1
|
Smith P, Carroll B. Senescence in the ageing skin: a new focus on mTORC1 and the lysosome. FEBS J 2025; 292:960-975. [PMID: 39325694 PMCID: PMC11880983 DOI: 10.1111/febs.17281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 07/23/2024] [Accepted: 09/09/2024] [Indexed: 09/28/2024]
Abstract
Ageing is defined as the progressive loss of tissue function and regenerative capacity and is caused by both intrinsic factors i.e. the natural accumulation of damage, and extrinsic factors i.e. damage from environmental stressors. Cellular senescence, in brief, is an irreversible exit from the cell cycle that occurs primarily in response to excessive cellular damage, such as from ultraviolet (UV) exposure and oxidative stress, and it has been comprehensively demonstrated to contribute to tissue and organismal ageing. In this review, we will focus on the skin, an organ which acts as an essential protective barrier against injury, insults, and infection. We will explore the evidence for the existence and contribution of cellular senescence to skin ageing. We discuss the known molecular mechanisms driving senescence in the skin, with a focus on the dysregulation of the master growth regulator, mechanistic Target of Rapamycin Complex 1 (mTORC1). We explore the interplay of dysregulated mTORC1 with lysosomes and how they contribute to senescence phenotypes.
Collapse
|
2
|
Kohlhauser M, Mayrhofer M, Kamolz LP, Smolle C. An Update on Molecular Mechanisms of Scarring-A Narrative Review. Int J Mol Sci 2024; 25:11579. [PMID: 39519131 PMCID: PMC11546163 DOI: 10.3390/ijms252111579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 10/01/2024] [Accepted: 10/03/2024] [Indexed: 11/16/2024] Open
Abstract
Fibroblasts, the principal cellular mediators of connective tissue remodeling, play a crucial role in the formation of physiological and pathological scars. Understanding the intricate interplay between fibroblasts and other cellular and molecular components is essential for elucidating the underlying mechanisms driving scar formation. Hypertrophic scars, keloids and atrophic scars arise from dysregulated wound healing processes characterized by persistent inflammation, aberrant collagen deposition, and impaired extracellular matrix remodeling. Fibroblasts play a central role in the pathogenesis of such pathological scars, driving aberrant extracellular matrix remodeling, subsequently contributing to the formation of raised or depressed fibrotic lesions. The investigation of complex interactions between fibroblasts and the microenvironment is crucial for developing targeted therapeutic interventions aimed at modulating fibroblast activity and improving clinical outcomes in patients with pathological scars. Further research into the molecular pathways governing fibroblast behavior and their heterogeneity holds promise for advancing scar management strategies. This narrative review was performed to shed light on the mechanisms behind scar formation, with a special focus on the role of fibroblasts in the formation of different types of scars, providing insights into the pathophysiology of these conditions. Through the analysis of current knowledge, this review seeks to identify the key cellular and molecular mechanisms involved in fibroblast activation, collagen synthesis, and extracellular matrix remodeling in hypertrophic scar, keloid, or atrophic scar formation.
Collapse
Affiliation(s)
- Michael Kohlhauser
- Division of Plastic, Aesthetic and Reconstructive Surgery, Department of Surgery, Medical University of Graz, 8036 Graz, Austria
| | - Marcel Mayrhofer
- Division of Plastic, Aesthetic and Reconstructive Surgery, Department of Surgery, Medical University of Graz, 8036 Graz, Austria
| | - Lars-Peter Kamolz
- Division of Plastic, Aesthetic and Reconstructive Surgery, Department of Surgery, Medical University of Graz, 8036 Graz, Austria
- COREMED—Centre for Regenerative Medicine and Precision Medicine, JOANNEUM RESEARCH Forschungsgesellschaft mbH, 8010 Graz, Austria
| | - Christian Smolle
- Division of Plastic, Aesthetic and Reconstructive Surgery, Department of Surgery, Medical University of Graz, 8036 Graz, Austria
| |
Collapse
|
3
|
Baumann ME, Haddad NR, Salazar A, Childers WL, Farrokhi S, Goldstein NB, Hendershot BD, Reider L, Thompson RE, Valerio MS, Dearth CL, Garza LA, Major Extremity Trauma Research Consortium (METRC). Testing the Reliability of Optical Coherence Tomography to Measure Epidermal Thickness and Distinguish Volar and Nonvolar Skin. JID INNOVATIONS 2024; 4:100276. [PMID: 38827331 PMCID: PMC11137746 DOI: 10.1016/j.xjidi.2024.100276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 01/17/2024] [Accepted: 02/06/2024] [Indexed: 06/04/2024] Open
Abstract
In persons with limb loss, prosthetic devices cause skin breakdown, largely because residual limb skin (nonvolar) is not intended to bear weight such as palmoplantar (volar) skin. Before evaluation of treatment efficacy to improve skin resiliency, efforts are needed to establish normative data and assess outcome metric reliability. The purpose of this study was to use optical coherence tomography to (i) characterize volar and nonvolar skin epidermal thickness and (ii) examine the reliability of optical coherence tomography. Four orientations of optical coherence tomography images were collected on 33 volunteers (6 with limb loss) at 2 time points, and the epidermis was traced to quantify thickness by 3 evaluators. Epidermal thickness was greater (P < .01) for volar skin (palm) (265.1 ± 50.9 μm, n = 33) than for both nonvolar locations: posterior thigh (89.8 ± 18.1 μm, n = 27) or residual limb (93.4 ± 27.4 μm, n = 6). The inter-rater intraclass correlation coefficient was high for volar skin (0.887-0.956) but low for nonvolar skin (thigh: 0.292-0.391, residual limb: 0.211-0.580). Correlation improved when comparing only 2 evaluators who used the same display technique (palm: 0.827-0.940, thigh: 0.633-0.877, residual limb: 0.213-0.952). Despite poor inter-rater agreement for nonvolar skin, perhaps due to challenges in identifying the dermal-epidermal junction, this study helps to support the utility of optical coherence tomography to distinguish volar from nonvolar skin.
Collapse
Affiliation(s)
- Molly E. Baumann
- Research and Surveillance Section, Extremity Trauma and Amputation Center of Excellence, Defense Health Agency, Falls Church, Virginia, USA
- Department of Rehabilitation Medicine, Center for the Intrepid, Brooke Army Medical Center, San Antonio, Texas, USA
| | - Nina Rossa Haddad
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Alyssa Salazar
- Department of Rehabilitation Medicine, Center for the Intrepid, Brooke Army Medical Center, San Antonio, Texas, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, Maryland, USA
| | - W. Lee Childers
- Research and Surveillance Section, Extremity Trauma and Amputation Center of Excellence, Defense Health Agency, Falls Church, Virginia, USA
- Department of Rehabilitation Medicine, Center for the Intrepid, Brooke Army Medical Center, San Antonio, Texas, USA
- Department of Physical Medicine & Rehabilitation, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| | - Shawn Farrokhi
- Research and Surveillance Section, Extremity Trauma and Amputation Center of Excellence, Defense Health Agency, Falls Church, Virginia, USA
- Department of Physical Therapy, Chapman University, Irvine, California, USA
| | - Neil B. Goldstein
- Research and Surveillance Section, Extremity Trauma and Amputation Center of Excellence, Defense Health Agency, Falls Church, Virginia, USA
- Department of Rehabilitation, Walter Reed National Military Medical Center, Bethesda, Maryland, USA
| | - Brad D. Hendershot
- Research and Surveillance Section, Extremity Trauma and Amputation Center of Excellence, Defense Health Agency, Falls Church, Virginia, USA
- Department of Physical Medicine & Rehabilitation, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
- Department of Rehabilitation, Walter Reed National Military Medical Center, Bethesda, Maryland, USA
| | - Lisa Reider
- Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | | | - Michael S. Valerio
- Research and Surveillance Section, Extremity Trauma and Amputation Center of Excellence, Defense Health Agency, Falls Church, Virginia, USA
- Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| | - Christopher L. Dearth
- Research and Surveillance Section, Extremity Trauma and Amputation Center of Excellence, Defense Health Agency, Falls Church, Virginia, USA
- Department of Rehabilitation, Walter Reed National Military Medical Center, Bethesda, Maryland, USA
- Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| | - Luis A. Garza
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Cell Biology, Johns Hopkins School of Medicine, Baltimore, USA
- Department of Oncology, School of Medicine, Johns Hopkins University, Baltimore, USA
| | | |
Collapse
|
4
|
Suh SB, Suh JY, Lee H, Cho SB. Human dermal fibroblast-derived secretory proteins for regulating nerve restoration: A bioinformatic approach. Skin Res Technol 2024; 30:e13810. [PMID: 38887125 PMCID: PMC11182777 DOI: 10.1111/srt.13810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Accepted: 06/03/2024] [Indexed: 06/20/2024]
Abstract
BACKGROUND Human dermal fibroblasts secrete diverse proteins that regulate wound repair and tissue regeneration. METHODS In this study, dermal fibroblast-conditioned medium (DFCM) proteins potentially regulating nerve restoration were bioinformatically selected among the 337 protein lists identified by quantitative liquid chromatography-tandem mass spectrometry. Using these proteins, protein-protein interaction network analysis was conducted. In addition, the roles of DFCM proteins were reviewed according to their protein classifications. RESULTS Gene Ontology protein classification categorized these 57 DFCM proteins into various classes, including protein-binding activity modulator (N = 11), cytoskeletal protein (N = 8), extracellular matrix protein (N = 6), metabolite interconversion enzyme (N = 5), chaperone (N = 4), scaffold/adapter protein (N = 4), calcium-binding protein (N = 3), cell adhesion molecule (N = 2), intercellular signal molecule (N = 2), protein modifying enzyme (N = 2), transfer/carrier protein (N = 2), membrane traffic protein (N = 1), translational protein (N = 1), and unclassified proteins (N = 6). Further protein-protein interaction network analysis of 57 proteins revealed significant interactions among the proteins that varied according to the settings of confidence score. CONCLUSIONS Our bioinformatic analysis demonstrated that DFCM contains many secretory proteins that form significant protein-protein interaction networks crucial for regulating nerve restoration. These findings underscore DFCM proteins' critical roles in various nerve restoration stages during the wound repair process.
Collapse
Affiliation(s)
| | | | | | - Sung Bin Cho
- Yonsei Seran Dermatology and Laser ClinicSeoulSouth Korea
| |
Collapse
|
5
|
Lujano Olazaba O, Farrow J, Monkkonen T. Fibroblast heterogeneity and functions: insights from single-cell sequencing in wound healing, breast cancer, ovarian cancer and melanoma. Front Genet 2024; 15:1304853. [PMID: 38525245 PMCID: PMC10957653 DOI: 10.3389/fgene.2024.1304853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 02/26/2024] [Indexed: 03/26/2024] Open
Abstract
Cancer has been described as the wound that does not heal, in large part due to fibroblast involvement. Activation of cancer-associated fibroblasts (CAFs) contributes to critical features of the tumor microenvironment, including upregulation of key marker proteins, recruitment of immune cells, and deposition of extracellular matrix (ECM)-similar to fibroblast activation in injury-induced wound healing. Prior to the widespread availability of single-cell RNA sequencing (scRNA seq), studies of CAFs or fibroblasts in wound healing largely relied on models guided by individual fibroblast markers, or methods with less resolution to unravel the heterogeneous nature of CAFs and wound healing fibroblasts (especially regarding scarring outcome). Here, insights from the enhanced resolution provided by scRNA sequencing of fibroblasts in normal wound healing, breast cancer, ovarian cancer, and melanoma are discussed. These data have revealed differences in expression of established canonical activation marker genes, epigenetic modifications, fibroblast lineages, new gene and proteins of clinical interest for further experimentation, and novel signaling interactions with other cell types that include spatial information.
Collapse
Affiliation(s)
| | | | - Teresa Monkkonen
- Department of Biology, San Diego State University, San Diego, CA, United States
| |
Collapse
|
6
|
Voza FA, Huerta CT, Le N, Shao H, Ribieras A, Ortiz Y, Atkinson C, Machuca T, Liu ZJ, Velazquez OC. Fibroblasts in Diabetic Foot Ulcers. Int J Mol Sci 2024; 25:2172. [PMID: 38396848 PMCID: PMC10889208 DOI: 10.3390/ijms25042172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 02/01/2024] [Accepted: 02/05/2024] [Indexed: 02/25/2024] Open
Abstract
Fibroblasts are stromal cells ubiquitously distributed in the body of nearly every organ tissue. These cells were previously considered to be "passive cells", solely responsible for ensuring the turnover of the extracellular matrix (ECM). However, their versatility, including their ability to switch phenotypes in response to tissue injury and dynamic activity in the maintenance of tissue specific homeostasis and integrity have been recently revealed by the innovation of technological tools such as genetically modified mouse models and single cell analysis. These highly plastic and heterogeneous cells equipped with multifaceted functions including the regulation of angiogenesis, inflammation as well as their innate stemness characteristics, play a central role in the delicately regulated process of wound healing. Fibroblast dysregulation underlies many chronic conditions, including cardiovascular diseases, cancer, inflammatory diseases, and diabetes mellitus (DM), which represent the current major causes of morbidity and mortality worldwide. Diabetic foot ulcer (DFU), one of the most severe complications of DM affects 40 to 60 million people. Chronic non-healing DFU wounds expose patients to substantial sequelae including infections, gangrene, amputation, and death. A complete understanding of the pathophysiology of DFU and targeting pathways involved in the dysregulation of fibroblasts are required for the development of innovative new therapeutic treatments, critically needed for these patients.
Collapse
Affiliation(s)
- Francesca A. Voza
- DeWitt Daughtry Family Department of Surgery, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (F.A.V.); (C.T.H.); (H.S.); (A.R.); (Y.O.); (T.M.)
| | - Carlos Theodore Huerta
- DeWitt Daughtry Family Department of Surgery, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (F.A.V.); (C.T.H.); (H.S.); (A.R.); (Y.O.); (T.M.)
| | - Nga Le
- Vascular Biology Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Department of Biochemistry & Molecular Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Hongwei Shao
- DeWitt Daughtry Family Department of Surgery, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (F.A.V.); (C.T.H.); (H.S.); (A.R.); (Y.O.); (T.M.)
- Vascular Biology Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Antoine Ribieras
- DeWitt Daughtry Family Department of Surgery, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (F.A.V.); (C.T.H.); (H.S.); (A.R.); (Y.O.); (T.M.)
| | - Yulexi Ortiz
- DeWitt Daughtry Family Department of Surgery, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (F.A.V.); (C.T.H.); (H.S.); (A.R.); (Y.O.); (T.M.)
