1
|
Perez ES, Ribeiro RA, Zanella BT, Almeida FLA, Blasco J, Garcia de la Serrana D, Dal-Pai-Silva M, Duran BO. Proteome of amino acids or IGF1-stimulated pacu muscle cells offers molecular insights and suggests FN1B and EIF3C as candidate markers of fish muscle growth. Biochem Biophys Res Commun 2025; 757:151648. [PMID: 40107112 DOI: 10.1016/j.bbrc.2025.151648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2025] [Revised: 03/06/2025] [Accepted: 03/14/2025] [Indexed: 03/22/2025]
Abstract
Study of fish skeletal muscle is essential to understand physiological or metabolic processes, and to develop programs searching for increased muscle mass and meat production. Amino acids (AA) and IGF1 stimulate processes that lead to muscle growth, but their signaling pathways and molecular regulation need further clarification in fish. We obtained the proteome of pacu (Piaractus mesopotamicus) cultured muscle cells treated with AA or IGF1, which induced the differential abundance of 67 and 53 proteins, respectively. Enrichment analyses showed that AA modulated histone methylation, cell differentiation, and metabolism, while IGF1 modulated ATP production and protein synthesis. In addition, we identified molecular networks with candidate markers that commonly regulate fish muscle cells: FN1B and EIF3C, respectively up- and down-regulated by both treatments. FN1B was related to cell proliferation, protein synthesis, and muscle repair, while EIF3C connected with negative regulators of muscle growth. Their gene expression was evaluated in pacu and Nile tilapia (Oreochromis niloticus) after nutrient manipulation, with fn1b increased during refeeding and eif3c increased during fasting in both species. Our work helps clarify the molecular regulation by AA or IGF1 and suggests that FN1B and EIF3C could be potential stimulatory and inhibitory biomarkers of fish muscle growth.
Collapse
Affiliation(s)
- Erika S Perez
- Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil
| | - Rafaela A Ribeiro
- Department of Histology, Embryology and Cell Biology, Institute of Biological Sciences, Federal University of Goiás (UFG), Goiânia, Goiás, Brazil
| | - Bruna Tt Zanella
- Department of Morphophysiology, Institute of Biosciences, Federal University of Jataí (UFJ), Jataí, Goiás, Brazil
| | - Fernanda LA Almeida
- Department of Morphological Sciences, Center of Biological Sciences, State University of Maringá, Maringá, Paraná, Brazil
| | - Josefina Blasco
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology, University of Barcelona, Barcelona, Spain
| | - Daniel Garcia de la Serrana
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology, University of Barcelona, Barcelona, Spain
| | - Maeli Dal-Pai-Silva
- Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil
| | - Bruno Os Duran
- Department of Histology, Embryology and Cell Biology, Institute of Biological Sciences, Federal University of Goiás (UFG), Goiânia, Goiás, Brazil.
| |
Collapse
|
2
|
Li J, Sun M, Tang M, Song X, Zheng K, Meng T, Li C, Du L. Mechanism of PI3K/Akt‑mediated mitochondrial pathway in obesity‑induced apoptosis (Review). Biomed Rep 2025; 22:40. [PMID: 39781039 PMCID: PMC11707581 DOI: 10.3892/br.2024.1918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 12/10/2024] [Indexed: 01/11/2025] Open
Abstract
Obesity is a pervasive global health challenge that substantially reduces the quality of life of millions of individuals and impedes social and economic advancement. Obesity is an independent risk factor that contributes to a range of chronic non-communicable metabolic diseases, significantly affecting energy metabolism, mental health, cancer susceptibility, sleep quality, and other physiological processes. The PI3K/AKT signaling pathway, a significant glucose, lipid, and protein metabolism regulator, is integral to cellular growth, survival, and apoptosis. Apoptosis is a highly regulated form of programmed cell death that is critical for immune cell maturation and tissue repair. The present review examines the association between obesity, the PI3K/AKT pathway, and mitochondrial apoptosis to elucidate the potential mechanisms by which obesity may activate apoptotic pathways. These findings provide a theoretical foundation for mitigating obesity-related complications by targeting these critical pathways.
Collapse
Affiliation(s)
- Jiarui Li
- Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang 150040, P.R. China
- First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang 150040, P.R. China
| | - Mingxiu Sun
- Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang 150040, P.R. China
| | - Ming Tang
- Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang 150040, P.R. China
| | - Xin Song
- Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang 150040, P.R. China
| | - Kaize Zheng
- Liaoning University of Traditional Chinese Medicine Xinglin College, Shenyang, Liaoning 110167, P.R. China
| | - Tianwei Meng
- Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang 150040, P.R. China
- First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang 150040, P.R. China
| | - Chengjia Li
- Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang 150040, P.R. China
- First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang 150040, P.R. China
| | - Likun Du
- First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang 150040, P.R. China
| |
Collapse
|
3
|
Irmer B, Wlochowitz D, Krekeler C, Richter KM, Chandrabalan S, Bayerlova M, Wolff A, Lenz G, Conradi L, Schildhaus H, Stadelmann C, Rohde V, Proescholdt M, Salinas G, Homayounfar K, Kuhlmann T, Hailfinger S, Pukrop T, Menck K, Beissbarth T, Bleckmann A. Consensus molecular subtyping of colorectal carcinoma brain metastases reveals a metabolic signature associated with poor patient survival. Mol Oncol 2025; 19:614-634. [PMID: 39825568 PMCID: PMC11887667 DOI: 10.1002/1878-0261.13748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 08/03/2024] [Accepted: 09/26/2024] [Indexed: 01/20/2025] Open
Abstract
The transcriptomic classification of primary colorectal cancer (CRC) into distinct consensus molecular subtypes (CMSs) is a well-described strategy for patient stratification. However, the molecular nature of CRC metastases remains poorly investigated. To this end, this study aimed to identify and compare organotropic CMS frequencies in CRC liver and brain metastases. Compared to reported CMS frequencies in primary CRC, liver metastases from CRC patients were CMS4-enriched and CMS3-depleted, whereas brain metastases mainly clustered as CMS3 and rarely as CMS4. Regarding overall survival rates, CMS4 was the most favorable subtype for patients with hepatic lesions, followed by CMS1 and CMS2. The survival of patients with brain metastases did not correlate with CMS. However, we identified a CMS3-related metabolic gene signature, specifically upregulated in central nervous system (CNS)-infiltrating CRC, as a negative prognostic marker and potential tumor progressor. In summary, subtyping of CRC metastases revealed an organotropic CMS distribution in liver and brain with impact on patient survival. CNS-infiltrating CRC samples were enriched for CMS3 and predictive metabolic biomarkers, suggesting metabolic dysregulation of CRC cells as a prerequisite for metastatic colonization of the brain.
Collapse
Affiliation(s)
- Barnabas Irmer
- Department of Medicine A, Hematology, Oncology and PneumologyUniversity of MünsterGermany
- West German Cancer CenterUniversity Hospital MünsterGermany
| | - Darius Wlochowitz
- Department of Medical BioinformaticsUniversity Medical Center GöttingenGermany
| | - Carolin Krekeler
- Department of Medicine A, Hematology, Oncology and PneumologyUniversity of MünsterGermany
- West German Cancer CenterUniversity Hospital MünsterGermany
| | - Katharina Maria Richter
- Department of Medicine A, Hematology, Oncology and PneumologyUniversity of MünsterGermany
- West German Cancer CenterUniversity Hospital MünsterGermany
| | - Suganja Chandrabalan
- Department of Medicine A, Hematology, Oncology and PneumologyUniversity of MünsterGermany
- West German Cancer CenterUniversity Hospital MünsterGermany
| | - Michaela Bayerlova
- Department of Medical BioinformaticsUniversity Medical Center GöttingenGermany
| | - Alexander Wolff
- Department of Medical BioinformaticsUniversity Medical Center GöttingenGermany
| | - Georg Lenz
- Department of Medicine A, Hematology, Oncology and PneumologyUniversity of MünsterGermany
| | - Lena‐Christin Conradi
- Department of General, Visceral and Pediatric SurgeryUniversity Medical Center GöttingenGermany
| | | | | | - Veit Rohde
- Department of NeurosurgeryUniversity Medical Center GöttingenGermany
| | | | - Gabriela Salinas
- NGS Integrative Genomics Core Unit, Institute of PathologyUniversity Medical Center GöttingenGermany
| | - Kia Homayounfar
- Department of General, Visceral and Pediatric SurgeryUniversity Medical Center GöttingenGermany
| | - Tanja Kuhlmann
- Institute for NeuropathologyUniversity Hospital MünsterGermany
| | - Stephan Hailfinger
- Department of Medicine A, Hematology, Oncology and PneumologyUniversity of MünsterGermany
| | - Tobias Pukrop
- Department of NeurosurgeryUniversity Medical Center RegensburgGermany
- Department of Hematology and Medical OncologyUniversity Medical Center GöttingenGermany
| | - Kerstin Menck
- Department of Medicine A, Hematology, Oncology and PneumologyUniversity of MünsterGermany
- West German Cancer CenterUniversity Hospital MünsterGermany
- Department of Hematology and Medical OncologyUniversity Medical Center GöttingenGermany
| | - Tim Beissbarth
- Department of Medical BioinformaticsUniversity Medical Center GöttingenGermany
| | - Annalen Bleckmann
- Department of Medicine A, Hematology, Oncology and PneumologyUniversity of MünsterGermany
- West German Cancer CenterUniversity Hospital MünsterGermany
- Department of Hematology and Medical OncologyUniversity Medical Center GöttingenGermany
| |
Collapse
|
4
|
Chang M, Liu R, Chen B, Xu J, Wang W, Ji Y, Gao Z, Liu B, Yao X, Sun H, Xu F, Shen Y. hBMSC-EVs alleviate weightlessness-induced skeletal muscle atrophy by suppressing oxidative stress and inflammation. Stem Cell Res Ther 2025; 16:46. [PMID: 39901193 PMCID: PMC11792267 DOI: 10.1186/s13287-025-04175-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 01/23/2025] [Indexed: 02/05/2025] Open
Abstract
BACKGROUND Muscle disuse and offloading in microgravity are likely the primary factors mediating spaceflight-induced muscle atrophy, for which there is currently no effective treatment other than exercise. Extracellular vesicles derived from bone marrow mesenchymal stem cells (BMSC-EVs) possess anti-inflammatory and antioxidant properties, offering a potential strategy for combating weightless muscular atrophy. METHODS In this study, human BMSCs-EVs (hBMSC-EVs) were isolated using super-centrifugation and characterized. C2C12 myotube nutrition-deprivation and mice tail suspension models were established. Subsequently, the diameter of C2C12 myotubes, Soleus mass, cross-sectional area (CSA) of muscle fibers, and grip strength in mice were assessed to investigate the impact of hBMSC-EVs on muscle atrophy. Immunostaining, transmission electron microscopy observation, and western blot analysis were employed to assess the impact of hBMSC-EVs on muscle fiber types, ROS levels, inflammation, ubiquitin-proteasome system activity, and autophagy lysosome pathway activation in skeletal muscle atrophy. RESULTS The active hBMSC-EVs can be internalized by C2C12 myotubes and skeletal muscle. hBMSC-EVs can effectively reduce C2C12 myotube atrophy caused by nutritional deprivation, with a concentration of 10 × 108 particles/mL showing the best effect (P < 0.001). Additionally, hBMSC-EVs can down-regulate the protein levels associated with UPS and oxidative stress. Moreover, intravenous administration of hBMSC-EVs at a concentration of 1 × 1010 particles/mL can effectively reverse the reduction in soleus mass (P < 0.001), CSA (P < 0.01), and grip strength (P < 0.001) in mice caused by weightlessness. They demonstrate the ability to inhibit protein degradation mediated by UPS and autophagy lysosome pathway, along with the suppression of oxidative stress and inflammatory responses. Furthermore, hBMSC-EVs impede the transition of slow muscle fibers to fast muscle fibers via upregulation of Sirt1 and PGC-1α protein levels. CONCLUSIONS Our findings indicate that hBMSC-EVs are capable of inhibiting excessive activation of the UPS and autophagy lysosome pathway, suppressing oxidative stress and inflammatory response, reversing muscle fiber type transformation, effectively delaying hindlimb unloading-induced muscle atrophy and enhancing muscle function. Our study has further advanced the understanding of the molecular mechanism underlying muscle atrophy in weightlessness and has demonstrated the protective effect of hBMSC-EVs on muscle atrophy.
Collapse
Affiliation(s)
- Mengyuan Chang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, 226001, Jiangsu Province, People's Republic of China
| | - Ruiqi Liu
- Department of Clinical Medicine, Medical College, Nantong University, Nantong, 226001, Jiangsu Province, People's Republic of China
| | - Bingqian Chen
- Department of Orthopedics, First People's Hospital of Changshu City, Changshu Hospital Affiliated to Soochow University, Changshu, 215500, Jiangsu Province, People's Republic of China
| | - Jin Xu
- Department of Basic Medicine, Kangda College of Nanjing Medical University, Lianyungang, 222000, Jiangsu Province, People's Republic of China
| | - Wei Wang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, 226001, Jiangsu Province, People's Republic of China
| | - Yanan Ji
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, 226001, Jiangsu Province, People's Republic of China
| | - Zihui Gao
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, 226001, Jiangsu Province, People's Republic of China
| | - Boya Liu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, 226001, Jiangsu Province, People's Republic of China
| | - Xinlei Yao
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, 226001, Jiangsu Province, People's Republic of China
| | - Hualin Sun
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, 226001, Jiangsu Province, People's Republic of China.
- Research and Development Center for E-Learning, Ministry of Education, Beijing, People's Republic of China.
| | - Feng Xu
- Department of Endocrinology, Affiliated Hospital 2 of Nantong University and First People's Hospital of Nantong City, Nantong, 226001, Jiangsu Province, People's Republic of China.
| | - Yuntian Shen
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, 226001, Jiangsu Province, People's Republic of China.
| |
Collapse
|
5
|
Singh A, Shadangi S, Gupta PK, Rana S. Type 2 Diabetes Mellitus: A Comprehensive Review of Pathophysiology, Comorbidities, and Emerging Therapies. Compr Physiol 2025; 15:e70003. [PMID: 39980164 DOI: 10.1002/cph4.70003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 02/03/2025] [Accepted: 02/07/2025] [Indexed: 02/22/2025]
Abstract
Humans are perhaps evolutionarily engineered to get deeply addicted to sugar, as it not only provides energy but also helps in storing fats, which helps in survival during starvation. Additionally, sugars (glucose and fructose) stimulate the feel-good factor, as they trigger the secretion of serotonin and dopamine in the brain, associated with the reward sensation, uplifting the mood in general. However, when consumed in excess, it contributes to energy imbalance, weight gain, and obesity, leading to the onset of a complex metabolic disorder, generally referred to as diabetes. Type 2 diabetes mellitus (T2DM) is one of the most prevalent forms of diabetes, nearly affecting all age groups. T2DM is clinically diagnosed with a cardinal sign of chronic hyperglycemia (excessive sugar in the blood). Chronic hyperglycemia, coupled with dysfunctions of pancreatic β-cells, insulin resistance, and immune inflammation, further exacerbate the pathology of T2DM. Uncontrolled T2DM, a major public health concern, also contributes significantly toward the onset and progression of several micro- and macrovascular diseases, such as diabetic retinopathy, nephropathy, neuropathy, atherosclerosis, and cardiovascular diseases, including cancer. The current review discusses the epidemiology, causative factors, pathophysiology, and associated comorbidities, including the existing and emerging therapies related to T2DM. It also provides a future roadmap for alternative drug discovery for the management of T2DM.
