1
|
Kaur R, Pandey S, Gupta S, Singh J. Harnessing the potential of long non-coding RNAs in the pathophysiology of Alzheimer's disease. Exp Neurol 2025; 385:115134. [PMID: 39740737 DOI: 10.1016/j.expneurol.2024.115134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 12/08/2024] [Accepted: 12/27/2024] [Indexed: 01/02/2025]
Abstract
Alzheimer's disease (AD), a diverse neurodegenerative disease, is the leading cause of dementia, accounting for 60-80 % of all cases. The pathophysiology of Alzheimer's disease is unknown, and there is no cure at this time. Recent developments in transcriptome-wide profiling have led to the identification of a number of non-coding RNAs (ncRNAs). Among these, long non-coding RNAs (lncRNAs)-long transcripts that don't seem to be able to code for proteins-have drawn attention because they function as regulatory agents in a variety of biological processes. Recent research suggests that lncRNAs play a role in the pathogenesis of Alzheimer's disease by modulating tau hyperphosphorylation, amyloid production, synaptic impairment, neuroinflammation, mitochondrial dysfunction, and oxidative stress, though their precise effects on the disorder are unknown. The biology and modes of action of the best-characterized lncRNAs in AD will be outlined here, with an emphasis on their possible involvement in the pathophysiology of the disease. As lncRNAs may offer prospective prognostic/diagnostic biomarkers and therapeutic targets for the treatment of AD, a greater comprehension of the molecular processes and the intricate network of interactions in which they are implicated could pave the way for future research.
Collapse
Affiliation(s)
- Rasanpreet Kaur
- Department of Biotechnology, Institute of Applied Sciences & Humanities, GLA University, Chaumuhan, Mathura 281406, Uttar Pradesh, India; Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam, India
| | - Swadha Pandey
- Department of Biotechnology, Institute of Applied Sciences & Humanities, GLA University, Chaumuhan, Mathura 281406, Uttar Pradesh, India
| | - Saurabh Gupta
- Department of Biotechnology, Institute of Applied Sciences & Humanities, GLA University, Chaumuhan, Mathura 281406, Uttar Pradesh, India.
| | - Jitendra Singh
- Department of Translational Medicine, All India Institute of Medical Sciences (AIIMS)Bhopal, Saket Nagar, Bhopal 462020, Madhya Pradesh, India
| |
Collapse
|
2
|
Venati SR, Uversky VN. Exploring Intrinsic Disorder in Human Synucleins and Associated Proteins. Int J Mol Sci 2024; 25:8399. [PMID: 39125972 PMCID: PMC11313516 DOI: 10.3390/ijms25158399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 07/27/2024] [Accepted: 07/29/2024] [Indexed: 08/12/2024] Open
Abstract
In this work, we explored the intrinsic disorder status of the three members of the synuclein family of proteins-α-, β-, and γ-synucleins-and showed that although all three human synucleins are highly disordered, the highest levels of disorder are observed in γ-synuclein. Our analysis of the peculiarities of the amino acid sequences and modeled 3D structures of the human synuclein family members revealed that the pathological mutations A30P, E46K, H50Q, A53T, and A53E associated with the early onset of Parkinson's disease caused some increase in the local disorder propensity of human α-synuclein. A comparative sequence-based analysis of the synuclein proteins from various evolutionary distant species and evaluation of their levels of intrinsic disorder using a set of commonly used bioinformatics tools revealed that, irrespective of their origin, all members of the synuclein family analyzed in this study were predicted to be highly disordered proteins, indicating that their intrinsically disordered nature represents an evolutionary conserved and therefore functionally important feature. A detailed functional disorder analysis of the proteins in the interactomes of the human synuclein family members utilizing a set of commonly used disorder analysis tools showed that the human α-synuclein interactome has relatively higher levels of intrinsic disorder as compared with the interactomes of human β- and γ- synucleins and revealed that, relative to the β- and γ-synuclein interactomes, α-synuclein interactors are involved in a much broader spectrum of highly diversified functional pathways. Although proteins interacting with three human synucleins were characterized by highly diversified functionalities, this analysis also revealed that the interactors of three human synucleins were involved in three common functional pathways, such as the synaptic vesicle cycle, serotonergic synapse, and retrograde endocannabinoid signaling. Taken together, these observations highlight the critical importance of the intrinsic disorder of human synucleins and their interactors in various neuronal processes.
Collapse
Affiliation(s)
- Sriya Reddy Venati
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA;
| | - Vladimir N. Uversky
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA;
- USF Health Byrd Alzheimer’s Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
| |
Collapse
|
3
|
Bhole RP, Chikhale RV, Rathi KM. Current biomarkers and treatment strategies in Alzheimer disease: An overview and future perspectives. IBRO Neurosci Rep 2024; 16:8-42. [PMID: 38169888 PMCID: PMC10758887 DOI: 10.1016/j.ibneur.2023.11.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 11/06/2023] [Accepted: 11/09/2023] [Indexed: 01/05/2024] Open
Abstract
Alzheimer's disease (AD), a progressive degenerative disorder first identified by Alois Alzheimer in 1907, poses a significant public health challenge. Despite its prevalence and impact, there is currently no definitive ante mortem diagnosis for AD pathogenesis. By 2050, the United States may face a staggering 13.8 million AD patients. This review provides a concise summary of current AD biomarkers, available treatments, and potential future therapeutic approaches. The review begins by outlining existing drug targets and mechanisms in AD, along with a discussion of current treatment options. We explore various approaches targeting Amyloid β (Aβ), Tau Protein aggregation, Tau Kinases, Glycogen Synthase kinase-3β, CDK-5 inhibitors, Heat Shock Proteins (HSP), oxidative stress, inflammation, metals, Apolipoprotein E (ApoE) modulators, and Notch signaling. Additionally, we examine the historical use of Estradiol (E2) as an AD therapy, as well as the outcomes of Randomized Controlled Trials (RCTs) that evaluated antioxidants (e.g., vitamin E) and omega-3 polyunsaturated fatty acids as alternative treatment options. Notably, positive effects of docosahexaenoic acid nutriment in older adults with cognitive impairment or AD are highlighted. Furthermore, this review offers insights into ongoing clinical trials and potential therapies, shedding light on the dynamic research landscape in AD treatment.
