes. SNPs with the largest effects were on chromosomes 3, 5, 7, 9, and 24. Selection signature analysis identified several regions under selection in ACL rupture cases compared to controls. These selection signatures overlapped with genome-wide associations with ACL rupture as well as morphological traits. Notable findings include differentially expressed ACSF3 with MC1R (coat color) and an association on chromosome 7 that overlaps the boundaries of SMAD2 (weight and body size). Smaller effect associations were within or near genes associated with regulation of the actin cytoskeleton and the extracellular matrix, including several collagen genes. The results of the current analysis are consistent with previous work published by our laboratory and others, and also highlight new genes in biological pathways that have not previously been associated with ACL rupture. The genetic associations identified in this study mirror those found in human beings, which lays the groundwork for development of disease-modifying therapies for both species.
Collapse
Affiliation(s)
- Lauren A Baker
- Department of Surgical Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, United States
| | - Mehdi Momen
- Department of Surgical Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, United States
| | - Rachel McNally
- Department of Surgical Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, United States
| | - Mark E Berres
- Bioinformatics Resource Center, Biotechnology Center, University of Wisconsin-Madison, Madison, WI, United States
| | - Emily E Binversie
- Department of Surgical Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, United States
| | - Susannah J Sample
- Department of Surgical Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, United States
| | - Peter Muir
- Department of Surgical Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, United States
| |
Collapse
|
8
|
Epithelial-interleukin-1 inhibits collagen formation by airway fibroblasts: Implications for asthma. Sci Rep 2020; 10:8721. [PMID: 32457454 PMCID: PMC7250866 DOI: 10.1038/s41598-020-65567-z] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 05/06/2020] [Indexed: 11/10/2022] Open
Abstract
In asthma, the airway epithelium has an impaired capacity to differentiate and plays a key role in the development of airway inflammation and remodeling through mediator release. The study objective was to investigate the release of (IL)-1 family members from primary airway epithelial-cells during differentiation, and how they affect primary airway fibroblast (PAF)-induced inflammation, extracellular matrix (ECM) production, and collagen I remodeling. The release of IL-1α/β and IL-33 during airway epithelial differentiation was assessed over 20-days using air-liquid interface cultures. The effect of IL-1 family cytokines on airway fibroblasts grown on collagen-coated well-plates and 3-dimensional collagen gels was assessed by measurement of inflammatory mediators and ECM proteins by ELISA and western blot, as well as collagen fiber formation using non-linear optical microscopy after 24-hours. The production of IL-1α is elevated in undifferentiated asthmatic-PAECs compared to controls. IL-1α/β induced fibroblast pro-inflammatory responses (CXCL8/IL-8, IL-6, TSLP, GM-CSF) and suppressed ECM-production (collagen, fibronectin, periostin) and the cell’s ability to repair and remodel fibrillar collagen I via LOX, LOXL1 and LOXL2 activity, as confirmed by inhibition with β-aminopropionitrile. These data support a role for epithelial-derived-IL-1 in the dysregulated repair of the asthmatic-EMTU and provides new insights into the contribution of airway fibroblasts in inflammation and airway remodeling in asthma.
Collapse
|
9
|
Single-cell tracking demonstrates copper chaperone Atox1 to be required for breast cancer cell migration. Proc Natl Acad Sci U S A 2020; 117:2014-2019. [PMID: 31932435 PMCID: PMC6995000 DOI: 10.1073/pnas.1910722117] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Copper ions are needed for several hallmarks of cancer. However, the involved pathways, mechanisms, and copper-binding proteins are mostly unknown. We recently found that cytoplasmic Antioxidant 1 copper chaperone (Atox1), which is up-regulated in breast cancer, is localized at the lamellipodia edges of aggressive breast cancer cells. To reveal molecular insights into a putative role in cell migration, we here investigated breast cancer cell (MDA-MB-231) migration by video microscopy as a function of Atox1. Tracking of hundreds of individual cells (per condition) over a 9-h time series revealed that cell migration velocity and directionality are significantly reduced upon Atox1 silencing in the cells. Because silencing of the copper transporter ATP7A also reduced cell migration, these proteins appear to be on the same pathway, suggesting that their well-known copper transport activity is involved. In-cell proximity ligation assays demonstrated that Atox1, ATP7A, and the proenzyme of lysyl oxidase (LOX; copper-loaded via ATP7A) are all in close proximity and that LOX activity is reduced upon Atox1 silencing in the cells. Since LOX is an established player in cancer cell migration, our results imply that Atox1 mediates breast cancer cell migration via coordinated copper transport in the ATP7A-LOX axis. Because individual cell migration is an early step in breast cancer metastasis, Atox1 levels in tumor cells may be a predictive measure of metastasis potential and serve as a biomarker for copper depletion therapy.
Collapse
|
10
|
Katoh K. FAK-Dependent Cell Motility and Cell Elongation. Cells 2020; 9:cells9010192. [PMID: 31940873 PMCID: PMC7017285 DOI: 10.3390/cells9010192] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 01/02/2020] [Accepted: 01/08/2020] [Indexed: 12/20/2022] Open
Abstract
Fibroblastic cells show specific substrate selectivity for typical cell–substrate adhesion. However, focal adhesion kinase (FAK) contributes to controlling the regulation of orientation and polarity. When fibroblasts attach to micropatterns, tyrosine-phosphorylated proteins and FAK are both detected along the inner border between the adhesive micropatterns and the nonadhesive glass surface. FAK likely plays important roles in regulation of cell adhesion to the substrate, as FAK is a tyrosine-phosphorylated protein that acts as a signal transduction molecule at sites of cell–substrate attachment, called focal adhesions. FAK has been suggested to play a role in the attachment of cells at adhesive micropatterns by affecting cell polarity. Therefore, the localization of FAK might play a key role in recognition of the border of the cell with the adhesive micropattern, thus regulating cell polarity and the cell axis. This review discusses the regulation and molecular mechanism of cell proliferation and cell elongation by FAK and its associated signal transduction proteins.
Collapse
Affiliation(s)
- Kazuo Katoh
- Laboratory of Human Anatomy and Cell Biology, Faculty of Health Sciences, Tsukuba University of Technology Tsukuba-city, Ibaraki, Japan
| |
Collapse
|
11
|
Blockhuys S, Wittung-Stafshede P. Roles of Copper-Binding Proteins in Breast Cancer. Int J Mol Sci 2017; 18:ijms18040871. [PMID: 28425924 PMCID: PMC5412452 DOI: 10.3390/ijms18040871] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Revised: 04/11/2017] [Accepted: 04/18/2017] [Indexed: 12/17/2022] Open
Abstract
Copper ions are needed in several steps of cancer progression. However, the underlying mechanisms, and involved copper-binding proteins, are mainly elusive. Since most copper ions in the body (in and outside cells) are protein-bound, it is important to investigate what copper-binding proteins participate and, for these, how they are loaded with copper by copper transport proteins. Mechanistic information for how some copper-binding proteins, such as extracellular lysyl oxidase (LOX), play roles in cancer have been elucidated but there is still much to learn from a biophysical molecular viewpoint. Here we provide a summary of copper-binding proteins and discuss ones reported to have roles in cancer. We specifically focus on how copper-binding proteins such as mediator of cell motility 1 (MEMO1), LOX, LOX-like proteins, and secreted protein acidic and rich in cysteine (SPARC) modulate breast cancer from molecular and clinical aspects. Because of the importance of copper for invasion/migration processes, which are key components of cancer metastasis, further insights into the actions of copper-binding proteins may provide new targets to combat cancer.