Collapse
Affiliation(s)
- Aditi Singh
- Chemical Biology Laboratory, School of Basic Sciences, Indian Institute of Technology Bhubaneswar, Odisha, India
| | - Sucharita Shadangi
- Chemical Biology Laboratory, School of Basic Sciences, Indian Institute of Technology Bhubaneswar, Odisha, India
| | - Pulkit Kr Gupta
- Chemical Biology Laboratory, School of Basic Sciences, Indian Institute of Technology Bhubaneswar, Odisha, India
| | - Soumendra Rana
- Chemical Biology Laboratory, School of Basic Sciences, Indian Institute of Technology Bhubaneswar, Odisha, India
| |
Collapse
|
6
|
Koh YC, Hsu HW, Ho PY, Lin WS, Hsu KY, Majeed A, Ho CT, Pan MH. Feruloylacetone and Its Analog Demethoxyferuloylacetone Mitigate Obesity-Related Muscle Atrophy and Insulin Resistance in Mice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:1231-1243. [PMID: 39754576 PMCID: PMC11741112 DOI: 10.1021/acs.jafc.4c07798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 12/07/2024] [Accepted: 12/24/2024] [Indexed: 01/06/2025]
Abstract
Obesity-induced muscle alterations, such as inflammation, metabolic dysregulation, and myosteatosis, lead to a decline in muscle mass and function, often resulting in sarcopenic obesity. Currently, there are no definitive treatments for sarcopenic obesity beyond lifestyle changes and dietary supplementation. Feruloylacetone (FER), a thermal degradation product of curcumin, and its analog demethoxyferuloylacetone (DFER), derived from the thermal degradation of bisdemethoxycurcumin, have shown potential antiobesity effects in previous studies. This study investigates the impact of FER and DFER on obesity-related glucose intolerance and muscle atrophy. High-fat diet (HFD) feeding resulted in muscle mass reduction and increased intramuscular triglyceride accumulation, both of which were mitigated by FER and DFER supplementation. The supplements activated the PI3K/Akt/mTOR signaling pathway, enhanced muscle protein synthesis, and decreased markers of muscle protein degradation. Additionally, FER and DFER supplementation improved glucose homeostasis in HFD-fed mice. The supplements also promoted the formation of a gut microbial consortium comprising Blautia intestinalis, Dubosiella newyorkensis, Faecalicatena fissicatena, Waltera intestinalis, Clostridium viride, and Caproiciproducens galactitolivorans, which contributed to the reduction of obesity-induced chronic inflammation. These findings suggest, for the first time, that FER and DFER may prevent obesity-related complications, including muscle atrophy and insulin resistance, thereby warranting further research into their long-term efficacy and safety.
Collapse
Affiliation(s)
- Yen-Chun Koh
- Institute
of Food Sciences and Technology, National
Taiwan University, 10617 Taipei, Taiwan
| | - Han-Wen Hsu
- Institute
of Food Sciences and Technology, National
Taiwan University, 10617 Taipei, Taiwan
| | - Pin-Yu Ho
- Institute
of Food Sciences and Technology, National
Taiwan University, 10617 Taipei, Taiwan
| | - Wei-Sheng Lin
- Institute
of Food Sciences and Technology, National
Taiwan University, 10617 Taipei, Taiwan
- Department
of Food Science, National Quemoy University, 89250 Quemoy, Taiwan
| | - Kai-Yu Hsu
- Institute
of Food Sciences and Technology, National
Taiwan University, 10617 Taipei, Taiwan
| | - Anju Majeed
- Sami-Sabinsa
Group Limited, Bengaluru 560058, Karnataka, India
| | - Chi-Tang Ho
- Department
of Food Science, Rutgers University, New Brunswick 08901, New Jersey, United
States
| | - Min-Hsiung Pan
- Institute
of Food Sciences and Technology, National
Taiwan University, 10617 Taipei, Taiwan
- Department
of Medical Research, China Medical University Hospital, China Medical University, 40402 Taichung, Taiwan
| |
Collapse
|
7
|
Grima-Terrén M, Campanario S, Ramírez-Pardo I, Cisneros A, Hong X, Perdiguero E, Serrano AL, Isern J, Muñoz-Cánoves P. Muscle aging and sarcopenia: The pathology, etiology, and most promising therapeutic targets. Mol Aspects Med 2024; 100:101319. [PMID: 39312874 DOI: 10.1016/j.mam.2024.101319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 09/13/2024] [Accepted: 09/16/2024] [Indexed: 09/25/2024]
Abstract
Sarcopenia is a progressive muscle wasting disorder that severely impacts the quality of life of elderly individuals. Although the natural aging process primarily causes sarcopenia, it can develop in response to other conditions. Because muscle function is influenced by numerous changes that occur with age, the etiology of sarcopenia remains unclear. However, recent characterizations of the aging muscle transcriptional landscape, signaling pathway disruptions, fiber and extracellular matrix compositions, systemic metabolomic and inflammatory responses, mitochondrial function, and neurological inputs offer insights and hope for future treatments. This review will discuss age-related changes in healthy muscle and our current understanding of how this can deteriorate into sarcopenia. As our elderly population continues to grow, we must understand sarcopenia and find treatments that allow individuals to maintain independence and dignity throughout an extended lifespan.
Collapse
Affiliation(s)
- Mercedes Grima-Terrén
- Altos Labs, San Diego Institute of Science, San Diego, CA, 92121, USA; Department of Medicine and Life Sciences, Universitat Pompeu Fabra (UPF), Barcelona, 08003, Spain
| | - Silvia Campanario
- Altos Labs, San Diego Institute of Science, San Diego, CA, 92121, USA; Department of Medicine and Life Sciences, Universitat Pompeu Fabra (UPF), Barcelona, 08003, Spain
| | - Ignacio Ramírez-Pardo
- Altos Labs, San Diego Institute of Science, San Diego, CA, 92121, USA; Department of Medicine and Life Sciences, Universitat Pompeu Fabra (UPF), Barcelona, 08003, Spain
| | - Andrés Cisneros
- Altos Labs, San Diego Institute of Science, San Diego, CA, 92121, USA; Department of Medicine and Life Sciences, Universitat Pompeu Fabra (UPF), Barcelona, 08003, Spain
| | - Xiaotong Hong
- Altos Labs, San Diego Institute of Science, San Diego, CA, 92121, USA
| | | | - Antonio L Serrano
- Altos Labs, San Diego Institute of Science, San Diego, CA, 92121, USA
| | - Joan Isern
- Altos Labs, San Diego Institute of Science, San Diego, CA, 92121, USA
| | - Pura Muñoz-Cánoves
- Altos Labs, San Diego Institute of Science, San Diego, CA, 92121, USA; Department of Medicine and Life Sciences, Universitat Pompeu Fabra (UPF), Barcelona, 08003, Spain.
| |
Collapse
|
8
|
Cormerais Y, Lapp SC, Kalafut KC, Cissé MY, Shin J, Stefadu B, Personnaz J, Schrotter S, D’Amore A, Martin ER, Salussolia CL, Sahin M, Menon S, Byles V, Manning BD. AKT-mediated phosphorylation of TSC2 controls stimulus- and tissue-specific mTORC1 signaling and organ growth. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.23.614519. [PMID: 39386441 PMCID: PMC11463511 DOI: 10.1101/2024.09.23.614519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Mechanistic target of rapamycin (mTOR) complex 1 (mTORC1) integrates diverse intracellular and extracellular growth signals to regulate cell and tissue growth. How the molecular mechanisms regulating mTORC1 signaling established through biochemical and cell biological studies function under physiological states in specific mammalian tissues are unknown. Here, we characterize a genetic mouse model lacking the 5 phosphorylation sites on the tuberous sclerosis complex 2 (TSC2) protein through which the growth factor-stimulated protein kinase AKT can active mTORC1 signaling in cell culture models. These phospho-mutant mice (TSC2-5A) are developmentally normal but exhibit reduced body weight and the weight of specific organs, such as brain and skeletal muscle, associated with cell intrinsic decreases in growth factor-stimulated mTORC1 signaling. The TSC2-5A mouse model demonstrates that TSC2 phosphorylation is a primary mechanism of mTORC1 activation in some, but not all, tissues and provides a genetic tool to facilitate studies on the physiological regulation of mTORC1.
Collapse
Affiliation(s)
- Yann Cormerais
- Department of Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, MA, 02115, USA
- Department of Cell Biology, Harvard Medical School, Boston, MA, 02115, USA
| | - Samuel C. Lapp
- Department of Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, MA, 02115, USA
- Department of Cell Biology, Harvard Medical School, Boston, MA, 02115, USA
- These authors contributed equally
| | - Krystle C. Kalafut
- Department of Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, MA, 02115, USA
- Department of Cell Biology, Harvard Medical School, Boston, MA, 02115, USA
- These authors contributed equally
| | - Madi Y. Cissé
- Department of Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, MA, 02115, USA
- Department of Cell Biology, Harvard Medical School, Boston, MA, 02115, USA
- These authors contributed equally
| | - Jong Shin
- Department of Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, MA, 02115, USA
- Department of Cell Biology, Harvard Medical School, Boston, MA, 02115, USA
- These authors contributed equally
| | - Benjamin Stefadu
- Department of Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, MA, 02115, USA
- Department of Cell Biology, Harvard Medical School, Boston, MA, 02115, USA
| | - Jean Personnaz
- Department of Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, MA, 02115, USA
- Present address: IRSD, Université de Toulouse, INSERM, INRAE, ENVT, Univ Toulouse III - Paul Sabatier (UPS), Toulouse, France
| | - Sandra Schrotter
- Department of Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, MA, 02115, USA
- Present address: Cell Signaling Technologies, Inc, Beverly, MA, 01915, USA
| | - Angelica D’Amore
- Kirby Neurobiology Center, Department of Neurology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Emma R. Martin
- Kirby Neurobiology Center, Department of Neurology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Catherine L. Salussolia
- Kirby Neurobiology Center, Department of Neurology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Mustafa Sahin
- Kirby Neurobiology Center, Department of Neurology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Suchithra Menon
- Department of Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, MA, 02115, USA
- Present address: Novartis Institutes for BioMedical Research, Cambridge, MA, 02139, USA
| | - Vanessa Byles
- Department of Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, MA, 02115, USA
| | - Brendan D. Manning
- Department of Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, MA, 02115, USA
- Department of Cell Biology, Harvard Medical School, Boston, MA, 02115, USA
| |
Collapse
|
9
|
Yang J, Wang Z, Xie Y, Tang Y, Fu Y, Xu Z, Chen J, Qin H. Sesamol Alleviates Sarcopenia via Activating AKT/mTOR/FoxO1 Signal Pathway in Aged Obese Mice. PLANT FOODS FOR HUMAN NUTRITION (DORDRECHT, NETHERLANDS) 2024; 79:607-616. [PMID: 38879661 DOI: 10.1007/s11130-024-01199-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 06/02/2024] [Indexed: 09/19/2024]
Abstract
Sesamol is a major bioactive component extracted from sesame seeds and has various medicinal properties. However, the effects of sesamol on sarcopenia associated with aging and obesity remains unclear. Therefore, the protective effects and underlying mechanisms of sesamol on sarcopenia was evaluated in aged and obese C57BL/6 J male mouse models fed a high fat diet and C2C12 myotubes co-treated with D-gal and PA in this study. Our in vivo data showed that sesamol activated AKT/mTOR/FoxO1 signal pathway, and then upregulated p-p70S6K and p-4EBP1 to promote myoprotein synthesis, and downregulated Atrogin-1 and MuRF1 to inhibit myoprotein degradation, thus ameliorating sarcopenia related to aging and obesity. Furthermore, our in vitro results confirmed the protective effect and aforementioned mechanisms of sesamol on sarcopenia. Collectively, sesamol could alleviate sarcopenia associated with aging and obesity via activating the AKT/mTOR/FoxO1 signal pathway. Our findings highlight the therapeutic potentials of sesamol for aging and obesity-related metabolic muscular complications.
Collapse
Affiliation(s)
- Jinxin Yang
- Xiangya School of Public Health, Central South University, Hunan Province, Changsha, China
| | - Zhipeng Wang
- Xiangya School of Public Health, Central South University, Hunan Province, Changsha, China
| | - Yan Xie
- Xiangya School of Public Health, Central South University, Hunan Province, Changsha, China
| | - Yongyan Tang
- Xiangya School of Public Health, Central South University, Hunan Province, Changsha, China
| | - Yansong Fu
- Xiangya School of Public Health, Central South University, Hunan Province, Changsha, China
| | - Zhuoya Xu
- Xiangya School of Public Health, Central South University, Hunan Province, Changsha, China
| | - Jingmiao Chen
- Xiangya School of Public Health, Central South University, Hunan Province, Changsha, China
| | - Hong Qin
- Xiangya School of Public Health, Central South University, Hunan Province, Changsha, China.
| |
Collapse
|
10
|
Zhao C, Hu B, Zeng X, Zhang Z, Luo W, Li H, Zhang X. IGF2 promotes the differentiation of chicken embryonic myoblast by regulating mitochondrial remodeling. J Cell Physiol 2024; 239:e31351. [PMID: 38946060 DOI: 10.1002/jcp.31351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 05/29/2024] [Accepted: 06/12/2024] [Indexed: 07/02/2024]
Abstract
Skeletal muscle is crucial for animal movement and posture maintenance, and it serves as a significant source of meat in the livestock and poultry industry. The number of muscle fibers differentiated from myoblast in the embryonic stage is one of the factors determining the content of skeletal muscle. Insulin-like growth factor 2 (IGF2), a well-known growth-promoting hormone, is crucial for embryonic and skeletal muscle growth and development. However, the specific molecular mechanism underlying its impact on chicken embryonic myoblast differentiation remains unclear. To elucidate the molecular mechanism by which IGF2 regulates chicken myoblast differentiation, we manipulated IGF2 expression in chicken embryonic myoblast. The results demonstrated that IGF2 was upregulated during chicken skeletal muscle development and myoblast differentiation. On the one hand, we found that IGF2 promotes mitochondrial biogenesis through the PGC1/NRF1/TFAM pathway, thereby enhancing mitochondrial membrane potential, oxidative phosphorylation, and ATP synthesis during myoblast differentiation. This process is mediated by the PI3K/AKT pathway. On the other hand, IGF2 regulates BNIP3-mediated mitophagy, clearing dysfunctional mitochondria. Collectively, our findings confirmed that IGF2 cooperatively regulates mitochondrial biogenesis and mitophagy to remodel the mitochondrial network and enhance mitochondrial function, ultimately promoting myoblast differentiation.
Collapse
Affiliation(s)
- Changbin Zhao
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangzhou, China
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affair, South China Agricultural University, Guangzhou, China
| | - Bowen Hu
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangzhou, China
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affair, South China Agricultural University, Guangzhou, China
| | - Xiaoyin Zeng
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangzhou, China
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affair, South China Agricultural University, Guangzhou, China
| | - Ze Zhang
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangzhou, China
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affair, South China Agricultural University, Guangzhou, China
| | - Wen Luo
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangzhou, China
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affair, South China Agricultural University, Guangzhou, China
| | - Hongmei Li
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangzhou, China
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affair, South China Agricultural University, Guangzhou, China
| | - Xiquan Zhang
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangzhou, China
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affair, South China Agricultural University, Guangzhou, China
| |
Collapse
|
11
|
Miyaji T, Kasuya R, Sawada A, Sawamura D, Kitaoka Y, Miyazaki M. Akt1 deficiency does not affect fiber type composition or mitochondrial protein expression in skeletal muscle of male mice. Physiol Rep 2024; 12:e70048. [PMID: 39256892 PMCID: PMC11387151 DOI: 10.14814/phy2.70048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 08/30/2024] [Accepted: 08/30/2024] [Indexed: 09/12/2024] Open
Abstract
Insulin-like growth factor-1-induced activation of ATP citrate lyase (ACLY) improves muscle mitochondrial function through an Akt-dependent mechanism. In this study, we examined whether Akt1 deficiency alters skeletal muscle fiber type and mitochondrial function by regulating ACLY-dependent signaling in male Akt1 knockout (KO) mice (12-16 weeks old). Akt1 KO mice exhibited decreased body weight and muscle wet weight, with reduced cross-sectional areas of slow- and fast-type muscle fibers. Loss of Akt1 did not affect the phosphorylation status of ACLY in skeletal muscle. The skeletal muscle fiber type and expression of mitochondrial oxidative phosphorylation complex proteins were unchanged in Akt1 KO mice compared with the wild-type control. These observations indicate that Akt1 is important for the regulation of skeletal muscle fiber size, whereas the regulation of muscle fiber type and muscle mitochondrial content occurs independently of Akt1 activity.