Collapse
Affiliation(s)
- Ritesh P. Bhole
- Department of Pharmaceutical Chemistry, Dr. D. Y. Patil institute of Pharmaceutical Sciences & Research, Pimpri, Pune, India
- Dr. D. Y. Patil Dental College and Hospital, Dr. D. Y. Patil Vidyapeeth, Pimpri, Pune 411018, India
| | | | - Karishma M. Rathi
- Department of Pharmacy Practice, Dr. D. Y. Patil institute of Pharmaceutical Sciences & Research, Pimpri, Pune, India
| |
Collapse
|
4
|
Ndunge OBA, Shikani HJ, Dai M, Freeman BD, Desruisseaux MS. Effects of anti-tau immunotherapy on reactive microgliosis, cerebral endotheliopathy, and cognitive function in an experimental model of cerebral malaria. J Neurochem 2023; 167:441-460. [PMID: 37814468 PMCID: PMC10596299 DOI: 10.1111/jnc.15972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 09/08/2023] [Accepted: 09/12/2023] [Indexed: 10/11/2023]
Abstract
Cerebral malaria (CM), a potentially fatal encephalopathy caused primarily by infection with Plasmodium falciparum, results in long-term adverse neuro-psychiatric sequelae. Neural cell injury contributes to the neurological deficits observed in CM. Abnormal regulation of tau, an axonal protein pathologically associated with the formation of neurofibrillary lesions in neurodegenerative diseases, has been linked to inflammation and cerebral microvascular compromise and has been reported in human and experimental CM (ECM). Immunotherapy with a monoclonal antibody to pathological tau (PHF-1 mAB) in experimental models of neurodegenerative diseases has been reported to mitigate cognitive decline. We investigated whether immunotherapy with PHF-1 mAB prevented cerebral endotheliopathy, neural cell injury, and neuroinflammation during ECM. Using C57BL/6 mice infected with either Plasmodium berghei ANKA (PbA), which causes ECM, Plasmodium berghei NK65 (PbN), which causes severe malaria, but not ECM, or uninfected mice (Un), we demonstrated that when compared to PbN infection or uninfected mice, PbA infection resulted in significant memory impairment at 6 days post-infection, in association with abnormal tau phosphorylation at Ser202 /Thr205 (pSer202 /Thr205 ) and Ser396-404 (pSer396-404 ) in mouse brains. ECM also resulted in significantly higher expression of inflammatory markers, in microvascular congestion, and glial cell activation. Treatment with PHF-1 mAB prevented PbA-induced cognitive impairment and was associated with significantly less vascular congestion, neuroinflammation, and neural cell activation in mice with ECM. These findings suggest that abnormal regulation of tau protein contributes to cerebral vasculopathy and is critical in the pathogenesis of neural cell injury during CM. Tau-targeted therapies may ameliorate the neural cell damage and subsequent neurocognitive impairment that occur during disease.
Collapse
Affiliation(s)
| | - Henry J. Shikani
- Albert Einstein College of Medicine, Department of Pathology, Bronx, NY, USA
| | - Minxian Dai
- Albert Einstein College of Medicine, Department of Pathology, Bronx, NY, USA
| | - Brandi D. Freeman
- Albert Einstein College of Medicine, Department of Pathology, Bronx, NY, USA
| | - Mahalia S. Desruisseaux
- Correspondence and reprint requests: Mahalia S. Desruisseaux, MD, Associate Professor of Internal Medicine, Section of Infectious Diseases, Yale School of Medicine, PO Box 208022, TAC S169B, New Haven, CT 06520-8022,
| |
Collapse
|
5
|
Chavan RS, Supalkar KV, Sadar SS, Vyawahare NS. Animal models of Alzheimer's disease: An originof innovativetreatments and insight to the disease's etiology. Brain Res 2023; 1814:148449. [PMID: 37302570 DOI: 10.1016/j.brainres.2023.148449] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 06/04/2023] [Accepted: 06/05/2023] [Indexed: 06/13/2023]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder. The main pathogenic features are the development and depositionof senile plaques and neurofibrillary tangles in brain. Recent developments in the knowledge of the pathophysiological mechanisms behind Alzheimer's disease and other cognitive disorders have suggested new approaches to treatment development. These advancements have been significantly aided by the use of animal models, which are also essential for the assessment of therapies. Various approaches as transgenic animal model, chemical models, brain injury are used. This review will presentAD pathophysiology and emphasize several Alzheimer like dementia causingchemical substances, transgenic animal model and stereotaxy in order to enhance our existing knowledge of their mechanism of AD induction, dose, and treatment duration.
Collapse
Affiliation(s)
- Ritu S Chavan
- D. Y. Patil College of Pharmacy, Akurdi, Pune 411044, Maharashtra, India.
| | - Krishna V Supalkar
- D. Y. Patil College of Pharmacy, Akurdi, Pune 411044, Maharashtra, India
| | - Smeeta S Sadar
- D. Y. Patil College of Pharmacy, Akurdi, Pune 411044, Maharashtra, India
| | - Niraj S Vyawahare
- D. Y. Patil College of Pharmacy, Akurdi, Pune 411044, Maharashtra, India
| |
Collapse
|
6
|
Hier DB, Azizi S, Thimgan MS, Wunsch DC. Tau kinetics in Alzheimer's disease. Front Aging Neurosci 2022; 14:1055170. [PMID: 36437992 PMCID: PMC9682289 DOI: 10.3389/fnagi.2022.1055170] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 10/27/2022] [Indexed: 07/20/2023] Open
Abstract
The cytoskeletal protein tau is implicated in the pathogenesis of Alzheimer's disease which is characterized by intra-neuronal neurofibrillary tangles containing abnormally phosphorylated insoluble tau. Levels of soluble tau are elevated in the brain, the CSF, and the plasma of patients with Alzheimer's disease. To better understand the causes of these elevated levels of tau, we propose a three-compartment kinetic model (brain, CSF, and plasma). The model assumes that the synthesis of tau follows zero-order kinetics (uncorrelated with compartmental tau levels) and that the release, absorption, and clearance of tau is governed by first-order kinetics (linearly related to compartmental tau levels). Tau that is synthesized in the brain compartment can be released into the interstitial fluid, catabolized, or retained in neurofibrillary tangles. Tau released into the interstitial fluid can mix with the CSF and eventually drain to the plasma compartment. However, losses of tau in the drainage pathways may be significant. The kinetic model estimates half-life of tau in each compartment (552 h in the brain, 9.9 h in the CSF, and 10 h in the plasma). The kinetic model predicts that an increase in the neuronal tau synthesis rate or a decrease in tau catabolism rate best accounts for observed increases in tau levels in the brain, CSF, and plasma found in Alzheimer's disease. Furthermore, the model predicts that increases in brain half-life of tau in Alzheimer's disease should be attributed to decreased tau catabolism and not to increased tau synthesis. Most clearance of tau in the neuron occurs through catabolism rather than release to the CSF compartment. Additional experimental data would make ascertainment of the model parameters more precise.
