1
|
Tang Y, Li H, Zeng Y, Yang C, Zhang R, Lund AK, Zhang M. Spermidine as a Potential Protective Agents Against Poly(I:C)-Induced Immune Response, Oxidative Stress, Apoptosis, and Testosterone Decrease in Yak Leydig Cells. Int J Mol Sci 2025; 26:2753. [PMID: 40141396 PMCID: PMC11942872 DOI: 10.3390/ijms26062753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Revised: 03/11/2025] [Accepted: 03/14/2025] [Indexed: 03/28/2025] Open
Abstract
Viral infections of the reproductive tract and testis in male yaks, often resulting from natural mating under grazing conditions, can lead to infertility due to Leydig cell (LC) apoptosis, immune activation, oxidative stress, and reduced testosterone production. Spermidine (SPD), a potential therapeutic agent with antioxidant and anti-aging properties, might alleviate oxidant stress, immune response, and virus infection caused by apoptosis. In this study, firstly testicular Leydig cells of yak were induced with Poly(I:C), the pathogen-associated molecular pattern of the dsRNA virus, as a pathogenic model at the cellular level. Secondly, immune response, apoptosis, oxidative stress, and testosterone synthesis were measured in LC with or without SPD culture medium. Finally, transcriptomic sequencing was utilized to investigate the molecular mechanisms underlying the protective effects of SPD. These results suggested Poly(I:C) damaged the function of Leydig cells, significantly decreased the concentration of testosterone, and induced immune response, oxidative stress, and cell apoptosis, while SPD significantly alleviated the immune response and oxidative stress, and then significantly inhibited cell apoptosis and restores testosterone production in LCs. Transcriptomic analysis revealed that SPD significantly alleviates inflammation and apoptosis induced by Poly(I:C), reducing immune response and cellular damage through the regulation of several key gene expressions. These findings suggest SPD has the potential ability to mitigate Poly(I:C)-induced immune response, oxidative stress, and apoptosis, and then restore testosterone production in Leydig cells, offering a promising strategy to protect and enhance male yak fertility after infection with dsRNA virus.
Collapse
Affiliation(s)
- Yujun Tang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (Y.T.); (H.L.); (Y.Z.); (C.Y.); (R.Z.); (A.K.L.)
| | - Hao Li
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (Y.T.); (H.L.); (Y.Z.); (C.Y.); (R.Z.); (A.K.L.)
| | - Yutian Zeng
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (Y.T.); (H.L.); (Y.Z.); (C.Y.); (R.Z.); (A.K.L.)
| | - Cuiting Yang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (Y.T.); (H.L.); (Y.Z.); (C.Y.); (R.Z.); (A.K.L.)
| | - Run Zhang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (Y.T.); (H.L.); (Y.Z.); (C.Y.); (R.Z.); (A.K.L.)
| | - Arab Khan Lund
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (Y.T.); (H.L.); (Y.Z.); (C.Y.); (R.Z.); (A.K.L.)
- Faculty of Animal Production and Technology, Shaheed Benazir Bhutto University of Veterinary and Animal Science, Sakrand 67210, Pakistan
| | - Ming Zhang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (Y.T.); (H.L.); (Y.Z.); (C.Y.); (R.Z.); (A.K.L.)
- Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| |
Collapse
|
2
|
Ishii T, Mori-Kobayashi K, Nakamura S, Ohkura S, Matsuyama S. Carnosine supplementation in cryopreservation solution improved frozen-thawed bovine embryo viability. J Reprod Dev 2024; 70:279-285. [PMID: 39010149 PMCID: PMC11461515 DOI: 10.1262/jrd.2023-071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 06/14/2024] [Indexed: 07/17/2024] Open
Abstract
Cryopreservation adversely affects embryo quality and viability in vitro. We investigated the effects of cryopreservation solutions supplemented with the antioxidant carnosine on frozen-thawed bovine embryo viability. Bovine blastocysts were produced in vitro and cryopreserved using slow freezing. The rates of re-expanded and hatched blastocysts in the 50 μg/ml carnosine-supplemented group at 4, 24, and 48 h after thawing were higher than those in the control (P < 0.05) group. In frozen-thawed embryos, cryopreservation solution supplemented with carnosine (50 μg/ml) significantly reduced reactive oxygen species (ROS) production (P < 0.05), decreased TUNEL-positive apoptotic cells (P < 0.05), and increased the mRNA expression of BCL2 (P < 0.05), an apoptosis suppressor gene. The expression of translocase of outer mitochondrial membrane 20 (TOMM20), which is involved in protein mitochondrial transport, in the carnosine (50 μg/ml)-treated embryos was significantly higher than that in the control group (P < 0.05). ATP production in frozen-thawed embryos in the 50 μg/ml carnosine-supplemented group was significantly higher than that in the control group (P < 0.05), however no significant difference in the total number of cells per embryo among the groups was observed. These results suggest that supplementing the cryopreservation solution with carnosine can improve the viability of frozen-thawed bovine embryos by reducing oxidative damage.
Collapse
Affiliation(s)
- Toshimichi Ishii
- Laboratory of Animal Production Science, Graduate School of Bioagricultural Sciences, Nagoya University, Aichi 464-8601, Japan
- Mie Prefectural Livestock Research Center, Mie 515-2324, Japan
| | | | - Sho Nakamura
- Laboratory of Animal Production Science, Graduate School of Bioagricultural Sciences, Nagoya University, Aichi 464-8601, Japan
| | - Satoshi Ohkura
- Laboratory of Animal Production Science, Graduate School of Bioagricultural Sciences, Nagoya University, Aichi 464-8601, Japan
| | - Shuichi Matsuyama
- Laboratory of Animal Production Science, Graduate School of Bioagricultural Sciences, Nagoya University, Aichi 464-8601, Japan
| |
Collapse
|
3
|
Priyanka, Sharma S, Varma-Basil M, Sharma M. C-terminal region of Rv1039c (PPE15) protein of Mycobacterium tuberculosis targets host mitochondria to induce macrophage apoptosis. Apoptosis 2024; 29:1757-1779. [PMID: 38615303 DOI: 10.1007/s10495-024-01965-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/04/2024] [Indexed: 04/15/2024]
Abstract
Mycobacterium tuberculosis (Mtb) genome possesses a unique family called Proline-Glutamate/Proline-Proline-Glutamate (PE/PPE) gene family, exclusive to pathogenic mycobacterium. Some of these proteins are known to play role in virulence and immune response modulation, but many are still uncharacterized. This study investigated the role of C-terminal region of Rv1039c (PPE15) in inducing mitochondrial perturbations and macrophage apoptosis. Our in-silico studies revealed the disordered, coiled, and hydrophobic C-terminal region in Rv1039c has similarity with C-terminal of mitochondria-targeting pro-apoptotic host proteins. Wild type Rv1039c and C-terminal deleted Rv1039c (Rv1039c-/-Cterm) recombinant proteins were purified and their M. smegmatis knock-in strains were constructed which were used for in-vitro experiments. Confocal microscopy showed localization of Rv1039c to mitochondria of PMA-differentiated THP1 macrophages; and reduced mitochondrial membrane depolarization and production of mitochondrial superoxides were observed in response to Rv1039c-/-Cterm in comparison to full-length Rv1039c. The C-terminal region of Rv1039c was found to activate caspases 3, 7 and 9 along with upregulated expression of pro-apoptotic genes like Bax and Bim. Rv1039c-/-Cterm also reduced the Cytochrome-C release from the mitochondria and the expression of AnnexinV/PI positive and TUNEL positive cells as compared to Rv1039c. Additionally, Rv1039c was observed to upregulate the TLR4-NF-κB-TNF-α signalling whereas the same was downregulated in response to Rv1039c-/-Cterm. These findings suggested that the C-terminal region of Rv1039c is a molecular mimic of pro-apoptotic host proteins which induce mitochondria-dependent macrophage apoptosis and evoke host immune response. These observations enhance our understanding about the role of PE/PPE proteins at host-pathogen interface.
Collapse
Affiliation(s)
- Priyanka
- DSKC BioDiscovery Laboratory, Department of Zoology, Miranda House, University of Delhi, Delhi, India
| | - Sadhna Sharma
- DSKC BioDiscovery Laboratory, Department of Zoology, Miranda House, University of Delhi, Delhi, India
| | - Mandira Varma-Basil
- Department of Microbiology, Vallabhbhai Patel Chest Institute, University of Delhi, Delhi, India
| | - Monika Sharma
- DSKC BioDiscovery Laboratory, Department of Zoology, Miranda House, University of Delhi, Delhi, India.
| |
Collapse
|
4
|
Yadav RS, Kushawaha B, Dhariya R, Swain DK, Yadav B, Anand M, Kumari P, Rai PK, Singh D, Yadav S, Garg SK. Lead and calcium crosstalk tempted acrosome damage and hyperpolarization of spermatozoa: signaling and ultra-structural evidences. Biol Res 2024; 57:44. [PMID: 38965573 PMCID: PMC11225213 DOI: 10.1186/s40659-024-00517-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Accepted: 05/16/2024] [Indexed: 07/06/2024] Open
Abstract
BACKGROUND Exposure of humans and animals to heavy metals is increasing day-by-day; thus, lead even today remains of significant public health concern. According to CDC, blood lead reference value (BLRV) ranges from 3.5 µg/dl to 5 μg/dl in adults. Recently, almost 2.6% decline in male fertility per year has been reported but the cause is not well established. Lead (Pb2+) affects the size of testis, semen quality, and secretory functions of prostate. But the molecular mechanism(s) of lead toxicity in sperm cells is not clear. Thus, present study was undertaken to evaluate the adverse effects of lead acetate at environmentally relevant exposure levels (0.5, 5, 10 and 20 ppm) on functional and molecular dynamics of spermatozoa of bucks following in vitro exposure for 15 min and 3 h. RESULTS Lead significantly decreased motility, viable count, and motion kinematic patterns of spermatozoa like curvilinear velocity, straight-line velocity, average path velocity, beat cross frequency and maximum amplitude of head lateral displacement even at 5 ppm concentration. Pb2+ modulated intracellular cAMP and Ca2+ levels in sperm cells through L-type calcium channels and induced spontaneous or premature acrosome reaction (AR) by increasing tyrosine phosphorylation of sperm proteins and downregulated mitochondrial transmembrane potential. Lead significantly increased DNA damage and apoptosis as well. Electron microscopy studies revealed Pb2+ -induced deleterious effects on plasma membrane of head and acrosome including collapsed cristae in mitochondria. CONCLUSIONS Pb2+ not only mimics Ca2+ but also affects cellular targets involved in generation of cAMP, mitochondrial transmembrane potential, and ionic exchange. Lead seems to interact with Ca2+ channels because of charge similarity and probably enters the sperm cell through these channels and results in hyperpolarization. Our findings also indicate lead-induced TP and intracellular Ca2+ release in spermatozoa which in turn may be responsible for premature acrosome exocytosis which is essential feature of capacitation for fertilization. Thus, lead seems to reduce the fertilizing capacity of spermatozoa even at 0.5 ppm concentrations.
Collapse
Affiliation(s)
- Rajkumar Singh Yadav
- Department of Pharmacology and Toxicology, U.P. Pandit Deen Dayal Upadhyaya Pashu Chikitsa Vigyan Vishwavidyalaya Evam Go Anusandhan Sansthan, Mathura, India
- U.P. Pandit Deen Dayal Upadhayaya Pashu Chikitsa Vigyan Vishwavidyalaya Evam Go Anusandhan Sansthan (DUVASU), Mathura, Uttar Pradesh, 281001, India
| | - Bhawna Kushawaha
- College of Biotechnology, Mathura, India.
- U.P. Pandit Deen Dayal Upadhayaya Pashu Chikitsa Vigyan Vishwavidyalaya Evam Go Anusandhan Sansthan (DUVASU), Mathura, Uttar Pradesh, 281001, India.
- University of Nebraska Medical Center (UNMC), Omaha, USA.
| | - Rahul Dhariya
- College of Biotechnology, Mathura, India
- U.P. Pandit Deen Dayal Upadhayaya Pashu Chikitsa Vigyan Vishwavidyalaya Evam Go Anusandhan Sansthan (DUVASU), Mathura, Uttar Pradesh, 281001, India
| | - Dilip Kumar Swain
- Department of Veterinary Physiology, U.P. Pandit Deen Dayal Upadhyaya Pashu Chikitsa Vigyan Vishwavidyalaya Evam Go Anusandhan Sansthan, Mathura, India
- U.P. Pandit Deen Dayal Upadhayaya Pashu Chikitsa Vigyan Vishwavidyalaya Evam Go Anusandhan Sansthan (DUVASU), Mathura, Uttar Pradesh, 281001, India
| | - Brijesh Yadav
- Department of Veterinary Physiology, U.P. Pandit Deen Dayal Upadhyaya Pashu Chikitsa Vigyan Vishwavidyalaya Evam Go Anusandhan Sansthan, Mathura, India
- U.P. Pandit Deen Dayal Upadhayaya Pashu Chikitsa Vigyan Vishwavidyalaya Evam Go Anusandhan Sansthan (DUVASU), Mathura, Uttar Pradesh, 281001, India
| | - Mukul Anand
- Department of Veterinary Physiology, U.P. Pandit Deen Dayal Upadhyaya Pashu Chikitsa Vigyan Vishwavidyalaya Evam Go Anusandhan Sansthan, Mathura, India
- U.P. Pandit Deen Dayal Upadhayaya Pashu Chikitsa Vigyan Vishwavidyalaya Evam Go Anusandhan Sansthan (DUVASU), Mathura, Uttar Pradesh, 281001, India
| | - Priyambada Kumari
- College of Biotechnology, Mathura, India
- U.P. Pandit Deen Dayal Upadhayaya Pashu Chikitsa Vigyan Vishwavidyalaya Evam Go Anusandhan Sansthan (DUVASU), Mathura, Uttar Pradesh, 281001, India
| | | | - Dipty Singh
- ICMR-National Institute for Research in Reproductive Health (NIRRH), Mumbai, India
| | - Sarvajeet Yadav
- Department of Veterinary Physiology, U.P. Pandit Deen Dayal Upadhyaya Pashu Chikitsa Vigyan Vishwavidyalaya Evam Go Anusandhan Sansthan, Mathura, India
- U.P. Pandit Deen Dayal Upadhayaya Pashu Chikitsa Vigyan Vishwavidyalaya Evam Go Anusandhan Sansthan (DUVASU), Mathura, Uttar Pradesh, 281001, India
| | - Satish Kumar Garg
- Department of Pharmacology and Toxicology, U.P. Pandit Deen Dayal Upadhyaya Pashu Chikitsa Vigyan Vishwavidyalaya Evam Go Anusandhan Sansthan, Mathura, India.
- U.P. Pandit Deen Dayal Upadhayaya Pashu Chikitsa Vigyan Vishwavidyalaya Evam Go Anusandhan Sansthan (DUVASU), Mathura, Uttar Pradesh, 281001, India.
| |
Collapse
|
5
|
Hu H, Zhang J, Xin X, Jin Y, Zhu Y, Zhang H, Fan R, Ye Y, Li D. Efficacy of natural products on premature ovarian failure: a systematic review and meta-analysis of preclinical studies. J Ovarian Res 2024; 17:46. [PMID: 38378652 PMCID: PMC10877904 DOI: 10.1186/s13048-024-01369-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 02/05/2024] [Indexed: 02/22/2024] Open
Abstract
OBJECTIVE This study aims to investigate the effects of natural products on animal models of premature ovarian failure (POF). METHODS We conducted comprehensive literature searches and identified relevant studies that examined the protective effects of natural products on experimental POF. We extracted quantitative data on various aspects such as follicular development, ovarian function, physical indicators, oxidative stress markers, inflammatory factors, and protein changes. The data was analyzed using random-effects meta-analyses, calculating pooled standardized mean differences and 95% confidence intervals. Heterogeneity was assessed using the I2 statistic, and bias was estimated using the SYRCLE tool. RESULTS Among the 879 reviewed records, 25 articles met our inclusion criteria. These findings demonstrate that treatment with different phytochemicals and marine natural products (flavonoids, phenols, peptides, and alkaloids, etc.) significantly improved various aspects of ovarian function compared to control groups. The treatment led to an increase in follicle count at different stages, elevated levels of key hormones, and a decrease in atretic follicles and hormone levels associated with POF. This therapy also reduced oxidative stress (specifically polyphenols, resveratrol) and apoptotic cell death (particularly flavonoids, chrysin) in ovarian granulosa cells, although it showed no significant impact on inflammatory responses. The certainty of evidence supporting these findings ranged from low to moderate. CONCLUSIONS Phytochemicals and marine natural product therapy (explicitly flavonoids, phenols, peptides, and alkaloids) has shown potential in enhancing folliculogenesis and improving ovarian function in animal models of POF. These findings provide promising strategies to protect ovarian reserve and reproductive health. Targeting oxidative stress and apoptosis pathways may be the underlying mechanism.
