1
|
Keefe AC, Jensen DM, Pham MM, Au NYT, Beckman E, Penon-Portmann M, Shelkowitz E, Bend R, Morrow MM, Kruszka P, Vats D, Russell BE, Chan E, Wong D, Rabani A, O'Grady L, Sahai I, Widmeyer K, Sperry ED, Hallinan BE, Tryon R, Lund TC, Eichler FS, Sun A, Bennett JT. Mosaic X-linked adrenoleukodystrophy in males identified by newborn screening and next-generation sequencing. NPJ Genom Med 2025; 10:38. [PMID: 40346069 PMCID: PMC12064771 DOI: 10.1038/s41525-025-00497-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 04/22/2025] [Indexed: 05/11/2025] Open
Abstract
Somatic mosaicism produces genetic differences between cells in an individual and is an underrecognized contributor to phenotypic variability. Precise understanding of the natural history of genetic diseases, therefore, requires detection and recognition of low-level mosaicism, which remains technically challenging, particularly for X-linked genes. Here, we identify six males with mosaic X-linked adrenoleukodystrophy (X-ALD), a neurometabolic peroxisomal disorder caused by pathogenic variants in ABCD1 that is currently included in 44 state newborn screening (NBS) programs, and estimate the incidence of somatic mosaicism. Of 227 males from 2 laboratories performing ABCD1 next-generation sequencing, 1.8% (4/227) had pathogenic or likely pathogenic ABCD1 variants that were mosaic. In one mosaic male individual, allele-specific measurements across multiple tissues demonstrated ABCD1 variant allele fractions ranging from 66 to 82%. Our findings have implications for the identification of X-ALD through NBS, and additional studies could provide insight into the pathogenesis and natural history of X-ALD.
Collapse
Affiliation(s)
- Alexandra C Keefe
- University of Washington, Department of Pediatrics, Division of Medical Genetics, Seattle, WA, USA.
- Department of Pediatrics, Division of Genetic Medicine, Seattle Children's Hospital, Seattle, WA, USA.
| | - Dana M Jensen
- Seattle Children's Research Institute, Seattle, WA, USA
| | | | | | - Erika Beckman
- University of Washington, Department of Pediatrics, Division of Medical Genetics, Seattle, WA, USA
- Department of Pediatrics, Division of Genetic Medicine, Seattle Children's Hospital, Seattle, WA, USA
| | - Monica Penon-Portmann
- University of Washington, Department of Pediatrics, Division of Medical Genetics, Seattle, WA, USA
- Department of Pediatrics, Division of Genetic Medicine, Seattle Children's Hospital, Seattle, WA, USA
| | - Emily Shelkowitz
- University of Washington, Department of Pediatrics, Division of Medical Genetics, Seattle, WA, USA
- Department of Pediatrics, Division of Genetic Medicine, Seattle Children's Hospital, Seattle, WA, USA
| | - Renee Bend
- Prevention Genetics, Marshfield, WI, USA
| | | | | | | | - Bianca E Russell
- University of California, Los Angeles, Department of Human Genetics, Division of Clinical Genetics, David Geffen School of Medicine, Los Angeles, CA, USA
| | - Erica Chan
- University of California, Los Angeles, Department of Human Genetics, Division of Clinical Genetics, David Geffen School of Medicine, Los Angeles, CA, USA
| | - Derek Wong
- University of California, Los Angeles, Department of Human Genetics, Division of Clinical Genetics, David Geffen School of Medicine, Los Angeles, CA, USA
| | - Ahna Rabani
- University of California, Los Angeles, Department of Human Genetics, Division of Clinical Genetics, David Geffen School of Medicine, Los Angeles, CA, USA
| | - Lauren O'Grady
- Division of Medical Genetics and Metabolism, Massachusetts General Hospital for Children, Boston, MA, USA
| | - Inderneel Sahai
- Division of Medical Genetics and Metabolism, Massachusetts General Hospital for Children, Boston, MA, USA
| | - Kimberly Widmeyer
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Ethan D Sperry
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Barbara E Hallinan
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
- Division of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Rebecca Tryon
- Department of Genetics, M Health Fairview, Minneapolis, MN, USA
- Department of Pediatrics, Division of Blood and Marrow Transplantation & Cellular Therapy, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Troy C Lund
- Department of Pediatrics, Division of Blood and Marrow Transplantation & Cellular Therapy, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Florian S Eichler
- Department of Neurology, Harvard Medical School, Boston, MA, USA
- Department of Neurology, Massachusetts General Research Institute, Boston, MA, USA
| | - Angela Sun
- University of Washington, Department of Pediatrics, Division of Medical Genetics, Seattle, WA, USA
- Department of Pediatrics, Division of Genetic Medicine, Seattle Children's Hospital, Seattle, WA, USA
| | - James T Bennett
- University of Washington, Department of Pediatrics, Division of Medical Genetics, Seattle, WA, USA
- Seattle Children's Research Institute, Seattle, WA, USA
- Department of Pediatrics, Division of Genetic Medicine, Seattle Children's Hospital, Seattle, WA, USA
- University of Washington, Department of Laboratory Medicine and Pathology, Seattle, WA, USA
| |
Collapse
|
2
|
Weinhofer I, Rommer P, Berger J. Blood Biomarkers Reflecting Brain Pathology-From Common Grounds to Rare Frontiers. J Inherit Metab Dis 2025; 48:e70032. [PMID: 40325881 PMCID: PMC12053231 DOI: 10.1002/jimd.70032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 03/18/2025] [Accepted: 04/11/2025] [Indexed: 05/07/2025]
Abstract
Understanding pathological changes in the brain is essential for guiding treatment decisions in brain injuries and diseases. Despite significant advances in brain imaging techniques, clinical practice still faces challenges due to infrastructure reliance and high resource demands. This review explores the current knowledge on blood-based biomarkers that indicate brain pathology, which can assist in identifying at-risk patients, diagnosing patients, predicting disease progression, and treatment response. We focus on the inherited metabolic disorders X-linked adrenoleukodystrophy (X-ALD) and metachromatic leukodystrophy (MLD) which share remarkable phenotypic variability. Disease-specific increases in the lipid metabolites lyso-PC26:0 in X-ALD and sulfatides in MLD might contribute to predicting clinical manifestation. Disease-unspecific biomarkers for axonal damage (neurofilament light chain protein, NfL) and glial degeneration (glial fibrillary acidic protein, GFAP) are able to distinguish X-ALD and MLD phenotypes at the group level. The implementation of X-ALD into newborn screening programs in various countries, including several U.S. states, has increased the demand for predictive blood-based biomarkers capable of detecting the early conversion from the pre-symptomatic to the early neuroinflammatory cerebral form of X-ALD. Among different biomarkers, NfL has proven most effective in reflecting neuroinflammation and correlating with brain lesion volume and the magnetic resonance imaging (MRI)-based severity scores. We discuss how NfL has moved from initial proof-of-principle towards proof-of-concept studies in brain disorders such as multiple sclerosis and how this knowledge could be applied for the clinical implementation of NfL in rare inherited metabolic disorders such as X-ALD.
Collapse
Affiliation(s)
- Isabelle Weinhofer
- Department Pathobiology of the Nervous System, Center for Brain ResearchMedical University of ViennaViennaAustria
| | - Paulus Rommer
- Department of Neurology, Comprehensive Center for Clinical Neurosciences and Mental HealthMedical University of ViennaViennaAustria
| | - Johannes Berger
- Department Pathobiology of the Nervous System, Center for Brain ResearchMedical University of ViennaViennaAustria
| |
Collapse
|
3
|
Page N, Nagy AM, Eichler FS, Ream MA. Seizures in childhood cerebral adrenoleukodystrophy. Dev Med Child Neurol 2025. [PMID: 40197597 DOI: 10.1111/dmcn.16321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 02/26/2025] [Accepted: 03/05/2025] [Indexed: 04/10/2025]
Abstract
AIM To describe seizure prevalence in childhood cerebral adrenoleukodystrophy (CCALD) and the relationship to disease severity/progression. METHOD This was a retrospective observational cross-sectional study of patients with CCALD at two leukodystrophy centers between 2008 and 2024 compared to patients with X-linked adrenoleukodystrophy (X-ALD) without cerebral lesions. Patients with CCALD were under 18 years old, had genetically confirmed X-ALD, and had brain magnetic resonance imaging (MRI) consistent with CCALD. Statistics included: descriptive values (mean, median, range) and clinical variables compared using Wilcoxon rank-sum tests for patient age, MRI score, functional status, electroencephalogram (EEG) findings, and seizure characteristics. RESULTS Of 86 male children with CCALD, 25 (29%) experienced seizures, of whom 22 (88%) received their X-ALD diagnosis after onset of CCALD symptoms, and 45% (10/22) of these were diagnosed directly because of seizure. Seizure severity correlated with worse functional status and MRI/Loes score; no seizures occurred with Loes score less than 6. All reported seizures were motor. In those with seizures with available EEG (n = 15), diffuse slowing was more common than epileptiform discharges (73.3% vs. 26.7% respectively). Of the 53 patients with X-ALD without cerebral involvement, only 5.7% experienced seizures at any age. INTERPRETATION Seizures in CCALD are not uncommon, indicating that X-ALD should be considered for male children presenting with first-time seizure. Seizures and seizure severity increase with advancing disease.
Collapse
Affiliation(s)
- Nicole Page
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
| | - Amanda M Nagy
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
| | - Florian S Eichler
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
| | - Margie A Ream
- Division of Neurology, Nationwide Children's Hospital, Columbus, OH, USA
| |
Collapse
|
4
|
Stefan K, Puri S, Rafehi M, Latambale G, Neif M, Tägl F, Arlt NS, Yazdi ZN, Bakos É, Chen X, Zhang B, Ismail Al-Khalil W, Busch H, Chen ZS, Özvegy-Laczka C, Namasivayam V, Juvale K, Stefan SM. Functional and structural polypharmacology of indazole-based privileged ligands to tackle the undruggability of membrane transporters. Eur J Med Chem 2025; 287:117234. [PMID: 39892094 DOI: 10.1016/j.ejmech.2024.117234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 12/25/2024] [Accepted: 12/31/2024] [Indexed: 02/03/2025]
Abstract
Despite the significant roles of solute carrier (SLC) and ATP-binding cassette (ABC) transporters in human health and disease, most remain poorly characterized as intrinsic and/or xenobiotic ligands are unknown, rendering them as 'undruggable'. Polypharmacology, defined as the simultaneous engagement of multiple targets by a single ligand, offers a promising avenue for discovering novel lead compounds addressing these emerging pharmacological challenges - a major focus in contemporary medicinal chemistry. While common structural motifs among phylogenetically diverse proteins have been proposed to underlie polypharmacology through the concept of 'multitarget binding sites', a comprehensive analysis of these functional and structural aspects from a medicinal chemistry perspective has yet to be undertaken. In our study, we synthesized 65 distinct indazole derivatives and evaluated their activity across a broad biological assessment platform encompassing 17 specific and polyspecific SLC and ABC transporters. Notably, ten indazoles exhibited cross-target activity against challenging transporter targets associated with neurodegeneration (ABCA1), metabolic reprogramming (MCT4), and cancer multidrug resistance (ABCC10). Furthermore, molecular blind docking experiments and advanced binding site analyses revealed, for the first time, conserved binding motifs across monocarboxylate transporters (MCTs), organic anion transporting polypeptides (OATPs), organic cation transporters (OCTs), and ABC transporters, characterized by specific and recurring residues of tyrosine, phenylalanine, serine, and threonine. These findings highlight not only the potential of polypharmacology in drug discovery but also provide insights into the structural underpinnings of ligand binding across membrane transporters.
Collapse
Affiliation(s)
- Katja Stefan
- University of Lübeck and University Medical Center Schleswig-Holstein, Lübeck Institute of Experimental Dermatology, Medicinal Chemistry and Systems Polypharmacology, Ratzeburger Allee 160, 23538, Lübeck, Germany; University of Oslo and Oslo University Hospital, Department of Pathology, Rikshospitalet, Sognsvannsveien 20, 0372, Oslo, Norway
| | - Sachin Puri
- SVKM's NMIMS, Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, V.L. Mehta Road, Vile Parle (W), Mumbai, 400056, India; SVKM's NMIMS, School of Pharmacy & Technology Management, Plot no. B4, Green Industrial Park, Polepally SEZ, TSIIC, Jadcherla, Mahbubnagar, Dist. Telangana 509 301, Hyderabad, 509301, India
| | - Muhammad Rafehi
- University Hospital of Augsburg, Stenglinstr. 2, 86156 Augsburg, Germany; Department of Medical Education Augsburg, Faculty of Medicine, University of Augsburg, Am Medizincampus 2, 86156, Augsburg, Germany; University Medical Center Göttingen, Institute of Clinical Pharmacology, Robert-Koch-Str. 40, 37075, Göttingen, Germany
| | - Ganesh Latambale
- SVKM's NMIMS, Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, V.L. Mehta Road, Vile Parle (W), Mumbai, 400056, India
| | - Maria Neif
- University Medical Center Göttingen, Institute of Clinical Pharmacology, Robert-Koch-Str. 40, 37075, Göttingen, Germany
| | - Franziska Tägl
- University Medical Center Göttingen, Institute of Clinical Pharmacology, Robert-Koch-Str. 40, 37075, Göttingen, Germany
| | - Nike Sophia Arlt
- University Medical Center Göttingen, Institute of Clinical Pharmacology, Robert-Koch-Str. 40, 37075, Göttingen, Germany
| | - Zeinab Nezafat Yazdi
- Institute for Molecular Sciences, Research Centre for Natural Sciences, HUN-REN, Magyar tudósok krt. 2., H-1117, Budapest, Hungary
| | - Éva Bakos
- Institute for Molecular Sciences, Research Centre for Natural Sciences, HUN-REN, Magyar tudósok krt. 2., H-1117, Budapest, Hungary
| | - Xiang Chen
- St. John's University, College of Pharmacy and Health Sciences, Department of Pharmaceutical Sciences, New York City, New York, USA
| | - Bohan Zhang
- St. John's University, College of Pharmacy and Health Sciences, Department of Pharmaceutical Sciences, New York City, New York, USA
| | - Wouroud Ismail Al-Khalil
- University Medical Center Göttingen, Institute of Clinical Pharmacology, Robert-Koch-Str. 40, 37075, Göttingen, Germany
| | - Hauke Busch
- University of Lübeck and University Medical Center Schleswig-Holstein, Lübeck Institute of Experimental Dermatology, Medical Systems Biology, Ratzeburger Allee 160, 23538, Lübeck, Germany
| | - Zhe-Sheng Chen
- St. John's University, College of Pharmacy and Health Sciences, Department of Pharmaceutical Sciences, New York City, New York, USA
| | - Csilla Özvegy-Laczka
- Institute for Molecular Sciences, Research Centre for Natural Sciences, HUN-REN, Magyar tudósok krt. 2., H-1117, Budapest, Hungary
| | - Vigneshwaran Namasivayam
- University of Lübeck and University Medical Center Schleswig-Holstein, Lübeck Institute of Experimental Dermatology, Medicinal Chemistry and Systems Polypharmacology, Ratzeburger Allee 160, 23538, Lübeck, Germany; University of Bonn, Pharmaceutical Institute, Department of Pharmaceutical and Cellbiological Chemistry, An der Immenburg 4, 53121, Bonn, Germany.
| | - Kapil Juvale
- SVKM's NMIMS, Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, V.L. Mehta Road, Vile Parle (W), Mumbai, 400056, India.
| | - Sven Marcel Stefan
- University of Lübeck and University Medical Center Schleswig-Holstein, Lübeck Institute of Experimental Dermatology, Medicinal Chemistry and Systems Polypharmacology, Ratzeburger Allee 160, 23538, Lübeck, Germany; University of Oslo and Oslo University Hospital, Department of Pathology, Rikshospitalet, Sognsvannsveien 20, 0372, Oslo, Norway; Medical University of Lublin, Department of Biopharmacy, Chodzki 4a, 20-093, Lublin, Poland.
| |
Collapse
|
5
|
Minten T, Bick S, Adelson S, Gehlenborg N, Amendola LM, Boemer F, Coffey AJ, Encina N, Ferlini A, Kirschner J, Russell BE, Servais L, Sund KL, Taft RJ, Tsipouras P, Zouk H, Bick D, Green RC, Gold NB. Data-driven consideration of genetic disorders for global genomic newborn screening programs. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2025:2024.03.24.24304797. [PMID: 38585998 PMCID: PMC10996735 DOI: 10.1101/2024.03.24.24304797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Purpose Over 30 international studies are exploring newborn sequencing (NBSeq) to expand the range of genetic disorders included in newborn screening. Substantial variability in gene selection across programs exists, highlighting the need for a systematic approach to prioritize genes. Methods We assembled a dataset comprising 25 characteristics about each of the 4,390 genes included in 27 NBSeq programs. We used regression analysis to identify several predictors of inclusion, and developed a machine learning model to rank genes for public health consideration. Results Among 27 NBSeq programs, the number of genes analyzed ranged from 134 to 4,299, with only 74 (1.7%) genes included by over 80% of programs. The most significant associations with gene inclusion across programs were presence on the US Recommended Uniform Screening Panel (inclusion increase of 74.7%, CI: 71.0%-78.4%), robust evidence on the natural history (29.5%, CI: 24.6%-34.4%) and treatment efficacy (17.0%, CI: 12.3%- 21.7%) of the associated genetic disease. A boosted trees machine learning model using 13 predictors achieved high accuracy in predicting gene inclusion across programs (AUC = 0.915, R² = 84%). Conclusion The machine learning model developed here provides a ranked list of genes that can adapt to emerging evidence and regional needs, enabling more consistent and informed gene selection in NBSeq initiatives.
Collapse
|
6
|
Kaur N, Singh J. Generation and Characterization of Human iPSC-Derived Astrocytes with Potential for Modeling X-Linked Adrenoleukodystrophy Phenotypes. Int J Mol Sci 2025; 26:1576. [PMID: 40004040 PMCID: PMC11855073 DOI: 10.3390/ijms26041576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 01/27/2025] [Accepted: 02/07/2025] [Indexed: 02/27/2025] Open
Abstract
X-adrenoleukodystrophy (X-ALD) is a peroxisomal metabolic disorder caused by mutations in the ABCD1 gene encoding the peroxisomal ABC transporter adrenoleukodystrophy protein (ALDP). Similar mutations in ABCD1 may result in a spectrum of phenotypes in males with slow progressing adrenomyeloneuropathy (AMN) and fatal cerebral adrenoleukodystrophy (cALD) dominating most cases. Mouse models of X-ALD do not capture the phenotype differences and an appropriate model to investigate the mechanism of disease onset and progress remains a critical need. Here, we generated induced pluripotent stem cell (iPSC) lines from skin fibroblasts of two each of apparently healthy control, AMN, and cALD patients with non-integrating mRNA-based reprogramming. iPSC lines expanded normally and expressed pluripotency markers Oct4, SOX2, NANOG, SSEA, and TRA-1-60. Expression of markers SOX17, Brachyury, Desmin, OXT2, and beta tubulin III demonstrated the ability of the iPSCs to differentiate into all three germ layers. iPSC-derived lines from CTL, AMN, and cALD male patients were differentiated into astrocytes. Differentiated AMN and cALD astrocytes lacked ABCD1 expression and accumulated saturated very long chain fatty acids (VLCFAs), a hallmark of X-ALD, and demonstrated differential mitochondrial bioenergetics, cytokine gene expression, and differences in STAT3 and AMPK signaling between AMN and cALD astrocytes. These patient astrocytes provide disease-relevant tools to investigate the mechanism of differential neuroinflammatory response in X-ALD and will be valuable cell models for testing new therapeutics.