Collapse
Affiliation(s)
- Daniel B. Hier
- Applied Computational Intelligence Laboratory, Department of Electrical & Computer Engineering, Missouri University of Science & Technology, Rolla, MO, United States
- Department of Neurology and Rehabilitation, University of Illinois at Chicago, Chicago, IL, United States
| | - Sima Azizi
- Applied Computational Intelligence Laboratory, Department of Electrical & Computer Engineering, Missouri University of Science & Technology, Rolla, MO, United States
| | - Matthew S. Thimgan
- Department of Biological Sciences, Missouri University of Science & Technology, Rolla, MO, United States
| | - Donald C. Wunsch
- Applied Computational Intelligence Laboratory, Department of Electrical & Computer Engineering, Missouri University of Science & Technology, Rolla, MO, United States
- ECCS Division, National Science Foundation, Alexandria, VA, United States
| |
Collapse
|
7
|
Haynes BM, Cunningham K, Shekhar MPV. RAD6 inhibition enhances paclitaxel sensitivity of triple negative breast cancer cells by aggravating mitotic spindle damage. BMC Cancer 2022; 22:1073. [PMID: 36258187 PMCID: PMC9578210 DOI: 10.1186/s12885-022-10119-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 09/22/2022] [Indexed: 11/28/2022] Open
Abstract
Background Paclitaxel (PTX), a first-line therapy for triple negative breast cancers (TNBC) induces anti-tumor activity by microtubule stabilization and inhibition of cell division. Its dose-limiting toxicity and short half-life, however, pose clinical challenges underscoring the need for strategies that increase its efficiency. RAD6, a E2 ubiquitin conjugating enzyme, is associated with centrosomes at all phases of cell cycle. Constitutive overexpression of the RAD6B homolog in normal breast cells induces centrosome amplification and multipolar spindle formation, indicating its importance in centrosome regulation. Methods TNBC centrosome numbers were scored by pericentrin immunostaining. PTX sensitivities and interactions with SMI#9, a RAD6-selective small molecule inhibitor, on TNBC cell survival were analyzed by MTT and colony forming assays and an isogenic MDA-MB-468 TNBC model of PTX resistance. The molecular mechanisms underlying PTX and SMI#9 induced cytotoxicity were determined by flow cytometry, immunoblot analysis of cyclin B1 and microtubule associated protein TAU, and dual immunofluorescence staining of TAU and α-tubulin. Results Our data show aberrant centrosome numbers and that PTX sensitivities are not correlated with TNBC BRCA1 status. Combining PTX with SMI#9 synergistically enhances PTX sensitivities of BRCA1 wild-type and mutant TNBC cells. Whereas SMI#9/PTX combination treatment increased cyclin B1 levels in MDA-MB-468 cells, it induced cyclin B1 loss in HCC1937 cells with accumulation of reproductively dead giant cells, a characteristic of mitotic catastrophe. Cell cycle analysis revealed drug-induced accumulation of tetraploid cells in S and G2/M phases, and robust increases in cells with 4 N DNA content in HCC1937 cells. TAU overexpression is associated with reduced PTX efficacy. Among the six TAU isoforms, both SMI#9 and PTX downregulated 1N3R TAU in MDA-MB-468 and HCC1937 cells, suggesting a common mechanism of 1N3R regulation. Dual TAU and α-tubulin immunostaining showed that SMI#9 induces monopolar mitotic spindles. Using the isogenic model of PTX resistance, we show that SMI#9 treatment restores PTX sensitivity. Conclusions These data support a common mechanism of microtubule regulation by SMI#9 and PTX and suggest that combining PTX with RAD6 inhibitor may be beneficial for increasing TNBC sensitivities to PTX and alleviating toxicity. This study demonstrates a new role for RAD6 in regulating microtubule dynamics. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-022-10119-z.
Collapse
Affiliation(s)
- Brittany M Haynes
- Karmanos Cancer Institute, 4100 John R Street, Detroit, MI, 48201, USA.,Department of Oncology, Wayne State University School of Medicine, 421 E. Canfield Avenue, Detroit, MI, 48201, USA.,Present address: Office of Policy Communications, and Education, National Center for Advancing Translational Sciences, Besthesda, USA
| | - Kristen Cunningham
- Karmanos Cancer Institute, 4100 John R Street, Detroit, MI, 48201, USA.,Department of Oncology, Wayne State University School of Medicine, 421 E. Canfield Avenue, Detroit, MI, 48201, USA
| | - Malathy P V Shekhar
- Karmanos Cancer Institute, 4100 John R Street, Detroit, MI, 48201, USA. .,Department of Oncology, Wayne State University School of Medicine, 421 E. Canfield Avenue, Detroit, MI, 48201, USA. .,Department of Pathology, Wayne State University School of Medicine, 421 E. Canfield Avenue, Detroit, MI, 48201, USA.
| |
Collapse
|
8
|
Lo CH. Recent advances in cellular biosensor technology to investigate tau oligomerization. Bioeng Transl Med 2021; 6:e10231. [PMID: 34589603 PMCID: PMC8459642 DOI: 10.1002/btm2.10231] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 05/04/2021] [Accepted: 05/05/2021] [Indexed: 12/12/2022] Open
Abstract
Tau is a microtubule binding protein which plays an important role in physiological functions but it is also involved in the pathogenesis of Alzheimer's disease and related tauopathies. While insoluble and β-sheet containing tau neurofibrillary tangles have been the histopathological hallmark of these diseases, recent studies suggest that soluble tau oligomers, which are formed prior to fibrils, are the primary toxic species. Substantial efforts have been made to generate tau oligomers using purified recombinant protein strategies to study oligomer conformations as well as their toxicity. However, no specific toxic tau species has been identified to date, potentially due to the lack of cellular environment. Hence, there is a need for cell-based models for direct monitoring of tau oligomerization and aggregation. This review will summarize the recent advances in the cellular biosensor technology, with a focus on fluorescence resonance energy transfer, bimolecular fluorescence complementation, and split luciferase complementation approaches, to monitor formation of tau oligomers and aggregates in living cells. We will discuss the applications of the cellular biosensors in examining the heterogeneous tau conformational ensembles and factors affecting tau self-assembly, as well as detecting cell-to-cell propagation of tau pathology. We will also compare the advantages and limitations of each type of tau biosensors, and highlight their translational applications in biomarker development and therapeutic discovery.