Collapse
Affiliation(s)
- Stéphanie Blockhuys
- Department Biology and Biological Engineering, Chalmers University of Technology, 412 96 Gothenburg, Sweden.
| | - Pernilla Wittung-Stafshede
- Department Biology and Biological Engineering, Chalmers University of Technology, 412 96 Gothenburg, Sweden.
| |
Collapse
|
12
|
Blockhuys S, Celauro E, Hildesjö C, Feizi A, Stål O, Fierro-González JC, Wittung-Stafshede P. Defining the human copper proteome and analysis of its expression variation in cancers. Metallomics 2017; 9:112-123. [DOI: 10.1039/c6mt00202a] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
13
|
Liep J, Kilic E, Meyer HA, Busch J, Jung K, Rabien A. Cooperative Effect of miR-141-3p and miR-145-5p in the Regulation of Targets in Clear Cell Renal Cell Carcinoma. PLoS One 2016; 11:e0157801. [PMID: 27336447 PMCID: PMC4919070 DOI: 10.1371/journal.pone.0157801] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Accepted: 06/04/2016] [Indexed: 12/17/2022] Open
Abstract
Background Due to the poor prognosis for advanced renal cell carcinoma (RCC), there is an urgent need for new therapeutic targets and for prognostic markers to identify high risk tumors. MicroRNAs (miRNAs) are frequently dysregulated in tumors, play a crucial role during carcinogenesis and therefore might be promising new biomarkers. In previous studies, we identified miR-141-3p and miR-145-5p to be downregulated in clear cell RCC (ccRCC). Our objective was to investigate the functional association of these miRNAs, focusing on the cooperative regulation of new specific targets and their role in ccRCC progression. Methods The effect of miR-141-3p and miR-145-5p on cell migration was examined by overexpression in 786-O cells. New targets of both miRNAs were identified by miRWalk, validated in 786-O and ACHN cells and additionally characterized in ccRCC tissue on mRNA and protein level. Results In functional analysis, a tumor suppressive effect of miR-141-3p and miR-145-5p by decreasing migration and invasion of RCC cells could be shown. Furthermore, co-overexpression of the miRNAs seemed to result in an increased inhibition of cell migration. Both miRNAs were recognized as post-transcriptional regulators of the targets EAPP, HS6ST2, LOX, TGFB2 and VRK2. Additionally, they showed a cooperative effect again as demonstrated by a significantly increased inhibition of HS6ST2 and LOX expression after simultaneous overexpression of both miRNAs. In ccRCC tissue, LOX mRNA expression was strongly increased compared to normal tissue, allowing also to distinguish between non-metastatic and already metastasized primary tumors. Finally, in subsequent tissue microarray analysis LOX protein expression showed a prognostic relevance for the overall survival of ccRCC patients. Conclusion These results illustrate a jointly strengthening effect of the dysregulated miR-141-3p and miR-145-5p in various tumor associated processes. Focusing on the cooperative effect of miRNAs provides new opportunities for the development of therapeutic strategies and offers novel prognostic and diagnostic capabilities.
Collapse
Affiliation(s)
- Julia Liep
- Department of Urology, Charité - Universitätsmedizin Berlin, Berlin, Germany
- Berlin Institute for Urologic Research, Berlin, Germany
| | - Ergin Kilic
- Institute of Pathology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Hellmuth A. Meyer
- Department of Urology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Jonas Busch
- Department of Urology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Klaus Jung
- Department of Urology, Charité - Universitätsmedizin Berlin, Berlin, Germany
- Berlin Institute for Urologic Research, Berlin, Germany
| | - Anja Rabien
- Department of Urology, Charité - Universitätsmedizin Berlin, Berlin, Germany
- Berlin Institute for Urologic Research, Berlin, Germany
- * E-mail:
| |
Collapse
|
14
|
Trackman PC. Lysyl Oxidase Isoforms and Potential Therapeutic Opportunities for Fibrosis and Cancer. Expert Opin Ther Targets 2016; 20:935-45. [PMID: 26848785 DOI: 10.1517/14728222.2016.1151003] [Citation(s) in RCA: 99] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
INTRODUCTION The lysyl oxidase family of enzymes is classically known as being required for connective tissue maturation by oxidizing lysine residues in elastin and lysine and hydroxylysine residues in collagen precursors. The resulting aldehydes then participate in cross-link formation, which is required for normal connective tissue integrity. These enzymes have biological functions that extend beyond this fundamental biosynthetic role, with contributions to angiogenesis, cell proliferation, and cell differentiation. Dysregulation of lysyl oxidases occurs in multiple pathologies including fibrosis, primary and metastatic cancers, and complications of diabetes in a variety of tissues. AREAS COVERED This review summarizes the major findings of novel roles for lysyl oxidases in pathologies, and highlights some of the potential therapeutic approaches that are in development and which stem from these new findings. EXPERT OPINION Fundamental questions remain regarding the mechanisms of novel biological functions of this family of proteins, and regarding functions that are independent of their catalytic enzyme activity. However, progress is underway in the development of isoform-specific pharmacologic inhibitors, potential therapeutic antibodies and gaining an increased understanding of both tumor suppressor and metastasis promotion activities. Ultimately, this is likely to lead to novel therapeutic agents.
Collapse
Affiliation(s)
- Philip C Trackman
- a Department of Molecular and Cell Biology , Boston University, Henry M. Goldman School of Dental Medicine , Boston , MA , USA
| |
Collapse
|
15
|
Abstract
The members of the Cas protein family (p130Cas/BCAR1, Nedd9/HEF1, EFS and CASS4) are scaffold proteins required for the assembly of signal transduction complexes in response to several stimuli, such as growth factors, hormones and extracellular matrix components. Given their ability to integrate and coordinate multiple signalling events, Cas proteins have emerged as crucial players in the control of mammary cell proliferation, survival and differentiation. More importantly, it has been found that alterations of their expression levels result in aberrant signalling cascades, which promote initiation and progression of breast cancer. Based on the increasing data from in vitro, mouse model and clinical studies, in this review we will focus on two Cas proteins, p130Cas/BCAR1 and Nedd9, and their coupled signalling pathways, to examine their role in mammary cell transformation and in the acquirement of invasiveness and drug resistance of breast cancer cells.
Collapse
Affiliation(s)
- Giusy Tornillo
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino 10126, Italy; European Cancer Stem Cell Research Institute and Cardiff School of Biosciences, Cardiff University, Cardiff CF24 4HQ, UK
| | | | | |
Collapse
|
16
|
Makino Y, Tsuda M, Ohba Y, Nishihara H, Sawa H, Nagashima K, Tanaka S. Tyr724 phosphorylation of ELMO1 by Src is involved in cell spreading and migration via Rac1 activation. Cell Commun Signal 2015. [PMID: 26205662 PMCID: PMC4513707 DOI: 10.1186/s12964-015-0113-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The complex of Dock180/ELMO1 that functions as a bipartite guanine nucleotide exchange factor for Rac is essential for diverse physiological and pathological processes of cells such as cell migration, phagocytosis, and invasion of cancer cells. Among the Src-family tyrosine kinases (SFKs), it has been reported that Hck directly phosphorylates ELMO1, regulating phagocytosis by promoting activation of Rac1; however, the involvement of other SFKs in ELMO1 phosphorylation has remained unknown. Here, we identified novel tyrosine (Y) residues of ELMO1 phosphorylated by SFKs, and examined the effects on Rac1 activity, cell adhesion, spreading, and cell motility on extracellular matrix (ECM). RESULTS In this study, we unveiled that Src and Fyn can induce tyrosine phosphorylation of ELMO1 in in vivo and in vitro phosphorylation assays. Mutational analyses identified both Y720 and Y724 residues of ELMO1 as Src-mediated phosphorylation sites, preferentially on Y724. Single substitution of Y724 to Phe abrogated Rac1 activation triggered by Src. To elucidate the biological function of pY724, we established NIH3T3 cells stably expressing wild-type ELMO1 or its Y724F mutant together with Dock180. Among them, Y724-deficient cells exhibited a depletion of Rac1 activity with diminished phosphorylation of ELMO1 even upon the ECM-stimulation. It is noteworthy that NIH3T3 cells with ELMO1 Y724F were strikingly defective to promote cell spreading on fibronectin-coated dish, concomitantly exhibiting immature assemblies of actin stress fibers and focal adhesions. Eventually, ELMO1 Y724F significantly impaired cell migration. CONCLUSION These results define that Src-mediated Y724 phosphorylation in ELMO1 plays a critical role for cell spreading via activation of Rac1, leading to promotion of cell migration. As the overexpression and/or hyperactivation of Src have been shown in a wide variety of human cancers, Src-mediated phosphorylation of Y724 in ELMO1 may regulate cancer cell adhesion to the ECM, invasion into surrounding tissues, and subsequent distant metastasis.