Collapse
Affiliation(s)
- Navtej Kaur
- Department of Neurology, Henry Ford Hospital, Detroit, MI 48202, USA;
| | - Jaspreet Singh
- Department of Neurology, Henry Ford Hospital, Detroit, MI 48202, USA;
- Department of Physiology, Michigan State University, Lansing, MI 48824, USA
| |
Collapse
|
7
|
Hashemi E, Srivastava IN, Aguirre A, Yoseph ET, Kaushal E, Awani A, Ryu JK, Akassoglou K, Talebian S, Chu P, Pisani L, Musolino P, Steinman L, Doyle K, Robinson WH, Sharpe O, Cayrol R, Orchard PJ, Lund T, Vogel H, Lenail M, Han MH, Bonkowsky JL, Van Haren KP. A Novel Mouse Model for Cerebral Inflammatory Demyelination in X-Linked Adrenoleukodystrophy: Insights into Pathogenesis and Potential Therapeutic Targets. Ann Neurol 2025; 97:296-312. [PMID: 39467011 PMCID: PMC11747894 DOI: 10.1002/ana.27117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 10/04/2024] [Accepted: 10/04/2024] [Indexed: 10/30/2024]
Abstract
OBJECTIVE X-linked adrenoleukodystrophy (ALD) is caused by mutations in ABCD1, a peroxisomal gene. More than half of males with an ABCD1 mutation develop inflammatory cerebral demyelination (cALD), but underlying mechanisms remain unknown and therapies are limited. We sought to develop and characterize a mouse model of cALD to facilitate study of disease mechanisms and therapy development. METHODS We used immunoassays and immunohistochemistry to assess novel (interleukin 18 [IL-18]) and established molecular markers in cerebrospinal fluid (CSF) and postmortem brain tissue from cALD patients. We generated a cALD phenotype in Abcd1-knockout mice using a 2-hit method that combines cuprizone and experimental autoimmune encephalomyelitis models. We then used magnetic resonance imaging (MRI) and immunohistochemistry to assess the fidelity of cALD molecular markers in the mice. RESULTS Human and mouse cALD lesions shared histologic features of myelin phagocytosis, myelin loss, abundant microglial activation, T and B-cell infiltration, and astrogliosis. Compared to wild-type controls, Abcd1-knockout mice displayed more cerebral demyelination, blood-brain barrier disruption, and perivascular immune cell infiltration. This enhanced inflammatory response was associated with higher levels of fibrin deposition, oxidative stress, demyelination, and axonal injury. IL-18 immunoreactivity co-localized with perivascular monocytes/macrophages in both human and mouse brain tissue. In cALD patients, CSF IL-18 levels correlated with MRI lesion severity. INTERPRETATION Our results suggest loss of Abcd1 function in mice predisposes to more severe blood-brain barrier disruption, cerebral inflammation driven by the infiltration of peripheral immune cells, demyelination, and axonal damage, replicating human cALD features. This novel mouse model could shed light on cALD mechanisms and accelerate cALD therapy development. ANN NEUROL 2025;97:296-312.
Collapse
Affiliation(s)
- Ezzat Hashemi
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Isha N. Srivastava
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Alejandro Aguirre
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Ezra T. Yoseph
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Esha Kaushal
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Avni Awani
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Jae Kyu Ryu
- Gladstone Institute for Neurological Disease; San Francisco, CA, USA
- Center for Neurovascular Brain Immunology at Gladstone and UCSF; San Francisco, CA USA
- Department of Neurology, Weill Institute for Neurosciences, University of California San Francisco; San Francisco, CA, USA
| | - Katerina Akassoglou
- Gladstone Institute for Neurological Disease; San Francisco, CA, USA
- Center for Neurovascular Brain Immunology at Gladstone and UCSF; San Francisco, CA USA
- Department of Neurology, Weill Institute for Neurosciences, University of California San Francisco; San Francisco, CA, USA
| | - Shahrzad Talebian
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Pauline Chu
- Stanford Human Research Histology Core, Stanford University School of Medicine, Stanford, CA, USA
| | - Laura Pisani
- Department of Radiology, Stanford University School of Medicine Stanford, CA, USA
| | - Patricia Musolino
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Lawrence Steinman
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Kristian Doyle
- Department of Immunobiology, University of Arizona, Tucson, AZ, USA
| | - William H Robinson
- Department of Immunology & Rheumatology, Stanford University School of Medicine, Stanford, CA, USA
| | - Orr Sharpe
- Department of Immunology & Rheumatology, Stanford University School of Medicine, Stanford, CA, USA
| | - Romain Cayrol
- Department of Pathology, Clinical Department of Laboratory Medicine, University of Montreal, Quebec, Canada
| | - Paul J. Orchard
- Division of Pediatric Blood & Marrow Transplantation, University of Minnesota, Minneapolis, MN, USA
| | - Troy Lund
- Division of Pediatric Blood & Marrow Transplantation, University of Minnesota, Minneapolis, MN, USA
| | - Hannes Vogel
- Departments of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Max Lenail
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - May H. Han
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Joshua L. Bonkowsky
- Division of Pediatric Neurology, Department of Pediatrics, University of Utah School of Medicine, Salt Lake City, Utah
- Brain and Spine Center, Primary Children’s Hospital, Salt Lake City, Utah
- Primary Children’s Center for Personalized Medicine, Salt Lake City, Utah
| | - Keith P. Van Haren
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
| |
Collapse
|
8
|
Janáky M, Braunitzer G. Syndromic Retinitis Pigmentosa: A Narrative Review. Vision (Basel) 2025; 9:7. [PMID: 39846623 PMCID: PMC11755594 DOI: 10.3390/vision9010007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 12/18/2024] [Accepted: 01/16/2025] [Indexed: 01/24/2025] Open
Abstract
Retinitis pigmentosa (RP) encompasses inherited retinal dystrophies, appearing either as an isolated eye condition or as part of a broader systemic syndrome, known as syndromic RP. In these cases, RP includes systemic symptoms impacting other organs, complicating diagnosis and management. This review highlights key systemic syndromes linked with RP, such as Usher, Bardet-Biedl, and Alström syndromes, focusing on genetic mutations, inheritance, and clinical symptoms. These insights support clinicians in recognizing syndromic RP early. Ocular signs like nystagmus and congenital cataracts may indicate systemic disease, prompting genetic testing. Conversely, systemic symptoms may necessitate eye exams, even if vision symptoms are absent. Understanding the systemic aspects of these syndromes emphasizes the need for multidisciplinary collaboration among ophthalmologists, pediatricians, and other specialists to optimize patient care. The review also addresses emerging genetic therapies aimed at both visual and systemic symptoms, though more extensive studies are required to confirm their effectiveness. Overall, by detailing the genetic and clinical profiles of syndromic RP, this review seeks to aid healthcare professionals in diagnosing and managing these complex conditions more effectively, enhancing patient outcomes through timely, specialized intervention.
Collapse
Affiliation(s)
- Márta Janáky
- Department of Ophthalmology, Szent-Györgyi Albert Medical School, University of Szeged, 6720 Szeged, Hungary
| | - Gábor Braunitzer
- Sztárai Institute, University of Tokaj, 3950 Sárospatak, Hungary;
| |
Collapse
|
9
|
Toshniwal SS, Jiwan Kinkar S, Kumar S, Acharya S. Cerebral adrenoleukodystrophy presenting as status epilepticus: Unveiling the neurological maze. Radiol Case Rep 2025; 20:414-418. [PMID: 39525903 PMCID: PMC11550647 DOI: 10.1016/j.radcr.2024.10.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 10/01/2024] [Accepted: 10/03/2024] [Indexed: 11/16/2024] Open
Abstract
We describe the case of a 7-year-old boy who had repeated episodes of prolonged seizures without recovery of consciousness when he arrived at a rural tertiary care teaching institute hospital in Wardha, India. Detailed history of the patient revealed that the child's symptoms began with left exotropia and visual acuity changes, progressing over 6 months to cognitive decline, hearing impairment, pseudobulbar affect, and motor issues, eventually leading to school dropout. Social isolation and difficulty walking also developed as the disease advanced. MRI brain revealed diffuse white matter lesions bilaterally with raised serum ACTH levels of 5 times the normal range associated with raised levels of tetracosanoic acid (C24) and hexacosanoic acid (C26), along with elevated C24/C22 and C26/C22 ratios. The patient was provisionally diagnosed as X linked cerebral adrenoleukodystrophy. Post treatment and stabilization, the patient was seizure-free on antiepileptic medications, however, patient developed blindness, lost mobility, became bedridden, and progressed to a vegetative state within 6 months. Adrenoleukodystrophy (ALD) is a rare X-linked genetic disorder that primarily affects men. It is caused by mutations in the ABCD 1 gene and is characterized by an abnormal build-up of very long-chain fatty acids (VLCFA) in various body tissues, which affect the spinal cord, white matter, and adrenal glands, causing progressive damage and dysfunction at each location. This case highlights the importance of early diagnosis and intervention to slow down disease progression in order to improve outcome. Also, increased awareness among healthcare professionals to help early detect the signs of this disease is of great importance.
Collapse
Affiliation(s)
- Saket Satyasham Toshniwal
- Department of General Medicine, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, India
| | - S. Jiwan Kinkar
- Department of Neurology, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, India
| | - Sunil Kumar
- Department of General Medicine, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, India
| | - Sourya Acharya
- Department of General Medicine, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, India
| |
Collapse
|
10
|
Zhou L, Wang Y, Xu Y, Zhang Y, Zhu C. Advances in AAV-mediated gene replacement therapy for pediatric monogenic neurological disorders. Mol Ther Methods Clin Dev 2024; 32:101357. [PMID: 39559557 PMCID: PMC11570947 DOI: 10.1016/j.omtm.2024.101357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2024]
Abstract
Pediatric monogenetic diseases encompass a spectrum of debilitating neurological disorders that affect infants and children, often resulting in profound cognitive and motor impairments. Gene replacement therapy holds immense promise in addressing the underlying genetic defects responsible for these conditions. Adeno-associated virus (AAV) vectors have emerged as a leading platform for delivering therapeutic genes due to their safety profile and ability to transduce various cell types, including neurons. This review highlights recent advancements in AAV-mediated gene replacement therapy for pediatric monogenetic diseases, focusing on key preclinical and clinical studies. We discuss various strategies to enhance transduction efficiency, target specificity, and safety. Furthermore, we explore challenges such as immune responses, along with innovative approaches to overcome these obstacles. Moreover, we examine the clinical outcomes and safety profiles of AAV-based gene therapies in pediatric patients, providing insights into the feasibility and efficacy of these interventions. Finally, we discuss future directions and potential avenues for further research to optimize the therapeutic potential of AAV-delivered gene replacement therapy for pediatric encephalopathies, ultimately aiming to improve the quality of life for affected individuals and their families.
Collapse
Affiliation(s)
- Livia Zhou
- Henan Neurodevelopment Engineering Research Center for Children, Children’s Hospital Affiliated to Zhengzhou University, Henan Children’s Hospital Zhengzhou Children’s Hospital, Zhengzhou 450018, China
| | - Yafeng Wang
- Henan Neurodevelopment Engineering Research Center for Children, Children’s Hospital Affiliated to Zhengzhou University, Henan Children’s Hospital Zhengzhou Children’s Hospital, Zhengzhou 450018, China
| | - Yiran Xu
- Henan Key Laboratory of Child Brain Injury and Henan Pediatric Clinical Research Center, Institute of Neuroscience and The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Yaodong Zhang
- Henan Neurodevelopment Engineering Research Center for Children, Children’s Hospital Affiliated to Zhengzhou University, Henan Children’s Hospital Zhengzhou Children’s Hospital, Zhengzhou 450018, China
| | - Changlian Zhu
- Henan Key Laboratory of Child Brain Injury and Henan Pediatric Clinical Research Center, Institute of Neuroscience and The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
- Center for Brain Repair and Rehabilitation, Institute of Neuroscience and Physiology, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
11
|
Lin DS, Ho CS. Emerging Role of Ubiquitin Proteasome System and Autophagy in Pediatric Demyelinating Leukodystrophies and Therapeutic Opportunity. Cells 2024; 13:1873. [PMID: 39594621 PMCID: PMC11593168 DOI: 10.3390/cells13221873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 11/07/2024] [Accepted: 11/09/2024] [Indexed: 11/28/2024] Open
Abstract
Leukodystrophies represent a heterogeneous group of disorders characterized by specific genetic mutations, metabolic abnormalities, and degeneration of white matter in the central nervous system. These disorders are classified into several categories, with X-linked adrenoleukodystrophy (X-ALD), metachromatic leukodystrophy (MLD), and globoid cell leukodystrophy (GLD) being the most prevalent demyelinating leukodystrophies in pediatric populations. Maintaining proteostasis, which is critical for normal cellular function, relies fundamentally on the ubiquitin-proteasome system (UPS) and autophagy for the degradation of misfolded and damaged proteins. Compelling evidence has highlighted the critical roles of UPS and autophagy dysfunction in the pathogenesis of neurodegenerative diseases. Given the complex and poorly understood pathomechanisms underlying demyelinating leukodystrophies, coupled with the pressing need for effective therapeutic strategies, this review aims to systemically analyze the molecular and pathological evidence linking UPS and autophagy dysfunction to demyelinating leukodystrophies, specifically X-ALD and GLD. Furthermore, we will assess the therapeutic potential of autophagy modulators in the management of X-ALD and GLD, with the objective to inspire further research into therapeutic approaches that target autophagy and UPS pathways. Novel therapies that enhance autophagy and UPS function hold promise as complementary regimens in combination therapies aimed at achieving comprehensive correction of the pathogenic mechanisms in demyelinating leukodystrophies.
Collapse
Affiliation(s)
- Dar-Shong Lin
- Department of Translational Medicine, MacKay Memorial Hospital, 92, Section 2, Chung-Shan North Road, Taipei 10449, Taiwan
- Department of Pediatrics, MacKay Memorial Hospital, Taipei 10449, Taiwan
- Department of Medicine, MacKay Medical College, New Taipei 25245, Taiwan
- Department of Medical Research, MacKay Memorial Hospital, Taipei 10449, Taiwan
| | - Che-Sheng Ho
- Department of Neurology, MacKay Children’s Hospital, Taipei 10449, Taiwan;
| |
Collapse
|
12
|
Zuo X, Chen Z. From gene to therapy: a review of deciphering the role of ABCD1 in combating X-Linked adrenoleukodystrophy. Lipids Health Dis 2024; 23:369. [PMID: 39529100 PMCID: PMC11552335 DOI: 10.1186/s12944-024-02361-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 11/03/2024] [Indexed: 11/16/2024] Open
Abstract
X-linked adrenoleukodystrophy (X-ALD) is a severe genetic disorder caused by ABCD1 mutations, resulting in the buildup of very-long-chain fatty acids, leading to significant neurological decline and adrenal insufficiency. Despite advancements in understanding the mechanisms of X-ALD, its pathophysiology remains incompletely understood, complicating the development of effective treatments. This review provides a comprehensive overview of X-ALD, with a focus on the genetic and biochemical roles of ABCD1 and the impacts of its mutations. Current therapeutic approaches are evaluated, discussing their limitations, and emphasizing the need to fully elucidate the pathogenesis of X-ALD. Additionally, this review highlights the importance of international collaboration to enhance systematic data collection and advance biomarker discovery, ultimately improving patient outcomes with X-ALD.
Collapse
Affiliation(s)
- Xinxin Zuo
- Department of Neurosciences, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA.
| | - Zeyu Chen
- Department of Medicine, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA.
| |
Collapse
|
13
|
Ovejero García MT, Sáez Gallego B, Barreda Bonís AC, Domínguez Riscart J, Garnier Rodríguez MB, Molina Suárez R, Arriba Muñoz AD. Primary adrenal insufficiency: case study IN 5 tertiary hospitals. An Pediatr (Barc) 2024; 101:303-309. [PMID: 39510861 DOI: 10.1016/j.anpede.2024.10.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Accepted: 08/01/2024] [Indexed: 11/15/2024] Open
Abstract
INTRODUCTION Primary adrenal insufficiency (PAI) in children is a rare condition characterized by deficient production of glucocorticoids and/or mineralocorticoids. The clinical manifestations are nonspecific and insidious. Providers need to know about this disorder to be able to make an early diagnosis, as appropriate management can be life-saving. METHODS We conducted a multicentre retrospective study including every patient aged less than 18 years given a diagnosis of PAI in the last 30 years at 5 Spanish hospitals. OBJECTIVES The objective was to determine the aetiologies, signs, symptoms and laboratory findings of PAI in the paediatric age group. RESULTS Twenty nine patients received a diagnosis of PAI at a median age of 5.6 years. An aetiological diagnosis was established in 23 patients (79.3%): X-linked adrenoleukodystrophy in 8 (27.6%), autoimmune adrenalitis in 6 (20.7%), X-linked adrenal hypoplasia congenita in 4 (13.8%), adrenocorticotropic hormone (ACTH) resistance syndrome in 2 (6.9%), Pearson syndrome in 2 (6.9%) and Allgrove syndrome in 1 (3.4%). In the remaining 6 patients, no clear aetiology was identified. Sixteen patients (55.2%) had onset with an adrenal crisis. Twenty patients (69%) needed combination therapy (hydrocortisone and fludrocortisone). CONCLUSIONS Asthenia, hyperpigmentation and hyponatraemia were the most prevalent sign, symptom and electrolyte abnormality at onset of PAI, although their absence does not rule out this disease. The elevation of ACTH persists despite adequate glucocorticoid replacement therapy.
Collapse
Affiliation(s)
| | - Blanca Sáez Gallego
- Hospital Universitario de Canarias, San Cristóbal de La Laguna, Santa Cruz de Tenerife. Spain
| | | | | | | | - Ruth Molina Suárez
- Hospital Universitario de Canarias, San Cristóbal de La Laguna, Santa Cruz de Tenerife. Spain
| | | |
Collapse
|
14
|
Sarkar C, Lipinski MM. Role and Function of Peroxisomes in Neuroinflammation. Cells 2024; 13:1655. [PMID: 39404418 PMCID: PMC11476013 DOI: 10.3390/cells13191655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 09/25/2024] [Accepted: 10/02/2024] [Indexed: 10/19/2024] Open
Abstract
Peroxisomes are organelles involved in many cellular metabolic functions, including the degradation of very-long-chain fatty acids (VLCFAs; C ≥ 22), the initiation of ether-phospholipid synthesis, and the metabolism of reactive oxygen species. All of these processes are essential for the maintenance of cellular lipid and redox homeostasis, and their perturbation can trigger inflammatory response in immune cells, including in the central nervous system (CNS) resident microglia and astrocytes. Consistently, peroxisomal disorders, a group of congenital diseases caused by a block in peroxisomal biogenesis or the impairment of one of the peroxisomal enzymes, are associated with neuroinflammation. Peroxisomal function is also dysregulated in many neurodegenerative diseases and during brain aging, both of which are associated with neuroinflammation. This suggests that deciphering the role of peroxisomes in neuroinflammation may be important for understanding both congenital and age-related brain dysfunction. In this review, we discuss the current advances in understanding the role and function of peroxisomes in neuroinflammation.
Collapse
Affiliation(s)
- Chinmoy Sarkar
- Shock, Trauma and Anesthesiology Research (STAR) Center, Department of Anesthesiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Marta M. Lipinski
- Shock, Trauma and Anesthesiology Research (STAR) Center, Department of Anesthesiology and Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA;
| |
Collapse
|
15
|
Spreghini MR, Gianni N, Todisco T, Rizzo C, Cappa M, Manco M. Nutritional Counseling and Mediterranean Diet in Adrenoleukodystrophy: A Real-Life Experience. Nutrients 2024; 16:3341. [PMID: 39408308 PMCID: PMC11478612 DOI: 10.3390/nu16193341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 09/12/2024] [Accepted: 09/17/2024] [Indexed: 10/20/2024] Open
Abstract
Background/Objectives: Adrenoleukodystrophy (X-ALD) is a metabolic disorder caused by dysfunctional peroxisomal beta-oxidation of very-long-chain fatty acids (VLCFAs). A VLCFA-restricted Mediterranean diet has been proposed for patients and carriers to reduce daily VLCFA intake. Methods: We retrospectively evaluated plasma VLCFAs in a cohort of 36 patients and 20 carriers at baseline and after 1 year of restricted diet. Results: At T1, compliant adult patients had significantly lower C26:0 levels [1.7 (1.2) vs. 2.5 µmol/L (1.7), p < 0.05], C26:0/C22:0 ratio [0.04 (0.02) vs. 0.06 (0.03), p < 0.05], and triglycerides [93 (56.5) vs. 128 mg/dL (109.5), p < 0.05] than non-compliant ones. C26:0 [2.4 (1.7) vs. 1.7 (1.2) µmol/L, p < 0.05], the C26:0/C22:0 ratio [0.06 (0.04) vs. 0.04 (0.02), p < 0.05], and cholesterol [173.5 (68.3) mg/dL vs. 157 (54) mg/dL, p < 0.05] were significantly reduced in compliant adult patients at T1 vs. baseline. As for carriers, the C26:0/C22:0 ratio was lower [0.02 (0.01) vs. 0.04 (0.009), p < 0.05] at T1 in compliant carriers, as compared to non-compliant ones. The C26:0/C22:0 [0.03 (0.02) vs. 0.02 (0.01) p < 0.05] and C24:0/C22:0 [1.0 (0.2) vs. 0.9 (0.3), p < 0.05] ratios were significantly decreased at T1 vs. T0. Conclusions: A VLCFA-restricted diet is effective in reducing plasma VLCFA levels and their ratios and must be strongly encouraged as support to therapy.