Collapse
Affiliation(s)
- Chih Hung Lo
- Department of Neurology, Brigham and Women's HospitalHarvard Medical SchoolBostonMassachusettsUSA
| |
Collapse
|
9
|
Azouz M, Feuillie C, Lafleur M, Molinari M, Lecomte S. Interaction of Tau construct K18 with model lipid membranes. NANOSCALE ADVANCES 2021; 3:4244-4253. [PMID: 36132846 PMCID: PMC9417262 DOI: 10.1039/d1na00055a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 06/16/2021] [Indexed: 06/12/2023]
Abstract
One of the hallmarks of Alzheimer's disease (AD) is the formation of neurofibrillary tangles, resulting from the aggregation of the tubulin associated unit protein (Tau), which holds a vital role in maintaining neuron integrity in a healthy brain. The development of such aggregates and their deposition in the brain seem to correlate with the onset of neurodegeneration processes. The misfolding and subsequent aggregation of the protein into paired helical filaments that further form the tangles, lead to dysfunction of the protein with neuronal loss and cognitive decline. The aggregation of the protein then seems to be a causative factor of the neurodegeneration associated with AD. The hypothesis of an involvement of the membrane in modulating the misfolding and assembly of Tau into paired helical filaments attracts increasing interests. To provide more insight about how lipids can modulate the interactions with Tau, we have conducted a comprehensive Atomic Force Microscopy (AFM) study involving supported lipid bilayers of controlled compositions with the Tau microtubule-binding construct K18. Particularly, the effects of zwitterionic and negatively charged phospholipids on the interaction have been investigated. Deleterious solubilization effects have been evidenced on fluid zwitterionic membranes as well as an inability of K18 to fragment gel phases. The role of negative lipids in the aggregation of the peptide and the particular ability of phosphatidylinositol-4,5-bisphosphate (PIP2) in inducing K18 fibrillization on membranes are also reported.
Collapse
Affiliation(s)
- Mehdi Azouz
- Institute of Chemistry and Biology of Membranes and Nano-Objects, CNRS, Université de Bordeaux, INP Bordeaux, UMR5248 allée Geoffroy Saint Hilaire 33600 Pessac France
- Department of Chemistry, Université de Montréal Succursale Centre-Ville Montréal C.P. 6128 Québec Canada H3C 3J7
| | - Cécile Feuillie
- Institute of Chemistry and Biology of Membranes and Nano-Objects, CNRS, Université de Bordeaux, INP Bordeaux, UMR5248 allée Geoffroy Saint Hilaire 33600 Pessac France
| | - Michel Lafleur
- Department of Chemistry, Université de Montréal Succursale Centre-Ville Montréal C.P. 6128 Québec Canada H3C 3J7
| | - Michaël Molinari
- Institute of Chemistry and Biology of Membranes and Nano-Objects, CNRS, Université de Bordeaux, INP Bordeaux, UMR5248 allée Geoffroy Saint Hilaire 33600 Pessac France
| | - Sophie Lecomte
- Institute of Chemistry and Biology of Membranes and Nano-Objects, CNRS, Université de Bordeaux, INP Bordeaux, UMR5248 allée Geoffroy Saint Hilaire 33600 Pessac France
| |
Collapse
|
10
|
Li D, Zhang J, Li X, Chen Y, Yu F, Liu Q. Insights into lncRNAs in Alzheimer's disease mechanisms. RNA Biol 2021; 18:1037-1047. [PMID: 32605500 PMCID: PMC8216181 DOI: 10.1080/15476286.2020.1788848] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 06/19/2020] [Accepted: 06/22/2020] [Indexed: 12/12/2022] Open
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder and the most common dementia among the elderly. The pathophysiology of AD is characterized by two hallmarks: amyloid plaques, produced by amyloid β (Aβ) aggregation, and neurofibrillary tangle (NFT), produced by accumulation of phosphorylated tau. The regulatory roles of non-coding RNAs (ncRNAs), particularly long noncoding RNAs (lncRNAs), have been widely recognized in gene expression at the transcriptional and posttranscriptional levels. Mounting evidence shows that lncRNAs are aberrantly expressed in AD progression. Here, we review the lncRNAs that implicated in the regulation of Aβ peptide, tau, inflammation, cell death, and other aspects which are the main mechanisms of AD pathology. We also discuss the possible clinical or therapeutic utility of lncRNA detection or targeting to help diagnose or possibly combat AD.
Collapse
Affiliation(s)
- Dingfeng Li
- Institute on Aging and Brain Disorders, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, University of Science and Technology of China, Hefei, China
- Neurodegenerative Disease Research Center, University of Science and Technology of China, Hefei, China
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, China
- CAS Key Laboratory of Brain Function and Disease, University of Science and Technology of China, Hefei, China
| | - Juan Zhang
- Institute on Aging and Brain Disorders, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, University of Science and Technology of China, Hefei, China
- Neurodegenerative Disease Research Center, University of Science and Technology of China, Hefei, China
- CAS Key Laboratory of Brain Function and Disease, University of Science and Technology of China, Hefei, China
| | - Xiaohui Li
- Institute on Aging and Brain Disorders, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, University of Science and Technology of China, Hefei, China
- Neurodegenerative Disease Research Center, University of Science and Technology of China, Hefei, China
- CAS Key Laboratory of Brain Function and Disease, University of Science and Technology of China, Hefei, China
| | - Yuhua Chen
- Department of Neurology, The First Affiliated Hospital of University of Science and Technology of China, Hefei, China
| | - Feng Yu
- Department of Neurology, The First Affiliated Hospital of University of Science and Technology of China, Hefei, China
| | - Qiang Liu
- Institute on Aging and Brain Disorders, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, University of Science and Technology of China, Hefei, China
- Neurodegenerative Disease Research Center, University of Science and Technology of China, Hefei, China
- CAS Key Laboratory of Brain Function and Disease, University of Science and Technology of China, Hefei, China
- CAS Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, China
| |
Collapse
|
11
|
Tandon A, Singh SJ, Chaturvedi RK. Nanomedicine against Alzheimer's and Parkinson's Disease. Curr Pharm Des 2021; 27:1507-1545. [PMID: 33087025 DOI: 10.2174/1381612826666201021140904] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 08/06/2020] [Accepted: 08/18/2020] [Indexed: 11/22/2022]
Abstract
Alzheimer's and Parkinson's are the two most rampant neurodegenerative disorders worldwide. Existing treatments have a limited effect on the pathophysiology but are unable to fully arrest the progression of the disease. This is due to the inability of these therapeutic molecules to efficiently cross the blood-brain barrier. We discuss how nanotechnology has enabled researchers to develop novel and efficient nano-therapeutics against these diseases. The development of nanotized drug delivery systems has permitted an efficient, site-targeted, and controlled release of drugs in the brain, thereby presenting a revolutionary therapeutic approach. Nanoparticles are also being thoroughly studied and exploited for their role in the efficient and precise diagnosis of neurodegenerative conditions. We summarize the role of different nano-carriers and RNAi-conjugated nanoparticle-based therapeutics for their efficacy in pre-clinical studies. We also discuss the challenges underlying the use of nanomedicine with a focus on their route of administration, concentration, metabolism, and any toxic effects for successful therapeutics in these diseases.