Collapse
Affiliation(s)
- Yoshinori Makino
- Department of Cancer Pathology, Hokkaido University Graduate School of Medicine, N15, W7, Kita-ku, Sapporo, 060-8638, Japan. .,Laboratory of Pathology and Development, Institute of Molecular and Cellular Biosciences, The University of Tokyo, Tokyo, 113-0032, Japan.
| | - Masumi Tsuda
- Department of Cancer Pathology, Hokkaido University Graduate School of Medicine, N15, W7, Kita-ku, Sapporo, 060-8638, Japan.
| | - Yusuke Ohba
- Department of Cell Physiology, Hokkaido University Graduate School of Medicine, N15, W7, Kita-ku, Sapporo, 060-8638, Japan.
| | - Hiroshi Nishihara
- Department of Translational Pathology, Hokkaido University Graduate School of Medicine, N15, W7, Kita-ku, Sapporo, 060-8638, Japan.
| | - Hirofumi Sawa
- Department of Cancer Pathology, Hokkaido University Graduate School of Medicine, N15, W7, Kita-ku, Sapporo, 060-8638, Japan. .,Hokkaido University Research Center for Zoonosis Control, Sapporo, 001-0020, Japan.
| | - Kazuo Nagashima
- Department of Cancer Pathology, Hokkaido University Graduate School of Medicine, N15, W7, Kita-ku, Sapporo, 060-8638, Japan. .,Sapporo Higashi Tokushukai Hospital, Sapporo, 065-0033, Japan.
| | - Shinya Tanaka
- Department of Cancer Pathology, Hokkaido University Graduate School of Medicine, N15, W7, Kita-ku, Sapporo, 060-8638, Japan. .,Department of Translational Pathology, Hokkaido University Graduate School of Medicine, N15, W7, Kita-ku, Sapporo, 060-8638, Japan.
| |
Collapse
|
17
|
Abstract
Metastasis is the main reason for cancer-associated deaths and therapies are desperately needed to target the progression of cancer. Lysyl oxidase (LOX) plays a pivotal role in cancer progression, including metastasis, and is therefore is an attractive therapeutic target. In this review we will breakdown the process of cancer progression and the various roles that LOX plays has in the advancement of cancer. We will highlight why LOX is an exciting therapeutic target for the future.
Collapse
Affiliation(s)
- Lara Perryman
- Biotech Research & Innovation Centre (BRIC), University of Copenhagen, Ole Maaløes Vej 5, Copenhagen 2200, Denmark
| | | |
Collapse
|
18
|
Huang HY, Zhang WT, Jiang WY, Chen SZ, Liu Y, Ge X, Li X, Dang YJ, Wen B, Liu XH, Lu HJ, Tang QQ. RhoGDIβ Inhibits Bone Morphogenetic Protein 4 (BMP4)-induced Adipocyte Lineage Commitment and Favors Smooth Muscle-like Cell Differentiation. J Biol Chem 2015; 290:11119-29. [PMID: 25778399 DOI: 10.1074/jbc.m114.608075] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Indexed: 12/23/2022] Open
Abstract
The integration of signals involved in deciding the fate of mesenchymal stem cells is largely unknown. We used proteomics profiling to identify RhoGDIβ, an inhibitor of the small G-protein Rho family, as a component that regulates commitment of C3H10T1/2 mesenchymal stem cells to the adipocyte or smooth muscle cell lineage in response to bone morphogenetic protein 4 (BMP4). RhoGDIβ is notably down-regulated during BMP4-induced adipocytic lineage commitment of C3H10T1/2 mesenchymal stem cells, and this involves the cytoskeleton-associated protein lysyl oxidase. Excess RhoGDIβ completely prevents BMP4-induced commitment to the adipocyte lineage and simultaneously stimulates smooth muscle cell commitment by suppressing the activation of Rac1. Overexpression of RhoGDIβ induces stress fibers of F-actin by a process involving phosphomyosin light chain, indicating that cytoskeletal tension regulated by RhoGDIβ contributes to determining adipocyte versus myocyte commitment. Furthermore, the overexpression of RacV12 (constitutively active form of Rac1) totally rescues the inhibition of adipocyte commitment by RhoGDIβ, simultaneously preventing formation of the smooth muscle-like phenotype and disrupting the stress fibers in cells overexpressing RhoGDIβ. Collectively, these results indicate that RhoGDIβ functions as a novel BMP4 signaling target that regulates adipogenesis and myogensis.
Collapse
Affiliation(s)
- Hai-Yan Huang
- From the Key Laboratory of Metabolism and Molecular Medicine, the Ministry of Education, Department of Biochemistry and Molecular Biology, Fudan University Shanghai Medical College, Shanghai 200032 and
| | - Wen-Ting Zhang
- From the Key Laboratory of Metabolism and Molecular Medicine, the Ministry of Education, Department of Biochemistry and Molecular Biology, Fudan University Shanghai Medical College, Shanghai 200032 and
| | - Wen-Yan Jiang
- From the Key Laboratory of Metabolism and Molecular Medicine, the Ministry of Education, Department of Biochemistry and Molecular Biology, Fudan University Shanghai Medical College, Shanghai 200032 and
| | - Su-Zhen Chen
- From the Key Laboratory of Metabolism and Molecular Medicine, the Ministry of Education, Department of Biochemistry and Molecular Biology, Fudan University Shanghai Medical College, Shanghai 200032 and
| | - Yang Liu
- From the Key Laboratory of Metabolism and Molecular Medicine, the Ministry of Education, Department of Biochemistry and Molecular Biology, Fudan University Shanghai Medical College, Shanghai 200032 and
| | - Xin Ge
- From the Key Laboratory of Metabolism and Molecular Medicine, the Ministry of Education, Department of Biochemistry and Molecular Biology, Fudan University Shanghai Medical College, Shanghai 200032 and
| | - Xi Li
- From the Key Laboratory of Metabolism and Molecular Medicine, the Ministry of Education, Department of Biochemistry and Molecular Biology, Fudan University Shanghai Medical College, Shanghai 200032 and
| | - Yong-Jun Dang
- From the Key Laboratory of Metabolism and Molecular Medicine, the Ministry of Education, Department of Biochemistry and Molecular Biology, Fudan University Shanghai Medical College, Shanghai 200032 and
| | - Bo Wen
- From the Key Laboratory of Metabolism and Molecular Medicine, the Ministry of Education, Department of Biochemistry and Molecular Biology, Fudan University Shanghai Medical College, Shanghai 200032 and
| | - Xiao-Hui Liu
- the Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, People's Republic of China
| | - Hao-Jie Lu
- the Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, People's Republic of China
| | - Qi-Qun Tang
- From the Key Laboratory of Metabolism and Molecular Medicine, the Ministry of Education, Department of Biochemistry and Molecular Biology, Fudan University Shanghai Medical College, Shanghai 200032 and
| |
Collapse
|
19
|
Brambert PR, Kelpsch DJ, Hameed R, Desai CV, Calafiore G, Godley LA, Raimondi SL. DNMT3B7 expression promotes tumor progression to a more aggressive phenotype in breast cancer cells. PLoS One 2015; 10:e0117310. [PMID: 25607950 PMCID: PMC4301645 DOI: 10.1371/journal.pone.0117310] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Accepted: 12/22/2014] [Indexed: 12/18/2022] Open
Abstract
Epigenetic changes, such as DNA methylation, have been shown to promote breast cancer progression. However, the mechanism by which cancer cells acquire and maintain abnormal DNA methylation is not well understood. We have previously identified an aberrant splice form of a DNA methyltransferase, DNMT3B7, expressed in virtually all cancer cell lines but at very low levels in normal cells. Furthermore, aggressive MDA-MB-231 breast cancer cells have been shown to express increased levels of DNMT3B7 compared to poorly invasive MCF-7 cells, indicating that DNMT3B7 may have a role in promoting a more invasive phenotype. Using data gathered from The Cancer Genome Atlas, we show that DNMT3B7 expression is increased in breast cancer patient tissues compared to normal tissue. To determine the mechanism by which DNMT3B7 was functioning in breast cancer cells, two poorly invasive breast cancer cell lines, MCF-7 and T-47D, were stably transfected with a DNMT3B7 expression construct. Expression of DNMT3B7 led to hypermethylation and down-regulation of E-cadherin, altered localization of β-catenin, as well as increased adhesion turnover, cell proliferation, and anchorage-independent growth. The novel results presented in this study suggest a role for DNMT3B7 in the progression of breast cancer to a more aggressive state and the potential for future development of novel therapeutics.