Collapse
Affiliation(s)
- Hangqi Hu
- Department of Traditional Chinese Medicine, Peking University Third Hospital, 49 North Garden Road, Haidian District, Beijing, 100191, China
| | - Jiacheng Zhang
- Department of Traditional Chinese Medicine, Peking University Third Hospital, 49 North Garden Road, Haidian District, Beijing, 100191, China
| | - Xiyan Xin
- Department of Traditional Chinese Medicine, Peking University Third Hospital, 49 North Garden Road, Haidian District, Beijing, 100191, China
| | - Yuxin Jin
- Department of Traditional Chinese Medicine, Peking University Third Hospital, 49 North Garden Road, Haidian District, Beijing, 100191, China
| | - Yutian Zhu
- Department of Traditional Chinese Medicine, Peking University Third Hospital, 49 North Garden Road, Haidian District, Beijing, 100191, China
| | - Haolin Zhang
- Department of Traditional Chinese Medicine, Peking University Third Hospital, 49 North Garden Road, Haidian District, Beijing, 100191, China
| | - Ruiwen Fan
- Department of Traditional Chinese Medicine, Peking University Third Hospital, 49 North Garden Road, Haidian District, Beijing, 100191, China
| | - Yang Ye
- Department of Traditional Chinese Medicine, Peking University Third Hospital, 49 North Garden Road, Haidian District, Beijing, 100191, China.
| | - Dong Li
- Department of Traditional Chinese Medicine, Peking University Third Hospital, 49 North Garden Road, Haidian District, Beijing, 100191, China.
| |
Collapse
|
6
|
Xing D, Jin Y, Sun D, Liu Y, Cai B, Gao C, Cui Y, Jin B. Protective effect of TNFAIP3 on testosterone production in Leydig cells under an aging inflammatory microenvironment. Arch Gerontol Geriatr 2024; 117:105274. [PMID: 37995648 DOI: 10.1016/j.archger.2023.105274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 11/02/2023] [Accepted: 11/10/2023] [Indexed: 11/25/2023]
Abstract
BACKGROUND The aging inflammatory microenvironment surrounding Leydig cells is linked to reduced testosterone levels in males. Tumor necrosis factor alpha-induced protein 3 (TNFAIP3) acts as a critical anti-inflammatory factor in various aging-related diseases. This study aims to investigate the protective effect of TNFAIP3 on testosterone production in Leydig cells under an aging inflammatory microenvironment. METHODS Bioinformatics analysis examined TNFAIP3 expression differences in aging rat testes and validated the findings in aging mouse testes. In vitro models of inflammation were established using two Leydig cell lines, with tumor necrosis factor alpha (TNF-α) as the inflammatory factor. Lentiviral transduction was utilized to manipulate TNFAIP3 expression in these cell lines. Transcriptomic sequencing identified differentially expressed genes in TNFAIP3-overexpressing cells. RESULTS Bioinformatics analysis and validation experiments revealed increased inflammatory signaling and elevated TNFAIP3 expression in aging rat and mouse testes. TNFAIP3 knockdown worsened testosterone synthesis inhibition and apoptosis in cells, while TNFAIP3 overexpression reversed these effects. Transcriptome analysis identified alterations in the P38MAPK pathway following TNFAIP3 overexpression. TNFAIP3 knockdown enhanced TNF-induced P38MAPK signaling, whereas its overexpression attenuated this effect. TNFAIP3 was found to regulate testosterone synthesis by upregulating CEBPB expression. CONCLUSIONS TNFAIP3 exhibits inhibitory effects on apoptosis and promotes testosterone production in Leydig cells. The protective influence of TNFAIP3 on Leydig cells within an inflammatory microenvironment is likely mediated through by inhibiting the P38MAPK pathway and upregulating CEBPB expression.
Collapse
Affiliation(s)
- Dong Xing
- Medical College of Southeast University, 210009, Nanjing, Jiangsu, China
| | - Yihan Jin
- Reproductive Medicine Center, Zhongda Hospital, Southeast University, 210009, Nanjing, Jiangsu, China
| | - Dalin Sun
- Andrology Department of Integrative Medicine, Zhongda Hospital, Southeast University, 210009, Nanjing, Jiangsu, China
| | - Yuanyuan Liu
- Medical College of Southeast University, 210009, Nanjing, Jiangsu, China
| | - Bin Cai
- Andrology Department of Integrative Medicine, Zhongda Hospital, Southeast University, 210009, Nanjing, Jiangsu, China
| | - Chao Gao
- Clinical Center of Reproductive Medicine, State Key Laboratory of Reproductive Medicine, First Affiliated Hospital of Nanjing Medical University, 210029, Nanjing, Jiangsu, China
| | - Yugui Cui
- Clinical Center of Reproductive Medicine, State Key Laboratory of Reproductive Medicine, First Affiliated Hospital of Nanjing Medical University, 210029, Nanjing, Jiangsu, China
| | - Baofang Jin
- Andrology Department of Integrative Medicine, Zhongda Hospital, Southeast University, 210009, Nanjing, Jiangsu, China.
| |
Collapse
|
7
|
Pandey R, Bisht P, Wal P, Murti K, Ravichandiran V, Kumar N. SMAC Mimetics for the Treatment of Lung Carcinoma: Present Development and Future Prospects. Mini Rev Med Chem 2024; 24:1334-1352. [PMID: 38275029 DOI: 10.2174/0113895575269644231120104501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 09/07/2023] [Accepted: 10/10/2023] [Indexed: 01/27/2024]
Abstract
BACKGROUND Uncontrolled cell growth and proliferation, which originate from lung tissue often lead to lung carcinoma and are more likely due to smoking as well as inhaled environmental toxins. It is widely recognized that tumour cells evade the ability of natural programmed death (apoptosis) and facilitates tumour progression and metastasis. Therefore investigating and targeting the apoptosis pathway is being utilized as one of the best approaches for decades. OBJECTIVE This review describes the emergence of SMAC mimetic drugs as a treatment approach, its possibilities to synergize the response along with current limitations as well as future perspective therapy for lung cancer. METHOD Articles were analysed using search engines and databases namely Pubmed and Scopus. RESULT Under cancerous circumstances, the level of Inhibitor of Apoptosis Proteins (IAPs) gets elevated, which suppresses the pathway of programmed cell death, plus supports the proliferation of lung cancer. As it is a major apoptosis regulator, natural drugs that imitate the IAP antagonistic response like SMAC mimetic agents/Diablo have been identified to trigger cell death. SMAC i.e. second mitochondria activators of caspases is a molecule produced by mitochondria, stimulates apoptosis by neutralizing/inhibiting IAP and prevents its potential responsible for the activation of caspases. Various preclinical data have proven that these agents elicit the death of lung tumour cells. Apart from inducing apoptosis, these also sensitize the cancer cells toward other effective anticancer approaches like chemo, radio, or immunotherapies. There are many SMAC mimetic agents such as birinapant, BV-6, LCL161, and JP 1201, which have been identified for diagnosis as well as treatment purposes in lung cancer and are also under clinical investigation. CONCLUSION SMAC mimetics acts in a restorative way in the prevention of lung cancer.
Collapse
Affiliation(s)
- Ruchi Pandey
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education & Research (NIPER), Hajipur, Bihar, 844102, India
| | - Priya Bisht
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education & Research (NIPER), Hajipur, Bihar, 844102, India
| | - Pranay Wal
- Department of Pharmacy, Pranveer Singh Institute of Technology, Kanpur, Uttar Pradesh, India
| | - Krishna Murti
- Department of Pharmacy Practice, National Institute of Pharmaceutical Education & Research (NIPER), Hajipur, Bihar, 844102, India
| | - V Ravichandiran
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education & Research (NIPER), Hajipur, Bihar, 844102, India
| | - Nitesh Kumar
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education & Research (NIPER), Hajipur, Bihar, 844102, India
| |
Collapse
|
8
|
Zhang L, Shi S, Liu Y, Cui Y, Zhu Y, Bao Y, Chen B, Shi W. Aflatoxin B1 triggers apoptosis in rabbit hepatocytes via mediating oxidative stress and switching on the mitochondrial apoptosis pathway. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 264:115478. [PMID: 37716070 DOI: 10.1016/j.ecoenv.2023.115478] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 09/05/2023] [Accepted: 09/11/2023] [Indexed: 09/18/2023]
Abstract
Aflatoxin B1 (AFB1) is considered the most toxic carcinogenic compound, and exposure to AFB1 is highly associated with hepatocellular carcinoma. The aim of this study was to investigate the effects of different doses of AFB1 on growth performance and the liver of rabbits, as well as explore its underlying mechanisms. A total of eighty 30-day-old meat rabbits were randomly divided into four treatments. The control group was fed a pollution-free diet, while the AFL, AFM, and AFH groups were fed contaminated diets containing 13 μg/kg, 19 μg/kg, and 25 μg/kg of AFB1, respectively. The results showed that AFB1 had detrimental effects on the production performance of rabbits, resulting in decreased weight gain. Additionally, AFB1 exposure was associated with increased activity of Aspartate aminotransferase (AST) and Alanine aminotransferase (ALT), as well as decreased levels of total protein (TP) and albumin (ALB) in the serum. AFB1 induced the production of reactive oxygen species (ROS) and malondialdehyde (MDA) while inhibiting the activity of glutathione (GSH), superoxide dismutase (SOD), and catalase (CAT) activity in liver tissues. AFB1 decreased the mRNA transcription and protein expression of nuclear factor-erythroid 2-related factor 2 (Nrf2), heme oxygenase-1 (HO-1), and NAD(P)H dehydrogenase quinone-1 (NQO-1). AFB1 not only decreased the contents of cytochrome P4501A2 (CYP1A2), cytochrome P4502A6 (CYP2A6) and cytochrome P4503A4 (CYP3A4) but also increased the content of AFB1-DNA adducts in the liver. Furthermore, AFB1 enhanced the expression of cytochrome c (cyt-c), caspase-9, caspase-3, and Bcl-2-associated X protein (Bax), while inhibiting the expression of B-cell lymphoma 2 (Bcl-2). Therefore, we demonstrated that AFB1 triggered apoptosis in rabbit hepatocytes via mediating oxidative stress and switching on the mitochondrial apoptosis pathway, and decreased rabbit performance.
Collapse
Affiliation(s)
- Lu Zhang
- College of Traditional Chinese Veterinary Medicine, Hebei Agricultural University, Baoding 071001, China
| | - Shaowen Shi
- College of Traditional Chinese Veterinary Medicine, Hebei Agricultural University, Baoding 071001, China
| | - Ying Liu
- College of Traditional Chinese Veterinary Medicine, Hebei Agricultural University, Baoding 071001, China
| | - Yuqing Cui
- College of Traditional Chinese Veterinary Medicine, Hebei Agricultural University, Baoding 071001, China
| | - Yixuan Zhu
- College of Traditional Chinese Veterinary Medicine, Hebei Agricultural University, Baoding 071001, China
| | - Yongzhan Bao
- College of Traditional Chinese Veterinary Medicine, Hebei Agricultural University, Baoding 071001, China; Hebei Provincial Veterinary Biotechnology Innovation Center, Baoding 071001, China
| | - Baojiang Chen
- College of Animal Science and Technology, Hebei Agricultural University, Baoding 071001, China
| | - Wanyu Shi
- College of Traditional Chinese Veterinary Medicine, Hebei Agricultural University, Baoding 071001, China; Hebei Provincial Veterinary Biotechnology Innovation Center, Baoding 071001, China.
| |
Collapse
|
9
|
Quiñones Guillén LS, Gonzalez FS, Darden C, Khan M, Tripathi A, Smith JT, Cooley A, Paromov V, Davis J, Misra S, Chaudhuri M. Unique interactions and functions of the mitochondrial small Tims in Trypanosoma brucei. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.29.542777. [PMID: 37398442 PMCID: PMC10312748 DOI: 10.1101/2023.05.29.542777] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Trypanosoma brucei is an early divergent parasitic protozoan that causes a fatal disease, African trypanosomiasis. T. brucei possesses a unique and essential translocase of the mitochondrial inner membrane, the TbTIM17 complex. TbTim17 associates with 6 small TbTims, (TbTim9, TbTim10, TbTim11, TbTim12, TbTim13, and TbTim8/13). However, the interaction pattern of the small TbTims with each other and TbTim17 are not clear. Here, we demonstrated by yeast two-hybrid (Y2H) analysis that all six small TbTims interact with each other, but stronger interactions were found among TbTim8/13, TbTim9, and TbTim10. Each of the small TbTims also interact directly with the C-terminal region of TbTim17. RNAi studies indicated that among all small TbTims, TbTim13 is most crucial to maintain the steady-state levels of the TbTIM17 complex. Co-immunoprecipitation analyses from T. brucei mitochondrial extracts also showed that TbTim10 has a stronger association with TbTim9 and TbTim8/13, but a weaker association with TbTim13, whereas TbTim13 has a stronger connection with TbTim17. Analysis of the small TbTim complexes by size exclusion chromatography revealed that each small TbTim, except TbTim13, is present in ∼70 kDa complexes, which could be heterohexameric forms of the small TbTims. However, TbTim13 is primarily present in the larger complex (>800 kDa) and co-fractionated with TbTim17. Altogether, our results demonstrated that TbTim13 is a part of the TbTIM complex and the smaller complexes of the small TbTims likely interact with the larger complex dynamically. Therefore, relative to other eukaryotes, the architecture and function of the small TbTim complexes are specific in T. brucei .
Collapse
|
10
|
Liu J, Yang Y, He Y, Feng C, Ou H, Yang J, Chen Y, You F, Shao B, Bao J, Guan X, Chen F, Zhao P. Erxian decoction alleviates cisplatin-induced premature ovarian failure in rats by reducing oxidation levels in ovarian granulosa cells. JOURNAL OF ETHNOPHARMACOLOGY 2023; 304:116046. [PMID: 36567042 DOI: 10.1016/j.jep.2022.116046] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/26/2022] [Accepted: 12/08/2022] [Indexed: 06/17/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANT Erxian Decoction (EXD) has been used empirically for more than 70 years to treat premature ovarian failure (POF), but more research is needed to understand how it works. AIM OF THE RESEARCH The study aims to ascertain both in vivo and in vitro rewards of EXD. MATERIALS AND METHODS EXD is composed of Curculiginis Rhizoma, Epimedii Folium, Morindae Officinalis, Angelicae Sinensis, Anemarrhenae Rhizoma, and Phellodendri Chinensis Cortex. UPLC/MS analysis was used to investigate the components of EXD. Using a POF model created by administering cisplatin to rats intraperitoneally, the pharmacodynamic effects of EXD were investigated. Three dose groups of EXD were garaged into rats: high (15.6 g/kg), medium (7.8 g/kg), and low (3.9 g/kg). By using a vaginal smear, the impact of EXD on the rat estrous cycle was evaluated. An ELISA test was used to measure the anti-Mullerian hormone (AMH), estradiol (E2), follicle-stimulating hormone (FSH), and luteinizing hormone (LH) levels in the serum of rats. By using HE stains, pathological alterations in the ovaries may be seen. MDA and SOD levels in ovarian samples were used to measure the degree of ovarian oxidation. TUNEL labeling of ovarian sections was used to find apoptosis levels. By using ATP, energy production was evaluated. The relative expression of proteins connected to aging and the RAGE pathway was assessed using Western blot. Then, using H2O2, a model of senescent human ovarian granulosa cells (KGN) was created in vitro. The impact of EXD and H2O2 on cellular senescence was discovered using-galactosidase staining. Cell apoptosis levels were found using PI/Hoechest33342. By using DCFH-DA, intracellular ROS was examined. MDA and SOD concentrations were used to measure the degree of cellular oxidation. RAGE-related mRNA and protein expression were evaluated using RT-qPCR and western blotting. RESULTS Using UPLC/MS analysis, 39 chemicals in EXD were found. Rats' estrous cycles were enhanced by EXD, which increased ovarian index and follicle count and reduced the proportion of atretic follicles in the rats. EXD reduced LH and FSH output while restoring AMH and E2 secretion. In ovarian tissues, EXD reduced the amount of apoptosis and MDA while raising SOD activity and ATP levels. The protein levels of p16, p21, p53, and Lamin A/C were among the senescence-related proteins that EXD lowered, along with the levels of RAGE, PI3K, BAX, and CASPASE 3. Anti-apoptotic protein BCL-2 was also raised in the RAGE pathway. Senescence, apoptosis, ROS, and MDA levels in the KGN cells were lowered in vitro by EXD. Additionally, EXD increased the anti-apoptotic potential by changing the expression of CAT, SOD2, and SIRT1. RAGE, BAX, BCL-2, CASPASE 3, and p38 expression levels were altered by EXD, enhancing its anti-apoptotic capability. CONCLUSION EXD boosted the ovary's antioxidant and anti-apoptotic capabilities while enhancing the estrous cycle and hormone output. These findings strongly suggested that EXD may contribute to the alleviation of POF and ovarian granulosa cells senescence.