Collapse
Affiliation(s)
- Ankit Tandon
- Developmental Toxicology Laboratory, Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India
| | - Sangh J Singh
- Developmental Toxicology Laboratory, Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India
| | - Rajnish K Chaturvedi
- Developmental Toxicology Laboratory, Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India
| |
Collapse
|
12
|
Mohammadi F, Takalloo Z, Rahmani H, Nasiri Khalili MA, Khajeh K, Riazi G, H Sajedi R. Interplay of isoform 1N4R tau protein and amyloid-β peptide fragment 25-35 in reducing and non-reducing conditions. J Biochem 2021; 169:119-134. [PMID: 32857841 DOI: 10.1093/jb/mvaa101] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 08/14/2020] [Indexed: 11/13/2022] Open
Abstract
Amyloid-β (Aβ) peptide and tau protein are two hallmark proteins in Alzheimer's disease (AD); however, the parameters, which mediate the abnormal aggregation of Aβ and tau, have not been fully discovered. Here, we have provided an optimum method to purify tau protein isoform 1N4R by using nickel-nitrilotriacetic acid agarose chromatography under denaturing condition. The biochemical and biophysical properties of the purified protein were further characterized using in vitro tau filament assembly, tubulin polymerization assay, circular dichroism (CD) spectroscopy and atomic force microscopy. Afterwards, we investigated the effect of tau protein on aggregation of Aβ (25-35) peptide using microscopic imaging and cell viability assay. Incubation of tau at physiologic and supra-physiologic concentrations with Aβ25-35 for 40 days under reducing and non-reducing conditions revealed formation of two types of aggregates with distinct morphologies and dimensions. In non-reducing condition, the co-incubated sample showed granular aggregates, while in reducing condition, they formed annular protofibrils. Results from cell viability assay revealed the increased cell viability for the co-incubated sample. Therefore, the disassembling action shown by tau protein on Aβ25-35 suggests the possibility that tau may have a protective role in preventing Aβ peptide from acquiring the cytotoxic, aggregated form against oxidative stress damages.
Collapse
Affiliation(s)
- Fatemeh Mohammadi
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Jalal AleAhmad Highway, P.O.Box: 14115-111, Iran
| | - Zeinab Takalloo
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Jalal AleAhmad Highway, P.O.Box: 14115-111, Iran
| | - Hossein Rahmani
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Jalal AleAhmad Highway, P.O.Box: 14115-111, Iran
| | - Mohammad Ali Nasiri Khalili
- Department of Bioscience and Biotechnology, Malek Ashtar University of Technology, Tehran, Lavizan, Babaei Highway, P.O.Box: 15875-1774, Iran
| | - Khosro Khajeh
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Jalal AleAhmad Highway, P.O.Box: 14115-111, Iran
| | - Gholamhossein Riazi
- Institute of Biochemistry and Biophysics (IBB), University of Tehran, Tehran, Enghelab Square, Postal Code: 1417466191, Iran
| | - Reza H Sajedi
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Jalal AleAhmad Highway, P.O.Box: 14115-111, Iran
| |
Collapse
|
13
|
Nguyen PH, Ramamoorthy A, Sahoo BR, Zheng J, Faller P, Straub JE, Dominguez L, Shea JE, Dokholyan NV, De Simone A, Ma B, Nussinov R, Najafi S, Ngo ST, Loquet A, Chiricotto M, Ganguly P, McCarty J, Li MS, Hall C, Wang Y, Miller Y, Melchionna S, Habenstein B, Timr S, Chen J, Hnath B, Strodel B, Kayed R, Lesné S, Wei G, Sterpone F, Doig AJ, Derreumaux P. Amyloid Oligomers: A Joint Experimental/Computational Perspective on Alzheimer's Disease, Parkinson's Disease, Type II Diabetes, and Amyotrophic Lateral Sclerosis. Chem Rev 2021; 121:2545-2647. [PMID: 33543942 PMCID: PMC8836097 DOI: 10.1021/acs.chemrev.0c01122] [Citation(s) in RCA: 462] [Impact Index Per Article: 115.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Protein misfolding and aggregation is observed in many amyloidogenic diseases affecting either the central nervous system or a variety of peripheral tissues. Structural and dynamic characterization of all species along the pathways from monomers to fibrils is challenging by experimental and computational means because they involve intrinsically disordered proteins in most diseases. Yet understanding how amyloid species become toxic is the challenge in developing a treatment for these diseases. Here we review what computer, in vitro, in vivo, and pharmacological experiments tell us about the accumulation and deposition of the oligomers of the (Aβ, tau), α-synuclein, IAPP, and superoxide dismutase 1 proteins, which have been the mainstream concept underlying Alzheimer's disease (AD), Parkinson's disease (PD), type II diabetes (T2D), and amyotrophic lateral sclerosis (ALS) research, respectively, for many years.
Collapse
Affiliation(s)
- Phuong H Nguyen
- CNRS, UPR9080, Université de Paris, Laboratory of Theoretical Biochemistry, IBPC, Fondation Edmond de Rothschild, PSL Research University, Paris 75005, France
| | - Ayyalusamy Ramamoorthy
- Biophysics and Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| | - Bikash R Sahoo
- Biophysics and Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| | - Jie Zheng
- Department of Chemical & Biomolecular Engineering, The University of Akron, Akron, Ohio 44325, United States
| | - Peter Faller
- Institut de Chimie, UMR 7177, CNRS-Université de Strasbourg, 4 rue Blaise Pascal, 67000 Strasbourg, France
| | - John E Straub
- Department of Chemistry, Boston University, 590 Commonwealth Avenue, Boston, Massachusetts 02215, United States
| | - Laura Dominguez
- Facultad de Química, Departamento de Fisicoquímica, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| | - Joan-Emma Shea
- Department of Chemistry and Biochemistry, and Department of Physics, University of California, Santa Barbara, California 93106, United States
| | - Nikolay V Dokholyan
- Department of Pharmacology and Biochemistry & Molecular Biology, Penn State University College of Medicine, Hershey, Pennsylvania 17033, United States
- Department of Chemistry, and Biomedical Engineering, Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Alfonso De Simone
- Department of Life Sciences, Imperial College London, London SW7 2AZ, U.K
- Molecular Biology, University of Naples Federico II, Naples 80138, Italy
| | - Buyong Ma
- Basic Science Program, Leidos Biomedical Research, Inc., Cancer and Inflammation Program, National Cancer Institute, Frederick, Maryland 21702, United States
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Ruth Nussinov
- Basic Science Program, Leidos Biomedical Research, Inc., Cancer and Inflammation Program, National Cancer Institute, Frederick, Maryland 21702, United States
- Sackler Institute of Molecular Medicine, Department of Human Genetics and Molecular Medicine Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Saeed Najafi