- Vascular Biology Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Carl Atkinson
- Department of Internal Medicine, Division of Pulmonary Critical Care & Sleep Medicine, University of Florida, Gainesville, FL 32611, USA;
| | - Tiago Machuca
- DeWitt Daughtry Family Department of Surgery, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (F.A.V.); (C.T.H.); (H.S.); (A.R.); (Y.O.); (T.M.)
| | - Zhao-Jun Liu
- DeWitt Daughtry Family Department of Surgery, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (F.A.V.); (C.T.H.); (H.S.); (A.R.); (Y.O.); (T.M.)
- Vascular Biology Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Department of Biochemistry & Molecular Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Omaida C. Velazquez
- DeWitt Daughtry Family Department of Surgery, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (F.A.V.); (C.T.H.); (H.S.); (A.R.); (Y.O.); (T.M.)
- Vascular Biology Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Department of Biochemistry & Molecular Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| |
Collapse
|
7
|
Nikolaev VV, Kistenev YV, Kröger M, Zuhayri H, Darvin ME. Review of optical methods for noninvasive imaging of skin fibroblasts-From in vitro to ex vivo and in vivo visualization. JOURNAL OF BIOPHOTONICS 2024; 17:e202300223. [PMID: 38018868 DOI: 10.1002/jbio.202300223] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 10/21/2023] [Accepted: 10/25/2023] [Indexed: 11/30/2023]
Abstract
Fibroblasts are among the most common cell types in the stroma responsible for creating and maintaining the structural organization of the extracellular matrix in the dermis, skin regeneration, and a range of immune responses. Until now, the processes of fibroblast adaptation and functioning in a varying environment have not been fully understood. Modern laser microscopes are capable of studying fibroblasts in vitro and ex vivo. One-photon- and two-photon-excited fluorescence microscopy, Raman spectroscopy/microspectroscopy are well-suited noninvasive optical methods for fibroblast imaging in vitro and ex vivo. In vivo staining-free fibroblast imaging is not still implemented. The exception is fibroblast imaging in tattooed skin. Although in vivo noninvasive staining-free imaging of fibroblasts in the skin has not yet been implemented, it is expected in the future. This review summarizes the state-of-the-art in fibroblast visualization using optical methods and discusses the advantages, limitations, and prospects for future noninvasive imaging.
Collapse
Affiliation(s)
- Viktor V Nikolaev
- Tomsk State University, Laboratory of Molecular Imaging and Machine Learning, Tomsk, Russia
| | - Yury V Kistenev
- Tomsk State University, Laboratory of Molecular Imaging and Machine Learning, Tomsk, Russia
| | - Marius Kröger
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Dermatology, Venerology and Allergology, Center of Experimental and Applied Cutaneous Physiology, Berlin, Germany
| | - Hala Zuhayri
- Tomsk State University, Laboratory of Molecular Imaging and Machine Learning, Tomsk, Russia
| | - Maxim E Darvin
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Dermatology, Venerology and Allergology, Center of Experimental and Applied Cutaneous Physiology, Berlin, Germany
| |
Collapse
|
8
|
Suh SB, Suh JY, Cho SB. Analyzing secretory proteins in human dermal fibroblast-conditioned medium for angiogenesis: A bioinformatic approach. Skin Res Technol 2024; 30:e13568. [PMID: 38200622 PMCID: PMC10781896 DOI: 10.1111/srt.13568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 12/19/2023] [Indexed: 01/12/2024]
Abstract
BACKGROUND The conditioned medium from human dermal fibroblasts (dermal fibroblast-conditioned medium; DFCM) contains a diverse array of secretory proteins, including growth factors and wound repair-promoting proteins. Angiogenesis, a crucial process that facilitates the infiltration of inflammatory cells during wound repair, is induced by a hypoxic environment and inflammatory cytokines. METHODS In this study, we conducted a comprehensive bioinformatic analysis of 337 proteins identified through proteomics analysis of DFCM. We specifically focused on 64 DFCM proteins with potential involvement in angiogenesis. These proteins were further classified based on their characteristics, and we conducted a detailed analysis of their protein-protein interactions. RESULTS Gene Ontology protein classification categorized these 64 DFCM proteins into various classes, including metabolite interconversion enzymes (N = 11), protein modifying enzymes (N = 10), protein-binding activity modulators (N = 9), cell adhesion molecules (N = 6), extracellular matrix proteins (N = 6), transfer/carrier proteins (N = 3), calcium-binding proteins (N = 2), chaperones (N = 2), cytoskeletal proteins (N = 2), RNA metabolism proteins (N = 1), intercellular signal molecules (N = 1), transporters (N = 1), scaffold/adaptor proteins (N = 1), and unclassified proteins (N = 9). Furthermore, our protein-protein interaction network analysis of DFCM proteins revealed two distinct networks: one with medium confidence level interaction scores, consisting of 60 proteins with significant connections, and another at a high confidence level, comprising 52 proteins with significant interactions. CONCLUSIONS Our bioinformatic analysis highlights the presence of a multitude of secretory proteins in DFCM that form significant protein-protein interaction networks crucial for regulating angiogenesis. These findings underscore the critical roles played by DFCM proteins in various stages of angiogenesis during the wound repair process.
Collapse
Affiliation(s)
| | | | - Sung Bin Cho
- Yonsei Seran Dermatology and Laser ClinicSeoulSouth Korea
| |
Collapse
|
9
|
Chen FZ, Tan PC, Yang Z, Li Q, Zhou SB. Identifying characteristics of dermal fibroblasts in skin homeostasis and disease. Clin Exp Dermatol 2023; 48:1317-1327. [PMID: 37566911 DOI: 10.1093/ced/llad257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 07/11/2023] [Accepted: 07/21/2023] [Indexed: 08/13/2023]
Abstract
Heterogeneous dermal fibroblasts are the main components that constitute the dermis. Distinct fibroblast subgroups show specific characteristics and functional plasticity that determine dermal structure during skin development and wound healing. Although researchers have described the roles of fibroblast subsets, this is not completely understood. We review recent evidence supporting understanding about the heterogeneity of fibroblasts. We summarize the origins and the identified profiles of fibroblast subpopulations. The characteristics of fibroblast subpopulations in both healthy and diseased states are highlighted, and the potential of subpopulations to be involved in wound healing in different ways was discussed. Additionally, we review the plasticity of subpopulations and the underlying signalling mechanisms. This review may provide greater insights into potential novel therapeutic targets and tissue regeneration strategies for the future.
Collapse
Affiliation(s)
- Fang-Zhou Chen
- Department of Plastic & Reconstructive Surgery, Shanghai Jiao Tong University School of Medicine Affiliated Ninth People's Hospital, Shanghai, China
| | - Poh-Ching Tan
- Department of Plastic & Reconstructive Surgery, Shanghai Jiao Tong University School of Medicine Affiliated Ninth People's Hospital, Shanghai, China
| | - Zihan Yang
- Department of Plastic & Reconstructive Surgery, Shanghai Jiao Tong University School of Medicine Affiliated Ninth People's Hospital, Shanghai, China
- Department of Plastic and Burn Surgery, West China Hospital of Sichuan University, Chengdu, China
| | - Qingfeng Li
- Department of Plastic & Reconstructive Surgery, Shanghai Jiao Tong University School of Medicine Affiliated Ninth People's Hospital, Shanghai, China
| | - Shuang-Bai Zhou
- Department of Plastic & Reconstructive Surgery, Shanghai Jiao Tong University School of Medicine Affiliated Ninth People's Hospital, Shanghai, China
| |
Collapse
|
10
|
Abstract
Hypertrophic scars frequently develop post-burn, and are characterized by their pruritic, painful, raised, erythematous, dyschromic, and contractile qualities. This article aims to synthesize knowledge on the clinical and molecular development, evolution, management, and measurement of hypertrophic burn scar for both patient and clinician knowledge.
Collapse
Affiliation(s)
- Shyla Kajal Bharadia
- Cumming School of Medicine, University of Calgary, Foothills Medical Centre, 1403-29 Street Northwest, Calgary, Alberta T2N 2T9, Canada
| | - Lindsay Burnett
- Alberta Health Services, University of Calgary, Foothills Medical Centre, 1403-29 Street Northwest, Calgary, Alberta T2N 2T9, Canada
| | - Vincent Gabriel
- Department of Clinical Neurosciences, University of Calgary, Foothills Medical Centre, 1403-29 Street Northwest, Calgary, Alberta T2N 2T9, Canada; Department of Surgery, University of Calgary, Foothills Medical Centre, 1403-29 Street Northwest, Calgary, Alberta T2N 2T9, Canada; Medical Director, Calgary Firefighters Burn Treatment Centre, Foothills Medical Centre, 1403-29 Street Northwest, Calgary, Alberta T2N 2T9, Canada.
| |
Collapse
|
11
|
Gawronska-Kozak B, Kopcewicz M, Machcinska-Zielinska S, Walendzik K, Wisniewska J, Drukała J, Wasniewski T, Rutkowska J, Malinowski P, Pulinski M. Gender Differences in Post-Operative Human Skin. Biomedicines 2023; 11:2653. [PMID: 37893027 PMCID: PMC10604277 DOI: 10.3390/biomedicines11102653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 09/25/2023] [Accepted: 09/25/2023] [Indexed: 10/29/2023] Open
Abstract
Although the impact of age, gender, and obesity on the skin wound healing process has been extensively studied, the data related to gender differences in aspects of skin scarring are limited. The present study performed on abdominal human intact and scar skin focused on determining gender differences in extracellular matrix (ECM) composition, dermal white adipose tissue (dWAT) accumulation, and Foxn1 expression as a part of the skin response to injury. Scar skin of men showed highly increased levels of COLLAGEN 1A1, COLLAGEN 6A3, and ELASTIN mRNA expression, the accumulation of thick collagen I-positive fibers, and the accumulation of α-SMA-positive cells in comparison to the scar skin of women. However, post-injured skin of women displayed an increase (in comparison to post-injured men's skin) in collagen III accumulation in the scar area. On the contrary, women's skin samples showed a tendency towards higher levels of adipogenic-related genes (PPARγ, FABP4, LEPTIN) than men, regardless of intact or scar skin. Intact skin of women showed six times higher levels of LEPTIN mRNA expression in comparison to men intact (p < 0.05), men post-injured (p < 0.05), or women post-injured scar (p < 0.05) skin. Higher levels of FOXN1 mRNA and protein were also detected in women than in men's skin. In conclusion, the present data confirm and extend (dWAT layer) the data related to the presence of differences between men and women in the skin, particularly in scar tissues, which may contribute to the more effective and gender-tailored improvement of skin care interventions.
Collapse
Affiliation(s)
- Barbara Gawronska-Kozak
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, 10-748 Olsztyn, Poland; (M.K.); (S.M.-Z.); (K.W.); (J.W.)
| | - Marta Kopcewicz
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, 10-748 Olsztyn, Poland; (M.K.); (S.M.-Z.); (K.W.); (J.W.)
| | - Sylwia Machcinska-Zielinska
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, 10-748 Olsztyn, Poland; (M.K.); (S.M.-Z.); (K.W.); (J.W.)
| | - Katarzyna Walendzik
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, 10-748 Olsztyn, Poland; (M.K.); (S.M.-Z.); (K.W.); (J.W.)
| | - Joanna Wisniewska
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, 10-748 Olsztyn, Poland; (M.K.); (S.M.-Z.); (K.W.); (J.W.)
| | - Justyna Drukała
- Department of Cell Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 31-007 Krakow, Poland;
| | - Tomasz Wasniewski
- Department of Obstetrics, Perinatology and Gynecology, School of Medicine, Collegium Medicum, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland;
| | - Joanna Rutkowska
- Department of Internal Medicine, Clinic of Endocrinology, Diabetology and Internal Medicine, School of Medicine, Collegium Medicum, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland;
| | - Piotr Malinowski
- Department of Surgery, School of Medicine, Collegium Medicum, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland
| | - Michał Pulinski
- Department of Surgery, School of Medicine, Collegium Medicum, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland
| |
Collapse
|
12
|
Mauroux A, Joncour P, Brassard-Jollive N, Bacar H, Gillet B, Hughes S, Ardidie-Robouant C, Marchand L, Liabotis A, Mailly P, Monnot C, Germain S, Bordes S, Closs B, Ruggiero F, Muller L. Papillary and reticular fibroblasts generate distinct microenvironments that differentially impact angiogenesis. Acta Biomater 2023; 168:210-222. [PMID: 37406716 DOI: 10.1016/j.actbio.2023.06.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 06/20/2023] [Accepted: 06/27/2023] [Indexed: 07/07/2023]
Abstract
Papillary and reticular dermis show distinct extracellular matrix (ECM) and vascularization corresponding to their specific functions. These characteristics are associated with gene expression patterns of fibroblasts freshly isolated from their native microenvironment. In order to assess the relevance of these fibroblast subpopulations in a tissue engineering context, we investigated their contribution to matrix production and vascularization using cell sheet culture conditions. We first performed RNA-seq differential expression analysis to determine whether several rounds of cell amplification and high-density culture affected their gene expression profile. Bioinformatics analysis revealed that expression of angiogenesis-related and matrisome gene signatures were maintained, resulting in papillary and reticular ECMs that differ in composition and structure. The impact of secreted or ECM-associated factors was then assessed using two independent 3D angiogenesis assays: -1/ a fibrin hydrogel-based assay allowing investigation of diffusible secreted factors, -2/ a scaffold-free cell-sheet based assay for investigation of fibroblast-produced microenvironment. These analyses revealed that papillary fibroblasts secrete highly angiogenic factors and produce a microenvironment characterised by ECM remodelling capacity and dense and branched microvascular network, whereas reticular fibroblasts produced more structural core components of the ECM associated with less branched and larger vessels. These features mimick the characteristics of both the ECM and the vasculature of dermis subcompartments. In addition to showing that skin fibroblast populations differentially regulate angiogenesis via both secreted and ECM factors, our work emphasizes the importance of papillary and reticular fibroblasts for engineering and modelling dermis microenvironment and vascularization. STATEMENT OF SIGNIFICANCE: Recent advances have brought to the forefront the central role of microenvironment and vascularization in tissue engineering for regenerative medicine and microtissue modelling. We have investigated the role of papillary and reticular fibroblast subpopulations using scaffold-free cell sheet culture. This approach provides differentiated cells conditions allowing the production of their own microenvironment. Analysis of gene expression profiles and characterisation of the matrix produced revealed strong and specific angiogenic properties that we functionally characterized using 3D angiogenesis models targeting the respective role of either secreted or matrix-bound factors. This study demonstrates the importance of cell-generated extracellular matrix and questions the importance of cell source and the relevance of hydrogels for developing physio-pathologically relevant tissue engineered substitutes.