Collapse
Affiliation(s)
- Jiao Liu
- School of Life Sciences, Beijing University of Chinese Medicine, No.11 East Road, North 3rd Ring Road, Beijing, 100029, China
| | - Yang Yang
- School of Life Sciences, Beijing University of Chinese Medicine, No.11 East Road, North 3rd Ring Road, Beijing, 100029, China
| | - Yueshuang He
- School of Life Sciences, Beijing University of Chinese Medicine, No.11 East Road, North 3rd Ring Road, Beijing, 100029, China
| | - Chenran Feng
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, No.11 East Road, North 3rd Ring Road, Beijing, 100029, China
| | - Haosong Ou
- School of Life Sciences, Beijing University of Chinese Medicine, No.11 East Road, North 3rd Ring Road, Beijing, 100029, China
| | - Jiadi Yang
- School of Life Sciences, Beijing University of Chinese Medicine, No.11 East Road, North 3rd Ring Road, Beijing, 100029, China
| | - Yao Chen
- School of Life Sciences, Beijing University of Chinese Medicine, No.11 East Road, North 3rd Ring Road, Beijing, 100029, China
| | - Fengming You
- School of Life Sciences, Beijing University of Chinese Medicine, No.11 East Road, North 3rd Ring Road, Beijing, 100029, China
| | - Binghao Shao
- School of Life Sciences, Beijing University of Chinese Medicine, No.11 East Road, North 3rd Ring Road, Beijing, 100029, China
| | - Jirong Bao
- School of Life Sciences, Beijing University of Chinese Medicine, No.11 East Road, North 3rd Ring Road, Beijing, 100029, China
| | - Xingyu Guan
- School of Life Sciences, Beijing University of Chinese Medicine, No.11 East Road, North 3rd Ring Road, Beijing, 100029, China
| | - Fangfang Chen
- School of Life Sciences, Beijing University of Chinese Medicine, No.11 East Road, North 3rd Ring Road, Beijing, 100029, China
| | - Piwen Zhao
- School of Life Sciences, Beijing University of Chinese Medicine, No.11 East Road, North 3rd Ring Road, Beijing, 100029, China.
| |
Collapse
|
11
|
Zhao N, Gao Y, Jia H, Jiang X. Anti-apoptosis effect of traditional Chinese medicine in the treatment of cerebral ischemia-reperfusion injury. Apoptosis 2023; 28:702-729. [PMID: 36892639 DOI: 10.1007/s10495-023-01824-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/09/2023] [Indexed: 03/10/2023]
Abstract
Cerebral ischemia, one of the leading causes of neurological dysfunction of brain cells, muscle dysfunction, and death, brings great harm and challenges to individual health, families, and society. Blood flow disruption causes decreased glucose and oxygen, insufficient to maintain normal brain tissue metabolism, resulting in intracellular calcium overload, oxidative stress, neurotoxicity of excitatory amino acids, and inflammation, ultimately leading to neuronal cell necrosis, apoptosis, or neurological abnormalities. This paper summarizes the specific mechanism of cell injury that apoptosis triggered by reperfusion after cerebral ischemia, the related proteins involved in apoptosis, and the experimental progress of herbal medicine treatment through searching, analyzing, and summarizing the PubMed and Web Of Science databases, which includes active ingredients of herbal medicine, prescriptions, Chinese patent medicines, and herbal extracts, providing a new target or new strategy for drug treatment, and providing a reference for future experimental directions and using them to develop suitable small molecule drugs for clinical application. With the research of anti-apoptosis as the core, it is important to find highly effective, low toxicity, safe and cheap compounds from natural plants and animals with abundant resources to prevent and treat Cerebral ischemia/reperfusion (I/R) injury (CIR) and solve human suffering. In addition, understanding and summarizing the apoptotic mechanism of cerebral ischemia-reperfusion injury, the microscopic mechanism of CIR treatment, and the cellular pathways involved will help to develop new drugs.
Collapse
Affiliation(s)
- Nan Zhao
- Heilongjiang University of Traditional Chinese Medicine, Harbin, China
| | - Yuhe Gao
- Heilongjiang University of Traditional Chinese Medicine, Harbin, China
| | - Hongtao Jia
- Heilongjiang University of Traditional Chinese Medicine, Harbin, China
| | - Xicheng Jiang
- Heilongjiang University of Traditional Chinese Medicine, Harbin, China.
| |
Collapse
|
12
|
DRP1 Inhibition Enhances Venetoclax-Induced Mitochondrial Apoptosis in TP53-Mutated Acute Myeloid Leukemia Cells through BAX/BAK Activation. Cancers (Basel) 2023; 15:cancers15030745. [PMID: 36765703 PMCID: PMC9913445 DOI: 10.3390/cancers15030745] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 01/20/2023] [Accepted: 01/23/2023] [Indexed: 01/27/2023] Open
Abstract
Although TP53 mutations in acute myeloid leukemia (AML) are associated with poor response to venetoclax, the underlying resistance mechanism remains unclear. Herein, we investigated the functional role of dynamin-related protein 1 (DRP1) in venetoclax sensitivity in AML cells with respect to TP53 mutation status. Effects of DRP1 inhibition on venetoclax-induced cell death were compared in TP53-mutated (THP-1 and Kasumi-1) and TP53 wild-type leukemia cell lines (MOLM-13 and MV4-11), as well as in primary AML cells obtained from patients. Venetoclax induced apoptosis in TP53 wild-type AML cells but had limited effects in TP53-mutated AML cells. DRP1 expression was downregulated in MOLM-13 cells after venetoclax treatment but was unaffected in THP-1 cells. Cotreatment of THP-1 cells with venetoclax and a TP53 activator NSC59984 downregulated DRP1 expression and increased apoptosis. Combination treatment with the DRP1 inhibitor Mdivi-1 and venetoclax significantly increased mitochondria-mediated apoptosis in TP53-mutated AML cells. The combination of Mdivi-1 and venetoclax resulted in noticeable downregulation of MCL-1 and BCL-xL, accompanied by the upregulation of NOXA, PUMA, BAK, and BAX. These findings suggest that DRP1 is functionally associated with venetoclax sensitivity in TP53-mutated AML cells. Targeting DRP1 may represent an effective therapeutic strategy for overcoming venetoclax resistance in TP53-mutated AML.
Collapse
|
13
|
Wu G, Yang F, Cheng X, Mai Z, Wang X, Chen T. Live-cell imaging analysis on the anti-apoptotic function of the Bcl-xL transmembrane carboxyl terminal domain. Biochem Biophys Res Commun 2023; 639:91-99. [PMID: 36476951 DOI: 10.1016/j.bbrc.2022.11.104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 11/30/2022] [Indexed: 12/02/2022]
Abstract
The Transmembrane Carboxyl Terminal Domain (TMD) of some Bcl-2 family proteins has been demonstrated to play a key role in modulating apoptosis. We here ustilzed live-cell fluorescence imaging to evaluate how the Bcl-xL TMD (XT) regulate apoptosis. Cell viability assay revealed that XT had strong anti-apoptotic ability similarly to the full-length Bcl-xL. Fluorescence images of living cells co-expressing CFP-XT and Bad-YFP or YFP-Bax revealed that XT recruited Bad to mitochondria but prevented Bax translocation to mitochondria, and also significantly suppressed Bad/Bax-mediated apoptosis, indicating that XT prevents the pro-apoptotic function of Bad and Bax. Fluorescence Resonance Energy Transfer (FRET) analyses determined that XT directly interacted with Bad and Bax, and deletion of XT completely eliminated the mitochondrial localization and homo-oligomerization of Bcl-xL. Fluorescence images of living cells co-expressing CFP-XT and YFP-Bax revealed that XT significantly prevented mitochondrial Bax oligomerization, resulting in cytosolic Bax distribution. Collectively, XT is necessary for the mitochondrial localization and anti-apoptotic capacity of Bcl-xL, and XT, similarly to the full-length Bcl-xL, forms homo-oligomers on mitochondria to directly interact with Bad and Bax to inhibit their apoptotic functions.
Collapse
Affiliation(s)
- Ge Wu
- Key Laboratory of Laser Life Science, Ministry of Education, College of Biophotonics, South China Normal University, Guangzhou, Guangdong, 510631, China; Guangdong Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, Guangdong, 510631, China
| | - Fangfang Yang
- Key Laboratory of Laser Life Science, Ministry of Education, College of Biophotonics, South China Normal University, Guangzhou, Guangdong, 510631, China; Guangdong Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, Guangdong, 510631, China
| | - Xuecheng Cheng
- Key Laboratory of Laser Life Science, Ministry of Education, College of Biophotonics, South China Normal University, Guangzhou, Guangdong, 510631, China; Guangdong Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, Guangdong, 510631, China
| | - Zihao Mai
- Key Laboratory of Laser Life Science, Ministry of Education, College of Biophotonics, South China Normal University, Guangzhou, Guangdong, 510631, China; Guangdong Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, Guangdong, 510631, China
| | - Xiaoping Wang
- Department of Pain Management, The First Affiliated Hospital, Jinan University, Guangzhou, 5610632, China.
| | - Tongsheng Chen
- Key Laboratory of Laser Life Science, Ministry of Education, College of Biophotonics, South China Normal University, Guangzhou, Guangdong, 510631, China; Guangdong Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, Guangdong, 510631, China; SCNU Qingyuan Institute of Science and Technology Innovation Co., Ltd., South China Normal University, Qingyuan, 511517, China.
| |
Collapse
|
14
|
Sequence and expression regulation of the BCL2L2 gene in pigs. Gene 2023; 851:146992. [DOI: 10.1016/j.gene.2022.146992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 09/11/2022] [Accepted: 10/14/2022] [Indexed: 11/27/2022]
|
15
|
Zeng H, Wei X, Wang C. Fuzheng Kangai Decoction Restrains the Progression and Angiogenesis of Hepatocellular Carcinoma. J Biomed Nanotechnol 2022. [DOI: 10.1166/jbn.2022.3484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
Abstract
Fuzheng Kangai decoction (FZKA) has been preliminarily proved to be effective in hepatocellular carcinoma (HCC). This study plans to investigate the clear role of FZKA on HCC progression. After establishing a HCC tumor-bearing mice model and treated with FZKA, the volumes and weights
of HCC tumor were monitored, and tumor pathology was analyzed by HE staining. The expression of the molecules related to angiogenesis, apoptosis and angiogenesis in tumor tissues were detected by immunohistochemistry, Western blot and qRT-PCR assays. In addition, HCC cells were administrated
with increasing concentrations of FZKA. Then the cell proliferation, migration and invasion ability were tested. In HCC tumor bearing mice, it was found that FZKA significantly decreased the tumor volumes, weights, aggravated tumor pathological damage, reduced VEGF, CD34, Bcl-2 expression,
but promoted the expression of Bax, cleaved caspase 3, Cyt-C in tumor tissues. Moreover, in vitro experiments demonstrated that FZKA co-incubation suppressed the proliferation, migration and invasion ability of HCC cells. This study demonstrated that FZKA has the potential to inhibit
HCC progression by promoting apoptosis and inhibiting angiogenesis.
Collapse
|
16
|
Yang J, Sun Q, Ma Q, Yu Q, Liu X, Liu Y, Han Y, Yang Y, Rong R. Mahuang Xixin Fuzi decoction ameliorates apoptosis via the mitochondrial-mediated signaling pathway in MCM cells. JOURNAL OF ETHNOPHARMACOLOGY 2022; 297:115538. [PMID: 35843410 DOI: 10.1016/j.jep.2022.115538] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 07/04/2022] [Accepted: 07/11/2022] [Indexed: 06/15/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Mahuang Xixin Fuzi Decoction (MXF), as a classical prescription of traditional Chinese medicine (TCM), has been used to treat the symptoms of fever, nasal congestion and headache in elderly people for almost a thousand years. AIM OF THE STUDY The purpose of this study was to evaluate the effects and possible mechanisms of MXF on thermal stimulation-induced mouse cardiac myocytes (MCM) cell apoptosis. MATERIALS AND METHODS The apoptosis of the MCM cell model was induced by a PCR-calculated temperature control system with a gradual heating pattern at 43 °C for 1 h. The cytotoxic effects were determined using real-time cell analyzer (RTCA) technology. Annexin V-FITC/7-AAD staining, and JC-1 fluorescence were used to assess apoptosis. Specific substrates, enzyme-linked immunosorbent assays (ELISAs), and Western blotting were used to identify proteins in the mitochondrial-mediated pathway. The identification of chemical components in the mouse heart was performed by ultra-performance liquid chromatography-electrospray ionization tandem mass spectrometry analysis. RESULTS MXF inhibited apoptosis through the mitochondrial-mediated signaling pathway, including ameliorating ∆Ψm reduction, blocking mitochondrial Cyt C release, reducing Bax levels and increasing Bcl-2 levels, suppressing caspase-9 and caspase-3 activation in cytoplasmic fractions. Moreover, the components of MXF that act on the heart are mainly ephedra alkaloids and aconitine alkaloids. CONCLUSIONS The findings demonstrated that MXF treatment markedly reduced MCM cell apoptosis induced by thermal stimulation, which may be ascribed to the mitochondrial-mediated signaling pathway.
Collapse
Affiliation(s)
- Jia Yang
- Shandong University of Traditional Chinese Medicine, PR China
| | - Qihui Sun
- Shandong University of Traditional Chinese Medicine, PR China
| | - Qingyun Ma
- Shandong University of Traditional Chinese Medicine, PR China
| | - Qinhui Yu
- Shandong University of Traditional Chinese Medicine, PR China
| | - Xiaoyun Liu
- Shandong University of Traditional Chinese Medicine, PR China; Shandong Provincial Collaborative Innovation Center for Antiviral Traditional Chinese Medicine, Jinan, Shandong, 250355, PR China
| | - Yanliang Liu
- Shandong University of Traditional Chinese Medicine, PR China
| | - Yuxiu Han
- Shandong University of Traditional Chinese Medicine, PR China
| | - Yong Yang
- Shandong University of Traditional Chinese Medicine, PR China; Shandong Provincial Collaborative Innovation Center for Antiviral Traditional Chinese Medicine, Jinan, Shandong, 250355, PR China.
| | - Rong Rong
- Shandong University of Traditional Chinese Medicine, PR China; Shandong Provincial Collaborative Innovation Center for Antiviral Traditional Chinese Medicine, Jinan, Shandong, 250355, PR China.
| |
Collapse
|
17
|
Kim CK, Park JS, Kim E, Oh MK, Lee YT, Yoon KJ, Joo KM, Lee K, Park YS. The effects of early exercise in traumatic brain-injured rats with changes in motor ability, brain tissue, and biomarkers. BMB Rep 2022; 55:512-517. [PMID: 36104258 PMCID: PMC9623238 DOI: 10.5483/bmbrep.2022.55.10.097] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 07/06/2022] [Accepted: 08/17/2022] [Indexed: 09/19/2023] Open
Abstract
Traumatic brain injury (TBI) is brain damage which is caused by the impact of external mechanical forces. TBI can lead to the temporary or permanent impairment of physical and cognitive abilities, resulting in abnormal behavior. We recently observed that a single session of early exercise in animals with TBI improved their behavioral performance in the absence of other cognitive abnormalities. In the present study, we investigated the therapeutic effects of continuous exercise during the early stages of TBI in rats. We found that continuous low-intensity exercise in early-stage improves the locomotion recovery in the TBI of animal models; however, it does not significantly enhance short-term memory capabilities. Moreover, continuous early exercise not only reduces the protein expression of cerebral damage-related markers, such as Glial Fibrillary Acid Protein (GFAP), Neuron-Specific Enolase (NSE), S100β, Protein Gene Products 9.5 (PGP9.5), and Heat Shock Protein 70 (HSP70), but it also decreases the expression of apoptosis-related protein BAX and cleaved caspase 3. Furthermore, exercise training in animals with TBI decreases the microglia activation and the expression of inflammatory cytokines in the serum, such as CCL20, IL-13, IL-1α, and IL-1β. These findings thus demonstrate that early exercise therapy for TBI may be an effective strategy in improving physiological function, and that serum protein levels are useful biomarkers for the predicition of the effectiveness of early exercise therapy.[BMB Reports 2022; 55(10): 506-511].