- Department of Chemistry and Biochemistry, and Department of Physics, University of California, Santa Barbara, California 93106, United States
| | - Son Tung Ngo
- Laboratory of Theoretical and Computational Biophysics & Faculty of Applied Sciences, Ton Duc Thang University, 33000 Ho Chi Minh City, Vietnam
| | - Antoine Loquet
- Institute of Chemistry & Biology of Membranes & Nanoobjects, (UMR5248 CBMN), CNRS, Université Bordeaux, Institut Européen de Chimie et Biologie, 33600 Pessac, France
| | - Mara Chiricotto
- Department of Chemical Engineering and Analytical Science, University of Manchester, Manchester M13 9PL, U.K
| | - Pritam Ganguly
- Department of Chemistry and Biochemistry, and Department of Physics, University of California, Santa Barbara, California 93106, United States
| | - James McCarty
- Chemistry Department, Western Washington University, Bellingham, Washington 98225, United States
| | - Mai Suan Li
- Institute for Computational Science and Technology, SBI Building, Quang Trung Software City, Tan Chanh Hiep Ward, District 12, Ho Chi Minh City 700000, Vietnam
- Institute of Physics, Polish Academy of Sciences, Al. Lotnikow 32/46, 02-668 Warsaw, Poland
| | - Carol Hall
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27695-7905, United States
| | - Yiming Wang
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27695-7905, United States
| | - Yifat Miller
- Department of Chemistry and The Ilse Katz Institute for Nanoscale Science & Technology, Ben-Gurion University of the Negev, Be'er Sheva 84105, Israel
| | | | - Birgit Habenstein
- Institute of Chemistry & Biology of Membranes & Nanoobjects, (UMR5248 CBMN), CNRS, Université Bordeaux, Institut Européen de Chimie et Biologie, 33600 Pessac, France
| | - Stepan Timr
- CNRS, UPR9080, Université de Paris, Laboratory of Theoretical Biochemistry, IBPC, Fondation Edmond de Rothschild, PSL Research University, Paris 75005, France
| | - Jiaxing Chen
- Department of Pharmacology and Biochemistry & Molecular Biology, Penn State University College of Medicine, Hershey, Pennsylvania 17033, United States
| | - Brianna Hnath
- Department of Pharmacology and Biochemistry & Molecular Biology, Penn State University College of Medicine, Hershey, Pennsylvania 17033, United States
| | - Birgit Strodel
- Institute of Complex Systems: Structural Biochemistry (ICS-6), Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Rakez Kayed
- Mitchell Center for Neurodegenerative Diseases, and Departments of Neurology, Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, Texas 77555, United States
| | - Sylvain Lesné
- Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Guanghong Wei
- Department of Physics, State Key Laboratory of Surface Physics, and Key Laboratory for Computational Physical Science, Multiscale Research Institute of Complex Systems, Fudan University, Shanghai 200438, China
| | - Fabio Sterpone
- CNRS, UPR9080, Université de Paris, Laboratory of Theoretical Biochemistry, IBPC, Fondation Edmond de Rothschild, PSL Research University, Paris 75005, France
| | - Andrew J Doig
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, U.K
| | - Philippe Derreumaux
- CNRS, UPR9080, Université de Paris, Laboratory of Theoretical Biochemistry, IBPC, Fondation Edmond de Rothschild, PSL Research University, Paris 75005, France
- Laboratory of Theoretical Chemistry, Ton Duc Thang University, 33000 Ho Chi Minh City, Vietnam
- Faculty of Pharmacy, Ton Duc Thang University, 33000 Ho Chi Minh City, Vietnam
| |
Collapse
|
14
|
Benítez MJ, Cuadros R, Jiménez JS. Phosphorylation and Dephosphorylation of Tau Protein by the Catalytic Subunit of PKA, as Probed by Electrophoretic Mobility Retard. J Alzheimers Dis 2021; 79:1143-1156. [PMID: 33386804 PMCID: PMC7990467 DOI: 10.3233/jad-201077] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Background: Tau is a microtubule associated protein that regulates the stability of microtubules and the microtubule-dependent axonal transport. Its hyperphosphorylated form is one of the hallmarks of Alzheimer’s disease and other tauopathies and the major component of the paired helical filaments that form the abnormal proteinaceous tangles found in these neurodegenerative diseases. It is generally accepted that the phosphorylation extent of tau is the result of an equilibrium in the activity of protein kinases and phosphatases. Disruption of the balance between both types of enzyme activities has been assumed to be at the origin of tau hyperphosphorylation and the subsequent toxicity and progress of the disease. Objective: We explore the possibility that, beside the phosphatase action on phosphorylated tau, the catalytic subunit of PKA catalyzes both tau phosphorylation and also tau dephosphorylation, depending on the ATP/ADP ratio. Methods: We use the shift in the relative electrophoretic mobility suffered by different phosphorylated forms of tau, as a sensor of the catalytic action of the enzyme. Results: The results are in agreement with the long-known thermodynamic reversibility of the phosphorylation reaction (ATP + Protein = ADP+Phospho-Protein) catalyzed by PKA and many other protein kinases. Conclusion: The results contribute to put the compartmentalized energy state of the neuron and the mitochondrial-functions disruption upstream of tau-related pathologies.
Collapse
Affiliation(s)
- María J Benítez
- Departamento de Química Física Aplicada, Universidad Autónoma de Madrid, Madrid, Spain
| | - Raquel Cuadros
- Centro de Biología Molecular Severo Ochoa, CSIC, Madrid, Spain
| | - Juan S Jiménez
- Departamento de Química Física Aplicada, Universidad Autónoma de Madrid, Madrid, Spain
| |
Collapse
|
15
|
Lo CH, Sachs JN. The role of wild-type tau in Alzheimer's disease and related tauopathies. JOURNAL OF LIFE SCIENCES (WESTLAKE VILLAGE, CALIF.) 2020; 2:1-17. [PMID: 33665646 PMCID: PMC7929479 DOI: 10.36069/jols/20201201] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Tau oligomers have recently emerged as the principal toxic species in Alzheimer's disease (AD) and tauopathies. Tau oligomers are spontaneously self-assembled soluble tau proteins that are formed prior to fibrils, and they have been shown to play a central role in neuronal cell death and in the induction of neurodegeneration in animal models. As the therapeutic paradigm shifts to targeting toxic tau oligomers, this suggests the focus to study tau oligomerization in species that are less susceptible to fibrillization. While truncated and mutation containing tau as well as the isolated repeat domains are particularly prone to fibrillization, the wild-type (WT) tau proteins have been shown to be resistant to fibril formation in the absence of aggregation inducers. In this review, we will summarize and discuss the toxicity of WT tau both in vitro and in vivo, as well as its involvement in tau oligomerization and cell-to-cell propagation of pathology. Understanding the role of WT tau will enable more effective biomarker development and therapeutic discovery for treatment of AD and tauopathies.