Collapse
Affiliation(s)
- Patrick R. Brambert
- Department of Biology, Elmhurst College, Elmhurst, Illinois, United States of America
| | - Daniel J. Kelpsch
- Department of Biology, Elmhurst College, Elmhurst, Illinois, United States of America
| | - Rabia Hameed
- Department of Biology, Elmhurst College, Elmhurst, Illinois, United States of America
| | - Charmi V. Desai
- Department of Biology, Elmhurst College, Elmhurst, Illinois, United States of America
| | - Gianfranco Calafiore
- Department of Biology, Elmhurst College, Elmhurst, Illinois, United States of America
| | - Lucy A. Godley
- Section of Hematology/Oncology, Department of Medicine, The University of Chicago, Chicago, Illinois, United States of America
| | - Stacey L. Raimondi
- Department of Biology, Elmhurst College, Elmhurst, Illinois, United States of America
| |
Collapse
|
20
|
Nagai Y, Osawa K, Fukushima H, Tamura Y, Aoki K, Ohya K, Yasuda H, Hikiji H, Takahashi M, Seta Y, Seo S, Kurokawa M, Kato S, Honda H, Nakamura I, Maki K, Jimi E. p130Cas, Crk-associated substrate, plays important roles in osteoclastic bone resorption. J Bone Miner Res 2013; 28:2449-62. [PMID: 23526406 DOI: 10.1002/jbmr.1936] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2012] [Revised: 02/18/2013] [Accepted: 03/04/2013] [Indexed: 11/08/2022]
Abstract
p130Cas, Crk-associated substrate (Cas), is an adaptor/scaffold protein that plays a central role in actin cytoskeletal reorganization. We previously reported that p130Cas is not tyrosine-phosphorylated in osteoclasts derived from Src-deficient mice, which are congenitally osteopetrotic, suggesting that p130Cas serves as a downstream molecule of c-Src and is involved in osteoclastic bone resorption. However, the physiological role of p130Cas in osteoclasts has not yet been confirmed because the p130Cas-deficient mice displayed embryonic lethality. Osteoclast-specific p130Cas conditional knockout (p130Cas(ΔOCL-) ) mice exhibit a high bone mass phenotype caused by defect in multinucleation and cytoskeleton organization causing bone resorption deficiency. Bone marrow cells from p130Cas(ΔOCL-) mice were able to differentiate into osteoclasts and wild-type cells in vitro. However, osteoclasts from p130Cas(ΔOCL-) mice failed to form actin rings and resorb pits on dentine slices. Although the initial events of osteoclast attachment, such as β3-integrin or Src phosphorylation, were intact, the Rac1 activity that organizes the actin cytoskeleton was reduced, and its distribution was disrupted in p130Cas(ΔOCL-) osteoclasts. Dedicator of cytokinesis 5 (Dock5), a Rho family guanine nucleotide exchanger, failed to associate with Src or Pyk2 in osteoclasts in the absence of p130Cas. These results strongly indicate that p130Cas plays pivotal roles in osteoclastic bone resorption.
Collapse
Affiliation(s)
- Yoshie Nagai
- Division of Molecular Signaling and Biochemistry, Department of Health Improvement, Kyushu Dental University, Fukuoka, Japan; Division of Developmental Stomatognathic Function Science, Department of Health Improvement, Kyushu Dental University, Fukuoka, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Lu Z, Bast RC. The tumor suppressor gene ARHI (DIRAS3) inhibits ovarian cancer cell migration through multiple mechanisms. Cell Adh Migr 2013; 7:232-6. [PMID: 23357870 DOI: 10.4161/cam.23648] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
ARHI is an imprinted tumor suppressor gene that is downregulated in > 60% of ovarian cancers, associated with decreased progression-free survival. ARHI encodes a 26 kDa GTPase with homology to Ras. Re-expression of ARHI inhibits ovarian cancer growth, initiates autophagy and induces tumor dormancy. Recent studies have demonstrated that ARHI also plays a particularly important role in ovarian cancer cell migration. Re-expression of ARHI decreases motility of IL-6- and EGF-stimulated SKOv3 and Hey ovarian cancer cells, inhibiting both chemotaxis and haptotaxis. ARHI inhibits cell migration by binding and sequestering STAT3 in the cytoplasm, and preventing STAT3 translocation to the nucleus and localization in focal adhesion complexes. Re-expression of ARHI inhibits FAK (Y397) phosphorylation, disrupts focal adhesions and blocks FAK-mediated RhoA signaling, resulting in decreased levels of GTP-RhoA. Re-expression of ARHI disrupts formation of actin stress fibers in a FAK- and RhoA-dependent manner. Recent studies indicate that re-expression of ARHI inhibits expression of β-1 integrin which may also contribute to inhibition of migration, adhesion and invasion.
Collapse
Affiliation(s)
- Zhen Lu
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | |
Collapse
|
22
|
Wei L, Song XR, Sun JJ, Wang XW, Xie L, Lv LY. Lysyl oxidase may play a critical role in hypoxia-induced NSCLC cells invasion and migration. Cancer Biother Radiopharm 2012; 27:672-7. [PMID: 23140307 DOI: 10.1089/cbr.2012.1241] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Lysyl oxidase (LOX), a copper-dependent amine oxidase known to function both intracellularly and extracellularly, is implicated in promoting tumor progression and hypoxic metastasis in certain malignancies. Nonsmall cell lung cancer (NSCLC) is a highly aggressive cancer with poor prognosis worldwide. However, the role and molecular mechanism by which LOX involving in hypoxic NSCLC invasion and migration are poorly understood. This study explores the effect of LOX on invasion and migration of NSCLC cells under hypoxic conditions. Small interfering RNA (siRNA) targeting LOX was used to silence LOX expression of hypoxic NSCLC cells, SPCA1 and A549. Cellular invasive and migratory potentials were determined by matrigel invasion and migration assays. Expression of LOX, Src, Src activation (Tyr418 phosphorylation of Src), and Snail were evaluated by real-time PCR and western blot, respectively. The results showed that LOX mRNA and protein expression were upregulated under hypoxic conditions in NSCLC cells. Knockdown of LOX led to inhibition of hypoxia-induced invasion and migration. Phosphorylated Src (Tyr418) and Snail proteins were decreased along with LOX downregulation. Our data provide molecular evidences that LOX is mechanistically linked to increased invasion and migration of hypoxic NSCLC cells, and may serve as an antimetastasis target of human NSCLC.
Collapse
Affiliation(s)
- Ling Wei
- 1 Shandong Provincial Key Laboratory of Radiation Oncology , Shandong Cancer Hospital and Institute, Jinan, The People's Republic of China
| | | | | | | | | | | |
Collapse
|
23
|
Guerrero MS, Parsons JT, Bouton AH. Cas and NEDD9 Contribute to Tumor Progression through Dynamic Regulation of the Cytoskeleton. Genes Cancer 2012; 3:371-81. [PMID: 23226575 PMCID: PMC3513795 DOI: 10.1177/1947601912458585] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The Cas family proteins, p130(Cas) (Cas) and NEDD9, are adaptor molecules that regulate cytoskeletal dynamics to promote multiple cellular processes, including migration, invasion, proliferation, and survival. Because these functions are also critical for tumor initiation, growth, and metastasis, Cas and NEDD9 are well positioned to contribute to these oncogenic processes. Indeed, mouse models of cancer show that these proteins function during multiple stages of disease progression. Furthermore, in many human cancers, high expression of Cas and NEDD9 is associated with advanced stage disease and is predictive of poor outcome. This review explores the contribution of Cas and NEDD9 during cellular transformation and neoplastic growth, tumor progression, metastasis, and the development of therapeutic resistance. Given these roles, Cas and NEDD9 may prove to be viable candidates for use as biomarkers and therapeutic targets.
Collapse
|
24
|
Lysyl oxidase, extracellular matrix remodeling and cancer metastasis. CANCER MICROENVIRONMENT 2012; 5:261-73. [PMID: 22528876 DOI: 10.1007/s12307-012-0105-z] [Citation(s) in RCA: 185] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2012] [Accepted: 03/29/2012] [Indexed: 02/07/2023]
Abstract
Lysyl oxidase (LOX) family oxidases, LOX and LOXL1-4, oxidize lysine residues in collagens and elastin, resulting in the covalent crosslinking and stabilization of these extracellular matrix (ECM) structural components, thus provide collagen and elastic fibers much of their tensile strength and structural integrity. Abnormality in LOX expression and/or activity results in connective tissue disorders and fibrotic diseases. Despite LOX family oxidases have been reported to function as tumor suppressors, recent studies have highlighted the roles of LOX family oxidases in promoting cancer metastasis. LOX family oxidases are highly expressed in invasive tumors, and are closely associated with metastasis and poor patient outcome. Consistent to their roles in connective tissue homeostasis, LOX family oxidases expedite tumorigenesis and metastasis through active remodeling of tumor microenvironment. LOX family oxidases are also actively involved in the process of epithelial-mesenchymal transition (EMT), an event critical in cancer cell invasion and metastasis. In this review, we will summarize the recent progress on LOX family oxidases, with much of the focus on the roles and mechanism of LOX in tumor progression and metastasis.