Collapse
Affiliation(s)
- Maria Rita Spreghini
- UOC of Endocrinology and Diabetology, Bambino Gesù Children’s Hospital, Istituti di Ricovero e Cura a Carattere Scientifico, IRCCS, 00165 Rome, Italy; (M.R.S.); (T.T.)
| | - Nicoletta Gianni
- Research Unit for Predictive and Preventive Medicine, Bambino Gesù Children’s Hospital, Istituti di Ricovero e Cura a Carattere Scientifico, IRCCS, 00165 Rome, Italy;
| | - Tommaso Todisco
- UOC of Endocrinology and Diabetology, Bambino Gesù Children’s Hospital, Istituti di Ricovero e Cura a Carattere Scientifico, IRCCS, 00165 Rome, Italy; (M.R.S.); (T.T.)
- Service of Endocrinology, Diabetology and Metabolism, Lausanne University Hospital, 1011 Lausanne, Switzerland
| | - Cristiano Rizzo
- UOC of Metabolic Diseases, Bambino Gesù Children’s Hospital, Istituti di Ricovero e Cura a Carattere Scientifico, IRCCS, 00165 Rome, Italy;
| | - Marco Cappa
- Research Unit for Innovative Therapies for Endocrinopathies, Bambino Gesù Children’s Hospital, Istituti di Ricovero e Cura a Carattere Scientifico, IRCCS, 00165 Rome, Italy;
| | - Melania Manco
- Research Unit for Predictive and Preventive Medicine, Bambino Gesù Children’s Hospital, Istituti di Ricovero e Cura a Carattere Scientifico, IRCCS, 00165 Rome, Italy;
| |
Collapse
|
16
|
Chaudhary R, Rehman M, Agarwal V, Kumar A, Kaushik AS, Srivastava S, Srivastava S, Verma R, Rajinikanth PS, Mishra V. Terra incognita of glial cell dynamics in the etiology of leukodystrophies: Broadening disease and therapeutic perspectives. Life Sci 2024; 354:122953. [PMID: 39122110 DOI: 10.1016/j.lfs.2024.122953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 07/09/2024] [Accepted: 08/05/2024] [Indexed: 08/12/2024]
Abstract
Neuroglial cells, also known as glia, are primarily characterized as auxiliary cells within the central nervous system (CNS). The recent findings have shed light on their significance in numerous physiological processes and their involvement in various neurological disorders. Leukodystrophies encompass an array of rare and hereditary neurodegenerative conditions that were initially characterized by the deficiency, aberration, or degradation of myelin sheath within CNS. The primary cellular populations that experience significant alterations are astrocytes, oligodendrocytes and microglia. These glial cells are either structurally or metabolically impaired due to inherent cellular dysfunction. Alternatively, they may fall victim to the accumulation of harmful by-products resulting from metabolic disturbances. In either situation, the possible replacement of glial cells through the utilization of implanted tissue or stem cell-derived human neural or glial progenitor cells hold great promise as a therapeutic strategy for both the restoration of structural integrity through remyelination and the amelioration of metabolic deficiencies. Various emerging treatment strategies like stem cell therapy, ex-vivo gene therapy, infusion of adeno-associated virus vectors, emerging RNA-based therapies as well as long-term therapies have demonstrated success in pre-clinical studies and show promise for rapid clinical translation. Here, we addressed various leukodystrophies in a comprehensive and detailed manner as well as provide prospective therapeutic interventions that are being considered for clinical trials. Further, we aim to emphasize the crucial role of different glial cells in the pathogenesis of leukodystrophies. By doing so, we hope to advance our understanding of the disease, elucidate underlying mechanisms, and facilitate the development of potential treatment interventions.
Collapse
Affiliation(s)
- Rishabh Chaudhary
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow 226025, U.P., India
| | - Mujeeba Rehman
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow 226025, U.P., India
| | - Vipul Agarwal
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow 226025, U.P., India
| | - Anand Kumar
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow 226025, U.P., India
| | - Arjun Singh Kaushik
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow 226025, U.P., India
| | - Siddhi Srivastava
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow 226025, U.P., India
| | - Sukriti Srivastava
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow 226025, U.P., India
| | - Rajkumar Verma
- University of Connecticut School of Medicine, 200 Academic Way, Farmington, CT 06032, USA
| | - P S Rajinikanth
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow 226025, U.P., India
| | - Vikas Mishra
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow 226025, U.P., India.
| |
Collapse
|
17
|
Manor J, Jangam SV, Chung HL, Bhagwat P, Andrews J, Chester H, Kondo S, Srivastav S, Botas J, Moser AB, Huguenin SM, Wangler MF. Genetic analysis of the X-linked Adrenoleukodystrophy ABCD1 gene in Drosophila uncovers a role in Peroxisomal dynamics. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.23.614586. [PMID: 39386423 PMCID: PMC11463603 DOI: 10.1101/2024.09.23.614586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
X-linked adrenoleukodystrophy (X-ALD) is a progressive neurodegenerative disorder caused by a loss-of-function (LOF) mutation in the ATP-binding cassette subfamily D member 1 (ABCD1) gene, leading to the accumulation of very long-chain fatty acids (VLCFAs). This disorder exhibits striking heterogeneity; some male patients develop an early childhood neuroinflammatory demyelination disorder, while other patients, including adult males and most affected female carriers, experience a chronic progressive myelopathy. Adrenocortical failure is observed in almost all male patients, with age of onset varying sometimes being the first diagnostic finding. The gene underlying this spectrum of disease encodes an ATP-binding cassette (ABC) transporter that localizes to peroxisomes and facilitates VLCFA transport. X-ALD is considered a single peroxisomal component defect and does not play a direct role in peroxisome assembly. Drosophila models of other peroxisomal genes have provided mechanistic insight into some of the neurodegenerative mechanisms with reduced lifespan, retinal degeneration, and VLCFA accumulation. Here, we perform a genetic analysis of the fly ABCD1 ortholog Abcd1 (CG2316). Knockdown or deficiency of Abcd1 leads to VLCFA accumulation, salivary gland defects, locomotor impairment and retinal lipid abnormalities. Interestingly, there is also evidence of reduced peroxisomal numbers. Flies overexpressing the human cDNA for ABCD1 display a wing crumpling phenotype characteristic of the pex2 loss-of-function. Surprisingly, overexpression of human ABCD1 appears to inhibit or overwhelm peroxisomal biogenesis to levels similar to null mutations in fly pex2, pex16 and pex3. Drosophila Abcd1 is therefore implicated in peroxisomal number, and overexpression of the human ABCD1 gene acts a potent inhibitor of peroxisomal biogenesis in flies.
Collapse
Affiliation(s)
- Joshua Manor
- Metabolic Disease Unit, Edmond and Lily Safra Children’s Hospital, Sheba Medical Center, Ramat Gan, Israel
| | - Sharayu V Jangam
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
- Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital, Houston, Texas, USA
| | - Hyung-lok Chung
- Department of Neurology, Houston Methodist Research Institute, Houston, TX, USA
- Department of Neurology, Weill Cornell Medical College, New York, NY, USA
| | - Pranjali Bhagwat
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
- Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital, Houston, Texas, USA
| | - Jonathan Andrews
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
- Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital, Houston, Texas, USA
| | - Hillary Chester
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
- Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital, Houston, Texas, USA
| | - Shu Kondo
- Tokyo University of Science, Faculty of Advanced Engineering, Department of Biological Science and Technology, Tokyo, Japan
| | - Saurabh Srivastav
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
- Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital, Houston, Texas, USA
| | - Juan Botas
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
- Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital, Houston, Texas, USA
| | - Ann B. Moser
- Hugo W Moser Research Institute, Kennedy Krieger Institute, Baltimore, MD, USA
| | - Suzette M. Huguenin
- Hugo W Moser Research Institute, Kennedy Krieger Institute, Baltimore, MD, USA
| | - Michael F Wangler
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
- Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital, Houston, Texas, USA
| |
Collapse
|
18
|
Mukherjee D, Sarkar P, Pandit A, Ray BK, Das G, Dubey S. A spectrum of cognitive-behavioral-movement disorders in adrenoleukodystrophy: A case series from a tertiary care centre in the eastern part of India. Qatar Med J 2024; 2024:43. [PMID: 39376208 PMCID: PMC11456738 DOI: 10.5339/qmj.2024.43] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 07/22/2024] [Indexed: 10/09/2024] Open
Abstract
Background Adrenoleukodystrophy (ALD) is an intriguing disease with a heterogeneous clinico-radiological profile. Behavioral and cognitive impairments are often the initial and predominant manifestations, yet their patterns are frequently overlooked. This study aims to elaborate on the patterns of cognitive dysfunction, behavioral changes, and movement disorders in ALD to facilitate its earlier diagnosis. Methods In this case series, 12 cases of ALD were assessed and evaluated for cognitive, behavioral, and movement abnormalities to identify patterns of involvement. Results All patients were male, with an age range of 5-46 years. 75% presented with cerebral ALD (CALD), and 25% had an adrenomyeloneuropathy phenotype. Cognitive dysfunction, behavioral changes, and seizures were observed in 75%, 66.7%, and 33.3% of ALD patients. An initial posterior to anterior pattern of progression of cognitive impairment dominated by higher-order visual dysfunction and language regression was observed in 66.7% of CALD patients, while a frontal pattern was noted in 22.2% of CALD patients. While cognitive impairment typically indicated dysfunction of occipito-parieto-temporal networks, behavioral changes predominantly suggested dysfunctional fronto-temporal-subcortical connections. A novel observation was the occurrence of tics and stereotypies in 33.3% of ALD patients. Conclusion This study describes the patterns of cognitive, behavioral, and movement abnormalities in ALD and highlights the contributory role of dysfunctional white matter networks. Cognitive patterns predominantly reflect a posterior-to-anterior gradient of impairment of white matter connections, while behavioral markers indicate involvement of fronto-temporal-subcortical networks. Adding to this spectrum, the occurrence of tics and stereotypies is a unique observation in ALD.
Collapse
Affiliation(s)
- Debaleena Mukherjee
- Bangur Institute of Neurosciences, Institute of Post Graduate Medical Education & Research, SSKM Hospital, Kolkata, India *
| | - Peyalee Sarkar
- Bangur Institute of Neurosciences, Institute of Post Graduate Medical Education & Research, SSKM Hospital, Kolkata, India *
| | - Alak Pandit
- Bangur Institute of Neurosciences, Institute of Post Graduate Medical Education & Research, SSKM Hospital, Kolkata, India *
| | - Biman Kanti Ray
- Bangur Institute of Neurosciences, Institute of Post Graduate Medical Education & Research, SSKM Hospital, Kolkata, India *
| | - Gautam Das
- Bangur Institute of Neurosciences, Institute of Post Graduate Medical Education & Research, SSKM Hospital, Kolkata, India *
| | - Souvik Dubey
- Bangur Institute of Neurosciences, Institute of Post Graduate Medical Education & Research, SSKM Hospital, Kolkata, India *
| |
Collapse
|
19
|
Pierpont EI, Labounek R, Gupta A, Lund T, Orchard PJ, Dobyns WB, Bondy M, Paulson A, Metz A, Shanley R, Wozniak JR, Mueller BA, Loes D, Nascene D, Nestrasil I. Diffusion Tensor Imaging in Boys With Adrenoleukodystrophy: Identification of Cerebral Disease and Association With Neurocognitive Outcomes. Neurology 2024; 103:e209764. [PMID: 39151102 PMCID: PMC11329293 DOI: 10.1212/wnl.0000000000209764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 06/18/2024] [Indexed: 08/18/2024] Open
Abstract
BACKGROUND AND OBJECTIVES Childhood cerebral adrenoleukodystrophy (C-ALD) is a severe inflammatory demyelinating disease that must be treated at an early stage to prevent permanent brain injury and neurocognitive decline. In standard clinical practice, C-ALD lesions are detected and characterized by a neuroradiologist reviewing anatomical MRI scans. We aimed to assess whether diffusion tensor imaging (DTI) is sensitive to the presence and severity of C-ALD lesions and to investigate associations with neurocognitive outcomes after hematopoietic cell therapy (HCT). METHODS In this retrospective cohort study, we analyzed high-resolution anatomical MRI, DTI, and neurocognitive assessments from boys with C-ALD undergoing HCT at the University of Minnesota between 2011 and 2021. Longitudinal DTI data were compared with an age-matched group of boys with ALD and no lesion (NL-ALD). DTI metrics were obtained for atlas-based regions of interest (ROIs) within 3 subdivisions of the corpus callosum (CC), corticospinal tract (CST), and total white matter (WM). Between-group baseline and slope differences in fractional anisotropy (FA) and axial (AD), radial (RD), and mean (MD) diffusivities were compared using analysis of covariance accounting for age, MRI severity (Loes score), and lesion location. RESULTS Among patients with NL-ALD (n = 14), stable or increasing FA, stable AD, and stable or decreasing RD and MD were generally observed during the 1-year study period across all ROIs. In comparison, patients with mild posterior lesions (Loes 1-2; n = 13) demonstrated lower baseline FA in the CC splenium (C-ALD 0.50 ± 0.08 vs NL-ALD 0.58 ± 0.04; pBH = 0.022 adjusted Benjamini-Hochberg p-value), lower baseline AD across ROIs (e.g., C-ALD 1.34 ± 0.03 ×10-9 m2/s in total WM vs NL-ALD 1.38 ± 0.04 ×10-9 m2/s; pBH = 0.005), lower baseline RD in CC body and CST, and lower baseline MD across ROIs except CC splenium. Longitudinal slopes in CC splenium showed high sensitivity and specificity in differentiating early C-ALD from NL-ALD. Among all patients with C-ALD (n = 38), baseline Loes scores and DTI metrics were associated with post-HCT neurocognitive functions, including processing speed (e.g., FA WM Spearman correlation coefficient R = 0.64) and visual-motor integration (e.g., FA WM R = 0.71). DISCUSSION DTI was sensitive to lesion presence and severity as well as clinical neurocognitive effects of C-ALD. DTI metrics quantify C-ALD even at an early stage.