Collapse
Affiliation(s)
- Chih Hung Lo
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN 55455
- Department of Neurology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115
| | - Jonathan N. Sachs
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN 55455
| |
Collapse
|
16
|
Silva MC, Haggarty SJ. Tauopathies: Deciphering Disease Mechanisms to Develop Effective Therapies. Int J Mol Sci 2020; 21:ijms21238948. [PMID: 33255694 PMCID: PMC7728099 DOI: 10.3390/ijms21238948] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 11/20/2020] [Accepted: 11/22/2020] [Indexed: 12/13/2022] Open
Abstract
Tauopathies are neurodegenerative diseases characterized by the pathological accumulation of microtubule-associated protein tau (MAPT) in the form of neurofibrillary tangles and paired helical filaments in neurons and glia, leading to brain cell death. These diseases include frontotemporal dementia (FTD) and Alzheimer's disease (AD) and can be sporadic or inherited when caused by mutations in the MAPT gene. Despite an incredibly high socio-economic burden worldwide, there are still no effective disease-modifying therapies, and few tau-focused experimental drugs have reached clinical trials. One major hindrance for therapeutic development is the knowledge gap in molecular mechanisms of tau-mediated neuronal toxicity and death. For the promise of precision medicine for brain disorders to be fulfilled, it is necessary to integrate known genetic causes of disease, i.e., MAPT mutations, with an understanding of the dysregulated molecular pathways that constitute potential therapeutic targets. Here, the growing understanding of known and proposed mechanisms of disease etiology will be reviewed, together with promising experimental tau-directed therapeutics, such as recently developed tau degraders. Current challenges faced by the fields of tau research and drug discovery will also be addressed.
Collapse
|
17
|
Liu M, Sui D, Dexheimer T, Hovde S, Deng X, Wang KW, Lin HL, Chien HT, Kweon HK, Kuo NS, Ayoub CA, Jimenez-Harrison D, Andrews PC, Kwok R, Bochar DA, Kuret J, Fortin J, Tsay YG, Kuo MH. Hyperphosphorylation Renders Tau Prone to Aggregate and to Cause Cell Death. Mol Neurobiol 2020; 57:4704-4719. [PMID: 32780352 PMCID: PMC7530023 DOI: 10.1007/s12035-020-02034-w] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 07/22/2020] [Indexed: 01/10/2023]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder without a cure or prevention to date. Hyperphosphorylated tau forms the neurofibrillary tangles (NFTs) that correlate well with the progression of cognitive impairments. Animal studies demonstrated the pathogenic role of hyperphosphorylated tau. Understanding how abnormal phosphorylation renders a normal tau prone to form toxic fibrils is key to delineating molecular pathology and to developing efficacious drugs for AD. Production of a tau bearing the disease-relevant hyperphosphorylation and molecular characters is a pivotal step. Here, we report the preparation and characterization of a recombinant hyperphosphorylated tau (p-tau) with strong relevance to disease. P-tau generated by the PIMAX approach resulted in phosphorylation at multiple epitopes linked to the progression of AD neuropathology. In stark contrast to unmodified tau that required an aggregation inducer, and which had minimal effects on cell functions, p-tau formed inducer-free fibrils that triggered a spike of mitochondrial superoxide, induced apoptosis, and caused cell death at sub-micromolar concentrations. P-tau-induced apoptosis was suppressed by inhibitors for reactive oxygen species. Hyperphosphorylation apparently caused rapid formation of a disease-related conformation. In both aggregation and cytotoxicity, p-tau exhibited seeding activities that converted the unmodified tau into a cytotoxic species with an increased propensity for fibrillization. These characters of p-tau are consistent with the emerging view that hyperphosphorylation causes tau to become an aggregation-prone and cytotoxic species that underlies diffusible pathology in AD and other tauopathies. Our results further suggest that p-tau affords a feasible tool for Alzheimer's disease mechanistic and drug discovery studies.
Collapse
Affiliation(s)
- Mengyu Liu
- Department of Biochemistry and Molecular Biology, Michigan State University, 603 Wilson Road, Room 401, East Lansing, MI, 48824, USA
| | - Dexin Sui
- Department of Biochemistry and Molecular Biology, Michigan State University, 603 Wilson Road, Room 401, East Lansing, MI, 48824, USA
| | - Thomas Dexheimer
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI, USA
| | - Stacy Hovde
- Department of Biochemistry and Molecular Biology, Michigan State University, 603 Wilson Road, Room 401, East Lansing, MI, 48824, USA
| | - Xiexiong Deng
- Department of Biochemistry and Molecular Biology, Michigan State University, 603 Wilson Road, Room 401, East Lansing, MI, 48824, USA
- Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, 48109-1085, USA
| | - Kuang-Wei Wang
- Department of Biochemistry and Molecular Biology, Michigan State University, 603 Wilson Road, Room 401, East Lansing, MI, 48824, USA
| | - Hsin Lian Lin
- Institute of Biochemistry and Molecular Biology, National Yang-Ming University, Taipei, Taiwan, China
| | - Hsiao-Tien Chien
- Department of Biochemistry and Molecular Biology, Michigan State University, 603 Wilson Road, Room 401, East Lansing, MI, 48824, USA
- Institute of Biochemistry and Molecular Biology, National Yang-Ming University, Taipei, Taiwan, China
| | - Hye Kyong Kweon
- Department of Biological Chemistry, University of Michigan, Ann Arbor, MI, USA
| | - Nora Sheen Kuo
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI, USA
| | - Christopher A Ayoub
- Center for Molecular Neurobiology, Department of Molecular Biochemistry, College of Medicine, The Ohio State University, Columbus, OH, USA
| | - Daniela Jimenez-Harrison
- Center for Molecular Neurobiology, Department of Molecular Biochemistry, College of Medicine, The Ohio State University, Columbus, OH, USA
| | - Philip C Andrews
- Department of Biological Chemistry, University of Michigan, Ann Arbor, MI, USA
| | - Roland Kwok
- Department of Biological Chemistry, University of Michigan, Ann Arbor, MI, USA
- Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, MI, USA
| | | | - Jeff Kuret
- Center for Molecular Neurobiology, Department of Molecular Biochemistry, College of Medicine, The Ohio State University, Columbus, OH, USA
| | - Jessica Fortin
- College of Veterinary Medicine, Michigan State University, East Lansing, MI, USA
| | - Yeou-Guang Tsay
- Institute of Biochemistry and Molecular Biology, National Yang-Ming University, Taipei, Taiwan, China
| | - Min-Hao Kuo
- Department of Biochemistry and Molecular Biology, Michigan State University, 603 Wilson Road, Room 401, East Lansing, MI, 48824, USA.
