1
|
Goleij P, Pourali G, Raisi A, Ravaei F, Golestan S, Abed A, Razavi ZS, Zarepour F, Taghavi SP, Ahmadi Asouri S, Rafiei M, Mousavi SM, Hamblin MR, Talei S, Sheida A, Mirzaei H. Role of Non-coding RNAs in the Response of Glioblastoma to Temozolomide. Mol Neurobiol 2025; 62:1726-1755. [PMID: 39023794 DOI: 10.1007/s12035-024-04316-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 06/16/2024] [Indexed: 07/20/2024]
Abstract
Chemotherapy and radiotherapy are widely used in clinical practice across the globe as cancer treatments. Intrinsic or acquired chemoresistance poses a significant problem for medical practitioners and researchers, causing tumor recurrence and metastasis. The most dangerous kind of malignant brain tumor is called glioblastoma multiforme (GBM) that often recurs following surgery. The most often used medication for treating GBM is temozolomide chemotherapy; however, most patients eventually become resistant. Researchers are studying preclinical models that accurately reflect human disease and can be used to speed up drug development to overcome chemoresistance in GBM. Non-coding RNAs (ncRNAs) have been shown to be substantial in regulating tumor development and facilitating treatment resistance in several cancers, such as GBM. In this work, we mentioned the mechanisms of how different ncRNAs (microRNAs, long non-coding RNAs, circular RNAs) can regulate temozolomide chemosensitivity in GBM. We also address the role of these ncRNAs encapsulated inside secreted exosomes.
Collapse
Affiliation(s)
- Pouya Goleij
- Department of Genetics, Faculty of Biology, Sana Institute of Higher Education, Sari, Iran
- USERN Office, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Ghazaleh Pourali
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Arash Raisi
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Fatemeh Ravaei
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Shahin Golestan
- Department of Ophthalmology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Atena Abed
- Department of Medical Biotechnology, School of Advanced Technologies, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Zahra Sadat Razavi
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Fatemeh Zarepour
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Seyed Pouya Taghavi
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Sahar Ahmadi Asouri
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Moein Rafiei
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Seyed Mojtaba Mousavi
- Department of Neuroscience and Addiction Studies, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Michael R Hamblin
- Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein, 2028, South Africa
| | - Sahand Talei
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| | - Amirhossein Sheida
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran.
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran.
| | - Hamed Mirzaei
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran.
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
2
|
Lupu VV, Miron I, Trandafir LM, Jechel E, Starcea IM, Ioniuc I, Frasinariu OE, Mocanu A, Petrariu FD, Danielescu C, Nedelcu AH, Salaru DL, Revenco N, Lupu A. Challenging directions in pediatric diabetes - the place of oxidative stress and antioxidants in systemic decline. Front Pharmacol 2024; 15:1472670. [PMID: 39744134 PMCID: PMC11688324 DOI: 10.3389/fphar.2024.1472670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 12/04/2024] [Indexed: 01/06/2025] Open
Abstract
Diabetes is a complex condition with a rising global incidence, and its impact is equally evident in pediatric practice. Regardless of whether we are dealing with type 1 or type 2 diabetes, the development of complications following the onset of the disease is inevitable. Consequently, contemporary medicine must concentrate on understanding the pathophysiological mechanisms driving systemic decline and on finding ways to address them. We are particularly interested in the effects of oxidative stress on target cells and organs, such as pancreatic islets, the retina, kidneys, and the neurological or cardiovascular systems. Our goal is to explore, using the latest data from international scientific databases, the relationship between oxidative stress and the development or persistence of systemic damage associated with diabetes in children. Additionally, we highlight the beneficial roles of antioxidants such as vitamins, minerals, polyphenols, and other bioactive molecules; in mitigating the pathogenic cascade, detailing how they intervene and their bioactive properties. As a result, our study provides a comprehensive exploration of the key aspects of the oxidative stress-antioxidants-pediatric diabetes triad, expanding understanding of their significance in various systemic diseases.
Collapse
Affiliation(s)
- Vasile Valeriu Lupu
- Pediatrics, “Grigore T. Popa” University of Medicine and Pharmacy, Iasi, Romania
| | - Ingrith Miron
- Pediatrics, “Grigore T. Popa” University of Medicine and Pharmacy, Iasi, Romania
| | | | - Elena Jechel
- Pediatrics, “Grigore T. Popa” University of Medicine and Pharmacy, Iasi, Romania
| | | | - Ileana Ioniuc
- Pediatrics, “Grigore T. Popa” University of Medicine and Pharmacy, Iasi, Romania
| | | | - Adriana Mocanu
- Pediatrics, “Grigore T. Popa” University of Medicine and Pharmacy, Iasi, Romania
| | | | - Ciprian Danielescu
- Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, Iasi, Romania
| | - Alin Horatiu Nedelcu
- Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, Iasi, Romania
| | - Delia Lidia Salaru
- Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, Iasi, Romania
| | - Ninel Revenco
- Pediatrics, “Nicolae Testemitanu” State University of Medicine and Pharmacy, Chisinau, Moldova
| | - Ancuta Lupu
- Pediatrics, “Grigore T. Popa” University of Medicine and Pharmacy, Iasi, Romania
| |
Collapse
|
3
|
Mallik S, Paria B, Firdous SM, Ghazzawy HS, Alqahtani NK, He Y, Li X, Gouda MM. The positive implication of natural antioxidants on oxidative stress-mediated diabetes mellitus complications. J Genet Eng Biotechnol 2024; 22:100424. [PMID: 39674630 PMCID: PMC11416289 DOI: 10.1016/j.jgeb.2024.100424] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 08/22/2024] [Accepted: 08/29/2024] [Indexed: 12/16/2024]
Abstract
The complementary intervention to modulate diabetes mellitus (DM) metabolism has recently brought the global attention, since DM has become among the global burden diseases. Where, several related pathways elevate the production of superoxide in consequences. For example, the flux of glycation-derived end products (AGEs) could lead to the deactivation of insulin signaling pathways. In that context, many vitamins and phytochemicals in natural sources have high antioxidant impacts that reduce oxidative stress and cell damages. These chemicals could be applied as bioactive antidiabetic agents. Their mode of actions could be from regulating the intracellular reactive oxygen species (ROS) which cause several pro-inflammatory pathways related to the oxidative stress (OS) and DM. Besides, they have a great potential to control the epigenetic mutations and hyperglycemia and help in back the blood glucose to the normal level. Therefore, the current review addresses the important role of natural functional antioxidants in DM management and its association with its OS complications.
Collapse
Affiliation(s)
- Shouvik Mallik
- Department of Pharmacology, Calcutta Institute of Pharmaceutical Technology & AHS, Uluberia, Howrah, West Bengal, India
| | - Bijoy Paria
- Department of Pharmacology, Calcutta Institute of Pharmaceutical Technology & AHS, Uluberia, Howrah, West Bengal, India
| | - Sayed Mohammad Firdous
- Department of Pharmacology, Calcutta Institute of Pharmaceutical Technology & AHS, Uluberia, Howrah, West Bengal, India.
| | - Hesham S Ghazzawy
- Date Palm Research Center of Excellence, King Faisal University, Al Ahsa, Saudi Arabia; Central Laboratory for Date Palm Research and Development, Agriculture Research Center, Giza 12511, Egypt.
| | - Nashi K Alqahtani
- Date Palm Research Center of Excellence, King Faisal University, Al Ahsa, Saudi Arabia
| | - Yong He
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Xiaoli Li
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China.
| | - Mostafa M Gouda
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China; Department of Nutrition & Food Science, National Research Centre, Dokki, Giza 12622, Egypt.
| |
Collapse
|
4
|
Li R, Dai J, He Z, Gu S. Changes of LncRNAs during the Process of Antioxidants Antagonize Cadmium-Induced Oxidative Damage in Islet β Cells. Cell Biochem Biophys 2024; 82:827-837. [PMID: 38400990 DOI: 10.1007/s12013-024-01234-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 02/08/2024] [Indexed: 02/26/2024]
Abstract
Long non-coding RNAs (LncRNAs) play important regulatory roles in oxidative damage. Resveratrol, curcumin, and cyanidin are phytogenic antioxidants widely existing in nature and they have been proved to antagonize certain heavy metal-induced oxidative damage in cells. However, can they antagonize oxidative damage induced by cadmium in islet β cells? Are their mechanisms of antagonizing oxidative damage related to LncRNAs? In this study, we first detected the cell viability of each group by CCK8 assay. Next, reactive oxygen species (ROS) were detected by the fluorescent probe. The contents of malondialdehyde (MDA) and the activities of superoxide dismutase (SOD) were detected according to the instructions of corresponding kits. At last, the levels of LncRNAs were detected by fluorescence quantitative real-time polymerase chain reaction (qPCR). The results showed that resveratrol, curcumin and cyanidin were able to reverse the reduction of cell viability induced by cadmium (CdSO4). Further determination revealed that SOD activities of the resveratrol+CdSO4, curcumin+CdSO4, and cyanidin+CdSO4 treatment groups increased significantly, and ROS levels and MDA contents dramatically decreased when compared with single CdSO4-treated group. More importantly, the levels of three CdSO4-elevated LncRNAs (NONMMUT029382, ENSMUST00000162103, ENSMUST00000117235) were all decreased and levels of three CdSO4-inhibited LncRNAs (NONMMUT036805, NONMMUT014565, NONMMUT065427) were increased after the pretreatment of resveratrol, curcumin and cyanidin. In summary, resveratrol, curcumin and cyanidin may effectly reverse the cadmium-induced oxidative damage and suggest that phytogenic antioxidants may prevent cells from cadmium-induced oxidative damage through changing the levels of LncRNAs.
Collapse
Affiliation(s)
- Rongxian Li
- Institute of Preventive Medicine, School of Public Health, Dali University, Dali, Yunnan, China
| | - Jiao Dai
- Qujing Medical College, Qujing, Yunnan, China
| | - Zuoshun He
- Institute of Preventive Medicine, School of Public Health, Dali University, Dali, Yunnan, China.
| | - Shiyan Gu
- Institute of Preventive Medicine, School of Public Health, Dali University, Dali, Yunnan, China.
| |
Collapse
|
5
|
Meek CL. An unwelcome inheritance: childhood obesity after diabetes in pregnancy. Diabetologia 2023; 66:1961-1970. [PMID: 37442824 PMCID: PMC10541526 DOI: 10.1007/s00125-023-05965-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 06/12/2023] [Indexed: 07/15/2023]
Abstract
Diabetes in pregnancy affects 20 million women per year and is associated with increased risk of obesity in offspring, leading to insulin resistance and cardiometabolic disease. Despite the substantial public health ramifications, relatively little is known about the pathophysiological mechanisms underlying obesity in these high-risk children, which creates a barrier to successful intervention. While maternal glucose itself is undeniably a major stimulus upon intrauterine growth, the degree of offspring hyperinsulinism and disturbed lipid metabolism in mothers and offspring are also likely to be implicated in the disease process. The aim of this review is to summarise current understanding of the pathophysiology of childhood obesity after intrauterine exposure to maternal hyperglycaemia and to highlight possible opportunities for intervention. I present here a new unified hypothesis for the pathophysiology of childhood obesity in infants born to mothers with diabetes, which involves self-perpetuating twin cycles of pancreatic beta cell hyperfunction and altered lipid metabolism, both acutely and chronically upregulated by intrauterine exposure to maternal hyperglycaemia.
Collapse
Affiliation(s)
- Claire L Meek
- Wellcome Trust MRC Institute of Metabolic Science, University of Cambridge, Cambridge, UK.
- Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK.
| |
Collapse
|
6
|
Nezhad Nezhad MT, Rajabi M, Nekooeizadeh P, Sanjari S, Pourvirdi B, Heidari MM, Veradi Esfahani P, Abdoli A, Bagheri S, Tobeiha M. Systemic lupus erythematosus: From non-coding RNAs to exosomal non-coding RNAs. Pathol Res Pract 2023; 247:154508. [PMID: 37224659 DOI: 10.1016/j.prp.2023.154508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/01/2023] [Accepted: 05/05/2023] [Indexed: 05/26/2023]
Abstract
Systemic lupus erythematosus (SLE), as an immunological illness, frequently impacts young females. Both vulnerabilities to SLE and the course of the illness's clinical symptoms have been demonstrated to be affected by individual differences in non-coding RNA expression. Many non-coding RNAs (ncRNAs) are out of whack in patients with SLE. Because of the dysregulation of several ncRNAs in peripheral blood of patients suffering from SLE, these ncRNAs to be showed valuable as biomarkers for medication response, diagnosis, and activity. NcRNAs have also been demonstrated to influence immune cell activity and apoptosis. Altogether, these facts highlight the need of investigating the roles of both families of ncRNAs in the progress of SLE. Being aware of the significance of these transcripts perhaps elucidates the molecular pathogenesis of SLE and could open up promising avenues to create tailored treatments during this condition. In this review we summarized various non-coding RNAs and Exosomal non-coding RNAs in SLE.
Collapse
Affiliation(s)
| | - Mohammadreza Rajabi
- Student Research Committee، Shiraz University of Medical Sciences, Shiraz, Iran
| | - Pegah Nekooeizadeh
- Student Research Committee، Shiraz University of Medical Sciences, Shiraz, Iran
| | - Siavash Sanjari
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran; School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Bita Pourvirdi
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran; School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Mohammad Mehdi Heidari
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran; Department of Pediatric, Faculty of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Pegah Veradi Esfahani
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran; School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Amirhossein Abdoli
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran; School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Sahar Bagheri
- Diabetes Research Center, Mazandaran University of Medical Sciences, Sari, Iran.
| | - Mohammad Tobeiha
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran; Department of Pediatric, Faculty of Medicine, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
7
|
Gupta J, Abdulsahib WK, Turki Jalil A, Saadi Kareem D, Aminov Z, Alsaikhan F, Ramírez-Coronel AA, Ramaiah P, Farhood B. Prostate Cancer and microRNAs: New insights into Apoptosis. Pathol Res Pract 2023; 245:154436. [PMID: 37062208 DOI: 10.1016/j.prp.2023.154436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 03/30/2023] [Accepted: 04/02/2023] [Indexed: 04/09/2023]
Abstract
Prostate cancer (PCa) is known as one of the most prevalent malignancies globally and is not yet curable owing to its progressive nature. It has been well documented that Genetic and epigenetic alterations maintain mandatory roles in PCa development. Apoptosis, a form of programmed cell death, has been shown to be involved in a number of physiological processes. Apoptosis disruption is considered as one of the main mechanism involved in lots of pathological conditions, especially malignancy. There is ample of evidence in support of the fact that microRNAs (miRNAs) have crucial roles in several cellular biological processes, including apoptosis. Escaping from apoptosis is a common event in malignancy progression. Emerging evidence revealed miRNAs capabilities to act as apoptotic or anti-apoptotic factors by altering the expression levels of tumor inhibitor or oncogene genes. In the present narrative review, we described in detail how apoptosis dysfunction could be involved in PCa processes and additionally, the mechanisms behind miRNAs affect the apoptosis pathways in PCa. Identifying the mechanisms behind the effects of miRNAs and their targets on apoptosis can provide scientists new targets for PCa treatment.