Collapse
Affiliation(s)
- Chung Kwon Kim
- Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, Suwon 16419, Korea
- Single Cell Network Research Center, Sungkyunkwan University School of Medicine, Suwon 16149, Korea
- Medical Innovation Technology Inc. (MEDINNO Inc.), Seoul 08517, Korea
| | - Jee Soo Park
- Single Cell Network Research Center, Sungkyunkwan University School of Medicine, Suwon 16149, Korea
- Department of Anatomy and Cell Biology, Sungkyunkwan University School of Medicine, Suwon 16149, Korea
| | - Eunji Kim
- Medical Innovation Technology Inc. (MEDINNO Inc.), Seoul 08517, Korea
| | - Min-Kyun Oh
- Department of Rehabilitation Medicine, Gyeongsang National University Changwon Hospital, Gyeongsang National University Graduate School of Medicine, Jinju 52727, Korea
| | - Yong-Taek Lee
- Department of Physical & Rehabilitation Medicine, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul 03181, Korea
| | - Kyung Jae Yoon
- Department of Physical & Rehabilitation Medicine, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul 03181, Korea
| | - Kyeung Min Joo
- Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, Suwon 16419, Korea
- Single Cell Network Research Center, Sungkyunkwan University School of Medicine, Suwon 16149, Korea
- Medical Innovation Technology Inc. (MEDINNO Inc.), Seoul 08517, Korea
- Department of Anatomy and Cell Biology, Sungkyunkwan University School of Medicine, Suwon 16149, Korea
| | - Kyunghoon Lee
- Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, Suwon 16419, Korea
- Department of Anatomy and Cell Biology, Sungkyunkwan University School of Medicine, Suwon 16149, Korea
| | - Young Sook Park
- Department of Physical & Rehabilitation Medicine, Samsung Changwon Hospital, Sungkyunkwan University School of Medicine, Changwon 51353, Korea
| |
Collapse
|
18
|
Finiuk N, Zelisko N, Klyuchivska O, Yushyn I, Lozynskyi A, Cherniienko A, Manko N, Senkiv J, Stoika R, Lesyk R. Thiopyrano[2,3-d]thiazole structures as promising scaffold with anticancer potential. Chem Biol Interact 2022; 368:110246. [DOI: 10.1016/j.cbi.2022.110246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 10/17/2022] [Accepted: 10/26/2022] [Indexed: 11/03/2022]
|
19
|
Liu F, Liu Y, Peng Q, Wang G, Tan Q, Ou Z, Xu Q, Liu C, Zuo D, Zhao J. Creatinine accelerates APAP-induced liver damage by increasing oxidative stress through ROS/JNK signaling pathway. Front Pharmacol 2022; 13:959497. [PMID: 36091804 PMCID: PMC9449354 DOI: 10.3389/fphar.2022.959497] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 07/29/2022] [Indexed: 11/13/2022] Open
Abstract
Serum creatinine is an endogenous biomarker to estimate glomerular filtration rate (GFR) and is commonly used to assess renal function in clinical practice. Acetaminophen (APAP), the most available analgesic and antipyretic medication, is recommended as the drug of choice for pain control in patients with renal diseases. However, an overdose of APAP can lead to severe acute liver injury, which is also the most common cause of acute liver failure in western countries. The role of creatinine in APAP-induced liver injury is unclear and should be further explored. Herein, clinical data on patients with drug-induced liver injury revealed that the creatinine concentration between 82-442 μmol/L for female and 98–442 μmol/L for male is positively correlated with alanine aminotransferase (ALT), aspartate aminotransferase (AST). While there was no correlation between creatinine and ALT and AST when creatinine concentration is over 442 μmol/L. In addition, mice were administrated with creatinine intraperitoneally for 1 week before APAP injection to investigated the pathophysiological role of creatinine in APAP-induced acute liver injury. The results showed that creatinine administration aggravated hepatic necrosis and elevated serum lactate dehydrogenase (LDH) and ALT levels in mice upon APAP injection. The mechanism study demonstrated that creatinine could increase the production of reactive oxygen activation (ROS) and the activation of c-Jun N-terminal kinase (JNK). Furthermore, the liver injury was alleviated and the difference between APAP-treated mice and APAP combined with creatinine-treated mice was blunted after using specific ROS and JNK inhibitors. Significantly, creatinine stimulation aggravates APAP-induced cell death in HepaRG cells with the same mechanism. In summary, this study proposed that creatinine is closely related with liver function of drug-induced liver injury and exacerbates APAP-induced hepatocyte death by promoting ROS production and JNK activation, thus providing new insight into the usage of APAP in patients with kidney problems.
Collapse
Affiliation(s)
- Fang Liu
- Division of Vascular and Interventional Radiology, Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
- Department of Medical Laboratory, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, Guangdong, China
| | - Yan Liu
- Syndrome Laboratory of Integrated Chinese and Western Medicine, School of Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Qifeng Peng
- Division of Vascular and Interventional Radiology, Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Guodong Wang
- Department of Oncology, Liuzhou Workers Hospital, Liuzhou, China
| | - Qing Tan
- Division of Vascular and Interventional Radiology, Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Zhongyue Ou
- Division of Vascular and Interventional Radiology, Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Qishan Xu
- Department of Medical Laboratory, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, Guangdong, China
| | - Chixiang Liu
- Department of Blood Transfusion, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
- Correspondence: Chixiang Liu, ; Daming Zuo, ; Jianbo Zhao,
| | - Daming Zuo
- Department of Medical Laboratory, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, Guangdong, China
- Correspondence: Chixiang Liu, ; Daming Zuo, ; Jianbo Zhao,
| | - Jianbo Zhao
- Division of Vascular and Interventional Radiology, Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
- Correspondence: Chixiang Liu, ; Daming Zuo, ; Jianbo Zhao,
| |
Collapse
|
20
|
Luo Q, Tang Y, Jiang Z, Bao H, Fu Q, Zhang H. hUCMSCs reduce theca interstitial cells apoptosis and restore ovarian function in premature ovarian insufficiency rats through regulating NR4A1-mediated mitochondrial mechanisms. Reprod Biol Endocrinol 2022; 20:125. [PMID: 35986315 PMCID: PMC9389823 DOI: 10.1186/s12958-022-00992-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 08/03/2022] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Human umbilical cord mesenchymal stem cells (hUCMSCs, retrospectively registered) have a lot of promise for treating theca interstitial cells(TICs) dysfunction in premature ovarian insufficiency (POI). The mechanisms, however, are still unknown. METHODS To examine the therapeutic and find the cause, we used both in vivo cisplatin-induced POI rat model and in vitro TICs model. HUCMSCs were injected into the tail veins of POI rats in an in vivo investigation. Then, using ELISA, HE staining, TUNEL apoptosis test kit, immunohistochemistry and western blot, researchers examined hormonal levels, ovarian morphology, TICs apoptosis, NR4A1 and Cyp17a1 in response to cisplatin treatment and hUCMSCs. TICs were obtained from the ovaries of rats and treated with the cisplatin, hUCMSCs supernatant, and the antagonist of NR4A1--DIM-C-pPhOH. ELISA, immunofluorescence, flow cytometry, JC-1 labeling and western blot analysis were used to detect T levels, Cyp17a1, NR4A1, and the anti-apoptotic protein Bcl-2, as well as pro-apoptotic proteins Bax, caspase-9, caspase-3, and cytochrome C(cytc). RESULTS We discovered that hUCMSCs restored the ovarian function, particularly TICs function based on measures of Cyp17a1 and T expression. NR4A1 was found in ovarian TICs of each group and NR4A1 expression was lower in the POI rats but higher following hUCMSCs therapy. The apoptosis of TICs generated by cisplatin was reduced after treatment with hUCMSCs. In vitro, NR4A1 was expressed in the nucleus of TICs, and NR4A1 as well as phospho-NR4A1 were decreased, following the apoptosis of TICs was emerged after cisplatin treatment. Interestingly, the localization of NR4A1 was translocated from the nucleus to the cytoplasm due to cisplatin. HUCMSCs were able to boost NR4A1 and phospho-NR4A1 expression while TICs' apoptosis and JC-1 polymorimonomor fluorescence ratios reduced. Furthermore, Bcl-2 expression dropped following cisplatin treatment, whereas Bax, cytc, caspase-9, and caspase-3 expression rose; however, hUCMSCs treatment reduced their expression. In addition, DIM-C-pPhOH had no effect on the NR4A1 expression, but it did increase the expression of apoptosis-related factors such as Bax, cytc, caspase-9, and caspase-3, causing the apoptosis of TICs. CONCLUSIONS These data show that hUCMSCs therapy improves ovarian function in POI rats by inhibiting TICs apoptosis through regulating NR4A1 -mediated mitochondrial mechanisms.
Collapse
Affiliation(s)
- Qianqian Luo
- Xu Rongxiang Regenerative Medicine Research Center, Binzhou Medical University, Yantai, 264003, Shandong, China
- Basic Medical College, Binzhou Medical University, Yantai, 264003, China
| | - Yu Tang
- Basic Medical College, Binzhou Medical University, Yantai, 264003, China
| | - Zhonglin Jiang
- Xu Rongxiang Regenerative Medicine Research Center, Binzhou Medical University, Yantai, 264003, Shandong, China
- Basic Medical College, Binzhou Medical University, Yantai, 264003, China
| | - Hongchu Bao
- Department of Clinical Medicine, Yantai Yuhuangding Hospital, Yantai, 264000, China
| | - Qiang Fu
- School of Pharmacology, Institute of Aging Medicine, Binzhou Medical University, Yantai, 264003, China.
| | - Hongqin Zhang
- Xu Rongxiang Regenerative Medicine Research Center, Binzhou Medical University, Yantai, 264003, Shandong, China.
- Basic Medical College, Binzhou Medical University, Yantai, 264003, China.
| |
Collapse
|
21
|
Zhang C, Pei Y, Zhang Z, Xu L, Liu X, Jiang L, Pielak GJ, Zhou X, Liu M, Li C. C-terminal truncation modulates α-Synuclein's cytotoxicity and aggregation by promoting the interactions with membrane and chaperone. Commun Biol 2022; 5:798. [PMID: 35945337 PMCID: PMC9363494 DOI: 10.1038/s42003-022-03768-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 07/25/2022] [Indexed: 12/20/2022] Open
Abstract
α-Synuclein (α-syn) is the main protein component of Lewy bodies, the major pathological hallmarks of Parkinson's disease (PD). C-terminally truncated α-syn is found in the brain of PD patients, reduces cell viability and tends to form fibrils. Nevertheless, little is known about the mechanisms underlying the role of C-terminal truncation on the cytotoxicity and aggregation of α-syn. Here, we use nuclear magnetic resonance spectroscopy to show that the truncation alters α-syn conformation, resulting in an attractive interaction of the N-terminus with membranes and molecular chaperone, protein disulfide isomerase (PDI). The truncated protein is more toxic to mitochondria than full-length protein and diminishes the effect of PDI on α-syn fibrillation. Our findings reveal a modulatory role for the C-terminus in the cytotoxicity and aggregation of α-syn by interfering with the N-terminus binding to membranes and chaperone, and provide a molecular basis for the pathological role of C-terminal truncation in PD pathogenesis.
Collapse
Affiliation(s)
- Cai Zhang
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, 430071, Wuhan, China
- Graduate University of Chinese Academy of Science, 100049, Beijing, China
| | - Yunshan Pei
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, 430071, Wuhan, China
- Graduate University of Chinese Academy of Science, 100049, Beijing, China
| | - Zeting Zhang
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, 430071, Wuhan, China.
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, 430071, Wuhan, China.
| | - Lingling Xu
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, 430071, Wuhan, China
| | - Xiaoli Liu
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, 430071, Wuhan, China
| | - Ling Jiang
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, 430071, Wuhan, China
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, 430071, Wuhan, China
| | - Gary J Pielak
- Department of Chemistry, Department of Biochemistry and Biophysics, Lineberger Comprehensive Cancer Center, Integrative Program for Biological and Genome Sciences, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Xin Zhou
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, 430071, Wuhan, China
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, 430071, Wuhan, China
| | - Maili Liu
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, 430071, Wuhan, China
- Graduate University of Chinese Academy of Science, 100049, Beijing, China
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, 430071, Wuhan, China
| | - Conggang Li
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, 430071, Wuhan, China.
- Graduate University of Chinese Academy of Science, 100049, Beijing, China.
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, 430071, Wuhan, China.
| |
Collapse
|
22
|
Lin HH, Hsu JY, Tseng CY, Huang XY, Tseng HC, Chen JH. Hepatoprotective Activity of Nelumbo nucifera Gaertn. Seedpod Extract Attenuated Acetaminophen-Induced Hepatotoxicity. Molecules 2022; 27:molecules27134030. [PMID: 35807275 PMCID: PMC9268144 DOI: 10.3390/molecules27134030] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/18/2022] [Accepted: 06/21/2022] [Indexed: 01/27/2023] Open
Abstract
The aim is to investigate the effect of lotus (Nelumbo nucifera Gaertn.) seedpod extract (LSE) on acetaminophen (APAP)-induced hepatotoxicity. LSE is rich in polyphenols and has potent antioxidant capacity. APAP is a commonly used analgesic, while APAP overdose is the main reason for drug toxicity in the liver. Until now, there has been no in vitro test of LSE in drug-induced hepatotoxicity responses. LSEs were used to evaluate the effect on APAP-induced cytotoxicity, ROS level, apoptotic rate, and molecule mechanisms. The co-treatment of APAP and LSEs elevated the survival rate and decreased intracellular ROS levels on HepG2 cells. LSEs treatment could significantly reduce APAP-induced HepG2 apoptosis assessed by DAPI and Annexin V/PI. The further molecule mechanisms indicated that LSEs decreased Fas/FasL binding and reduced Bax and tBid to restore mitochondrial structure and subsequently suppress downstream apoptosis cascade activation. These declines in COX-2, NF-κB, and iNOS levels were observed in co-treatment APAP and LSEs, which indicated that LSEs could ameliorate APAP-induced inflammation. LSE protected APAP-induced apoptosis by preventing extrinsic, intrinsic, and JNK-mediated pathways. In addition, the restoration of mitochondria and inflammatory suppression in LSEs treatments indicated that LSEs could decrease oxidative stress induced by toxic APAP. Therefore, LSE could be a novel therapeutic option for an antidote against overdose of APAP.
Collapse
Affiliation(s)
- Hui-Hsuan Lin
- Department of Medical Laboratory and Biotechnology, Chung Shan Medical University, Taichung City 40201, Taiwan;
| | - Jen-Ying Hsu
- Department of Nutrition, Chung Shan Medical University, Taichung City 40201, Taiwan; (J.-Y.H.); (C.-Y.T.); (X.-Y.H.)
| | - Chiao-Yun Tseng
- Department of Nutrition, Chung Shan Medical University, Taichung City 40201, Taiwan; (J.-Y.H.); (C.-Y.T.); (X.-Y.H.)
| | - Xiao-Yin Huang
- Department of Nutrition, Chung Shan Medical University, Taichung City 40201, Taiwan; (J.-Y.H.); (C.-Y.T.); (X.-Y.H.)
| | - Hsien-Chun Tseng
- Department of Radiation Oncology, Chung Shan Medical University Hospital, Taichung City 40201, Taiwan
- Department of Radiation Oncology, School of Medicine, Chung Shan Medical University, Taichung City 40201, Taiwan
- Correspondence: (H.-C.T.); (J.-H.C.); Tel.: +886-4-24730022 (ext. 12195) (J.-H.C.); Fax: +886-4-23248175 (J.-H.C.)
| | - Jing-Hsien Chen
- Department of Nutrition, Chung Shan Medical University, Taichung City 40201, Taiwan; (J.-Y.H.); (C.-Y.T.); (X.-Y.H.)
- Department of Radiation Oncology, Chung Shan Medical University Hospital, Taichung City 40201, Taiwan
- Correspondence: (H.-C.T.); (J.-H.C.); Tel.: +886-4-24730022 (ext. 12195) (J.-H.C.); Fax: +886-4-23248175 (J.-H.C.)
| |
Collapse
|
23
|
Ji T, Margulis BA, Wang Z, Song T, Guo Y, Pan H, Zhang Z. Structure-Based Design and Structure-Activity Relationship Analysis of Small Molecules Inhibiting Bcl-2 Family Members. Pharm Chem J 2022. [DOI: 10.1007/s11094-022-02639-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
24
|
Wang L, Liu Y, Zhang X, Ye Y, Xiong X, Zhang S, Gu L, Jian Z, Wang H. Endoplasmic Reticulum Stress and the Unfolded Protein Response in Cerebral Ischemia/Reperfusion Injury. Front Cell Neurosci 2022; 16:864426. [PMID: 35602556 PMCID: PMC9114642 DOI: 10.3389/fncel.2022.864426] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 03/07/2022] [Indexed: 12/15/2022] Open
Abstract
Ischemic stroke is an acute cerebrovascular disease characterized by sudden interruption of blood flow in a certain part of the brain, leading to serious disability and death. At present, treatment methods for ischemic stroke are limited to thrombolysis or thrombus removal, but the treatment window is very narrow. However, recovery of cerebral blood circulation further causes cerebral ischemia/reperfusion injury (CIRI). The endoplasmic reticulum (ER) plays an important role in protein secretion, membrane protein folding, transportation, and maintenance of intracellular calcium homeostasis. Endoplasmic reticulum stress (ERS) plays a crucial role in cerebral ischemia pathophysiology. Mild ERS helps improve cell tolerance and restore cell homeostasis; however, excessive or long-term ERS causes apoptotic pathway activation. Specifically, the protein kinase R-like endoplasmic reticulum kinase (PERK), activating transcription factor 6 (ATF6), and inositol-requiring enzyme 1 (IRE1) pathways are significantly activated following initiation of the unfolded protein response (UPR). CIRI-induced apoptosis leads to nerve cell death, which ultimately aggravates neurological deficits in patients. Therefore, it is necessary and important to comprehensively explore the mechanism of ERS in CIRI to identify methods for preserving brain cells and neuronal function after ischemia.