Collapse
Affiliation(s)
- Adèle Mauroux
- Center for Interdisciplinary Research in Biology (CIRB), College de France - CNRS, INSERM, Université PSL, 11 Place Marcelin Berthelot, Paris 75005, France; Institut de Génomique Fonctionnelle de Lyon (IGFL), ENS de Lyon, CNRS, Univ Lyon 1, 32-34 Avenue Tony Garnier, Lyon 69007, France; R&D Department, SILAB, ZI de la Nau, Saint Viance 19240, France; Sorbonne Université, Collège Doctoral, 15 rue de l'Ecole de Médecine, Paris 75006, France
| | - Pauline Joncour
- Institut de Génomique Fonctionnelle de Lyon (IGFL), ENS de Lyon, CNRS, Univ Lyon 1, 32-34 Avenue Tony Garnier, Lyon 69007, France
| | - Noémie Brassard-Jollive
- Center for Interdisciplinary Research in Biology (CIRB), College de France - CNRS, INSERM, Université PSL, 11 Place Marcelin Berthelot, Paris 75005, France; Sorbonne Université, Collège Doctoral, 15 rue de l'Ecole de Médecine, Paris 75006, France
| | - Hisoilat Bacar
- Institut de Génomique Fonctionnelle de Lyon (IGFL), ENS de Lyon, CNRS, Univ Lyon 1, 32-34 Avenue Tony Garnier, Lyon 69007, France
| | - Benjamin Gillet
- Institut de Génomique Fonctionnelle de Lyon (IGFL), ENS de Lyon, CNRS, Univ Lyon 1, 32-34 Avenue Tony Garnier, Lyon 69007, France
| | - Sandrine Hughes
- Institut de Génomique Fonctionnelle de Lyon (IGFL), ENS de Lyon, CNRS, Univ Lyon 1, 32-34 Avenue Tony Garnier, Lyon 69007, France
| | - Corinne Ardidie-Robouant
- Center for Interdisciplinary Research in Biology (CIRB), College de France - CNRS, INSERM, Université PSL, 11 Place Marcelin Berthelot, Paris 75005, France
| | | | - Athanasia Liabotis
- Center for Interdisciplinary Research in Biology (CIRB), College de France - CNRS, INSERM, Université PSL, 11 Place Marcelin Berthelot, Paris 75005, France; Sorbonne Université, Collège Doctoral, 15 rue de l'Ecole de Médecine, Paris 75006, France
| | - Philippe Mailly
- Center for Interdisciplinary Research in Biology (CIRB), College de France - CNRS, INSERM, Université PSL, 11 Place Marcelin Berthelot, Paris 75005, France
| | - Catherine Monnot
- Center for Interdisciplinary Research in Biology (CIRB), College de France - CNRS, INSERM, Université PSL, 11 Place Marcelin Berthelot, Paris 75005, France
| | - Stéphane Germain
- Center for Interdisciplinary Research in Biology (CIRB), College de France - CNRS, INSERM, Université PSL, 11 Place Marcelin Berthelot, Paris 75005, France
| | - Sylvie Bordes
- R&D Department, SILAB, ZI de la Nau, Saint Viance 19240, France
| | - Brigitte Closs
- R&D Department, SILAB, ZI de la Nau, Saint Viance 19240, France
| | - Florence Ruggiero
- Institut de Génomique Fonctionnelle de Lyon (IGFL), ENS de Lyon, CNRS, Univ Lyon 1, 32-34 Avenue Tony Garnier, Lyon 69007, France.
| | - Laurent Muller
- Center for Interdisciplinary Research in Biology (CIRB), College de France - CNRS, INSERM, Université PSL, 11 Place Marcelin Berthelot, Paris 75005, France.
| |
Collapse
|
13
|
Schetzsle S, Lin WWC, Purushothaman P, Ding J, Kwan P, Tredget EE. Serial Casting as an Effective Method for Burn Scar Contracture Rehabilitation: A Case Series. J Burn Care Res 2023; 44:1062-1072. [PMID: 37254900 DOI: 10.1093/jbcr/irad078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Indexed: 06/01/2023]
Abstract
Guidelines and protocols for orthoses in burn scar contracture rehabilitation are limited. The current study aims to determine the optimal frequency of casting, potentially facilitating the development of a serial casting protocol. Previous literature supporting casting has low generalizability due to methodology limitations. Seven patients with burn scar contracted joints, who did not respond to traditional therapy, were recruited in this study. Patients were serially casted once, three times, or five times a week. Joint range of motion was maximized with stretching and exercise techniques before every new cast application. Across all patients, active range of motion increased from 65.8 ± 27.8° to 108.1 ± 23.3° with casting; or from 57.8 ± 16.2% to 96.7 ± 2.9% of normal. Similarly, scars improved from 9.5 ± 1.5 to 4.9 ± 1.4 on the Modified Vancouver Scar Scale score. This therapeutic effect was achieved within an average of 8.5 ± 3.7 d and 4.0 ± 2.2 new cast applications. Given the study findings, the procedures outlined could be used to develop a standardized serial casting protocol for burn scar contracture rehabilitation.
Collapse
Affiliation(s)
- Stephanie Schetzsle
- Department of Surgery, Firefighters Burn Treatment Unit, University of Alberta Hospital, Edmonton, AB, CanadaT6G 2B7
| | - Weber Wei Chiang Lin
- Wound Healing Research Group, Department of Surgery, University of Alberta, Division of Plastic and Reconstructive Surgery and Critical Care, Department of Surgery, University of Alberta, Edmonton, AB, CanadaT6G 2S2
| | - Prabhu Purushothaman
- Department of Surgery, Firefighters Burn Treatment Unit, University of Alberta Hospital, Edmonton, AB, CanadaT6G 2B7
| | - Jie Ding
- Wound Healing Research Group, Department of Surgery, University of Alberta, Division of Plastic and Reconstructive Surgery and Critical Care, Department of Surgery, University of Alberta, Edmonton, AB, CanadaT6G 2S2
| | - Peter Kwan
- Wound Healing Research Group, Department of Surgery, University of Alberta, Division of Plastic and Reconstructive Surgery and Critical Care, Department of Surgery, University of Alberta, Edmonton, AB, CanadaT6G 2S2
| | - Edward E Tredget
- Wound Healing Research Group, Department of Surgery, University of Alberta, Division of Plastic and Reconstructive Surgery and Critical Care, Department of Surgery, University of Alberta, Edmonton, AB, CanadaT6G 2S2
| |
Collapse
|
14
|
Kleissl L, Weinmüllner R, Lämmermann I, Dingelmaier-Hovorka R, Jafarmadar M, El Ghalbzouri A, Stary G, Grillari J, Dellago H. PRPF19 modulates morphology and growth behavior in a cell culture model of human skin. FRONTIERS IN AGING 2023; 4:1154005. [PMID: 37214773 PMCID: PMC10196211 DOI: 10.3389/fragi.2023.1154005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 04/11/2023] [Indexed: 05/24/2023]
Abstract
The skin provides one of the most visual aging transformations in humans, and premature aging as a consequence of oxidative stress and DNA damage is a frequently seen effect. Cells of the human skin are continuously exposed to endogenous and exogenous DNA damaging factors, which can cause DNA damage in all phases of the cell cycle. Increased levels of DNA damage and/or defective DNA repair can, therefore, accelerate the aging process and/or lead to age-related diseases like cancer. It is not yet clear if enhanced activity of DNA repair factors could increase the life or health span of human skin cells. In previous studies, we identified and characterized the human senescence evasion factor (SNEV)/pre-mRNA-processing factor (PRPF) 19 as a multitalented protein involved in mRNA splicing, DNA repair pathways and lifespan regulation. Here, we show that overexpression of PRPF19 in human dermal fibroblasts leads to a morphological change, reminiscent of juvenile, papillary fibroblasts, despite simultaneous expression of senescence markers. Moreover, conditioned media of this subpopulation showed a positive effect on keratinocyte repopulation of wounded areas. Taken together, these findings indicate that PRPF19 promotes cell viability and slows down the aging process in human skin.
Collapse
Affiliation(s)
- Lisa Kleissl
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna, Austria
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Regina Weinmüllner
- Institute of Molecular Biotechnology, University of Natural Resources and Life Sciences, Vienna, Austria
- Christian Doppler Laboratory for Biotechnology of Skin Aging, Vienna, Austria
| | - Ingo Lämmermann
- Institute of Molecular Biotechnology, University of Natural Resources and Life Sciences, Vienna, Austria
- Christian Doppler Laboratory for Biotechnology of Skin Aging, Vienna, Austria
| | | | - Mohammad Jafarmadar
- Ludwig Boltzmann Institute for Traumatology in cooperation with AUVA, Vienna, Austria
| | | | - Georg Stary
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna, Austria
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Johannes Grillari
- Institute of Molecular Biotechnology, University of Natural Resources and Life Sciences, Vienna, Austria
- Ludwig Boltzmann Institute for Traumatology in cooperation with AUVA, Vienna, Austria
| | - Hanna Dellago
- Institute of Molecular Biotechnology, University of Natural Resources and Life Sciences, Vienna, Austria
- Christian Doppler Laboratory for Biotechnology of Skin Aging, Vienna, Austria
| |
Collapse
|
15
|
Kashimoto R, Kamei Y, Nonaka S, Kondo Y, Yamamoto S, Furukawa S, Ohashi A, Satoh A. FGF signaling induces the regeneration of collagen fiber structure during skin wound healing in axolotls. Dev Biol 2023; 498:14-25. [PMID: 36963624 DOI: 10.1016/j.ydbio.2023.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 03/13/2023] [Accepted: 03/21/2023] [Indexed: 03/26/2023]
Abstract
Axolotls have been considered to be able to regenerate their skin completely. Our recent study updated this theory with the finding that the lattice structure of dermal collagen fibers was not fully regenerated after skin injury. We also discovered that nerves induce the regeneration of collagen fibers. The mechanism of collagen fiber regeneration remains unknown, however. In this study, we focused on the structure of collagen fibers with collagen braiding cells, and cell origin in axolotl skin regeneration. In the wounded dermis, cells involved in skin repair/regeneration were derived from both the surrounding dermis and the subcutaneous tissue. Regardless of cell origin, cells acquired the proper cell morphology to braid collagen fiber with nerve presence. We also found that FGF signaling could substitute for the nerve roles in the conversion of subcutaneous fibroblasts to lattice-shaped dermal fibroblasts. Our findings contribute to the elucidation of the fundamental mechanisms of true skin regeneration and provide useful insights for pioneering new skin treatments.
Collapse
Affiliation(s)
- Rena Kashimoto
- Division of Earth, Life, and Molecular Sciences, Graduate School of Natural Science and Technology, Okayama University, Okayama, 700-8530, Japan
| | - Yasuhiro Kamei
- National Institute for Basic Biology (NIBB), National Institutes of Natural Sciences, Okazaki, 444-8585, Japan
| | - Shigenori Nonaka
- National Institute for Basic Biology (NIBB), National Institutes of Natural Sciences, Okazaki, 444-8585, Japan; Exploratory Research Center for Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Okazaki, 444-8585, Japan
| | - Yohei Kondo
- National Institute for Basic Biology (NIBB), National Institutes of Natural Sciences, Okazaki, 444-8585, Japan; Exploratory Research Center for Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Okazaki, 444-8585, Japan
| | - Sakiya Yamamoto
- Division of Biological Science, Graduate School of Natural Science and Technology, Okayama University, Okayama, 700-8530, Japan
| | - Saya Furukawa
- Division of Biological Science, Graduate School of Natural Science and Technology, Okayama University, Okayama, 700-8530, Japan
| | - Ayaka Ohashi
- Division of Biological Science, Graduate School of Natural Science and Technology, Okayama University, Okayama, 700-8530, Japan
| | - Akira Satoh
- Research Core for Interdisciplinary Sciences (RCIS), Okayama University, Okayama, 700-8530, Japan.
| |
Collapse
|
16
|
Suh SB, Ahn KJ, Kim EJ, Suh JY, Cho SB. Proteomic Identification and Quantification of Secretory Proteins in Human Dermal Fibroblast-Conditioned Medium for Wound Repair and Hair Regeneration. Clin Cosmet Investig Dermatol 2023; 16:1145-1157. [PMID: 37153723 PMCID: PMC10162110 DOI: 10.2147/ccid.s407078] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Accepted: 04/27/2023] [Indexed: 05/10/2023]
Abstract
Background Human dermal fibroblasts secrete numerous growth factors and proteins that have been suggested to promote wound repair and hair regeneration. Methods Human dermal fibroblast-conditioned medium (DFCM) was prepared, and proteomic analysis was performed. Secretory proteins in DFCM were identified using 1-dimensional sodium dodecyl sulphate-polyacrylamide gel electrophoresis, in-gel trypsin protein digestion, and quantitative liquid chromatography tandem mass spectrometry (LC-MS/MS). Identified proteins were analyzed using bioinformatic methods for the classification and evaluation of protein-protein interactions. Results Using LC-MS/MS, 337 proteins were identified in DFCM. Among them, 160 proteins were associated with wound repair, and 57 proteins were associated with hair regeneration. Protein-protein interaction network analysis of 160 DFCM proteins for wound repair at the highest confidence score (0.9) revealed that 110 proteins were grouped into seven distinctive interaction networks. Additionally, protein-protein interaction network analysis of 57 proteins for hair regeneration at the highest confidence score revealed that 29 proteins were grouped into five distinctive interaction networks. The identified DFCM proteins were associated with several pathways for wound repair and hair regeneration, including epidermal growth factor receptor, fibroblast growth factor, integrin, Wnt, cadherin, and transforming growth factor-β signaling pathways. Conclusion DFCM contains numerous secretory proteins that comprise groups of protein-protein interaction networks that regulate wound repair and hair regeneration.
Collapse
Affiliation(s)
| | - Keun Jae Ahn
- Department of Science Education, Jeju National University, Jeju, Korea
| | | | | | - Sung Bin Cho
- Yonsei Seran Dermatology and Laser Clinic, Seoul, Korea
- Correspondence: Sung Bin Cho, Yonsei Seran Dermatology and Laser Clinic, 224 Siheung-daero, Seoul, 08628, Korea, Tel +82 2-2135-1375, Fax +82 70-8250-1375, Email
| |
Collapse
|
17
|
Cavagnero KJ, Gallo RL. Essential immune functions of fibroblasts in innate host defense. Front Immunol 2022; 13:1058862. [PMID: 36591258 PMCID: PMC9797514 DOI: 10.3389/fimmu.2022.1058862] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 11/09/2022] [Indexed: 12/23/2022] Open
Abstract
The term fibroblast has been used generally to describe spindle-shaped stromal cells of mesenchymal origin that produce extracellular matrix, establish tissue structure, and form scar. Current evidence has found that cells with this morphology are highly heterogeneous with some fibroblastic cells actively participating in both innate and adaptive immune defense. Detailed analysis of barrier tissues such as skin, gut, and lung now show that some fibroblasts directly sense pathogens and other danger signals to elicit host defense functions including antimicrobial activity, leukocyte recruitment, and production of cytokines and lipid mediators relevant to inflammation and immunosuppression. This review will synthesize current literature focused on the innate immune functions performed by fibroblasts at barrier tissues to highlight the previously unappreciated importance of these cells in immunity.