Collapse
Affiliation(s)
- Jitendra Gupta
- Institute of Pharmaceutical Research, GLA University, Mathura 281406, U. P., India
| | - Waleed K Abdulsahib
- Department of Pharmacology and Toxicology, College of Pharmacy, Al Farahidi University, Baghdad, Iraq
| | - Abduladheem Turki Jalil
- Medical Laboratories Techniques Department, Al-Mustaqbal University College, Babylon, Hilla, 51001, Iraq.
| | | | - Zafar Aminov
- Department of Public Health and Healthcare management, Samarkand State Medical University, 18 Amir Temur Street, Samarkand, Uzbekistan; Department of Scientific Affairs, Tashkent State Dental Institute, 103 Makhtumkuli Str., Tashkent, Uzbekistan
| | - Fahad Alsaikhan
- College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj, Saudi Arabia.
| | - Andrés Alexis Ramírez-Coronel
- Azogues Campus Nursing Career, Health and Behavior Research Group (HBR), Psychometry and Ethology Laboratory, Catholic University of Cuenca, Ecuador; Epidemiology and Biostatistics Research Group, CES University, Colombia; Educational Statistics Research Group (GIEE), National University of Education, Ecuador
| | | | - Bagher Farhood
- Department of Medical Physics and Radiology, Faculty of Paramedical Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
8
|
Wei C, Zhang Z, Fu Q, He Y, Yang T, Sun M. The reversible effects of free fatty acids on sulfonylurea-stimulated insulin secretion are related to the expression and dynamin-mediated endocytosis of KATP channels in pancreatic β cells. Endocr Connect 2023; 12:e220221. [PMID: 36398885 PMCID: PMC9782416 DOI: 10.1530/ec-22-0221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 11/18/2022] [Indexed: 11/19/2022]
Abstract
Objective Lipotoxicity-induced pancreatic β cell-dysfunction results in decreased insulin secretion in response to multiple stimulus. In this study, we investigated the reversible effects of palmitate (PA) or oleate (OA) on insulin secretion and the relationship with pancreatic β-cell ATP-sensitive potassium (KATP) channels. Methods MIN6 cells were treated with PA and OA for 48 h and then washed out for 24 h to determine the changes in expression and endocytosis of the KATP channels and glucose-stimulated insulin secretion (GSIS) and sulfonylurea-stimulated insulin secretion (SU-SIS). Results MIN6 cells exposed to PA or OA showed both impaired GSIS and SU-SIS; the former was not restorable, while the latter was reversible with washout of PA or OA. Decreased expressions of both total and surface Kir6.2 and SUR1 and endocytosis of KATP channels were observed, which were also recoverable after washout. When MIN6 cells exposed to free fatty acids (FFAs) were cotreated with 5-aminoimidazole-4-carboxamide ribonucleotide (AICAR) or dynasore, we found that endocytosis of KATP channels did not change significantly by AICAR but was almost completely blocked by dynasore. Meanwhile, the inhibition of endocytosis of KATP channels after washout could be activated by PIP2. The recovery of SU-SIS after washout was significantly weakened by PIP2, but the decrease of SU-SIS induced by FFAs was not alleviated by dynasore. Conclusions FFAs can cause reversible impairment of SU-SIS on pancreatic β cells. The reversibility of the effects is partial because of the changes of expression and endocytosis of Kir6.2 and SUR1 which was mediated by dynamin.
Collapse
Affiliation(s)
- Chenmin Wei
- Department of Endocrinology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
- Department of Endocrinology, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Zichen Zhang
- Department of Endocrinology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Qi Fu
- Department of Endocrinology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yunqiang He
- Department of Endocrinology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Tao Yang
- Department of Endocrinology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Min Sun
- Department of Endocrinology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|
9
|
Gupta J, Kareem Al-Hetty HRA, Aswood MS, Turki Jalil A, Azeez MD, Aminov Z, Alsaikhan F, Ramírez-Coronel AA, Ramaiah P, Farhood B. The key role of microRNA-766 in the cancer development. Front Oncol 2023; 13:1173827. [PMID: 37205191 PMCID: PMC10185842 DOI: 10.3389/fonc.2023.1173827] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Accepted: 04/18/2023] [Indexed: 05/21/2023] Open
Abstract
Cancer is caused by defects in coding and non-coding RNAs. In addition, duplicated biological pathways diminish the efficacy of mono target cancer drugs. MicroRNAs (miRNAs) are short, endogenous, non-coding RNAs that regulate many target genes and play a crucial role in physiological processes such as cell division, differentiation, cell cycle, proliferation, and apoptosis, which are frequently disrupted in diseases such as cancer. MiR-766, one of the most adaptable and highly conserved microRNAs, is notably overexpressed in several diseases, including malignant tumors. Variations in miR-766 expression are linked to various pathological and physiological processes. Additionally, miR-766 promotes therapeutic resistance pathways in various types of tumors. Here, we present and discuss evidence implicating miR-766 in the development of cancer and treatment resistance. In addition, we discuss the potential applications of miR-766 as a therapeutic cancer target, diagnostic biomarker, and prognostic indicator. This may shed light on the development of novel therapeutic strategies for cancer therapy.
Collapse
Affiliation(s)
- Jitendra Gupta
- Institute of Pharmaceutical Research, GLA University, Mathura, India
| | - Hussein Riyadh Abdul Kareem Al-Hetty
- Department of Nursing, Al-Maarif University College, Ramadi, Anbar, Iraq
- *Correspondence: Hussein Riyadh Abdul Kareem Al-Hetty, ; Abduladheem Turki Jalil, ; Bagher Farhood, ,
| | - Murtadha Sh. Aswood
- Department of Physics, College of Education, University of Al-Qadisiyah, Al-Diwaniyah, Iraq
| | - Abduladheem Turki Jalil
- Medical Laboratories Techniques Department, Al-Mustaqbal University College, Babylon, Hilla, Iraq
- *Correspondence: Hussein Riyadh Abdul Kareem Al-Hetty, ; Abduladheem Turki Jalil, ; Bagher Farhood, ,
| | | | - Zafar Aminov
- Department of Public Health and Healthcare management, Samarkand State Medical University, Samarkand, Uzbekistan
- Department of Scientific Affairs, Tashkent State Dental Institute, Tashkent, Uzbekistan
| | - Fahad Alsaikhan
- College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj, Saudi Arabia
| | - Andrés Alexis Ramírez-Coronel
- Azogues Campus Nursing Career, Health and Behavior Research Group (HBR), Psychometry and Ethology Laboratory, Catholic University of Cuenca, Cuenca, Ecuador
- Epidemiology and Biostatistics Research Group, CES University, Medellín, Colombia
- Educational Statistics Research Group (GIEE), National University of Education, Azogues, Ecuador
| | | | - Bagher Farhood
- Department of Medical Physics and Radiology, Faculty of Paramedical Sciences, Kashan University of Medical Sciences, Kashan, Iran
- *Correspondence: Hussein Riyadh Abdul Kareem Al-Hetty, ; Abduladheem Turki Jalil, ; Bagher Farhood, ,
| |
Collapse
|
10
|
Zeng Y, Wu Y, Zhang Q, Xiao X. Non-coding RNAs: The link between maternal malnutrition and offspring metabolism. Front Nutr 2022; 9:1022784. [DOI: 10.3389/fnut.2022.1022784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 10/27/2022] [Indexed: 11/11/2022] Open
Abstract
Early life nutrition is associated with the development and metabolism in later life, which is known as the Developmental Origin of Health and Diseases (DOHaD). Epigenetics have been proposed as an important explanation for this link between early life malnutrition and long-term diseases. Non-coding RNAs (ncRNAs) may play a role in this epigenetic programming. The expression of ncRNAs (such as long non-coding RNA H19, microRNA-122, and circular RNA-SETD2) was significantly altered in specific tissues of offspring exposed to maternal malnutrition. Changes in these downstream targets of ncRNAs lead to abnormal development and metabolism. This review aims to summarize the existing knowledge on ncRNAs linking the maternal nutrition condition and offspring metabolic diseases, such as obesity, type 2 diabetes (T2D) and non-alcoholic fatty liver disease (NAFLD).
Collapse
|
11
|
Satyanarayana N, Chinni SV, Gobinath R, Sunitha P, Uma Sankar A, Muthuvenkatachalam BS. Antidiabetic activity of Solanum torvum fruit extract in streptozotocin-induced diabetic rats. Front Nutr 2022; 9:987552. [PMID: 36386935 PMCID: PMC9650639 DOI: 10.3389/fnut.2022.987552] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 08/24/2022] [Indexed: 12/06/2022] Open
Abstract
Background Solanum torvum Swartz, a medicinal plant belonging to the family Solanaceae, is an important medicinal plant widely distributed throughout the world and used as medicine to treat diabetes, hypertension, tooth decay, and reproductive problems in traditional systems of medicine around the world including Malaysia. The objective of this study was to investigate hypoglycemic, antilipidemic, and hepatoprotective activities, histopathology of the pancreas, and specific glucose regulating gene expression of the ethanolic extract of S. torvum fruit in streptozotocin-induced diabetic Sprague–Dawley rats. Materials and methods Acute toxicity study was done according to OECD-423 guidelines. Diabetes was induced by intraperitoneal (i.p.) injection of streptozotocin (55 mg/kg) in male Sprague–Dawley rats. Experimental diabetic rats were divided into six different groups; normal, diabetic control, and glibenclamide at 6 mg/kg body weight, and the other three groups of animals were treated with oral administration of ethanolic extract of S. torvum fruit at 120, 160, and 200 mg/kg for 28 days. The effect of ethanolic extract of S. torvum fruit on body weight, blood glucose, lipid profile, liver enzymes, histopathology of pancreas, and gene expression of glucose transporter 2 (slc2a2), and phosphoenolpyruvate carboxykinase (PCK1) was determined by RT-PCR. Results Acute toxicity studies showed LD50 of ethanolic extract of S. torvum fruit to be at the dose of 1600 mg/kg body weight. Blood glucose, total cholesterol, triglycerides, low-density lipoproteins, very low-density lipoproteins, serum alanine aminotransferase, and aspartate aminotransferase were significantly reduced, whereas high-density lipoproteins were significantly increased in S. torvum fruit (200 mg/kg)-treated rats. Histopathological study of the pancreas showed an increase in number, size, and regeneration of β-cell of islets of Langerhans. Gene expression studies revealed the lower expression of slc2a2 and PCK1 in treated animals when compared to diabetic control. Conclusion Ethanolic extract of S. torvum fruits showed hypoglycemic, hypolipidemic, and hepatoprotective activity in streptozocin-induced diabetic rats. Histopathological studies revealed regeneration of β cells of islets of Langerhans. Gene expression studies indicated lower expression of slc2a2 and PCK1 in treated animals when compared to diabetic control, indicating that the treated animals prefer the gluconeogenesis pathway.
Collapse
Affiliation(s)
- Namani Satyanarayana
- Department of Anatomy, Saint James School of Medicine, Saint Vincent, Saint Vincent and the Grenadines
| | - Suresh V. Chinni
- Department of Biochemistry, Faculty of Medicine, Bioscience, and Nursing, MAHSA University, Jenjarom, Selangor, Malaysia
- Department of Periodontics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Chennai, India
- *Correspondence: Suresh V. Chinni, ,
| | - Ramachawolran Gobinath
- Department of Foundation, RCSI and UCD Malaysia Campus, Georgetown, Pulau Pinang, Malaysia
| | - Paripelli Sunitha
- Department of Physiology, Saint James School of Medicine, Saint Vincent, Saint Vincent and the Grenadines
| | - Akula Uma Sankar
- Faculty of Medicine, Biochemistry Unit, AIMST University, Bedong, Kedah, Malaysia
| | | |
Collapse
|
12
|
Zohar K, Giladi E, Eliyahu T, Linial M. Oxidative Stress and Its Modulation by Ladostigil Alter the Expression of Abundant Long Non-Coding RNAs in SH-SY5Y Cells. Noncoding RNA 2022; 8:ncrna8060072. [PMID: 36412908 PMCID: PMC9680243 DOI: 10.3390/ncrna8060072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 10/11/2022] [Accepted: 10/19/2022] [Indexed: 12/14/2022] Open
Abstract
Neurodegenerative disorders, brain injury, and the decline in cognitive function with aging are accompanied by a reduced capacity of cells in the brain to cope with oxidative stress and inflammation. In this study, we focused on the response to oxidative stress in SH-SY5Y, a human neuroblastoma cell line. We monitored the viability of the cells in the presence of oxidative stress. Such stress was induced by hydrogen peroxide or by Sin1 (3-morpholinosydnonimine) that generates reactive oxygen and nitrogen species (ROS and RNS). Both stressors caused significant cell death. Our results from the RNA-seq experiments show that SH-SY5Y cells treated with Sin1 for 24 h resulted in 94 differently expressed long non-coding RNAs (lncRNAs), including many abundant ones. Among the abundant lncRNAs that were upregulated by exposing the cells to Sin1 were those implicated in redox homeostasis, energy metabolism, and neurodegenerative diseases (e.g., MALAT1, MIAT, GABPB1-AS1, NEAT1, MIAT, GABPB1-AS1, and HAND2-AS1). Another group of abundant lncRNAs that were significantly altered under oxidative stress included cancer-related SNHG family members. We tested the impact of ladostigil, a bifunctional reagent with antioxidant and anti-inflammatory properties, on the lncRNA expression levels. Ladostigil was previously shown to enhance learning and memory in the brains of elderly rats. In SH-SY5Y cells, several lncRNAs involved in transcription regulation and the chromatin structure were significantly induced by ladostigil. We anticipate that these poorly studied lncRNAs may act as enhancers (eRNA), regulating transcription and splicing, and in competition for miRNA binding (ceRNA). We found that the induction of abundant lncRNAs, such as MALAT1, NEAT-1, MIAT, and SHNG12, by the Sin1 oxidative stress paradigm specifies only the undifferentiated cell state. We conclude that a global alteration in the lncRNA profiles upon stress in SH-SY5Y may shift cell homeostasis and is an attractive in vitro system to characterize drugs that impact the redox state of the cells and their viability.