Collapse
|
25
|
Lysyl oxidase contributes to mechanotransduction-mediated regulation of transforming growth factor-β signaling in breast cancer cells. Neoplasia 2011; 13:406-18. [PMID: 21532881 DOI: 10.1593/neo.101086] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2010] [Revised: 02/17/2011] [Accepted: 02/23/2011] [Indexed: 01/16/2023] Open
Abstract
Transforming growth factor-β (TGF-β) regulates all stages of mammary gland development, including the maintenance of tissue homeostasis and the suppression of tumorigenesis in mammary epithelial cells (MECs). Interestingly, mammary tumorigenesis converts TGF-β from a tumor suppressor to a tumor promoter through molecular mechanisms that remain incompletely understood. Changes in integrin signaling and tissue compliance promote the acquisition of malignant phenotypes in MECs in part through the activity of lysyl oxidase (LOX), which regulates desmoplastic reactions and metastasis. TGF-β also regulates the activities of tumor reactive stroma and MEC metastasis. We show here that TGF-β1 stimulated the synthesis and secretion of LOX from normal and malignant MECs in vitro and in mammary tumors produced in mice. The ability of TGF-β1 to activate Smad2/3 was unaffected by LOX inactivation in normal MECs, whereas the stimulation of p38 MAPK by TGF-β1 was blunted by inhibiting LOX activity in malignant MECs or by inducing the degradation of hydrogen peroxide in both cell types. Inactivating LOX activity impaired TGF-β1-mediated epithelial-mesenchymal transition and invasion in breast cancer cells. We further show that increasing extracellular matrix rigidity by the addition of type I collagen to three-dimensional organotypic cultures promoted the proliferation of malignant MECs, a cellular reaction that was abrogated by inhibiting the activities of TGF-β1 or LOX, and by degrading hydrogen peroxide. Our findings identify LOX as a potential mediator that couples mechanotransduction to oncogenic signaling by TGF-β1 and suggest that measures capable of inactivating LOX function may prove effective in diminishing breast cancer progression stimulated by TGF-β1.
Collapse
|
26
|
Huang M, Anand S, Murphy EA, Desgrosellier JS, Stupack DG, Shattil SJ, Schlaepfer DD, Cheresh DA. EGFR-dependent pancreatic carcinoma cell metastasis through Rap1 activation. Oncogene 2011; 31:2783-93. [PMID: 21963850 PMCID: PMC3711644 DOI: 10.1038/onc.2011.450] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Tyrosine kinase receptors play an essential role in various aspects of tumor progression. In particular, epidermal growth factor receptor (EGFR) and its ligands have been implicated in the growth and dissemination of a wide array of human carcinomas. Here, we describe an EGFR-mediated signaling pathway that regulates human pancreatic carcinoma cell invasion and metastasis, yet does not influence the growth of primary tumors. In fact, ligation/activation of EGFR induces Src-dependent phosphorylation of two critical tyrosine residues of p130CAS, leading to assembly of a CAS/Nck1 complex that promotes Rap1 signaling. Importantly, GTP loading of Rap1 is specifically required for pancreatic carcinoma cell migration on vitronectin, but not on collagen. Furthermore, Rap1 activation is required for EGFR-mediated metastasis in vivo without impacting primary tumor growth. These findings identify a molecular pathway that promotes the invasive/metastatic properties of human pancreatic carcinomas driven by EGFR.
Collapse
Affiliation(s)
- M Huang
- Department of Pathology, Moores University of California San Diego Cancer Center, La Jolla, CA 92093-1503, USA
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Parvani JG, Taylor MA, Schiemann WP. Noncanonical TGF-β signaling during mammary tumorigenesis. J Mammary Gland Biol Neoplasia 2011; 16:127-46. [PMID: 21448580 PMCID: PMC3723114 DOI: 10.1007/s10911-011-9207-3] [Citation(s) in RCA: 102] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2011] [Accepted: 03/08/2011] [Indexed: 12/16/2022] Open
Abstract
Breast cancer is a heterogeneous disease comprised of at least five major tumor subtypes that coalesce as the second leading cause of cancer death in women in the United States. Although metastasis clearly represents the most lethal characteristic of breast cancer, our understanding of the molecular mechanisms that govern this event remains inadequate. Clinically, ~30% of breast cancer patients diagnosed with early-stage disease undergo metastatic progression, an event that (a) severely limits treatment options, (b) typically results in chemoresistance and low response rates, and (c) greatly contributes to aggressive relapses and dismal survival rates. Transforming growth factor-β (TGF-β) is a pleiotropic cytokine that regulates all phases of postnatal mammary gland development, including branching morphogenesis, lactation, and involution. TGF-β also plays a prominent role in suppressing mammary tumorigenesis by preventing mammary epithelial cell (MEC) proliferation, or by inducing MEC apoptosis. Genetic and epigenetic events that transpire during mammary tumorigenesis conspire to circumvent the tumor suppressing activities of TGF-β, thereby permitting late-stage breast cancer cells to acquire invasive and metastatic phenotypes in response to TGF-β. Metastatic progression stimulated by TGF-β also relies on its ability to induce epithelial-mesenchymal transition (EMT) and the expansion of chemoresistant breast cancer stem cells. Precisely how this metamorphosis in TGF-β function comes about remains incompletely understood; however, recent findings indicate that the initiation of oncogenic TGF-β activity is contingent upon imbalances between its canonical and noncanonical signaling systems. Here we review the molecular and cellular contributions of noncanonical TGF-β effectors to mammary tumorigenesis and metastatic progression.
Collapse
MESH Headings
- Animals
- Breast Neoplasms/genetics
- Breast Neoplasms/metabolism
- Breast Neoplasms/pathology
- Cell Transformation, Neoplastic/genetics
- Cell Transformation, Neoplastic/metabolism
- Cell Transformation, Neoplastic/pathology
- Disease Progression
- Epithelial-Mesenchymal Transition
- Female
- Humans
- Mammary Glands, Animal/growth & development
- Mammary Glands, Animal/metabolism
- Mammary Glands, Animal/pathology
- Mammary Glands, Human/growth & development
- Mammary Glands, Human/metabolism
- Mammary Glands, Human/pathology
- Mammary Neoplasms, Experimental/genetics
- Mammary Neoplasms, Experimental/metabolism
- Mammary Neoplasms, Experimental/pathology
- Signal Transduction
- Transforming Growth Factor beta/genetics
- Transforming Growth Factor beta/metabolism
Collapse
Affiliation(s)
- Jenny G Parvani
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH 44106, USA
| | | | | |
Collapse
|
28
|
Baker AM, Cox TR, Bird D, Lang G, Murray GI, Sun XF, Southall SM, Wilson JR, Erler JT. The role of lysyl oxidase in SRC-dependent proliferation and metastasis of colorectal cancer. J Natl Cancer Inst 2011; 103:407-24. [PMID: 21282564 DOI: 10.1093/jnci/djq569] [Citation(s) in RCA: 162] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Emerging evidence implicates lysyl oxidase (LOX), an extracellular matrix-modifying enzyme, in promoting metastasis of solid tumors. We investigated whether LOX plays an important role in the metastasis of colorectal cancer (CRC). METHODS We analyzed LOX expression in a patient CRC tissue microarray consisting of normal colon mucosa (n = 49), primary (n = 510), and metastatic (n = 198) tissues. LOX was overexpressed in CRC cell line SW480 (SW480+LOX), and the expression was knocked down in CRC cell line SW620 using LOX-specific short hairpin RNA (SW620+shLOX). Effect of LOX manipulation on three-dimensional cell proliferation and invasion was characterized in vitro. Effect of LOX manipulation on tumor proliferation and metastasis was investigated in a subcutaneous tumor mouse model (n = 3 mice per group) and in an intrasplenic metastatic mouse model (n = 3 mice per group). The mechanism of LOX-mediated effects via v-src sarcoma (Schmidt-Ruppin A-2) viral oncogene homolog (avian) (SRC) was investigated using dasatinib, an inhibitor of SRC activation. All statistical tests were two-sided. RESULTS Compared with normal colon tissue (n = 49), LOX expression was statistically significantly increased in tumor tissues (n = 510) of CRC patients (P < .001), and a greater increase was observed in metastatic tissue (n = 198). SW480+LOX cells showed a statistically significantly increased three-dimensional proliferation (P = .037) and invasion (P = .015), whereas SW620+shLOX cells showed reduced proliferation (P = .011) and invasion (P = .013) compared with controls. Subcutaneous tumor growth in mice was statistically significantly increased in SW480+LOX tumors (P = .036) and decreased in SW620+shLOX tumors (P = .048), and metastasis was statistically significantly increased in SW480+LOX tumors (P = .044) and decreased in SW620+shLOX tumors (SW620 control vs SW620+shLOX, mean = 1.0 luminescent signal, 95% confidence interval = 0.3 to 1.7 luminescent signal, vs mean = 0.3 luminescent signal, 95% confidence interval = 0.1 to 0.5 luminescent signal; P = .035) compared with controls. LOX-mediated effects on tumor progression were associated with SRC activation, and these effects were inhibited by dasatinib. CONCLUSIONS LOX showed an important role in CRC cell proliferation and metastasis and was dependent on the activation of SRC. These results have the potential to identify patients with high SRC activity, who may benefit from dasatinib treatment.