Collapse
Affiliation(s)
- Tatsuya Miyaji
- Department of Integrative Physiology, Graduate School of Biomedical and Health SciencesHiroshima UniversityHigashihiroshimaJapan
| | - Ryuichi Kasuya
- Department of Integrative Physiology, Graduate School of Biomedical and Health SciencesHiroshima UniversityHigashihiroshimaJapan
| | - Atsushi Sawada
- Department of Physical Therapy, School of Rehabilitation SciencesHealth Sciences University of HokkaidoTobetsuJapan
| | - Daisuke Sawamura
- Department of Rehabilitation Science, Faculty of Health SciencesHokkaido UniversitySapporoJapan
| | - Yu Kitaoka
- Department of Human SciencesKanagawa UniversityYokohamaJapan
| | - Mitsunori Miyazaki
- Department of Integrative Physiology, Graduate School of Biomedical and Health SciencesHiroshima UniversityHigashihiroshimaJapan
- Department of Physical Therapy, School of Rehabilitation SciencesHealth Sciences University of HokkaidoTobetsuJapan
| |
Collapse
|
12
|
Jiang Q, Xiao J, Hsieh YC, Kumar NL, Han L, Zou Y, Li H. The Role of the PI3K/Akt/mTOR Axis in Head and Neck Squamous Cell Carcinoma. Biomedicines 2024; 12:1610. [PMID: 39062182 PMCID: PMC11274428 DOI: 10.3390/biomedicines12071610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 07/15/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) is one of the most common malignancies globally, representing a significant public health problem with a poor prognosis. The development of efficient therapeutic strategies for HNSCC prevention and treatment is urgently needed. The PI3K/AKT/mTOR (PAM) signaling pathway is a highly conserved transduction network in eukaryotic cells that promotes cell survival, growth, and cycle progression. Dysfunction in components of this pathway, such as hyperactivity of PI3K, loss of PTEN function, and gain-of-function mutations in AKT, are well-known drivers of treatment resistance and disease progression in cancer. In this review, we discuss the major mutations and dysregulations in the PAM signaling pathway in HNSCC. We highlight the results of clinical trials involving inhibitors targeting the PAM signaling pathway as a strategy for treating HNSCC. Additionally, we examine the primary mechanisms of resistance to drugs targeting the PAM pathway and potential therapeutic strategies.
Collapse
Affiliation(s)
- Qian Jiang
- Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Institute of Stomatology, Nanjing University, Nanjing 210093, China; (Q.J.)
- International Dentist Pathway, University of California, San Francisco, CA 94158, USA
| | - Jingyi Xiao
- Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Institute of Stomatology, Nanjing University, Nanjing 210093, China; (Q.J.)
| | - Yao-Ching Hsieh
- International Dentist Pathway, University of California, San Francisco, CA 94158, USA
| | - Neha Love Kumar
- International Dentist Pathway, University of California, San Francisco, CA 94158, USA
| | - Lei Han
- Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Institute of Stomatology, Nanjing University, Nanjing 210093, China; (Q.J.)
| | - Yuntao Zou
- Division of Hospital Medicine, University of California, San Francisco, CA 94158, USA
| | - Huang Li
- Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Institute of Stomatology, Nanjing University, Nanjing 210093, China; (Q.J.)
| |
Collapse
|
13
|
Sasako T. Exploring mechanisms of insulin action and strategies to treat diabetes. Endocr J 2024; 71:651-660. [PMID: 38811207 DOI: 10.1507/endocrj.ej24-0003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/31/2024] Open
Abstract
Insulin is a hormone that positively regulates anabolism and cell growth, whereas diabetes mellitus is a disease characterized by hyperglycemia associated with impaired insulin action. My colleagues and I have elucidated multifaceted insulin action in various tissues mainly by means of model mice. In the liver, insulin regulates endoplasmic reticulum (ER) stress response during feeding, whereas ER stress 'response failure' contributes to the development of steatohepatitis comorbid with diabetes. Not only the liver but also the proximal tubules of the kidney are important in the regulation of gluconeogenesis, and we revealed that insulin suppresses gluconeogenesis in accordance with absorbed glucose in the latter tissue. In skeletal muscle, another important insulin-targeted tissue, impaired insulin/IGF-1 signaling leads not only to sarcopenia, an aging-related disease of skeletal muscle, but also to osteopenia and shorter longevity. Aging is regulated by adipokines as well, and it should be considered that aging could be accelerated by 'imbalanced adipokines' in patients with a genetic background of progeria. Moreover, we reported the effects of intensive multifactorial intervention on diabetic vascular complications and mortality in patients with type 2 diabetes in a large-scale clinical trial, the J-DOIT3, and the results of subsequent sub-analyses of renal events and fracture events. Various approaches of research enable us of endocrinologists to elucidate the physiology of hormone signaling, the mechanisms underlying the development of endocrine diseases, and the appropriate treatment measures. These approaches also raise fundamental questions, but addressing them in an appropriate manner will surely contribute to the further development of endocrinology.
Collapse
Affiliation(s)
- Takayoshi Sasako
- Department of Diabetes and Metabolic Diseases, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| |
Collapse
|
14
|
Jeong YJ, Kim JH, Jung YJ, Kwak MS, Sung MH, Imm JY. KL-Biome (Postbiotic Formulation of Lactiplantibacillus plantarum KM2) Improves Dexamethasone-Induced Muscle Atrophy in Mice. Int J Mol Sci 2024; 25:7499. [PMID: 39000606 PMCID: PMC11242066 DOI: 10.3390/ijms25137499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 07/02/2024] [Accepted: 07/05/2024] [Indexed: 07/16/2024] Open
Abstract
Sarcopenia refers to an age-related decrease in muscle mass and strength. The gut-muscle axis has been proposed as a promising target to alleviate muscle atrophy. The effect of KL-Biome-a postbiotic preparation comprising heat-killed Lactiplantibacillus plantarum KM-2, its metabolites, and an excipient (soybean powder)-on muscle atrophy was evaluated using dexamethasone (DEX)-induced atrophic C2C12 myoblasts and C57BL/6J mice. KL-Biome significantly downregulated the expression of genes (Atrogin-1 and MuRF1) associated with skeletal muscle degradation but increased the anabolic phosphorylation of FoxO3a, Akt, and mTOR in C2C12 cells. Oral administration of KL-Biome (900 mg/kg) for 8 weeks significantly improved muscle mass, muscle function, and serum lactate dehydrogenase levels in DEX-treated mice. KL-Biome administration increased gut microbiome diversity and reversed DEX-mediated gut microbiota alterations. Furthermore, it significantly increased the relative abundances of the genera Subdologranulum, Alistipes, and Faecalibacterium prausnitzii, which are substantially involved in short-chain fatty acid production. These findings suggest that KL-Biome exerts beneficial effects on muscle atrophy by regulating gut microbiota.
Collapse
Affiliation(s)
- Yu-Jin Jeong
- Department of Foods and Nutrition, Kookmin University, Seoul 02707, Republic of Korea;
| | - Jong-Hoon Kim
- KookminBio Corporation, Seoul 02826, Republic of Korea; (J.-H.K.); (Y.-J.J.); (M.-S.K.); (M.-H.S.)
| | - Ye-Jin Jung
- KookminBio Corporation, Seoul 02826, Republic of Korea; (J.-H.K.); (Y.-J.J.); (M.-S.K.); (M.-H.S.)
| | - Mi-Sun Kwak
- KookminBio Corporation, Seoul 02826, Republic of Korea; (J.-H.K.); (Y.-J.J.); (M.-S.K.); (M.-H.S.)
| | - Moon-Hee Sung
- KookminBio Corporation, Seoul 02826, Republic of Korea; (J.-H.K.); (Y.-J.J.); (M.-S.K.); (M.-H.S.)
| | - Jee-Young Imm
- Department of Foods and Nutrition, Kookmin University, Seoul 02707, Republic of Korea;
| |
Collapse
|
15
|
Nirmala FS, Lee H, Kim YI, Hahm JH, Seo HD, Kim M, Jung CH, Ahn J. Exercise-induced signaling activation by Chrysanthemum zawadskii and its active compound, linarin, ameliorates age-related sarcopenia through Sestrin 1 regulation. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 129:155695. [PMID: 38728922 DOI: 10.1016/j.phymed.2024.155695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 04/17/2024] [Accepted: 04/29/2024] [Indexed: 05/12/2024]
Abstract
BACKGROUND Exercise is an effective strategy to prevent sarcopenia, but high physical inactivity in the elderly requires alternative therapeutic approaches. Exercise mimetics are therapeutic compounds that simulate the beneficial effects of exercise on skeletal muscles. However, the toxicity and adverse effects of exercise mimetics raise serious concerns. PURPOSE We aimed to search novel plant-based alternatives to activate exercise induced-signaling. METHODS We used open databases and luciferase assays to identify plant-derived alternatives to activate exercise-induced signaling and compared its efficacy to mild intensity continuous training (MICT) in aged C57BL/6 mice. The nineteen-month-old mice were either fed an experimental diet supplemented with the isolated alternative or subjected to MICT for up to 21 mo of age. RESULTS Our analysis revealed that Chrysanthemum zawadskii Herbich var latillobum (Maxim.) Kitamura (CZH), a medicinal plant rich in linarin, is a novel activator of peroxisome proliferator-activated receptor δ (PPARδ) and estrogen-related receptor γ (ERRγ), key regulators of exercise-induced positive effects on muscles. CZH supplementation ameliorated the loss of muscle function and mass, and increased PPARδ and ERRγ expression in mouse muscles. CZH also improved mitochondrial functions and proteostasis in aged mice, similar to MICT. Furthermore, CZH and linarin induced the activation of Sestrin 1, a key mediator of exercise benefits, in muscle. Silencing Sestrin 1 negated the increase in myogenesis and mitochondrial respiration by CZH and linarin in primary myoblasts from old mice. CONCLUSION Our findings suggest the potential of CZH as a novel plant-derived alternative to activate exercise-induced signaling for preventing sarcopenia in sedentary older adults. This could offer a safer therapeutic option for sarcopenia treatment.
Collapse
Affiliation(s)
- Farida S Nirmala
- Department of Food Biotechnology, University of Science and Technology, Daejeon, South Korea; Research Group of Aging and Metabolism, Korea Food Research Institute, Wanju-gun, South Korea
| | - Hyunjung Lee
- Research Group of Aging and Metabolism, Korea Food Research Institute, Wanju-gun, South Korea
| | - Young-In Kim
- Research Group of Aging and Metabolism, Korea Food Research Institute, Wanju-gun, South Korea
| | - Jeong-Hoon Hahm
- Research Group of Aging and Metabolism, Korea Food Research Institute, Wanju-gun, South Korea
| | - Hyo-Deok Seo
- Research Group of Aging and Metabolism, Korea Food Research Institute, Wanju-gun, South Korea
| | - Minjung Kim
- Research Group of Personalized Diet, Korea Food Research Institute, Wanju-gun, South Korea
| | - Chang Hwa Jung
- Department of Food Biotechnology, University of Science and Technology, Daejeon, South Korea; Research Group of Aging and Metabolism, Korea Food Research Institute, Wanju-gun, South Korea
| | - Jiyun Ahn
- Department of Food Biotechnology, University of Science and Technology, Daejeon, South Korea; Research Group of Aging and Metabolism, Korea Food Research Institute, Wanju-gun, South Korea.
| |
Collapse
|
16
|
Park S, Cha HN, Shin MG, Park S, Kim Y, Kim MS, Shin KH, Thoudam T, Lee EJ, Wolfe RR, Dan J, Koh JH, Kim IY, Choi I, Lee IK, Sung HK, Park SY. Inhibitory Regulation of FOXO1 in PPARδ Expression Drives Mitochondrial Dysfunction and Insulin Resistance. Diabetes 2024; 73:1084-1098. [PMID: 38656552 DOI: 10.2337/db23-0432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 04/09/2024] [Indexed: 04/26/2024]
Abstract
Forkhead box O1 (FOXO1) regulates muscle growth, but the metabolic role of FOXO1 in skeletal muscle and its mechanisms remain unclear. To explore the metabolic role of FOXO1 in skeletal muscle, we generated skeletal muscle-specific Foxo1 inducible knockout (mFOXO1 iKO) mice and fed them a high-fat diet to induce obesity. We measured insulin sensitivity, fatty acid oxidation, mitochondrial function, and exercise capacity in obese mFOXO1 iKO mice and assessed the correlation between FOXO1 and mitochondria-related protein in the skeletal muscle of patients with diabetes. Obese mFOXO1 iKO mice exhibited improved mitochondrial respiratory capacity, which was followed by attenuated insulin resistance, enhanced fatty acid oxidation, and improved skeletal muscle exercise capacity. Transcriptional inhibition of FOXO1 in peroxisome proliferator-activated receptor δ (PPARδ) expression was confirmed in skeletal muscle, and deletion of PPARδ abolished the beneficial effects of FOXO1 deficiency. FOXO1 protein levels were higher in the skeletal muscle of patients with diabetes and negatively correlated with PPARδ and electron transport chain protein levels. These findings highlight FOXO1 as a new repressor in PPARδ gene expression in skeletal muscle and suggest that FOXO1 links insulin resistance and mitochondrial dysfunction in skeletal muscle via PPARδ. ARTICLE HIGHLIGHTS
Collapse
Affiliation(s)
- Soyoung Park
- Department of Physiology, College of Medicine, Yeungnam University, Daegu, Republic of Korea
- Senotherapy-Based Metabolic Diseases Control Research Center, College of Medicine, Yeungnam University, Daegu, Republic of Korea
| | - Hye-Na Cha
- Department of Physiology, College of Medicine, Yeungnam University, Daegu, Republic of Korea
- Senotherapy-Based Metabolic Diseases Control Research Center, College of Medicine, Yeungnam University, Daegu, Republic of Korea
| | - Min-Gyeong Shin
- Department of Physiology, College of Medicine, Yeungnam University, Daegu, Republic of Korea
| | - Sanghee Park
- Department of Molecular Medicine, College of Medicine, Gachon University, Incheon, Republic of Korea
| | - Yeongmin Kim
- Department of Health Sciences and Technology, Gachon Advanced Institute for Health Sciences and Technology, Gachon University, Incheon, Republic of Korea
| | - Min-Seob Kim
- Department of Fundamental Environment Research, Environmental Measurement and Analysis Center, National Institute of Environmental Research, Incheon, Republic of Korea
| | - Kyung-Hoon Shin
- Department of Marine Sciences and Convergent Technology, Hanyang University, Ansan, Republic of Korea
| | - Themis Thoudam
- Research Institute of Aging and Metabolism, Kyungpook National University, Daegu, Republic of Korea
| | - Eun Ju Lee
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan, Republic of Korea
| | - Robert R Wolfe
- Department of Geriatrics, University of Arkansas for Medical Sciences, Little Rock, AR
| | - Jinmyoung Dan
- Department of Orthopedic Surgery, College of Medicine, CHA University, Gumi, Republic of Korea
| | - Jin-Ho Koh
- Department of Convergence Medicine, Wonju College of Medicine, Yonsei University, Wonju, Republic of Korea
| | - Il-Young Kim
- Department of Molecular Medicine, College of Medicine, Gachon University, Incheon, Republic of Korea
| | - Inho Choi
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan, Republic of Korea
| | - In-Kyu Lee
- Research Institute of Aging and Metabolism, Kyungpook National University, Daegu, Republic of Korea
- Department of Internal Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu, Republic of Korea
| | - Hoon-Ki Sung
- The Hospital for Sick Children Research Institute & Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - So-Young Park
- Department of Physiology, College of Medicine, Yeungnam University, Daegu, Republic of Korea
- Senotherapy-Based Metabolic Diseases Control Research Center, College of Medicine, Yeungnam University, Daegu, Republic of Korea
| |
Collapse
|
17
|
Millward DJ. Post-natal muscle growth and protein turnover: a narrative review of current understanding. Nutr Res Rev 2024; 37:141-168. [PMID: 37395180 DOI: 10.1017/s0954422423000124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
A model explaining the dietary-protein-driven post-natal skeletal muscle growth and protein turnover in the rat is updated, and the mechanisms involved are described, in this narrative review. Dietary protein controls both bone length and muscle growth, which are interrelated through mechanotransduction mechanisms with muscle growth induced both from stretching subsequent to bone length growth and from internal work against gravity. This induces satellite cell activation, myogenesis and remodelling of the extracellular matrix, establishing a growth capacity for myofibre length and cross-sectional area. Protein deposition within this capacity is enabled by adequate dietary protein and other key nutrients. After briefly reviewing the experimental animal origins of the growth model, key concepts and processes important for growth are reviewed. These include the growth in number and size of the myonuclear domain, satellite cell activity during post-natal development and the autocrine/paracrine action of IGF-1. Regulatory and signalling pathways reviewed include developmental mechanotransduction, signalling through the insulin/IGF-1-PI3K-Akt and the Ras-MAPK pathways in the myofibre and during mechanotransduction of satellite cells. Likely pathways activated by maximal-intensity muscle contractions are highlighted and the regulation of the capacity for protein synthesis in terms of ribosome assembly and the translational regulation of 5-TOPmRNA classes by mTORC1 and LARP1 are discussed. Evidence for and potential mechanisms by which volume limitation of muscle growth can occur which would limit protein deposition within the myofibre are reviewed. An understanding of how muscle growth is achieved allows better nutritional management of its growth in health and disease.