Collapse
|
13
|
Improving effect of cordycepin on insulin synthesis and secretion in normal and oxidative-damaged INS-1 cells. Eur J Pharmacol 2022; 920:174843. [DOI: 10.1016/j.ejphar.2022.174843] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 02/05/2022] [Accepted: 02/16/2022] [Indexed: 01/18/2023]
|
14
|
Barati B, Mohseni M, Asadi M, Mangeli F. Schwannoma of the lateral nasal wall: A case report. Clin Case Rep 2022; 10:e05451. [PMID: 35223014 PMCID: PMC8847405 DOI: 10.1002/ccr3.5451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 01/01/2022] [Accepted: 01/25/2022] [Indexed: 11/12/2022] Open
Abstract
Nasal schwannomas account for about 4% of head and neck schwannomas. We report a rare case of lateral nasal wall schwannoma presenting as a nasal mass in a 70-year-old man.
Collapse
Affiliation(s)
- Behrouz Barati
- Otolaryngology DepartmentShahid Beheshti University of Medical SciencesTehranIran
| | - Malihe Mohseni
- Otolaryngology DepartmentShahid Beheshti University of Medical SciencesTehranIran
| | - Mahboobe Asadi
- Otolaryngology DepartmentShahid Beheshti University of Medical SciencesTehranIran
| | - Forogh Mangeli
- Pathology DepartmentShahid Beheshti University of Medical SciencesTehranIran
| |
Collapse
|
15
|
Wan L, Cheng Z, Sun Q, Jiang K. LncRNA HOXC-AS3 increases non-small cell lung cancer cell migration and invasion by sponging premature miR-96. Expert Rev Respir Med 2022; 16:587-593. [PMID: 35034519 DOI: 10.1080/17476348.2022.2030223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
BACKGROUND HOXC cluster antisense RNA 3 (HOXC-AS3) has been characterized as a critical long noncoding RNA (lncRNA) player in breast cancer and gastric cancer, while its role in non-small cell lung cancer (NSCLC) is not clear. We hypothesized that HOXC-AS3 could interact with premature microRNA (miR)-96. This study was therefore carried out to explore the crosstalk between HOXC-AS3 and miR-96 in NSCLC. METHODS The expression of HOXC-AS3 and miR-96 (both mature and premature) were detected using RT-qPCR. Nuclear fractionation assay and RNA pull-down assay were performed to detect the subcellular location of HOXC-AS3 and potential interaction with premature miR-96, respectively. Overexpression assays were performed to determine the role of HOXC-AS3 in the maturation of miR-96. Transwell assays were performed to explore the role of HOXC-AS3 and miR-96 in NSCLC cell invasion and migration. RESULTS NSCLC tissues exhibited significantly increased expression levels of HOXC-AS3 and premature miR-96. HOXC-AS3 was localized to both nucleus and cytoplasm, and a direct interaction between HOXC-AS3 and premature miR-96 was observed. In NSCLC cells, HOXC-AS3 upregulated the expression of premature miR-96 but downregulated the expression of mature miR-96. Moreover, HOXC-AS3 suppressed the role of miR-96 in inhibiting NSCLC cell invasion and migration. CONCLUSION HOXC-AS3 may increase NSCLC cell growth and invasion by sponging premature miR-96 to suppress its maturation.
Collapse
Affiliation(s)
- Li Wan
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan City, Hubei Province, 43000, People's Republic of China
| | - Zaixing Cheng
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan City, Hubei Province, 43000, People's Republic of China
| | - Quanchao Sun
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan City, Hubei Province, 43000, People's Republic of China
| | - Ke Jiang
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan City, Hubei Province, 43000, People's Republic of China
| |
Collapse
|
16
|
You S, Zheng J, Chen Y, Huang H. Research progress on the mechanism of beta-cell apoptosis in type 2 diabetes mellitus. Front Endocrinol (Lausanne) 2022; 13:976465. [PMID: 36060972 PMCID: PMC9434279 DOI: 10.3389/fendo.2022.976465] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 08/01/2022] [Indexed: 11/23/2022] Open
Abstract
Type 2 diabetes mellitus(T2DM) is regarded as one of the most severe chronic metabolic diseases worldwide, which poses a great threat to human safety and health. The main feature of T2DM is the deterioration of pancreatic beta-cell function. More and more studies have shown that the decline of pancreatic beta-cell function in T2DM can be attributable to beta-cell apoptosis, but the exact mechanisms of beta-cell apoptosis in T2DM are not yet fully clarified. Therefore, in this review, we will focus on the current status and progress of research on the mechanism of pancreatic beta-cell apoptosis in T2DM, to provide new ideas for T2DM treatment strategies.
Collapse
Affiliation(s)
- SuFang You
- The Second Clinical Medical College of Fujian Medical University, Quanzhou, China
- Department of Endocrinology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - JingYi Zheng
- Department of Endocrinology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - YuPing Chen
- Department of Endocrinology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - HuiBin Huang
- Department of Endocrinology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
- *Correspondence: HuiBin Huang,
| |
Collapse
|
17
|
MicroRNAs and exosomes: Cardiac stem cells in heart diseases. Pathol Res Pract 2021; 229:153701. [PMID: 34872024 DOI: 10.1016/j.prp.2021.153701] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 11/09/2021] [Accepted: 11/18/2021] [Indexed: 12/20/2022]
Abstract
Treating cardiovascular diseases with cardiac stem cells (CSCs) is a valid treatment among various stem cell-based therapies. With supplying the physiological need for cardiovascular cells as their main function, under pathological circumstances, CSCs can also reproduce the myocardial cells. Although studies have identified many of CSCs' functions, our knowledge of molecular pathways that regulate these functions is not complete enough. Either physiological or pathological studies have shown, stem cells proliferation and differentiation could be regulated by microRNAs (miRNAs). How miRNAs regulate CSC behavior is an interesting area of research that can help us study and control the function of these cells in vitro; an achievement that may be beneficial for patients with cardiovascular diseases. The secretome of stem and progenitor cells has been studied and it has been determined that exosomes are the main source of their secretion which are very small vesicles at the nanoscale and originate from endosomes, which are secreted into the extracellular space and act as key signaling organelles in intercellular communication. Mesenchymal stem cells, cardiac-derived progenitor cells, embryonic stem cells, induced pluripotent stem cells (iPSCs), and iPSC-derived cardiomyocytes release exosomes that have been shown to have cardioprotective, immunomodulatory, and reparative effects. Herein, we summarize the regulation roles of miRNAs and exosomes in cardiac stem cells.
Collapse
|
18
|
LncRNA PCAT6 activated by SP1 facilitates the progression of breast cancer by the miR-326/LRRC8E axis. Anticancer Drugs 2021; 33:178-190. [PMID: 34620745 DOI: 10.1097/cad.0000000000001253] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Breast cancer is an aggressive malignancy with high morbidity in females worldwide. Extensive studies reveal that long noncoding RNAs (lncRNAs) are abnormally expressed and act as key regulators in various cancers, including breast cancer. In this work, we investigated the role and regulatory mechanism of lncRNA prostate cancer-associated transcript 6 (PCAT6) in breast cancer progression. Our findings revealed that PCAT6 was overexpressed in breast cancer tissues and cell lines. Furthermore, elevation of PCAT6 reflected an adverse prognosis of patients. Functional experiments indicated that PCAT6 knockdown hampered cell proliferation, facilitated apoptosis and cell cycle arrest in vitro, and inhibited tumor growth in vivo. We also found that the transcription factor SP1 could bind to the PCAT6 promoter and promoted its expression. Subsequently, it was verified that PCAT6 was a molecular sponge for microRNA-326 (miR-326), and the leucine-rich repeat containing the eight family member E (LRRC8E) was a direct target of miR-326. Rescue assays revealed that LRRC8E overexpression attenuated the suppressive effect of PCAT6 knockdown on cellular progression of breast cancer. In summary, this study demonstrated that SP1-activated PCAT6 promoted the malignant behaviors of breast cancer cells by regulating the miR-326/LRRC8E axis.
Collapse
|
19
|
Ling X, Lu J, Yang J, Qin H, Zhao X, Zhou P, Zheng S, Zhu P. Non-Coding RNAs: Emerging Therapeutic Targets in Spinal Cord Ischemia-Reperfusion Injury. Front Neurol 2021; 12:680210. [PMID: 34566835 PMCID: PMC8456115 DOI: 10.3389/fneur.2021.680210] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Accepted: 08/09/2021] [Indexed: 01/01/2023] Open
Abstract
Paralysis or paraplegia caused by transient or permanent spinal cord ischemia–reperfusion injury (SCIRI) remains one of the most devastating post-operative complications after thoracoabdominal aortic surgery, even though perioperative strategies and surgical techniques continue to improve. Uncovering the molecular and cellular pathophysiological processes in SCIRI has become a top priority. Recently, the expression, function, and mechanism of non-coding RNAs (ncRNAs) in various diseases have drawn wide attention. Non-coding RNAs contain a variety of biological functions but do not code for proteins. Previous studies have shown that ncRNAs play a critical role in SCIRI. However, the character of ncRNAs in attenuating SCIRI has not been systematically summarized. This review article will be the first time to assemble the knowledge of ncRNAs regulating apoptosis, inflammation, autophagy, and oxidative stress to attenuate SCIRI. A better understanding of the functional significance of ncRNAs following SCIRI could help us to identify novel therapeutic targets and develop potential therapeutic strategies. All the current research about the function of nRNAs in SCIRI will be summarized one by one in this review.
Collapse
Affiliation(s)
- Xiao Ling
- Department of Cardiovascular Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jun Lu
- Department of Cardiovascular Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jun Yang
- Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Hanjun Qin
- Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xingqi Zhao
- Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Pengyu Zhou
- Department of Cardiovascular Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Shaoyi Zheng
- Department of Cardiovascular Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Peng Zhu
- Department of Cardiovascular Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
20
|
Chen J, Gao C, Zhu W. Long non-coding RNA SLC25A25-AS1 exhibits oncogenic roles in non-small cell lung cancer by regulating the microRNA-195-5p/ITGA2 axis. Oncol Lett 2021; 22:529. [PMID: 34055094 PMCID: PMC8138898 DOI: 10.3892/ol.2021.12790] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 04/23/2021] [Indexed: 02/07/2023] Open
Abstract
Long non-coding RNA SLC25A25 antisense RNA 1 (SLC25A25-AS1) exerts antitumour activity in colorectal cancer. The present study investigated whether SLC25A25-AS1 is implicated in the aggressiveness of non-small cell lung cancer (NSCLC) and the possible underlying mechanism. SLC25A25-AS1 expression in NSCLC was determined by reverse transcription-quantitative PCR. The proliferation, apoptosis, migration and invasion of NSCLC cells were tested in vitro through cell counting kit-8 assay, flow cytometry analysis, Transwell migration and invasion assays, followed by in vivo validation using animal experiments. Additionally, the competitive endogenous RNA theory for SLC25A25-AS1, microRNA-195-5p (miR-195-5p) and integrin α2 (ITGA2) was identified using subcellular fractionation, bioinformatics analysis, reverse transcription-quantitative PCR, western blotting, a luciferase assay and RNA immunoprecipitation. As compared with normal lung tissues, increased expression of SLC25A25-AS1 was demonstrated in NSCLC tissues using The Cancer Genome Atlas database.. In addition, SLC25A25-AS1 was overexpressed in both NSCLC tissues and cell lines. High SLC25A25-AS1 expression was markedly associated with shorter overall survival time of patients with NSCLC. SLC25A25-AS1 silencing impeded NSCLC cell proliferation and triggered apoptosis, while restricting cell migration and invasion. Tumour growth in vivo was also impaired by SLC25A25-AS1 silencing. Mechanistically, SLC25A25-AS1 was demonstrated to be an miR-195-5p sponge in NSCLC cells. miR-195-5p mimics decreased ITGA2 expression in NSCLC cells by directly targeting ITGA2, and SLC25A25-AS1 interference decreased ITGA2 expression by sequestering miR-195-5p. Furthermore, the antitumour effects of SLC25A25-AS1 silencing on malignant behaviours were counteracted when ITGA2 was restored or when miR-195-5p was silenced. In summary, by controlling the miR-195-5p/ITGA2 axis, SLC25A25-AS1 served tumour-promoting roles in NSCLC cells. Therefore, the SLC25A25-AS1/miR-195-5p/ITGA2 signalling pathway might be an attractive target for future therapeutic options in NSCLC.
Collapse
Affiliation(s)
- Jinqin Chen
- Department of Chest Surgery, Weifang People's Hospital, Weifang, Shandong 261401, P.R. China
| | - Chengpeng Gao
- Department of Respiratory Medicine, Weifang People's Hospital, Weifang, Shandong 261401, P.R. China
| | - Wei Zhu
- Department of Chest Surgery, Weifang People's Hospital, Weifang, Shandong 261401, P.R. China
| |
Collapse
|
21
|
Akbari A, Sedaghat M, Heshmati J, Tabaeian SP, Dehghani S, Pizarro AB, Rostami Z, Agah S. Molecular mechanisms underlying curcumin-mediated microRNA regulation in carcinogenesis; Focused on gastrointestinal cancers. Biomed Pharmacother 2021; 141:111849. [PMID: 34214729 DOI: 10.1016/j.biopha.2021.111849] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 06/08/2021] [Accepted: 06/24/2021] [Indexed: 02/07/2023] Open
Abstract
Curcumin is a bioactive ingredient found in the Rhizomes of Curcuma longa. Curcumin is well known for its chemopreventive and anti-cancer properties. Recent findings have demonstrated several pharmacological and biological impacts of curcumin, related to the control and the management of gastrointestinal cancers. Mechanistically, curcumin exerts its biological impacts via antioxidant and anti-inflammatory effects through the interaction with various transcription factors and signaling molecules. Moreover, epigenetic modulators such as microRNAs (miRNAs) have been revealed as novel targets of curcumin. Curcumin was discovered to regulate the expression of numerous pathogenic miRNAs in gastric, colorectal, esophageal and liver cancers. The present systematic review was performed to identify miRNAs that are modulated by curcumin in gastrointestinal cancers.