Collapse
Affiliation(s)
- Lei Wang
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yan Liu
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xu Zhang
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yingze Ye
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xiaoxing Xiong
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Shudi Zhang
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Lijuan Gu
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, China
| | - Zhihong Jian
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
- Zhihong Jian,
| | - Hongfa Wang
- Rehabilitation Medicine Center, Department of Anesthesiology, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, China
- *Correspondence: Hongfa Wang,
| |
Collapse
|
25
|
Wang R, Wang W, Wang L, Yuan L, Cheng F, Guan X, Zheng N, Yang X. FTO protects human granulosa cells from chemotherapy-induced cytotoxicity. Reprod Biol Endocrinol 2022; 20:39. [PMID: 35219326 PMCID: PMC8881882 DOI: 10.1186/s12958-022-00911-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 02/12/2022] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Premature ovarian failure (POF) is a serious problem for young women who receive chemotherapy, and its pathophysiological basis is the dysfunction of granulosa cells. According to previous reports, menstrual-derived stem cells (MenSCs) can restore ovarian function and folliculogenesis in mice with chemotherapy-induced POF. Fat mass- and obesity-associated (FTO) was reported to be associated with oocyte development and maturation. FTO was decreased in POF and may be a biomarker for the occurrence of POF. Knockdown of FTO in granulosa cells promoted cell apoptosis and inhibited proliferation. But the relationship between FTO and ovarian repair was still unclear. This study was aimed at investigating the FTO expression level and the role of FTO in the MenSCs recovering the function of injured granulosa cells. METHOD First, cisplatin was used to establish a granulosa cell injury model. Then, the MenSCs and injured granulosa cell coculture model and POF mouse model were established in this study to explore the role of FTO. Furthermore, gain- and loss-of-function studies, small interfering RNA transfection, and meclofenamic acid (MA), a highly selective inhibitor of FTO, studies were also conducted to clarify the regulatory mechanism of FTO in granulosa cells. RESULTS MenSCs coculture could improve the function of injured granulosa cells by increasing the expression of FTO. MenSCs transplantation restored the expression of FTO in the ovaries of POF mice. Overexpression of FTO restored the injured cell proliferation and decreased apoptosis by regulating the expression of BNIP3. Down-regulation of FTO got the opposite results. CONCLUSIONS In the treatment of MenSCs, FTO has a protective effect, which could improve the viability of granulosa cells after cisplatin treatment by decreasing the expression of BNIP3. Meanwhile, FTO may provide new insight into therapeutic targets for the chemotherapy-induced POF.
Collapse
Affiliation(s)
- Rongli Wang
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Xi'an Jiaotong University, 710061, Xi'an, China
| | - Wei Wang
- Department of Anesthesiology, the First Affiliated Hospital of Xi'an Jiaotong University, 710061, Xi'an, China
| | - Lijun Wang
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Xi'an Jiaotong University, 710061, Xi'an, China
| | - Linnan Yuan
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Xi'an Jiaotong University, 710061, Xi'an, China
| | - Feiyan Cheng
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Xi'an Jiaotong University, 710061, Xi'an, China
| | - Xin Guan
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Xi'an Jiaotong University, 710061, Xi'an, China
| | - Nini Zheng
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Xi'an Jiaotong University, 710061, Xi'an, China
| | - Xinyuan Yang
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Xi'an Jiaotong University, 710061, Xi'an, China.
| |
Collapse
|
26
|
Asiatic Acid Alleviates Myocardial Ischemia-Reperfusion Injury by Inhibiting the ROS-Mediated Mitochondria-Dependent Apoptosis Pathway. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:3267450. [PMID: 35198095 PMCID: PMC8860531 DOI: 10.1155/2022/3267450] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 01/19/2022] [Accepted: 01/25/2022] [Indexed: 12/11/2022]
Abstract
Myocardial ischemia-reperfusion injury (MIRI) is a major cause of heart failure in patients with coronary heart disease (CHD). Mitochondrial dysfunction is the crucial factor of MIRI; oxidative stress caused by mitochondrial reactive oxygen species (ROS) aggravates myocardial cell damage through the mitochondria-dependent apoptosis pathway. Asiatic acid (AA) is a type of pentacyclic triterpene compound purified from the traditional Chinese medicine Centella asiatica, and its protective pharmacological activities have been reported in various disease models. This study is aimed at investigating the protective effects of AA and the underlying mechanisms in MIRI. To achieve this goal, an animal model of MIRI in vivo and a cell model of oxygen-glucose deprivation/reperfusion (OGD/R) in vitro were established. The results show that AA exerts a protective effect on MIRI by improving cardiac function and reducing cardiomyocyte damage. Due to its antioxidant properties, AA alleviates mitochondrial oxidative stress, as evidenced by the stable mitochondrial structure, maintained mitochondrial membrane potential (MMP), and reduced ROS generation, otherwise due to its antiapoptotic properties. AA inhibits the mitogen-activated protein kinase (MAPK)/mitochondria-dependent apoptosis pathway, as evidenced by the limited phosphorylation of p38-MAPK and JNK-MAPK, balanced proportion of Bcl-2/Bax, reduced cytochrome c release, inhibition of caspase cascade, and reduced apoptosis. In conclusion, our study confirms that AA exerts cardiac-protective effects by regulating ROS-induced oxidative stress via the MAPK/mitochondria-dependent apoptosis pathway; the results provide new evidence that AA may represent a potential treatment for CHD patients.
Collapse
|
27
|
Bui ATN, Son H, Park S, Oh S, Kim JS, Cho JH, Hwang HJ, Kim JH, Yi GS, Chi SW. Artificial intelligence-based identification of octenidine as a Bcl-xL inhibitor. Biochem Biophys Res Commun 2021; 588:97-103. [PMID: 34953212 DOI: 10.1016/j.bbrc.2021.12.061] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 12/16/2021] [Indexed: 11/18/2022]
Abstract
Apoptosis plays an essential role in maintaining cellular homeostasis and preventing cancer progression. Bcl-xL, an anti-apoptotic protein, is an important modulator of the mitochondrial apoptosis pathway and is a promising target for anticancer therapy. In this study, we identified octenidine as a novel Bcl-xL inhibitor through structural feature-based deep learning and molecular docking from a library of approved drugs. The NMR experiments demonstrated that octenidine binds to the Bcl-2 homology 3 (BH3) domain-binding hydrophobic region that consists of the BH1, BH2, and BH3 domains in Bcl-xL. A structural model of the Bcl-xL/octenidine complex revealed that octenidine binds to Bcl-xL in a similar manner to that of the well-known Bcl-2 family protein antagonist ABT-737. Using the NanoBiT protein-protein interaction system, we confirmed that the interaction between Bcl-xL and Bak-BH3 domains within cells was inhibited by octenidine. Furthermore, octenidine inhibited the proliferation of MCF-7 breast and H1299 lung cancer cells by promoting apoptosis. Taken together, our results shed light on a novel mechanism in which octenidine directly targets anti-apoptotic Bcl-xL to trigger mitochondrial apoptosis in cancer cells.
Collapse
Affiliation(s)
- Anh Thi Ngoc Bui
- Disease Target Structure Research Center, KRIBB, Daejeon, 31441, Republic of Korea
| | - Hyojin Son
- Department of Bio and Brain Engineering, KAIST, Daejeon, 34141, Republic of Korea
| | - Seulki Park
- Disease Target Structure Research Center, KRIBB, Daejeon, 31441, Republic of Korea
| | - Sohee Oh
- Disease Target Structure Research Center, KRIBB, Daejeon, 31441, Republic of Korea
| | - Jin-Sik Kim
- Disease Target Structure Research Center, KRIBB, Daejeon, 31441, Republic of Korea
| | - Jin Hwa Cho
- Disease Target Structure Research Center, KRIBB, Daejeon, 31441, Republic of Korea
| | - Hye-Jin Hwang
- Disease Target Structure Research Center, KRIBB, Daejeon, 31441, Republic of Korea; Department of Proteome Structural Biology, KRIBB School of Bioscience, Korea University of Science and Technology, Daejeon, 34113, Republic of Korea
| | - Jeong-Hoon Kim
- Disease Target Structure Research Center, KRIBB, Daejeon, 31441, Republic of Korea; Department of Bioscience, University of Science and Technology, Daejeon, 34113, Republic of Korea; Graduate School of New Drug Discovery and Development, Chungnam National University, Republic of Korea.
| | - Gwan-Su Yi
- Department of Bio and Brain Engineering, KAIST, Daejeon, 34141, Republic of Korea.
| | - Seung-Wook Chi
- Disease Target Structure Research Center, KRIBB, Daejeon, 31441, Republic of Korea; Department of Proteome Structural Biology, KRIBB School of Bioscience, Korea University of Science and Technology, Daejeon, 34113, Republic of Korea.
| |
Collapse
|
28
|
Zhang Y, Li X, Jing L, Zhou G, Sang Y, Gao L, Jiang S, Shi Z, Ge W, Sun Z, Zhou X. Decabromodiphenyl ether induces male reproductive toxicity by activating mitochondrial apoptotic pathway through glycolipid metabolism dysbiosis. CHEMOSPHERE 2021; 285:131512. [PMID: 34710963 DOI: 10.1016/j.chemosphere.2021.131512] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 06/21/2021] [Accepted: 07/08/2021] [Indexed: 06/13/2023]
Abstract
Decabromodiphenyl ether (BDE-209), an extensively used flame retardant, exists widely in the environment. Although male reproductive toxicity induced by BDE-209 has been reported, its mechanisms remain unclear. To explore the role of glycolipid metabolism in male reproductive toxicity and the potential mechanisms, forty male SD rats were divided into four groups and given gavage with BDE-209 at 0, 5, 50, and 500 mg/kg/d for 28 days. In vitro, the spermatogenic cell lines GC-2spd cells were divided into four groups: the control group, 32 μg/mL BDE-209 group, 32 μg/mL BDE-209 + 0.4 μM Fatostatin (the inhibitor of SREBP-1) group, and 0.4 μM Fatostatin group. Our results showed that BDE-209 decreased sperm quality and quantity, which was correlated with glycolipid metabolism dysbiosis of testis. The levels of glucose, triglyceride, and total cholesterol were negatively correlated with sperm concentration, and triglyceride and total cholesterol levels were negatively correlated with sperm motility, while positively correlated with the sperm malformation rate. Moreover, BDE-209 exposure activated the glycolipid metabolism pathways (PPARγ/RXRα/SCAP/SREBP-1) and mitochondrial apoptotic pathway, thereby inducing the apoptosis of spermatogenic cells. In vitro, BDE-209 caused triglyceride and total cholesterol disorder and apoptosis of GC-2spd cells, the lipid metabolism pathways inhibitor fatostain downregulated the elevation of triglyceride and total cholesterol concentrations, and suppressed apoptosis and the activation of the mitochondrial apoptotic pathway in GC-2spd cells caused by BDE-209. Our results indicated that BDE-209 induced male reproductive toxicity by causing glycolipid metabolism dysbiosis of testis resulting in activating of the mitochondrial apoptotic pathway in spermatogenic cells. The study provides new insight into the mechanisms of male reproductive toxicity caused by BDE-209.
Collapse
Affiliation(s)
- Yue Zhang
- Department of Toxicology and Hygienic Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China
| | - Xiangyang Li
- Department of Toxicology and Hygienic Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China
| | - Li Jing
- Department of Toxicology and Hygienic Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China
| | - Guiqing Zhou
- Department of Toxicology and Hygienic Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China
| | - Yujian Sang
- Department of Toxicology and Hygienic Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China
| | - Leqiang Gao
- Department of Toxicology and Hygienic Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China
| | - Shuqin Jiang
- Department of Toxicology and Hygienic Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China.
| | - Zhixiong Shi
- Department of Toxicology and Hygienic Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China
| | - Wei Ge
- Centre of Reproduction, Development and Aging (CRDA), Faculty of Health Sciences, University of Macau, Taipa, Macau, 999078, China
| | - Zhiwei Sun
- Department of Toxicology and Hygienic Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China
| | - Xianqing Zhou
- Department of Toxicology and Hygienic Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China.
| |
Collapse
|
29
|
Gong J, Zhu M, Zhan M, Xi C, Xu Z, Shui Y, Shen H. PcVDAC promotes WSSV infection by regulating the apoptotic activity of haemocytes in Procambarus clarkii. Comp Biochem Physiol B Biochem Mol Biol 2021; 259:110697. [PMID: 34798242 DOI: 10.1016/j.cbpb.2021.110697] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 11/07/2021] [Accepted: 11/12/2021] [Indexed: 11/15/2022]
Abstract
Apoptosis is programmed cell death that is strictly regulated by a series of related genes and is of great importance in resisting pathogen invasion and maintaining cell environment homeostasis. Among apoptotic proteins, the voltage-dependent anion channel protein (VDAC) plays a key role in the mitochondrial apoptosis pathway because of its close connection with changes in mitochondrial membrane potential. However, the role of VDAC in apoptosis and immune regulation in Procambarus clarkii is poorly understood. In this study, the VDAC gene in P. clarkii (PcVDAC) was cloned by rapid amplification of cDNA ends (RACE) technology. The gene was found to have a total length of 2277 bp, including a 194-bp 5'-UTR, 1234-bp 3'-UTR and 849-bp open reading frame (ORF), and to encode 282 amino acids. PcVDAC was expressed in all tissues tested, and its expression was upregulated after white spot syndrome virus (WSSV) infection (P < 0.05). The RNA interference (RNAi) method was used to explore the role of PcVDAC in WSSV infection. The results showed that the number of WSSV copies in haemocytes was significantly reduced after RNAi (P < 0.05), and the survival rate was significantly increased. In addition, after RNAi, the apoptosis rate was significantly increased (P < 0.05), the mitochondrial membrane potential was reduced (P < 0.01), and the expression of caspase-3 and other genes was upregulated (P < 0.05). These results indicate that PcVDAC promotes the replication of WSSV in P. clarkii by inhibiting haemocytes apoptosis. Therefore, the results presented in this paper provide new insights into the immune response of P. clarkii infected with WSSV.
Collapse
Affiliation(s)
- Jie Gong
- Wuxi Fisheries College, Nanjing Agricultural University, Nanjing 210095, China; Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Mengru Zhu
- Wuxi Fisheries College, Nanjing Agricultural University, Nanjing 210095, China; Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Ming Zhan
- Wuxi Fisheries College, Nanjing Agricultural University, Nanjing 210095, China; Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Changjun Xi
- Wuxi Fisheries College, Nanjing Agricultural University, Nanjing 210095, China; Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Zenghong Xu
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China.
| | - Yan Shui
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China.
| | - Huaishun Shen
- Wuxi Fisheries College, Nanjing Agricultural University, Nanjing 210095, China; Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China.
| |
Collapse
|
30
|
Tan C, Kong Y, Tong Y, Deng H, Wang M, Zhao Y, Wan M, Lin S, Liu X, Meng X, Ma Y. Anti-apoptotic effects of high hydrostatic pressure treated cyanidin-3-glucoside and blueberry pectin complexes on lipopolysaccharide-induced inflammation in Caco-2 cells. J Funct Foods 2021. [DOI: 10.1016/j.jff.2021.104709] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
|
31
|
Wang M, Yang D, Hu Z, Shi Y, Ma Y, Cao X, Guo T, Cai H, Cai H. Extracorporeal Cardiac Shock Waves Therapy Improves the Function of Endothelial Progenitor Cells After Hypoxia Injury via Activating PI3K/Akt/eNOS Signal Pathway. Front Cardiovasc Med 2021; 8:747497. [PMID: 34708093 PMCID: PMC8542843 DOI: 10.3389/fcvm.2021.747497] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 09/13/2021] [Indexed: 01/05/2023] Open
Abstract
Background: Extracorporeal cardiac shock waves (ECSW) have great potential in the treatment of coronary heart disease. Endothelial progenitor cells (EPCs) are a class of pluripotent progenitor cells derived from bone marrow or peripheral blood, which have the capacity to migrate to ischemic myocardium and differentiate into mature endothelial cells and play an important role in neovascularization and endothelial repair. In this study, we investigated whether ECSW therapy can improve EPCs dysfunction and apoptosis induced by hypoxia and explored the underlying mechanisms. Methods: EPCs were separated from ApoE gene knockout rat bone marrow and identified using flow cytometry and fluorescence staining. EPCs were used to produce in vitro hypoxia-injury models which were then divided into six groups: Control, Hypoxia, Hypoxia + ECSW, Hypoxia + LY294002 + ECSW, Hypoxia + MK-2206 + ECSW, and Hypoxia + L-NAME + ECSW. EPCs from the Control, Hypoxia, and Hypoxia + ECSW groups were used in mRNA sequencing reactions. mRNA and protein expression levels were analyzed using qRT-PCR and western blot analysis, respectively. Proliferation, apoptosis, adhesion, migration, and angiogenesis were measured using CCK-8, flow cytometry, gelatin, transwell, and tube formation, respectively. Nitric oxide (NO) levels were measured using an NO assay kit. Results: Kyoto encyclopedia of genes and genomes (KEGG) enrichment analysis showed that differentially expressed genes were enriched in cancer signaling, PI3K-Akt signaling, and Rap1 signaling pathways. We selected differentially expressed genes in the PI3K-Akt signaling pathway and verified them using a series of experiments. The results showed that ECSW therapy (500 shots at 0.09 mJ/mm2) significantly improved proliferation, adhesion, migration, and tube formation abilities of EPCs following hypoxic injury, accompanied by upregulation of p-PI3K, p-Akt, p-eNOS, Bcl-2 protein and NO, PI3K, and Akt mRNA expression, and downregulation of Bax and Caspase3 protein expression. All these effects of ECSW were eliminated using inhibitors specific to PI3K (LY294002), Akt (MK-2206), and eNOS (L-NAME). Conclusion: ECSW exerted a strong repaired effect on EPCs suffering inhibited hypoxia injury by inhibiting cell apoptosis and promoting angiogenesis, mainly through activating the PI3K/Akt/eNOS signaling pathway, which provide new evidence for ECSW therapy in CHD.