Collapse
Affiliation(s)
- Ann-Marie Baker
- Section of Cell and Molecular Biology, The Institute of Cancer Research, London, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Lee YH, Schiemann WP. Fibromodulin suppresses nuclear factor-kappaB activity by inducing the delayed degradation of IKBA via a JNK-dependent pathway coupled to fibroblast apoptosis. J Biol Chem 2010; 286:6414-22. [PMID: 21156791 DOI: 10.1074/jbc.m110.168682] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Fibulin-5 (FBLN5) belongs to the Fibulin family of secreted extracellular matrix proteins, and our laboratory first established FBLN5 as a novel target for TGF-β in fibroblasts and endothelial cells. To better understand the pathophysiology of FBLN5, we carried out microarray analysis to identify fibroblast genes whose expressions were regulated by FBLN5 and TGF-β. In doing so, we identified fibromodulin (Fmod) as a novel target gene of FBLN5, and we validated the differential expression of Fmod and 12 other FBLN5-regulated genes by semi-quantitative real time PCR. Fmod belongs to the small leucine-rich family of proteoglycans, which are important constituents of mammalian extracellular matrices. Interestingly, parental 3T3-L1 fibroblasts displayed high levels of nuclear factor-κB (NF-κB) activity, although those engineered to express Fmod constitutively exhibited significantly reduced NF-κB activity, suggesting that Fmod functions to inhibit NF-κB signaling. By monitoring alterations in the activation of NF-κB and the degradation of its inhibitor, IκBα, we demonstrate for the first time that Fmod contributes to the constitutive degradation of IκBα protein in 3T3-L1 fibroblasts. Mechanistically, we observed Fmod to delay the degradation of IκBα by promoting the following: (i) activation of c-Jun N-terminal kinase; (ii) inhibition of calpain and casein kinase 2 activity; and (iii) induction of fibroblast apoptosis. Taken together, our study identified a novel function for Fmod in directing extracellular signaling, particularly the regulation of NF-κB activity and cell survival.
Collapse
Affiliation(s)
- Yong-Hun Lee
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, Ohio 44106, USA
| | | |
Collapse
|
30
|
Patani N, Jiang W, Newbold R, Mokbel K. Prognostic implications of carboxyl-terminus of Hsc70 interacting protein and lysyl-oxidase expression in human breast cancer. J Carcinog 2010; 9:9. [PMID: 21139993 PMCID: PMC2997236 DOI: 10.4103/1477-3163.72505] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2010] [Accepted: 06/11/2010] [Indexed: 11/30/2022] Open
Abstract
Background: Ubiquitin modification of proteins influences cellular processes relevant to carcinogenesis. CHIP (carboxyl-terminus of Hsc70-interacting protein) is a chaperone-dependent E3 ubiquitin ligase, regulating the stability of heat shock protein 90 (HSP90) interacting proteins. CHIP is implicated in the modulation of estrogen receptor (ESR1) and Her-2/neu (ERBB2) stability. LOX (lysyl-oxidase) serves intracellular roles and catalyses the cross-linking of extracellular matrix (ECM) collagens and elastin. LOX expression is altered in human malignancies and their peri-tumoral stroma. However, paradoxical roles are reported. In this study, the level of mRNA expression of CHIP and LOX were assessed in normal and malignant breast tissue and correlated with clinico-pathological parameters. Materials and Methods: Breast cancer (BC) tissues (n = 127) and normal tissues (n = 33) underwent RNA extraction and reverse transcription; transcript levels were determined using real-time quantitative PCR and normalized against CK-19. Transcript levels were analyzed against TNM stage, nodal involvement, tumor grade and clinical outcome over a ten-year follow-up period. Results: CHIP expression decreased with increasing Nottingham Prognostic Index (NPI): NPI-1 vs. NPI-3 (12.2 vs. 0.2, P = 0.0264), NPI-2 vs. NPI-3 (3 vs. 0.2, P = 0.0275). CHIP expression decreased with increasing TNM stage: TNM-1 vs. TNM-2 (12 vs. 0, P = 0.0639), TNM-1 vs. TNM-2-4 (12 vs. 0, P = 0.0434). Lower transcript levels were associated with increasing tumor grade: grade 1 vs. grade 3 (17.7 vs. 0.3, P = 0.0266), grade 2 vs. grade 3 (5 vs. 0.3, P = 0.0454). The overall survival (OS) for tumors classified as ‘low-level expression’, was poorer than those with ‘high-level expression’ (118.1 vs. 152.3 months, P = 0.039). LOX expression decreased with increasing NPI: NPI-1 vs. NPI-2 (3 vs. 0, P = 0.0301) and TNM stage: TNM-1 = 3854639, TNM-2 = 908900, TNM-3 = 329, TNM-4 = 1.232 (P = NS). Conclusion: CHIP expression is associated with favorable prognostic parameters, including tumor grade, TNM stage and NPI. CHIP expression predicts OS. LOX expression is associated with improved NPI. In addition to their prognostic utility, mechanistic insights into tumor suppressor function may offer potential therapeutic strategies.
Collapse
Affiliation(s)
- Neill Patani
- Department of Breast Surgery, The London Breast Institute, The Princess Grace Hospital, London
| | | | | | | |
Collapse
|
31
|
|
32
|
|
33
|
Wang H, Linghu H, Wang J, Che YL, Xiang TX, Tang WX, Yao ZW. The role of Crk/Dock180/Rac1 pathway in the malignant behavior of human ovarian cancer cell SKOV3. Tumour Biol 2009; 31:59-67. [PMID: 20237902 DOI: 10.1007/s13277-009-0009-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2009] [Accepted: 11/04/2009] [Indexed: 11/25/2022] Open
Abstract
Small GTPases, particularly the Rho family, are key regulators of cell motility and migration. Dock180 was well known for the main target of signal adaptor protein Crk and acted as a guanine-nucleotide exchange factor for small GTPase Rac1. In the present study, Dock180 was found to combine primarily with CrkI other than CrkII, and its association with Elmo1 was also demonstrated in ovarian cancer cell SKOV3. To evaluate the role of Dock180 in human ovarian cancer cell, we performed RNAi-mediated knockdown of Dock180 in SKOV3 cells using small interfering RNA expression vector. In Dock180 knockdown cells, we found that Elmo1 expression and Rac1 activity were decreased simultaneously. By contrast, the expressions of both another Crk-combining molecule C3G and Rap1 activity were observed to increase obviously. Accordingly, all Dock180 knockdown cells present with evident change in cell morphology, reduced cell proliferation, and attenuated cell migration. Taken together, these results suggest that signal transfer of Crk/Dock180/Rac1 is implicated in actin cytoskeleton reorganization and thus in the cell proliferation, motility, invasion, and of human ovarian cancer cell line SKOV3.
Collapse
Affiliation(s)
- Hui Wang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital, Chongqing Medical University, Chongqing, 400016, China
| | | | | | | | | | | | | |
Collapse
|
34
|
Majora M, Wittkampf T, Schuermann B, Schneider M, Franke S, Grether-Beck S, Wilichowski E, Bernerd F, Schroeder P, Krutmann J. Functional consequences of mitochondrial DNA deletions in human skin fibroblasts: increased contractile strength in collagen lattices is due to oxidative stress-induced lysyl oxidase activity. THE AMERICAN JOURNAL OF PATHOLOGY 2009; 175:1019-29. [PMID: 19661442 DOI: 10.2353/ajpath.2009.080832] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Deletions within the mitochondrial DNA (mtDNA) are thought to contribute to extrinsic skin aging. To study the translation of mtDNA deletions into functional and structural changes in the skin, we seeded human skin fibroblasts into collagen gels to generate dermal equivalents. These cells were either derived from Kearns-Sayre syndrome (KSS) patients, who constitutively carry large amounts of the UV-inducible mitochondrial common deletion, or normal human volunteers. We found that KSS fibroblasts, in comparison with normal human fibroblasts, contracted the gels faster and more strongly, an effect that was dependent on reactive oxygen species. Gene expression and Western blot analysis revealed significant upregulation of lysyl oxidase (LOX) in KSS fibroblasts. Treatment with the specific LOX inhibitor beta-aminopropionitrile decreased the contraction difference between KSS and normal human fibroblast equivalents. Also, addition of the antioxidant N-tert-butyl-alpha-phenylnitrone reduced the contraction difference by inhibiting collagen gel contraction in KSS fibroblasts, and both beta-aminopropionitrile and N-tert-butyl-alpha-phenylnitrone diminished LOX activity. These data suggest a causal relationship between mtDNA deletions, reactive oxygen species production, and increased LOX activity that leads to increased contraction of collagen gels. Accordingly, increased LOX expression was also observed in vivo in photoaged human and mouse skin. Therefore, mtDNA deletions in human fibroblasts may lead to functional and structural alterations of the skin.