Collapse
Affiliation(s)
- Abolfazl Akbari
- Colorectal Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Meghdad Sedaghat
- Department of Internal Medicine, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Javad Heshmati
- Songhor Healthcare Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Seidamir Pasha Tabaeian
- Colorectal Research Center, Iran University of Medical Sciences, Tehran, Iran; Department of Internal Medicine, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Sadegh Dehghani
- Radiation Sciences Department, School of Allied Medical Sciences, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Zahra Rostami
- Department of Genetics, Tehran Medical Sciences Branch, Islamic Azad University, Tehran, Iran.
| | - Shahram Agah
- Colorectal Research Center, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
22
|
Darenskaya MA, Kolesnikova LI, Kolesnikov SI. Oxidative Stress: Pathogenetic Role in Diabetes Mellitus and Its Complications and Therapeutic Approaches to Correction. Bull Exp Biol Med 2021; 171:179-189. [PMID: 34173093 PMCID: PMC8233182 DOI: 10.1007/s10517-021-05191-7] [Citation(s) in RCA: 176] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Indexed: 01/02/2023]
Abstract
The review presents modern views about the role of oxidative stress reactions in the pathogenesis of types 1 and 2 diabetes mellitus and their complications based on the analysis of experimental and clinical studies. The sources of increased ROS generation in diabetes are specified, including the main pathways of altered glucose metabolism, oxidative damage to pancreatic β-cells, and endothelial dysfunction. The relationship between oxidative stress, carbonyl stress, and inflammation is described. The significance of oxidative stress reactions associated with hyperglycemia is considered in the context of the “metabolic memory” phenomenon. The results of our studies demonstrated significant ethnic and age-related variability of the LPO—antioxidant defense system parameters in patients with diabetes mellitus, which should be considered during complex therapy of the disease. Numerous studies of the effectiveness of antioxidants in diabetes mellitus of both types convincingly proved that antioxidants should be a part of the therapeutic process. Modern therapeutic strategies in the treatment of diabetes mellitus are aimed at developing new methods of personalized antioxidant therapy, including ROS sources targeting combined with new ways of antioxidant delivery.
Collapse
Affiliation(s)
- M A Darenskaya
- Research Center for Family Health and Human Reproduction Problems, Irkutsk, Russia.
| | - L I Kolesnikova
- Research Center for Family Health and Human Reproduction Problems, Irkutsk, Russia
| | - S I Kolesnikov
- Research Center for Family Health and Human Reproduction Problems, Irkutsk, Russia
| |
Collapse
|
23
|
Jafari SH, Rabiei N, Taghizadieh M, Mirazimi SMA, Kowsari H, Farzin MA, Razaghi Bahabadi Z, Rezaei S, Mohammadi AH, Alirezaei Z, Dashti F, Nejati M. Joint application of biochemical markers and imaging techniques in the accurate and early detection of glioblastoma. Pathol Res Pract 2021; 224:153528. [PMID: 34171601 DOI: 10.1016/j.prp.2021.153528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 06/09/2021] [Accepted: 06/14/2021] [Indexed: 11/28/2022]
Abstract
Glioblastoma is a primary brain tumor with the most metastatic effect in adults. Despite the wide range of multidimensional treatments, tumor heterogeneity is one of the main causes of tumor spread and gives great complexity to diagnostic and therapeutic methods. Therefore, featuring noble noninvasive prognostic methods that are focused on glioblastoma heterogeneity is perceived as an urgent need. Imaging neuro-oncological biomarkers including MGMT (O6-methylguanine-DNA methyltransferase) promoter methylation status, tumor grade along with other tumor characteristics and demographic features (e.g., age) are commonly referred to during diagnostic, therapeutic and prognostic processes. Therefore, the use of new noninvasive prognostic methods focused on glioblastoma heterogeneity is considered an urgent need. Some neuronal biomarkers, including the promoter methylation status of the promoter MGMT, the characteristics and grade of the tumor, along with the patient's demographics (such as age and sex) are involved in diagnosis, treatment, and prognosis. Among the wide array of imaging techniques, magnetic resonance imaging combined with the more physiologically detailed technique of H-magnetic resonance spectroscopy can be useful in diagnosing neurological cancer patients. In addition, intracranial tumor qualitative analysis and sometimes tumor biopsies help in accurate diagnosis. This review summarizes the evidence for biochemical biomarkers being a reliable biomarker in the early detection and disease management in GBM. Moreover, we highlight the correlation between Imaging techniques and biochemical biomarkers and ask whether they can be combined.
Collapse
Affiliation(s)
- Seyed Hamed Jafari
- Medical Imaging Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Nikta Rabiei
- School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Taghizadieh
- Department of Pathology, School of Medicine, Center for Women's Health Research Zahra, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sayad Mohammad Ali Mirazimi
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran; Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Hamed Kowsari
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran; Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Mohammad Amin Farzin
- Department of Laboratory Medicine, School of Allied Medical Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Zahra Razaghi Bahabadi
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran; Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Samaneh Rezaei
- Department of Medical Biotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amir Hossein Mohammadi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Zahra Alirezaei
- Department of Medical Physics, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran; Paramedical School, Bushehr University of Medical Sciences, Bushehr, Iran.
| | - Fatemeh Dashti
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran; Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran.
| | - Majid Nejati
- Anatomical Sciences Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
24
|
Macedo A, Filipe P, Thomé NG, Vieira J, Oliveira C, Teodósio C, Ferreira R, Roque L, Fonte P. A Brief Overview of the Oral Delivery of Insulin as an Alternative to the Parenteral Delivery. Curr Mol Med 2021; 20:134-143. [PMID: 31965934 DOI: 10.2174/1566524019666191010095522] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 09/18/2019] [Accepted: 09/23/2019] [Indexed: 12/27/2022]
Abstract
Diabetes mellitus greatly affects the quality of life of patients and has a worldwide prevalence. Insulin is the most commonly used drug to treat diabetic patients and is usually administered through the subcutaneous route. However, this route of administration is ineffective due to the low concentration of insulin at the site of action. This route of administration causes discomfort to the patient and increases the risk of infection due to skin barrier disturbance caused by the needle. The oral administration of insulin has been proposed to surpass the disadvantages of subcutaneous administration. In this review, we give an overview of the strategies to deliver insulin by the oral route, from insulin conjugation to encapsulation into nanoparticles. These strategies are still under development to attain efficacy and effectiveness that are expected to be achieved in the near future.
Collapse
Affiliation(s)
- Ana Macedo
- LAQV, REQUIMTE, Department of Chemical Sciences - Applied Chemistry Lab, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal.,CBIOS, Universidade Lusófona Research Center for Biosciences & Health Technologies, Campo Grande 376, 1749-024 Lisboa, Portugal
| | - Patrícia Filipe
- CBIOS, Universidade Lusófona Research Center for Biosciences & Health Technologies, Campo Grande 376, 1749-024 Lisboa, Portugal.,Department of Biomedical Sciences, University of Alcalá, Ctra. Madrid-Barcelona Km. 33.600, 28871 Alcalá de Henares, Madrid, Spain
| | - Natália G Thomé
- Center for Marine Sciences (CCMAR), University of Algarve, Gambelas Campus, 8005-139 Faro, Portugal.,Department of Chemistry and Pharmacy, Faculty of Sciences and Technology, University of Algarve, Gambelas Campus, 8005-139 Faro, Portugal
| | - João Vieira
- CBIOS, Universidade Lusófona Research Center for Biosciences & Health Technologies, Campo Grande 376, 1749-024 Lisboa, Portugal
| | - Carolina Oliveira
- CBIOS, Universidade Lusófona Research Center for Biosciences & Health Technologies, Campo Grande 376, 1749-024 Lisboa, Portugal
| | - Catarina Teodósio
- CBIOS, Universidade Lusófona Research Center for Biosciences & Health Technologies, Campo Grande 376, 1749-024 Lisboa, Portugal
| | - Raquel Ferreira
- CBIOS, Universidade Lusófona Research Center for Biosciences & Health Technologies, Campo Grande 376, 1749-024 Lisboa, Portugal
| | - Luís Roque
- CBIOS, Universidade Lusófona Research Center for Biosciences & Health Technologies, Campo Grande 376, 1749-024 Lisboa, Portugal
| | - Pedro Fonte
- LAQV, REQUIMTE, Department of Chemical Sciences - Applied Chemistry Lab, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal.,CBIOS, Universidade Lusófona Research Center for Biosciences & Health Technologies, Campo Grande 376, 1749-024 Lisboa, Portugal.,Center for Marine Sciences (CCMAR), University of Algarve, Gambelas Campus, 8005-139 Faro, Portugal.,Department of Chemistry and Pharmacy, Faculty of Sciences and Technology, University of Algarve, Gambelas Campus, 8005-139 Faro, Portugal.,IBB-Institute for Bioengineering and Biosciences, Department of Bioengineering, Instituto Superior Técnico, University of Lisbon, Avenida Rovisco Pais 1, 1049-001 Lisboa, Portugal
| |
Collapse
|
25
|
Baralić K, Živančević K, Jorgovanović D, Javorac D, Radovanović J, Gojković T, Buha Djordjevic A, Ćurčić M, Mandinić Z, Bulat Z, Antonijević B, Đukić-Ćosić D. Probiotic reduced the impact of phthalates and bisphenol A mixture on type 2 diabetes mellitus development: Merging bioinformatics with in vivo analysis. Food Chem Toxicol 2021; 154:112325. [PMID: 34097988 DOI: 10.1016/j.fct.2021.112325] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 05/28/2021] [Accepted: 06/03/2021] [Indexed: 12/18/2022]
Abstract
Linkage between bis(2-ethylhexyl) phthalate (DEHP), dibutyl phthalate (DBP), and bisphenol A (BPA) co-exposure and type 2 diabetes mellitus (T2DM), as well as ability of multi-strained probiotic to reduce DEHP, DBP and BPA mixture-induced oxidative damage in rat pancreas were investigated. The Comparative Toxicogenomics Database, Cytoscape software and ToppGene Suite were used for data-mining. Animals were sorted into seven groups (n = 6): (1) Control group: corn oil, (2) P: probiotic: Saccharomyces boulardii + Lactobacillus rhamnosus + Lactobacillus plantarum LP 6595 + Lactobacillus plantarum HEAL9; (3) DEHP: 50 mg/kg b.w./day, (4) DBP: 50 mg/kg b.w./day, (5) BPA: 25 mg/kg b.w./day, and (6) MIX: 50 mg/kg b.w./day DEHP + 50 mg/kg b.w/day DBP + 25 mg/kg b.w./day BPA; (7) MIX + P. Rats were sacrificed after 28 days of oral exposure. In silico investigation highlighted 44 DEHP, DBP and BPA mutual genes linked to the T2DM, while apoptosis and oxidative stress were highlighted as the main mechanisms of DEHP, DBP and BPA mixture-linked T2DM. In vivo experiment confirmed the presence of significant changes in redox status parameters (TOS, SOD and SH groups) only in the MIX group, indicating possible additive effects, while probiotic ameliorated mixture-induced redox status changes in rat pancreatic tissue.
Collapse
Affiliation(s)
- Katarina Baralić
- Department of Toxicology "Akademik Danilo Soldatović", University of Belgrade - Faculty of Pharmacy, Vojvode Stepe 450, 11221, Belgrade, Serbia.
| | - Katarina Živančević
- Department of Toxicology "Akademik Danilo Soldatović", University of Belgrade - Faculty of Pharmacy, Vojvode Stepe 450, 11221, Belgrade, Serbia
| | - Dragica Jorgovanović
- Department of Toxicology "Akademik Danilo Soldatović", University of Belgrade - Faculty of Pharmacy, Vojvode Stepe 450, 11221, Belgrade, Serbia
| | - Dragana Javorac
- Department of Toxicology "Akademik Danilo Soldatović", University of Belgrade - Faculty of Pharmacy, Vojvode Stepe 450, 11221, Belgrade, Serbia
| | - Jelena Radovanović
- Clinic for Paediatric and Preventive Dentistry, School of Dental Medicine, University of Belgrade, 11000, Belgrade, Serbia; Department of Radiobiology and Molecular Genetics, "Vinča" Institute of Nuclear Sciences-National Institute of the Republic of Serbia, University of Belgrade, 11000, Belgrade, Serbia
| | - Tamara Gojković
- Department of Medical Biochemistry, University of Belgrade - Faculty of Pharmacy, Vojvode Stepe 450, 11221, Belgrade, Serbia
| | - Aleksandra Buha Djordjevic
- Department of Toxicology "Akademik Danilo Soldatović", University of Belgrade - Faculty of Pharmacy, Vojvode Stepe 450, 11221, Belgrade, Serbia
| | - Marijana Ćurčić
- Department of Toxicology "Akademik Danilo Soldatović", University of Belgrade - Faculty of Pharmacy, Vojvode Stepe 450, 11221, Belgrade, Serbia
| | - Zoran Mandinić
- Clinic for Paediatric and Preventive Dentistry, School of Dental Medicine, University of Belgrade, 11000, Belgrade, Serbia
| | - Zorica Bulat
- Department of Toxicology "Akademik Danilo Soldatović", University of Belgrade - Faculty of Pharmacy, Vojvode Stepe 450, 11221, Belgrade, Serbia
| | - Biljana Antonijević
- Department of Toxicology "Akademik Danilo Soldatović", University of Belgrade - Faculty of Pharmacy, Vojvode Stepe 450, 11221, Belgrade, Serbia
| | - Danijela Đukić-Ćosić
- Department of Toxicology "Akademik Danilo Soldatović", University of Belgrade - Faculty of Pharmacy, Vojvode Stepe 450, 11221, Belgrade, Serbia
| |
Collapse
|
26
|
Nazarian H, Novin MG, Khaleghi S, Habibi B. Small non-coding RNAs in embryonic pre-implantation. Curr Mol Med 2021; 22:287-299. [PMID: 34042034 DOI: 10.2174/1566524021666210526162917] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 04/02/2021] [Accepted: 04/03/2021] [Indexed: 11/22/2022]
Abstract
Failure of embryo implantation has been introduced as an important limiting parameter in early assisted reproduction and pregnancy. The embryo-maternal interactions, endometrial receptivity, and detections of implantation consist of the embryo viability. For regulating the implantation, multiple molecules may be consisted, however, their specific regulatory mechanisms still stand unclear. MicroRNAs (miRNAs) have been highly concerned due to their important effect on human embryo implantation. MicroRNA (miRNA), which acts as the transcriptional regulator of gene expression, is consisted in embryo implantation. Scholars determined that miRNAs cannot affect the cells and release by cells in the extracellular environment considering facilitating intercellular communication, multiple packaging forms, and preparing indicative data in the case of pathological and physiological conditions. The detection of extracellular miRNAs provided new information in cases of implantation studies. For embryo-maternal communication, MiRNAs offered novel approaches. In addition, in assisted reproduction, for embryo choice and prediction of endometrial receptivity, they can act as non-invasive biomarkers and can enhance the accuracy in the process of reducing the mechanical damage for the tissue.