Collapse
Affiliation(s)
- Mingqiang Wang
- Department of Cardiology, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Dan Yang
- Department of Cardiology, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Zhao Hu
- Department of Cardiology, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Yunke Shi
- Department of Cardiology, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Yiming Ma
- Department of Cardiology, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Xingyu Cao
- Department of Cardiology, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Tao Guo
- Department of Cardiology, Yunnan Fuwai Cardiovascular Hospital, Kunming, China
| | - Hongbo Cai
- Department of Vascular Surgery, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Hongyan Cai
- Department of Cardiology, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| |
Collapse
|
32
|
A Microbiome-Derived Peptide Induces Apoptosis of Cells from Different Tissues. Cells 2021; 10:cells10112885. [PMID: 34831108 PMCID: PMC8616533 DOI: 10.3390/cells10112885] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 10/05/2021] [Accepted: 10/07/2021] [Indexed: 12/17/2022] Open
Abstract
Apoptosis is a programmed cell death involved in embryogenesis and tissue homeostasis under physiological conditions. However, abnormalities in the process of apoptosis are implicated in the pathogenesis of various diseases. The human microbiota may release products that induce apoptosis of host cells. We recently identified a novel microbiome-derived peptide called corisin that worsens lung fibrosis by inducing apoptosis of lung epithelial cells. We hypothesized that corisin and a corisin-like peptide might also induce apoptosis of cells from different tissues. We cultured podocytes, renal tubular epithelial cells, keratinocytes, retinal and intestinal cells treated with corisin and evaluated apoptosis by flow cytometry and Western blotting. Although at different grades, flow cytometry analysis and Western blotting showed that corisin and a corisin-like peptide induced apoptosis of podocytes, keratinocytes, tubular epithelial cells, retinal, and intestinal cells. In addition, we found that corisin synergistically enhances the proapoptotic activity of transforming growth factor-β1 on podocytes. In conclusion, these results suggest that corisin and corisin-like peptides may play a role in the pathogenesis of disease in different organs by promoting apoptosis of parenchymal cells.
Collapse
|
33
|
Wang Y, Wen J, Almoiliqy M, Wang Y, Liu Z, Yang X, Lu X, Meng Q, Peng J, Lin Y, Sun P. Sesamin Protects against and Ameliorates Rat Intestinal Ischemia/Reperfusion Injury with Involvement of Activating Nrf2/HO-1/NQO1 Signaling Pathway. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:5147069. [PMID: 34630849 PMCID: PMC8494576 DOI: 10.1155/2021/5147069] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 08/06/2021] [Accepted: 08/11/2021] [Indexed: 02/06/2023]
Abstract
Intestinal ischemia-reperfusion (I/R) may induce cell/tissue injuries, leading to multiple organ failure. Based on our preexperiments, we proposed that sesamin could protect against and ameliorate intestinal I/R injuries and related disorders with involvement of activating Nrf2 signaling pathway. This proposal was evaluated using SD intestinal I/R injury rats in vivo and hypoxia/reoxygenation- (H/R-) injured rat small intestinal crypt epithelial cell line (IEC-6 cells) in vitro. Sesamin significantly alleviated I/R-induced intestinal histopathological injuries and significantly reduced serum biochemical indicators ALT and AST, alleviating I/R-induced intestinal injury in rats. Sesamin also significantly reversed I/R-increased TNF-α, IL-6, IL-1β, and MPO activity in serum and MDA in tissues and I/R-decreased GSH in tissues and SOD in both tissues and IEC-6 cells, indicating its anti-inflammatory and antioxidative stress effects. Further, sesamin significantly decreased TUNEL-positive cells, downregulated the increased Bax and caspase-3 protein expression, upregulated the decreased protein expression of Bcl-2 in I/R-injured intestinal tissues, and significantly reversed H/R-reduced IEC-6 cell viability as well as reduced the number of apoptotic cells among H/R-injured IEC-6 cell, showing antiapoptotic effects. Activation of Nrf2 is known to ameliorate tissue/cell injuries. Consistent with sesamin-induced ameliorations of both intestinal I/R injuries and H/R injuries, transfection of Nrf2 cDNA significantly upregulated the expression of Nrf2, HO-1, and NQO1, respectively. On the contrary, either Nrf2 inhibitor (ML385) or Nrf2 siRNA transfection significantly decreased the expression of these proteins. Our results suggest that activation of the Nrf2/HO-1/NQO1 signaling pathway is involved in sesamin-induced anti-inflammatory, antioxidative, and antiapoptotic effects in protection against and amelioration of intestinal I/R injuries.
Collapse
Affiliation(s)
- Yilin Wang
- College of Pharmacy, Dalian Medical University, Dalian, 116044 Liaoning, China
- Affiliated Zhongshan Hospital of Dalian University, Dalian, 116001 Liaoning, China
| | - Jin Wen
- College of Pharmacy, Dalian Medical University, Dalian, 116044 Liaoning, China
| | - Marwan Almoiliqy
- Key Lab of Aromatic Plant Resources Exploitation and Utilization in Sichuan Higher Education, Yibin University, Yibin, 644000 Sichuan, China
| | - Yaojia Wang
- College of Pharmacy, Dalian Medical University, Dalian, 116044 Liaoning, China
| | - Zhihao Liu
- College of Pharmacy, Dalian Medical University, Dalian, 116044 Liaoning, China
| | - Xiaobo Yang
- College of Pharmacy, Dalian Medical University, Dalian, 116044 Liaoning, China
| | - Xiaolong Lu
- College of Pharmacy, Dalian Medical University, Dalian, 116044 Liaoning, China
| | - Qiang Meng
- College of Pharmacy, Dalian Medical University, Dalian, 116044 Liaoning, China
- Key Laboratory for Basic and Applied Research on Pharmacodynamic Substances of Traditional Chinese Medicine of Liaoning Province, Dalian Medical University, Dalian, 116044 Liaoning, China
| | - Jinyong Peng
- College of Pharmacy, Dalian Medical University, Dalian, 116044 Liaoning, China
- Key Laboratory for Basic and Applied Research on Pharmacodynamic Substances of Traditional Chinese Medicine of Liaoning Province, Dalian Medical University, Dalian, 116044 Liaoning, China
| | - Yuan Lin
- College of Pharmacy, Dalian Medical University, Dalian, 116044 Liaoning, China
| | - Pengyuan Sun
- College of Pharmacy, Dalian Medical University, Dalian, 116044 Liaoning, China
- Key Laboratory for Basic and Applied Research on Pharmacodynamic Substances of Traditional Chinese Medicine of Liaoning Province, Dalian Medical University, Dalian, 116044 Liaoning, China
| |
Collapse
|
34
|
Mottaghi S, Abbaszadeh H. The anticarcinogenic and anticancer effects of the dietary flavonoid, morin: Current status, challenges, and future perspectives. Phytother Res 2021; 35:6843-6861. [PMID: 34498311 DOI: 10.1002/ptr.7270] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 08/14/2021] [Accepted: 08/24/2021] [Indexed: 12/13/2022]
Abstract
Flavonoids constitute one of the most important classes of polyphenols, which have been found to have a wide range of biological activities such as anticancer effects. A large body of evidence demonstrates that morin as a pleiotropic dietary flavonoid possesses potent anticarcinogenic and anticancer activities with minimal toxicity against normal cells. The present review comprehensively elaborates the molecular mechanisms underlying antitumorigenic and anticancer effects of morin. Morin exerts its anticarcinogenic effects through multiple cancer preventive mechanisms, including reduction of oxidative stress, activation of phase II enzymes, induction of apoptosis, attenuation of inflammatory mediators, and downregulation of p-Akt and NF-κB expression. A variety of molecular targets and signaling pathways such as apoptosis, cell cycle, reactive oxygen species (ROS), matrix metalloproteinases (MMPs), epithelial-mesenchymal transition (EMT), and microRNAs (miRNAs) as well as signal transducer and activator of transcription 3 (STAT3), NF-κB, phosphatidylinositol 3-kinase (PI3K)/Akt, mitogen-activated protein kinase (MAPK), and Hippo pathways have been found to be involved in the anticancer effects of morin. In the adjuvant therapy, morin has been shown to have synergistic anticancer effects with several chemotherapeutic drugs. The findings of this review indicate that morin can act as a promising chemopreventive and chemotherapeutic agent.
Collapse
Affiliation(s)
- Sayeh Mottaghi
- Department of Pediatrics, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Hassan Abbaszadeh
- Department of Pharmacology, School of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
35
|
Effects of Cardiolipin on the Conformational Dynamics of Membrane-Anchored Bcl-xL. Int J Mol Sci 2021; 22:ijms22179388. [PMID: 34502299 PMCID: PMC8431346 DOI: 10.3390/ijms22179388] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 08/24/2021] [Accepted: 08/26/2021] [Indexed: 02/06/2023] Open
Abstract
The anti-apoptotic protein Bcl-xL regulates apoptosis by preventing the permeation of the mitochondrial outer membrane by pro-apoptotic pore-forming proteins, which release apoptotic factors into the cytosol that ultimately lead to cell death. Two different membrane-integrated Bcl-xL constructs have been identified: a membrane-anchored and a membrane-inserted conformation. Here, we use molecular dynamics simulations to study the effect of the mitochondrial specific lipid cardiolipin and the protein protonation state on the conformational dynamics of membrane-anchored Bcl-xL. The analysis reveals that the protonation state of the protein and cardiolipin content of the membrane modulate the orientation of the soluble head region (helices α1 through α7) and hence the exposure of its BH3-binding groove, which is required for its interaction with pro-apoptotic proteins.
Collapse
|
36
|
Surman DR, Xu Y, Lee MJ, Trepel J, Brown K, Ramineni M, Splawn TG, Diggs LP, Hodges HC, Davis JL, Lee HS, Burt BM, Ripley RT. Therapeutic Synergy in Esophageal Cancer and Mesothelioma Is Predicted by Dynamic BH3 Profiling. Mol Cancer Ther 2021; 20:1469-1480. [PMID: 34088830 PMCID: PMC8338890 DOI: 10.1158/1535-7163.mct-20-0887] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 03/09/2021] [Accepted: 05/27/2021] [Indexed: 12/25/2022]
Abstract
Approximately 20,000 patients per year are diagnosed with esophageal adenocarcinoma (EAC) and malignant pleural mesothelioma (MPM); fewer than 20% survive 5 years. Effective therapeutic strategies are limited although patients receive a combination of chemotherapeutics. These tumors harbor thousands of mutations that contribute to tumor development. Downstream of oncogenic driving mutations, altered tumor mitochondria promote resistance to apoptosis. Dynamic Bcl-2 homology-3 profiling (DBP) is a functional assay of live cells that identifies the mitochondrial proteins responsible for resistance to apoptosis. We hypothesized that DBP will predict which protein to target to overcome resistance thereby enhancing combinatorial therapy.DBP predicted that targeting either Mcl-1 or Bcl-xL increases the efficacy of the chemotherapeutic agent, cisplatin, whereas targeting Bcl-2 does not. We performed these assays by treating EAC and MPM cells with a combination of Bcl-2 homology-3 (BH3) mimetics and cisplatin. Following treatments, we performed efficacy assessments including apoptosis assays, IC50 calculations, and generation of a combinatorial index. DBP confirmed that targeting mitochondria with BH3 mimetics alters the threshold of apoptosis. These apoptotic effects were abolished when the mitochondrial pathway was disrupted. We validated our findings by developing knockdown models of antiapoptotic proteins Mcl-1, Bcl-xL, and the mitochondrial effector proteins Bax/Bak. Knockdown of Mcl-1 or Bcl-xL recapitulated the results of BH3 mimetics. In addition, we report an approach for BH3 profiling directly from patient tumor samples. We demonstrate that the DBP assay on living tumor cells measures the dynamic changes of resistance mechanisms, assesses response to combinatorial therapy, and provides results in a clinically feasible time frame.
Collapse
Affiliation(s)
- Deborah R Surman
- Michael E. DeBakey Department of Surgery, Division of General Thoracic Surgery and the Dan L Duncan Comprehensive Cancer Center Baylor, College of Medicine, Houston, Texas
- NCI, Center for Cancer Research, NIH, Bethesda, Maryland
| | - Yuan Xu
- Michael E. DeBakey Department of Surgery, Division of General Thoracic Surgery and the Dan L Duncan Comprehensive Cancer Center Baylor, College of Medicine, Houston, Texas
- NCI, Center for Cancer Research, NIH, Bethesda, Maryland
| | - Min-Jung Lee
- Developmental Therapeutics Branch, Center for Cancer Research, NCI, NIH, Bethesda, Maryland
| | - Jane Trepel
- Developmental Therapeutics Branch, Center for Cancer Research, NCI, NIH, Bethesda, Maryland
| | - Kate Brown
- NCI, Center for Cancer Research, NIH, Bethesda, Maryland
| | - Maheshwari Ramineni
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas
| | - Taylor G Splawn
- Michael E. DeBakey Department of Surgery, Division of General Thoracic Surgery and the Dan L Duncan Comprehensive Cancer Center Baylor, College of Medicine, Houston, Texas
| | | | - H Courtney Hodges
- Center for Precision Environmental Health and Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas
- Department of Bioengineering, Rice University, Houston, Texas
- Center for Cancer Epigenetics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jeremy L Davis
- NCI, Center for Cancer Research, NIH, Bethesda, Maryland
| | - Hyun-Sung Lee
- Michael E. DeBakey Department of Surgery, Division of General Thoracic Surgery and the Dan L Duncan Comprehensive Cancer Center Baylor, College of Medicine, Houston, Texas
| | - Bryan M Burt
- Michael E. DeBakey Department of Surgery, Division of General Thoracic Surgery and the Dan L Duncan Comprehensive Cancer Center Baylor, College of Medicine, Houston, Texas
| | - Robert Taylor Ripley
- Michael E. DeBakey Department of Surgery, Division of General Thoracic Surgery and the Dan L Duncan Comprehensive Cancer Center Baylor, College of Medicine, Houston, Texas.
- NCI, Center for Cancer Research, NIH, Bethesda, Maryland
| |
Collapse
|
37
|
Xu H, Xia Y, Qin J, Xu J, Li C, Wang Y. Effects of low intensity pulsed ultrasound on expression of B-cell lymphoma-2 and BCL2-Associated X in premature ovarian failure mice induced by 4-vinylcyclohexene diepoxide. Reprod Biol Endocrinol 2021; 19:113. [PMID: 34284777 PMCID: PMC8290625 DOI: 10.1186/s12958-021-00799-w] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 07/09/2021] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND Premature ovarian failure (POF) is a common disease in the field of Gynecology. Low intensity pulsed ultrasound (LIPUS) can promote tissue repair and improve function. This study was performed to determine the effects of LIPUS on granulosa cells (GCs) apoptosis and protein expression of B-cell lymphoma-2 (Bcl-2) and BCL2-Associated X (Bax) in 4-vinylcyclohexene diepoxide (VCD)-induced POF mice and investigate the mechanisms of LIPUS on ovarian function and reserve capacity. METHODS The current POF mice model was administrated with VCD (160 mg/kg) by intraperitoneal injection for 15 consecutive days. The mice were divided into the POF group, LIPUS group and control group. In the LIPUS group, the right ovary of mice was treated by LIPUS (acoustic intensity was 200 mW/cm2, frequency was 0.3 MHz, and duty cycle was 20%) for 20 min, 15 consecutive days from day 16. The mice of the POF group and control group were treated without ultrasonic output. The basic observation and body weight were recorded. Hematoxylin and eosin staining (H&E staining) and enzyme-linked immunosorbent assay (ELISA) were applied to detect ovarian follicle development, ovarian morphology and sex hormone secretion. Ovarian GCs apoptosis was detected by TUNEL assay and immunohistochemistry. RESULTS The results showed that VCD can induce estrus cycle disorder, follicular atresia, sex hormone secretion decreased and GCs apoptosis in mice to establish POF model successfully. LIPUS significantly promoted follicular development, increased sex hormone secretion, inhibited excessive follicular atresia and GCs apoptosis. The mechanism might be achieved by increasing the protein expression of Bcl-2 and decreasing the expression of Bax in ovaries. CONCLUSIONS LIPUS can improve the POF induced by VCD. These findings have the potential to provide novel methodological foundation for the future research, which help treat POF patients in the clinic.