Collapse
Affiliation(s)
| | - Richard L. Gallo
- Department of Dermatology, University of California, San Diego, La Jolla, CA, United States
| |
Collapse
|
18
|
Lee SY, Kim DY, Suh SB, Suh JY, Cho SB. Effects of Human Fibroblast-Derived Multi-Peptide Factors on the Proliferation and Migration of Nitrogen Plasma-Treated Human Dermal Fibroblasts. Clin Cosmet Investig Dermatol 2022; 15:2465-2475. [PMID: 36411843 PMCID: PMC9675427 DOI: 10.2147/ccid.s383483] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Accepted: 11/04/2022] [Indexed: 11/16/2022]
Abstract
Background Human fibroblast-derived multi-peptide factors (MPFs) promote wound repair by playing crucial roles in cell recruitment, adhesion, attachment, migration, and proliferation. Methods Cultured human dermal fibroblasts (HDFs) were directly treated with non-contact low- and high-energy nitrogen plasma and further cultured in various conditioned media. Cell proliferation and wound-healing properties were evaluated. Results In Opti-modified Eagle’s medium + GlutaMAX culture, reduced HDF viability was observed 24 h after 2-J/pulse plasma treatment and 12 and 24 h after 3-J/pulse treatment. Meanwhile, in dermal fibroblast-conditioned medium (DFCM) containing MPF culture, reduced HDF viability was observed only 24 h after 3-J/pulse treatment. Under DFCM-MPF culture, the wound area percentage was significantly decreased after 12 and 24 h in untreated HDFs; at 9, 12, and 24 h after 1-J/pulse plasma treatment; at 3, 6, 9, 12, and 24 h after 2-J/pulse plasma treatment; and at 9, 12, and 24 h after 3-J/pulse plasma treatment. Greater migration of HDFs with or without plasma treatment was found in DFCM-MPFs than in other conditioned media. Conclusion Low-energy nitrogen plasma treatment promotes HDF proliferation and wound repair. DFCM-MPFs enhanced cell proliferation and improved the wound healing properties of HDFs treated with low- and high-energy plasma.
Collapse
Affiliation(s)
| | | | | | | | - Sung Bin Cho
- Yonsei Seran Dermatology and Laser Clinic, Seoul, Korea
- Correspondence: Sung Bin Cho, Yonsei Seran Dermatology and Laser Clinic, 224 Siheung-daero, Seoul, 08628, Korea, Tel +82 2-2135-1375, Fax +82 70-8250-1375, Email
| |
Collapse
|
19
|
Shin JM, Lee YY, Kim KM, Won KS, Suh SB, Hong D, Jung KE, Kim CD, Seo YJ, Cho SB, Lee Y. The potential role of fibroblast-derived multi-peptide factors in activation of growth factors and β-Catenin in hair follicle cells. J Cosmet Dermatol 2022; 21:6184-6190. [PMID: 35765799 DOI: 10.1111/jocd.15188] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 06/15/2022] [Accepted: 06/26/2022] [Indexed: 12/27/2022]
Abstract
BACKGROUND Dermal fibroblasts play a pivotal role in hair follicle regeneration during wound repair. Recently, dermal fibroblast-conditioned medium (DFCM), which contains multi-peptide factors (MPFs), has been used to promote wound repair. AIM This study aimed to investigate the stimulatory effects of MPF-containing DFCM on hair growth. METHODS MPF-containing DFCM was prepared using human neonatal dermal fibroblasts. Outer root sheath (ORS) and dermal papilla (DP) cells were cultured in MPF-containing DFCM. We examined the expression and secretion of growth factors and cytokines using quantitative polymerase chain reaction and a growth factor array. In addition, the effect of MPFs on β-catenin activity was determined using the TOPflash assay. All experiments were repeated at least three times with separate batches of cells. RESULTS MPF-containing DFCM increased keratinocyte growth factor (KGF), vascular endothelial growth factor (VEGF), and epidermal growth factor (EGF) mRNA expression in ORS cells and KGF and VEGF mRNA expression in DP cells. When ORS cells were treated with MPF-containing DFCM, the secretion of several growth factors, including EGF, VEGF, insulin-like growth factor-binding protein (IGFBP)-4, IGFBP-6, and fibroblast growth factor-7, was increased in the cell-cultured medium compared with that in control. Additionally, MPF-containing DFCM increased the transcriptional activation of β-catenin in DP cells. CONCLUSIONS These results suggest that MPF-containing DFCM might stimulate hair growth by inducing growth factors in ORS and DP cells and regulating β-catenin in DP cells.
Collapse
Affiliation(s)
- Jung-Min Shin
- Department of Dermatology, School of Medicine, Chungnam National University, Daejeon, South Korea
| | - Young-Yoon Lee
- Department of Dermatology, School of Medicine, Chungnam National University, Daejeon, South Korea
| | - Kyung Min Kim
- Department of Dermatology, School of Medicine, Chungnam National University, Daejeon, South Korea
| | | | | | - Dongkyun Hong
- Department of Dermatology, School of Medicine, Chungnam National University, Daejeon, South Korea
| | - Kyung Eun Jung
- Department of Dermatology, School of Medicine, Chungnam National University, Daejeon, South Korea
| | - Chang-Deok Kim
- Department of Dermatology, School of Medicine, Chungnam National University, Daejeon, South Korea
| | - Young-Joon Seo
- Department of Dermatology, School of Medicine, Chungnam National University, Daejeon, South Korea
| | - Sung Bin Cho
- Yonsei Seran Dermatology and Laser Clinic, Seoul, South Korea
| | - Young Lee
- Department of Dermatology, School of Medicine, Chungnam National University, Daejeon, South Korea
| |
Collapse
|
20
|
Canadian Contributions in Fibroblast Biology. Cells 2022; 11:cells11152272. [PMID: 35892569 PMCID: PMC9331635 DOI: 10.3390/cells11152272] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 07/18/2022] [Accepted: 07/21/2022] [Indexed: 02/04/2023] Open
Abstract
Fibroblasts are stromal cells found in virtually every tissue and organ of the body. For many years, these cells were often considered to be secondary in functional importance to parenchymal cells. Over the past 2 decades, focused research into the roles of fibroblasts has revealed important roles for these cells in the homeostasis of healthy tissue, and has demonstrated that activation of fibroblasts to myofibroblasts is a key step in disease initiation and progression in many tissues, with fibrosis now recognized as not only an outcome of disease, but also a central contributor to tissue dysfunction, particularly in the heart and lungs. With a growing understanding of both fibroblast and myofibroblast heterogeneity, and the deciphering of the humoral and mechanical cues that impact the phenotype of these cells, fibroblast biology is rapidly becoming a major focus in biomedical research. In this review, we provide an overview of fibroblast and myofibroblast biology, particularly in the heart, and including a discussion of pathophysiological processes such as fibrosis and scarring. We then discuss the central role of Canadian researchers in moving this field forwards, particularly in cardiac fibrosis, and highlight some of the major contributions of these individuals to our understanding of fibroblast and myofibroblast biology in health and disease.
Collapse
|
21
|
Koskinen Holm C, Qu C. Engineering a 3D In Vitro Model of Human Gingival Tissue Equivalent with Genipin/Cytochalasin D. Int J Mol Sci 2022; 23:ijms23137401. [PMID: 35806407 PMCID: PMC9266888 DOI: 10.3390/ijms23137401] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 06/28/2022] [Accepted: 07/01/2022] [Indexed: 02/05/2023] Open
Abstract
Although three-dimensional (3D) co-culture of gingival keratinocytes and fibroblasts-populated collagen gel can mimic 3D structure of in vivo tissue, the uncontrolled contraction of collagen gel restricts its application in clinical and experimental practices. We here established a stable 3D gingival tissue equivalent (GTE) using hTERT-immortalized gingival fibroblasts (hGFBs)-populated collagen gel directly crosslinked with genipin/cytochalasin D and seeding hTERT-immortalized gingival keratinocytes (TIGKs) on the upper surface for a 2-week air–liquid interface co-culture. MTT assay was used to measure the cell viability of GTEs. GTE size was monitored following culture period, and the contraction was analyzed. Immunohistochemical assay was used to analyze GTE structure. qRT-PCR was conducted to examine the mRNA expression of keratinocyte-specific genes. Fifty µM genipin (G50) or combination (G + C) of G50 and 100 nM cytochalasin D significantly inhibited GTE contraction. Additionally, a higher cell viability appeared in GTEs crosslinked with G50 or G + C. GTEs crosslinked with genipin/cytochalasin D showed a distinct multilayered stratified epithelium that expressed keratinocyte-specific genes similar to native gingiva. Collagen directly crosslinked with G50 or G + C significantly reduced GTE contraction without damaging the epithelium. In summary, the TIGKs and hGFBs can successfully form organotypic multilayered cultures, which can be a valuable tool in the research regarding periodontal disease as well as oral mucosa disease. We conclude that genipin is a promising crosslinker with the ability to reduce collagen contraction while maintaining normal cell function in collagen-based oral tissue engineering.
Collapse
Affiliation(s)
- Cecilia Koskinen Holm
- Department of Odontology, Umeå University, 90185 Umeå, Sweden
- Wallenberg Center for Molecular Medicine, Umeå University, 90187 Umeå, Sweden
- Correspondence: (C.K.H.); (C.Q.)
| | - Chengjuan Qu
- Department of Odontology, Umeå University, 90185 Umeå, Sweden
- Wallenberg Center for Molecular Medicine, Umeå University, 90187 Umeå, Sweden
- Correspondence: (C.K.H.); (C.Q.)
| |
Collapse
|
22
|
Ganier C, Rognoni E, Goss G, Lynch M, Watt FM. Fibroblast Heterogeneity in Healthy and Wounded Skin. Cold Spring Harb Perspect Biol 2022; 14:a041238. [PMID: 35667795 PMCID: PMC9248828 DOI: 10.1101/cshperspect.a041238] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Fibroblasts are the main cell type in the dermis. They are responsible for the synthesis and deposition of structural proteins such as collagen and elastin, which are integrated into the extracellular matrix (ECM). Mouse and human studies using flow cytometry, cell culture, skin reconstitution, and lineage tracing experiments have shown the existence of different subpopulations of fibroblasts, including papillary fibroblasts, reticular fibroblasts, and fibroblasts comprising the dermal papilla at the base of the hair follicle. In recent years, the technological advances in single-cell sequencing have allowed researchers to study the repertoire of cells present in full-thickness skin including the dermis. Multiple groups have confirmed that distinct fibroblast populations can be identified in mouse and human dermis on the basis of differences in the transcriptional profile. Here, we discuss the current state of knowledge regarding dermal fibroblast heterogeneity in healthy mouse and human skin, highlighting the similarities and differences between mouse and human fibroblast subpopulations. We also discuss how fibroblast heterogeneity may provide insights into physiological wound healing and its dysfunction in pathological states such as hypertrophic and keloid scars.
Collapse
Affiliation(s)
- Clarisse Ganier
- Centre for Stem Cells and Regenerative Medicine, King's College London, Guy's Hospital, London SE1 9RT, United Kingdom
| | - Emanuel Rognoni
- Centre for Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, United Kingdom
| | - Georgina Goss
- Centre for Stem Cells and Regenerative Medicine, King's College London, Guy's Hospital, London SE1 9RT, United Kingdom
| | - Magnus Lynch
- Centre for Stem Cells and Regenerative Medicine, King's College London, Guy's Hospital, London SE1 9RT, United Kingdom
- St John's Institute of Dermatology, King's College London, London SE1 9RT, United Kingdom
| | - Fiona M Watt
- Centre for Stem Cells and Regenerative Medicine, King's College London, Guy's Hospital, London SE1 9RT, United Kingdom
| |
Collapse
|
23
|
Michalak-Micka K, Klar AS, Dasargyri A, Biedermann T, Reichmann E, Moehrlen U. The influence of CD26 + and CD26 - fibroblasts on the regeneration of human dermo-epidermal skin substitutes. Sci Rep 2022; 12:1944. [PMID: 35121765 PMCID: PMC8816920 DOI: 10.1038/s41598-022-05309-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 01/04/2022] [Indexed: 11/15/2022] Open
Abstract
CD26, also known as dipeptidyl peptidase IV (DPPIV), is a multifunctional transmembrane protein playing a significant role in the cutaneous wound healing processes in the mouse skin. However, only scarce data are available regarding the distribution and function of this protein in the human skin. Therefore, the aim of this study was to investigate the impact of CD26 deficiency in human primary fibroblasts on the regeneration of human tissue-engineered skin substitutes in vivo. Dermo-epidermal skin analogs, based on collagen type I hydrogels, were populated either with human CD26+ or CD26knockout fibroblasts and seeded with human epidermal keratinocytes. These skin substitutes were transplanted onto the back of immune-incompetent rodents. Three weeks post-transplantation, the grafts were excised and analyzed with respect to specific epidermal and dermal maturation markers. For the first time, we show here that the expression of CD26 protein in human dermis is age-dependent. Furthermore, we prove that CD26+ fibroblasts are more active in the production of extracellular matrix (ECM) both in vitro and in vivo and are necessary to achieve rapid epidermal and dermal homeostasis after transplantation.
Collapse
Affiliation(s)
- Katarzyna Michalak-Micka
- Tissue Biology Research Unit, Department of Surgery, University Children's Hospital Zurich, University of Zurich, Steinwiesstrasse 75, 8032, Zurich, Switzerland
- Children's Research Center, University Children's Hospital Zurich, Zurich, Switzerland
| | - Agnes S Klar
- Tissue Biology Research Unit, Department of Surgery, University Children's Hospital Zurich, University of Zurich, Steinwiesstrasse 75, 8032, Zurich, Switzerland
- Children's Research Center, University Children's Hospital Zurich, Zurich, Switzerland
| | - Athanasia Dasargyri
- Tissue Biology Research Unit, Department of Surgery, University Children's Hospital Zurich, University of Zurich, Steinwiesstrasse 75, 8032, Zurich, Switzerland
- Children's Research Center, University Children's Hospital Zurich, Zurich, Switzerland
| | - Thomas Biedermann
- Tissue Biology Research Unit, Department of Surgery, University Children's Hospital Zurich, University of Zurich, Steinwiesstrasse 75, 8032, Zurich, Switzerland
- Children's Research Center, University Children's Hospital Zurich, Zurich, Switzerland
| | - Ernst Reichmann
- Tissue Biology Research Unit, Department of Surgery, University Children's Hospital Zurich, University of Zurich, Steinwiesstrasse 75, 8032, Zurich, Switzerland
- Children's Research Center, University Children's Hospital Zurich, Zurich, Switzerland
| | - Ueli Moehrlen
- Tissue Biology Research Unit, Department of Surgery, University Children's Hospital Zurich, University of Zurich, Steinwiesstrasse 75, 8032, Zurich, Switzerland.