Collapse
Affiliation(s)
- Hamid Nazarian
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Marefat Ghaffari Novin
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sara Khaleghi
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Bahare Habibi
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
27
|
Tavakoli F, Khatami SS, Momeni F, Azadbakht J, Ghasemi F. Cervical Cancer Diagnosis: Insights into Biochemical Biomarkers and Imaging Techniques. Comb Chem High Throughput Screen 2021; 24:605-623. [PMID: 32875976 DOI: 10.2174/1386207323666200901101955] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 07/14/2020] [Accepted: 08/06/2020] [Indexed: 11/22/2022]
Abstract
Cervical malignancy is known as one of the important cancers which is originated from cervix. This malignancy has been observed in women infected with papillomavirus who had regular oral contraceptives, multiple pregnancies, and sexual relations. Early and fast cervical cancer diagnosis is known as two important aspects of cervical cancer therapy. Several investigations indicated that early and fast detection of cervical cancer could be associated with better treatment process and increasing survival rate of patients with this malignancy. Imaging techniques are very important diagnosis tools that could be employed for diagnosis and following responses to therapy in various cervical cancer stages. Multiple lines of evidence indicated that utilization of imaging techniques is related to some limitations (i.e. high cost, and invasive effects). Hence, it seems that along with using imaging techniques, finding and developing new biomarkers could be useful in the diagnosis and treatment of subjects with cervical cancer. Taken together, many studies showed that a variety of biomarkers including, several proteins, mRNAs, microRNAs, exosomes and polymorphisms might be introduced as prognostic, diagnostic and therapeutic biomarkers in cervical cancer therapy. In this review article, we highlighted imaging techniques as well as novel biomarkers for the diagnosis of cervical cancer.
Collapse
Affiliation(s)
- Fatemeh Tavakoli
- Department of Biotechnology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sara Sadat Khatami
- Department of Biotechnology, Faculty of Medicine, Arak University of Medical Sciences, Arak, Iran
| | - Fatemeh Momeni
- Isfahan Research Committee of Multiple Sclerosis, Alzahra Research Institute, Alzahra Hospital, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Javid Azadbakht
- Department of Radiology and Imaging, Kashan University of Medical Science, Kashan, Iran
| | - Faezeh Ghasemi
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Tehran, Iran
| |
Collapse
|
28
|
Shahrzad MK, Gharehgozlou R, Fadaei S, Hajian P, Mirzaei HR. Vitamin D and Non-coding RNAs: New Insights into the Regulation of Breast Cancer. Curr Mol Med 2021; 21:194-210. [PMID: 32652908 DOI: 10.2174/1566524020666200712182137] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 06/09/2020] [Accepted: 06/11/2020] [Indexed: 11/22/2022]
Abstract
Breast cancer, a life-threatening serious disease with a high incident rate among women, is responsible for thousands of cancer-associated death worldwide. Numerous investigations have evaluated the possible mechanisms related to this malignancy. Among them, non-coding RNAs (ncRNAs), i.e., microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and circular RNAs have recently attracted attention of researchers. In addition to recent studies for evaluating the role of ncRNAs in breast cancer etiology, some investigations have revealed that vitamin D has regulatory and therapeutic roles in breast cancer. Moreover, an important link between vitamin D and ncRNAs in cancer therapy has been highlighted. Herein, the aim of this study was to discuss the available data on the mentioned link in breast cancer.
Collapse
Affiliation(s)
- Mohammad Karim Shahrzad
- Department of Internal Medicine and endocrinology, Shohadae Tajrish Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Reyhaneh Gharehgozlou
- Cancer Research Center, Shohada Tajrish Hospital, Department of Radiation Oncology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sara Fadaei
- Department of Internal Medicine and endocrinology, Beheshti University of Medical Sciences, Tehran, Iran
| | - Parastoo Hajian
- Cancer Research Center, Shohada Tajrish Hospital, Department of Radiation Oncology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamid Reza Mirzaei
- Cancer Research Center, Shohada Tajrish Hospital, Department of Radiation Oncology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
29
|
Mao Y, Chen R, Xia M, Guo P, Zeng F, Huang J, He M. Identification of an immune-based mRNA-lncRNA signature for overall survival in cervical squamous cell carcinoma. Future Oncol 2021; 17:2365-2380. [PMID: 33724869 DOI: 10.2217/fon-2020-1153] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Aim: To better predict the survival of cervical squamous cell carcinoma (CESC) patients, we aimed to construct a signature according to different immune infiltration. Methods: We downloaded the RNA sequences of CESC patients from the Cancer Genome Atlas database. By using single-sample gene set enrichment analysis, we separated the samples into high- and low-immunity groups. Then we separated the samples into training and testing datasets and performed the following analyses: univariate, least absolute shrinkage and selection operator analysis, multivariate Cox regression analyses and weighted gene coexpression network analysis using R software. Gene ontology and Kyoto Encyclopedia of Genes and Genomes studies were performed using the Database for Annotation, Visualization and Integrated Discovery website. Results & conclusion: We finally identified a signature with three mRNAs and two lncRNAs: ADGRG5, HSH2D, ZMAT4, RBAKDN and LINC00200. In short, our study constructed an mRNA-lncRNA signature related to immune infiltration to better predict the survival of CESC patients.
Collapse
Affiliation(s)
- Yifang Mao
- Department of Obstetrics & Gynecology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong Province, 510080, PR China
| | - Run Chen
- Department of Obstetrics & Gynecology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong Province, 510080, PR China
| | - Meng Xia
- Department of Obstetrics & Gynecology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong Province, 510080, PR China
| | - Peng Guo
- Department of Obstetrics & Gynecology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong Province, 510080, PR China
| | - Feitianzhi Zeng
- Department of Obstetrics & Gynecology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong Province, 510080, PR China
| | - Jiaming Huang
- Department of Obstetrics & Gynecology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong Province, 510080, PR China
| | - Mian He
- Department of Obstetrics & Gynecology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong Province, 510080, PR China
| |
Collapse
|
30
|
|
31
|
Li T, Hu D, Gong Y. Identification of potential lncRNAs and co-expressed mRNAs in gestational diabetes mellitus by RNA sequencing. J Matern Fetal Neonatal Med 2021; 35:5125-5139. [PMID: 33618585 DOI: 10.1080/14767058.2021.1875432] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
AIM Gestational diabetes mellitus is common during pregnancy, impacting maternal health and fetal development. The aim of this study was to identify potential long non-coding RNAs (lncRNAs) and mRNAs in gestational diabetes mellitus. METHODS The placenta tissues from four women patients with gestational diabetes mellitus and three healthy pregnant women were used for RNA sequencing. Differentially expressed lncRNAs and mRNAs were obtained. Then, interaction networks of lncRNA-nearby targeted mRNA and lncRNA-co-expressed mRNA were constructed, followed by functional annotation of co-expressed mRNAs. Third, GSE51546 dataset was utilized to validate the expression of selected co-expressed mRNAs. In addition, in vitro experiment was applied to expression validation of lncRNAs and mRNAs. Finally, GSE70493 dataset was utilized for diagnostic analysis of selected co-expressed mRNAs. RESULTS A total of 78 differentially expressed lncRNAs and 647 differentially expressed mRNAs in gestational diabetes mellitus were obtained. Several interaction pairs of lncRNA-co-expressed mRNA including LINC01504-CASP8, FUT8-AS1-TLR5/GDF15, GATA2-AS1-PQLC3/KIAA2026, and EGFR-AS1-HLA-G were identified. Endocytosis (involved HLA-G) and toll-like receptor signaling pathway (involved TLR5 and CASP8) were remarkably enriched signaling pathways of co-expressed mRNAs. It is noted that CASP8, TLR5, and PQLC3 had a significant prognosis value for gestational diabetes mellitus. CONCLUSIONS Our study identified several differentially expressed lncRNAs and mRNAs, and their interactions, especially co-expression, may be associated with gestational diabetes mellitus.
Collapse
Affiliation(s)
- Tao Li
- Department of Gynecology and Obstetrics, West China Second University Hospital, Sichuan University, Chengdu, P. R. China.,Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second Hospital, Sichuan University, Chengdu, P. R. China
| | - Die Hu
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second Hospital, Sichuan University, Chengdu, P. R. China.,Department of Outpatient, West China Second University Hospital, Sichuan University, Chengdu, P. R. China
| | - Yunhui Gong
- Department of Gynecology and Obstetrics, West China Second University Hospital, Sichuan University, Chengdu, P. R. China.,Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second Hospital, Sichuan University, Chengdu, P. R. China
| |
Collapse
|
32
|
Li J, Zhang C, Shi Y, Li Q, Li N, Mi Y. Identification of KEY lncRNAs and mRNAs Associated with Oral Squamous Cell Carcinoma Progression. Curr Bioinform 2021. [DOI: 10.2174/1573411016999200729125745] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:
Oral squamous cell carcinoma (OSCC) has been the sixth most common
cancer worldwide. Emerging studies showed long non-coding RNAs to play a key role in human
cancers. However, the molecular mechanisms underlying the initiation and progression of OSCC
remained to be further explored.
Objective:
The present study aimed to identify differentially expressed lncRNAs and mRNAs in
OSCC.
Methods:
GSE30784 was analyzed to identify differentially expressed lncRNAs and mRNAs in
OSCC. Protein-protein interaction network and co-expression network analyses were performed to
reveal the potential roles of OSCC related mRNAs and lncRNAs.
Results:
In the present study, we identified 21 up-regulated lncRNAs and 54 down-regulated
lncRNAs in OSCC progression. Next, we constructed a lncRNA related co-expression network in
OSCC, which included 692 mRNAs and 2193 edges. Bioinformatics analysis showed that
lncRNAs were widely co-expressed with regulating type I interferon signaling pathway,
extracellular matrix organization, collagen catabolic process, immune response, ECM-receptor
interaction, Focal adhesion, and PI3K-Akt signaling pathway. A key network, including lncRNA
C5orf66-AS1, C21orf15, LOC100506098, PCBP1-AS1, LOC284825, OR7E14P, HCG22, and
FLG-AS1, was found to be involved in the regulation of immune response to tumor cell, Golgi
calcium ion transport, negative regulation of vitamin D receptor signaling pathway, and glycerol-
3-phosphate catabolic process. Moreover, we found higher expressions of CYP4F29P, PCBP1-
AS1, HCG22, and C5orf66-AS1, which were associated with shorter overall survival time in
OSCC samples.
Conclusions:
Our analysis can provide novel insights to explore the potential mechanisms
underlying OSCC progression.
Collapse
Affiliation(s)
- Ju Li
- Jinan Stomatological Hospital, 101 Jingliu Road, Jinan 250001, Shandong,China
| | - Congcong Zhang
- Jinan Stomatological Hospital, 101 Jingliu Road, Jinan 250001, Shandong,China
| | - Yang Shi
- Jinan Stomatological Hospital, 101 Jingliu Road, Jinan 250001, Shandong,China
| | - Qing Li
- Jinan Stomatological Hospital, 101 Jingliu Road, Jinan 250001, Shandong,China
| | - Na Li
- Jinan Stomatological Hospital, 101 Jingliu Road, Jinan 250001, Shandong,China
| | - Yong Mi
- Jinan Stomatological Hospital, 101 Jingliu Road, Jinan 250001, Shandong,China
| |
Collapse
|
33
|
Melnik BC. Synergistic Effects of Milk-Derived Exosomes and Galactose on α-Synuclein Pathology in Parkinson's Disease and Type 2 Diabetes Mellitus. Int J Mol Sci 2021; 22:1059. [PMID: 33494388 PMCID: PMC7865729 DOI: 10.3390/ijms22031059] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/14/2021] [Accepted: 01/19/2021] [Indexed: 12/11/2022] Open
Abstract
Epidemiological studies associate milk consumption with an increased risk of Parkinson's disease (PD) and type 2 diabetes mellitus (T2D). PD is an α-synucleinopathy associated with mitochondrial dysfunction, oxidative stress, deficient lysosomal clearance of α-synuclein (α-syn) and aggregation of misfolded α-syn. In T2D, α-syn promotes co-aggregation with islet amyloid polypeptide in pancreatic β-cells. Prion-like vagal nerve-mediated propagation of exosomal α-syn from the gut to the brain and pancreatic islets apparently link both pathologies. Exosomes are critical transmitters of α-syn from cell to cell especially under conditions of compromised autophagy. This review provides translational evidence that milk exosomes (MEX) disturb α-syn homeostasis. MEX are taken up by intestinal epithelial cells and accumulate in the brain after oral administration to mice. The potential uptake of MEX miRNA-148a and miRNA-21 by enteroendocrine cells in the gut, dopaminergic neurons in substantia nigra and pancreatic β-cells may enhance miRNA-148a/DNMT1-dependent overexpression of α-syn and impair miRNA-148a/PPARGC1A- and miRNA-21/LAMP2A-dependent autophagy driving both diseases. MiRNA-148a- and galactose-induced mitochondrial oxidative stress activate c-Abl-mediated aggregation of α-syn which is exported by exosome release. Via the vagal nerve and/or systemic exosomes, toxic α-syn may spread to dopaminergic neurons and pancreatic β-cells linking the pathogenesis of PD and T2D.