Collapse
Affiliation(s)
- Elizabeth I Pierpont
- From the Departments of Pediatrics (E.I.P., R.L., A.G., T.L., P.J.O., W.B.D., M.B., A.P., I.N.), Neurology (A.M.), Psychiatry & Behavioral Sciences (J.R.W., B.A.M.), and Radiology (D.N.), University of Minnesota Medical School, Minneapolis; Biostatistical Design and Analysis Center (R.S.), Clinical and Translational Science Institute, University of Minnesota, Minneapolis; and Independent Neuroradiologist-Consultant (D.L.), Minneapolis, MN
| | - René Labounek
- From the Departments of Pediatrics (E.I.P., R.L., A.G., T.L., P.J.O., W.B.D., M.B., A.P., I.N.), Neurology (A.M.), Psychiatry & Behavioral Sciences (J.R.W., B.A.M.), and Radiology (D.N.), University of Minnesota Medical School, Minneapolis; Biostatistical Design and Analysis Center (R.S.), Clinical and Translational Science Institute, University of Minnesota, Minneapolis; and Independent Neuroradiologist-Consultant (D.L.), Minneapolis, MN
| | - Ashish Gupta
- From the Departments of Pediatrics (E.I.P., R.L., A.G., T.L., P.J.O., W.B.D., M.B., A.P., I.N.), Neurology (A.M.), Psychiatry & Behavioral Sciences (J.R.W., B.A.M.), and Radiology (D.N.), University of Minnesota Medical School, Minneapolis; Biostatistical Design and Analysis Center (R.S.), Clinical and Translational Science Institute, University of Minnesota, Minneapolis; and Independent Neuroradiologist-Consultant (D.L.), Minneapolis, MN
| | - Troy Lund
- From the Departments of Pediatrics (E.I.P., R.L., A.G., T.L., P.J.O., W.B.D., M.B., A.P., I.N.), Neurology (A.M.), Psychiatry & Behavioral Sciences (J.R.W., B.A.M.), and Radiology (D.N.), University of Minnesota Medical School, Minneapolis; Biostatistical Design and Analysis Center (R.S.), Clinical and Translational Science Institute, University of Minnesota, Minneapolis; and Independent Neuroradiologist-Consultant (D.L.), Minneapolis, MN
| | - Paul J Orchard
- From the Departments of Pediatrics (E.I.P., R.L., A.G., T.L., P.J.O., W.B.D., M.B., A.P., I.N.), Neurology (A.M.), Psychiatry & Behavioral Sciences (J.R.W., B.A.M.), and Radiology (D.N.), University of Minnesota Medical School, Minneapolis; Biostatistical Design and Analysis Center (R.S.), Clinical and Translational Science Institute, University of Minnesota, Minneapolis; and Independent Neuroradiologist-Consultant (D.L.), Minneapolis, MN
| | - William B Dobyns
- From the Departments of Pediatrics (E.I.P., R.L., A.G., T.L., P.J.O., W.B.D., M.B., A.P., I.N.), Neurology (A.M.), Psychiatry & Behavioral Sciences (J.R.W., B.A.M.), and Radiology (D.N.), University of Minnesota Medical School, Minneapolis; Biostatistical Design and Analysis Center (R.S.), Clinical and Translational Science Institute, University of Minnesota, Minneapolis; and Independent Neuroradiologist-Consultant (D.L.), Minneapolis, MN
| | - Monica Bondy
- From the Departments of Pediatrics (E.I.P., R.L., A.G., T.L., P.J.O., W.B.D., M.B., A.P., I.N.), Neurology (A.M.), Psychiatry & Behavioral Sciences (J.R.W., B.A.M.), and Radiology (D.N.), University of Minnesota Medical School, Minneapolis; Biostatistical Design and Analysis Center (R.S.), Clinical and Translational Science Institute, University of Minnesota, Minneapolis; and Independent Neuroradiologist-Consultant (D.L.), Minneapolis, MN
| | - Amy Paulson
- From the Departments of Pediatrics (E.I.P., R.L., A.G., T.L., P.J.O., W.B.D., M.B., A.P., I.N.), Neurology (A.M.), Psychiatry & Behavioral Sciences (J.R.W., B.A.M.), and Radiology (D.N.), University of Minnesota Medical School, Minneapolis; Biostatistical Design and Analysis Center (R.S.), Clinical and Translational Science Institute, University of Minnesota, Minneapolis; and Independent Neuroradiologist-Consultant (D.L.), Minneapolis, MN
| | - Andrew Metz
- From the Departments of Pediatrics (E.I.P., R.L., A.G., T.L., P.J.O., W.B.D., M.B., A.P., I.N.), Neurology (A.M.), Psychiatry & Behavioral Sciences (J.R.W., B.A.M.), and Radiology (D.N.), University of Minnesota Medical School, Minneapolis; Biostatistical Design and Analysis Center (R.S.), Clinical and Translational Science Institute, University of Minnesota, Minneapolis; and Independent Neuroradiologist-Consultant (D.L.), Minneapolis, MN
| | - Ryan Shanley
- From the Departments of Pediatrics (E.I.P., R.L., A.G., T.L., P.J.O., W.B.D., M.B., A.P., I.N.), Neurology (A.M.), Psychiatry & Behavioral Sciences (J.R.W., B.A.M.), and Radiology (D.N.), University of Minnesota Medical School, Minneapolis; Biostatistical Design and Analysis Center (R.S.), Clinical and Translational Science Institute, University of Minnesota, Minneapolis; and Independent Neuroradiologist-Consultant (D.L.), Minneapolis, MN
| | - Jeffrey R Wozniak
- From the Departments of Pediatrics (E.I.P., R.L., A.G., T.L., P.J.O., W.B.D., M.B., A.P., I.N.), Neurology (A.M.), Psychiatry & Behavioral Sciences (J.R.W., B.A.M.), and Radiology (D.N.), University of Minnesota Medical School, Minneapolis; Biostatistical Design and Analysis Center (R.S.), Clinical and Translational Science Institute, University of Minnesota, Minneapolis; and Independent Neuroradiologist-Consultant (D.L.), Minneapolis, MN
| | - Bryon A Mueller
- From the Departments of Pediatrics (E.I.P., R.L., A.G., T.L., P.J.O., W.B.D., M.B., A.P., I.N.), Neurology (A.M.), Psychiatry & Behavioral Sciences (J.R.W., B.A.M.), and Radiology (D.N.), University of Minnesota Medical School, Minneapolis; Biostatistical Design and Analysis Center (R.S.), Clinical and Translational Science Institute, University of Minnesota, Minneapolis; and Independent Neuroradiologist-Consultant (D.L.), Minneapolis, MN
| | - Daniel Loes
- From the Departments of Pediatrics (E.I.P., R.L., A.G., T.L., P.J.O., W.B.D., M.B., A.P., I.N.), Neurology (A.M.), Psychiatry & Behavioral Sciences (J.R.W., B.A.M.), and Radiology (D.N.), University of Minnesota Medical School, Minneapolis; Biostatistical Design and Analysis Center (R.S.), Clinical and Translational Science Institute, University of Minnesota, Minneapolis; and Independent Neuroradiologist-Consultant (D.L.), Minneapolis, MN
| | - David Nascene
- From the Departments of Pediatrics (E.I.P., R.L., A.G., T.L., P.J.O., W.B.D., M.B., A.P., I.N.), Neurology (A.M.), Psychiatry & Behavioral Sciences (J.R.W., B.A.M.), and Radiology (D.N.), University of Minnesota Medical School, Minneapolis; Biostatistical Design and Analysis Center (R.S.), Clinical and Translational Science Institute, University of Minnesota, Minneapolis; and Independent Neuroradiologist-Consultant (D.L.), Minneapolis, MN
| | - Igor Nestrasil
- From the Departments of Pediatrics (E.I.P., R.L., A.G., T.L., P.J.O., W.B.D., M.B., A.P., I.N.), Neurology (A.M.), Psychiatry & Behavioral Sciences (J.R.W., B.A.M.), and Radiology (D.N.), University of Minnesota Medical School, Minneapolis; Biostatistical Design and Analysis Center (R.S.), Clinical and Translational Science Institute, University of Minnesota, Minneapolis; and Independent Neuroradiologist-Consultant (D.L.), Minneapolis, MN
| |
Collapse
|
20
|
Lee SY, Chew FY, Chen CM. X-linked adrenoleukodystrophy in a child. QJM 2024; 117:661-662. [PMID: 38656935 DOI: 10.1093/qjmed/hcae084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Indexed: 04/26/2024] Open
Affiliation(s)
- S Y Lee
- Department of Pathology, Chung Shan Medical University Hospital, No. 110, Section 1, Jianguo N Rd, South District, Taichung 402, Taiwan
- Department of Pathology, School of Medicine, Chung Shan Medical University, No. 110, Section 1, Jianguo N Rd, South District, Taichung 402, Taiwan
| | - F Y Chew
- Department of Medical Imaging, China Medical University Hospital, Taichung, Taiwan. No. 2, Yude Rd., North Dist, Taichung 404332, Taiwan
- School of Medicine and Department of Radiology, China Medical University, No. 9, Xueshi Rd, North District, Taichung 404332, Taiwan
| | - C M Chen
- Department of Medical Imaging, China Medical University Hospital, Taichung, Taiwan. No. 2, Yude Rd., North Dist, Taichung 404332, Taiwan
- Neuroscience and Brain Disease Center, China Medical University, Taichung, Taiwan. No. 9, Xueshi Rd, North District, Taichung 404332, Taiwan
| |
Collapse
|
21
|
Haschka T, Lamari F, Mochel F, Zujovic V. Innovative tree-based method for sampling molecular conformations: exploring the ATP-binding cassette subfamily D member 1 (ABCD1) transporter as a case study. Front Mol Biosci 2024; 11:1440529. [PMID: 39148631 PMCID: PMC11325183 DOI: 10.3389/fmolb.2024.1440529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 07/15/2024] [Indexed: 08/17/2024] Open
Abstract
We introduce a novel tree-based method for visualizing molecular conformation sampling. Our method offers enhanced precision in highlighting conformational differences and facilitates the observation of local minimas within proteins fold space. The projection of empirical laboratory data on the tree allows us to create a link between protein conformations and disease relevant data. To demonstrate the efficacy of our approach, we applied it to the ATP-binding cassette subfamily D member 1 (ABCD1) transporter responsible for very long-chain fatty acids (VLCFAs) import into peroxisomes. The genetic disorder called X-linked adrenoleukodystrophy (XALD) is characterized by the accumulation of VLCFA due to pathogenic variants in the ABCD1 gene. Using in silico molecular simulation, we examined the behavior of 16 prevalent mutations alongside the wild-type protein, exploring both inward and outward open forms of the transporter through molecular simulations. We evaluated from resulting trajectories the energy potential related to the ABCD1 interactions with ATP molecules. We categorized XALD patients based on the severity and progression of their disease, providing a unique clinical perspective. By integrating this data into our numerical framework, our study aimed to uncover the molecular underpinnings of XALD, offering new insights into disease progression. As we explored molecular trajectories and conformations resulting from our study, the tree-based method not only contributes valuable insights into XALD but also lays a solid foundation for forthcoming drug design studies. We advocate for the broader adoption of our innovative approach, proposing it as a valuable tool for researchers engaged in molecular simulation studies.
Collapse
Affiliation(s)
- Thomas Haschka
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, APHP, Hôpital Pitié la Salpétrière University Hospital, DMU Neuroscience 6, Paris, France
| | - Foudil Lamari
- UF Biochimie des Maladies Neuro-métaboliques, Service de Biochimie Métabolique, APHP, Hôpital Pitié la Salpétrière University Hospital, Paris, France
| | - Fanny Mochel
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, APHP, Hôpital Pitié la Salpétrière University Hospital, DMU Neuroscience 6, Paris, France
| | - Violetta Zujovic
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, APHP, Hôpital Pitié la Salpétrière University Hospital, DMU Neuroscience 6, Paris, France
| |
Collapse
|
22
|
Gopalappa R, Lee M, Kim G, Jung ES, Lee H, Hwang HY, Lee JG, Kim SJ, Yoo HJ, Sung YH, Kim D, Baek IJ, Kim HH. In vivo adenine base editing rescues adrenoleukodystrophy in a humanized mouse model. Mol Ther 2024; 32:2190-2206. [PMID: 38796705 PMCID: PMC11286820 DOI: 10.1016/j.ymthe.2024.05.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 03/14/2024] [Accepted: 05/23/2024] [Indexed: 05/28/2024] Open
Abstract
X-linked adrenoleukodystrophy (ALD), an inherited neurometabolic disorder caused by mutations in ABCD1, which encodes the peroxisomal ABC transporter, mainly affects the brain, spinal cord, adrenal glands, and testes. In ALD patients, very-long-chain fatty acids (VLCFAs) fail to enter the peroxisome and undergo subsequent β-oxidation, resulting in their accumulation in the body. It has not been tested whether in vivo base editing or prime editing can be harnessed to ameliorate ALD. We developed a humanized mouse model of ALD by inserting a human cDNA containing the pathogenic variant into the mouse Abcd1 locus. The humanized ALD model showed increased levels of VLCFAs. To correct the mutation, we tested both base editing and prime editing and found that base editing using ABE8e(V106W) could correct the mutation in patient-derived fibroblasts at an efficiency of 7.4%. Adeno-associated virus (AAV)-mediated systemic delivery of NG-ABE8e(V106W) enabled robust correction of the pathogenic variant in the mouse brain (correction efficiency: ∼5.5%), spinal cord (∼5.1%), and adrenal gland (∼2%), leading to a significant reduction in the plasma levels of C26:0/C22:0. This established humanized mouse model and the successful correction of the pathogenic variant using a base editor serve as a significant step toward treating human ALD disease.
Collapse
Affiliation(s)
- Ramu Gopalappa
- Department of Pharmacology, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - MinYoung Lee
- Department of Pharmacology, Yonsei University College of Medicine, Seoul 03722, Republic of Korea; Brain Korea 21 Plus Project for Medical Sciences, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Globinna Kim
- ConveRgence mEDIcine research cenTer (CREDIT), ASAN Institute for Life Sciences, ASAN Medical Center, Seoul 05505, Republic of Korea; Department of Cell and Genetic Engineering, ASAN Medical Center, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea
| | - Eul Sik Jung
- Department of Pharmacology, Yonsei University College of Medicine, Seoul 03722, Republic of Korea; JES Clinic, Incheon 21550, Republic of Korea
| | - Hanahrae Lee
- Department of Pharmacology, Yonsei University College of Medicine, Seoul 03722, Republic of Korea; Brain Korea 21 Plus Project for Medical Sciences, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Hye-Yeon Hwang
- Department of Precision Medicine, Sungkyunkwan University School of Medicine, Suwon 16419, Republic of Korea
| | - Jong Geol Lee
- ConveRgence mEDIcine research cenTer (CREDIT), ASAN Institute for Life Sciences, ASAN Medical Center, Seoul 05505, Republic of Korea
| | - Su Jung Kim
- ConveRgence mEDIcine research cenTer (CREDIT), ASAN Institute for Life Sciences, ASAN Medical Center, Seoul 05505, Republic of Korea
| | - Hyun Ju Yoo
- ConveRgence mEDIcine research cenTer (CREDIT), ASAN Institute for Life Sciences, ASAN Medical Center, Seoul 05505, Republic of Korea
| | - Young Hoon Sung
- ConveRgence mEDIcine research cenTer (CREDIT), ASAN Institute for Life Sciences, ASAN Medical Center, Seoul 05505, Republic of Korea; Department of Cell and Genetic Engineering, ASAN Medical Center, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea
| | - Daesik Kim
- Department of Precision Medicine, Sungkyunkwan University School of Medicine, Suwon 16419, Republic of Korea
| | - In-Jeoung Baek
- ConveRgence mEDIcine research cenTer (CREDIT), ASAN Institute for Life Sciences, ASAN Medical Center, Seoul 05505, Republic of Korea; Department of Cell and Genetic Engineering, ASAN Medical Center, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea.
| | - Hyongbum Henry Kim
- Department of Pharmacology, Yonsei University College of Medicine, Seoul 03722, Republic of Korea; Brain Korea 21 Plus Project for Medical Sciences, Yonsei University College of Medicine, Seoul 03722, Republic of Korea; Center for Nanomedicine, Institute for Basic Science, Seoul 03722, Republic of Korea; Graduate Program of Nano Biomedical Engineering, Advanced Science Institute, Yonsei University, Seoul 03722, Republic of Korea; Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul 03722, Republic of Korea; Institute for Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul 03722, Republic of Korea; Woo Choo Lee Institute for Precision Drug Development, Yonsei University College of Medicine, Seoul 03722, Republic of Korea.
| |
Collapse
|
23
|
Metovic J, Li Y, Gong Y, Eichler F. Gene therapy for the leukodystrophies: From preclinical animal studies to clinical trials. Neurotherapeutics 2024; 21:e00443. [PMID: 39276676 PMCID: PMC11418141 DOI: 10.1016/j.neurot.2024.e00443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 08/22/2024] [Accepted: 08/22/2024] [Indexed: 09/17/2024] Open
Abstract
Leukodystrophies are progressive single gene disorders affecting the white matter of the brain. Several gene therapy trials are in progress to address the urgent unmet need for this patient population. We performed a comprehensive literature review of all gene therapy clinical trials listed in www.clinicaltrials.gov through August 2024, and the relevant preclinical studies that enabled clinical translation. Of the approximately 50 leukodystrophies described to date, only eight have existing gene therapy clinical trials: metachromatic leukodystrophy, X-linked adrenoleukodystrophy, globoid cell leukodystrophy, Canavan disease, giant axonal neuropathy, GM2 gangliosidoses, Alexander disease and Pelizaeus-Merzbacher disease. What led to the emergence of gene therapy trials for these specific disorders? What preclinical data or disease context was enabling? For each of these eight disorders, we first describe its pathophysiology and clinical presentation. We discuss the impact of gene therapy delivery route, targeted cell type, delivery modality, dosage, and timing on therapeutic efficacy. We note that use of allogeneic hematopoietic stem cell transplantation in some leukodystrophies allowed for an accelerated path to clinic even in the absence of available animal models. In other leukodystrophies, small and large animal model studies enabled clinical translation of experimental gene therapies. Human clinical trials for the leukodystrophies include ex vivo lentiviral gene delivery, in vivo AAV-mediated gene delivery, and intrathecal antisense oligonucleotide approaches. We outline adverse events associated with each modality focusing specifically on genotoxicity and immunotoxicity. We review monitoring and management of events related to insertional mutagenesis and immune responses. The data presented in this review show that gene therapy, while promising, requires systematic monitoring to account for the precarious disease biology and the adverse events associated with new technology.
Collapse
Affiliation(s)
- Jasna Metovic
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Yedda Li
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Yi Gong
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Florian Eichler
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA.
| |
Collapse
|
24
|
Mohammadian Gol T, Zahedipour F, Trosien P, Ureña-Bailén G, Kim M, Antony JS, Mezger M. Gene therapy in pediatrics - Clinical studies and approved drugs (as of 2023). Life Sci 2024; 348:122685. [PMID: 38710276 DOI: 10.1016/j.lfs.2024.122685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 04/17/2024] [Accepted: 05/03/2024] [Indexed: 05/08/2024]
Abstract
Gene therapy in pediatrics represents a cutting-edge therapeutic strategy for treating a range of genetic disorders that manifest in childhood. Gene therapy involves the modification or correction of a mutated gene or the introduction of a functional gene into a patient's cells. In general, it is implemented through two main modalities namely ex vivo gene therapy and in vivo gene therapy. Currently, a noteworthy array of gene therapy products has received valid market authorization, with several others in various stages of the approval process. Additionally, a multitude of clinical trials are actively underway, underscoring the dynamic progress within this field. Pediatric genetic disorders in the fields of hematology, oncology, vision and hearing loss, immunodeficiencies, neurological, and metabolic disorders are areas for gene therapy interventions. This review provides a comprehensive overview of the evolution and current progress of gene therapy-based treatments in the clinic for pediatric patients. It navigates the historical milestones of gene therapies, currently approved gene therapy products by the U.S. Food and Drug Administration (FDA) and/or European Medicines Agency (EMA) for children, and the promising future for genetic disorders. By providing a thorough compilation of approved gene therapy drugs and published results of completed or ongoing clinical trials, this review serves as a guide for pediatric clinicians to get a quick overview of the situation of clinical studies and approved gene therapy products as of 2023.
Collapse
Affiliation(s)
- Tahereh Mohammadian Gol
- University Children's Hospital, Department of Pediatrics I, Hematology and Oncology, University of Tübingen, Tübingen, Germany
| | - Fatemeh Zahedipour
- University Children's Hospital, Department of Pediatrics I, Hematology and Oncology, University of Tübingen, Tübingen, Germany; Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Paul Trosien
- University Children's Hospital, Department of Pediatrics I, Hematology and Oncology, University of Tübingen, Tübingen, Germany
| | - Guillermo Ureña-Bailén
- University Children's Hospital, Department of Pediatrics I, Hematology and Oncology, University of Tübingen, Tübingen, Germany
| | - Miso Kim
- University Children's Hospital, Department of Pediatrics I, Hematology and Oncology, University of Tübingen, Tübingen, Germany
| | - Justin S Antony
- University Children's Hospital, Department of Pediatrics I, Hematology and Oncology, University of Tübingen, Tübingen, Germany
| | - Markus Mezger
- University Children's Hospital, Department of Pediatrics I, Hematology and Oncology, University of Tübingen, Tübingen, Germany.
| |
Collapse
|
25
|
Koto Y, Ueki S, Yamakawa M, Sakai N. Experiences of patients with metachromatic leukodystrophy, adrenoleukodystrophy, or Krabbe disease and the experiences of their family members: a qualitative systematic review. JBI Evid Synth 2024; 22:1262-1302. [PMID: 38533650 PMCID: PMC11230659 DOI: 10.11124/jbies-23-00303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2024]
Abstract
OBJECTIVE This review aimed to synthesize the experiences of patients with metachromatic leukodystrophy, adrenoleukodystrophy, or Krabbe disease and the experiences of their families. INTRODUCTION Leukodystrophies are metabolic diseases caused by genetic mutations. There are multiple forms of the disease, varying in age of onset and symptoms. The progression of leukodystrophies worsens central nervous system symptoms and significantly affects the lives of patients and their families. INCLUSION CRITERIA Qualitative studies on the experiences of patients with leukodystrophies and their family members were included. These experiences included treatments such as enzyme replacement therapy and hematopoietic stem cell transplantation; effects of tracheostomy and gastrostomy; burdens on the family, coordinating care within the health care system, and family planning due to genetic disorders. This review considered studies in any setting. METHODS MEDLINE (Ovid), CINAHL Plus (EBSCOhost), APA PsycINFO (EBSCOhost), Scopus, and MedNar databases were searched on November 18, 2022. Study selection, critical appraisal, data extraction, and data synthesis were conducted in accordance with the JBI methodology for systematic reviews of qualitative evidence, and synthesized findings were evaluated according to the ConQual approach. RESULTS Eleven studies were eligible for synthesis, and 45 findings were extracted corresponding with participants' voices. Of these findings, 40 were unequivocal and 5 were credible. The diseases in the included studies were metachromatic leukodystrophy and adrenoleukodystrophy; no studies were identified for patients with Krabbe disease and their families. These findings were grouped into 11 categories and integrated into 3 synthesized findings, including i) providing care by family members and health care providers as physical symptoms progress, which relates to the effects of the characteristics of progressive leukodystrophies; ii) building medical teamwork to provide appropriate support services, comprising categories related to the challenges experienced with the health care system for patients with leukodystrophy and their families; and iii) coordinating family functions to accept and cope with the disease, which included categories related to family psychological difficulties and role divisions within the family. According to the ConQual criteria, the second synthesized finding had a low confidence level, and the first and third synthesized findings had a very low confidence level. CONCLUSIONS The synthesized findings of this review provide evidence on the experiences of patients with metachromatic leukodystrophy or adrenoleukodystrophy and their families. These findings indicate that there are challenges in managing a patient's physical condition and coordinating the health care system and family functions. REVIEW REGISTRATION PROSPERO CRD42022318805. SUPPLEMENTAL DIGITAL CONTENT A Japanese-language version of the abstract of this review is available [ http://links.lww.com/SRX/A49 ].