Collapse
Affiliation(s)
- D Joe Millward
- Department of Nutritional Sciences, School of Biosciences & Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, UK
| |
Collapse
|
18
|
Prajapati P, Kumar A, Mangrulkar S, Chaple DR, Saraf SA, Kushwaha S. Azilsartan prevents muscle loss and fast- to slow-twitch muscle fiber shift in natural ageing sarcopenic rats. Can J Physiol Pharmacol 2024; 102:342-360. [PMID: 38118126 DOI: 10.1139/cjpp-2023-0265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2023]
Abstract
Sarcopenia is a musculoskeletal disease that reduces muscle mass and strength in older individuals. The study investigates the effects of azilsartan (AZL) on skeletal muscle loss in natural sarcopenic rats. Male Sprague-Dawley rats aged 4-6 months and 18-21 months were selected as young-matched control and natural-aged (sarcopenic) rats, respectively. Rats were allocated into young and old control (YC and OC) and young and old AZL treatment (YT and OT) groups, which received vehicles and AZL (8 mg/kg, orally) for 6 weeks. Rats were then sacrificed after muscle function analysis. Serum and gastrocnemius (GN) muscles were isolated for further endpoints. AZL significantly improved muscle grip strength and antioxidant levels in sarcopenic rats. AZL also restored the levels of insulin, testosterone, and muscle biomarkers such as myostatin and creatinine kinase in sarcopenic rats. Furthermore, AZL treatment improved the cellular and ultrastructure of GN muscle and prevented the shift of type II (glycolytic) myofibers to type I (oxidative) myofibers. The results showed that AZL intervention restored protein synthesis in natural sarcopenic rats by increasing p-Akt-1 and decreasing muscle RING-finger protein-1 and tumor necrosis factor alpha immunoexpressions. In conclusion, the present findings showed that AZL could be an effective intervention in treating age-related muscle impairments.
Collapse
MESH Headings
- Animals
- Sarcopenia/prevention & control
- Sarcopenia/metabolism
- Sarcopenia/drug therapy
- Sarcopenia/pathology
- Male
- Oxadiazoles/pharmacology
- Oxadiazoles/therapeutic use
- Aging/drug effects
- Rats, Sprague-Dawley
- Rats
- Benzimidazoles/pharmacology
- Benzimidazoles/therapeutic use
- Muscle Fibers, Fast-Twitch/drug effects
- Muscle Fibers, Fast-Twitch/metabolism
- Muscle Fibers, Fast-Twitch/pathology
- Muscle Fibers, Slow-Twitch/drug effects
- Muscle Fibers, Slow-Twitch/metabolism
- Muscle Fibers, Slow-Twitch/pathology
- Muscle Strength/drug effects
- Muscle, Skeletal/drug effects
- Muscle, Skeletal/metabolism
- Muscle, Skeletal/pathology
- Proto-Oncogene Proteins c-akt/metabolism
- Myostatin/metabolism
- Antioxidants/pharmacology
Collapse
Affiliation(s)
- Priyanka Prajapati
- Department of Pharmaceutical Sciences, School of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow 226025, India
| | - Anand Kumar
- Department of Pharmaceutical Sciences, School of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow 226025, India
| | - Shubhada Mangrulkar
- Department of Pharmacology, Smt. Kishoritai Bhoyar College of Pharmacy, Kamptee, Nagpur 441002, India
| | - D R Chaple
- Priyadarshini J.L. College of Pharmacy, Electronic Zone Building, MIDC Hingna Road, Nagpur 440016, India
| | - Shubhini A Saraf
- National Institute of Pharmaceutical Education & Research, Raebareli (NIPER-R), Near CRPF Base Camp, Sarojini Nagar, Lucknow 226002, India
| | - Sapana Kushwaha
- National Institute of Pharmaceutical Education & Research, Raebareli (NIPER-R), Near CRPF Base Camp, Sarojini Nagar, Lucknow 226002, India
| |
Collapse
|
19
|
Reed CH, Tystahl AC, Eo H, Buhr TJ, Bauer EE, Lee JH, Clark PJ, Valentine RJ. The Influence of Stress and Binge-Patterned Alcohol Drinking on Mouse Skeletal Muscle Protein Synthesis and Degradation Pathways. Biomolecules 2024; 14:527. [PMID: 38785934 PMCID: PMC11118922 DOI: 10.3390/biom14050527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 03/30/2024] [Accepted: 04/09/2024] [Indexed: 05/25/2024] Open
Abstract
Adverse experiences (e.g., acute stress) and alcohol misuse can both impair skeletal muscle homeostasis, resulting in reduced protein synthesis and greater protein breakdown. Exposure to acute stress is a significant risk factor for engaging in alcohol misuse. However, little is known about how these factors together might further affect skeletal muscle health. To that end, this study investigated the effects of acute stress exposure followed by a period of binge-patterned alcohol drinking on signaling factors along mouse skeletal muscle protein synthesis (MPS) and degradation (MPD) pathways. Young adult male C57BL/6J mice participated in the Drinking in the Dark paradigm, where they received 2-4 h of access to 20% ethanol (alcohol group) or water (control group) for four days to establish baseline drinking levels. Three days later, half of the mice in each group were either exposed to a single episode of uncontrollable tail shocks (acute stress) or remained undisturbed in their home cages (no stress). Three days after stress exposure, mice received 4 h of access to 20% ethanol (alcohol) to model binge-patterned alcohol drinking or water for ten consecutive days. Immediately following the final episode of alcohol access, mouse gastrocnemius muscle was extracted to measure changes in relative protein levels along the Akt-mTOR MPS, as well as the ubiquitin-proteasome pathway (UPP) and autophagy MPD pathways via Western blotting. A single exposure to acute stress impaired Akt singling and reduced rates of MPS, independent of alcohol access. This observation was concurrent with a potent increase in heat shock protein seventy expression in the muscle of stressed mice. Alcohol drinking did not exacerbate stress-induced alterations in the MPS and MPD signaling pathways. Instead, changes in the MPS and MPD signaling factors due to alcohol access were primarily observed in non-stressed mice. Taken together, these data suggest that exposure to a stressor of sufficient intensity may cause prolonged disruptions to signaling factors that impact skeletal muscle health and function beyond what could be further induced by periods of alcohol misuse.
Collapse
Affiliation(s)
- Carter H Reed
- Department of Biology, Grand View University, Des Moines, IA 50316, USA;
| | - Anna C. Tystahl
- Department of Kinesiology, Iowa State University, Ames, IA 50011, USA; (A.C.T.)
| | - Hyeyoon Eo
- Department of Kinesiology, Iowa State University, Ames, IA 50011, USA; (A.C.T.)
- Department of Food Science and Human Nutrition, Iowa State University, Ames, IA 50011, USA
| | - Trevor J. Buhr
- Department of Food Science and Human Nutrition, Iowa State University, Ames, IA 50011, USA
| | - Ella E. Bauer
- Department of Food Science and Human Nutrition, Iowa State University, Ames, IA 50011, USA
| | - Ji Heun Lee
- Department of Kinesiology, Iowa State University, Ames, IA 50011, USA; (A.C.T.)
| | - Peter J. Clark
- Department of Food Science and Human Nutrition, Iowa State University, Ames, IA 50011, USA
| | - Rudy J. Valentine
- Department of Physical Therapy and Kinesiology, University of Massachusetts Lowell, Lowell, MA 01854, USA
| |
Collapse
|
20
|
Malacarne C, Giagnorio E, Chirizzi C, Cattaneo M, Saraceno F, Cavalcante P, Bonanno S, Mantegazza R, Moreno-Manzano V, Lauria G, Metrangolo P, Bombelli FB, Marcuzzo S. FM19G11-loaded nanoparticles modulate energetic status and production of reactive oxygen species in myoblasts from ALS mice. Biomed Pharmacother 2024; 173:116380. [PMID: 38447450 DOI: 10.1016/j.biopha.2024.116380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 02/22/2024] [Accepted: 02/29/2024] [Indexed: 03/08/2024] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disease affecting motor neurons. Considerable evidence indicates that early skeletal muscle atrophy plays a crucial role in the disease pathogenesis, leading to an altered muscle-motor neuron crosstalk that, in turn, may contribute to motor neuron degeneration. Currently, there is no effective treatment for ALS, highlighting the need to dig deeper into the pathological mechanisms for developing innovative therapeutic strategies. FM19G11 is a novel drug able to modulate the global cellular metabolism, but its effects on ALS skeletal muscle atrophy and mitochondrial metabolism have never been evaluated, yet. This study investigated whether FM19G11-loaded nanoparticles (NPs) may affect the bioenergetic status in myoblasts isolated from G93A-SOD1 mice at different disease stages. We found that FM19G1-loaded NP treatment was able to increase transcriptional levels of Akt1, Akt3, Mef2a, Mef2c and Ucp2, which are key genes associated with cell proliferation (Akt1, Akt3), muscle differentiation (Mef2c), and mitochondrial activity (Ucp2), in G93A-SOD1 myoblasts. These cells also showed a significant reduction of mitochondrial area and networks, in addition to decreased ROS production after treatment with FM19G11-loaded NPs, suggesting a ROS clearance upon the amelioration of mitochondrial dynamics. Our overall findings demonstrate a significant impact of FM19G11-loaded NPs on muscle cell function and bioenergetic status in G93A-SOD1 myoblasts, thus promising to open new avenues towards possible adoption of FM19G11-based nanotherapies to slow muscle degeneration in the frame of ALS and muscle disorders.
Collapse
Affiliation(s)
- Claudia Malacarne
- Neuroimmunology and Neuromuscular Diseases Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Via Celoria 11, Milan 20133, Italy
| | - Eleonora Giagnorio
- Neuroimmunology and Neuromuscular Diseases Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Via Celoria 11, Milan 20133, Italy.
| | - Cristina Chirizzi
- Neuroradiology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Via Celoria 11, Milan 20133, Italy; Laboratory of Supramolecular and Bio-Nanomaterials (SupraBioNano Lab), Department of Chemistry, Materials and Chemical Engineering, "Giulio Natta", Politecnico di Milano, Milan 20131, Italy
| | - Marco Cattaneo
- Neuroalgology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Via Celoria 11, Milan 20133, Italy; PhD Program in Pharmacological Biomolecular Sciences, Experimental and Clinical, University of Milano, Via G.Balzaretti 9, Milan 20133, Italy
| | - Fulvia Saraceno
- Neuroimmunology and Neuromuscular Diseases Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Via Celoria 11, Milan 20133, Italy; Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 11/a, Parma 43124, Italy
| | - Paola Cavalcante
- Neuroimmunology and Neuromuscular Diseases Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Via Celoria 11, Milan 20133, Italy
| | - Silvia Bonanno
- Neuroimmunology and Neuromuscular Diseases Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Via Celoria 11, Milan 20133, Italy
| | - Renato Mantegazza
- Neuroimmunology and Neuromuscular Diseases Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Via Celoria 11, Milan 20133, Italy
| | - Victoria Moreno-Manzano
- Neuronal and Tissue Regeneration Laboratory, Prince Felipe Research Center, Carrer d´Eduardo Primo Yúfera 3, Valencia 46012, Spain
| | - Giuseppe Lauria
- Neuroalgology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Via Celoria 11, Milan 20133, Italy; Department of Medical Biotechnology and Translational Medicine, University of Milano, Milan 20133, Italy
| | - Pierangelo Metrangolo
- Laboratory of Supramolecular and Bio-Nanomaterials (SupraBioNano Lab), Department of Chemistry, Materials and Chemical Engineering, "Giulio Natta", Politecnico di Milano, Milan 20131, Italy; Brains Lab, Joint Research Platform, Fondazione IRCCS Istituto Neurologico Carlo Besta-Politecnico di Milano, Via Celoria 11, 20133 Milan, Italy
| | - Francesca Baldelli Bombelli
- Laboratory of Supramolecular and Bio-Nanomaterials (SupraBioNano Lab), Department of Chemistry, Materials and Chemical Engineering, "Giulio Natta", Politecnico di Milano, Milan 20131, Italy
| | - Stefania Marcuzzo
- Neuroimmunology and Neuromuscular Diseases Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Via Celoria 11, Milan 20133, Italy; Brains Lab, Joint Research Platform, Fondazione IRCCS Istituto Neurologico Carlo Besta-Politecnico di Milano, Via Celoria 11, 20133 Milan, Italy.
| |
Collapse
|
21
|
Kaur N, Gupta P, Dutt V, Sharma O, Gupta S, Dua A, Injeti E, Mittal A. Cinnamaldehyde attenuates TNF-α induced skeletal muscle loss in C2C12 myotubes via regulation of protein synthesis, proteolysis, oxidative stress and inflammation. Arch Biochem Biophys 2024; 753:109922. [PMID: 38341069 DOI: 10.1016/j.abb.2024.109922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 01/10/2024] [Accepted: 01/31/2024] [Indexed: 02/12/2024]
Abstract
Inflammation is the primary driver of skeletal muscle wasting, with oxidative stress serving as both a major consequence and a contributor to its deleterious effects. In this regard, regulation of both can efficiently prevent atrophy and thus will increase the rate of survival [1]. With this idea, we hypothesize that preincubation of Cinnamaldehyde (CNA), a known compound with anti-oxidative and anti-inflammatory properties, may be able to prevent skeletal muscle loss. To examine the same, C2C12 post-differentiated myotubes were treated with 25 ng/ml Tumor necrosis factor-alpha (TNF-α) in the presence or absence of 50 μM CNA. The data showed that TNF-α mediated myotube thinning and a lower fusion index were prevented by CNA supplementation 4 h before TNF-α treatment. Moreover, a lower level of ROS and thus maintained antioxidant defense system further underlines the antioxidative function of CNA in atrophic conditions. CNA preincubation also inhibited an increase in the level of inflammatory cytokines and thus led to a lower level of inflammation even in the presence of TNF-α. With decreased oxidative stress and inflammation by CNA, it was able to maintain the intracellular level of injury markers (CK, LDH) and SDH activity of mitochondria. In addition, CNA modulates all five proteolytic systems [cathepsin-L, UPS (atrogin-1), calpain, LC3, beclin] simultaneously with an upregulation of Akt/mTOR pathway, in turn, preserves the muscle-specific proteins (MHCf) from degradation by TNF-α. Altogether, our study exhibits attenuation of muscle loss and provides insight into the possible mechanism of action of CNA in curbing TNF-α induced muscle loss, specifically its effect on proteolysis and protein synthesis.