Collapse
Affiliation(s)
- Bodo C Melnik
- Department of Dermatology, Environmental Medicine and Health Theory, University of Osnabrück, D-49076 Osnabrück, Germany
| |
Collapse
|
34
|
Chi T, Lin J, Wang M, Zhao Y, Liao Z, Wei P. Non-Coding RNA as Biomarkers for Type 2 Diabetes Development and Clinical Management. Front Endocrinol (Lausanne) 2021; 12:630032. [PMID: 34603195 PMCID: PMC8484715 DOI: 10.3389/fendo.2021.630032] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 08/10/2021] [Indexed: 12/21/2022] Open
Abstract
Diabetes, a metabolic disease characterized by high blood glucose and other complications, has undefined causes and multiple risk factors, including inappropriate diet, unhealthy lifestyles, and genetic predisposition. The two most distinguished types of diabetes are type 1 and type 2 diabetes, resulting from the autoimmune impairment of insulin-generating pancreatic β cells and insulin insensitivity, respectively. Non-coding RNAs (ncRNAs), a cohort of RNAs with little transcriptional value, have been found to exert substantial importance in epigenetic and posttranscriptional modulation of gene expression such as messenger RNA (mRNA) silencing. This review mainly focuses on the pathology of type 2 diabetes (T2D) and ncRNAs as potential biomarkers in T2D development and clinical management. We consolidate the pathogenesis, diagnosis, and current treatments of T2D, and present the existing evidence on changes in multiple types of ncRNAs in response to various pathological changes and dysfunctions in different stages of T2D.
Collapse
Affiliation(s)
- Tiange Chi
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
- First Clinical Medical College, Beijing University of Chinese Medicine, Beijing, China
| | - Jiaran Lin
- Department of Nephrology and Endocrinology, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Mina Wang
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
- Department of Acupuncture and Moxibustion, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing Key Laboratory of Acupuncture Neuromodulation, Beijing, China
| | - Yihan Zhao
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Zehuan Liao
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, Stockholm, Sweden
- *Correspondence: Peng Wei, ; Zehuan Liao,
| | - Peng Wei
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
- *Correspondence: Peng Wei, ; Zehuan Liao,
| |
Collapse
|
35
|
Mehrpour Layeghi S, Arabpour M, Esmaeili R, Naghizadeh MM, Tavakkoly Bazzaz J, Shakoori A. Evaluation of the potential role of long non-coding RNA LINC00961 in luminal breast cancer: a case-control and systems biology study. Cancer Cell Int 2020; 20:478. [PMID: 33024416 PMCID: PMC7531117 DOI: 10.1186/s12935-020-01569-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 09/23/2020] [Indexed: 01/09/2023] Open
Abstract
Background Luminal subtype is the most common subgroup of breast cancer (BC), accounting for more than 70% of this cancer. Long non-coding RNAs (lncRNAs) are a group of RNAs which play critical roles in diverse cellular processes. It is proved that dysregulation of them can contribute to the development of various cancers, including BC. LINC00961 was reported to be downregulated in several cancers, however, its expression level in BC remains largely unknown. The purpose of the present study was to investigate the possible role of LINC00961 in luminal A and B subtypes of BC. Methods To obtain novel lncRNAs associated with different cancers and differentially expressed lncRNAs (DElncRNAs) between BC tumor and normal tissues, Lnc2Cancer and GDC databases were used, respectively. After performing literature review, the expression level of the selected lncRNA (LINC00961) was evaluated in 79 luminal A and B BC specimens and adjacent non-cancerous tissues by Quantitative Reverse Transcription PCR (qRT-PCR). LINC00961 expression was also evaluated in two luminal A BC cell lines, compared to a normal breast cell line. The comparison of the differences between tumor and adjacent non-tumor samples was performed by paired sample t-test. Moreover, correlation analysis between LINC00961 expression and clinicopathological features was performed using the chi-square, fisher exact, and independent t-test. In order to investigate the possible roles of LINC00961 in luminal A and B BC, different bioinformatics analyses such as functional annotation of the LINC00961 co-expressed genes and protein–protein interaction (PPI) networks construction were also performed. Results LINC00961 was selected as a significant DElncRNA which had not been studied in BC. According to q-RT PCR assay, LINC00961 was downregulated in luminal BC tissues and cell lines. Its expression was correlated with smoking status and the age of menarche in luminal BC patients. Also, the results of the bioinformatics analysis were consistent with the data obtained from q-RT PCR assay. The final results indicated that LINC00961 might be involved in multiple cancer-associated pathways such as chemokine, Ras and PI3K–Akt signaling pathways, GPCR ligand binding, and signal transduction in luminal subtypes of BC. CDH5, GNG11, GNG8, SELL, S1PR1, CCL19, FYN, ACAN, CD3E, ACVRL1, CAV1, and PPARGC1A were identified as the top hub genes of the PPI networks across luminal subgroup. Conclusion Our findings suggested that LINC00961 was significantly downregulated in luminal A and B subtypes of BC. Moreover, bioinformatics analysis provided a basis for better identification of the potential role of LINC00961 in luminal subtype of BC.
Collapse
Affiliation(s)
- Sepideh Mehrpour Layeghi
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Maedeh Arabpour
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Rezvan Esmaeili
- Genetics Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
| | | | - Javad Tavakkoly Bazzaz
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Abbas Shakoori
- Medical Genetic Ward, Imam Khomeini Hospital Complex, Tehran University of Medical Sciences, Tehran, Iran.,Breast Disease Research Center (BDRC), Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
36
|
Li J, Xu J, Cao Z, Du S, Zhang L. MiR-1231 decrease the risk of cancer-related mortality in patients combined with non-small cell lung cancer and diabetes mellitus. Cancer Cell Int 2020; 20:438. [PMID: 32939184 PMCID: PMC7487554 DOI: 10.1186/s12935-020-01525-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 08/29/2020] [Indexed: 02/07/2023] Open
Abstract
Background Non-small cell lung cancer (NSCLC) is a deadly human malignancy, and previous studies support the contribution of microRNAs (miRNAs) to cancer assessment. It has been reported that miR-1231 can be used as a biomarker to assess prognosis in different cancers. However, the prognostic value of miR-1231 in NSCLC patients with comorbid diabetes mellitus (DM) remains unclear. The present study evaluated the risk factors for NSCLC with DM and developed a predictive model for it. Methods A real-world study was conducted, including data from 108 patients with NSCLC combined with DM from April 1, 2010, to June 1, 2015. MiR-1231 was recorded during hospital admission. Cox-proportional hazards model was applied for survival analysis of risk factors for cancer-related mortality and to create nomograms for prediction. The accuracy of the model was evaluated by C-index and calibration curves. Results The mortality rate in the high miR-1231 level (≥ 1.775) group was 57.4%. On the basis of univariate analysis, we put factors (P < 0.05) into multivariate regression models, and high miR-1231 levels (P < 0.001, HR = 0.57), surgery (P < 0.001, HR = 0.37) and KPS score > 80 (P = 0.01, HR = 0.47) had a better prognosis and were considered as independent protective factors. These independently relevant factors were used to create nomograms to predict long-term patient survival. Nomogram showed good accuracy in risk estimation with a guide-corrected C-index of 0.691. Conclusion MiR-1231 reduced the risk of cancer-related death in patients with combined NSCLC and DM. Nomogram based on multivariate analysis showed good accuracy in estimating the overall risk of death.
Collapse
Affiliation(s)
- Jing Li
- Department of Medicine, Respiratory, Emergency and Intensive Care Medicine, The Affiliated Dushu Lake Hospital of Soochow University, Suzhou, China
| | - Jialiang Xu
- Department of Cardiovascular, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Zhijun Cao
- Department of Urology, The Ninth People's Hospital of Suzhou, Suzhou, China
| | - Shouzuo Du
- Department of Endocrinology, Suzhou Xiangcheng People's Hospital, Suzhou, China
| | - Luyu Zhang
- Department of Endocrinology, Suzhou Xiangcheng People's Hospital, Suzhou, China
| |
Collapse
|
37
|
Yosaee S, Basirat R, Hamidi A, Esteghamati A, Khodadost M, Shidfar F, Bitarafan V, Djafarian K. Serum irisin levels in metabolically healthy versus metabolically unhealthy obesity: A case-control study. Med J Islam Repub Iran 2020; 34:46. [PMID: 32884921 PMCID: PMC7456437 DOI: 10.34171/mjiri.34.46] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Indexed: 12/02/2022] Open
Abstract
Background: Metabolically healthy obese (MHO) individuals appear to be protected or more resistant to the progression of obesity-related metabolic disorders. Hormonal regulation associated with adipose or muscular tissues such as irisin and leptin may facilitate the healthy metabolic profile of MHO cases. In this case-control study, the differences between serum level of irisin was investigated in metabolically unhealthy obese (MUO) and metabolically healthy obese (MHO) individuals. Methods: The study participants included obese individuals with metabolic syndrome (MetS) (n=51) and 2 control groups that included weight matched cases without MetS (n=51) and normal weight cases without MetS (n=51). Diagnosis of MetS was made based on the Adult Treatment Panel III (ATPIII) criteria. Serum levels of leptin and irisin were determined by enzyme-linked immune-sorbent assay (ELISA) kit. Receiver Operator Characteristic (ROC) curve, multiple linear regression, and one-way ANOVA analysis were used in SPSS 16 software. Significant level was set at 0.05. Results: Based on the statistical analysis, serum levels of irisin were 2.91±1.6, 3.14±1.4, and 4.47±3.23 (ng/mL) in MUO, MHO, and nonobese metabolically healthy participants, respectively (P = 0.001). Also, serum levels of leptin were 14.06±12.4, 11.2±9.3, and 7.09±7.1 (ng/mL) in MUO, MHO, and nonobese metabolically healthy cases, respectively (p=0.002). After adjusting for demographic variables, a significant association was found between irisin and study groups (β = 0.77, P = 0.001), weight (β=-0.03, p=0.014), BMI (β=-0.11, p=0.006), TG (β=-0.003, p=0.025), fat mass (β=-0.04, p=0.046), and fat free mass (β=0.08, p=0.014). Conclusion: Obese patients with/without MetS had lower level of irisin than normal weight participants.
Collapse
Affiliation(s)
- Somaye Yosaee
- Department of Nutrition Sciences, School of Health, Larestan University of Medical Sciences, Larestan, Iran.,Department of Nutrition, Emam Reza Teaching Hospital, Larestan University of Medical Sciences, Larestan, Iran
| | - Reyhane Basirat
- Nutrition Research Center, Department of Clinical Nutrition, School of Nutrition and Food Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Abdolhamid Hamidi
- Department of Clinical Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Alireza Esteghamati
- Endocrinology and Metabolism Research Center (EMRC), Vali-Asr Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahmoud Khodadost
- Department of Epidemiology, Faculty of Health, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Department of Epidemiology, Faculty of Health, Iran University of Medical Sciences, Tehran, Iran
| | - Farzad Shidfar
- Department of Nutritional Sciences, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Vida Bitarafan
- Adelaide Medical School and National Health and Medical Research Council of Australia (NHMRC), Center of Research Excellence in Translating Nutritional Science to Good Health, University of Adelaide, Adelaide, Australia
| | - Kurosh Djafarian
- Department of Clinical Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
38
|
Chen H, Hu X, Li R, Liu B, Zheng X, Fang Z, Chen L, Chen W, Min L, Hu S. LncRNA THRIL aggravates sepsis-induced acute lung injury by regulating miR-424/ROCK2 axis. Mol Immunol 2020; 126:111-119. [PMID: 32818819 DOI: 10.1016/j.molimm.2020.07.021] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 07/27/2020] [Accepted: 07/30/2020] [Indexed: 01/04/2023]
Abstract
Here, we aimed to investigate the role of long noncoding RNA (lncRNA) THRIL in septic-induced acute lung injury. C57BL/6 mice were injected with Adenoviruses (Ad)-shTHRIL or negative control (NC) before caecal ligation and puncture (CLP) operation. MPVECs were transfected with Ad-shTHRIL or NC, followed by lipopolysaccharide (LPS) treatment. MiR-424 and Rho-associated kinase 2 (ROCK2) were predicted and verified as direct targets of THRIL and miR-424, respectively, by using dual-luciferase reporter assay. ROCK2 overexpression vector and shTHRIL were co-transfected into mouse pulmonary microvascular endothelial cells for 24 h before LPS treatment. Our results showed that THRIL was highly expressed in the lung of sepsis mice. CLP triggered severe lung injury and apoptosis in mice, which was abolished by THRIL knockdown. Moreover, CLP treatment visibly increased protein concentration, the number of total cell of neutrophils, and macrophages in bronchoalveolar lavage fluid (BALF). Besides, elevated protein levels of tumor necrosis factor-α, interleukin-1β, and interleukin-6 were observed in both lung and BALF. However, inhibition of THRIL reduced the number of inflammatory cells and the production of pro-inflammatory cytokines in sepsis mouse model. The effect of THRIL on inflammatory response and apoptosis in the lung was confirmed in sepsis cell model. Moreover, mechanistic studies have shown that THRIL up-regulated ROCK2 level through sponging miR-424. Furthermore, ROCK2 overexpression reversed the inhibitory effects of THRIL knockdown on LPS-induced inflammatory response and apoptosis. Overall, in vivo and in vitro results suggested that THRIL accelerates sepsis-induced lung injury by sponging miR-424 and further restoring ROCK2.