- Children's Research Center, University Children's Hospital Zurich, Zurich, Switzerland.
- Department of Surgery, University Children's Hospital Zurich, University of Zurich, Zurich, Switzerland.
- University of Zurich, Zurich, Switzerland.
| |
Collapse
|
24
|
Xue M, Zhao R, March L, Jackson C. Dermal Fibroblast Heterogeneity and Its Contribution to the Skin Repair and Regeneration. Adv Wound Care (New Rochelle) 2022; 11:87-107. [PMID: 33607934 DOI: 10.1089/wound.2020.1287] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Significance: Dermal fibroblasts are the major cell type in the skin's dermal layer. These cells originate from distinct locations of the embryo and reside in unique niches in the dermis. Different dermal fibroblasts exhibit distinct roles in skin development, homeostasis, and wound healing. Therefore, these cells are becoming attractive candidates for cell-based therapies in wound healing. Recent Advances: Human skin dermis comprises multiple fibroblast subtypes, including papillary, reticular, and hair follicle-associated fibroblasts, and myofibroblasts after wounding. Recent studies reveal that these cells play distinct roles in wound healing and contribute to diverse healing outcomes, including nonhealing chronic wound or excessive scar formation, such as hypertrophic scars (HTS) and keloids, with papillary fibroblasts having antiscarring and reticular fibroblast scar-forming properties. Critical Issues: The identities and functions of dermal fibroblast subpopulations in many respects remain unknown. In this review, we summarize the current understanding of dermal fibroblast heterogeneity, including their defined cell markers and dermal niches, dynamic changes, and contributions to skin wound healing, with the emphasis on scarless healing, healing with excessive scars (HTS and keloids), chronic wounds, and the potential application of this heterogeneity for developing cell-based therapies that allow wounds to heal faster with less scarring. Future Directions: Heterogeneous dermal fibroblast populations and their functions are poorly characterized. Refining and advancing our understanding of dermal fibroblast heterogeneity and their participation in skin homeostasis and wound healing may create potential therapeutic applications for nonhealing chronic wounds or wounds that heal with excessive scarring.
Collapse
Affiliation(s)
- Meilang Xue
- Sutton Arthritis Research Laboratory, Institute of Bone and Joint Research, Kolling Institute of Medical Research, The University of Sydney at Royal North Shore Hospital, St Leonards, New South Wales, Australia
| | - Ruilong Zhao
- Sutton Arthritis Research Laboratory, Institute of Bone and Joint Research, Kolling Institute of Medical Research, The University of Sydney at Royal North Shore Hospital, St Leonards, New South Wales, Australia
| | - Lyn March
- Sutton Arthritis Research Laboratory, Institute of Bone and Joint Research, Kolling Institute of Medical Research, The University of Sydney at Royal North Shore Hospital, St Leonards, New South Wales, Australia
| | - Christopher Jackson
- Sutton Arthritis Research Laboratory, Institute of Bone and Joint Research, Kolling Institute of Medical Research, The University of Sydney at Royal North Shore Hospital, St Leonards, New South Wales, Australia
| |
Collapse
|
25
|
Wei KC, Lai SF, Huang WL, Yang KC, Lai PC, Wei WJ, Chang TH, Huang YC, Tsai YC, Lin SC, Lin SJ, Lin SC. An innovative targeted therapy for fluoroscopy-induced chronic radiation dermatitis. J Mol Med (Berl) 2022; 100:135-146. [PMID: 34689211 PMCID: PMC8724166 DOI: 10.1007/s00109-021-02146-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 08/24/2021] [Accepted: 09/28/2021] [Indexed: 11/28/2022]
Abstract
Fluoroscopy-induced chronic radiation dermatitis (FICRD) is a complication of fluoroscopy-guided intervention. Unlike acute radiation dermatitis, FICRD is different as delayed onset and usually appears without preexisting acute dermatitis. Unfortunately, the chronic and progressive pathology of FICRD makes it difficult to treat, and some patients need to receive wide excision and reconstruction surgery. Due to lack of standard treatment, investigating underlying mechanism is needed in order to develop an effective therapy. Herein, the Hippo pathway is specifically identified using an RNA-seq analysis in mild damaged skin specimens of patients with FICRD. Furthermore, specific increase of the Yes-associated protein (YAP1), an effector of the Hippo pathway, in skin region with mild damage plays a protective role for keratinocytes via positively regulating the numerous downstream genes involved in different biological processes. Interestingly, irradiated-keratinocytes inhibit activation of fibroblasts under TGF-β1 treatment via remote control by an exosome containing YAP1. More importantly, targeting one of YAP1 downstream genes, nuclear receptor subfamily 3 group C member 1 (NR3C1), which encodes glucocorticoid receptor, has revealed its therapeutic potential to treat FICRD by inhibiting fibroblasts activation in vitro and preventing formation of radiation ulcers in a mouse model and in patients with FICRD. Taken together, this translational research demonstrates the critical role of YAP1 in FICRD and identification of a feasible, effective therapy for patients with FICRD. KEY MESSAGES: • YAP1 overexpression in skin specimens of radiation dermatitis from FICRD patient. • Radiation-induced YAP1 expression plays protective roles by promoting DNA damage repair and inhibiting fibrosis via remote control of exosomal YAP1. • YAP1 positively regulates NR3C1 which encodes glucocorticoid receptor expression. • Targeting glucocorticoid receptor by prednisolone has therapeutic potential for FICRD patient.
Collapse
Affiliation(s)
- Kai-Che Wei
- Department of Dermatology, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
- Department of Cosmetic Applications and Management, Yuhing Junior College of Health Care and Management, Kaohsiung, Taiwan
- Department of Dermatology, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Shih-Fan Lai
- Department of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University, Taipei, Taiwan
- Division of Radiation Oncology, Department of Oncology, National Taiwan University Hospital and College of Medicine, Taipei, Taiwan
| | - Wei-Lun Huang
- Department of Radiation Oncology, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| | - Kuo-Chung Yang
- Department of Dermatology, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Department of Plastic and Reconstructive Surgery, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| | - Ping-Chin Lai
- The Kidney Institute and Division of Nephrology, China Medical University Hospital, Taichung, Taiwan
| | - Wan-Ju Wei
- Department of Dermatology, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| | - Tsung-Hsien Chang
- Department and Graduate Institute of Microbiology and Immunology, National Defense Medical Center, Taipei, Taiwan
| | - Yun-Chen Huang
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Ya-Chuan Tsai
- Department of Dermatology, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| | - Shin-Chih Lin
- Department of Physiology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Sun-Jang Lin
- Department of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University, Taipei, Taiwan
- Department of Dermatology, National Taiwan University Hospital and College of Medicine, Taipei, Taiwan
- Research Center for Developmental Biology and Regenerative Medicine, National Taiwan University, Taipei, Taiwan
| | - Shih-Chieh Lin
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan.
- Department of Physiology, College of Medicine, National Cheng Kung University, Tainan, Taiwan.
- Institute of Molecular Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan.
| |
Collapse
|
26
|
Fibroblasts as immune regulators in infection, inflammation and cancer. Nat Rev Immunol 2021; 21:704-717. [PMID: 33911232 DOI: 10.1038/s41577-021-00540-z] [Citation(s) in RCA: 327] [Impact Index Per Article: 81.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/11/2021] [Indexed: 02/07/2023]
Abstract
In chronic infection, inflammation and cancer, the tissue microenvironment controls how local immune cells behave, with tissue-resident fibroblasts emerging as a key cell type in regulating activation or suppression of an immune response. Fibroblasts are heterogeneous cells, encompassing functionally distinct populations, the phenotypes of which differ according to their tissue of origin and type of inciting disease. Their immunological properties are also diverse, ranging from the maintenance of a potent inflammatory environment in chronic inflammation to promoting immunosuppression in malignancy, and encapsulating and incarcerating infectious agents within tissues. In this Review, we compare the mechanisms by which fibroblasts control local immune responses, as well as the factors regulating their inflammatory and suppressive profiles, in different tissues and pathological settings. This cross-disease perspective highlights the importance of tissue context in determining fibroblast-immune cell interactions, as well as potential therapeutic avenues to exploit this knowledge for the benefit of patients with chronic infection, inflammation and cancer.
Collapse
|
27
|
Huang X, Gu S, Liu C, Zhang L, Zhang Z, Zhao Y, Khoong Y, Li H, Gao Y, Liu Y, Wang Z, Zhao D, Li Q, Zan T. CD39 + Fibroblasts Enhance Myofibroblast Activation by Promoting IL-11 Secretion in Hypertrophic Scars. J Invest Dermatol 2021; 142:1065-1076.e19. [PMID: 34537192 DOI: 10.1016/j.jid.2021.07.181] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 07/21/2021] [Accepted: 07/22/2021] [Indexed: 12/12/2022]
Abstract
Fibroblasts (Fbs) are critical to hypertrophic scar (HTS) formation and were recently shown to be highly heterogeneous. However, Fb heterogeneity in HTSs has not been fully elucidated. In this study, we observed an increased fraction of CD39+ Fbs in HTS after screening four Fb subtypes (CD26+, CD36+, FAP+, and CD39+). CD39+ Fbs, enriched in the upper dermis, were positively correlated with scar severity. The transcriptional analysis of CD39+ and CD39- Fbs sorted from HTS revealed that IL-11 was more highly expressed in CD39+ Fbs. We then showed that IL-11 was upregulated in HTSs and that its expression was induced by TGFβ1 in vitro. TGFβ1 also stimulated the expression of CD39 at the transcriptional and protein levels, mediating the maintenance of the CD39+ phenotype. Furthermore, IL-11 facilitated myofibroblast activation and extracellular matrix production in both CD39+ and CD39- Fbs. Interestingly, CD39+ Fbs secreted more IL-11 on TGFβ1 treatment and were less responsive to IL-11 than CD39- Fbs. Notably, a CD39 inhibitor effectively reduced stretch-induced scar formation and attenuated bleomycin-induced skin fibrosis, suggesting an antiscarring approach by targeting CD39+ Fbs.
Collapse
Affiliation(s)
- Xin Huang
- Department of Plastic and Reconstructive Surgery, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shuchen Gu
- Department of Plastic and Reconstructive Surgery, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Caiyue Liu
- Department of Plastic and Reconstructive Surgery, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Liang Zhang
- Shanghai Institutes for Biological Sciences, Changzheng Hospital Joint Center for Translational Research, Institutes for Translational Research (CAS-SMMU), Shanghai, China
| | - Zewei Zhang
- Department of Plastic and Reconstructive Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yixuan Zhao
- Department of Plastic and Reconstructive Surgery, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yimin Khoong
- Department of Plastic and Reconstructive Surgery, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Haizhou Li
- Department of Plastic and Reconstructive Surgery, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yashan Gao
- Department of Plastic and Reconstructive Surgery, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yunhan Liu
- Department of Plastic and Reconstructive Surgery, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zi Wang
- Department of Plastic and Reconstructive Surgery, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Danyang Zhao
- Department of Plastic and Reconstructive Surgery, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qingfeng Li
- Department of Plastic and Reconstructive Surgery, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tao Zan
- Department of Plastic and Reconstructive Surgery, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
28
|
Woodley JP, Lambert DW, Asencio IO. Understanding Fibroblast Behavior in 3D Biomaterials. TISSUE ENGINEERING PART B-REVIEWS 2021; 28:569-578. [PMID: 34102862 DOI: 10.1089/ten.teb.2021.0010] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Traditional monolayer culture fails to fully recapitulate the in vivo environment of connective tissue cells such as the fibroblast. When cultured on stiff two-dimensional (2D) plastic, fibroblasts become highly proliferative forming broad lamellipodia and stress fibers. Conversely, in different three-dimensional (3D) culture systems, fibroblasts have displayed a diverse array of features; from an "activated" phenotype like that observed in 2D cultures and by myofibroblasts, to a quiescent state that likely better represents in vivo fibroblasts at rest. Today, a plethora of microfabrication techniques have made 3D culture commonplace, for both tissue engineering purposes and in the study of basic biological interactions. However, establishing the in vivo mimetic credentials of different biomimetic materials is not always straightforward, particularly in the context of fibroblast responses. Fibroblast behavior is governed by the complex interplay of biological features such as integrin binding sites, material mechanical properties that influence cellular mechanotransduction, and microarchitectural features like pore and fiber size, as well as chemical cues. Furthermore, fibroblasts are a heterogeneous group of cells with specific phenotypic traits dependent on their tissue of origin. These features have made understanding the influence of biomaterials on fibroblast behavior a challenging task. In this study, we present a review of the strategies used to investigate fibroblast behavior with a focus on the material properties that influence fibroblast activation, a process that becomes pathological in fibrotic diseases and certain cancers.
Collapse
Affiliation(s)
- Joe P Woodley
- Bioengineering and Health Technologies Group, The School of Clinical Dentistry, University of Sheffield, Sheffield, United Kingdom
| | - Daniel W Lambert
- Integrated Bioscience Group, The School of Clinical Dentistry, University of Sheffield, Sheffield, United Kingdom
| | - Ilida Ortega Asencio
- Bioengineering and Health Technologies Group, The School of Clinical Dentistry, University of Sheffield, Sheffield, United Kingdom
| |
Collapse
|
29
|
Nabai L, Pourghadiri A, Ghahary A. Hypertrophic Scarring: Current Knowledge of Predisposing Factors, Cellular and Molecular Mechanisms. J Burn Care Res 2021; 41:48-56. [PMID: 31999336 DOI: 10.1093/jbcr/irz158] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Hypertrophic scarring (HSc) is an age-old problem that still affects millions of people physically, psychologically, and economically. Despite advances in surgical techniques and wound care, prevention and treatment of HSc remains a challenge. Elucidation of factors involved in the development of this common fibroproliferative disorder is crucial for further progress in preventive and/or therapeutic measures. Our knowledge about pathophysiology of HSc at the cellular and molecular level has grown considerably in recent decades. In this article, current knowledge of predisposing factors and the cellular and molecular mechanisms of HSc has been reviewed.