Collapse
Affiliation(s)
- Marc Majora
- Institut fuer umweltmedizinische Forschung, Heinrich-Heine University Duesseldorf gGmbH, Auf'm Hennekamp 50, Duesseldorf, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
The lysyl oxidase inhibitor, beta-aminopropionitrile, diminishes the metastatic colonization potential of circulating breast cancer cells. PLoS One 2009; 4:e5620. [PMID: 19440335 PMCID: PMC2680032 DOI: 10.1371/journal.pone.0005620] [Citation(s) in RCA: 128] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2009] [Accepted: 04/14/2009] [Indexed: 12/27/2022] Open
Abstract
Lysyl oxidase (LOX), an extracellular matrix remodeling enzyme, appears to have a role in promoting breast cancer cell motility and invasiveness. In addition, increased LOX expression has been correlated with decreases in both metastases-free, and overall survival in breast cancer patients. With this background, we studied the ability of β-aminopropionitrile (BAPN), an irreversible inhibitor of LOX, to regulate the metastatic colonization potential of the human breast cancer cell line, MDA-MB-231. BAPN was administered daily to mice starting either 1 day prior, on the same day as, or 7 days after intracardiac injection of luciferase expressing MDA-MB-231-Luc2 cells. Development of metastases was monitored by in vivo bioluminescence imaging, and tumor-induced osteolysis was assessed by micro-computed tomography (μCT). We found that BAPN administration was able to reduce the frequency of metastases. Thus, when BAPN treatment was initiated the day before, or on the same day as the intra-cardiac injection of tumor cells, the number of metastases was decreased by 44%, and 27%, and whole-body photon emission rates (reflective of total tumor burden) were diminished by 78%, and 45%, respectively. In contrast, BAPN had no effect on the growth of established metastases. Our findings suggest that LOX activity is required during extravasation and/or initial tissue colonization by circulating MDA-MB-231 cells, lending support to the idea that LOX inhibition might be useful in metastasis prevention.
Collapse
|
36
|
Abstract
TGF-beta plays an essential role in maintaining tissue homeostasis through its ability to induce cell cycle arrest, differentiation and apoptosis, and to preserve genomic stability. Thus, TGF-beta is a potent anticancer agent that prohibits the uncontrolled proliferation of epithelial, endothelial and hematopoietic cells. Interestingly, tumorigenesis typically elicits aberrations in the TGF-beta signaling pathway that engenders resistance to the cytostatic activities of TGF-beta, thereby enhancing the development and progression of human malignancies. Moreover, these genetic and epigenetic events conspire to convert TGF-beta from a suppressor of tumor formation to a promoter of their growth, invasion and metastasis. The dichotomous nature of TGF-beta during tumorigenesis is known as the 'TGF-beta paradox', which remains the most critical and mysterious question concerning the physiopathological role of this multifunctional cytokine. Here we review recent findings that directly impact our understanding of the TGF-beta paradox and discuss their importance to targeting the oncogenic activities of TGF-beta in developing and progressing neoplasms.
Collapse
Affiliation(s)
- Maozhen Tian
- Department of Pharmacology, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO 80045, USA
| | | |
Collapse
|
37
|
Lee YH, Albig AR, Regner M, Schiemann BJ, Schiemann WP. Fibulin-5 initiates epithelial-mesenchymal transition (EMT) and enhances EMT induced by TGF-beta in mammary epithelial cells via a MMP-dependent mechanism. Carcinogenesis 2008; 29:2243-51. [PMID: 18713838 PMCID: PMC2621102 DOI: 10.1093/carcin/bgn199] [Citation(s) in RCA: 108] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2008] [Revised: 08/06/2008] [Accepted: 08/16/2008] [Indexed: 12/13/2022] Open
Abstract
Epithelial-mesenchymal transition (EMT) is a normal physiological process that regulates tissue development, remodeling and repair; however, aberrant EMT also elicits disease development in humans, including lung fibrosis, rheumatoid arthritis and cancer cell metastasis. Transforming growth factor-beta (TGF-beta) is a master regulator of EMT in normal mammary epithelial cells (MECs), wherein this pleiotropic cytokine also functions as a potent suppressor of mammary tumorigenesis. In contrast, malignant MECs typically evolve resistance to TGF-beta-mediated cytostasis and develop the ability to proliferate, invade and metastasize when stimulated by TGF-beta. It therefore stands to reason that establishing how TGF-beta promotes EMT may offer new insights into targeting the oncogenic activities of TGF-beta in human breast cancers. By monitoring alterations in the actin cytoskeleton and various markers of EMT, we show here that the TGF-beta gene target, fibulin-5 (FBLN5), initiates EMT and enhances that induced by TGF-beta. Whereas normal MECs contain few FBLN5 transcripts, those induced to undergo EMT by TGF-beta show significant upregulation of FBLN5 messenger RNA, suggesting that EMT and the dedifferentiation of MECs override the repression of FBLN5 expression in polarized MECs. We also show that FBLN5 stimulated matrix metalloproteinase expression and activity, leading to MEC invasion and EMT, to elevated Twist expression and to reduced E-cadherin expression. Finally, FBLN5 promoted anchorage-independent growth in normal and malignant MECs, as well as enhanced the growth of 4T1 tumors in mice. Taken together, these findings identify a novel EMT and tumor-promoting function for FBLN5 in developing and progressing breast cancers.
Collapse
Affiliation(s)
| | - Allan R. Albig
- Present address: Department of Life Sciences, 600 Chestnut Street, Indiana State University, Terre Haute, IN 47809, USA
| | | | - Barbara J. Schiemann
- Department of Obstetrics and Gynecology, University of Colorado Health Sciences Center, Aurora, CO 80045, USA
| | - William P. Schiemann
- To whom correspondence should be addressed. Department of Pharmacology, University of Colorado Health Sciences Center, RC1 South Tower, Room L18-6110, 12801 East 17th Avenue, PO Box 6511, Aurora, CO 80045, USA. Tel: +1 303 724 1541; Fax: +1 303 724 3663;
| |
Collapse
|
38
|
Zhao Y, Min C, Vora SR, Trackman PC, Sonenshein GE, Kirsch KH. The lysyl oxidase pro-peptide attenuates fibronectin-mediated activation of focal adhesion kinase and p130Cas in breast cancer cells. J Biol Chem 2008; 284:1385-93. [PMID: 19029090 DOI: 10.1074/jbc.m802612200] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
The lysyl oxidase (LOX) gene encodes an enzyme (LOX) critical for extracellular matrix maturation. The LOX gene has also been shown to inhibit the transforming activity of Ras oncogene signaling. In particular, the pro-peptide domain (LOX-PP) released from the secreted precursor protein (Pro-LOX) was found to inhibit the transformed phenotype of breast, lung, and pancreatic cancer cells. However, the mechanisms of action of LOX-PP remained to be determined. Here, the ability of LOX-PP to attenuate the integrin signaling pathway, which leads to phosphorylation of focal adhesion kinase (FAK), and the activation of its downstream target p130Cas, was determined. In NF639 breast cancer cells driven by Her-2/neu, which signals via Ras, ectopic Pro-LOX and LOX-PP expression inhibited fibronectin-stimulated protein tyrosine phosphorylation. Importantly, phosphorylation of FAK on Tyr-397 and Tyr-576, and p130Cas were substantially reduced. The amount of endogenous p130Cas in the Triton X-100-insoluble protein fraction, and fibronectin-activated haptotaxis were decreased. Interestingly, expression of mature LOX enzyme enhanced fibronectin-stimulated integrin signaling. Of note, treatment with recombinant LOX-PP selectively reduced fibronectin-mediated haptotaxis of NF639, MDA-MB-231, and Hs578T breast cancer cells. Thus, evidence is provided that one mechanism of action of LOX-PP tumor suppression is to block fibronectin-stimulated signaling and cell migration.