Collapse
Affiliation(s)
- Huibin Chen
- Department of Critical Care Medicine, Taihe Hospital, Hubei University of Medicine, Shiyan City, Hubei Province, 442000, China
| | - Xuemei Hu
- Department of Nephrology, Taihe Hospital, Hubei University of Medicine, Shiyan City, Hubei Province, 442000, China
| | - Ruiting Li
- Department of Critical Care Medicine, Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan City, Hubei Province, 430022, China
| | - Boyi Liu
- Department of Critical Care Medicine, Taihe Hospital, Hubei University of Medicine, Shiyan City, Hubei Province, 442000, China
| | - Xiang Zheng
- Department of Critical Care Medicine, Taihe Hospital, Hubei University of Medicine, Shiyan City, Hubei Province, 442000, China
| | - Zhicheng Fang
- Department of Critical Care Medicine, Taihe Hospital, Hubei University of Medicine, Shiyan City, Hubei Province, 442000, China
| | - Li Chen
- Department of Critical Care Medicine, Taihe Hospital, Hubei University of Medicine, Shiyan City, Hubei Province, 442000, China
| | - Wei Chen
- Department of Critical Care Medicine, Taihe Hospital, Hubei University of Medicine, Shiyan City, Hubei Province, 442000, China
| | - Li Min
- Department of Critical Care Medicine, Taihe Hospital, Hubei University of Medicine, Shiyan City, Hubei Province, 442000, China
| | - Shengli Hu
- Department of Neurosurgery, Taihe Hospital, Hubei University of Medicine, Shiyan City, Hubei Province, 442000, China.
| |
Collapse
|
39
|
Yang S, Jiang Y, Ren X, Feng D, Zhang L, He D, Hong S, Jin L, Zhang F, Lu S. FOXA1-induced circOSBPL10 potentiates cervical cancer cell proliferation and migration through miR-1179/UBE2Q1 axis. Cancer Cell Int 2020; 20:389. [PMID: 32831649 PMCID: PMC7422615 DOI: 10.1186/s12935-020-01360-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Accepted: 06/17/2020] [Indexed: 01/30/2023] Open
Abstract
Background Recently, extensive evidence has clarified the crucial role of circular RNAs (circRNAs) as a pro-tumor or anti-cancer participant in human malignancies. A new circRNA derived from oxysterol binding protein like 10 (OSBPL10) (circOSBPL10) has not been researched in cervical cancer (CC) yet. Methods The expression of molecules was analyzed by RT-qPCR or western blot. Several functional assays were applied to explore the biological influence of circOSBPL10 on CC. The interaction between RNAs was estimated via luciferase reporter, RNA immunoprecipitation and RNA pull-down assays. Results CircOSBPL10 characterized with cyclic structure was revealed to possess elevated expression in CC cells. CircOSBPL10 downregulation elicited suppressive impacts on CC cell proliferation and migration. Interestingly, circOSBPL10 regulated CC progression by interacting with microRNA-1179 (miR-1179). Moreover, ubiquitin conjugating enzyme E2 Q1 (UBE2Q1) targeted by miR-1179 was positively regulated by circOSBPL10 in CC. Furthermore, enhanced UBE2Q1 expression or suppressed miR-1179 level countervailed the repressive effect of circOSBPL10 depletion on the malignant phenotypes of CC cells. Moreover, forkhead box A1 (FOXA1) was confirmed to induce circOSBPL10 expression in CC cells. Conclusions FOXA1-induced circOSBPL10 facilitates CC progression through miR-1179/UBE2Q1 axis, highlighting a strong potential for circOSBPL10 to serve as a promising therapeutic target in CC.
Collapse
Affiliation(s)
- Shanshan Yang
- Department of Gynecological Radiotherapy, Harbin Medical University Cancer Hospital, No. 150 Haping Road, Nangang District, Harbin, 150081 Heilongjiang China
| | - Yiwen Jiang
- Department of Radiotherapy, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, No. 55 Renmin South Road, Chengdu, 610041 Sichuan China
| | - Xiaoli Ren
- Department of Radiotherapy, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, No. 55 Renmin South Road, Chengdu, 610041 Sichuan China
| | - Dan Feng
- Department of Radiotherapy, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, No. 55 Renmin South Road, Chengdu, 610041 Sichuan China
| | - Liaoyun Zhang
- Department of Radiotherapy, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, No. 55 Renmin South Road, Chengdu, 610041 Sichuan China.,Pharmacy Department, Sichuan Jinxin Women and Children's Hospital, No. 66 Jingxiu Road, Jinjiang District, Chengdu, 610061 Sichuan China
| | - Deying He
- Department of Radiotherapy, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, No. 55 Renmin South Road, Chengdu, 610041 Sichuan China
| | - Shiyao Hong
- Department of Radiotherapy, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, No. 55 Renmin South Road, Chengdu, 610041 Sichuan China
| | - Li Jin
- Department of Radiotherapy, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, No. 55 Renmin South Road, Chengdu, 610041 Sichuan China
| | - Fang Zhang
- Department of Radiotherapy, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, No. 55 Renmin South Road, Chengdu, 610041 Sichuan China
| | - Shun Lu
- Department of Radiotherapy, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, No. 55 Renmin South Road, Chengdu, 610041 Sichuan China
| |
Collapse
|
40
|
Abstract
Maternally mitochondrial dysfunction includes a heterogeneous group of genetic disorders which leads to the impairment of the final common pathway of energy metabolism. Coronary heart disease and coronary venous disease are two important clinical manifestations of mitochondrial dysfunction due to abnormality in the setting of underlying pathways. Mitochondrial dysfunction can lead to cardiomyopathy, which is involved in the onset of acute cardiac and pulmonary failure. Mitochondrial diseases present other cardiac manifestations such as left ventricular noncompaction and cardiac conduction disease. Different clinical findings from mitochondrial dysfunction originate from different mtDNA mutations, and this variety of clinical symptoms poses a diagnostic challenge for cardiologists. Heart transplantation may be a good treatment, but it is not always possible, and other complications of the disease, such as mitochondrial encephalopathy, lactic acidosis, and stroke-like syndrome, should be considered. To diagnose and treat most mitochondrial disorders, careful cardiac, neurological, and molecular studies are needed. In this study, we looked at molecular genetics of MIDs and cardiac manifestations in patients with mitochondrial dysfunction.
Collapse
|
41
|
Abbaszadeh-Goudarzi K, Radbakhsh S, Pourhanifeh MH, Khanbabaei H, Davoodvandi A, Fathizadeh H, Sahebkar A, Shahrzad MK, Mirzaei H. Circular RNA and Diabetes: Epigenetic Regulator with Diagnostic Role. Curr Mol Med 2020; 20:516-526. [DOI: 10.2174/1566524020666200129142106] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 11/12/2019] [Accepted: 01/01/2020] [Indexed: 11/22/2022]
Abstract
Circular RNAs, a group of endogenous non-coding RNAs, are characterized
by covalently closed cyclic structures with no poly-adenylated tails. It has been recently
recommended that cirRNAs have an essential role in regulating genes expression by
functioning as a translational regulator, RNA binding protein sponge and microRNA
sponge. Due to their close relation to the progression of various diseases such as
diabetes, circRNAs have become a research hotspot. A number of circRNAs (i.e.,
circRNA_0054633, circHIPK3, circANKRD36, and circRNA11783-2) have been shown
to be associated with initiation and progression of diabetes. Based on reports, in a
tissue, some circRNAs are expressed in a developmental stage-specific manner. In this
study, we reviewed research on circular RNAs involved in the pathogenesis and
diagnosis of diabetes and their prognostic roles.
Collapse
Affiliation(s)
- Kazem Abbaszadeh-Goudarzi
- Cellular and Molecular Research Center, Department of Biochemistry and Nutrition, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Shabnam Radbakhsh
- Department of Medical Biotechnology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Hashem Khanbabaei
- Radiobiology Laboratory, Medical Physics Department, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | | | - Hadis Fathizadeh
- Department of Microbiology, Faculty of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Karim Shahrzad
- Department of Internal Medicine and endocrinology, Shohadae Tajrish Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
42
|
Franco D, Aranega A, Dominguez JN. Non-coding RNAs and Atrial Fibrillation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1229:311-325. [PMID: 32285421 DOI: 10.1007/978-981-15-1671-9_19] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Atrial fibrillation is the most frequent type of cardiac arrhythmia in humans, with an estimate incidence of 1-2% in the general population, rising up to 8-10% in the elderly. Cardiovascular risk factors such as diabetes, obesity, hypertension and hyperthyroidism can increase the occurrence of AF. The onset of AF triggers additional AF episodes, leading to structural and electrical remodeling of the diseased heart. Understanding the molecular bases of atrial fibrillation have greatly advance over the last decade demonstrating a pivotal role of distinct ion channels in AF pathophysiology. A new scenario has opened on the understanding of the molecular mechanisms underlying AF, with the discovery of non-coding RNAs and their wide implication in multiple disease states, including cardiac arrhythmogenic pathologies. microRNAs are small non-coding RNAs of 22-24 nucleotides that are capable of regulating gene expression by interacting with the mRNA transcript 3'UTRs and promoting mRNA degradation and/or protein translation blockage. Long non-coding RNAs are a more diverse group of non-coding RNAs, providing transcriptional and post-transcriptional roles and subclassified according to their functional properties. In this chapter we summarized current state-of-the-art knowledge on the functional of microRNAs and long non-coding RNAs as well as their cross-talk regulatory mechanisms in atrial fibrillation.
Collapse
Affiliation(s)
- Diego Franco
- Cardiovascular Development Group, Department of Experimental Biology, University of Jaen, Jaen, Spain.
| | - Amelia Aranega
- Cardiovascular Development Group, Department of Experimental Biology, University of Jaen, Jaen, Spain
| | - Jorge N Dominguez
- Cardiovascular Development Group, Department of Experimental Biology, University of Jaen, Jaen, Spain
| |
Collapse
|
43
|
Wu A, Zhou X, Mi L, Shen J. LINC00202 promotes retinoblastoma progression by regulating cell proliferation, apoptosis, and aerobic glycolysis through miR-204-5p/HMGCR axis. Open Life Sci 2020; 15:437-448. [PMID: 33817232 PMCID: PMC7874641 DOI: 10.1515/biol-2020-0047] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 05/14/2020] [Accepted: 05/14/2020] [Indexed: 11/15/2022] Open
Abstract
LINC00202 is a newly identified long noncoding RNA (lncRNA) and has been demonstrated to involve in the progression of retinoblastoma (RB). Here, we further explored the role and the underlying molecular mechanism of LINC00202 on RB malignant properties and glycolysis. LINC00202, microRNA (miR)-204-5p, and 3-hydroxy-3-methyl-glutaryl-coenzyme A reductase (HMGCR) mRNA were detected by a quantitative real-time polymerase chain reaction. Cell proliferation and apoptosis were analyzed using cell counting kit-8 assay and colony formation assay and flow cytometry, respectively. Glucose metabolism was calculated by measuring the extracellular acidification rate (ECRA). Western blot was used to detect the levels of HMGCR, ki67, pro-caspase-3, cleaved-caspase-3, and lactate dehydrogenase A chain (LDHA). The interaction between miR-204-5p and LINC00202 or HMGCR was analyzed by the dual-luciferase reporter assay. Murine xenograft model was established to conduct in vivo experiments. LINC00202 expression was upregulated in RB tumor tissues and LINC00202 knockdown inhibited RB cell proliferation, glycolysis, and stimulated apoptosis in vitro as well as impeded tumor growth in vivo. MiR-204-5p directly bound to LINC00202 and HMGCR in RB cells, and LINC00202 functioned as a competing endogenous RNA in regulating HMGCR through competitively binding to miR-204-5p. More importantly, the regulation of malignant properties and glycolysis of RB cells mediated by LINC00202 could be reversed by abnormal miR-204-5p or HMGCR expression in RB cells. In all, LINC00202 promoted RB cell proliferation, glycolysis, and suppressed apoptosis by regulating the miR-204-5p/HMGCR axis, suggesting a novel therapeutic target for patients with RB.
Collapse
Affiliation(s)
- Aimin Wu
- Department of Ophthalmology, Fenghua District People’s Hospital of Ningbo City, Ningbo, No. 36 Gongyuan Road, Fenghua District, Ningbo City, Zhejiang Province, 315500, China
| | - Xuewei Zhou
- Department of Ophthalmology, Fenghua District People’s Hospital of Ningbo City, Ningbo, No. 36 Gongyuan Road, Fenghua District, Ningbo City, Zhejiang Province, 315500, China
| | - Linglong Mi
- Department of Ophthalmology, Fenghua District People’s Hospital of Ningbo City, Ningbo, No. 36 Gongyuan Road, Fenghua District, Ningbo City, Zhejiang Province, 315500, China
| | - Jiang Shen
- Department of Ophthalmology, Ningbo Eye Hospital, Ningbo, China
| |
Collapse
|
44
|
LINC-PINT Suppresses the Aggressiveness of Thyroid Cancer by Downregulating miR-767-5p to Induce TET2 Expression. MOLECULAR THERAPY. NUCLEIC ACIDS 2020; 22:319-328. [PMID: 33230437 PMCID: PMC7527623 DOI: 10.1016/j.omtn.2020.05.033] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 05/28/2020] [Indexed: 12/14/2022]
Abstract
Long noncoding RNA (lncRNA) long intergenic nonprotein-coding RNA, p53-induced transcript (LINC-PINT) has shown anti-invasive activity in lung and colon cancer cells. However, the role of LINC-PINT in thyroid cancer is unclear. In the present work, we explored the expression of LINC-PINT in 60 paired thyroid cancer and adjacent normal tissues. The clinical significance and biological function of LINC-PINT in thyroid cancer were determined. LINC-PINT expression was downregulated in thyroid cancer relative to adjacent normal tissues (p = 0.0002). Low expression of LINC-PINT was significantly associated with advanced tumor node metastasis (TNM) stage (p = 0.0306) and lymph node metastasis (p = 0.0359). Ectopic expression of LINC-PINT suppressed the proliferation, invasion, and tumorigenesis of thyroid cancer cells. Mechanistically, LINC-PINT associated with and downregulated microRNA (miR)-767-5p. Moreover, LINC-PINT overexpression relieved miR-767-5p-mediated repression of ten-eleven translocation 2 (TET2). miR-767-5p promoted aggressiveness of thyroid cancer, which was reversed by overexpression of TET2. Coexpression of miR-767-5p or depletion of TET2 rescued the inhibitory effect of LINC-PINT on thyroid cancer cell proliferation and invasion. In addition, there was a negative correlation between miR-767-5p and LINC-PINT in thyroid cancer (r = -0.34772, p = 0.01789). Taken together, LINC-PINT functions as a tumor suppressor in thyroid cancer via the miR-767-5p/TET2 axis, representing a potential therapeutic target for thyroid cancer.