Collapse
Affiliation(s)
- Layla Nabai
- BC Professional Firefighters' Burn & Wound Healing Research Laboratory, Department of Surgery, Division of Plastic Surgery, University of British Columbia, Vancouver, British Columbia, Canada
| | - Amir Pourghadiri
- BC Professional Firefighters' Burn & Wound Healing Research Laboratory, Department of Surgery, Division of Plastic Surgery, University of British Columbia, Vancouver, British Columbia, Canada
| | - Aziz Ghahary
- BC Professional Firefighters' Burn & Wound Healing Research Laboratory, Department of Surgery, Division of Plastic Surgery, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
30
|
Correa-Gallegos D, Rinkevich Y. Cutting into wound repair. FEBS J 2021; 289:5034-5048. [PMID: 34137168 DOI: 10.1111/febs.16078] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 06/02/2021] [Accepted: 06/16/2021] [Indexed: 11/28/2022]
Abstract
The skin is home to an assortment of fibroblastic lineages that shape the wound repair response toward scars or regeneration. In this review, we discuss the distinct embryonic origins, anatomic locations, and functions of fibroblastic lineages, and how these distinct lineages of fibroblasts dictate the skin's wound response across injury depths, anatomic locations, and embryonic development to promote either scarring or regeneration. We highlight the supportive role of the fascia in dictating scarring outcomes; we then discuss recent findings that indicate fascia mobilization by its resident fibroblasts supersede the classical de novo deposition program of wound matrix formation. These recent findings reconfigure our traditional view of wound repair and present exciting new therapeutic avenues to treat scarring and fibrosis across a range of medical settings.
Collapse
Affiliation(s)
- Donovan Correa-Gallegos
- Institute of Lung Biology and Disease, Comprehensive Pneumology Center, Helmholtz Zentrum München, Munich, Germany
| | - Yuval Rinkevich
- Institute of Regenerative Biology and Medicine, Helmholtz Zentrum München, Munich, Germany
| |
Collapse
|
31
|
Agrawal A, Ding J, Agrawal B, Kwan PO, Tredget EE. Stimulation of toll-like receptor pathways by burn eschar tissue as a possible mechanism for hypertrophic scarring. Wound Repair Regen 2021; 29:810-819. [PMID: 34043867 DOI: 10.1111/wrr.12940] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 03/28/2021] [Accepted: 04/09/2021] [Indexed: 01/02/2023]
Abstract
Hypertrophic scars (HTS) are a common complication following burn injuries with prolonged inflammation. They do not respond well to current treatment options including mechanical, biomolecular and surgical therapies. Toll-like receptor (TLR) 2 and 4 respond to microbes and damaged endogenous ligands to trigger pro-inflammatory pathways, and they are expressed more in HTS fibroblasts compared to normal skin fibroblasts. TLR2 responds to microbial lipoteichoic acid (LTA) while TLR4 responds to microbial lipopolysaccharide (LPS) and endogenous ligands. We investigated the role of burn tissue and small leucine-rich proteoglycans (decorin and biglycan) in the stimulation of TLR2 and TLR4 pathways using cells stably transfected with TLR2 or TLR4 linked to a reporter system. Normal skin (n = 5) was collected post-abdominoplasty, and burn eschar samples (n = 18) were collected from 18 patients between 0 and 14 days post-burn. We found that burn tissue stimulates TLR2 activity significantly more than normal tissue and contains significantly higher levels of LTA. Burn tissue was a stronger stimulator of TLR4 than was normal skin. Burn tissue samples' stimulation of TLR4 and TLR2 correlated. The time post-burn (0-14 days) of wound tissue sampling correlated positively but moderately with TLR2 and TLR4 simulation. In comparison to the dose-dependent effects of natural decorin or biglycan on TLR4 activation, their denatured forms exhibited stronger or weaker stimulation, respectively. They were not potent stimulators of TLR2. TLR2 and TLR4 stimulation is not limited to bacteria in wounds and likely involves multiple endogenous damage-associated molecular patterns. Insight into mechanisms of HTS will facilitate the development of future targeted therapies to modify wound progression and provide benefits to patients suffering with HTS and other fibroproliferative disorders.
Collapse
Affiliation(s)
- Ambika Agrawal
- Division of Plastic Surgery, University of Alberta, Edmonton, Alberta, Canada.,Department of Surgery, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Jie Ding
- Division of Plastic Surgery, University of Alberta, Edmonton, Alberta, Canada.,Department of Surgery, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Babita Agrawal
- Department of Surgery, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Peter O Kwan
- Division of Plastic Surgery, University of Alberta, Edmonton, Alberta, Canada.,Department of Surgery, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Edward E Tredget
- Division of Plastic Surgery, University of Alberta, Edmonton, Alberta, Canada.,Department of Surgery, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
32
|
Correa-Gallegos D, Jiang D, Rinkevich Y. Fibroblasts as confederates of the immune system. Immunol Rev 2021; 302:147-162. [PMID: 34036608 DOI: 10.1111/imr.12972] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 04/28/2021] [Accepted: 04/28/2021] [Indexed: 12/18/2022]
Abstract
Fibroblastic stromal cells are as diverse, in origin and function, as the niches they fashion in the mammalian body. This cellular variety impacts the spectrum of responses elicited by the immune system. Fibroblast influence on the immune system keeps evolving our perspective on fibroblast roles and functions beyond just a passive structural part of organs. This review discusses the foundations of fibroblastic stromal-immune crosstalk, under the scope of stromal heterogeneity as a basis for tissue-specific tutoring of the immune system. Focusing on the skin as a relevant immunological organ, we detail the complex interactions between distinct fibroblast populations and immune cells that occur during homeostasis, injury repair, scarring, and disease. We further review the relevance of fibroblastic stromal cell heterogeneity and how this heterogeneity is central to regulate the immune system from its inception during embryonic development into adulthood.
Collapse
Affiliation(s)
- Donovan Correa-Gallegos
- Institute of Lung Biology and Disease, Comprehensive Pneumology Center, Helmholtz Zentrum München, Munich, Germany
| | - Dongsheng Jiang
- Institute of Lung Biology and Disease, Comprehensive Pneumology Center, Helmholtz Zentrum München, Munich, Germany
| | - Yuval Rinkevich
- Institute of Regenerative Biology and Medicine, Helmholtz Zentrum München, Munich, Germany
| |
Collapse
|
33
|
Romano V, Belviso I, Venuta A, Ruocco MR, Masone S, Aliotta F, Fiume G, Montagnani S, Avagliano A, Arcucci A. Influence of Tumor Microenvironment and Fibroblast Population Plasticity on Melanoma Growth, Therapy Resistance and Immunoescape. Int J Mol Sci 2021; 22:5283. [PMID: 34067929 PMCID: PMC8157224 DOI: 10.3390/ijms22105283] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 05/13/2021] [Accepted: 05/14/2021] [Indexed: 12/23/2022] Open
Abstract
Cutaneous melanoma (CM) tissue represents a network constituted by cancer cells and tumor microenvironment (TME). A key feature of CM is the high structural and cellular plasticity of TME, allowing its evolution with disease and adaptation to cancer cell and environmental alterations. In particular, during melanoma development and progression each component of TME by interacting with each other and with cancer cells is subjected to dramatic structural and cellular modifications. These alterations affect extracellular matrix (ECM) remodelling, phenotypic profile of stromal cells, cancer growth and therapeutic response. The stromal fibroblast populations of the TME include normal fibroblasts and melanoma-associated fibroblasts (MAFs) that are highly abundant and flexible cell types interacting with melanoma and stromal cells and differently influencing CM outcomes. The shift from the normal microenvironment to TME and from normal fibroblasts to MAFs deeply sustains CM growth. Hence, in this article we review the features of the normal microenvironment and TME and describe the phenotypic plasticity of normal dermal fibroblasts and MAFs, highlighting their roles in normal skin homeostasis and TME regulation. Moreover, we discuss the influence of MAFs and their secretory profiles on TME remodelling, melanoma progression, targeted therapy resistance and immunosurveillance, highlighting the cellular interactions, the signalling pathways and molecules involved in these processes.
Collapse
Affiliation(s)
- Veronica Romano
- Department of Public Health, University of Napoli “Federico II”, 80131 Naples, Italy; (V.R.); (I.B.); (A.V.); (S.M.)
| | - Immacolata Belviso
- Department of Public Health, University of Napoli “Federico II”, 80131 Naples, Italy; (V.R.); (I.B.); (A.V.); (S.M.)
| | - Alessandro Venuta
- Department of Public Health, University of Napoli “Federico II”, 80131 Naples, Italy; (V.R.); (I.B.); (A.V.); (S.M.)
| | - Maria Rosaria Ruocco
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131 Naples, Italy; (M.R.R.); (F.A.)
| | - Stefania Masone
- Department of Clinical Medicine and Surgery, University of Naples Federico II, 80131 Naples, Italy;
| | - Federica Aliotta
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131 Naples, Italy; (M.R.R.); (F.A.)
| | - Giuseppe Fiume
- Department of Experimental and Clinical Medicine, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy;
| | - Stefania Montagnani
- Department of Public Health, University of Napoli “Federico II”, 80131 Naples, Italy; (V.R.); (I.B.); (A.V.); (S.M.)
| | - Angelica Avagliano
- Department of Public Health, University of Napoli “Federico II”, 80131 Naples, Italy; (V.R.); (I.B.); (A.V.); (S.M.)
- Department of Structures for Engineering and Architecture, University of Napoli Federico II, 80125 Naples, Italy
| | - Alessandro Arcucci
- Department of Public Health, University of Napoli “Federico II”, 80131 Naples, Italy; (V.R.); (I.B.); (A.V.); (S.M.)
| |
Collapse
|
34
|
Russo B, Brembilla NC, Chizzolini C. Interplay Between Keratinocytes and Fibroblasts: A Systematic Review Providing a New Angle for Understanding Skin Fibrotic Disorders. Front Immunol 2020; 11:648. [PMID: 32477322 PMCID: PMC7232541 DOI: 10.3389/fimmu.2020.00648] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 03/23/2020] [Indexed: 12/20/2022] Open
Abstract
Background/Objective: Skin fibrosis is the result of aberrant processes leading to abnormal deposition of extracellular matrix (ECM) in the dermis. In healthy skin, keratinocytes participate to maintain skin homeostasis by actively crosstalking with fibroblasts. Within the wide spectrum of fibrotic skin disorders, relatively little attention has been devoted to the role of keratinocytes for their capacity to participate to skin fibrosis. This systematic review aims at summarizing the available knowledge on the reciprocal interplay of keratinocytes with fibroblasts and their soluble mediators in physiological states, mostly wound healing, and conditions associated with skin fibrosis. Methods: We performed a systematic literature search on PubMed to identify in vitro and ex vivo human studies investigating the keratinocyte characteristics and their interplay with fibroblasts in physiological conditions and within fibrotic skin disorders including hypertrophic scars, keloids, and systemic sclerosis. Studies were selected according to pre-specified eligibility criteria. Data on study methods, models, stimuli and outcomes were retrieved and summarized according to pre-specified criteria. Results: Among the 6,271 abstracts retrieved, 73 articles were included, of which 14 were specifically dealing with fibrotic skin pathologies. Fifty-six studies investigated how keratinocyte may affect fibroblast responses in terms of ECM-related genes or protein production, phenotype modification, and cytokine production. Most studies in both physiological conditions and fibrosis demonstrated that keratinocytes stimulate fibroblasts through the production of interleukin 1, inducing keratinocyte growth factor (KGF) and metalloproteinases in the fibroblasts. When the potential of keratinocytes to modulate collagen synthesis by healthy fibroblasts was explored, the results were controversial. Nevertheless, studies investigating keratinocytes from fibrotic skin, including keloids, hypertrophic scar, and scleroderma, suggested their potential involvement in enhancing ECM deposition. Twenty-three papers investigated keratinocyte proliferation differentiation and production of soluble mediators in response to interactions with fibroblasts. Most studies showed that fibroblasts modulate keratinocyte viability, proliferation, and differentiation. The production of KGF by fibroblast was identified as key for these functions. Conclusions: This review condenses evidence for the active interaction between keratinocytes and fibroblasts in maintaining skin homeostasis and the altered homeostatic interplay between keratinocytes and dermal fibroblasts in scleroderma and scleroderma-like disorders.
Collapse
Affiliation(s)
- Barbara Russo
- Department of Pathology and Immunology, School of Medicine, University of Geneva, Geneva, Switzerland
| | - Nicolò C Brembilla
- Department of Pathology and Immunology, School of Medicine, University of Geneva, Geneva, Switzerland.,Dermatology, School of Medicine, University Hospital, Geneva, Switzerland
| | - Carlo Chizzolini
- Department of Pathology and Immunology, School of Medicine, University of Geneva, Geneva, Switzerland
| |
Collapse
|
35
|
Mahmoud NN, Al-Kharabsheh LM, Khalil EA, Abu-Dahab R. Interaction of Gold Nanorods with Human Dermal Fibroblasts: Cytotoxicity, Cellular Uptake, and Wound Healing. NANOMATERIALS (BASEL, SWITZERLAND) 2019; 9:E1131. [PMID: 31390794 PMCID: PMC6722545 DOI: 10.3390/nano9081131] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 07/28/2019] [Accepted: 08/02/2019] [Indexed: 02/03/2023]
Abstract
Herein, the cytotoxicity, cellular uptake and wound healing of human dermal fibroblasts were investigated upon treatment with gold nanorods (GNR) decorated with different ligands. Neutral and cationic poly ethylene glycol (PEG)-decorated GNR demonstrated the least cytotoxicity and cellular internalization, while anionic- and bovine serum albumin (BSA)-coated GNR revealed significant cytotoxicity and cellular uptake into human dermal fibroblasts. The cell scratch test demonstrated that neutral, cationic PEGylated GNR and anionic-decorated GNR have accelerated the wound healing rate in vitro after 24 h of incubation with scratched human dermal fibroblasts compared to control, while there was a drastic retardation of wound healing rate of scratched fibroblasts upon exposure to BSA-GNR accompanied with a significant release of the inflammatory cytokine; interlukin-1β (IL-1β). The cytotoxicity of GNR against the dermal cells and their ability to enhance the wound healing in vitro are greatly linked to their surface modifications.