Collapse
Affiliation(s)
- Yingshe Zhao
- Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts 02118, USA
| | | | | | | | | | | |
Collapse
|
39
|
Postovit LM, Abbott DE, Payne SL, Wheaton WW, Margaryan NV, Sullivan R, Jansen MK, Csiszar K, Hendrix MJC, Kirschmann DA. Hypoxia/reoxygenation: a dynamic regulator of lysyl oxidase-facilitated breast cancer migration. J Cell Biochem 2008; 103:1369-78. [PMID: 17685448 DOI: 10.1002/jcb.21517] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Fluctuating oxygen levels characterize the microenvironment of many cancers and tumor hypoxia is associated with increased invasion and metastatic potential concomitant with a poor prognosis. Similarly, the expression of lysyl oxidase (LOX) in breast cancer facilitates tumor cell migration and is associated with estrogen receptor negative status and reduced patient survival. Here we demonstrate that hypoxia/reoxygenation drives poorly invasive breast cancer cells toward a more aggressive phenotype by up-regulating LOX expression and catalytic activity. Specifically, hypoxia markedly increased LOX protein expression; however, catalytic activity (beta-aminopropionitrile inhibitable hydrogen peroxide production) was significantly reduced under hypoxic conditions. Moreover, poorly invasive breast cancer cells displayed a marked increase in LOX-dependent FAK/Src activation and cell migration following hypoxia/reoxygenation, but not in response to hypoxia alone. Furthermore, LOX expression is only partially dependent on hypoxia inducible factor-1 (HIF-1alpha) in poorly invasive breast cancer cells, as hypoxia mimetics and overexpression of HIF-1alpha could not up-regulate LOX expression to the levels observed under hypoxia. Clinically, LOX expression positively correlates with tumor progression and co-localization with hypoxic regions (defined by HIF-1alpha expression) in ductal carcinoma in situ and invasive ductal carcinoma primary tumors. However, positive correlation is lost in metastatic tumors, suggesting that LOX expression is independent of a hypoxic environment at later stages of tumor progression. This work demonstrates that both hypoxia and reoxygenation are necessary for LOX catalytic activity which facilitates breast cancer cell migration through a hydrogen peroxide-mediated mechanism; thereby illuminating a potentially novel mechanism by which poorly invasive cancer cells can obtain metastatic competency.
Collapse
MESH Headings
- Breast Neoplasms/enzymology
- Breast Neoplasms/genetics
- Breast Neoplasms/pathology
- Carcinoma, Ductal, Breast/enzymology
- Carcinoma, Ductal, Breast/genetics
- Carcinoma, Ductal, Breast/pathology
- Cell Hypoxia
- Cell Line, Tumor
- Cell Movement
- Female
- Gene Expression Regulation, Enzymologic
- Gene Expression Regulation, Neoplastic
- Humans
- Hydrogen Peroxide/metabolism
- Hypoxia-Inducible Factor 1, alpha Subunit/genetics
- Hypoxia-Inducible Factor 1, alpha Subunit/metabolism
- Neoplasm Invasiveness
- Neoplasm Metastasis
- Protein-Lysine 6-Oxidase/biosynthesis
- Protein-Lysine 6-Oxidase/genetics
Collapse
Affiliation(s)
- Lynne-Marie Postovit
- Children's Memorial Research Center, Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine at Northwestern University, Chicago, Illinois 60614, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Hawkins TA, Cavodeassi F, Erdélyi F, Szabó G, Lele Z. The small molecule Mek1/2 inhibitor U0126 disrupts the chordamesoderm to notochord transition in zebrafish. BMC DEVELOPMENTAL BIOLOGY 2008; 8:42. [PMID: 18419805 PMCID: PMC2359734 DOI: 10.1186/1471-213x-8-42] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/10/2007] [Accepted: 04/17/2008] [Indexed: 11/10/2022]
Abstract
Background Key molecules involved in notochord differentiation and function have been identified through genetic analysis in zebrafish and mice, but MEK1 and 2 have so far not been implicated in this process due to early lethality (Mek1-/-) and functional redundancy (Mek2-/-) in the knockout animals. Results Here, we reveal a potential role for Mek1/2 during notochord development by using the small molecule Mek1/2 inhibitor U0126 which blocks phosphorylation of the Mek1/2 target gene Erk1/2 in vivo. Applying the inhibitor from early gastrulation until the 18-somite stage produces a specific and consistent phenotype with lack of dark pigmentation, shorter tail and an abnormal, undulated notochord. Using morphological analysis, in situ hybridization, immunhistochemistry, TUNEL staining and electron microscopy, we demonstrate that in treated embryos the chordamesoderm to notochord transition is disrupted and identify disorganization in the medial layer of the perinotochordal basement mebrane as the probable cause of the undulations and bulges in the notochord. We also examined and excluded FGF as the upstream signal during this process. Conclusion Using the small chemical U0126, we have established a novel link between MAPK-signaling and notochord differentiation. Our phenotypic analysis suggests a potential connection between the MAPK-pathway, the COPI-mediated intracellular transport and/or the copper-dependent posttranslational regulatory processes during notochord differentiation.
Collapse
Affiliation(s)
- Thomas A Hawkins
- Department of Anatomy and Developmental Biology, University College London, Gower Street, London, WC1E 6BT, UK.
| | | | | | | | | |
Collapse
|
41
|
Polgar N, Fogelgren B, Shipley JM, Csiszar K. Lysyl Oxidase Interacts with Hormone Placental Lactogen and Synergistically Promotes Breast Epithelial Cell Proliferation and Migration. J Biol Chem 2007; 282:3262-72. [PMID: 17130123 DOI: 10.1074/jbc.m609407200] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Lysyl oxidase (LOX), an extracellular amine oxidase, catalyzes the cross-linking of collagen and elastin. LOX has been also shown to play an essential role in promoting the invasive and metastatic potential of breast tumor cells. However, the LOX-interacting factors in these processes are not known. In this study, we identified placental lactogen (PL), a member of the growth hormone/prolactin hormone family, as a LOX-interacting partner using yeast two-hybrid screens. PL is normally only expressed in placental syncytiotrophoblasts, but PL genes are amplified and expressed in a high percentage of invasive ductal breast carcinomas. We confirmed LOX-PL interactions using far Western and solid phase binding assays. In activity assays, PL was not a substrate or inhibitor of LOX. We further demonstrated that PL is expressed in breast tumor epithelial cells and detected LOX-PL interactions by coimmunoprecipitation in invasive breast cancer cells. In MCF-10A normal breast epithelial cells stably expressing LOX, PL, or both, LOX had no effect on cell proliferation, PL alone increased proliferation by 49%, and coexpression of LOX and PL led to a 121% increase in cell proliferation. Unlike in tumor cells, LOX did not induce a more migratory phenotype in MCF-10A cells; nor did PL. However, their coexpression resulted in a 240% increase in cell migration, suggesting that these interactions may be highly relevant to the transition of epithelial cells toward a migratory phenotype during the development and progression of breast carcinoma and a significant role for LOX-PL interactions in epithelial cell behavior.
Collapse
Affiliation(s)
- Noemi Polgar
- Cardiovascular Research Center, John A. Burns School of Medicine, University of Hawaii, Honolulu, Hawaii 96822, USA
| | | | | | | |
Collapse
|
42
|
Payne SL, Hendrix MJC, Kirschmann DA. Paradoxical roles for lysyl oxidases in cancer—A prospect. J Cell Biochem 2007; 101:1338-54. [PMID: 17471532 DOI: 10.1002/jcb.21371] [Citation(s) in RCA: 179] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Lysyl oxidase (LOX) is an extracellular matrix (ECM) enzyme that catalyzes the cross-linking of collagens or elastin in the extracellular compartment, thereby regulating the tensile strength of tissues. However, recent reports have demonstrated novel roles for LOX, including the ability to regulate gene transcription, motility/migration, and cell adhesion. These diverse functions have led researchers to hypothesize that LOX may have multiple roles affecting both extra- and intracellular cell function(s). Particularly noteworthy is aberrant LOX expression and activity that have been observed in various cancerous tissues and neoplastic cell lines. Both down and upregulation of LOX in tumor tissues and cancer cell lines have been described, suggesting a dual role for LOX as a tumor suppressor, as well as a metastasis promoter gene--creating a conundrum within the LOX research field. Here, we review the body of evidence on LOX gene expression, regulation, and function(s) in various cancer cell types and tissues, as well as stromal-tumor cell interactions. Lastly, we will examine putative mechanisms in which LOX facilitates breast cancer invasion and metastasis. Taken together, the literature demonstrates the increasingly important role(s) that LOX may play in regulating tumor progression and the necessity to elucidate its myriad mechanisms of action in order to identify potentially novel therapeutics.
Collapse
Affiliation(s)
- Stacey L Payne
- Children's Memorial Research Center, Division of Cancer Biology and Epigenomics, Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine at Northwestern University, Chicago, IL 60614, USA
| | | | | |
Collapse
|
43
|
Abstract
Hypoxic cancer cells pose a great challenge to the oncologist because they are especially aggressive, metastatic, and resistant to therapy. Recently, we showed that elevation of the extracellular matrix protein lysyl oxidase (LOX) correlates with metastatic disease and is essential for hypoxia-induced metastasis. In an orthotopic rodent model of breast cancer, a small-molecule or antibody inhibitor of LOX abolished metastasis, offering preclinical validation of this enzyme as a therapeutic target.
Collapse
Affiliation(s)
- Janine T Erler
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California 94305, USA
| | | |
Collapse
|