Collapse
|
45
|
Insulin Resistance in Osteoarthritis: Similar Mechanisms to Type 2 Diabetes Mellitus. J Nutr Metab 2020; 2020:4143802. [PMID: 32566279 PMCID: PMC7261331 DOI: 10.1155/2020/4143802] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 05/01/2020] [Accepted: 05/11/2020] [Indexed: 02/06/2023] Open
Abstract
Osteoarthritis (OA) and type 2 diabetes mellitus (T2D) are two of the most widespread chronic diseases. OA and T2D have common epidemiologic traits, are considered heterogenic multifactorial pathologies that develop through the interaction of genetic and environmental factors, and have common risk factors. In addition, both of these diseases often manifest in a single patient. Despite differences in clinical manifestations, both diseases are characterized by disturbances in cellular metabolism and by an insulin-resistant state primarily associated with the production and utilization of energy. However, currently, the primary cause of OA development and progression is not clear. In addition, although OA is manifested as a joint disease, evidence has accumulated that it affects the whole body. As pathological insulin resistance is viewed as a driving force of T2D development, now, we present evidence that the molecular and cellular metabolic disturbances associated with OA are linked to an insulin-resistant state similar to T2D. Moreover, the alterations in cellular energy requirements associated with insulin resistance could affect many metabolic changes in the body that eventually result in pathology and could serve as a unified mechanism that also functions in many metabolic diseases. However, these issues have not been comprehensively described. Therefore, here, we discuss the basic molecular mechanisms underlying the pathological processes associated with the development of insulin resistance; the major inducers, regulators, and metabolic consequences of insulin resistance; and instruments for controlling insulin resistance as a new approach to therapy.
Collapse
|
46
|
Cancer stem cells and oral cancer: insights into molecular mechanisms and therapeutic approaches. Cancer Cell Int 2020; 20:113. [PMID: 32280305 PMCID: PMC7137421 DOI: 10.1186/s12935-020-01192-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Accepted: 03/27/2020] [Indexed: 02/06/2023] Open
Abstract
Cancer stem cells (CSCs) have been identified as a little population of cancer cells, which have features as the same as the cells normal stem cells. There is enough knowledge of the CSCs responsibility for metastasis, medicine resistance, and cancer outbreak. Therefore, CSCs control possibly provides an efficient treatment intervention inhibiting tumor growth and invasion. In spite of the significance of targeting CSCs in treating cancer, few study comprehensively explored the nature of oral CSCs. It has been showed that oral CSCs are able to contribute to oral cancer progression though activation/inhibition a sequences of cellular and molecular pathways (microRNA network, histone modifications and calcium regulation). Hence, more understanding about the properties of oral cancers and their behaviors will help us to develop new therapeutic platforms. Head and neck CSCs remain a viable and intriguing option for targeted therapy. Multiple investigations suggested the major contribution of the CSCs to the metastasis, tumorigenesis, and resistance to the new therapeutic regimes. Therefore, experts in the field are examining the encouraging targeted therapeutic choices. In spite of the advancements, there are not enough information in this area and thus a magic bullet for targeting and eliminating the CSCs deviated us. Hence, additional investigations on the combined therapies against the head and neck CSCs could offer considerable achievements. The present research is a review of the recent information on oral CSCs, and focused on current advancements in new signaling pathways contributed to their stemness regulation. Moreover, we highlighted various therapeutic approaches against oral CSCs.
Collapse
|
47
|
Nahand JS, Bokharaei-Salim F, Karimzadeh M, Moghoofei M, Karampoor S, Mirzaei HR, Tbibzadeh A, Jafari A, Ghaderi A, Asemi Z, Mirzaei H, Hamblin MR. MicroRNAs and exosomes: key players in HIV pathogenesis. HIV Med 2020; 21:246-278. [PMID: 31756034 PMCID: PMC7069804 DOI: 10.1111/hiv.12822] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/10/2019] [Indexed: 12/29/2022]
Abstract
OBJECTIVES HIV infection is well known to cause impairment of the human immune system, and until recently was a leading cause of death. It has been shown that T lymphocytes are the main targets of HIV. The virus inactivates T lymphocytes by interfering with a wide range of cellular and molecular targets, leading to suppression of the immune system. The objective of this review is to investigate to what extent microRNAs (miRNAs) are involved in HIV pathogenesis. METHODS The scientific literature (Pubmed and Google scholar) for the period 1988-2019 was searched. RESULTS Mounting evidence has revealed that miRNAs are involved in viral replication and immune response, whether by direct targeting of viral transcripts or through indirect modulation of virus-related host pathways. In addition, exosomes have been found to act as nanoscale carriers involved in HIV pathogenesis. These nanovehicles target their cargos (i.e. DNA, RNA, viral proteins and miRNAs) leading to alteration of the behaviour of recipient cells. CONCLUSIONS miRNAs and exosomes are important players in HIV pathogenesis. Additionally, there are potential diagnostic applications of miRNAs as biomarkers in HIV infection.
Collapse
Affiliation(s)
- Javid Sadri Nahand
- Department of Virology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Farah Bokharaei-Salim
- Department of Virology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Karimzadeh
- Department of Virology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mohsen Moghoofei
- Department of Microbiology, Faculty of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Sajad Karampoor
- Department of Virology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Hamid Reza Mirzaei
- Department of Medical Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Alireza Tbibzadeh
- Department of Virology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Amir Jafari
- Department of Medical Nanotechnology, Faculty of Advanced Technology in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Amir Ghaderi
- Department of Addiction Studies, School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Zatollah Asemi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, I.R. Iran
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, I.R. Iran
| | - Michael R. Hamblin
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, 40 Blossom Street, Boston, MA, 02114, USA
| |
Collapse
|
48
|
Liu F, Wen C. LINC01410 Knockdown Suppresses Cervical Cancer Growth and Invasion via Targeting miR-2467-3p/VOPP1 Axis. Cancer Manag Res 2020; 12:855-861. [PMID: 32104067 PMCID: PMC7008191 DOI: 10.2147/cmar.s236832] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 01/04/2020] [Indexed: 12/17/2022] Open
Abstract
Background Long noncoding RNAs have essential roles in human diseases, including cancer. Our work aims to assess the function and mechanisms of LINC01410 in cervical cancer (CC) development. Methods Expression analyses were performed using qRT-PCR. Proliferation was determined through CCK8 and colony formation assays. Cell migration and invasion were determined by Transwell assay. The interactions among LINC01410, miR-2467-3p and VOPP1 were analyzed via luciferase reporter assay. Results LINC01410 was upregulated in CC tissues and cell lines. LINC01410 upregulation correlated with poor prognosis. LINC01410 silencing suppressed proliferation, migration and invasion of CC cells. LINC01410 was the sponge for miR-2467. And LINC01410 promoted VOPP1 expression through inhibiting miR-2467. Conclusion Our findings demonstrated that LINC01410 contributed to CC progression through regulating miR-2467/VOPP1 axis and suggested that LINC01410/miR-2467/VOPP1 cascade may be a potential therapeutic target.
Collapse
Affiliation(s)
- Fengjuan Liu
- Department of Gynecology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, People's Republic of China
| | - Chuansong Wen
- Department of Gynecology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, People's Republic of China
| |
Collapse
|
49
|
Grieco GE, Brusco N, Licata G, Nigi L, Formichi C, Dotta F, Sebastiani G. Targeting microRNAs as a Therapeutic Strategy to Reduce Oxidative Stress in Diabetes. Int J Mol Sci 2019; 20:ijms20246358. [PMID: 31861156 PMCID: PMC6940935 DOI: 10.3390/ijms20246358] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 12/09/2019] [Accepted: 12/15/2019] [Indexed: 02/06/2023] Open
Abstract
Diabetes mellitus is a group of heterogeneous metabolic disorders characterized by chronic hyperglycaemia as a consequence of pancreatic β cell loss and/or dysfunction, also caused by oxidative stress. The molecular mechanisms involved inβ cell dysfunction and in response to oxidative stress are also regulated by microRNAs (miRNAs). miRNAs are a class of negative gene regulators, which modulate pathologic mechanisms occurring in diabetes and its complications. Although several pharmacological therapies specifically targeting miRNAs have already been developed and brought to the clinic, most previous miRNA-based drug delivery methods were unable to target a specific miRNA in a single cell type or tissue, leading to important off-target effects. In order to overcome these issues, aptamers and nanoparticles have been described as non-cytotoxic vehicles for miRNA-based drug delivery. These approaches could represent an innovative way to specifically target and modulate miRNAs involved in oxidative stress in diabetes and its complications. Therefore, the aims of this review are: (i) to report the role of miRNAs involved in oxidative stress in diabetes as promising therapeutic targets; (ii) to shed light onto the new delivery strategies developed to modulate the expression of miRNAs in diseases.
Collapse
Affiliation(s)
- Giuseppina Emanuela Grieco
- Diabetes Unit, Department of Medicine, Surgery and Neurosciences, University of Siena, V.le Bracci, 16, 53100 Siena, Italy; (G.E.G.); (N.B.); (G.L.); (L.N.); (C.F.); (G.S.)
- Fondazione Umberto Di Mario ONLUS c/o Toscana Life Sciences, 53100 Siena, Italy
| | - Noemi Brusco
- Diabetes Unit, Department of Medicine, Surgery and Neurosciences, University of Siena, V.le Bracci, 16, 53100 Siena, Italy; (G.E.G.); (N.B.); (G.L.); (L.N.); (C.F.); (G.S.)
- Fondazione Umberto Di Mario ONLUS c/o Toscana Life Sciences, 53100 Siena, Italy
| | - Giada Licata
- Diabetes Unit, Department of Medicine, Surgery and Neurosciences, University of Siena, V.le Bracci, 16, 53100 Siena, Italy; (G.E.G.); (N.B.); (G.L.); (L.N.); (C.F.); (G.S.)
- Fondazione Umberto Di Mario ONLUS c/o Toscana Life Sciences, 53100 Siena, Italy
| | - Laura Nigi
- Diabetes Unit, Department of Medicine, Surgery and Neurosciences, University of Siena, V.le Bracci, 16, 53100 Siena, Italy; (G.E.G.); (N.B.); (G.L.); (L.N.); (C.F.); (G.S.)
- Fondazione Umberto Di Mario ONLUS c/o Toscana Life Sciences, 53100 Siena, Italy
- UO Diabetologia, Azienda Ospedaliera Universitaria Senese, 53100 Siena, Italy
| | - Caterina Formichi
- Diabetes Unit, Department of Medicine, Surgery and Neurosciences, University of Siena, V.le Bracci, 16, 53100 Siena, Italy; (G.E.G.); (N.B.); (G.L.); (L.N.); (C.F.); (G.S.)
- Fondazione Umberto Di Mario ONLUS c/o Toscana Life Sciences, 53100 Siena, Italy
- UO Diabetologia, Azienda Ospedaliera Universitaria Senese, 53100 Siena, Italy
| | - Francesco Dotta
- Diabetes Unit, Department of Medicine, Surgery and Neurosciences, University of Siena, V.le Bracci, 16, 53100 Siena, Italy; (G.E.G.); (N.B.); (G.L.); (L.N.); (C.F.); (G.S.)
- Fondazione Umberto Di Mario ONLUS c/o Toscana Life Sciences, 53100 Siena, Italy
- UO Diabetologia, Azienda Ospedaliera Universitaria Senese, 53100 Siena, Italy
- Correspondence: ; Tel.: +39-0577-586269
| | - Guido Sebastiani
- Diabetes Unit, Department of Medicine, Surgery and Neurosciences, University of Siena, V.le Bracci, 16, 53100 Siena, Italy; (G.E.G.); (N.B.); (G.L.); (L.N.); (C.F.); (G.S.)
- Fondazione Umberto Di Mario ONLUS c/o Toscana Life Sciences, 53100 Siena, Italy
| |
Collapse
|
50
|
Razi E, Radak M, Mahjoubin-Tehran M, Talebi S, Shafiee A, Hajighadimi S, Moradizarmehri S, Sharifi H, Mousavi N, Sarvizadeh M, Nejati M, Taghizadeh M, Ghasemi F. Cancer stem cells as therapeutic targets of pancreatic cancer. Fundam Clin Pharmacol 2019; 34:202-212. [PMID: 31709581 DOI: 10.1111/fcp.12521] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 11/02/2019] [Accepted: 11/06/2019] [Indexed: 12/11/2022]
Abstract
The discovery of stem cells and their potential abilities in self-renewal and differentiation has opened a new horizon in medicine. Scientists have found a small population of stem cells in some types of cancers with the same functions as normal stem cells. There are two models for tumor progression: clonal (stochastic) and cancer stem cell (CSCs) models. According to the first model, all transformed cells in the tumor have carcinogenic potential and are able to proliferate and produce the same cells. The latter model, which has received more attention recently, considers the role of CSCs in drug resistance and tumor metastasis. Following the model, researchers have found that targeting CSCs may be a promising way in cancer therapy. This review describes CSC characteristics in general, while also focusing on CSC properties in the context of pancreatic cancer.
Collapse
Affiliation(s)
- Ebrahim Razi
- The Advocate Center for Clinical Research, Ayatollah Yasrebi Hospital, Kashan, Iran
| | - Mehran Radak
- Department of Biology, Faculty of Science, Razi University, Kermanshah, Iran
| | - Maryam Mahjoubin-Tehran
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Medical Biotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Samaneh Talebi
- Division of Human Genetics, Immunology Research Center, Avicenna Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Alimohammad Shafiee
- Division of General Internal Medicine, Toronto General Hospital, Toronto, ON, Canada
| | - Sarah Hajighadimi
- Division of General Internal Medicine, Toronto General Hospital, Toronto, ON, Canada
| | - Sanaz Moradizarmehri
- Division of General Internal Medicine, Toronto General Hospital, Toronto, ON, Canada
| | - Hossein Sharifi
- The Advocate Center for Clinical Research, Ayatollah Yasrebi Hospital, Kashan, Iran
| | - Nousin Mousavi
- Department of Surgery, Faculty of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Mostafa Sarvizadeh
- The Advocate Center for Clinical Research, Ayatollah Yasrebi Hospital, Kashan, Iran
| | - Majid Nejati
- Anatomical Sciences Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Mohsen Taghizadeh
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Faezeh Ghasemi
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Tehran, Iran
| |
Collapse
|