Collapse
Affiliation(s)
- Haopeng Xu
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Key Laboratory of Biomedical Engineering, Chongqing Medical University, 400016, Chongqing, China
| | - Yi Xia
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Key Laboratory of Biomedical Engineering, Chongqing Medical University, 400016, Chongqing, China
| | - Juan Qin
- Department of Gynaecology, Guiyang Maternal and Child Health Hospital, Guizhou, 550003, China
| | - Jie Xu
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Key Laboratory of Biomedical Engineering, Chongqing Medical University, 400016, Chongqing, China
| | - Chongyan Li
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Key Laboratory of Biomedical Engineering, Chongqing Medical University, 400016, Chongqing, China
| | - Yan Wang
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Key Laboratory of Biomedical Engineering, Chongqing Medical University, 400016, Chongqing, China.
| |
Collapse
|
38
|
Mottaghi S, Abbaszadeh H. Natural Lignans Honokiol and Magnolol as Potential Anticarcinogenic and Anticancer Agents. A Comprehensive Mechanistic Review. Nutr Cancer 2021; 74:761-778. [PMID: 34047218 DOI: 10.1080/01635581.2021.1931364] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Plant lignans constitute an important group of polyphenols, which have been demonstrated to significantly induce cancer cell death and suppress cancer cell proliferation with minimal toxicity against non-transformed cells. Numerous epidemiological studies have shown that the intake of lignans is associated with lower risk of several cancers. These natural compounds have the potential to inhibit carcinogenesis, tumor growth, and metastasis by targeting various signaling molecules and pathways. Growing evidence indicates that honokiol and magnolol as natural lignans possess potent anticancer activities against various types of human cancer. The aim of present review is to provide the reader with the newest findings in understanding the cellular and molecular mechanisms mediating anticancer effects of honokiol and magnolol. This review comprehensively elucidates the effects of honokiol and magnolol on the molecular targets and signal transduction pathways implicated in cancer cell proliferation and metastasis. The findings of current review indicate that honokiol and magnolol can be considered as promising carcinopreventive and anticancer agents.
Collapse
Affiliation(s)
- Sayeh Mottaghi
- Department of Pediatrics, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Hassan Abbaszadeh
- Department of Pharmacology, School of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
39
|
Danggui Buxue Tang Rescues Folliculogenesis and Ovarian Cell Apoptosis in Rats with Premature Ovarian Insufficiency. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:6614302. [PMID: 34035823 PMCID: PMC8118728 DOI: 10.1155/2021/6614302] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 01/13/2021] [Accepted: 04/23/2021] [Indexed: 12/30/2022]
Abstract
Premature ovarian insufficiency (POI) is a common female endocrine disease that is closely linked to ovarian function. Danggui Buxue Tang (DBT) is a classic prescription of traditional Chinese medicine that is helpful for rescuing ovarian function. However, the mechanism by which DBT rescues ovarian function remains unclear. This study explored the molecular mechanism of DBT with respect to apoptosis and related signals in ovarian cells. The quality control of DBT was performed by HPLC. After DBT intervention in the POI rat model, serum AMH/FSH/LH/E2 levels were detected by ELISA, follicles at various developmental stages were observed by HE staining, apoptosis was detected by TUNEL, and the expression profiles of Bcl-2 family proteins and key proteins in the Jak2/Foxo3a signaling pathway were evaluated by western blot. The results demonstrated that DBT could encourage the development of primary/secondary/antral follicles and increase the secretion of AMH. Moreover, DBT might inhibit Foxo3a by upregulating Jak2, thereby mediating Bcl-2 family activities and inhibiting apoptosis in ovarian cells. In conclusion, DBT promotes follicular development and rescues ovarian function by regulating Bcl-2 family proteins to inhibit cell apoptosis, which could be related to the Jak2/Foxo3a signaling pathway.
Collapse
|
40
|
Mottaghi S, Abbaszadeh H. A comprehensive mechanistic insight into the dietary and estrogenic lignans, arctigenin and sesamin as potential anticarcinogenic and anticancer agents. Current status, challenges, and future perspectives. Crit Rev Food Sci Nutr 2021; 62:7301-7318. [PMID: 33905270 DOI: 10.1080/10408398.2021.1913568] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
A large body of evidence indicates that lignans as polyphenolic compounds are beneficial against life-threatening diseases such as cancer. Plant lignans have the potential to induce cancer cell death and interfere with carcinogenesis, tumor growth, and metastasis. Epidemiological studies have revealed that the intake of lignans is inversely associated with the risk of several cancers. Moreover, numerous experimental studies demonstrate that natural lignans significantly suppress cancer cell proliferation with minimal toxicity against non-transformed cells. Dietary lignans arctigenin and sesamin have been found to have potent antiproliferative activities against various types of human cancer. The purpose of this review is to provide the reader with a deeper understanding of the cellular and molecular mechanisms underlying anticancer effects of arctigenin and sesamin. Our review comprehensively describes the effects of arctigenin and sesamin on the signaling pathways and related molecules involved in cancer cell proliferation and invasion. The findings of present review show that the dietary lignans arctigenin and sesamin seem to be promising carcinopreventive and anticancer agents. These natural lignans can be used as dietary supplements and pharmaceuticals for prevention and treatment of cancer.
Collapse
Affiliation(s)
- Sayeh Mottaghi
- Department of Pediatrics, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Hassan Abbaszadeh
- Department of Pharmacology, School of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
41
|
Wu G, Tu Z, Yang F, Mai Z, Chen H, Tang Q, Ye X, Wang K, Wang X, Chen T. Evaluating the inhibitory priority of Bcl-xL to Bad, tBid and Bax by using live-cell imaging assay. Cytometry A 2021; 99:1091-1101. [PMID: 33843148 DOI: 10.1002/cyto.a.24351] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 03/17/2021] [Accepted: 04/07/2021] [Indexed: 01/02/2023]
Abstract
Molecular regulatory network among the B cell leukemia-2 (Bcl-2) family proteins is a research hotspot on apoptosis. The inhibitory priority of anti-apoptotic Bcl-2 family proteins (such as Bcl-xL) to pro-apoptotic Bcl-2 family proteins (such as Bad, tBid and Bax) determines the outcome of their interactions. Based on over-expression model system, we here evaluate the inhibitory priority of Bcl-xL to Bad, tBid and Bax by using live-cell imaging assay on cell viability. Fluorescence images of living cells co-expressing CFP-Bcl-xL and YFP-Bad or YFP-tBid or YFP-Bax showed that Bcl-xL markedly inhibited Bad/tBid/Bax-mediated apoptosis, revealing that Bcl-xL inhibits the proapoptotic function of Bad, tBid and Bax. In the case of equimolar co-expression of Bad and CFP-Bcl-xL, the inhibition of Bcl-xL on tBid/Bax mediate-apoptosis was completely relieved. Moreover, co-expression of tBid-P2A-CFP-Bcl-xL significantly relieved the inhibition of Bcl-xL on the pro-apoptotic ability Bax, suggesting that Bcl-xL preferentially inhibits the pro-apoptotic ability of Bad over tBid, subsequently to Bax.
Collapse
Affiliation(s)
- Ge Wu
- Key Laboratory of Laser Life Science, Ministry of Education, College of Biophotonics, South China Normal University, Guangzhou, Guangdong, China.,Guangdong Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, Guangdong, China
| | - Zhuang Tu
- Key Laboratory of Laser Life Science, Ministry of Education, College of Biophotonics, South China Normal University, Guangzhou, Guangdong, China.,Guangdong Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, Guangdong, China
| | - Fangfang Yang
- Key Laboratory of Laser Life Science, Ministry of Education, College of Biophotonics, South China Normal University, Guangzhou, Guangdong, China.,Guangdong Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, Guangdong, China
| | - Zihao Mai
- Key Laboratory of Laser Life Science, Ministry of Education, College of Biophotonics, South China Normal University, Guangzhou, Guangdong, China.,Guangdong Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, Guangdong, China
| | - Hongce Chen
- Key Laboratory of Laser Life Science, Ministry of Education, College of Biophotonics, South China Normal University, Guangzhou, Guangdong, China.,Guangdong Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, Guangdong, China
| | - Qiling Tang
- Key Laboratory of Laser Life Science, Ministry of Education, College of Biophotonics, South China Normal University, Guangzhou, Guangdong, China.,Guangdong Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, Guangdong, China
| | - Xianxin Ye
- Key Laboratory of Laser Life Science, Ministry of Education, College of Biophotonics, South China Normal University, Guangzhou, Guangdong, China.,Guangdong Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, Guangdong, China
| | - Kunhao Wang
- Key Laboratory of Laser Life Science, Ministry of Education, College of Biophotonics, South China Normal University, Guangzhou, Guangdong, China.,Guangdong Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, Guangdong, China
| | - Xiaoping Wang
- Department of Pain Management, The First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Tongsheng Chen
- Key Laboratory of Laser Life Science, Ministry of Education, College of Biophotonics, South China Normal University, Guangzhou, Guangdong, China.,Guangdong Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, Guangdong, China.,SCNU Qingyuan Institute of Science and Technology Innovation Co. Ltd., South China Normal University, Qingyuan, China
| |
Collapse
|
42
|
You L, Zhao Y, Kuca K, Wang X, Oleksak P, Chrienova Z, Nepovimova E, Jaćević V, Wu Q, Wu W. Hypoxia, oxidative stress, and immune evasion: a trinity of the trichothecenes T-2 toxin and deoxynivalenol (DON). Arch Toxicol 2021; 95:1899-1915. [PMID: 33765170 DOI: 10.1007/s00204-021-03030-2] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 03/15/2021] [Indexed: 01/05/2023]
Abstract
T-2 toxin and deoxynivalenol (DON) are type A and B trichothecenes, respectively. They widely occur as pollutants in food and crops and cause a series of toxicities, including immunotoxicity, hepatotoxicity, and neurotoxicity. Oxidative stress is the primary mechanistic basis of these toxic effects. Increasing amounts of evidence have shown that mitochondria are significant targets of apoptosis caused by T-2 toxin- and DON-induced oxidative stress via regulation of Bax/B-cell lymphoma-2 and caspase-3/caspase-9 signaling. DNA methylation and autophagy are involved in oxidative stress related to apoptosis, and hypoxia and immune evasion are related to oxidative stress in this context. Hypoxia induces oxidative stress by stimulating mitochondrial reactive oxygen species production and regulates the expression of cytokines, such as interleukin-1β and tumor necrosis factor-α. Programmed cell death-ligand 1 is upregulated by these cytokines and by hypoxia-inducible factor-1, which allows it to bind to programmed cell death-1 to enable escape of immune cell surveillance and achievement of immune evasion. This review concentrates on novel findings regarding the oxidative stress mechanisms of the trichothecenes T-2 toxin and DON. Importantly, we discuss the new evidence regarding the connection of hypoxia and immune evasion with oxidative stress in this context. Finally, the trinity of hypoxia, oxidative stress and immune evasion is highlighted. This work will be conducive to an improved understanding of the oxidative stress caused by trichothecene mycotoxins.
Collapse
Affiliation(s)
- Li You
- College of Life Science, Yangtze University, Jingzhou, 434025, China
| | - Yingying Zhao
- College of Life Science, Yangtze University, Jingzhou, 434025, China
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Kamil Kuca
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, 500 03, Hradec Králové, Czech Republic
| | - Xu Wang
- National Reference Laboratory of Veterinary Drug Residues and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University (HZAU), Wuhan, China
| | - Patrik Oleksak
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, 500 03, Hradec Králové, Czech Republic
| | - Zofia Chrienova
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, 500 03, Hradec Králové, Czech Republic
| | - Eugenie Nepovimova
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, 500 03, Hradec Králové, Czech Republic
| | - Vesna Jaćević
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, 500 03, Hradec Králové, Czech Republic
- Department for Experimental Toxicology and Pharmacology, National Poison Control Centre, Military Medical Academy, 11000, Belgrade, Serbia
- Department of Pharmacological Science, Medical Faculty of the Military Medical Academy, University of Defence, 11000, Belgrade, Serbia
| | - Qinghua Wu
- College of Life Science, Yangtze University, Jingzhou, 434025, China.
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, 500 03, Hradec Králové, Czech Republic.
| | - Wenda Wu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China.
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, 500 03, Hradec Králové, Czech Republic.
| |
Collapse
|
43
|
Du D, Lv W, Su R, Yu C, Jing X, Bai N, Hasi S. Hydrolyzed camel whey protein alleviated heat stress-induced hepatocyte damage by activated Nrf2/HO-1 signaling pathway and inhibited NF-κB/NLRP3 axis. Cell Stress Chaperones 2021; 26:387-401. [PMID: 33405053 PMCID: PMC7925754 DOI: 10.1007/s12192-020-01184-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 11/16/2020] [Accepted: 11/27/2020] [Indexed: 02/06/2023] Open
Abstract
Liver damage is the most severe complication of heat stress (HS). Hydrolyzed camel whey protein (CWP) possesses bioactive peptides with obviously antioxidant and anti-inflammatory activities. The current study aims to investigate whether CWP that is hydrolyzed by a simulated gastrointestinal digestion process, named S-CWP, protects BRL-3A hepatocytes from HS-induced damage via antioxidant and anti-inflammatory mechanisms. BRL-3A cells were pretreated with S-CWP before being treated at 43 °C for 1 h, and the levels of the cellular oxidative stress, inflammation, apoptosis, biomarkers for liver function, the activities of several antioxidant enzymes, and the cell viability were analyzed. The expression level of pivotal proteins in correlative signaling pathways was evaluated by western blotting. We confirmed that S-CWP alleviated HS-induced hepatocytes oxidative stress by decreased reactive oxygen species (ROS), nitric oxide (NO), 8-Hydroxy-2'-deoxyguanosine (8-OHdG), lipid peroxidation (LPO), protein carbonylation (PCO), and the activities of NADPH oxidase while enhanced superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GSH-Px), heme oxygenase-1 (HO-1) activities, and GSH content. S-CWP suppressed HS-induced inflammatory response by reducing the phosphorylation of NF-κB p65, the expression of NLRP3, and caspase-1 and finally alleviated caspase-3-mediated apoptosis. S-CWP also alleviated HS-induced hepatocyte injury by reducing alanine aminotransferase (ALT), aspartate aminotransferase (AST), and alkaline phosphatase (ALP) levels and restoring Heat Shock Protein 70 (HSP70) expression. Furthermore, S-CWP treatment significantly enhanced the expression of NF-E2-related nuclear factor erythroid-2 (Nrf2) and HO-1. The antioxidant and anti-inflammatory effects of S-CWP were weakened by ML385, a specific Nrf2 inhibitor. Additionally, zinc protoporphyrin (ZnPP), a specific HO-1 inhibitor, significantly reversed S-CWP-induced reduction in the phosphorylation of NF-κB p65. Thus, our results revealed that S-CWP protected against HS-induced hepatocytes damage via activating the Nrf2/HO-1 signaling pathway and inhibiting NF-κB/NLRP3 axis.
Collapse
Affiliation(s)
- Donghua Du
- Key Laboratory of Clinical Diagnosis and Treatment Technology in Animal Disease, Ministry of Agriculture, College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, 010018, China
- Department of Veterinary Medicine, College of Animal Science and Technology, Hebei North University, Zhangjiakou, 075131, Hebei, China
| | - Wenting Lv
- Key Laboratory of Clinical Diagnosis and Treatment Technology in Animal Disease, Ministry of Agriculture, College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, 010018, China
- Department of Veterinary Medicine, College of Animal Science and Technology, Hebei North University, Zhangjiakou, 075131, Hebei, China
| | - Rina Su
- Key Laboratory of Clinical Diagnosis and Treatment Technology in Animal Disease, Ministry of Agriculture, College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, 010018, China
| | - Chunwei Yu
- Key Laboratory of Clinical Diagnosis and Treatment Technology in Animal Disease, Ministry of Agriculture, College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, 010018, China
| | - Xiaoxia Jing
- Key Laboratory of Clinical Diagnosis and Treatment Technology in Animal Disease, Ministry of Agriculture, College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, 010018, China
| | - Nuwenqimuge Bai
- Key Laboratory of Clinical Diagnosis and Treatment Technology in Animal Disease, Ministry of Agriculture, College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, 010018, China
| | - Surong Hasi
- Key Laboratory of Clinical Diagnosis and Treatment Technology in Animal Disease, Ministry of Agriculture, College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, 010018, China.