Collapse
Affiliation(s)
- Nirmaljeet Kaur
- Skeletal Muscle Lab, Institute of Integrated & Honors Studies, Kurukshetra University, Kurukshetra, Haryana, India
| | - Prachi Gupta
- Skeletal Muscle Lab, Institute of Integrated & Honors Studies, Kurukshetra University, Kurukshetra, Haryana, India
| | - Vikas Dutt
- Skeletal Muscle Lab, Institute of Integrated & Honors Studies, Kurukshetra University, Kurukshetra, Haryana, India
| | - Onkar Sharma
- Skeletal Muscle Lab, Institute of Integrated & Honors Studies, Kurukshetra University, Kurukshetra, Haryana, India
| | - Sanjeev Gupta
- Skeletal Muscle Lab, Institute of Integrated & Honors Studies, Kurukshetra University, Kurukshetra, Haryana, India
| | - Anita Dua
- Skeletal Muscle Lab, Institute of Integrated & Honors Studies, Kurukshetra University, Kurukshetra, Haryana, India
| | - Elisha Injeti
- Department of Pharmaceutical Sciences, Cedarville University, School of Pharmacy, Cedarville, OH, USA
| | - Ashwani Mittal
- Skeletal Muscle Lab, Institute of Integrated & Honors Studies, Kurukshetra University, Kurukshetra, Haryana, India.
| |
Collapse
|
22
|
Nunn E, Jaiswal N, Gavin M, Uehara K, Stefkovich M, Drareni K, Calhoun R, Lee M, Holman CD, Baur JA, Seale P, Titchenell PM. Antibody blockade of activin type II receptors preserves skeletal muscle mass and enhances fat loss during GLP-1 receptor agonism. Mol Metab 2024; 80:101880. [PMID: 38218536 PMCID: PMC10832506 DOI: 10.1016/j.molmet.2024.101880] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 01/02/2024] [Accepted: 01/09/2024] [Indexed: 01/15/2024] Open
Abstract
OBJECTIVE Glucagon-like peptide 1 (GLP-1) receptor agonists reduce food intake, producing remarkable weight loss in overweight and obese individuals. While much of this weight loss is fat mass, there is also a loss of lean mass, similar to other approaches that induce calorie deficit. Targeting signaling pathways that regulate skeletal muscle hypertrophy is a promising avenue to preserve lean mass and modulate body composition. Myostatin and Activin A are TGFβ-like ligands that signal via the activin type II receptors (ActRII) to antagonize muscle growth. Pre-clinical and clinical studies demonstrate that ActRII blockade induces skeletal muscle hypertrophy and reduces fat mass. In this manuscript, we test the hypothesis that combined ActRII blockade and GLP-1 receptor agonism will preserve muscle mass, leading to improvements in skeletomuscular and metabolic function and enhanced fat loss. METHODS In this study, we explore the therapeutic potential of bimagrumab, a monoclonal antibody against ActRII, to modify body composition alone and during weight loss induced by GLP-1 receptor agonist semaglutide in diet-induced obese mice. Mechanistically, we define the specific role of the anabolic kinase Akt in mediating the hypertrophic muscle effects of ActRII inhibition in vivo. RESULTS Treatment of obese mice with bimagrumab induced a ∼10 % increase in lean mass while simultaneously decreasing fat mass. Daily treatment of obese mice with semaglutide potently decreased body weight; this included a significant decrease in both muscle and fat mass. Combination treatment with bimagrumab and semaglutide led to superior fat mass loss while simultaneously preserving lean mass despite reduced food intake. Treatment with both drugs was associated with improved metabolic outcomes, and increased lean mass was associated with improved exercise performance. Deletion of both Akt isoforms in skeletal muscle modestly reduced, but did not prevent, muscle hypertrophy driven by ActRII inhibition. CONCLUSIONS Collectively, these data demonstrate that blockade of ActRII signaling improves body composition and metabolic parameters during calorie deficit driven by GLP-1 receptor agonism and demonstrate the existence of Akt-independent pathways supporting muscle hypertrophy in the absence of ActRII signaling.
Collapse
Affiliation(s)
- Elizabeth Nunn
- Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA; Department of Physiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Natasha Jaiswal
- Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA; Department of Physiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Matthew Gavin
- Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA; Department of Physiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Kahealani Uehara
- Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA; Department of Physiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Megan Stefkovich
- Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA; Department of Physiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Karima Drareni
- Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA; Department of Cell and Developmental Biology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Ryan Calhoun
- Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA; Department of Cell and Developmental Biology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Michelle Lee
- Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA; Department of Physiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Corey D Holman
- Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA; Department of Physiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Joseph A Baur
- Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA; Department of Physiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Patrick Seale
- Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA; Department of Cell and Developmental Biology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Paul M Titchenell
- Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA; Department of Physiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
23
|
Cai Y, He L, Cao S, Zeng P, Xu L, Luo Y, Tang X, Wang Q, Liu Z, He Z, Liu S. Insights into Dietary Different Co-Forms of Lysine and Glutamate on Growth Performance, Muscle Development, Antioxidation and Related Gene Expressions in Juvenile Grass Carp (Ctenopharyngodon idellus). MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2024; 26:74-91. [PMID: 38153607 DOI: 10.1007/s10126-023-10278-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 12/18/2023] [Indexed: 12/29/2023]
Abstract
The study aimed to compare the effects of crystalline L-lysine and L-glutamate (CAA), Lys-Glu dipeptide (KE) on the growth and muscle development of grass carp (Ctenopharyngodon idellus), and related molecular mechanisms. Five experimental diets (CR, 0.5% CAA, 1.5% CAA, 0.5% KE, 1.5% KE) containing Lys and Glu as free (Lys and Glu, CAA) dipeptide (Lys-Glu, KE) forms were prepared, respectively. A total of 450 juvenile grass carp with an initial weight of 10.69 ± 0.07 g were randomly assigned to 15 cages, and 5 treatments with 3 replicates of 30 fish each for 61 days of feeding. The results showed that the group of 0.5% KE exhibited the best growth performances according to the indicator's weight gain rate (WGR) and specific growth rate (SGR), although no statistically significant occurred among all groups; diet supplemented with 0.5% CAA significantly elevated the condition factor (CF) and viscerasomatic index (VSI) of juvenile grass carp. Diet supplemented with different Lys and Glu co-forms at different levels promoted the muscle amino acid content compared with those of CR group. Comparing with the CR group and other groups, the hardness of 0.5% CAA group significantly increased, and the springiness of 0.5% KE group excelled. Both the muscle fiber diameter and density of 0.5% KE group showed significant difference with those of the CR group, and a negative correlation between them was also observed. To uncover the related molecular mechanism of the differences caused by the different co-forms of Lys and Glu, the effect of different diets on the expressions of protein absorption, muscle quality, and antioxidation-related genes was analyzed. The results suggested that comparing with those of CR group, the dipeptide KE inhibited the expressions of genes associated with protein metabolism, such as AKT, S6K1, and FoxO1a but promoted PCNA expression, while the free style of CAA would improve the FoxO1a expression. Additionally, the muscle development-related genes (MyoD, MyOG, and Myf5) were significantly boosted in CAA co-form groups, and the expressions of fMYHCs were blocked but fMYHCs30 significantly promoted in 0.5% KE group. Finally, the effect of different co-forms of Lys and Glu on muscle antioxidant was examined. The 0.5% CAA diet was verified to increase GPX1a but obstruct Keap1 and GSTP1 expressions, resulting in enhanced SOD activity and reduced MDA levels in plasma. Collectively, the different co-forms of Lys and Glu influenced the growth of juvenile grass carp, and also the muscle development and quality through their different regulation on the protein metabolism, muscle development- and antioxidative-related genes.
Collapse
Affiliation(s)
- Yuyang Cai
- College of Food Science and Technology, Hunan Agricultural University, Changsha, 410128, Hunan, China
- Hunan Provincial Key Laboratory of Nutrition and Quality Control of Aquatic Animals, Department of Biological and Chemical Engineering, Changsha University, Changsha, 410022, China
| | - Li He
- Hunan Provincial Key Laboratory of Nutrition and Quality Control of Aquatic Animals, Department of Biological and Chemical Engineering, Changsha University, Changsha, 410022, China
| | - Shenping Cao
- Hunan Provincial Key Laboratory of Nutrition and Quality Control of Aquatic Animals, Department of Biological and Chemical Engineering, Changsha University, Changsha, 410022, China
| | - Peng Zeng
- Hunan Provincial Key Laboratory of Nutrition and Quality Control of Aquatic Animals, Department of Biological and Chemical Engineering, Changsha University, Changsha, 410022, China
| | - Linhan Xu
- Hunan Provincial Key Laboratory of Nutrition and Quality Control of Aquatic Animals, Department of Biological and Chemical Engineering, Changsha University, Changsha, 410022, China
| | - Yanan Luo
- Hunan Provincial Key Laboratory of Nutrition and Quality Control of Aquatic Animals, Department of Biological and Chemical Engineering, Changsha University, Changsha, 410022, China
| | - Xiang Tang
- Hunan Provincial Key Laboratory of Nutrition and Quality Control of Aquatic Animals, Department of Biological and Chemical Engineering, Changsha University, Changsha, 410022, China
| | - Qixiang Wang
- College of Food Science and Technology, Hunan Agricultural University, Changsha, 410128, Hunan, China
- Hunan Provincial Key Laboratory of Nutrition and Quality Control of Aquatic Animals, Department of Biological and Chemical Engineering, Changsha University, Changsha, 410022, China
| | - Zhen Liu
- Hunan Provincial Key Laboratory of Nutrition and Quality Control of Aquatic Animals, Department of Biological and Chemical Engineering, Changsha University, Changsha, 410022, China
| | - Zhimin He
- Hunan Provincial Key Laboratory of Nutrition and Quality Control of Aquatic Animals, Department of Biological and Chemical Engineering, Changsha University, Changsha, 410022, China.
| | - Suchun Liu
- College of Food Science and Technology, Hunan Agricultural University, Changsha, 410128, Hunan, China.
| |
Collapse
|
24
|
Sasako T. Exploring mechanisms underlying diabetes comorbidities and strategies to prevent vascular complications. Diabetol Int 2024; 15:34-40. [PMID: 38264227 PMCID: PMC10800323 DOI: 10.1007/s13340-023-00677-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Accepted: 11/15/2023] [Indexed: 01/25/2024]
Abstract
It is important to prevent not only diabetic complications but also diabetic comorbidities in diabetes care. We have elucidated multifaceted insulin action in various tissues mainly by means of model mice, and it was revealed that insulin regulates endoplasmic reticulum (ER) stress response during feeding, whereas ER stress 'response failure' contributes to the development of steatohepatitis, one of the major diabetic comorbidities. Insulin regulates gluconeogenesis not only in the liver but also in the proximal tubules of the kidney, which is also suppressed by reabsorbed glucose in the latter. In skeletal muscle, another important insulin-targeted tissue, impaired insulin/IGF-1 signaling leads not only to sarcopenia, an aging-related disease, but also to bone loss and shorter longevity. Aging is regulated by adipokines as well, and it is deemed to be accelerated by 'imbalanced adipokines' in combination with genetic background of progeria. Moreover, we reported effects of intensive multifactorial intervention on diabetic complications and mortality in patients with type 2 diabetes in a large-scale clinical trial, the J-DOIT3, followed by reports of subsequent sub-analyses of renal events and fracture events. Various approaches to elucidate the mechanisms underlying the development of diabetes and how it should be treated are expected to help us improve diabetes management.
Collapse
Affiliation(s)
- Takayoshi Sasako
- Department of Diabetes and Metabolic Diseases, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-Ku, Tokyo, 113-0033 Japan
| |
Collapse
|
25
|
Zhou C, Ma H, Liu C, Yang L. Exploring traditional Chinese medicine as a potential treatment for sarcopenia: A network pharmacology and data mining analysis of drug selection and efficacy. Medicine (Baltimore) 2023; 102:e35404. [PMID: 37832096 PMCID: PMC10578686 DOI: 10.1097/md.0000000000035404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 09/05/2023] [Indexed: 10/15/2023] Open
Abstract
Sarcopenia, as an increasingly pressing clinical issue, can be ameliorated through employment of traditional Chinese medicines. However, the current lack of specific pharmacological interventions for Sarcopenia necessitates further exploration of novel possibilities in traditional Chinese medicine for the treatment of this condition, utilizing advanced methodologies such as web pharmacology and data mining. Screening the essential targets of Sarcopenia, conducting matching between target and active molecules, as well as active molecules and herbs. Employing data mining techniques to analyze the screening outcomes, and molecular docking to compare the binding activities of active molecules with target proteins. The approach of using herbs for the treatment of Sarcopenia involves 13 targets, with 414 active compounds and 367 types of herbs. Data mining reveals that the herbs used in treating Sarcopenia are primarily characterized by their bitter taste, exerting their effects through dispelling dampness and promoting blood circulation. Moreover, 2 new formulas are postulated. Furthermore, molecular docking analysis indicates that the main active components of the herbs can be observed to tightly bind with the targets. Through network pharmacology and molecular docking, our findings reveal that herbs contain 15 key active components and 5 key targets, which correspond to 7 major herbs and 2 new formulas. Academically, these findings hold significant reference value for the development of novel drugs targeting Sarcopenia.
Collapse
Affiliation(s)
- Changwen Zhou
- The First Clinical Medical Research Institute, Shaanxi University of Chinese Medicine, Shaanxi, China
| | - Hongzhong Ma
- The First Clinical Medical Research Institute, Shaanxi University of Chinese Medicine, Shaanxi, China
| | - Ce Liu
- The First Clinical Medical Research Institute, Shaanxi University of Chinese Medicine, Shaanxi, China
| | - Lixue Yang
- The First Clinical Medical Research Institute, Shaanxi University of Chinese Medicine, Shaanxi, China
- Affiliated Hospital of Chinese Medicine, Shaanxi University of Chinese Medicine, Shaanxi, China
| |
Collapse
|
26
|
Rico A, Valls A, Guembelzu G, Azpitarte M, Aiastui A, Zufiria M, Jaka O, López de Munain A, Sáenz A. Altered expression of proteins involved in metabolism in LGMDR1 muscle is lost in cell culture conditions. Orphanet J Rare Dis 2023; 18:315. [PMID: 37817200 PMCID: PMC10565977 DOI: 10.1186/s13023-023-02873-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 08/24/2023] [Indexed: 10/12/2023] Open
Abstract
BACKGROUND Limb-girdle muscular dystrophy R1 calpain 3-related (LGMDR1) is an autosomal recessive muscular dystrophy due to mutations in the CAPN3 gene. While the pathophysiology of this disease has not been clearly established yet, Wnt and mTOR signaling pathways impairment in LGMDR1 muscles has been reported. RESULTS A reduction in Akt phosphorylation ratio and upregulated expression of proteins implicated in glycolysis (HK-II) and in fructose and lactate transport (GLUT5 and MCT1) in LGMDR1 muscle was observed. In vitro analysis to establish mitochondrial and glycolytic functions of primary cultures were performed, however, no differences between control and patients were observed. Additionally, gene expression analysis showed a lack of correlation between primary myoblasts/myotubes and LGMDR1 muscle while skin fibroblasts and CD56- cells showed a slightly better correlation with muscle. FRZB gene was upregulated in all the analyzed cell types (except in myoblasts). CONCLUSIONS Proteins implicated in metabolism are deregulated in LGMDR1 patients' muscle. Obtained results evidence the limited usefulness of primary myoblasts/myotubes for LGMDR1 gene expression and metabolic studies. However, since FRZB is the only gene that showed upregulation in all the analyzed cell types it is suggested its role as a key regulator of the pathophysiology of the LGMDR1 muscle fiber. The Wnt signaling pathway inactivation, secondary to FRZB upregulation, and GLUT5 overexpression may participate in the impaired adipogenesis in LGMD1R patients.