Collapse
Affiliation(s)
- Yuta Koto
- Faculty of Nursing, Graduate School of Nursing, Kansai Medical University, Osaka, Japan
- The Japan Centre for Evidence Based Practice: A JBI Centre of Excellence, Osaka, Japan
| | - Shingo Ueki
- The Japan Centre for Evidence Based Practice: A JBI Centre of Excellence, Osaka, Japan
- Faculty of Medical Sciences, Department of Health Sciences, Kyushu University, Fukuoka, Japan
| | - Miyae Yamakawa
- The Japan Centre for Evidence Based Practice: A JBI Centre of Excellence, Osaka, Japan
- Department of Evidence-Based Clinical Nursing, Division of Health Sciences, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Norio Sakai
- Child Healthcare and Genetic Science Laboratory, Division of Health Science, Osaka University Graduate School of Medicine, Osaka, Japan
| |
Collapse
|
26
|
Rajakumar HK, Coimbatore Sathyabal V, Nachiappan R, Krishnaswamy Vijayaramanujam S. Childhood Cerebral Adrenoleukodystrophy: Case Report and Literature Review Advocating for Newborn Screening. Degener Neurol Neuromuscul Dis 2024; 14:75-83. [PMID: 38912366 PMCID: PMC11192191 DOI: 10.2147/dnnd.s442985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 06/12/2024] [Indexed: 06/24/2024] Open
Abstract
BACKGROUND X-linked adrenoleukodystrophy (ALD) is a rare genetic disorder caused by a pathogenic variant of the ABCD1 gene, leading to impaired peroxisomal function and the accumulation of very long-chain fatty acids (VLCFAs). ALD presents a wide range of neurological and adrenal symptoms, ranging from childhood cerebral adrenoleukodystrophy to adrenomyeloneuropathy and adrenal insufficiency. Newborn screening (NBS) for ALD is available in some regions but remains lacking in others, such as India. CASE PRESENTATION We present a case of a 10-year-old boy with ALD who presented with seizures, progressive weakness, visual impairment, and adrenal insufficiency. Despite symptomatic management and dietary adjustments, the disease progressed rapidly, leading to respiratory failure and eventual demise. The diagnosis was confirmed through molecular analysis and elevated VLCFA levels. Neuroimaging revealed characteristic white matter changes consistent with ALD. CONCLUSION ALD is a devastating disease with no cure, emphasizing the importance of early detection through newborn screening and genetic testing. Management strategies include adrenal hormone therapy, gene therapy, and allogenic stem cell transplantation, as well as investigational treatments such as VLCFA normalization. Our case advocates the need for worldwide NBS and pediatric neurologic follow-up to enable early intervention and improve patient outcomes. Additionally, the association between ALD, recurrent febrile seizures, and unexplained developmental delay warrants further investigation to better understand disease progression and potential therapeutic targets.
Collapse
Affiliation(s)
- Hamrish Kumar Rajakumar
- Department of Pediatrics, Government Medical College, Omandurar, Government Estate, Chennai, Tamilnadu, India
| | - Varsha Coimbatore Sathyabal
- Department of Pediatrics, Government Medical College, Omandurar, Government Estate, Chennai, Tamilnadu, India
| | - Revathi Nachiappan
- Department of Pediatrics, Government Medical College, Omandurar, Government Estate, Chennai, Tamilnadu, India
| | | |
Collapse
|
27
|
Parasar P, Kaur N, Singh J. Pathophysiology of X-Linked Adrenoleukodystrophy: Updates on Molecular Mechanisms. JOURNAL OF BIOTECHNOLOGY AND BIOMEDICINE 2024; 7:277-288. [PMID: 39056013 PMCID: PMC11271253 DOI: 10.26502/jbb.2642-91280151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/28/2024]
Abstract
X-ALD, an inherited monogenic metabolic disorder affecting the CNS and adrenal white matter, is caused by mutations in ABCD1 gene leading to defective fatty acid oxidation in the peroxisomes. This results in accumulation of very long-chain fatty acids, VLCFA, into brain, spinal cord, and body fluids. A single ABCD1mutation does not clearly explain the severity and diverse clinical spectrum of X-ALD phenotypes which suggests that not only genetic but also other modifier genes, epigenetic factors, and environmental factors play a role and contribute to neuroinflammation, mitochondrial dysfunctions, oxidative stress, and metabolic defects seen in phenotypes of ALD. In this review we discuss genotype and phenotype correlation and clinical spectra of X-ALD, previous and recent modifier genetic factors of X-ALD, including novel role of microRNAs (miRNAs) in pathology and as biomarkers. We also discuss the mechanistic interplay of miRNAs and metabolic pathways and potential of targeting miRNAs for X-ALD.
Collapse
Affiliation(s)
- Parveen Parasar
- Department of Neurology, Henry Ford Health, Detroit, MI 48202, USA
| | - Navtej Kaur
- Department of Neurology, Henry Ford Health, Detroit, MI 48202, USA
| | - Jaspreet Singh
- Department of Neurology, Henry Ford Health, Detroit, MI 48202, USA
- Department of Physiology, Michigan State University, Lansing, MI 48824, USA
| |
Collapse
|
28
|
Launay N, Lopez-Erauskin J, Bianchi P, Guha S, Parameswaran J, Coppa A, Torreni L, Schlüter A, Fourcade S, Paredes-Fuentes AJ, Artuch R, Casasnovas C, Ruiz M, Pujol A. Imbalanced mitochondrial dynamics contributes to the pathogenesis of X-linked adrenoleukodystrophy. Brain 2024; 147:2069-2084. [PMID: 38763511 DOI: 10.1093/brain/awae038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 12/20/2023] [Accepted: 01/21/2024] [Indexed: 05/21/2024] Open
Abstract
The peroxisomal disease adrenoleukodystrophy (X-ALD) is caused by loss of the transporter of very-long-chain fatty acids (VLCFAs), ABCD1. An excess of VLCFAs disrupts essential homeostatic functions crucial for axonal maintenance, including redox metabolism, glycolysis and mitochondrial respiration. As mitochondrial function and morphology are intertwined, we set out to investigate the role of mitochondrial dynamics in X-ALD models. Using quantitative 3D transmission electron microscopy, we revealed mitochondrial fragmentation in corticospinal axons in Abcd1- mice. In patient fibroblasts, an excess of VLCFAs triggers mitochondrial fragmentation through the redox-dependent phosphorylation of DRP1 (DRP1S616). The blockade of DRP1-driven fission by the peptide P110 effectively preserved mitochondrial morphology. Furthermore, mRNA inhibition of DRP1 not only prevented mitochondrial fragmentation but also protected axonal health in a Caenorhabditis elegans model of X-ALD, underscoring DRP1 as a potential therapeutic target. Elevated levels of circulating cell-free mtDNA in patients' CSF align this leukodystrophy with primary mitochondrial disorders. Our findings underscore the intricate interplay between peroxisomal dysfunction, mitochondrial dynamics and axonal integrity in X-ALD, shedding light on potential avenues for therapeutic intervention.
Collapse
Affiliation(s)
- Nathalie Launay
- Neurometabolic Diseases Laboratory, Institute of Neuropathology, IDIBELL, 08908 L'Hospitalet de Llobregat, Barcelona, Spain
- CIBERER, Centro de Investigación Biomédica en Red de Enfermedades Raras, ISCIII, 28029 Madrid, Spain
| | - Jone Lopez-Erauskin
- Neurometabolic Diseases Laboratory, Institute of Neuropathology, IDIBELL, 08908 L'Hospitalet de Llobregat, Barcelona, Spain
- Department of Cellular and Molecular Medicine, Ludwig Institute for Cancer Research, University of California at San Diego, La Jolla, CA 92093, USA
| | - Patrizia Bianchi
- Neurometabolic Diseases Laboratory, Institute of Neuropathology, IDIBELL, 08908 L'Hospitalet de Llobregat, Barcelona, Spain
- Physiology and Immunology, Facultat de Medicina, Institut de Neurociències and Department of Cell Biology, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Sanjib Guha
- Neurometabolic Diseases Laboratory, Institute of Neuropathology, IDIBELL, 08908 L'Hospitalet de Llobregat, Barcelona, Spain
- Nautilus Biotechnology, San Carlos, CA 94070, USA
| | - Janani Parameswaran
- Neurometabolic Diseases Laboratory, Institute of Neuropathology, IDIBELL, 08908 L'Hospitalet de Llobregat, Barcelona, Spain
- Department of Cell Biology, Emory University, Atlanta, GA 30322, USA
| | - Andrea Coppa
- Neurometabolic Diseases Laboratory, Institute of Neuropathology, IDIBELL, 08908 L'Hospitalet de Llobregat, Barcelona, Spain
| | - Lorenzo Torreni
- Neurometabolic Diseases Laboratory, Institute of Neuropathology, IDIBELL, 08908 L'Hospitalet de Llobregat, Barcelona, Spain
- Programa de Doctorat en Biomedicina, Universitat de Barcelona, 08193 Barcelona, Spain
| | - Agatha Schlüter
- Neurometabolic Diseases Laboratory, Institute of Neuropathology, IDIBELL, 08908 L'Hospitalet de Llobregat, Barcelona, Spain
- CIBERER, Centro de Investigación Biomédica en Red de Enfermedades Raras, ISCIII, 28029 Madrid, Spain
| | - Stéphane Fourcade
- Neurometabolic Diseases Laboratory, Institute of Neuropathology, IDIBELL, 08908 L'Hospitalet de Llobregat, Barcelona, Spain
- CIBERER, Centro de Investigación Biomédica en Red de Enfermedades Raras, ISCIII, 28029 Madrid, Spain
| | - Abraham J Paredes-Fuentes
- Division of Inborn Errors of Metabolism-IBC, Biochemistry and Molecular Genetics Department, Hospital Clínic de Barcelona, 08028 Barcelona, Spain
| | - Rafael Artuch
- CIBERER, Centro de Investigación Biomédica en Red de Enfermedades Raras, ISCIII, 28029 Madrid, Spain
- Clinical Biochemistry Department, Institut de Recerca Sant Joan de Déu, Hospital Sant Joan de Déu, 08950 Barcelona, Spain
| | - Carlos Casasnovas
- Neurometabolic Diseases Laboratory, Institute of Neuropathology, IDIBELL, 08908 L'Hospitalet de Llobregat, Barcelona, Spain
- CIBERER, Centro de Investigación Biomédica en Red de Enfermedades Raras, ISCIII, 28029 Madrid, Spain
- Neuromuscular Unit, Neurology Department, Bellvitge University Hospital, Universitat de Barcelona, 08907 Lhospitalet de Llobregat, Barcelona, Spain
| | - Montserrat Ruiz
- Neurometabolic Diseases Laboratory, Institute of Neuropathology, IDIBELL, 08908 L'Hospitalet de Llobregat, Barcelona, Spain
- CIBERER, Centro de Investigación Biomédica en Red de Enfermedades Raras, ISCIII, 28029 Madrid, Spain
| | - Aurora Pujol
- Neurometabolic Diseases Laboratory, Institute of Neuropathology, IDIBELL, 08908 L'Hospitalet de Llobregat, Barcelona, Spain
- CIBERER, Centro de Investigación Biomédica en Red de Enfermedades Raras, ISCIII, 28029 Madrid, Spain
- Catalan Institution of Research and Advanced Studies (ICREA), 08010 Barcelona, Spain
| |
Collapse
|
29
|
Kaur N, Singh J. Generating human AMN and cALD iPSC-derived astrocytes with potential for modeling X-linked adrenoleukodystrophy phenotypes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.31.596696. [PMID: 38854155 PMCID: PMC11160757 DOI: 10.1101/2024.05.31.596696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
X-adrenoleukodystrophy (X-ALD) is a peroxisomal metabolic disorder caused by mutations in the ABCD1 gene encoding the peroxisomal ABC transporter adrenoleukodystrophy protein (ALDP). Similar mutations in ABCD1 may result in a spectrum of phenotypes in males with slow progressing adrenomyeloneuropathy (AMN) and fatal cerebral adrenoleukodystrophy (cALD) dominating the majority of cases. Mouse model of X-ALD does not capture the phenotype differences and an appropriate model to investigate mechanism of disease onset and progress remains a critical need. Induced pluripotent stem cell (iPSC)-derived and cell models derived from them have provided useful tools for investigating cell-type specific disease mechanisms. Here, we generated induced pluripotent stem cell (iPSC) lines from skin fibroblasts of two each of apparently healthy control, AMN and cALD patients with non-integrating mRNA-based reprogramming. iPSC lines expanded normally and expressed pluripotency markers Oct4, SOX2, Nanog, SSEA and TRA-1-60. Expression of markers SOX17, brachyury, Desmin, Oxt2 and beta tubulin III demonstrated the ability of the iPSCs to differentiate into all three germ layers. iPSC-derived lines from CTL, AMN and cALD male patients were differentiated into astrocytes. Differentiated AMN and cALD astrocytes lacked ABCD1 expression and accumulated VLCFA, a hallmark of X-ALD. These patient astrocytes provide disease-relevant tools to investigate mechanism of differential neuroinflammatory response and metabolic reprogramming in X-ALD. Further these patient-derived human astrocyte cell models will be valuable for testing new therapeutics.
Collapse
|
30
|
Therrell BL, Padilla CD, Borrajo GJC, Khneisser I, Schielen PCJI, Knight-Madden J, Malherbe HL, Kase M. Current Status of Newborn Bloodspot Screening Worldwide 2024: A Comprehensive Review of Recent Activities (2020-2023). Int J Neonatal Screen 2024; 10:38. [PMID: 38920845 PMCID: PMC11203842 DOI: 10.3390/ijns10020038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 03/28/2024] [Accepted: 03/28/2024] [Indexed: 06/27/2024] Open
Abstract
Newborn bloodspot screening (NBS) began in the early 1960s based on the work of Dr. Robert "Bob" Guthrie in Buffalo, NY, USA. His development of a screening test for phenylketonuria on blood absorbed onto a special filter paper and transported to a remote testing laboratory began it all. Expansion of NBS to large numbers of asymptomatic congenital conditions flourishes in many settings while it has not yet been realized in others. The need for NBS as an efficient and effective public health prevention strategy that contributes to lowered morbidity and mortality wherever it is sustained is well known in the medical field but not necessarily by political policy makers. Acknowledging the value of national NBS reports published in 2007, the authors collaborated to create a worldwide NBS update in 2015. In a continuing attempt to review the progress of NBS globally, and to move towards a more harmonized and equitable screening system, we have updated our 2015 report with information available at the beginning of 2024. Reports on sub-Saharan Africa and the Caribbean, missing in 2015, have been included. Tables popular in the previous report have been updated with an eye towards harmonized comparisons. To emphasize areas needing attention globally, we have used regional tables containing similar listings of conditions screened, numbers of screening laboratories, and time at which specimen collection is recommended. Discussions are limited to bloodspot screening.
Collapse
Affiliation(s)
- Bradford L. Therrell
- Department of Pediatrics, University of Texas Health Science Center San Antonio, San Antonio, TX 78229, USA
- National Newborn Screening and Global Resource Center, Austin, TX 78759, USA
| | - Carmencita D. Padilla
- Department of Pediatrics, College of Medicine, University of the Philippines Manila, Manila 1000, Philippines;
| | - Gustavo J. C. Borrajo
- Detección de Errores Congénitos—Fundación Bioquímica Argentina, La Plata 1908, Argentina;
| | - Issam Khneisser
- Jacques LOISELET Genetic and Genomic Medical Center, Faculty of Medicine, Saint Joseph University, Beirut 1104 2020, Lebanon;
| | - Peter C. J. I. Schielen
- Office of the International Society for Neonatal Screening, Reigerskamp 273, 3607 HP Maarssen, The Netherlands;
| | - Jennifer Knight-Madden
- Caribbean Institute for Health Research—Sickle Cell Unit, The University of the West Indies, Mona, Kingston 7, Jamaica;
| | - Helen L. Malherbe
- Centre for Human Metabolomics, North-West University, Potchefstroom 2531, South Africa;
- Rare Diseases South Africa NPC, The Station Office, Bryanston, Sandton 2021, South Africa
| | - Marika Kase
- Strategic Initiatives Reproductive Health, Revvity, PL10, 10101 Turku, Finland;
| |
Collapse
|
31
|
Adang LA, Sevagamoorthy A, Sherbini O, Fraser JL, Bonkowsky JL, Gavazzi F, D'Aiello R, Modesti NB, Yu E, Mutua S, Kotes E, Shults J, Vincent A, Emrick LT, Keller S, Van Haren KP, Woidill S, Barcelos I, Pizzino A, Schmidt JL, Eichler F, Fatemi A, Vanderver A. Longitudinal natural history studies based on real-world data in rare diseases: Opportunity and a novel approach. Mol Genet Metab 2024; 142:108453. [PMID: 38522179 PMCID: PMC11131438 DOI: 10.1016/j.ymgme.2024.108453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 03/13/2024] [Accepted: 03/16/2024] [Indexed: 03/26/2024]
Abstract
Growing interest in therapeutic development for rare diseases necessitate a systematic approach to the collection and curation of natural history data that can be applied consistently across this group of heterogenous rare diseases. In this study, we discuss the challenges facing natural history studies for leukodystrophies and detail a novel standardized approach to creating a longitudinal natural history study using existing medical records. Prospective studies are uniquely challenging for rare diseases. Delays in diagnosis and overall rarity limit the timely collection of natural history data. When feasible, prospective studies are often cross-sectional rather than longitudinal and are unlikely to capture pre- or early- symptomatic disease trajectories, limiting their utility in characterizing the full natural history of the disease. Therapeutic development in leukodystrophies is subject to these same obstacles. The Global Leukodystrophy Initiative Clinical Trials Network (GLIA-CTN) comprises of a network of research institutions across the United States, supported by a multi-center biorepository protocol, to map the longitudinal clinical course of disease across leukodystrophies. As part of GLIA-CTN, we developed Standard Operating Procedures (SOPs) that delineated all study processes related to staff training, source documentation, and data sharing. Additionally, the SOP detailed the standardized approach to data extraction including diagnosis, clinical presentation, and medical events, such as age at gastrostomy tube placement. The key variables for extraction were selected through face validity, and common electronic case report forms (eCRF) across leukodystrophies were created to collect analyzable data. To enhance the depth of the data, clinical notes are extracted into "original" and "imputed" encounters, with imputed encounter referring to a historic event (e.g., loss of ambulation 3 months prior). Retrospective Functional Assessments were assigned by child neurologists, using a blinded dual-rater approach and score discrepancies were adjudicated by a third rater. Upon completion of extraction, data source verification is performed. Data missingness was evaluated using statistics. The proposed methodology will enable us to leverage existing medical records to address the persistent gap in natural history data within this unique disease group, allow for assessment of clinical trajectory both pre- and post-formal diagnosis, and promote recruitment of larger cohorts.
Collapse
Affiliation(s)
- Laura Ann Adang
- Division of Neurology, Children's Hospital of Philadelphia, Philadelphia, PA, USA.
| | - Anjana Sevagamoorthy
- Division of Neurology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Omar Sherbini
- Division of Neurology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Jamie L Fraser
- Rare Disease Institute, Children's National Medical Center, Washington, DC, USA; Leukodystrophy and Myelin Disorders Program, Children's National Medical Center, Washington, DC, USA
| | - Joshua L Bonkowsky
- Division of Pediatric Neurology, Department of Pediatrics, University of Utah School of Medicine, Salt Lake City, UT, USA; Center for Personalized Medicine, Primary Children's Hospital, Salt Lake City, UT, USA
| | - Francesco Gavazzi
- Division of Neurology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Russel D'Aiello
- Division of Neurology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Nicholson B Modesti
- Division of Neurology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Emily Yu
- Division of Neurology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Sylvia Mutua
- Division of Neurology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Emma Kotes
- Division of Neurology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Justine Shults
- Department of Biomedical and Health Informatics, Children's Hospital of Philadelphia, Philadelphia, PA, USA; Center for Clinical Epidemiology and Biostatistics, University of Pennsylvania, Philadelphia, PA, USA
| | - Ariel Vincent
- CHOP Research Institute, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Lisa T Emrick
- Division of Neurology and Developmental Neuroscience in Department Pediatrics, Baylor College Medicine and Texas Children's Hospital, Houston, TX, USA; Department of Human and Molecular Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Stephanie Keller
- Children's Healthcare of Atlanta Scottish Rite Hospital, Emory University School of Medicine, Atlanta, GA, USA
| | | | - Sarah Woidill
- Division of Neurology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Isabella Barcelos
- Division of Neurology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Amy Pizzino
- Division of Neurology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Johanna L Schmidt
- Division of Neurology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Florian Eichler
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
| | - Ali Fatemi
- Moser Center for Leukodystrophies, Kennedy Krieger Institute, Baltimore, MD, USA; Departments of Neurology & Pediatrics, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Adeline Vanderver
- Division of Neurology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| |
Collapse
|
32
|
Yska HAF, Engelen M, Bugiani M. The pathology of X-linked adrenoleukodystrophy: tissue specific changes as a clue to pathophysiology. Orphanet J Rare Dis 2024; 19:138. [PMID: 38549180 PMCID: PMC10976706 DOI: 10.1186/s13023-024-03105-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 02/23/2024] [Indexed: 04/02/2024] Open
Abstract
Although the pathology of X-linked adrenoleukodystrophy (ALD) is well described, it represents the end-stage of neurodegeneration. It is still unclear what cell types are initially involved and what their role is in the disease process. Revisiting the seminal post-mortem studies from the 1970s can generate new hypotheses on pathophysiology. This review describes (histo)pathological changes of the brain and spinal cord in ALD. It aims at integrating older works with current insights and at providing an overarching theory on the pathophysiology of ALD. The data point to an important role for axons and glia in the pathology of both the myelopathy and leukodystrophy of ALD. In-depth pathological analyses with new techniques could help further unravel the sequence of events behind the pathology of ALD.