- Inner Mongolia institute of Camel Research, Badain Jaran, 075131, Inner Mongolia, China.
| |
Collapse
|
44
|
Price DA, Hill TD, Hutson KA, Rightnowar BW, Moran SD. Membrane-dependent amyloid aggregation of human BAX α9 (173-192). Protein Sci 2021; 30:1072-1080. [PMID: 33641228 DOI: 10.1002/pro.4053] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 02/08/2021] [Accepted: 02/24/2021] [Indexed: 11/07/2022]
Abstract
Mitochondrial outer membrane permeabilization, which is a critical step in apoptosis, is initiated upon transmembrane insertion of the C-terminal α-helix (α9) of the proapoptotic Bcl-2 family protein BAX. The isolated α9 fragment (residues 173-192) is also competent to disrupt model membranes, and the structures of its membrane-associated oligomers are of interest in understanding the potential roles of this sequence in apoptosis. Here, we used ultrafast two-dimensional infrared (2D IR) spectroscopy, thioflavin T binding, and transmission electron microscopy to show that the synthetic BAX α9 peptide (α9p) forms amyloid aggregates in aqueous environments and on the surfaces of anionic small unilamellar vesicles. Its inherent amyloidogenicity was predicted by sequence analysis, and 2D IR spectra reveal that vesicles modulate the β-sheet structures of insoluble aggregates, motivating further examination of the formation or suppression of BAX amyloids in apoptosis.
Collapse
Affiliation(s)
- David A Price
- Department of Chemistry and Biochemistry, Southern Illinois University Carbondale, Carbondale, Illinois, USA
| | - Tayler D Hill
- Department of Chemistry and Biochemistry, Southern Illinois University Carbondale, Carbondale, Illinois, USA
| | - Kaitlyn A Hutson
- Department of Chemistry and Biochemistry, Southern Illinois University Carbondale, Carbondale, Illinois, USA
| | - Blaze W Rightnowar
- Department of Chemistry and Biochemistry, Southern Illinois University Carbondale, Carbondale, Illinois, USA
| | - Sean D Moran
- Department of Chemistry and Biochemistry, Southern Illinois University Carbondale, Carbondale, Illinois, USA
| |
Collapse
|
45
|
Xu M, Yang Y, Deng QW, Shen JT, Liu WF, Yang WJ, Liu KX. Microarray Profiling and Functional Identification of LncRNA in Mice Intestinal Mucosa Following Intestinal Ischemia/Reperfusion. J Surg Res 2021; 258:389-404. [PMID: 33109405 DOI: 10.1016/j.jss.2020.08.066] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 08/06/2020] [Accepted: 08/25/2020] [Indexed: 11/25/2022]
Abstract
BACKGROUND Intestinal ischemia-reperfusion (I/R) injury is a common clinical event with high mortality, but its mechanism is elusive. Although long noncoding RNAs (lncRNAs) have recently emerged as critical molecules in I/R damage in other organs, the changes in their expression and potential roles in intestinal I/R remain unclear. METHODS The expression profiles of both lncRNAs and mRNAs in mouse intestinal mucosa after intestinal I/R were explored by a microarray approach, and their biological functions were elucidated by gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses. Then, some lncRNAs were further verified by qRT-PCR. Based on the coding-noncoding gene coexpression (CNC) network analyses, the role of lncRNA AK089510 in intestinal I/R-induced intestinal mucosa apoptosis was investigated by knockdown assay in vitro. RESULTS A total of 3602 aberrantly expressed lncRNAs (1503 upregulated and 2099 downregulated) and 3158 mRNAs (1528 upregulated and 1630 downregulated) were identified. The dysregulated transcripts were enriched in the lipid metabolic process, apoptotic process, reactive oxygen species metabolic process, MAPK, TNF, ErbB, mTOR, and FoxO signaling pathways, and so on. The overexpression of lncRNA AK089510 was validated by qRT-PCR, and the CNC analysis revealed its target mRNAs. AK089510-siRNA reduced Casp6 and Casp7 expression and suppressed intestinal epithelial cell apoptosis after oxygen-glucose deprivation treatment. CONCLUSIONS Our study revealed the lncRNA and mRNA expression patterns in mouse intestinal mucosa after intestinal I/R and predicted their potential functions and pathways. We identified AK089510 as a novel lncRNA involved in the apoptosis of intestinal mucosa, advancing our understanding of the molecular mechanisms of intestinal I/R injury.
Collapse
Affiliation(s)
- Miao Xu
- Department of Anesthesiology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Yong Yang
- Department of Neurology, Guangzhou First People'(')s Hospital, Guangzhou, China
| | - Qi-Wen Deng
- Department of Anesthesiology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Jian-Tong Shen
- Department of Anesthesiology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Wei-Feng Liu
- Department of Anesthesiology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Wen-Jing Yang
- Department of Anesthesiology, The First Affiliated Hospital, Zhengzhou University, Zhengzhou, China
| | - Ke-Xuan Liu
- Department of Anesthesiology, Nanfang Hospital, Southern Medical University, Guangzhou, China.
| |
Collapse
|
46
|
Liang GQ, Liu J, Zhou XX, Lin ZX, Chen T, Chen G, Wei H. Anti-CXCR4 Single-Chain Variable Fragment Antibodies Have Anti-Tumor Activity. Front Oncol 2021; 10:571194. [PMID: 33392074 PMCID: PMC7775505 DOI: 10.3389/fonc.2020.571194] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 11/24/2020] [Indexed: 12/17/2022] Open
Abstract
Monoclonal antibodies (mAbs) are large and have limitations as cancer therapeutics. Human single-chain variable fragment (scFv) is a small antibody as a good alternative. It can easily enter cancer tissues, has no immunogenicity and can be produced in bacteria to decrease the cost. The chemokine receptor CXCR4 is overexpressed in different cancer cells. It plays an important role in tumor growth and metastasis. Its overexpression is associated with poor prognosis in cancer patients and is regarded as an attractive target for cancer treatment. In this study, a peptide on the CXCR4 extracellular loop 2 (ECL2) was used as an antigen for screening a human scFv antibody library by yeast two-hybrid method. Three anti-CXCR4 scFv antibodies were isolated. They could bind to CXCR4 protein and three cancer cell lines (DU145, PC3, and MDA-MB-231) and not to 293T and 3T3 cells as negative controls. These three scFvs could decrease the proliferation, migration, and invasion of these cancer cells and promote their apoptosis. The two scFvs were further examined in a mouse xenograft model, and they inhibited the tumor growth. Tumor immunohistochemistry also demonstrated that the two scFvs decreased cancer cell proliferation and tumor angiogenesis and increased their apoptosis. These results show that these anti-CXCR4 scFvs can decrease cancer cell proliferation and inhibit tumor growth in mice, and may provide therapy for various cancers.
Collapse
Affiliation(s)
- Guang-Quan Liang
- Department of Cell Biology and Institute of Biomedicine, Guangdong Provincial Key Laboratory of Bioengineering Medicine, Guangdong Provincial Biotechnology Drug and Engineering Technology Research Center, National Engineering Research Center of Genetic Medicine, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Jing Liu
- Department of Cell Biology and Institute of Biomedicine, Guangdong Provincial Key Laboratory of Bioengineering Medicine, Guangdong Provincial Biotechnology Drug and Engineering Technology Research Center, National Engineering Research Center of Genetic Medicine, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Xiao-Xin Zhou
- Department of Cell Biology and Institute of Biomedicine, Guangdong Provincial Key Laboratory of Bioengineering Medicine, Guangdong Provincial Biotechnology Drug and Engineering Technology Research Center, National Engineering Research Center of Genetic Medicine, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Ze-Xiong Lin
- Department of Cell Biology and Institute of Biomedicine, Guangdong Provincial Key Laboratory of Bioengineering Medicine, Guangdong Provincial Biotechnology Drug and Engineering Technology Research Center, National Engineering Research Center of Genetic Medicine, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Tao Chen
- Department of Cell Biology and Institute of Biomedicine, Guangdong Provincial Key Laboratory of Bioengineering Medicine, Guangdong Provincial Biotechnology Drug and Engineering Technology Research Center, National Engineering Research Center of Genetic Medicine, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Guo Chen
- Department of Medical Biochemistry and Molecular Biology, School of Medicine, Jinan University, Guangzhou, China
| | - Henry Wei
- Department of Cell Biology and Institute of Biomedicine, Guangdong Provincial Key Laboratory of Bioengineering Medicine, Guangdong Provincial Biotechnology Drug and Engineering Technology Research Center, National Engineering Research Center of Genetic Medicine, College of Life Science and Technology, Jinan University, Guangzhou, China
| |
Collapse
|
47
|
Abstract
Chemical compounds induce cytotoxicity by various mechanisms, including interference in membrane integrity, metabolism, cellular component degradation or release, and cell division. Between the classic death pathways, namely, autophagy, apoptosis, and necrosis, apoptosis have been in the focus for the last several years as an important pathway for the toxicity of different types of xenobiotics. Because of that, having the tools to evaluate it is key for understanding and explaining the toxicodynamics of different classes of substances. Here, we describe a wide array of classic assays that can be easily implemented to evaluate apoptosis induction.
Collapse
Affiliation(s)
- Lilian Cristina Pereira
- Department of Clinical, Toxicological and Bromatological Analysis, Faculty of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
- Department of Bioprocesses and Biotechnology, Faculty of Agronomic Sciences of Botucatu, São Paulo State University, Botucatu, SP, Brazil
- Center for Evaluation of Environmental Impact on Human Health (TOXICAM), Botucatu, São Paulo, Brazil
| | - Alecsandra Oliveira de Souza
- Federal Institute of Science and Technology Education of Rondônia-Campus Porto Velho Calama, Porto Velho, RO, Brazil
- FFCLRP-USP, Department of Chemistry, Faculty of Philosophy, Sciences and Letters of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Raul Ghiraldelli Miranda
- Department of Clinical, Toxicological and Bromatological Analysis, Faculty of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Daniel Junqueira Dorta
- FFCLRP-USP, Department of Chemistry, Faculty of Philosophy, Sciences and Letters of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil.
- Instituto Nacional de Tecnologias Alternativas de Detecção, Avaliação Toxicológica e Remoção de Micropututantes e Radioativos (INCT-DATREM), Unesp, Instituto de Química, Caixa Postal 355, CEP: 14800-900, Araraquara, SP, Brazil.
| |
Collapse
|
48
|
Liao LX, Wang JK, Wan YJ, Liu Y, Dong X, Tu PF, Zeng KW. Protosappanin A Maintains Neuronal Mitochondrial Homeostasis through Promoting Autophagic Degradation of Bax. ACS Chem Neurosci 2020; 11:4223-4230. [PMID: 33225685 DOI: 10.1021/acschemneuro.0c00488] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Cerebral ischemia is accompanied by mitochondrial integrity destruction. Thus, reversion of mitochondrial damage holds great potential for cerebral ischemia therapy. As a crucial Bcl-2 family member, pro-apoptotic Bax protein is a main effector of mitochondrial permeabilization and plays an important role in mitochondrial homeostasis. However, there is still a lack of an effective cerebral protective strategy through selectively targeting Bax. In this study, we reported that natural small-molecule protosappanin A (PTA) showed a significant mitochondrial protective effect on oxygen-glucose deprivation/reperfusion (OGD/R)-induced PC12 cells injury through increasing ATP production and maintaining mitochondrial DNA (mtDNA) content. The mechanism study revealed that PTA selectively induced pro-apoptotic protein Bax degradation, without affecting other Bcl-2 family members such as Bcl-2, Bcl-xl, Bad, Puma, Bid, Bim, and Bik. In addition, we found that PTA promoted the association of autophagosomal marker LC3B to Bax for its degradation via an autophagy-dependent manner but not the ubiquitin-proteasome pathway. Collectively, our findings offered a new pharmacological strategy for maintaining mitochondrial function by inducing autophagic degradation of Bax and also provided a novel drug candidate against ischemic neuronal injury.
Collapse
Affiliation(s)
- Li-Xi Liao
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Jing-Kang Wang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Yan-Jun Wan
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Yang Liu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Xin Dong
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Peng-Fei Tu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Ke-Wu Zeng
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| |
Collapse
|
49
|
Zaydi AI, Lew LC, Hor YY, Jaafar MH, Chuah LO, Yap KP, Azlan A, Azzam G, Liong MT. Lactobacillus plantarum DR7 improved brain health in aging rats via the serotonin, inflammatory and apoptosis pathways. Benef Microbes 2020; 11:753-766. [PMID: 33245015 DOI: 10.3920/bm2019.0200] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Aging processes affect the brain in many ways, ranging from cellular to functional levels which lead to cognitive decline and increased oxidative stress. The aim of this study was to investigate the potentials of Lactobacillus plantarum DR7 on brain health including cognitive and memory functions during aging and the impacts of high fat diet during a 12-week period. Male Sprague-Dawley rats were separated into six groups: (1) young animals on normal diet (ND, (2) young animals on a high fat diet (HFD), (3) aged animals on ND, (4) aged animals on HFD, (5) aged animals on HFD and L. plantarum DR7 (109 cfu/day) and (6) aged animals receiving HFD and lovastatin. To induce ageing, all rats in group 3 to 6 were injected sub-cutaneously at 600 mg/kg/day of D-galactose daily. The administration of DR7 has reduced anxiety accompanied by enhanced memory during behavioural assessments in aged-HFD rats (P<0.05). Hippocampal concentration of all three pro-inflammatory cytokines were increased during aging but reduced upon administration of both statin and DR7. Expressions of hippocampal neurotransmitters and apoptosis genes showed reduced expressions of indoleamine dioxygenase and P53 accompanied by increased expression of TPH1 in aged- HFD rats administered with DR7, indicating potential effects of DR7 along the pathways of serotonin and oxidative senescence. This study provided an insight into potentials of L. plantarum DR7 as a prospective dietary strategy to improve cognitive functions during aging. This study provided an insight into potentials of L. plantarum DR7 as a prospective dietary strategy to improve cognitive functions during aging.
Collapse
Affiliation(s)
- A I Zaydi
- School of Industrial Technology, Universiti Sains Malaysia, 11800 Penang, Malaysia
| | - L-C Lew
- School of Industrial Technology, Universiti Sains Malaysia, 11800 Penang, Malaysia
| | - Y-Y Hor
- School of Industrial Technology, Universiti Sains Malaysia, 11800 Penang, Malaysia
| | - M H Jaafar
- School of Industrial Technology, Universiti Sains Malaysia, 11800 Penang, Malaysia
| | - L-O Chuah
- School of Industrial Technology, Universiti Sains Malaysia, 11800 Penang, Malaysia
| | - K-P Yap
- Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia
| | - A Azlan
- School of Biological Science, Universiti Sains Malaysia, Penang, Malaysia
| | - G Azzam
- School of Biological Science, Universiti Sains Malaysia, Penang, Malaysia.,USM-RIKEN International Centre for Ageing Science (URICAS), Universiti Sains Malaysia, Penang, Malaysia
| | - M-T Liong
- School of Industrial Technology, Universiti Sains Malaysia, 11800 Penang, Malaysia.,USM-RIKEN International Centre for Ageing Science (URICAS), Universiti Sains Malaysia, Penang, Malaysia
| |
Collapse
|
50
|
Zhang YF, Yang JY, Meng XP, Nie N, Tang MC, Yang XL. L-Arginine protects mouse Leydig cells against T-2 toxin-induced apoptosis in vitro. Toxicol Ind Health 2020; 36:1031-1038. [PMID: 33215568 DOI: 10.1177/0748233720964312] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
To explore the protective mechanism of L-arginine against T-2 toxin-induced apoptosis in mouse Leydig cells, we investigated whether L-arginine can prevent T-2 toxin-induced apoptosis in mouse Leydig cells and explored the underlying mechanisms. Leydig cells were isolated and cultured with control, T-2 toxin (10 nM), L-arginine (0.25, 0.5, and 1.0 mM), and T-2 toxin (10 nM T-2 toxin) + L-arginine (0.25, 0.5, or 1.0 mM) for 24 h. Cells and supernatants were harvested to examine proliferation of the cells, the apoptosis rate, activity of caspase-3 and mitochondria, and the gene expression levels of Bcl-2, Bax, PARP, and caspase-3. Results showed that proliferation and mitochondrial activity of Leydig cells were inhibited by administration of T-2 toxin. Bcl-2 gene expression levels was decreased, while the gene expression levels of Bax and PARP were increased, which could trigger mitochondria-mediated apoptosis, activate downstream caspase-3, and then increased caspase-3 at both activity and gene expression levels. The expression of the Bcl-2 gene was upregulated and the expression of Bax, caspase-3, and PARP gene were downregulated when L-arginine was added to the cultured cells. The results of this study showed that L-arginine could block T-2 toxin-induced apoptosis in mouse Leydig cells by regulating specific intracellular death-related pathways.
Collapse
Affiliation(s)
- Yong Fa Zhang
- College of Food and Bioengineering, 74623Henan University of Science and Technology, Luoyang, Henan, China
| | - Jian Ying Yang
- College of Medical Technology and Engineering, 74623Henan University of Science and Technology, Luoyang, Henan, China
| | - Xiang Ping Meng
- College of Medical Technology and Engineering, 74623Henan University of Science and Technology, Luoyang, Henan, China
| | - Na Nie
- College of Medical Technology and Engineering, 74623Henan University of Science and Technology, Luoyang, Henan, China
| | - Mei Cui Tang
- College of Medical Technology and Engineering, 74623Henan University of Science and Technology, Luoyang, Henan, China
| | - Xiao Li Yang
- College of Medical Technology and Engineering, 74623Henan University of Science and Technology, Luoyang, Henan, China
| |
Collapse
|