Collapse
Affiliation(s)
- Anabel Rico
- Neurosciences Area, Biodonostia Health Research Institute, San Sebastián, Spain
- CIBERNED, CIBER, Spanish Ministry of Science and Innovation, Carlos III Health Institute, Madrid, Spain
| | - Andrea Valls
- Neurosciences Area, Biodonostia Health Research Institute, San Sebastián, Spain
- CIBERNED, CIBER, Spanish Ministry of Science and Innovation, Carlos III Health Institute, Madrid, Spain
| | - Garazi Guembelzu
- Neurosciences Area, Biodonostia Health Research Institute, San Sebastián, Spain
- CIBERNED, CIBER, Spanish Ministry of Science and Innovation, Carlos III Health Institute, Madrid, Spain
| | - Margarita Azpitarte
- Cell Culture, Histology and Multidisciplinary 3D Printing Platform, Biodonostia Health Research Institute, San Sebastián, Spain
| | - Ana Aiastui
- Department of Neurology, Donostialdea Integrated Health Organization, San Sebastián, Spain
| | - Mónica Zufiria
- Neurosciences Area, Biodonostia Health Research Institute, San Sebastián, Spain
- CIBERNED, CIBER, Spanish Ministry of Science and Innovation, Carlos III Health Institute, Madrid, Spain
| | - Oihane Jaka
- Neurosciences Area, Biodonostia Health Research Institute, San Sebastián, Spain
- CIBERNED, CIBER, Spanish Ministry of Science and Innovation, Carlos III Health Institute, Madrid, Spain
| | - Adolfo López de Munain
- Neurosciences Area, Biodonostia Health Research Institute, San Sebastián, Spain
- CIBERNED, CIBER, Spanish Ministry of Science and Innovation, Carlos III Health Institute, Madrid, Spain
- Department of Neurology, Donostialdea Integrated Health Organization, San Sebastián, Spain
- Department of Neurosciences, University of the Basque Country UPV-EHU, San Sebastián, Spain
- Faculty of Medicine, University of Deusto, Bilbao, Spain
| | - Amets Sáenz
- Neurosciences Area, Biodonostia Health Research Institute, San Sebastián, Spain.
- CIBERNED, CIBER, Spanish Ministry of Science and Innovation, Carlos III Health Institute, Madrid, Spain.
| |
Collapse
|
27
|
Dou L, Sun L, Liu C, Su L, Chen X, Yang Z, Hu G, Zhang M, Zhao L, Jin Y. Effect of dietary arginine supplementation on protein synthesis, meat quality and flavor in growing lambs. Meat Sci 2023; 204:109291. [PMID: 37523931 DOI: 10.1016/j.meatsci.2023.109291] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 07/18/2023] [Accepted: 07/21/2023] [Indexed: 08/02/2023]
Abstract
This study aimed to assess the effect of dietary arginine supplementation on protein synthesis, meat quality and flavor in lambs. Eighteen Dorper (♂) × Small Tailed Han sheep (♀) crossed ewe lambs of similar weight (27.29 ± 2.02 kg; aged 3 months) were assigned to two groups, the control group was fed the basal diet (Con group), and the arginine group (Arg group) was supplemented with 1% l-arginine based on the Con group for 90 d. The results suggested that dietary arginine significantly increased final body weight, loin eye muscle area, muscle fiber diameter, cross-sectional area (P < 0.050), and decreased shear force value and cooking loss (P < 0.050), as well as altered the composition and contents of volatile flavor compounds in lambs. Importantly, the total protein (TP) content, alanine aminotransferase (ALT), aspartate aminotransferase (AST), alkaline phosphatase (AKP) activities in serum, branched-chain aminotransferase (BCAT), AST, ALT activities and neuronal nitric oxide synthase (nNOS) gene expression and content were elevated (P < 0.050), while content of urea nitrogen (BUN) in serum and 3-methylhistidine (3-MH) were decreased in arginine fed lambs (P < 0.050). In addition, arginine triggered muscle protein synthesis through protein kinase B (Akt)/mammalian target of rapamycin (mTOR) signaling pathway, while minimized protein degradation by regulating gene expression of myogenin (MyoG), myostatin (MSTN), muscle atrophy F-box (MAFbx) and forkhead box O3 family (FoxO3) (P < 0.050). Taken together, this study suggested that arginine can be used to improve protein deposition and meat quality in lamb production.
Collapse
Affiliation(s)
- Lu Dou
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China; Integrative Research Base of Beef and Lamb Processing Technology, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Hohhot 010018, China
| | - Lina Sun
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China; Integrative Research Base of Beef and Lamb Processing Technology, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Hohhot 010018, China
| | - Chang Liu
- Inner Mongolia Vocational College of Chemical Engineering, Hohhot 010018, China
| | - Lin Su
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China; Integrative Research Base of Beef and Lamb Processing Technology, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Hohhot 010018, China
| | - Xiaoyu Chen
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China; Integrative Research Base of Beef and Lamb Processing Technology, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Hohhot 010018, China
| | - Zhihao Yang
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China; Integrative Research Base of Beef and Lamb Processing Technology, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Hohhot 010018, China
| | - Guanhua Hu
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China; Integrative Research Base of Beef and Lamb Processing Technology, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Hohhot 010018, China
| | - Min Zhang
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China; Integrative Research Base of Beef and Lamb Processing Technology, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Hohhot 010018, China
| | - Lihua Zhao
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China; Integrative Research Base of Beef and Lamb Processing Technology, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Hohhot 010018, China
| | - Ye Jin
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China; Integrative Research Base of Beef and Lamb Processing Technology, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Hohhot 010018, China.
| |
Collapse
|
28
|
Roberts MD, McCarthy JJ, Hornberger TA, Phillips SM, Mackey AL, Nader GA, Boppart MD, Kavazis AN, Reidy PT, Ogasawara R, Libardi CA, Ugrinowitsch C, Booth FW, Esser KA. Mechanisms of mechanical overload-induced skeletal muscle hypertrophy: current understanding and future directions. Physiol Rev 2023; 103:2679-2757. [PMID: 37382939 PMCID: PMC10625844 DOI: 10.1152/physrev.00039.2022] [Citation(s) in RCA: 65] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 06/12/2023] [Accepted: 06/21/2023] [Indexed: 06/30/2023] Open
Abstract
Mechanisms underlying mechanical overload-induced skeletal muscle hypertrophy have been extensively researched since the landmark report by Morpurgo (1897) of "work-induced hypertrophy" in dogs that were treadmill trained. Much of the preclinical rodent and human resistance training research to date supports that involved mechanisms include enhanced mammalian/mechanistic target of rapamycin complex 1 (mTORC1) signaling, an expansion in translational capacity through ribosome biogenesis, increased satellite cell abundance and myonuclear accretion, and postexercise elevations in muscle protein synthesis rates. However, several lines of past and emerging evidence suggest that additional mechanisms that feed into or are independent of these processes are also involved. This review first provides a historical account of how mechanistic research into skeletal muscle hypertrophy has progressed. A comprehensive list of mechanisms associated with skeletal muscle hypertrophy is then outlined, and areas of disagreement involving these mechanisms are presented. Finally, future research directions involving many of the discussed mechanisms are proposed.
Collapse
Affiliation(s)
- Michael D Roberts
- School of Kinesiology, Auburn University, Auburn, Alabama, United States
| | - John J McCarthy
- Department of Physiology, College of Medicine, University of Kentucky, Lexington, Kentucky, United States
| | - Troy A Hornberger
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, Wisconsin, United States
| | - Stuart M Phillips
- Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| | - Abigail L Mackey
- Institute of Sports Medicine Copenhagen, Department of Orthopedic Surgery, Copenhagen University Hospital-Bispebjerg and Frederiksberg, and Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Gustavo A Nader
- Department of Kinesiology and Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, Pennsylvania, United States
| | - Marni D Boppart
- Department of Kinesiology and Community Health, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States
| | - Andreas N Kavazis
- School of Kinesiology, Auburn University, Auburn, Alabama, United States
| | - Paul T Reidy
- Department of Kinesiology, Nutrition and Health, Miami University, Oxford, Ohio, United States
| | - Riki Ogasawara
- Healthy Food Science Research Group, Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
| | - Cleiton A Libardi
- MUSCULAB-Laboratory of Neuromuscular Adaptations to Resistance Training, Department of Physical Education, Federal University of São Carlos, São Carlos, Brazil
| | - Carlos Ugrinowitsch
- School of Physical Education and Sport, University of São Paulo, São Paulo, Brazil
| | - Frank W Booth
- Department of Biomedical Sciences, University of Missouri, Columbia, Missouri, United States
| | - Karyn A Esser
- Department of Physiology and Aging, College of Medicine, University of Florida, Gainesville, Florida, United States
| |
Collapse
|
29
|
Wu Y, Li M, Chen L, Xu L, Xu Y, Zhong Y. Utilizing a Combination of Network Pharmacology and Experimental Validation to Unravel the Mechanism by Which Kuanxiongzhuyu Decoction Ameliorates Myocardial Infarction Damage. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:1740. [PMID: 37893458 PMCID: PMC10608708 DOI: 10.3390/medicina59101740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 09/08/2023] [Accepted: 09/15/2023] [Indexed: 10/29/2023]
Abstract
Background and Objectives: With the growing incidence and disability associated with myocardial infarction (MI), there is an increasing focus on cardiac rehabilitation post-MI. Kuanxiongzhuyu decoction (KXZY), a traditional Chinese herbal formula, has been used in the rehabilitation of patients after MI. However, the chemical composition, protective effects, and underlying mechanism of KXZY remain unclear. Materials and Methods: In this study, the compounds in KXZY were identified using a high-performance liquid chromatography-mass spectrometry (HPLC-MS) analytical method. Based on the compounds identified in the KXZY, we predictively selected the potential targets of MI and then constructed a protein-protein interaction (PPI) network to identify the key targets. Furthermore, the DAVID database was used for the GO and KEGG analyses, and molecular docking was used to verify the key targets. Finally, the cardioprotective effects and mechanism of KXZY were investigated in post-MI mice. Results: A total of 193 chemical compounds of KXZY were identified by HPLC-MS. In total, 228 potential targets were obtained by the prediction analysis. The functional enrichment studies and PPI network showed that the targets were largely associated with AKT-pathway-related apoptosis. The molecular docking verified that isoguanosine and adenosine exhibited excellent binding to the AKT. In vivo, KXZY significantly alleviated cardiac dysfunction and suppressed AKT phosphorylation. Furthermore, KXZY significantly increased the expression of the antiapoptotic proteins Bcl-2 and Bcl-xl and decreased the expression of the proapoptotic protein BAD. Conclusions: In conclusion, the network pharmacological and experimental evidence suggests that KXZY manifests anti-cardiac dysfunction behavior by alleviating cardiomyocyte apoptosis via the AKT pathway in MI and, thus, holds promising therapeutic potential.
Collapse
Affiliation(s)
- Yihao Wu
- Department of Cardiology, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China; (Y.W.); (M.L.); (L.C.); (L.X.)
| | - Miaofu Li
- Department of Cardiology, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China; (Y.W.); (M.L.); (L.C.); (L.X.)
| | - Liuying Chen
- Department of Cardiology, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China; (Y.W.); (M.L.); (L.C.); (L.X.)
| | - Linhao Xu
- Department of Cardiology, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China; (Y.W.); (M.L.); (L.C.); (L.X.)
- Translational Medicine Research Center, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China
| | - Yizhou Xu
- Department of Cardiology, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China; (Y.W.); (M.L.); (L.C.); (L.X.)
| | - Yigang Zhong
- Department of Cardiology, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China; (Y.W.); (M.L.); (L.C.); (L.X.)
| |
Collapse
|
30
|
You CL, Lee SJ, Lee J, Vuong TA, Lee HY, Jeong SY, Alishir A, Walker AS, Bae GU, Kim KH, Kang JS. Inonotus obliquus upregulates muscle regeneration and augments function through muscle oxidative metabolism. Int J Biol Sci 2023; 19:4898-4914. [PMID: 37781506 PMCID: PMC10539711 DOI: 10.7150/ijbs.84970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 09/01/2023] [Indexed: 10/03/2023] Open
Abstract
Skeletal muscle wasting related to aging or pathological conditions is critically associated with the increased incidence and prevalence of secondary diseases including cardiovascular diseases, metabolic syndromes, and chronic inflammations. Much effort is made to develop agents to enhance muscle metabolism and function. Inonotus obliquus (I. obliquus; IO) is a mushroom popularly called chaga and has been widely employed as a folk medicine for inflammation, cardiovascular diseases, diabetes, and cancer in Eastern Europe and Asia. However, its effect on muscle health has not been explored. Here, we aimed to investigate the beneficial effect of IO extract in muscle regeneration and metabolism. The treatment of IO in C2C12 myoblasts led to increased myogenic differentiation and alleviation of dexamethasone-induced myotube atrophy. Network pharmacological analysis using the identified specific chemical constituents of IO extracts predicted protein kinase B (AKT)-dependent mechanisms to promote myogenesis and muscle regeneration. Consistently, IO treatment resulted in the activation of AKT, which suppressed muscle-specific ubiquitin E3 ligases induced by dexamethasone. IO treatment in mice improved the regeneration of cardiotoxin-injured muscles accompanied by elevated proliferation and differentiation of muscle stem cells. Furthermore, it elevated the mitochondrial content and muscle oxidative metabolism accompanied by the induction of peroxisome proliferator-activated receptor γ coactivator α (PGC-1α). Our current data suggest that IO is a promising natural agent in enhancing muscle regenerative capacity and oxidative metabolism thereby preventing muscle wasting.
Collapse
Affiliation(s)
- Chang-Lim You
- Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon 16419, Republic of Korea
| | - Sang-Jin Lee
- Research Institute of Aging Related Disease, AniMusCure Inc., Suwon 16419, Republic of Korea
| | - Jinwoo Lee
- Research Institute of Aging Related Disease, AniMusCure Inc., Suwon 16419, Republic of Korea
| | - Tuan Anh Vuong
- Research Institute of Aging Related Disease, AniMusCure Inc., Suwon 16419, Republic of Korea
| | - Hye-Young Lee
- Research Institute of Aging Related Disease, AniMusCure Inc., Suwon 16419, Republic of Korea
| | - Se Yun Jeong
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Akida Alishir
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Allison S. Walker
- Department of Chemistry, Vanderbilt University, Nashville, TN 37235, United States
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, United States
| | - Gyu-Un Bae
- Research Institute of Aging Related Disease, AniMusCure Inc., Suwon 16419, Republic of Korea
- Drug Information Research Institute, Muscle Physiome Research Center, College of Pharmacy, Sookmyung Women's University, Seoul 04310, Republic of Korea
| | - Ki Hyun Kim
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Jong-Sun Kang
- Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon 16419, Republic of Korea
| |
Collapse
|
31
|
Alattar A, Alshaman R, Althobaiti YS, Soliman GM, Ali HS, Khubrni WS, Koh PO, Rehman NU, Shah FA. Quercetin Alleviated Inflammasome-Mediated Pyroptosis and Modulated the mTOR/P70S6/P6/eIF4E/4EBP1 Pathway in Ischemic Stroke. Pharmaceuticals (Basel) 2023; 16:1182. [PMID: 37631097 PMCID: PMC10459024 DOI: 10.3390/ph16081182] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/03/2023] [Accepted: 08/10/2023] [Indexed: 08/27/2023] Open
Abstract
Stroke ranks as the world's second most prevalent cause of mortality, and it represents a major public health concern with profound economic and social implications. In the present study, we elucidated the neuroprotective role of quercetin on NLRP3-associated pyroptosis, Nrf2-coupled anti-inflammatory, and mTOR-dependent downstream pathways. Male Sprague Dawley rats were subjected to 72 h of transient middle cerebral artery ischemia, followed by the administration of 10 mg/kg of quercetin. Our findings demonstrated that MCAO induced elevated ROS which were coupled to inflammasome-mediated pyroptosis and altered mTOR-related signaling proteins. We performed ELISA, immunohistochemistry, and Western blotting to unveil the underlying role of the Nrf2/HO-1 and PDK/AKT/mTOR pathways in the ischemic cortex and striatum. Our results showed that quercetin post-treatment activated the Nrf2/HO-1 cascade, reversed pyroptosis, and modulated the autophagy-related pathway PDK/AKT/mTOR/P70S6/P6/eIF4E/4EBP1. Further, quercetin enhances the sequestering effect of 14-3-3 and reversed the decrease in interaction between p-Bad and 14-3-3 and p-FKHR and 14-3-3. Our findings showed that quercetin exerts its protective benefits and rescues neuronal damage by several mechanisms, and it might be a viable neuroprotective drug for ischemic stroke therapy.