Collapse
Affiliation(s)
- Hemmo A F Yska
- Department of Child Neurology, Amsterdam Leukodystrophy Center, Emma Children's Hospital, Amsterdam UMC location University of Amsterdam, Amsterdam Neuroscience, Amsterdam, The Netherlands.
| | - Marc Engelen
- Department of Child Neurology, Amsterdam Leukodystrophy Center, Emma Children's Hospital, Amsterdam UMC location University of Amsterdam, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Marianna Bugiani
- Department of Pediatrics/Child Neurology, VU University Medical Centre, Amsterdam Neuroscience, Amsterdam, The Netherlands
- Department of Pathology, VU University Medical Centre, Amsterdam Neuroscience, Amsterdam, The Netherlands
| |
Collapse
|
33
|
Zhu TT, Wu J, Sun XM. A patient with X-linked adrenoleukodystrophy presenting with central precocious puberty: a case report. Endocrine 2024; 83:353-356. [PMID: 37845577 PMCID: PMC10850194 DOI: 10.1007/s12020-023-03562-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 10/02/2023] [Indexed: 10/18/2023]
Abstract
X-linked adrenoleukodystrophy (X-ALD) is a peroxisomal disorder caused by the variations in the ATP-binding cassette sub-family D member 1 (ABCD1) gene. This study is the first to report central precocious puberty (CPP) in individuals with X-ALD. A 6-year-old boy exhibited mucocutaneous pigmentation, increased plasma adrenocorticotropic hormone levels, and elevated very long-chain fatty acids (VLCFA). We identified a variant, c.1826A>G (p. Glu609Gly), in exon 8 of the ABCD1 gene in the proband. Additionally, he displayed rapid growth, testicular volume of 5-6 mL, the onset of pubic hair, and pubertal levels of luteinizing hormone (LH), all meeting the diagnostic criteria for CPP.
Collapse
Affiliation(s)
- Ting Ting Zhu
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Obstetric & Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, Sichuan University, Chengdu, Sichuan, China
| | - Jin Wu
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Obstetric & Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, Sichuan University, Chengdu, Sichuan, China
| | - Xiao Mei Sun
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China.
- Key Laboratory of Obstetric & Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, Sichuan University, Chengdu, Sichuan, China.
| |
Collapse
|
34
|
Shchubelka K, Herasymenko O, Budzyn A, Lysytsia O, Rusyn A, Oleksyk O, Tynta S, Oleksyk T. Novel ABCD1 variant causes phenotype of adrenomyeloneuropathy with cerebral involvement in Ukrainian siblings: first adult hematopoietic stem cell transplantation for ALD in Ukraine: a case report. J Med Case Rep 2024; 18:25. [PMID: 38245786 PMCID: PMC10800048 DOI: 10.1186/s13256-023-04321-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 12/14/2023] [Indexed: 01/22/2024] Open
Abstract
BACKGROUND This article presents a case study of two white male siblings of 24 and 31 years of age of self-reported Ukrainian ethnicity diagnosed with adrenomyeloneuropathy (AMN) associated with a novel splice site mutation in the ABCD1 gene. AMN represents a form of X-linked adrenoleukodystrophy (X-ALD) characterized by demyelination of the spinal cord and peripheral nerves. The case also presents the first adult haematopoietic stem cell transplant (HSCT) for adrenomyeloneuropathy in Ukraine. The rarity of this mutation and its cerebral involvement and the treatment make this case noteworthy and underscore the significance of reporting it to contribute to the existing medical knowledge. CASE PRESENTATION The patients of 24 and 31 years initially exhibited progressive gait disturbance, lower extremity pain, and urinary incontinence, with the older sibling experiencing more advanced symptoms of speech, hearing, and vision disturbances. A comprehensive genetic analysis identified an unreported splice site mutation in exon 3 of the ABCD1 gene, leading to the manifestation of AMN. The inheritance pattern was consistent with X-linked recessive transmission. The article also outlines the clinical features, magnetic resonance imaging (MRI), and nerve conduction study (NCS) findings. Moreover, it discusses the genetic profile of the affected individuals and female carriers within the family. The younger sibling underwent HSCT, which was complicated by mediastinal lymph node and lung tuberculosis, adding to the complexity of managing adult ALD patients. CONCLUSIONS This report emphasizes the importance of genetic testing in diagnosing and comprehending the underlying mechanisms of rare genetic disorders, such as AMN with cerebral involvement. The identification of a novel splice site mutation expands our understanding of the genetic landscape of this condition. Additionally, the challenges and complications encountered during the hematopoietic stem cell transplant procedure underscore the need for cautious consideration and personalized approaches in adult ALD patients.
Collapse
Affiliation(s)
- Khrystyna Shchubelka
- Department of Biological Sciences, Oakland University, 118 Library Drive, Rochester, MI, 48309, USA.
- Department of Biology, State University "Uzhhorod National University", Voloshyna Street, 32, Uzhhorod, 88000, Ukraine.
| | - Olga Herasymenko
- Regional Centre of Neurosurgery and Neurology, Uzhhorod, 88000, Transcarpathian Region, Ukraine
| | - Andrii Budzyn
- Bone Marrow Transplantation and Immunotherapy Department, NSCH "Okhmatdyt", Kiev, Ukraine
| | - Oleksandr Lysytsia
- Bone Marrow Transplantation and Immunotherapy Department, NSCH "Okhmatdyt", Kiev, Ukraine
| | - Anastasiia Rusyn
- Bone Marrow Transplantation and Immunotherapy Department, NSCH "Okhmatdyt", Kiev, Ukraine
| | - Olga Oleksyk
- Department of Medicine, State University "Uzhhorod National University", Narodna Square, 1, Uzhhorod, 88000, Ukraine
| | - Svitlana Tynta
- Zakarpattia Regional Clinical Hospital, Kapushanska 22, Uzhhorod, 88000, Ukraine
| | - Taras Oleksyk
- Department of Biological Sciences, Oakland University, 118 Library Drive, Rochester, MI, 48309, USA
| |
Collapse
|
35
|
Jaunmuktane Z. Neuropathology of white matter disorders. HANDBOOK OF CLINICAL NEUROLOGY 2024; 204:3-20. [PMID: 39322386 DOI: 10.1016/b978-0-323-99209-1.00011-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/27/2024]
Abstract
The hallmark neuropathologic feature of all leukodystrophies is depletion or alteration of the white matter of the central nervous system; however increasing genetic discoveries highlight the genetic heterogeneity of white matter disorders. These discoveries have significantly helped to advance the understanding of the complexity of molecular mechanisms involved in the biogenesis and maintenance of healthy white matter. Accordingly, genetic discoveries and functional studies have enabled us to firmly establish that multiple distinct structural defects can lead to white matter pathology. Leukodystrophies can develop not only due to defects in proteins essential for myelin biogenesis and maintenance or oligodendrocyte function, but also due to mutations encoding myriad of proteins involved in the function of neurons, astrocytes, microglial cells as well as blood vessels. To a variable extent, some leukodystrophies also show gray matter, peripheral nervous system, or multisystem involvement. Depending on the genetic defect and its role in the formation or maintenance of the white matter, leukodystrophies can present either in early childhood or adulthood. In this chapter, the classification of leukodystrophies will be discussed from the cellular defect point of view, followed by a description of known neuropathologic alterations for all leukodystrophies.
Collapse
Affiliation(s)
- Zane Jaunmuktane
- Division of Neuropathology, National Hospital for Neurology and Neurosurgery, University College London Hospitals, London, United Kingdom; Queen Square Brain Bank for Neurological Disorders, Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, United Kingdom.
| |
Collapse
|
36
|
Miller D, Walsh L, Smith L, Supakul N, Ho C, Onishi T. Magnetic resonance imaging enhancement of spinal nerve roots in a boy with X-linked adrenoleukodystrophy before diagnosis of chronic inflammatory demyelinating polyneuropathy. Radiol Case Rep 2024; 19:493-498. [PMID: 38046924 PMCID: PMC10692474 DOI: 10.1016/j.radcr.2023.10.065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 10/22/2023] [Accepted: 10/26/2023] [Indexed: 12/05/2023] Open
Abstract
We present a boy with X-linked adrenoleukodystrophy (X-ALD) who was found to have lumbar nerve root enhancement on a screening MRI of the spine. The MRI was performed for lower extremity predominant symptoms. Several weeks after this MRI, he developed leg pain and was averse to walking long distances. He was diagnosed with Chronic Inflammatory Demyelinating Polyneuropathy (CIDP) with electromyography, nerve conduction studies, and serial imaging. His case is consistent with CIDP in association with X-ALD based on improvement with intravenous immunoglobulin (IVIG) with continued contrast enhancement and lower extremity symptoms 8 weeks after his initial scans. Contrast enhancement of nerve roots has not been previously described in X-ALD. Nerve root enhancement has been seen in other leukodystrophies such as globoid cell leukodystrophy and metachromatic leukodystrophy. This case also demonstrates comorbid X-ALD with CIDP and highlights possible mechanisms from the literature for this association. We also review the broad differential of cauda equina nerve root enhancement.
Collapse
Affiliation(s)
- Derryl Miller
- Department of Clinical Neurology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Laurence Walsh
- Department of Clinical Neurology, Genetics, and Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Lisa Smith
- Department of Clinical Neurology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Nucharin Supakul
- Department of Clinical Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Chang Ho
- Department of Clinical Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Toshihiro Onishi
- Department of Pediatrics Hematology/Oncology, Indiana University School of Medicine, Indianapolis, IN, USA
| |
Collapse
|
37
|
Menezes C, Losa A, Mosca S, de Carvalho Vaz A, Figueiredo CM, Garrido C, Borges T, Borges Correia J. The Clinical Spectrum of Adrenoleukodystrophy at a Portuguese Tertiary Hospital: Case Series and Review of Literature. Cureus 2024; 16:e52496. [PMID: 38370996 PMCID: PMC10874197 DOI: 10.7759/cureus.52496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/18/2024] [Indexed: 02/20/2024] Open
Abstract
Adrenoleukodystrophy, a rare genetic disease associated with the X chromosome (X-ALD - X-linked adrenoleukodystrophy), predominantly affects males and stems from mutations in the ABCD1 gene, responsible for transporting very long chain fatty acids (VLCFA) into peroxisomes. It leads to adrenal insufficiency (AI) and axonal demyelination. In males, the phenotype varies from isolated adrenocortical insufficiency and progressive myelopathy to cerebral adrenoleukodystrophy (CALD). The aim of this case series is to characterize patients with different clinical presentations of X-ALD with follow-up at a tertiary Portuguese hospital. All four patients were males, and the median age at the diagnosis was 5 years. Three patients were diagnosed through family screening, with the oldest already displaying hyperpigmentation. Two distinct forms were identified: adolescent CALD (25%) and isolated primary adrenal insufficiency (75%). Analytical studies revealed elevated plasma VLCFA levels in all cases, and genetic analysis demonstrated two different mutations in the ABCD1 gene. This disorder requires early diagnosis for improved prognosis. Screening male children with primary AIfor X-ALD using a VLCFA panel should be considered, particularly after ruling out the most common causes or when learning difficulties are evident. Genetic confirmation of the diagnosis is essential, enabling genetic counseling, family planning, and preimplantation genetic diagnosis.
Collapse
Affiliation(s)
- Catarina Menezes
- Pediatrics, Centro Materno Infantil do Norte - Centro Hospitalar Universitário de Santo António, Porto, PRT
| | - Ana Losa
- Pediatrics, Centro Materno Infantil do Norte - Centro Hospitalar Universitário de Santo António, Porto, PRT
| | - Sara Mosca
- Pediatrics, Centro Materno Infantil do Norte - Centro Hospitalar Universitário de Santo António, Porto, PRT
| | - Ana de Carvalho Vaz
- Pediatrics, Centro Materno Infantil do Norte - Centro Hospitalar Universitário de Santo António, Porto, PRT
| | - Catarina M Figueiredo
- Pediatric Endocrinology, Centro Hospitalar Entre Douro e Vouga, Santa Maria da Feira, PRT
| | - Cristina Garrido
- Pediatric Neurology, Centro Materno Infantil do Norte - Centro Hospitalar Universitário de Santo António, Porto, PRT
| | - Teresa Borges
- Pediatric Endocrinology, Centro Materno Infantil do Norte - Centro Hospitalar Universitário de Santo António, Porto, PRT
| | - Joana Borges Correia
- Pediatrics, Reference Centre for Metabolic Disorders, Centro Materno Infantil do Norte - Centro Hospitalar Universitário de Santo António, Porto, PRT
| |
Collapse
|
38
|
Еникеева СР, Чугунов ИС, Карева МА, Куркина МВ, Захарова ЕЮ, Михайлова СВ, Безлепкина ОБ, Петеркова ВА, Мокрышева НГ. [Adrenal insufficiency as part of X-linked adrenoleukodystrophy]. PROBLEMY ENDOKRINOLOGII 2023; 70:83-92. [PMID: 39069776 PMCID: PMC11334231 DOI: 10.14341/probl13335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 09/11/2023] [Accepted: 09/11/2023] [Indexed: 07/30/2024]
Abstract
BACKGROUND X-linked adrenoleukodystrophy (X-ALD) is a severe neurodegenerative metabolic disease with a frequency 1:17,000 in newborn boys. Being a major part of X-ALD with an incidence of 70-80% of patients, adrenal insufficiency (AI) is a life-threatening condition without timely treatment. The possibility of developing AI during the whole disease duration and the absence of any predictive factor for AI joining shows the necessity of studying AI in X-ALD patients to optimize current diagnostic and treatment algorithms. AIM To study diagnostic and therapeutic features of primary adrenal insufficiency due to X-ALD. MATERIALS AND METHODS A retrospective observational comparative study was conducted in 66 male patients, examined and treated in the Pediatric endocrinology department of Endocrinology Research Centre, Research Centre for Medical Genetics, Research and Clinical Institute for Pediatrics of the Pirogov Russian National Research Medical University Detached Structural Unit Russian Children's Clinical Hospital (Moscow, Russia) for 2014-2022. All of patients were diagnosed with primary AI and a genetically confirmed X-ALD. RESULTS The median age of X-ALD manifestation was 6.6 years [4.7; 11.1]. The earliest age of AI diagnosis was 1.5 years at the preclinical stage and 1 year 8 months with clinical symptoms. The renin level was studied in 22.7% at the manifestation of AI (15/66 patients), mineralocorticoid deficiency was found in 7 patients. Family history was positive in 39.4% of patients (n=66), only in 15.1% (10/66 patients) of patients the disease was established at the preclinical stage. In 59.1% (n=66) the cerebral form of the disease (cALD) was established, in 16.6% - adrenomyeloneuropathy (AMN), and in 24.2% - isolated adrenal insufficiency (PAI). Age of AI establishment in the group of patients with AMN (15.6 years) significantly differs from the establishment of AI in patients with cALD (7.4 years, p=0.001) and PAI (5.6 years, p = 0.000). Mineralocorticoid therapy was prescribed simultaneously with glucocorticoid therapy in patients with cALD, in AMN and PAI patients it was added after 11 and 7 months, respectively (the differences between AMN and PAI groups were insignificant). Combined hormonal therapy receive 41% of patients with cALD, 54.5% of patients with AMN and 60% of patients with PAI. CONCLUSION It is necessary to examine all male patients with AI regardless of the manifestation age to exclude adrenoleukodystrophy, and it is also important to examine patients for the presence of AI regardless of X-ALD manifestation age. The assessment of renin level in the manifestation of AI is also needed to prescribe mineralcorticoid therapy timely. Studying family history is the main method to detect X-ALD at the preclinical stage.
Collapse
Affiliation(s)
- С. Р. Еникеева
- Национальный медицинский исследовательский центр эндокринологии
| | - И. С. Чугунов
- Национальный медицинский исследовательский центр эндокринологии
| | - М. А. Карева
- Национальный медицинский исследовательский центр эндокринологии
| | - М. В. Куркина
- Медико-генетический научный центр им. акад. Н.П. Бочкова
| | - Е. Ю. Захарова
- Медико-генетический научный центр им. акад. Н.П. Бочкова
| | - С. В. Михайлова
- Российский национальный исследовательский медицинский университет им. Н.И. Пирогова
| | | | - В. А. Петеркова
- Национальный медицинский исследовательский центр эндокринологии
| | - Н. Г. Мокрышева
- Национальный медицинский исследовательский центр эндокринологии
| |
Collapse
|
39
|
Villoria-González A, Zierfuss B, Parzer P, Heuböck E, Zujovic V, Waidhofer-Söllner P, Ponleitner M, Rommer P, Göpfert J, Forss-Petter S, Berger J, Weinhofer I. Efficacy of HDAC Inhibitors in Driving Peroxisomal β-Oxidation and Immune Responses in Human Macrophages: Implications for Neuroinflammatory Disorders. Biomolecules 2023; 13:1696. [PMID: 38136568 PMCID: PMC10741867 DOI: 10.3390/biom13121696] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 11/20/2023] [Accepted: 11/21/2023] [Indexed: 12/24/2023] Open
Abstract
Elevated levels of saturated very long-chain fatty acids (VLCFAs) in cell membranes and secreted lipoparticles have been associated with neurotoxicity and, therefore, require tight regulation. Excessive VLCFAs are imported into peroxisomes for degradation by β-oxidation. Impaired VLCFA catabolism due to primary or secondary peroxisomal alterations is featured in neurodegenerative and neuroinflammatory disorders such as X-linked adrenoleukodystrophy and multiple sclerosis (MS). Here, we identified that healthy human macrophages upregulate the peroxisomal genes involved in β-oxidation during myelin phagocytosis and pro-inflammatory activation, and that this response is impaired in peripheral macrophages and phagocytes in brain white matter lesions in MS patients. The pharmacological targeting of VLCFA metabolism and peroxisomes in innate immune cells could be favorable in the context of neuroinflammation and neurodegeneration. We previously identified the epigenetic histone deacetylase (HDAC) inhibitors entinostat and vorinostat to enhance VLCFA degradation and pro-regenerative macrophage polarization. However, adverse side effects currently limit their use in chronic neuroinflammation. Here, we focused on tefinostat, a monocyte/macrophage-selective HDAC inhibitor that has shown reduced toxicity in clinical trials. By using a gene expression analysis, peroxisomal β-oxidation assay, and live imaging of primary human macrophages, we assessed the efficacy of tefinostat in modulating VLCFA metabolism, phagocytosis, chemotaxis, and immune function. Our results revealed the significant stimulation of VLCFA degradation with the upregulation of genes involved in peroxisomal β-oxidation and interference with immune cell recruitment; however, tefinostat was less potent than the class I HDAC-selective inhibitor entinostat in promoting a regenerative macrophage phenotype. Further research is needed to fully explore the potential of class I HDAC inhibition and downstream targets in the context of neuroinflammation.
Collapse
Affiliation(s)
- Andrea Villoria-González
- Department of Pathobiology of the Nervous System, Center for Brain Research, Medical University of Vienna, 1090 Vienna, Austria; (A.V.-G.)
| | - Bettina Zierfuss
- Department of Pathobiology of the Nervous System, Center for Brain Research, Medical University of Vienna, 1090 Vienna, Austria; (A.V.-G.)