Collapse
Affiliation(s)
- Nouf N Mahmoud
- Faculty of Pharmacy, Al-Zaytoonah University of Jordan, Amman 11733, Jordan.
| | | | - Enam A Khalil
- School of Pharmacy, The University of Jordan, Amman 11942, Jordan.
| | - Rana Abu-Dahab
- School of Pharmacy, The University of Jordan, Amman 11942, Jordan
| |
Collapse
|
36
|
Regeneration of Dermis: Scarring and Cells Involved. Cells 2019; 8:cells8060607. [PMID: 31216669 PMCID: PMC6627856 DOI: 10.3390/cells8060607] [Citation(s) in RCA: 178] [Impact Index Per Article: 29.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 06/12/2019] [Accepted: 06/15/2019] [Indexed: 12/31/2022] Open
Abstract
There are many studies on certain skin cell specifications and their contribution to wound healing. In this review, we provide an overview of dermal cell heterogeneity and their participation in skin repair, scar formation, and in the composition of skin substitutes. The papillary, reticular, and hair follicle associated fibroblasts differ not only topographically, but also functionally. Human skin has a number of particular characteristics that are different from murine skin. This should be taken into account in experimental procedures. Dermal cells react differently to skin wounding, remodel the extracellular matrix in their own manner, and convert to myofibroblasts to different extents. Recent studies indicate a special role of papillary fibroblasts in the favorable outcome of wound healing and epithelial-mesenchyme interactions. Neofolliculogenesis can substantially reduce scarring. The role of hair follicle mesenchyme cells in skin repair and possible therapeutic applications is discussed. Participation of dermal cell types in wound healing is described, with the addition of possible mechanisms underlying different outcomes in embryonic and adult tissues in the context of cell population characteristics and extracellular matrix composition and properties. Dermal white adipose tissue involvement in wound healing is also overviewed. Characteristics of myofibroblasts and their activity in scar formation is extensively discussed. Cellular mechanisms of scarring and possible ways for its prevention are highlighted. Data on keloid cells are provided with emphasis on their specific characteristics. We also discuss the contribution of tissue tension to the scar formation as well as the criteria and effectiveness of skin substitutes in skin reconstruction. Special attention is given to the properties of skin substitutes in terms of cell composition and the ability to prevent scarring.
Collapse
|
37
|
Haydont V, Neiveyans V, Fortunel NO, Asselineau D. Transcriptome profiling of human papillary and reticular fibroblasts from adult interfollicular dermis pinpoints the ‘tissue skeleton’ gene network as a component of skin chrono-ageing. Mech Ageing Dev 2019; 179:60-77. [DOI: 10.1016/j.mad.2019.01.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 12/23/2018] [Accepted: 01/07/2019] [Indexed: 10/27/2022]
|
38
|
O'Rourke BP, Kramer AH, Cao LL, Inayathullah M, Guzik H, Rajadas J, Nosanchuk JD, Sharp DJ. Fidgetin-Like 2 siRNA Enhances the Wound Healing Capability of a Surfactant Polymer Dressing. Adv Wound Care (New Rochelle) 2019; 8:91-100. [PMID: 30911440 PMCID: PMC6430983 DOI: 10.1089/wound.2018.0827] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 09/07/2018] [Indexed: 02/02/2023] Open
Abstract
Microtubules (MTs) are intracellular polymers that provide structure to the cell, serve as railways for intracellular transport, and regulate many cellular activities, including cell migration. The dynamicity and function of the MT cytoskeleton are determined in large part by its regulatory proteins, including the recently discovered MT severing enzyme Fidgetin-like 2 (FL2). Downregulation of FL2 expression with small interfering RNA (siRNA) results in a more than twofold increase in cell migration rate in vitro as well as translates into improved wound-healing outcomes in in vivo mouse models. Here we utilized a commercially available surfactant polymer dressing (SPD) as a vehicle to deliver FL2 siRNA. To this end we incorporated collagen microparticles containing FL2 siRNA into SPD (SPD-FL2-siRNA) for direct application to the injury site. Topical application of SPD-FL2 siRNA to murine models of full-thickness excision wounds and full-thickness burn wounds resulted in significant improvements in the rate and quality of wound healing, as measured clinically and histologically, compared with controls. Wound healing occurred more rapidly and with high fidelity, resulting in properly organized collagen substructure. Taken together, these findings indicate that the incorporation of FL2 siRNA into existing treatment options is a promising avenue to improve wound outcomes.
Collapse
Affiliation(s)
| | - Adam H. Kramer
- Physiology and Biophysics, and Albert Einstein College of Medicine, Bronx, New York
| | - Longyue L. Cao
- Department of Medicine, Children's Hospital Boston, Boston, Massachusetts
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, New York
| | - Mohammed Inayathullah
- Biomaterials and Advanced Drug Delivery Laboratory, Stanford University, Palo Alto, California
| | - Hillary Guzik
- Analytical Imaging Facility, Albert Einstein College of Medicine, Bronx, New York
| | - Jayakumar Rajadas
- Biomaterials and Advanced Drug Delivery Laboratory, Stanford University, Palo Alto, California
| | - Joshua D. Nosanchuk
- Department of Medicine, Albert Einstein College of Medicine, Bronx, New York
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York
| | - David J. Sharp
- MicroCures, Inc., Research and Development, Bronx, New York
- Physiology and Biophysics, and Albert Einstein College of Medicine, Bronx, New York
- Department of Ophthalmology and Visual Sciences, and Albert Einstein College of Medicine, Bronx, New York
- Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York
| |
Collapse
|
39
|
|
40
|
Cheshire P, Zhafira AS, Banakh I, Rahman MM, Carmichael I, Herson M, Cleland H, Akbarzadeh S. Xeno-free expansion of adult keratinocytes for clinical application: the use of human-derived feeder cells and serum. Cell Tissue Res 2019; 376:389-400. [PMID: 30666537 DOI: 10.1007/s00441-018-02986-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 12/17/2018] [Indexed: 01/25/2023]
Abstract
Cultured epithelial autograft (CEA) was the birth of skin tissue engineering and encompassed methodologies for the isolation and expansion of autologous basal keratinocytes for burn treatment that are still practiced at some specialised units around the world. One of the limitations of CEA, however, is the reliance on animal-derived material during the manufacturing process and despite all efforts to date, no xeno-free alternative with proven efficacy has been reported. Here, we investigate whether human-derived fibroblast feeder cells and human serum can sufficiently and effectively provide a suitable microenvironment for adult keratinocyte isolation and expansion. Human dermal fibroblasts and epidermal keratinocytes were isolated from discarded skin during abdominoplasty and breast reduction procedures and cultured in xeno-free conditions. We report that these xeno-free adult keratinocytes form similar numbers of colony-forming units as those cultured using the Green's methods; however, xeno-free keratinocytes express lower levels of α6 integrin (CD49f; a progenitor and stem cell marker). We identified IL-8 as a potential growth factor secreted by adult human fibroblasts that may enhance keratinocyte colony formation in human serum. Finally, we propose a step-by-step xeno-free isolation and cultivation methodology for adult keratinocytes that can be tested further in serial cultivation for clinical application.
Collapse
Affiliation(s)
- Perdita Cheshire
- Skin Bioengineering Laboratory, Victorian Adult Burns Service, Alfred Hospital, 89 Commercial Road, Melbourne, Victoria, 3181, Australia
- Department of Surgery, Monash University, 99 Commercial Road, Melbourne, Victoria, Australia
| | - Aqila S Zhafira
- Skin Bioengineering Laboratory, Victorian Adult Burns Service, Alfred Hospital, 89 Commercial Road, Melbourne, Victoria, 3181, Australia
- Department of Surgery, Monash University, 99 Commercial Road, Melbourne, Victoria, Australia
| | - Ilia Banakh
- Skin Bioengineering Laboratory, Victorian Adult Burns Service, Alfred Hospital, 89 Commercial Road, Melbourne, Victoria, 3181, Australia
| | - Md Mostafizur Rahman
- Skin Bioengineering Laboratory, Victorian Adult Burns Service, Alfred Hospital, 89 Commercial Road, Melbourne, Victoria, 3181, Australia
| | - Irena Carmichael
- Monash Micro Imaging, Monash University, 99 Commercial Road, Melbourne, Victoria, Australia
| | - Marisa Herson
- Skin Bioengineering Laboratory, Victorian Adult Burns Service, Alfred Hospital, 89 Commercial Road, Melbourne, Victoria, 3181, Australia
- Department of Surgery, Monash University, 99 Commercial Road, Melbourne, Victoria, Australia
| | - Heather Cleland
- Skin Bioengineering Laboratory, Victorian Adult Burns Service, Alfred Hospital, 89 Commercial Road, Melbourne, Victoria, 3181, Australia
- Department of Surgery, Monash University, 99 Commercial Road, Melbourne, Victoria, Australia
| | - Shiva Akbarzadeh
- Skin Bioengineering Laboratory, Victorian Adult Burns Service, Alfred Hospital, 89 Commercial Road, Melbourne, Victoria, 3181, Australia.
- Department of Surgery, Monash University, 99 Commercial Road, Melbourne, Victoria, Australia.
| |
Collapse
|
41
|
Ghuman MS, Al-Masri M, Xavier G, Cobourne MT, McKay IJ, Hughes FJ. Gingival fibroblasts prevent BMP-mediated osteoblastic differentiation. J Periodontal Res 2018; 54:300-309. [PMID: 30511378 PMCID: PMC6492095 DOI: 10.1111/jre.12631] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 10/04/2018] [Accepted: 11/09/2018] [Indexed: 02/07/2023]
Abstract
Objectives The inhibitory action of the superficial gingival connective tissues may limit the regenerative potential of alveolar bone in periodontal therapy or dental implant applications. The aims of this study were to investigate the hypothesis that gingival fibroblasts (GF) can inhibit bone morphogenetic protein (BMP)‐induced osteoblastic differentiation, to determine their expression of BMP inhibitors, and finally to determine whether reduction of these inhibitors can relieve suppression of osteoblastic differentiation. Methods Gingival fibroblasts were co‐cultured either directly or indirectly with calvarial osteoblasts to assess alkaline phosphatase inhibitory activity, a marker of osteoblastic differentiation. To test total BMP‐inhibitory activity of rat GF, conditioned media (GFCM) were collected from cultures. ROS 17/2.8 osteoblastic cells were stimulated with BMP2, together with GFCM. Inhibitor expression was tested using RT‐qPCR, Western blotting and in situ hybridization. Removal of inhibitors was carried out using immunoprecipitation beads. Results Co‐culture experiments showed GF‐secreted factors that inhibit BMP‐stimulated ALP activity. 10 ng/ml BMP2 increased alkaline phosphatase expression in ROS cells by 41%. GFCM blocked BMP activity which was equivalent to the activity of 100 ng/ml Noggin, a well‐described BMP inhibitor. Cultured gingival fibroblasts constitutively expressed BMP antagonist genes from the same subfamily, Grem1, Grem2 and Nbl1 and the Wnt inhibitor Sfrp1. Gremlin1 (6.7 × reference gene expression) had highest levels of basal expression. ISH analysis showed Gremlin1 expression was restricted to the inner half of the gingival lamina propria and the PDL. Removal of Gremlin1 protein from GFCM eliminated the inhibitory effect of GFCM on ALP activity in ROS cells. Subsequent addition of recombinant Gremlin1 restored the inhibitory activity. Conclusions Factors secreted by gingival fibroblasts inhibit BMP‐induced bone formation and a range of BMP inhibitors are constitutively expressed in gingival connective tissues. These inhibitors, particularly Gremlin1, may limit coronal alveolar bone regenerative potential during oral and periodontal surgery.
Collapse
Affiliation(s)
- Mandeep S Ghuman
- Division of Tissue Engineering and Biophotonics, Dental Institute, King's College London, London, UK
| | | | - Guilherme Xavier
- Centre for Craniofacial and Regenerative Biology, Dental Institute, King's College London, Guy's Hospital, London, UK
| | - Martyn T Cobourne
- Centre for Craniofacial and Regenerative Biology, Dental Institute, King's College London, Guy's Hospital, London, UK
| | - Ian J McKay
- Department of Adult Oral Health, Institute of Dentistry, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Francis J Hughes
- Division of Tissue Engineering and Biophotonics, Dental Institute, King's College London, London, UK
| |
Collapse
|
42
|
Abstract
DDR1 and DDR2 are expressed in skin but their expression differs according to the skin compartment, epidermis, dermis, hypodermis and to the embryonic origin of the cells. In skin, it seems that during physiological processes such as wound healing or pathological processes such as tumorigenesis or systemic sclerosis development only one of the DDR is dysregulated. Furthermore, the altered DDR in pathological process is not necessarily the DDR implicated in basal homeostasis. Indeed, in epidermis, while DDR1 is the main DDR involved in melanocyte homeostasis, DDR2 seems to be the main DDR implicated in melanoma. On the contrary, in dermis, while DDR2 is necessary for normal wound healing, dysregulation of DDR1 is associated with abnormal wound healing leading to keloid. In conclusion, targeting DDR could be a therapeutic solution, however side effects have to be managed carefully.
Collapse
Affiliation(s)
- Muriel Cario
- a INSERM 1035 , University Bordeaux , Bordeaux , France
| |
Collapse
|
43
|
Zhuang L, Lawlor KT, Schlueter H, Pieterse Z, Yu Y, Kaur P. Pericytes promote skin regeneration by inducing epidermal cell polarity and planar cell divisions. Life Sci Alliance 2018; 1:e201700009. [PMID: 30456360 PMCID: PMC6238533 DOI: 10.26508/lsa.201700009] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Revised: 07/17/2018] [Accepted: 07/17/2018] [Indexed: 12/29/2022] Open
Abstract
The cellular and molecular microenvironment of epithelial stem/progenitor cells is critical for their long-term self-renewal. We demonstrate that mesenchymal stem cell-like dermal microvascular pericytes are a critical element of the skin's microenvironment influencing human skin regeneration using organotypic models. Specifically, pericytes were capable of promoting homeostatic skin tissue renewal by conferring more planar cell divisions generating two basal cells within the proliferative compartment of the human epidermis, while ensuring complete maturation of the tissue both spatially and temporally. Moreover, we provide evidence supporting the notion that BMP-2, a secreted protein preferentially expressed by pericytes in human skin, confers cell polarity and planar divisions on epidermal cells in organotypic cultures. Our data suggest that human skin regeneration is regulated by highly conserved mechanisms at play in other rapidly renewing tissues such as the bone marrow and in lower organisms such as Drosophila. Our work also provides the means to significantly improve ex vivo skin tissue regeneration for autologous transplantation.
Collapse
Affiliation(s)
- Lizhe Zhuang
- Peter MacCallum Cancer Centre, Melbourne, Australia
| | | | | | - Zalitha Pieterse
- School of Pharmacy and Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, Perth, Australia
| | - Yu Yu
- School of Pharmacy and Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, Perth, Australia
| | - Pritinder Kaur
- Peter MacCallum Cancer Centre, Melbourne, Australia.,School of Pharmacy and Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, Perth, Australia
| |
Collapse
|
44
|
Li Z, Maitz P. Cell therapy for severe burn wound healing. BURNS & TRAUMA 2018; 6:13. [PMID: 29854856 PMCID: PMC5971426 DOI: 10.1186/s41038-018-0117-0] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 04/26/2018] [Indexed: 12/14/2022]
Abstract
Cell therapy has emerged as an important component of life-saving procedures in treating burns. Over past decades, advances in stem cells and regenerative medicine have offered exciting opportunities of developing cell-based alternatives and demonstrated the potential and feasibility of various stem cells for burn wound healing. However, there are still scientific and technical issues that should be resolved to facilitate the full potential of the cellular devices. More evidence from large, randomly controlled trials is also needed to understand the clinical impact of cell therapy in burns. This article aims to provide an up-to-date review of the research development and clinical applications of cell therapies in burn wound healing and skin regeneration.