Collapse
Affiliation(s)
- Abdullah Alattar
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, University of Tabuk, Tabuk 47713, Saudi Arabia; (R.A.); (W.S.K.)
| | - Reem Alshaman
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, University of Tabuk, Tabuk 47713, Saudi Arabia; (R.A.); (W.S.K.)
| | - Yusuf S. Althobaiti
- Department of Pharmacology and Toxicology, College of Pharmacy, Taif University, P.O. Box 21944, Taif 21944, Saudi Arabia;
- Addiction and Neuroscience Research Unit, Taif University, Taif 21944, Saudi Arabia
| | - Ghareb M. Soliman
- Department of Pharmaceutics, Faculty of Pharmacy, University of Tabuk, Tabuk 47713, Saudi Arabia;
| | - Howaida S. Ali
- Department of Pharmacology, Faculty of Medicine, Assuit University, Assuit 71515, Egypt;
- Department of Pharmacology, Faculty of Medicine, University of Tabuk, Tabuk 47713, Saudi Arabia
| | - Waleed Salman Khubrni
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, University of Tabuk, Tabuk 47713, Saudi Arabia; (R.A.); (W.S.K.)
| | - Phil Ok Koh
- Department of Anatomy and Histology, College of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Republic of Korea;
| | - Najeeb Ur Rehman
- Department of Pharmacology and Toxicology, College of Pharmacy, Prince Sttam Bin Abdul Aziz University, Al-Kharj 11942, Saudi Arabia;
| | - Fawad Ali Shah
- Department of Anatomy and Histology, College of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Republic of Korea;
| |
Collapse
|
32
|
Wu J, Ding P, Wu H, Yang P, Guo H, Tian Y, Meng L, Zhao Q. Sarcopenia: Molecular regulatory network for loss of muscle mass and function. Front Nutr 2023; 10:1037200. [PMID: 36819699 PMCID: PMC9932270 DOI: 10.3389/fnut.2023.1037200] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 01/16/2023] [Indexed: 02/05/2023] Open
Abstract
Skeletal muscle is the foundation of human function and plays a key role in producing exercise, bone protection, and energy metabolism. Sarcopenia is a systemic disease, which is characterized by degenerative changes in skeletal muscle mass, strength, and function. Therefore, sarcopenia often causes weakness, prolonged hospitalization, falls and other adverse consequences that reduce the quality of life, and even lead to death. In recent years, sarcopenia has become the focus of in-depth research. Researchers have suggested some molecular mechanisms for sarcopenia according to different muscle physiology. These mechanisms cover neuromuscular junction lesion, imbalance of protein synthesis and breakdown, satellite cells dysfunction, etc. We summarize the latest research progress on the molecular mechanism of sarcopenia in this review in order to provide new ideas for future researchers to find valuable therapeutic targets and develop relevant prevention strategies.
Collapse
Affiliation(s)
- Jiaxiang Wu
- The Third Department of Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China,Hebei Key Laboratory of Precision Diagnosis and Comprehensive Treatment of Gastric Cancer, Shijiazhuang, China
| | - Ping’an Ding
- The Third Department of Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China,Hebei Key Laboratory of Precision Diagnosis and Comprehensive Treatment of Gastric Cancer, Shijiazhuang, China
| | - Haotian Wu
- The Third Department of Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China,Hebei Key Laboratory of Precision Diagnosis and Comprehensive Treatment of Gastric Cancer, Shijiazhuang, China
| | - Peigang Yang
- The Third Department of Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China,Hebei Key Laboratory of Precision Diagnosis and Comprehensive Treatment of Gastric Cancer, Shijiazhuang, China
| | - Honghai Guo
- The Third Department of Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China,Hebei Key Laboratory of Precision Diagnosis and Comprehensive Treatment of Gastric Cancer, Shijiazhuang, China
| | - Yuan Tian
- The Third Department of Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China,Hebei Key Laboratory of Precision Diagnosis and Comprehensive Treatment of Gastric Cancer, Shijiazhuang, China
| | - Lingjiao Meng
- Hebei Key Laboratory of Precision Diagnosis and Comprehensive Treatment of Gastric Cancer, Shijiazhuang, China,Research Center of the Fourth Hospital of Hebei Medical University, Shijiazhuang, China,Lingjiao Meng,
| | - Qun Zhao
- The Third Department of Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China,Hebei Key Laboratory of Precision Diagnosis and Comprehensive Treatment of Gastric Cancer, Shijiazhuang, China,*Correspondence: Qun Zhao,
| |
Collapse
|
33
|
Lee H, Kim SY, Lim Y. Lespedeza bicolor extract supplementation reduced hyperglycemia-induced skeletal muscle damage by regulation of AMPK/SIRT/PGC1α-related energy metabolism in type 2 diabetic mice. Nutr Res 2023; 110:1-13. [PMID: 36638746 DOI: 10.1016/j.nutres.2022.12.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 12/19/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022]
Abstract
Lespedeza bicolor (LB) is known to have antidiabetic activities; however, the underlying molecular mechanisms of LB in hyperglycemia-induced skeletal muscle damage is unclear. Inflammation and oxidative stress caused by type 2 diabetes mellitus (T2DM) not only contributes to insulin resistance, but also promotes muscle atrophy via decreased muscle protein synthesis and increased protein degradation, leading to frailty and sarcopenia. In this study, we hypothesized that LB extract (LBE) supplementatin has an ameliorative effect on hyperglycemia-induced skeletal muscle damage by activation of 5' adenosine monophosphate-activated protein kinase (AMPK)/sirtuin (SIRT)/proliferator-activated receptor γ coactivator 1α (PGC1α)-associated energy metabolism in mice with T2DM. Diabetes was induced by a high-fat diet with a 2-time streptozotoxin injection (30 mg/kg body weight) in male C57BL/6J mice. After diabetes was induced (fasting blood glucose level ≥140 mg/dL), the mice were administered with LBE at a low dose (100 mg/kg/d) or high dose (250 mg/kg/d) by gavage for 12 weeks. LBE supplementation ameliorated glucose tolerance and hemoglobin A1c (%) in mice with T2DM. Moreover, LBE supplementation upregulated protein levels of insulin receptor subunit-1 and Akt accompanied by increased translocation of glucose transporter 4 in mice with T2DM. Furthermore, LBE increased mitochondrial biogenesis by activating SIRT1, SIRT3, SIRT4, and peroxisome PGC1α in diabetic skeletal muscle. Meanwhile, LBE supplementation reduced oxidative stress and inflammation in mice with T2DM. Taken together, the current study suggested that LBE could be a potential therapeutic to prevent skeletal muscle damage by regulation AMPK/SIRT/PGC1α-related energy metabolism in T2DM.
Collapse
Affiliation(s)
- Heaji Lee
- Department of Food and Nutrition, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Sun Yeou Kim
- College of Pharmacy, Gachon University, Incheon 21936, Republic of Korea
| | - Yunsook Lim
- Department of Food and Nutrition, Kyung Hee University, Seoul 02447, Republic of Korea.
| |
Collapse
|
34
|
Hu BA, Li YL, Han HT, Lu B, Jia X, Han L, Ma WX, Zhu P, Wang ZH, Zhang W, Zhong M, Zhang L. Stimulation of soluble guanylate cyclase by vericiguat reduces skeletal muscle atrophy of mice following chemotherapy. Front Pharmacol 2023; 14:1112123. [PMID: 36744261 PMCID: PMC9894251 DOI: 10.3389/fphar.2023.1112123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 01/06/2023] [Indexed: 01/20/2023] Open
Abstract
Background: The chemotherapeutic doxorubicin (DOX) promotes severe skeletal muscle atrophy, which induces skeletal muscle weakness and fatigue. Soluble guanylate cyclase (sGC) contributes to a variety of pathophysiological processes, but whether it is involved in DOX-induced skeletal muscle atrophy is unclear. The present study aimed to stimulate sGC by vericiguat, a new oral sGC stimulator, to test its role in this process. Methods: Mice were randomly divided into four groups: control group, vericiguat group, DOX group, and DOX + vericiguat group. Exercise capacity was evaluated before the mice were sacrificed. Skeletal muscle atrophy was assessed by histopathological and molecular biological methods. Protein synthesis and degradation were monitored in mice and C2C12 cells. Results: In this study, a significant decrease in exercise capacity and cross-sectional area (CSA) of skeletal muscle fibers was found in mice following DOX treatment. Furthermore, DOX decreased sGC activity in mice and C2C12 cells, and a positive correlation was found between sGC activity and CSA of skeletal muscle fibers in skeletal muscle. DOX treatment also impaired protein synthesis, shown by puromycin detection, and activated ubiquitin-proteasome pathway. Following sGC stimulation, the CSA of muscle fibers was elevated, and exercise capacity was enhanced. Stimulation of sGC also increased protein synthesis and decreased ubiquitin-proteasome pathway. In terms of the underlying mechanisms, AKT/mTOR and FoxO1 pathways were impaired following DOX treatment, and stimulation of sGC restored the blunted pathways. Conclusion: These results unravel sGC stimulation can improve skeletal muscle atrophy and increase the exercise capacity of mice in response to DOX treatment by enhancing protein synthesis and inhibiting protein degradation. Stimulation of sGC may be a potential treatment of DOX-induced skeletal muscle dysfunction.
Collapse
Affiliation(s)
- Bo-ang Hu
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Yu-lin Li
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Hai-tao Han
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Bin Lu
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Xu Jia
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Lu Han
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China,Department of General Practice, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Wei-xuan Ma
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Ping Zhu
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Zhi-hao Wang
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China,Department of Geriatric Medicine, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Shandong key Laboratory of Cardiovascular Proteomics, Jinan, Shandong, China
| | - Wei Zhang
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Ming Zhong
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China,*Correspondence: Ming Zhong, ; Lei Zhang,
| | - Lei Zhang
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China,*Correspondence: Ming Zhong, ; Lei Zhang,
| |
Collapse
|
35
|
Jhuo CF, Hsieh SK, Chen WY, Tzen JTC. Attenuation of Skeletal Muscle Atrophy Induced by Dexamethasone in Rats by Teaghrelin Supplementation. MOLECULES (BASEL, SWITZERLAND) 2023; 28:molecules28020688. [PMID: 36677745 PMCID: PMC9864913 DOI: 10.3390/molecules28020688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 01/05/2023] [Accepted: 01/07/2023] [Indexed: 01/13/2023]
Abstract
Muscle atrophy caused by an imbalance between the synthesis and the degradation of proteins is a syndrome commonly found in the elders. Teaghrelin, a natural compound from oolong tea, has been shown to promote cell differentiation and to inhibit dexamethasone-induced muscle atrophy in C2C12 cells. In this study, the therapeutic effects of teaghrelin on muscle atrophy were evaluated in Sprague Dawley rats treated with dexamethasone. The masses of the soleus, gastrocnemius and extensor digitorum longus muscles were reduced in dexamethasone-treated rats, and the reduction of these muscle masses was significantly attenuated when the rats were supplemented with teaghrelin. Accordingly, the level of serum creatine kinase, a marker enzyme of muscle proteolysis, was elevated in dexamethasone-treated rats, and the elevation was substantially reduced by teaghrelin supplementation. A decrease in Akt phosphorylation causing the activation of the ubiquitin-proteasome system and autophagy for protein degradation was detected in the gastrocnemius muscles of the dexamethasone-treated rats, and this signaling pathway for protein degradation was significantly inhibited by teaghrelin supplementation. Protein synthesis via the mTOR/p70S6K pathway was slowed down in the gastrocnemius muscles of the dexamethasone-treated rats and was significantly rescued after teaghrelin supplementation. Teaghrelin seemed to prevent muscle atrophy by reducing protein degradation and enhancing protein synthesis via Akt phosphorylation.
Collapse
Affiliation(s)
- Cian-Fen Jhuo
- Graduate Institute of Biotechnology, National Chung-Hsing University, Taichung 402, Taiwan
| | - Sheng-Kuo Hsieh
- Graduate Institute of Biotechnology, National Chung-Hsing University, Taichung 402, Taiwan
| | - Wen-Ying Chen
- Department of Veterinary Medicine, National Chung-Hsing University, Taichung 402, Taiwan
- Correspondence: (W.-Y.C.); (J.T.C.T.); Tel.: +886-4-22840328 (ext. 776) (J.T.C.T.); Fax: +886-4-22853527 (J.T.C.T.)
| | - Jason T. C. Tzen
- Graduate Institute of Biotechnology, National Chung-Hsing University, Taichung 402, Taiwan
- Correspondence: (W.-Y.C.); (J.T.C.T.); Tel.: +886-4-22840328 (ext. 776) (J.T.C.T.); Fax: +886-4-22853527 (J.T.C.T.)
| |
Collapse
|
36
|
Keeble AR, Brightwell CR, Latham CM, Thomas NT, Mobley CB, Murach KA, Johnson DL, Noehren B, Fry CS. Depressed Protein Synthesis and Anabolic Signaling Potentiate ACL Tear-Resultant Quadriceps Atrophy. Am J Sports Med 2023; 51:81-96. [PMID: 36475881 PMCID: PMC9813974 DOI: 10.1177/03635465221135769] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND Anterior cruciate ligament (ACL) tear (ACLT) leads to protracted quadriceps muscle atrophy. Protein turnover largely dictates muscle size and is highly responsive to injury and loading. Regulation of quadriceps molecular protein synthetic machinery after ACLT has largely been unexplored, limiting development of targeted therapies. PURPOSE To define the effect of ACLT on (1) the activation of protein synthetic and catabolic signaling within quadriceps biopsy specimens from human participants and (2) the time course of alterations to protein synthesis and its molecular regulation in a mouse ACL injury model. STUDY DESIGN Descriptive laboratory study. METHODS Muscle biopsy specimens were obtained from the ACL-injured and noninjured vastus lateralis of young adult humans after an overnight fast (N = 21; mean ± SD, 19 ± 5 years). Mice had their limbs assigned to ACLT or control, and whole quadriceps were collected 6 hours or 1, 3, or 7 days after injury with puromycin injected before tissue collection for assessment of relative protein synthesis. Muscle fiber size and expression and phosphorylation of protein anabolic and catabolic signaling proteins were assessed at the protein and transcript levels (RNA sequencing). RESULTS Human quadriceps showed reduced phosphorylation of ribosomal protein S6 (-41%) in the ACL-injured limb (P = .008), in addition to elevated phosphorylation of eukaryotic initiation factor 2α (+98%; P = .006), indicative of depressed protein anabolic signaling in the injured limb. No differences in E3 ubiquitin ligase expression were noted. Protein synthesis was lower at 1 day (P = .01 vs control limb) and 3 days (P = .002 vs control limb) after ACLT in mice. Pathway analyses revealed shared molecular alterations between human and mouse quadriceps after ACLT. CONCLUSION (1) Global protein synthesis and anabolic signaling deficits occur in the quadriceps in response to ACL injury, without notable changes in measured markers of muscle protein catabolism. (2) Importantly, these deficits occur before the onset of significant atrophy, underscoring the need for early intervention. CLINICAL RELEVANCE These findings suggest that blunted protein anabolism as opposed to increased catabolism likely mediates quadriceps atrophy after ACL injury. Thus, future interventions should aim to restore muscle protein anabolism rapidly after ACLT.