- Department of Neuroscience, Centre de Recherche du CHUM, Université de Montréal, Montréal, QC H2X 0A9, Canada
| | - Patricia Parzer
- Department of Pathobiology of the Nervous System, Center for Brain Research, Medical University of Vienna, 1090 Vienna, Austria; (A.V.-G.)
| | - Elisabeth Heuböck
- Department of Pathobiology of the Nervous System, Center for Brain Research, Medical University of Vienna, 1090 Vienna, Austria; (A.V.-G.)
| | - Violetta Zujovic
- Institut du Cerveau—Paris Brain Institute—ICM, Inserm, CNRS, APHP, Hôpital Pitié Salpétrière—University Hospital, Sorbonne University, DMU Neuroscience 6, 75013 Paris, France
| | - Petra Waidhofer-Söllner
- Division of Immune Receptors and T Cell Activation, Institute of Immunology Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090 Vienna, Austria
| | - Markus Ponleitner
- Department of Neurology, Comprehensive Center for Clinical Neurosciences and Mental Health, Medical University of Vienna, 1090 Vienna, Austria
| | - Paulus Rommer
- Department of Neurology, Comprehensive Center for Clinical Neurosciences and Mental Health, Medical University of Vienna, 1090 Vienna, Austria
| | - Jens Göpfert
- Department of Pharma and Biotech, NMI Natural and Medical Sciences Institute, University of Tübingen, 72770 Reutlingen, Germany
| | - Sonja Forss-Petter
- Department of Pathobiology of the Nervous System, Center for Brain Research, Medical University of Vienna, 1090 Vienna, Austria; (A.V.-G.)
| | - Johannes Berger
- Department of Pathobiology of the Nervous System, Center for Brain Research, Medical University of Vienna, 1090 Vienna, Austria; (A.V.-G.)
| | - Isabelle Weinhofer
- Department of Pathobiology of the Nervous System, Center for Brain Research, Medical University of Vienna, 1090 Vienna, Austria; (A.V.-G.)
| |
Collapse
|
40
|
Hashemi E, Narain Srivastava I, Aguirre A, Tilahan Yoseph E, Kaushal E, Awani A, Kyu. Ryu J, Akassoglou K, Talebian S, Chu P, Pisani L, Musolino P, Steinman L, Doyle K, Robinson WH, Sharpe O, Cayrol R, Orchard P, Lund T, Vogel H, Lenail M, Han MH, Bonkowsky JL, Van Haren KP. A novel mouse model of cerebral adrenoleukodystrophy highlights NLRP3 activity in lesion pathogenesis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.07.564025. [PMID: 37986739 PMCID: PMC10659266 DOI: 10.1101/2023.11.07.564025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
Objective We sought to create and characterize a mouse model of the inflammatory, cerebral demyelinating phenotype of X-linked adrenoleukodystrophy (ALD) that would facilitate the study of disease pathogenesis and therapy development. We also sought to cross-validate potential therapeutic targets such as fibrin, oxidative stress, and the NLRP3 inflammasome, in post-mortem human and murine brain tissues. Background ALD is caused by mutations in the gene ABCD1 encoding a peroxisomal transporter. More than half of males with an ABCD1 mutation develop the cerebral phenotype (cALD). Incomplete penetrance and absence of a genotype-phenotype correlation imply a role for environmental triggers. Mechanistic studies have been limited by the absence of a cALD phenotype in the Abcd1-null mouse. Methods We generated a cALD phenotype in 8-week-old, male Abcd1-null mice by deploying a two-hit method that combines cuprizone (CPZ) and experimental autoimmune encephalomyelitis (EAE) models. We employed in vivo MRI and post-mortem immunohistochemistry to evaluate myelin loss, astrogliosis, blood-brain barrier (BBB) disruption, immune cell infiltration, fibrin deposition, oxidative stress, and Nlrp3 inflammasome activation in mice. We used bead-based immunoassay and immunohistochemistry to evaluate IL-18 in CSF and post-mortem human cALD brain tissue. Results MRI studies revealed T2 hyperintensities and post-gadolinium enhancement in the medial corpus callosum of cALD mice, similar to human cALD lesions. Both human and mouse cALD lesions shared common histologic features of myelin phagocytosis, myelin loss, abundant microglial activation, T and B-cell infiltration, and astrogliosis. Compared to wild-type controls, Abcd1-null mice had more severe cerebral inflammation, demyelination, fibrin deposition, oxidative stress, and IL-18 activation. IL-18 immunoreactivity co-localized with macrophages/microglia in the perivascular region of both human and mouse brain tissue. Interpretation This novel mouse model of cALD suggests loss of Abcd1 function predisposes to more severe cerebral inflammation, oxidative stress, fibrin deposition, and Nlrp3 pathway activation, which parallels the findings seen in humans with cALD. We expect this model to enable long-sought investigations into cALD mechanisms and accelerate development of candidate therapies for lesion prevention, cessation, and remyelination.
Collapse
Affiliation(s)
- Ezzat Hashemi
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Isha Narain Srivastava
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Alejandro Aguirre
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Ezra Tilahan Yoseph
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Esha Kaushal
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Avni Awani
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Jae Kyu. Ryu
- Gladstone Institute for Neurological Disease; San Francisco, CA, USA
- Center for Neurovascular Brain Immunology at Gladstone and UCSF; San Francisco, CA USA
- Department of Neurology, Weill Institute for Neurosciences, University of California San Francisco; San Francisco, CA, USA
| | - Katerina Akassoglou
- Gladstone Institute for Neurological Disease; San Francisco, CA, USA
- Center for Neurovascular Brain Immunology at Gladstone and UCSF; San Francisco, CA USA
- Department of Neurology, Weill Institute for Neurosciences, University of California San Francisco; San Francisco, CA, USA
| | - Shahrzad Talebian
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Pauline Chu
- Stanford Human Research Histology Core, Stanford University School of Medicine, Stanford, CA, USA
| | - Laura Pisani
- Department of Radiology, Stanford University School of Medicine Stanford, CA, USA
| | - Patricia Musolino
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Lawrence Steinman
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Kristian Doyle
- Department of Immunobiology, University of Arizona, Tucson, AZ, USA
| | - William H Robinson
- Department of Immunology & Rheumatology, Stanford University School of Medicine, Stanford, CA, USA
| | - Orr Sharpe
- Department of Immunology & Rheumatology, Stanford University School of Medicine, Stanford, CA, USA
| | - Romain Cayrol
- Department of Pathology, Clinical Department of Laboratory Medicine, University of Montreal, Quebec, Canada
| | - Paul Orchard
- Division of Pediatric Blood & Marrow Transplantation, University of Minnesota, Minneapolis, MN, USA
| | - Troy Lund
- Division of Pediatric Blood & Marrow Transplantation, University of Minnesota, Minneapolis, MN, USA
| | - Hannes Vogel
- Departments of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Max Lenail
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - May Htwe Han
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Joshua Leith Bonkowsky
- Division of Pediatric Neurology, Department of Pediatrics, University of Utah School of Medicine, Salt Lake City, Utah
- Brain and Spine Center, Primary Children’s Hospital, Salt Lake City, Utah
- Primary Children’s Center for Personalized Medicine, Salt Lake City, Utah
| | - Keith P. Van Haren
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
| |
Collapse
|
41
|
Ramirez Alcantara J, Grant NR, Sethuram S, Nagy A, Becker C, Sahai I, Stanley T, Halper A, Eichler FS. Early Detection of Adrenal Insufficiency: The Impact of Newborn Screening for Adrenoleukodystrophy. J Clin Endocrinol Metab 2023; 108:e1306-e1315. [PMID: 37220095 PMCID: PMC11009790 DOI: 10.1210/clinem/dgad286] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 05/16/2023] [Accepted: 05/17/2023] [Indexed: 05/25/2023]
Abstract
CONTEXT Males with adrenoleukodystrophy (ALD) have an 80% lifetime risk of developing adrenal insufficiency (AI), which can be life-threatening when undetected. Newborn screening (NBS) for ALD has been implemented in 29 states, yet the impact of NBS upon clinical management has not been reported. OBJECTIVE To investigate whether the implementation of NBS has altered the time to diagnosis of AI in children with ALD. DESIGN We conducted a retrospective medical chart review of pediatric patients with ALD. SETTING All patients were seen in a leukodystrophy clinic in an academic medical center. PATIENTS We included all pediatric patients with ALD who were seen between May 2006 and January 2022. We identified 116 patients (94% boys). MAIN OUTCOME MEASURES We extracted information about ALD diagnosis in all patients and AI surveillance, diagnosis, and treatment in boys with ALD. RESULTS Thirty-one (27%) patients were diagnosed with ALD by NBS, and 85 (73%) were diagnosed outside the newborn period. The prevalence of AI among boys in our patient population was 74%. AI diagnosis was made significantly earlier in boys diagnosed with ALD by NBS than in boys diagnosed outside the newborn period (median [IQR] age of diagnosis = 6.7 [3.9, 12.12] months vs 6.05 [3.74, 8.35] years) (P < .001). When maintenance dose of glucocorticoids were initiated, there were significant differences in ACTH and peak cortisol levels in patients diagnosed by NBS and outside the newborn period. CONCLUSIONS Our results suggest that implementing NBS for ALD leads to significantly earlier detection of AI and earlier initiation of glucocorticoid supplementation in boys affected by ALD.
Collapse
Affiliation(s)
- Jonanlis Ramirez Alcantara
- Department of Pediatric Endocrinology, Massachusetts General Hospital, Boston, MA 02114, USA
- Harvard Medical School, Boston, MA 02114, USA
| | - Natalie R Grant
- Department of Neurology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Swathi Sethuram
- Department of Pediatric Endocrinology, Massachusetts General Hospital, Boston, MA 02114, USA
- Harvard Medical School, Boston, MA 02114, USA
| | - Amanda Nagy
- Harvard Medical School, Boston, MA 02114, USA
- Department of Neurology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Catherine Becker
- Department of Neurology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Inderneel Sahai
- Harvard Medical School, Boston, MA 02114, USA
- Department of Genetics, Massachusetts General Hospital, Boston MA, 02114, USA
| | - Takara Stanley
- Department of Pediatric Endocrinology, Massachusetts General Hospital, Boston, MA 02114, USA
- Harvard Medical School, Boston, MA 02114, USA
| | - Alyssa Halper
- Department of Pediatric Endocrinology, Massachusetts General Hospital, Boston, MA 02114, USA
- Harvard Medical School, Boston, MA 02114, USA
| | - Florian S Eichler
- Harvard Medical School, Boston, MA 02114, USA
- Department of Neurology, Massachusetts General Hospital, Boston, MA 02114, USA
| |
Collapse
|
42
|
Weinhofer I, Rommer P, Gleiss A, Ponleitner M, Zierfuss B, Waidhofer-Söllner P, Fourcade S, Grabmeier-Pfistershammer K, Reinert MC, Göpfert J, Heine A, Yska HAF, Casasnovas C, Cantarín V, Bergner CG, Mallack E, Forss-Petter S, Aubourg P, Bley A, Engelen M, Eichler F, Lund TC, Pujol A, Köhler W, Kühl JS, Berger J. Biomarker-based risk prediction for the onset of neuroinflammation in X-linked adrenoleukodystrophy. EBioMedicine 2023; 96:104781. [PMID: 37683329 PMCID: PMC10497986 DOI: 10.1016/j.ebiom.2023.104781] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 07/21/2023] [Accepted: 08/18/2023] [Indexed: 09/10/2023] Open
Abstract
BACKGROUND X-linked adrenoleukodystrophy (X-ALD) is highly variable, ranging from slowly progressive adrenomyeloneuropathy to severe brain demyelination and inflammation (cerebral ALD, CALD) affecting males with childhood peak onset. Risk models integrating blood-based biomarkers to indicate CALD onset, enabling timely interventions, are lacking. Therefore, we evaluated the prognostic value of blood biomarkers in addition to current neuroimaging predictors for early detection of CALD. METHODS We measured blood biomarkers in a retrospective, male CALD risk-assessment cohort consisting of 134 X-ALD patients and 66 controls and in a phenotype-blinded validation set (25 X-ALD boys, 4-13 years) using Simoa®and Luminex® technologies. FINDINGS Among 25 biomarkers indicating axonal damage, astrocye/microglia activation, or immune-cell recruitment, neurofilament light chain (NfL) had the highest prognostic value for early indication of childhood/adolescent CALD. A plasma NfL cut-off level of 8.33 pg/mL, determined in the assessment cohort, correctly discriminated CALD with an accuracy of 96% [95% CI: 80-100] in the validation group. Multivariable logistic regression models revealed that combining NfL with GFAP or cytokines/chemokines (IL-15, IL-12p40, CXCL8, CCL11, CCL22, and IL-4) that were significantly elevated in CALD vs healthy controls had no additional benefit for detecting neuroinflammation. Some cytokines/chemokines were elevated only in childhood/adolescent CALD and already upregulated in asymptomatic X-ALD children (IL-15, IL-12p40, and CCL7). In adults, NfL levels distinguished CALD but were lower than in childhood/adolescent CALD patients with similar (MRI) lesion severity. Blood GFAP did not differentiate CALD from non-inflammatory X-ALD. INTERPRETATION Biomarker-based risk prediction with a plasma NfL cut-off value of 8.33 pg/mL, determined by ROC analysis, indicates CALD onset with high sensitivity and specificity in childhood X-ALD patients. A specific pro-inflammatory cytokine/chemokine profile in asymptomatic X-ALD boys may indicate a primed, immanent inflammatory state aligning with peak onset of CALD. Age-related differences in biomarker levels in adult vs childhood CALD patients warrants caution in predicting onset and progression of CALD in adults. Further evaluations are needed to assess clinical utility of the NfL cut-off for risk prognosis of CALD onset. FUNDING Austrian Science Fund, European Leukodystrophy Association.
Collapse
Affiliation(s)
- Isabelle Weinhofer
- Department of Pathobiology of the Nervous System, Center for Brain Research, Medical University of Vienna, Vienna, Austria.
| | - Paulus Rommer
- Department of Neurology, Comprehensive Center for Clinical Neurosciences and Mental Health, Medical University of Vienna, Vienna, Austria
| | - Andreas Gleiss
- Institute of Clinical Biometrics, Center for Medical Data Science, Medical University of Vienna, Vienna, Austria
| | - Markus Ponleitner
- Department of Neurology, Comprehensive Center for Clinical Neurosciences and Mental Health, Medical University of Vienna, Vienna, Austria
| | - Bettina Zierfuss
- Department of Pathobiology of the Nervous System, Center for Brain Research, Medical University of Vienna, Vienna, Austria; Department of Neuroscience, Centre de Recherche du CHUM, Université de Montréal, Montréal, Canada
| | - Petra Waidhofer-Söllner
- Division of Immune Receptors and T Cell Activation, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Austria
| | - Stéphane Fourcade
- Neurometabolic Diseases Laboratory, Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Catalonia, Spain; Biomedical Research Networking Center on Rare Diseases (CIBERER), ISCIII, Madrid, Spain
| | - Katharina Grabmeier-Pfistershammer
- Division of Immune Receptors and T Cell Activation, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Austria
| | - Marie-Christine Reinert
- Division of Pediatric Neurology, Department of Pediatrics and Adolescent Medicine, University Medical Center Göttingen, Göttingen, Germany
| | - Jens Göpfert
- Applied Biomarkers and Immunoassays Working Group, NMI Natural and Medical Sciences Institute at the University of Tübingen, Reutlingen, Germany
| | - Anne Heine
- Applied Biomarkers and Immunoassays Working Group, NMI Natural and Medical Sciences Institute at the University of Tübingen, Reutlingen, Germany
| | - Hemmo A F Yska
- Department of Pediatric Neurology, Amsterdam Public Health, Amsterdam University Medical Center, Amsterdam, the Netherlands
| | - Carlos Casasnovas
- Neurometabolic Diseases Laboratory, Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Catalonia, Spain; Biomedical Research Networking Center on Rare Diseases (CIBERER), ISCIII, Madrid, Spain; Neuromuscular Unit, Neurology Department, Hospital Universitario Bellvitge, Bellvitge Biomedical Research Unit, Barcelona, Spain
| | - Verónica Cantarín
- Infant Jesus Children´s Hospital and Biomedical Research Networking Center on Rare Diseases (CIBERER), ISCIII, Madrid, Spain
| | - Caroline G Bergner
- Department of Neurology, Leukodystrophy Clinic, University of Leipzig Medical Center, Leipzig, Germany
| | - Eric Mallack
- Leukodystrophy Center, Division of Child Neurology, Department of Pediatrics, Weill Cornell Medical College, NewYork-Presbyterian Hospital, New York, NY, USA
| | - Sonja Forss-Petter
- Department of Pathobiology of the Nervous System, Center for Brain Research, Medical University of Vienna, Vienna, Austria
| | - Patrick Aubourg
- Kremlin-Bicêtre-Hospital, University Paris-Saclay, Paris, France
| | - Annette Bley
- Department of Pediatrics, University Medical Center Hamburg Eppendorf, Hamburg, Germany
| | - Marc Engelen
- Department of Pediatric Neurology, Amsterdam Public Health, Amsterdam University Medical Center, Amsterdam, the Netherlands
| | - Florian Eichler
- Department of Neurology, Harvard Medical School, Massachusetts General Hospital, Boston, MA, USA
| | - Troy C Lund
- Pediatric Blood and Marrow Transplant Program, Global Pediatrics, Division of Pediatric Blood and Marrow Transplantation, MCRB, University of Minnesota, Minneapolis, MN, USA
| | - Aurora Pujol
- Neurometabolic Diseases Laboratory, Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Catalonia, Spain; Biomedical Research Networking Center on Rare Diseases (CIBERER), ISCIII, Madrid, Spain
| | - Wolfgang Köhler
- Department of Neurology, Leukodystrophy Clinic, University of Leipzig Medical Center, Leipzig, Germany
| | - Jörn-Sven Kühl
- Department of Pediatric Oncology, Hematology and Hemostaseology, University Hospital Leipzig, Leipzig, Germany
| | - Johannes Berger
- Department of Pathobiology of the Nervous System, Center for Brain Research, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
43
|
Yska HAF, Henneman L, Barendsen RW, Engelen M, Kemp S. Attitudes of Patients with Adrenoleukodystrophy towards Sex-Specific Newborn Screening. Int J Neonatal Screen 2023; 9:51. [PMID: 37754777 PMCID: PMC10531683 DOI: 10.3390/ijns9030051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/29/2023] [Accepted: 09/01/2023] [Indexed: 09/28/2023] Open
Abstract
Newborn screening (NBS) for X-linked adrenoleukodystrophy (ALD) can identify affected individuals before the onset of life-threatening manifestations. Some countries have decided to only screen boys (sex-specific screening). This study investigates the attitudes of individuals with ALD towards sex-specific NBS for ALD. A questionnaire was sent to all patients in the Dutch ALD cohort. Invitees were asked who they thought should be screened for ALD: only boys, both boys and girls or neither. The motives and background characteristics of respondents were compared between screening preferences. Out of 108 invitees, 66 participants (61%), 38 men and 28 women, participated in this study. The majority (n = 53, 80%) favored screening both newborn boys and girls for ALD, while 20% preferred boys only. None of the respondents felt that newborns should not be screened for ALD. There were no differences in the background characteristics of the respondents between screening preferences. Our study revealed a diverse range of motivations underlying respondents' screening preferences. This study is one of the first to investigate the attitudes of patients towards sex-specific screening for ALD. The outcomes of this study can offer insights to stakeholders engaged in the implementation of NBS programs. ALD patients are important stakeholders who can provide valuable input in this process.