Collapse
Affiliation(s)
- Zhe Li
- Burns Unit, Concord Hospital, Concord, New South Wales 2139 Australia
- Skin Laboratory, NSW Statewide Burns Service, Concord, New South Wales Australia
- Discipline of Surgery, University of Sydney Medical School, Camperdown, New South Wales Australia
| | - Peter Maitz
- Burns Unit, Concord Hospital, Concord, New South Wales 2139 Australia
- Skin Laboratory, NSW Statewide Burns Service, Concord, New South Wales Australia
- Discipline of Surgery, University of Sydney Medical School, Camperdown, New South Wales Australia
| |
Collapse
|
45
|
Lämmermann I, Terlecki-Zaniewicz L, Weinmüllner R, Schosserer M, Dellago H, de Matos Branco AD, Autheried D, Sevcnikar B, Kleissl L, Berlin I, Morizot F, Lejeune F, Fuzzati N, Forestier S, Toribio A, Tromeur A, Weinberg L, Higareda Almaraz JC, Scheideler M, Rietveld M, El Ghalbzouri A, Tschachler E, Gruber F, Grillari J. Blocking negative effects of senescence in human skin fibroblasts with a plant extract. NPJ Aging Mech Dis 2018; 4:4. [PMID: 29675264 PMCID: PMC5895844 DOI: 10.1038/s41514-018-0023-5] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Revised: 03/13/2018] [Accepted: 03/19/2018] [Indexed: 12/26/2022] Open
Abstract
There is increasing evidence that senescent cells are a driving force behind many age-related pathologies and that their selective elimination increases the life- and healthspan of mice. Senescent cells negatively affect their surrounding tissue by losing their cell specific functionality and by secreting a pro-tumorigenic and pro-inflammatory mixture of growth hormones, chemokines, cytokines and proteases, termed the senescence-associated secretory phenotype (SASP). Here we identified an extract from the plant Solidago virgaurea subsp. alpestris, which exhibited weak senolytic activity, delayed the acquisition of a senescent phenotype and induced a papillary phenotype with improved functionality in human dermal fibroblasts. When administered to stress-induced premature senescent fibroblasts, this extract changed their global mRNA expression profile and particularly reduced the expression of various SASP components, thereby ameliorating the negative influence on nearby cells. Thus, the investigated plant extract represents a promising possibility to block age-related loss of tissue functionality.
Collapse
Affiliation(s)
- Ingo Lämmermann
- Christian Doppler Laboratory for Biotechnology of Skin Aging, Vienna, Austria
- Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Lucia Terlecki-Zaniewicz
- Christian Doppler Laboratory for Biotechnology of Skin Aging, Vienna, Austria
- Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Regina Weinmüllner
- Christian Doppler Laboratory for Biotechnology of Skin Aging, Vienna, Austria
- Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Markus Schosserer
- Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Hanna Dellago
- Christian Doppler Laboratory for Biotechnology of Skin Aging, Vienna, Austria
- Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - André Dargen de Matos Branco
- Christian Doppler Laboratory for Biotechnology of Skin Aging, Vienna, Austria
- Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Dominik Autheried
- Christian Doppler Laboratory for Biotechnology of Skin Aging, Vienna, Austria
- Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Benjamin Sevcnikar
- Christian Doppler Laboratory for Biotechnology of Skin Aging, Vienna, Austria
- Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Lisa Kleissl
- Christian Doppler Laboratory for Biotechnology of Skin Aging, Vienna, Austria
- Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Irina Berlin
- Department of Biology and Women Beauty, Chanel R&T, Pantin, France
| | | | - Francois Lejeune
- Department of Biology and Women Beauty, Chanel R&T, Pantin, France
| | | | | | | | | | | | - Juan Carlos Higareda Almaraz
- Institute for Diabetes and Cancer (IDC), Helmholtz Zentrum München, German Research, Center for Environmental Health, Neuherberg, Germany
- Joint Heidelberg-IDC Translational Diabetes Program, Heidelberg University Hospital, Heidelberg, Germany
- Molecular Metabolic Control, Medical Faculty, Technical University Munich, Munich, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Marcel Scheideler
- Institute for Diabetes and Cancer (IDC), Helmholtz Zentrum München, German Research, Center for Environmental Health, Neuherberg, Germany
- Joint Heidelberg-IDC Translational Diabetes Program, Heidelberg University Hospital, Heidelberg, Germany
- Molecular Metabolic Control, Medical Faculty, Technical University Munich, Munich, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Marion Rietveld
- Department of Dermatology, Leiden University Medical Center, Leiden, The Netherlands
| | - Abdoel El Ghalbzouri
- Department of Dermatology, Leiden University Medical Center, Leiden, The Netherlands
| | - Erwin Tschachler
- Division for Biology and Pathobiology of the Skin, Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Florian Gruber
- Christian Doppler Laboratory for Biotechnology of Skin Aging, Vienna, Austria
- Division for Biology and Pathobiology of the Skin, Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Johannes Grillari
- Christian Doppler Laboratory for Biotechnology of Skin Aging, Vienna, Austria
- Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna, Austria
| |
Collapse
|
46
|
Philippeos C, Telerman SB, Oulès B, Pisco AO, Shaw TJ, Elgueta R, Lombardi G, Driskell RR, Soldin M, Lynch MD, Watt FM. Spatial and Single-Cell Transcriptional Profiling Identifies Functionally Distinct Human Dermal Fibroblast Subpopulations. J Invest Dermatol 2018; 138:811-825. [PMID: 29391249 PMCID: PMC5869055 DOI: 10.1016/j.jid.2018.01.016] [Citation(s) in RCA: 304] [Impact Index Per Article: 43.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Accepted: 01/21/2018] [Indexed: 12/14/2022]
Abstract
Previous studies have shown that mouse dermis is composed of functionally distinct fibroblast lineages. To explore the extent of fibroblast heterogeneity in human skin, we used a combination of comparative spatial transcriptional profiling of human and mouse dermis and single-cell transcriptional profiling of human dermal fibroblasts. We show that there are at least four distinct fibroblast populations in adult human skin, not all of which are spatially segregated. We define markers permitting their isolation and show that although marker expression is lost in culture, different fibroblast subpopulations retain distinct functionality in terms of Wnt signaling, responsiveness to IFN-γ, and ability to support human epidermal reconstitution when introduced into decellularized dermis. These findings suggest that ex vivo expansion or in vivo ablation of specific fibroblast subpopulations may have therapeutic applications in wound healing and diseases characterized by excessive fibrosis.
Collapse
Affiliation(s)
- Christina Philippeos
- King's College London Centre for Stem Cells and Regenerative Medicine, Guy's Hospital, Great Maze Pond, London, UK
| | - Stephanie B Telerman
- King's College London Centre for Stem Cells and Regenerative Medicine, Guy's Hospital, Great Maze Pond, London, UK
| | - Bénédicte Oulès
- King's College London Centre for Stem Cells and Regenerative Medicine, Guy's Hospital, Great Maze Pond, London, UK
| | - Angela O Pisco
- King's College London Centre for Stem Cells and Regenerative Medicine, Guy's Hospital, Great Maze Pond, London, UK
| | - Tanya J Shaw
- King's College London Centre for Molecular and Cellular Biology of Inflammation, London, UK
| | - Raul Elgueta
- King's College London MRC Centre for Transplantation, Guy's Hospital, Great Maze Pond, London, UK
| | - Giovanna Lombardi
- King's College London MRC Centre for Transplantation, Guy's Hospital, Great Maze Pond, London, UK
| | - Ryan R Driskell
- King's College London Centre for Stem Cells and Regenerative Medicine, Guy's Hospital, Great Maze Pond, London, UK; School of Molecular Medicine, College of Veterinary Medicine, Washington State University, Pullman, Washington, USA
| | - Mark Soldin
- Department of Plastic and Reconstructive Surgery, St. George's National Health Service Trust, London, UK
| | - Magnus D Lynch
- King's College London Centre for Stem Cells and Regenerative Medicine, Guy's Hospital, Great Maze Pond, London, UK; St. John's Institute of Dermatology, Tower Wing, Guy's Hospital, Great Maze Pond, London, UK
| | - Fiona M Watt
- King's College London Centre for Stem Cells and Regenerative Medicine, Guy's Hospital, Great Maze Pond, London, UK.
| |
Collapse
|
47
|
Chermnykh E, Kalabusheva E, Vorotelyak E. Extracellular Matrix as a Regulator of Epidermal Stem Cell Fate. Int J Mol Sci 2018; 19:ijms19041003. [PMID: 29584689 PMCID: PMC5979429 DOI: 10.3390/ijms19041003] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 03/15/2018] [Accepted: 03/21/2018] [Indexed: 12/17/2022] Open
Abstract
Epidermal stem cells reside within the specific anatomic location, called niche, which is a microenvironment that interacts with stem cells to regulate their fate. Regulation of many important processes, including maintenance of stem cell quiescence, self-renewal, and homeostasis, as well as the regulation of division and differentiation, are common functions of the stem cell niche. As it was shown in multiple studies, extracellular matrix (ECM) contributes a lot to stem cell niches in various tissues, including that of skin. In epidermis, ECM is represented, primarily, by a highly specialized ECM structure, basement membrane (BM), which separates the epidermal and dermal compartments. Epidermal stem cells contact with BM, but when they lose the contact and migrate to the overlying layers, they undergo terminal differentiation. When considering all of these factors, ECM is of fundamental importance in regulating epidermal stem cells maintenance, proper mobilization, and differentiation. Here, we summarize the remarkable progress that has recently been made in the research of ECM role in regulating epidermal stem cell fate, paying special attention to the hair follicle stem cell niche. We show that the destruction of ECM components impairs epidermal stem cell morphogenesis and homeostasis. A deep understanding of ECM molecular structure as well as the development of in vitro system for stem cell maintaining by ECM proteins may bring us to developing new approaches for regenerative medicine.
Collapse
Affiliation(s)
- Elina Chermnykh
- Koltzov Institute of Developmental Biology Russian Academy of Sciences, Moscow 119334, Russia.
- Department of Regenerative Medicine, Institute of Translational Medicine, Pirogov Russian National Research Medical University, Moscow 117997, Russia.
| | - Ekaterina Kalabusheva
- Koltzov Institute of Developmental Biology Russian Academy of Sciences, Moscow 119334, Russia.
- Department of Regenerative Medicine, Institute of Translational Medicine, Pirogov Russian National Research Medical University, Moscow 117997, Russia.
| | - Ekaterina Vorotelyak
- Koltzov Institute of Developmental Biology Russian Academy of Sciences, Moscow 119334, Russia.
- Department of Regenerative Medicine, Institute of Translational Medicine, Pirogov Russian National Research Medical University, Moscow 117997, Russia.
- Faculty of Biology, Lomonosov Moscow State University, Moscow 119991, Russia.
| |
Collapse
|
48
|
|
49
|
Lynch MD, Watt FM. Fibroblast heterogeneity: implications for human disease. J Clin Invest 2018; 128:26-35. [PMID: 29293096 DOI: 10.1172/jci93555] [Citation(s) in RCA: 333] [Impact Index Per Article: 47.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Fibroblasts synthesize the extracellular matrix of connective tissue and play an essential role in maintaining the structural integrity of most tissues. Researchers have long suspected that fibroblasts exhibit functional specialization according to their organ of origin, body site, and spatial location. In recent years, a number of approaches have revealed the existence of fibroblast subtypes in mice. Here, we discuss fibroblast heterogeneity with a focus on the mammalian dermis, which has proven an accessible and tractable system for the dissection of these relationships. We begin by considering differences in fibroblast identity according to anatomical site of origin. Subsequently, we discuss new results relating to the existence of multiple fibroblast subtypes within the mouse dermis. We consider the developmental origin of fibroblasts and how this influences heterogeneity and lineage restriction. We discuss the mechanisms by which fibroblast heterogeneity arises, including intrinsic specification by transcriptional regulatory networks and epigenetic factors in combination with extrinsic effects of the spatial context within tissue. Finally, we discuss how fibroblast heterogeneity may provide insights into pathological states including wound healing, fibrotic diseases, and aging. Our evolving understanding suggests that ex vivo expansion or in vivo inhibition of specific fibroblast subtypes may have important therapeutic applications.
Collapse
Affiliation(s)
- Magnus D Lynch
- King's College London Centre for Stem Cells and Regenerative Medicine, Guy's Hospital, Great Maze Pond, London, United Kingdom.,St John's Institute of Dermatology, King's College London, London, United Kingdom
| | - Fiona M Watt
- King's College London Centre for Stem Cells and Regenerative Medicine, Guy's Hospital, Great Maze Pond, London, United Kingdom
| |
Collapse
|
50
|
Watt SM, Pleat JM. Stem cells, niches and scaffolds: Applications to burns and wound care. Adv Drug Deliv Rev 2018; 123:82-106. [PMID: 29106911 DOI: 10.1016/j.addr.2017.10.012] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2017] [Revised: 10/19/2017] [Accepted: 10/22/2017] [Indexed: 12/11/2022]
Abstract
The importance of skin to survival, and the devastating physical and psychological consequences of scarring following reparative healing of extensive or difficult to heal human wounds, cannot be disputed. We discuss the significant challenges faced by patients and healthcare providers alike in treating these wounds. New state of the art technologies have provided remarkable insights into the role of skin stem and progenitor cells and their niches in maintaining skin homeostasis and in reparative wound healing. Based on this knowledge, we examine different approaches to repair extensive burn injury and chronic wounds, including full and split thickness skin grafts, temporising matrices and scaffolds, and composite cultured skin products. Notable developments include next generation skin substitutes to replace split thickness skin autografts and next generation gene editing coupled with cell therapies to treat genodermatoses. Further refinements are predicted with the advent of bioprinting technologies, and newly defined biomaterials and autologous cell sources that can be engineered to more accurately replicate human skin architecture, function and cosmesis. These advances will undoubtedly improve quality of life for patients with extensive burns and difficult to heal wounds.
Collapse
Affiliation(s)
- Suzanne M Watt
- Stem Cell Research, Nuffield Division of Clinical Laboratory Medicine, Radcliffe Department of Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9BQ, UK.
| | - Jonathan M Pleat
- Department of Plastic and Reconstructive Surgery, North Bristol NHS Trust and University of Bristol, Westbury on Trym, Bristol BS9 3TZ, UK.
| |
Collapse
|