Collapse
Affiliation(s)
- Alexander R. Keeble
- Department of Physiology, College of Medicine, University of Kentucky
- Center for Muscle Biology, University of Kentucky
| | - Camille R. Brightwell
- Center for Muscle Biology, University of Kentucky
- Department of Athletic Training and Clinical Nutrition, University of Kentucky
| | - Christine M. Latham
- Center for Muscle Biology, University of Kentucky
- Department of Athletic Training and Clinical Nutrition, University of Kentucky
| | - Nicholas T. Thomas
- Center for Muscle Biology, University of Kentucky
- Department of Athletic Training and Clinical Nutrition, University of Kentucky
| | - C. Brooks Mobley
- Department of Physiology, College of Medicine, University of Kentucky
- Center for Muscle Biology, University of Kentucky
| | - Kevin A. Murach
- Center for Muscle Biology, University of Kentucky
- Department of Physical Therapy, University of Kentucky
| | - Darren L. Johnson
- Department of Orthopaedic Surgery & Sports Medicine, University of Kentucky
| | - Brian Noehren
- Center for Muscle Biology, University of Kentucky
- Department of Physical Therapy, University of Kentucky
- Department of Orthopaedic Surgery & Sports Medicine, University of Kentucky
| | - Christopher S. Fry
- Center for Muscle Biology, University of Kentucky
- Department of Athletic Training and Clinical Nutrition, University of Kentucky
| |
Collapse
|
37
|
Abstract
Skeletal muscle mass is a very plastic characteristic of skeletal muscle and is regulated by signaling pathways that control the balance between anabolic and catabolic processes. The serine/threonine kinase mechanistic/mammalian target of rapamycin (mTOR) has been shown to be critically important in the regulation of skeletal muscle mass through its regulation of protein synthesis and degradation pathways. In this commentary, recent advances in the understanding of the role of mTORC1 in the regulation of muscle mass under conditions that induce hypertrophy and atrophy will be highlighted.
Collapse
Affiliation(s)
- Sue C Bodine
- Department of Internal Medicine, Division of Endocrinology and Metabolism, University of Iowa Carver College of Medicine, 200 Hawkins Drive, Iowa City, IA 52242, USA
| |
Collapse
|
38
|
Osana S, Kitajima Y, Naoki S, Takada H, Murayama K, Kano Y, Nagatomi R. Little involvement of recycled-amino acids from proteasomal proteolysis in de novo protein synthesis. Biochem Biophys Res Commun 2022; 634:40-47. [DOI: 10.1016/j.bbrc.2022.09.113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Accepted: 09/28/2022] [Indexed: 11/27/2022]
|
39
|
Zhao M, Banhos Danneskiold-Samsøe N, Ulicna L, Nguyen Q, Voilquin L, Lee DE, White JP, Jiang Z, Cuthbert N, Paramasivam S, Bielczyk-Maczynska E, Van Rechem C, Svensson KJ. Phosphoproteomic mapping reveals distinct signaling actions and activation of muscle protein synthesis by Isthmin-1. eLife 2022; 11:e80014. [PMID: 36169399 PMCID: PMC9592085 DOI: 10.7554/elife.80014] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 09/27/2022] [Indexed: 12/02/2022] Open
Abstract
The secreted protein isthmin-1 (Ism1) mitigates diabetes by increasing adipocyte and skeletal muscle glucose uptake by activating the PI3K-Akt pathway. However, while both Ism1 and insulin converge on these common targets, Ism1 has distinct cellular actions suggesting divergence in downstream intracellular signaling pathways. To understand the biological complexity of Ism1 signaling, we performed phosphoproteomic analysis after acute exposure, revealing overlapping and distinct pathways of Ism1 and insulin. We identify a 53% overlap between Ism1 and insulin signaling and Ism1-mediated phosphoproteome-wide alterations in ~450 proteins that are not shared with insulin. Interestingly, we find several unknown phosphorylation sites on proteins related to protein translation, mTOR pathway, and, unexpectedly, muscle function in the Ism1 signaling network. Physiologically, Ism1 ablation in mice results in altered proteostasis, including lower muscle protein levels under fed and fasted conditions, reduced amino acid incorporation into proteins, and reduced phosphorylation of the key protein synthesis effectors Akt and downstream mTORC1 targets. As metabolic disorders such as diabetes are associated with accelerated loss of skeletal muscle protein content, these studies define a non-canonical mechanism by which this antidiabetic circulating protein controls muscle biology.
Collapse
Affiliation(s)
- Meng Zhao
- Department of Pathology, Stanford University School of MedicineStanfordUnited States
- Stanford Diabetes Research Center, Stanford University School of MedicineStanfordUnited States
- Stanford Cardiovascular Institute, Stanford University School of MedicineStanfordUnited States
| | | | - Livia Ulicna
- Department of Pathology, Stanford University School of MedicineStanfordUnited States
| | - Quennie Nguyen
- Department of Pathology, Stanford University School of MedicineStanfordUnited States
| | - Laetitia Voilquin
- Department of Pathology, Stanford University School of MedicineStanfordUnited States
- Stanford Diabetes Research Center, Stanford University School of MedicineStanfordUnited States
- Stanford Cardiovascular Institute, Stanford University School of MedicineStanfordUnited States
| | - David E Lee
- Duke Molecular Physiology Institute, Duke University School of MedicineDurhamUnited States
- Department of Medicine, Duke University School of MedicineDurhamUnited States
| | - James P White
- Duke Molecular Physiology Institute, Duke University School of MedicineDurhamUnited States
- Department of Medicine, Duke University School of MedicineDurhamUnited States
- Duke Center for the Study of Aging and Human Development, Duke University School of MedicineDurhamUnited States
| | - Zewen Jiang
- Department of Pathology, Stanford University School of MedicineStanfordUnited States
- Department of Laboratory Medicine, University of California, San FranciscoSan FranciscoUnited States
- Diabetes Center, University of California, San FranciscoSan FranciscoUnited States
| | - Nickeisha Cuthbert
- Department of Pathology, Stanford University School of MedicineStanfordUnited States
| | - Shrika Paramasivam
- Department of Pathology, Stanford University School of MedicineStanfordUnited States
| | - Ewa Bielczyk-Maczynska
- Stanford Diabetes Research Center, Stanford University School of MedicineStanfordUnited States
- Stanford Cardiovascular Institute, Stanford University School of MedicineStanfordUnited States
- Division of Cardiovascular Medicine, Department of Medicine, Stanford University School of MedicineStanfordUnited States
| | - Capucine Van Rechem
- Department of Pathology, Stanford University School of MedicineStanfordUnited States
| | - Katrin J Svensson
- Department of Pathology, Stanford University School of MedicineStanfordUnited States
- Stanford Diabetes Research Center, Stanford University School of MedicineStanfordUnited States
- Stanford Cardiovascular Institute, Stanford University School of MedicineStanfordUnited States
| |
Collapse
|
40
|
Flück M, Vaughan D, Rittweger J, Giraud MN. Post-translational dysregulation of glucose uptake during exhaustive cycling exercise in vastus lateralis muscle of healthy homozygous carriers of the ACE deletion allele. Front Physiol 2022; 13:933792. [PMID: 36148310 PMCID: PMC9488703 DOI: 10.3389/fphys.2022.933792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Accepted: 07/26/2022] [Indexed: 12/04/2022] Open
Abstract
Homozygous carriers of the deletion allele in the gene for angiotensin-converting enzyme (ACE-DD) demonstrate an elevated risk to develop inactivity-related type II diabetes and show an overshoot of blood glucose concentration with enduring exercise compared to insertion allele carriers. We hypothesized that ACE-DD genotypes exhibit a perturbed activity of signaling processes governing capillary-dependent glucose uptake in vastus lateralis muscle during exhaustive cycling exercise, which is associated with the aerobic fitness state. 27 healthy, male white Caucasian subjects (26.8 ± 1.1 years; BMI 23.6 +/− 0.6 kg m−2) were characterized for their aerobic fitness based on a threshold of 50 ml O2 min−1 kg−1 and the ACE-I/D genotype. Subjects completed a session of exhaustive one-legged exercise in the fasted state under concomitant measurement of cardiorespiratory function. Capillary blood and biopsies were collected before, and ½ and 8 h after exercise to quantify glucose and lipid metabolism-related compounds (lipoproteins, total cholesterol, ketones) in blood, the phosphorylation of 45 signaling proteins, muscle glycogen and capillaries. Effects of aerobic fitness, ACE-I/D genotype, and exercise were assessed with analysis of variance (ANOVA) under the hypothesis of a dominant effect of the insertion allele. Exertion with one-legged exercise manifested in a reduction of glycogen concentration ½ h after exercise (−0.046 mg glycogen mg−1 protein). Blood glucose concentration rose immediately after exercise in association with the ACE-I/D genotype (ACE-DD: +26%, ACE-ID/II: +6%) and independent of the fitness state (p = 0.452). Variability in total cholesterol was associated with exercise and fitness. In fit subjects, the phosphorylation levels of glucose uptake-regulating kinases [AKT-pT308 (+156%), SRC-pY419, p38α-pT180/T182, HCK-pY411], as well as cytokine/angiotensin 1-7 signaling factors [(STAT5A-pY694, STAT5B-pY699, FYN-pY420, EGFR-pY1086] were higher in angiotensin converting enzyme I-allele carriers than ACE-DD genotypes after exercise. Conversely, the AKT-S473 phosphorylation level (+117%) and angiotensin 2’s blood concentration (+191%) were higher in ACE-DD genotypes. AKT-S473 phosphorylation levels post-exercise correlated to anatomical parameters of muscle performance and metabolic parameters (p < 0.05 and │r│>0.70). The observations identify reciprocal alterations of S473 and T308 phosphorylation of AKT as gatekeeper of a post-translational dysregulation of transcapillary glucose uptake in ACE-DD genotypes which may be targeted in personalized approaches to mitigate type II diabetes.
Collapse
Affiliation(s)
- Martin Flück
- Institute for Biomedical Research Into Human Movement and Health, Manchester Metropolitan University, Manchester, United Kingdom
- Heart Repair and Regeneration Laboratory, Department EMC, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland
| | - David Vaughan
- Institute for Biomedical Research Into Human Movement and Health, Manchester Metropolitan University, Manchester, United Kingdom
| | - Jörn Rittweger
- Institute for Biomedical Research Into Human Movement and Health, Manchester Metropolitan University, Manchester, United Kingdom
- Department of Muscle and Bone Metabolism, Institute of Aerospace Medicine, German Aerospace Center, Cologne, Germany
| | - Marie-Noëlle Giraud
- Heart Repair and Regeneration Laboratory, Department EMC, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland
| |
Collapse
|
41
|
Salucci S, Bartoletti-Stella A, Bavelloni A, Aramini B, Blalock WL, Fabbri F, Vannini I, Sambri V, Stella F, Faenza I. Extra Virgin Olive Oil (EVOO), a Mediterranean Diet Component, in the Management of Muscle Mass and Function Preservation. Nutrients 2022; 14:nu14173567. [PMID: 36079827 PMCID: PMC9459997 DOI: 10.3390/nu14173567] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/22/2022] [Accepted: 08/26/2022] [Indexed: 12/25/2022] Open
Abstract
Aging results in a progressive decline in skeletal muscle mass, strength and function, a condition known as sarcopenia. This pathological condition is due to multifactorial processes including physical inactivity, inflammation, oxidative stress, hormonal changes, and nutritional intake. Physical therapy remains the standard approach to treat sarcopenia, although some interventions based on dietary supplementation are in clinical development. In this context, thanks to its known anti-inflammatory and antioxidative properties, there is great interest in using extra virgin olive oil (EVOO) supplementation to promote muscle mass and health in sarcopenic patients. To date, the molecular mechanisms responsible for the pathological changes associated with sarcopenia remain undefined; however, a complete understanding of the signaling pathways that regulate skeletal muscle protein synthesis and their behavior during sarcopenia appears vital for defining how EVOO might attenuate muscle wasting during aging. This review highlights the main molecular players that control skeletal muscle mass, with particular regard to sarcopenia, and discusses, based on the more recent findings, the potential of EVOO in delaying/preventing loss of muscle mass and function, with the aim of stimulating further research to assess dietary supplementation with EVOO as an approach to prevent or delay sarcopenia in aging individuals.
Collapse
Affiliation(s)
- Sara Salucci
- Cellular Signalling Laboratory, Department of Biomedical and NeuroMotor Sciences (DIBINEM), University of Bologna, 40126 Bologna, Italy
- Correspondence:
| | - Anna Bartoletti-Stella
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, 40126 Bologna, Italy
| | - Alberto Bavelloni
- Laboratory of Experimental Oncology, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy
| | - Beatrice Aramini
- Division of Thoracic Surgery, Department of Experimental, Diagnostic and Specialty Medicine-DIMES of the Alma Mater Studiorum, University of Bologna, G.B. Morgagni-L. Pierantoni Hospital, 47121 Forlì, Italy
| | - William L. Blalock
- “Luigi Luca Cavalli-Sforza” Istituto di Genetica Molecolare-Consiglio Nazionale delle Ricerche (IGM-CNR), 40136 Bologna, Italy
- IRCCS, Istituto Ortopedico Rizzoli, 40136 Bologna, Italy
| | - Francesco Fabbri
- Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy
| | - Ivan Vannini
- Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy
| | - Vittorio Sambri
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, 40126 Bologna, Italy
- Unit of Microbiology, Greater Romagna Hub Laboratory, 47522 Pievesestina, Italy
| | - Franco Stella
- Division of Thoracic Surgery, Department of Experimental, Diagnostic and Specialty Medicine-DIMES of the Alma Mater Studiorum, University of Bologna, G.B. Morgagni-L. Pierantoni Hospital, 47121 Forlì, Italy
| | - Irene Faenza
- Cellular Signalling Laboratory, Department of Biomedical and NeuroMotor Sciences (DIBINEM), University of Bologna, 40126 Bologna, Italy
| |
Collapse
|
42
|
Abstract
The increasing number of patients with fatty liver disease is a major health problem. Fatty liver disease with metabolic dysfunction has been recognized as nonalcoholic fatty liver disease (NAFLD). Although there is no standard therapy for NAFLD, previous reports support the effect of sodium-glucose cotransporter 2 (SGLT2) inhibitors on NAFLD. Recently, fatty liver disease with metabolic dysfunction was proposed to be defined as a novel concept, “metabolic associated fatty liver disease (MAFLD)”, and it was proposed that new criteria for MAFLD diagnosis be established. To clarify the effect of SGLT2 inhibitors on MAFLD, we analyzed the efficacy of tofogliflozin in patients with MAFLD. We conducted a single-center, retrospective study to evaluate the efficacy of tofogliflozin in patients with MAFLD treated at Kyushu University Hospital between 2017 and 2019. Tofogliflozin was used to treat 18 patients with MAFLD. To determine the efficacy of tofogliflozin, we evaluated glucose metabolism, insulin resistance, liver injury, hepatic steatosis, and body composition three and six months after drug initiation. Although our study was a preliminary study because of some limitations (e.g., retrospective, observational, single-arm study, small sample size), we show that tofogliflozin could improve liver injury in patients with MAFLD by improving glucose metabolism and insulin resistance without causing muscle loss.
Collapse
|