Collapse
Affiliation(s)
- Hemmo A. F. Yska
- Department of Child Neurology, Amsterdam Leukodystrophy Center, Emma Children’s Hospital, Amsterdam UMC Location University of Amsterdam, Amsterdam Neuroscience, 1105 AZ Amsterdam, The Netherlands; (H.A.F.Y.); (M.E.)
| | - Lidewij Henneman
- Department of Human Genetics, Amsterdam Reproduction and Development Research Institute, Amsterdam UMC Location Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands;
| | - Rinse W. Barendsen
- Laboratory Genetic Metabolic Diseases, Department of Clinical Chemistry, Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam UMC Location University of Amsterdam, 1105 AZ Amsterdam, The Netherlands;
| | - Marc Engelen
- Department of Child Neurology, Amsterdam Leukodystrophy Center, Emma Children’s Hospital, Amsterdam UMC Location University of Amsterdam, Amsterdam Neuroscience, 1105 AZ Amsterdam, The Netherlands; (H.A.F.Y.); (M.E.)
| | - Stephan Kemp
- Laboratory Genetic Metabolic Diseases, Department of Clinical Chemistry, Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam UMC Location University of Amsterdam, 1105 AZ Amsterdam, The Netherlands;
| |
Collapse
|
44
|
Pitts L, White JM, Ladores S, Wilson CM. The impacts of adrenoleukodystrophy newborn screening on the evaluation of adrenal dysfunction in male children: An integrative literature review. J Pediatr Nurs 2023; 72:e53-e70. [PMID: 37331834 DOI: 10.1016/j.pedn.2023.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 05/12/2023] [Accepted: 06/04/2023] [Indexed: 06/20/2023]
Abstract
PROBLEM Adrenoleukodystrophy (ALD) is an x-linked genetic condition with a high risk of adrenal dysfunction recommended for newborn screening. This review aims to critically appraise and synthesize existing literature identifying the impacts of ALD newborn screening in the United States on the evaluation and treatment of adrenal dysfunction in male children. ELIGIBILITYCRITERIA An integrative literature review was conducted using the Embase, PubMed, and CINAHL databases. English-language primary source studies published in the past decade and seminal studies were included. SAMPLE Twenty primary sources met the inclusion criteria, including five seminal studies. RESULTS Three major themes emerged from the review: 1) prevention of adrenal crisis, 2) unexpected outcomes, and 3) ethical impacts. CONCLUSIONS ALD screening increases disease identification. Serial adrenal evaluation prevents adrenal crisis and death; data is needed to establish predictive outcomes in ALD prognosis. Disease incidence and prognosis will become more apparent as states increasingly add ALD screening to their newborn panel. IMPLICATIONS FOR PRACTICE Clinicians need awareness of ALD newborn screening and state screening protocols. Families first learning of ALD through newborn screening results will require education, support, and timely referrals for appropriate care.
Collapse
Affiliation(s)
- Leslie Pitts
- The University of Alabama at Birmingham School of Nursing, United States.
| | | | - Sigrid Ladores
- The University of Alabama at Birmingham School of Nursing, United States
| | - Christina M Wilson
- The University of Alabama at Birmingham School of Nursing, United States; The University of Alabama Heersink School of Medicine, Division of Gynecologic Oncology, United States
| |
Collapse
|
45
|
Buda A, Forss-Petter S, Hua R, Jaspers Y, Lassnig M, Waidhofer-Söllner P, Kemp S, Kim P, Weinhofer I, Berger J. ABCD1 Transporter Deficiency Results in Altered Cholesterol Homeostasis. Biomolecules 2023; 13:1333. [PMID: 37759733 PMCID: PMC10526550 DOI: 10.3390/biom13091333] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 08/25/2023] [Accepted: 08/29/2023] [Indexed: 09/29/2023] Open
Abstract
X-linked adrenoleukodystrophy (X-ALD), the most common peroxisomal disorder, is caused by mutations in the peroxisomal transporter ABCD1, resulting in the accumulation of very long-chain fatty acids (VLCFA). Strongly affected cell types, such as oligodendrocytes, adrenocortical cells and macrophages, exhibit high cholesterol turnover. Here, we investigated how ABCD1 deficiency affects cholesterol metabolism in human X-ALD patient-derived fibroblasts and CNS tissues of Abcd1-deficient mice. Lipidome analyses revealed increased levels of cholesterol esters (CE), containing both saturated VLCFA and mono/polyunsaturated (V)LCFA. The elevated CE(26:0) and CE(26:1) levels remained unchanged in LXR agonist-treated Abcd1 KO mice despite reduced total C26:0. Under high-cholesterol loading, gene expression of SOAT1, converting cholesterol to CE and lipid droplet formation were increased in human X-ALD fibroblasts versus healthy control fibroblasts. However, the expression of NCEH1, catalysing CE hydrolysis and the cholesterol transporter ABCA1 and cholesterol efflux were also upregulated. Elevated Soat1 and Abca1 expression and lipid droplet content were confirmed in the spinal cord of X-ALD mice, where expression of the CNS cholesterol transporter Apoe was also elevated. The extent of peroxisome-lipid droplet co-localisation appeared low and was not impaired by ABCD1-deficiency in cholesterol-loaded primary fibroblasts. Finally, addressing steroidogenesis, progesterone-induced cortisol release was amplified in X-ALD fibroblasts. These results link VLCFA to cholesterol homeostasis and justify further consideration of therapeutic approaches towards reducing VLCFA and cholesterol levels in X-ALD.
Collapse
Affiliation(s)
- Agnieszka Buda
- Department of Pathobiology of the Nervous System, Center for Brain Research, Medical University of Vienna, 1090 Vienna, Austria
| | - Sonja Forss-Petter
- Department of Pathobiology of the Nervous System, Center for Brain Research, Medical University of Vienna, 1090 Vienna, Austria
| | - Rong Hua
- Program in Cell Biology, Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
- Department of Biochemistry, University of Toronto, Toronto, ON M5G 1A8, Canada
| | - Yorrick Jaspers
- Laboratory Genetic Metabolic Diseases, Department of Clinical Chemistry, Amsterdam University Medical Centers, Amsterdam Neuroscience, Amsterdam Gastroenterology Endocrinology Metabolism, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Mark Lassnig
- Department of Pathobiology of the Nervous System, Center for Brain Research, Medical University of Vienna, 1090 Vienna, Austria
| | - Petra Waidhofer-Söllner
- Division of Immune Receptors and T Cell Activation, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090 Vienna, Austria
| | - Stephan Kemp
- Laboratory Genetic Metabolic Diseases, Department of Clinical Chemistry, Amsterdam University Medical Centers, Amsterdam Neuroscience, Amsterdam Gastroenterology Endocrinology Metabolism, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Peter Kim
- Program in Cell Biology, Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
- Department of Biochemistry, University of Toronto, Toronto, ON M5G 1A8, Canada
| | - Isabelle Weinhofer
- Department of Pathobiology of the Nervous System, Center for Brain Research, Medical University of Vienna, 1090 Vienna, Austria
| | - Johannes Berger
- Department of Pathobiology of the Nervous System, Center for Brain Research, Medical University of Vienna, 1090 Vienna, Austria
| |
Collapse
|
46
|
Sevin C, Hatteb S, Clément A, Bignami F, Chillotti L, Bugnard F, Bénard S, Boespflug-Tanguy O. Childhood cerebral adrenoleukodystrophy (CCALD) in France: epidemiology, natural history, and burden of disease - A population-based study. Orphanet J Rare Dis 2023; 18:238. [PMID: 37563635 PMCID: PMC10416383 DOI: 10.1186/s13023-023-02843-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 07/23/2023] [Indexed: 08/12/2023] Open
Abstract
BACKGROUND X-linked adrenoleukodystrophy (ALD) is a rare metabolic and neurodegenerative disorder belonging to the group of leukodystrophies, with an estimated incidence around 1:25 000 newborns worldwide, mostly among men. Childhood Cerebral ALD (CCALD) is the most severe form with a poor prognosis if not properly treated during the first years of life. Currently, only allogeneic hematopoietic stem cell transplantation (allo-HSCT) is widely available for CCALD treatment. To date, there is a lack of data regarding CCALD epidemiology, natural history, and current management in France. This knowledge is crucial for the development of new therapies such as gene therapies. In this context, the French National Health Data System (SNDS) is a particularly indicated database to collect information meeting these needs. A non-interventional, national, real-life, retrospective study was performed using secondary data from the national ALD registry (LEUKOFRANCE) and SNDS. CCALD patients detected between 2009 and 2018 and successfully matched between LEUKOFRANCE and SNDS were included in this study. Index date was defined as the first CCALD event detected during study period. Subgroups of patients with sufficient follow-up (6 months) and history (1 year) available around index date were analyzed to assess CCALD burden and natural history. RESULTS 52 patients were included into the matched cohort. Median annual incidence of CCALD was estimated at 4 patients. Median age at CCALD diagnosis was 7.0 years. Among patients without allo-HSCT, five-year overall survival was 66.6%, with 93.3% of them presenting at least one CCALD symptom and 62.1% presenting a least one major functional disability (MFD). Among patients with allo-HSCT, five-year overall survival was 94.4%, with only 11.1% of patients presenting CCALD symptoms, and 16.7% of presenting a MFD. Mean annualized costs were almost twice as important among patients without allo-HSCT, with 49,211€, 23,117€, respectively. Costs were almost exclusively represented by hospitalizations. CONCLUSIONS To the best of our knowledge, this is the most up to date study analyzing CCALD epidemiology, clinical and economic burden in France. The necessity of a precocious management with HSCT highlight the potential benefits of including an expanded screening program among newborns, coupled with family screenings when a mutation is detected.
Collapse
Affiliation(s)
- Caroline Sevin
- Center of Reference for Leukodystrophies, Bicêtre Hospital - APHP, Le Kremlin Bicêtre, France
| | - Samira Hatteb
- Center of Reference for Leukodystrophies, Bicêtre Hospital - APHP, Le Kremlin Bicêtre, France
| | | | | | | | | | | | | |
Collapse
|
47
|
Dong L, Xiao J, Liu S, Deng G, Liao Y, Chu B, Zhao X, Song BL, Luo J. Lysosomal cholesterol accumulation is commonly found in most peroxisomal disorders and reversed by 2-hydroxypropyl-β-cyclodextrin. SCIENCE CHINA. LIFE SCIENCES 2023; 66:1786-1799. [PMID: 36971991 DOI: 10.1007/s11427-022-2260-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 12/10/2022] [Indexed: 03/29/2023]
Abstract
Peroxisomal disorders (PDs) are a heterogenous group of diseases caused by defects in peroxisome biogenesis or functions. X-linked adrenoleukodystrophy is the most prevalent form of PDs and results from mutations in the ABCD1 gene, which encodes a transporter mediating the uptake of very long-chain fatty acids (VLCFAs). The curative approaches for PDs are very limited. Here, we investigated whether cholesterol accumulation in the lysosomes is a biochemical feature shared by a broad spectrum of PDs. We individually knocked down fifteen PD-associated genes in cultured cells and found ten induced cholesterol accumulation in the lysosome. 2-Hydroxypropyl-β-cyclodextrin (HPCD) effectively alleviated the cholesterol accumulation phenotype in PD-mimicking cells through reducing intracellular cholesterol content as well as promoting cholesterol redistribution to other cellular membranes. In ABCD1 knockdown cells, HPCD treatment lowered reactive oxygen species and VLCFA to normal levels. In Abcd1 knockout mice, HPCD injections reduced cholesterol and VLCFA sequestration in the brain and adrenal cortex. The plasma levels of adrenocortical hormones were increased and the behavioral abnormalities were greatly ameliorated upon HPCD administration. Together, our results suggest that defective cholesterol transport underlies most, if not all, PDs, and that HPCD can serve as a novel and effective strategy for the treatment of PDs.
Collapse
Affiliation(s)
- Lewei Dong
- College of Life Sciences, Taikang Center for Life and Medical Sciences, Hubei Key Laboratory of Cell Homeostasis, Wuhan University, Wuhan, 430072, China
| | - Jian Xiao
- College of Life Sciences, Taikang Center for Life and Medical Sciences, Hubei Key Laboratory of Cell Homeostasis, Wuhan University, Wuhan, 430072, China
| | - Shuai Liu
- College of Life Sciences, Taikang Center for Life and Medical Sciences, Hubei Key Laboratory of Cell Homeostasis, Wuhan University, Wuhan, 430072, China
| | - Gang Deng
- College of Life Sciences, Taikang Center for Life and Medical Sciences, Hubei Key Laboratory of Cell Homeostasis, Wuhan University, Wuhan, 430072, China
| | - Yacheng Liao
- College of Life Sciences, Taikang Center for Life and Medical Sciences, Hubei Key Laboratory of Cell Homeostasis, Wuhan University, Wuhan, 430072, China
| | - Beibei Chu
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, China
| | - Xiaolu Zhao
- College of Life Sciences, Taikang Center for Life and Medical Sciences, Hubei Key Laboratory of Cell Homeostasis, Wuhan University, Wuhan, 430072, China
| | - Bao-Liang Song
- College of Life Sciences, Taikang Center for Life and Medical Sciences, Hubei Key Laboratory of Cell Homeostasis, Wuhan University, Wuhan, 430072, China
| | - Jie Luo
- College of Life Sciences, Taikang Center for Life and Medical Sciences, Hubei Key Laboratory of Cell Homeostasis, Wuhan University, Wuhan, 430072, China.
| |
Collapse
|
48
|
Chen X, Cen Z, Wang B, Liu P, Luo W. Multiple System Atrophy-like Phenotype Accompanied by Prominent Weight Loss and Fatigue. Mov Disord Clin Pract 2023; 10:S45-S47. [PMID: 37636226 PMCID: PMC10448613 DOI: 10.1002/mdc3.13802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 05/10/2023] [Accepted: 05/24/2023] [Indexed: 08/29/2023] Open
Affiliation(s)
- Xinhui Chen
- Department of Neurology, The Second Affiliated HospitalZhejiang University School of MedicineZhejiangChina
| | - Zhidong Cen
- Department of Neurology, The Second Affiliated HospitalZhejiang University School of MedicineZhejiangChina
| | - Bo Wang
- Department of Neurology, The Second Affiliated HospitalZhejiang University School of MedicineZhejiangChina
| | - Peng Liu
- Department of NeurologyTaizhou Central Hospital (Taizhou University Hospital)ZhejiangChina
| | - Wei Luo
- Department of Neurology, The Second Affiliated HospitalZhejiang University School of MedicineZhejiangChina
| |
Collapse
|
49
|
Moroni I, De Amicis R, Ardissone A, Ravella S, Bertoli S. Nutritional status of children affected by X-linked adrenoleukodystrophy. J Hum Nutr Diet 2023; 36:1316-1326. [PMID: 36991579 DOI: 10.1111/jhn.13173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 03/27/2023] [Indexed: 03/31/2023]
Abstract
BACKGROUND Adrenoleukodystrophy (ALD) is a rare X-linked metabolic disorder that causes the accumulation of very-long-chain fatty acids (VLCFAs) (C26:0) and the subsequent variety of clinical and neurological symptoms. Little is known about nutritional status and dietary habits of children affected by ALD, and so the present study aimed to assess nutritional status and food intake in children with ALD, also exploring the relationship between food intake and the consumption of disease-specific dietary supplements to reduce blood C26:0 concentrations and increase monounsaturated fatty acids (C26:1). METHODS All patients underwent a clinical and neurological evaluation and a comprehensive nutritional assessment. The association of VLCFA concentrations with dietary lipids was assessed. RESULTS Nine boys (11.49 ± 3.61 years) were enrolled in a cross-sectional study. All patients were normal weight, with normal resting energy expenditure. Only six of nine patients followed the low-fat diet and dietary supplements. An inverse association was found between the food intake of polyunsaturated lipids and C26:0; conversely, the C26:0 was positively associated with the dietary saturated lipids. When consumed, dietary supplement consumption correlated positively with C26:1 (ρ = 0.917, p = 0.029) and no correlation was found with C26:0 (ρ = 0.410, p = 0,493). CONCLUSIONS No children were found to be malnourished or overweight or obese; however, half of the children reported excessive body fat, probably as a result of the pharmacotherapies. A low-fat diet could be adjuvant in the management of the accumulation of VLCFAs, but poor dietary compliance to disease-specific nutritional guidelines appears to be a major problem of this condition and underlines the need for a structured and personalised nutritional management in ALD disease.
Collapse
Affiliation(s)
- Isabella Moroni
- Department of Pediatric Neuroscience, Fondazione IRCCS Istituto Neurologico Besta, Milan, Italy
| | - Ramona De Amicis
- Department of Food Environmental and Nutritional Sciences (DeFENS), International Center for the Assessment of Nutritional Status (ICANS), University of Milan, Milan, Italy
- Laboratory of Nutrition and Obesity Research, Department of Endocrine and Metabolic Diseases, IRCCS Istituto Auxologico Italiano, Milan, Italy
| | - Anna Ardissone
- Department of Pediatric Neuroscience, Fondazione IRCCS Istituto Neurologico Besta, Milan, Italy
| | - Simone Ravella
- Department of Food Environmental and Nutritional Sciences (DeFENS), International Center for the Assessment of Nutritional Status (ICANS), University of Milan, Milan, Italy
| | - Simona Bertoli
- Department of Food Environmental and Nutritional Sciences (DeFENS), International Center for the Assessment of Nutritional Status (ICANS), University of Milan, Milan, Italy
- Laboratory of Nutrition and Obesity Research, Department of Endocrine and Metabolic Diseases, IRCCS Istituto Auxologico Italiano, Milan, Italy
| |
Collapse
|
50
|
Zhu Z, Genchev GZ, Wang Y, Ji W, Zhang X, Lu H, Sriswasdi S, Tian G. Multivariate analysis and model building for classifying patients in the peroxisomal disorders X-linked adrenoleukodystrophy and Zellweger syndrome in Chinese pediatric patients. Orphanet J Rare Dis 2023; 18:102. [PMID: 37189159 DOI: 10.1186/s13023-023-02673-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 03/11/2023] [Indexed: 05/17/2023] Open
Abstract
BACKGROUND The peroxisome is a ubiquitous single membrane-enclosed organelle with an important metabolic role. Peroxisomal disorders represent a class of medical conditions caused by deficiencies in peroxisome function and are segmented into enzyme-and-transporter defects (defects in single peroxisomal proteins) and peroxisome biogenesis disorders (defects in the peroxin proteins, critical for normal peroxisome assembly and biogenesis). In this study, we employed multivariate supervised and non-supervised statistical methods and utilized mass spectrometry data of neurological patients, peroxisomal disorder patients (X-linked adrenoleukodystrophy and Zellweger syndrome), and healthy controls to analyze the role of common metabolites in peroxisomal disorders, to develop and refine a classification models of X-linked adrenoleukodystrophy and Zellweger syndrome, and to explore analytes with utility in rapid screening and diagnostics. RESULTS T-SNE, PCA, and (sparse) PLS-DA, operated on mass spectrometry data of patients and healthy controls were utilized in this study. The performance of exploratory PLS-DA models was assessed to determine a suitable number of latent components and variables to retain for sparse PLS-DA models. Reduced-features (sparse) PLS-DA models achieved excellent classification performance of X-linked adrenoleukodystrophy and Zellweger syndrome patients. CONCLUSIONS Our study demonstrated metabolic differences between healthy controls, neurological patients, and peroxisomal disorder (X-linked adrenoleukodystrophy and Zellweger syndrome) patients, refined classification models and showed the potential utility of hexacosanoylcarnitine (C26:0-carnitine) as a screening analyte for Chinese patients in the context of a multivariate discriminant model predictive of peroxisomal disorders.
Collapse
Affiliation(s)
- Zhixing Zhu
- Shanghai Engineering Research Center for Big Data in Pediatric Precision Medicine; Center for Biomedical Informatics, Shanghai Children?s Hospital; School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Georgi Z Genchev
- Center of Excellence in Computational Molecular Biology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Yanmin Wang
- Newborn Screening Center, Shanghai Children?s Hospital; School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Wei Ji
- Newborn Screening Center, Shanghai Children?s Hospital; School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaofen Zhang
- Newborn Screening Center, Shanghai Children?s Hospital; School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Hui Lu
- Shanghai Engineering Research Center for Big Data in Pediatric Precision Medicine; Center for Biomedical Informatics, Shanghai Children?s Hospital; School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
- SJTU-Yale Joint Center for Biostatistics, Department of Bioinformatics and Biostatistics, Shanghai Jiao Tong University, Shanghai, China.
| | - Sira Sriswasdi
- Center of Excellence in Computational Molecular Biology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand.
| | - Guoli Tian
- Newborn Screening Center, Shanghai Children?s Hospital; School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
- Key Laboratory of Digital Technology in Medical Diagnostics of Zhejiang Province, Zhejiang, China.
| |
Collapse
|