| |
Collapse
|
18
|
Majewski J, Jones EM, Vander Zanden CM, Biernat J, Mandelkow E, Chi EY. Lipid membrane templated misfolding and self-assembly of intrinsically disordered tau protein. Sci Rep 2020; 10:13324. [PMID: 32770092 PMCID: PMC7414892 DOI: 10.1038/s41598-020-70208-6] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 07/21/2020] [Indexed: 01/21/2023] Open
Abstract
The aggregation of the intrinsically disordered tau protein into highly ordered β-sheet-rich fibrils is implicated in the pathogenesis of a range of neurodegenerative disorders. The mechanism of tau fibrillogenesis remains unresolved, particularly early events that trigger the misfolding and assembly of the otherwise soluble and stable tau. We investigated the role the lipid membrane plays in modulating the aggregation of three tau variants, the largest isoform hTau40, the truncated construct K18, and a hyperphosphorylation-mimicking mutant hTau40/3Epi. Despite being charged and soluble, the tau proteins were also highly surface active and favorably interacted with anionic lipid monolayers at the air/water interface. Membrane binding of tau also led to the formation of a macroscopic, gelatinous layer at the air/water interface, possibly related to tau phase separation. At the molecular level, tau assembled into oligomers composed of ~ 40 proteins misfolded in a β-sheet conformation at the membrane surface, as detected by in situ synchrotron grazing-incidence X-ray diffraction. Concomitantly, membrane morphology and lipid packing became disrupted. Our findings support a general tau aggregation mechanism wherein tau’s inherent surface activity and favorable interactions with anionic lipids drive tau-membrane association, inducing misfolding and self-assembly of the disordered tau into β-sheet-rich oligomers that subsequently seed fibrillation and deposition into diseased tissues.
Collapse
Affiliation(s)
- Jaroslaw Majewski
- Division of Molecular and Cellular Biology, National Science Foundation, Alexandria, VA, 22314, USA.,Department of Chemical and Biological Engineering and Center for Biomedical Engineering, University of New Mexico, Albuquerque, NM, 87131, USA.,Theoretical Biology and Biophysics Division, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA
| | - Emmalee M Jones
- Nanoscience and Microsystems Engineering Graduate Program, University of New Mexico, Albuquerque, NM, 87131, USA.,Department of Chemical and Biological Engineering and Center for Biomedical Engineering, University of New Mexico, Albuquerque, NM, 87131, USA
| | - Crystal M Vander Zanden
- Department of Chemical and Biological Engineering and Center for Biomedical Engineering, University of New Mexico, Albuquerque, NM, 87131, USA.,Department of Chemistry and Biochemistry, University of Colorado at Colorado Springs, Colorado Springs, CO, 80918, USA
| | - Jacek Biernat
- Center for Neurodegenerative Diseases (DZNE), 53127, Bonn, Germany.,CAESAR Research Center, 53175, Bonn, Germany
| | - Eckhard Mandelkow
- Center for Neurodegenerative Diseases (DZNE), 53127, Bonn, Germany.,CAESAR Research Center, 53175, Bonn, Germany
| | - Eva Y Chi
- Department of Chemical and Biological Engineering and Center for Biomedical Engineering, University of New Mexico, Albuquerque, NM, 87131, USA.
| |
Collapse
|
19
|
Kawasaki R, Tate SI. Impact of the Hereditary P301L Mutation on the Correlated Conformational Dynamics of Human Tau Protein Revealed by the Paramagnetic Relaxation Enhancement NMR Experiments. Int J Mol Sci 2020; 21:ijms21113920. [PMID: 32486218 PMCID: PMC7313075 DOI: 10.3390/ijms21113920] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 05/28/2020] [Accepted: 05/29/2020] [Indexed: 12/23/2022] Open
Abstract
Tau forms intracellular insoluble aggregates as a neuropathological hallmark of Alzheimer’s disease. Tau is largely unstructured, which complicates the characterization of the tau aggregation process. Recent studies have demonstrated that tau samples two distinct conformational ensembles, each of which contains the soluble and aggregation-prone states of tau. A shift to populate the aggregation-prone ensemble may promote tau fibrillization. However, the mechanism of this ensemble transition remains elusive. In this study, we explored the conformational dynamics of a tau fragment by using paramagnetic relaxation enhancement (PRE) and interference (PRI) NMR experiments. The PRE correlation map showed that tau is composed of segments consisting of residues in correlated motions. Intriguingly, residues forming the β-structures in the heparin-induced tau filament coincide with residues in these segments, suggesting that each segment behaves as a structural unit in fibrillization. PRI data demonstrated that the P301L mutation exclusively alters the transiently formed tau structures by changing the short- and long-range correlated motions among residues. The transient conformations of P301L tau expose the amyloid motif PHF6 to promote tau self-aggregation. We propose the correlated motions among residues within tau determine the population sizes of the conformational ensembles, and perturbing the correlated motions populates the aggregation-prone form.
Collapse
Affiliation(s)
- Ryosuke Kawasaki
- Department of Mathematical and Life Sciences, Graduate School of Science, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8526, Japan;
| | - Shin-ichi Tate
- Department of Mathematical and Life Sciences, Graduate School of Science, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8526, Japan;
- Department of Mathematical and Life Sciences, Graduate School of the Integrated Sciences for Life, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8526, Japan
- Research Center for the Mathematics on Chromatin Live Dynamics (RcMcD), Hiroshima University, 1-3-1, Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8526, Japan
- Correspondence: ; Tel.: +81-82-424-7387
| |
Collapse
|
20
|
Taliyan R, Chandran SK, Kakoty V. Therapeutic Approaches to Alzheimer's Type of Dementia: A Focus on FGF21 Mediated Neuroprotection. Curr Pharm Des 2020; 25:2555-2568. [PMID: 31333086 DOI: 10.2174/1381612825666190716101411] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 07/08/2019] [Indexed: 12/31/2022]
Abstract
Neurodegenerative disorders are the most devastating disorder of the nervous system. The pathological basis of neurodegeneration is linked with dysfunctional protein trafficking, mitochondrial stress, environmental factors and aging. With the identification of insulin and insulin receptors in some parts of the brain, it has become evident that certain metabolic conditions associated with insulin dysfunction like Type 2 diabetes mellitus (T2DM), dyslipidemia, obesity etc., are also known to contribute to neurodegeneration mainly Alzheimer's Disease (AD). Recently, a member of the fibroblast growth factor (FGF) superfamily, FGF21 has proved tremendous efficacy in diseases like diabetes mellitus, obesity and insulin resistance (IR). Increased levels of FGF21 have been reported to exert multiple beneficial effects in metabolic syndrome. FGF21 receptors are present in certain areas of the brain involved in learning and memory. However, despite extensive research, its function as a neuroprotectant in AD remains elusive. FGF21 is a circulating endocrine hormone which is mainly secreted by the liver primarily in fasting conditions. FGF21 exerts its effects after binding to FGFR1 and co-receptor, β-klotho (KLB). It is involved in regulating energy via glucose and lipid metabolism. It is believed that aberrant FGF21 signalling might account for various anomalies like neurodegeneration, cancer, metabolic dysfunction etc. Hence, this review will majorly focus on FGF21 role as a neuroprotectant and potential metabolic regulator. Moreover, we will also review its potential as an emerging candidate for combating metabolic stress induced neurodegenerative abnormalities.
Collapse
Affiliation(s)
- Rajeev Taliyan
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani-333031, Rajasthan, India
| | - Sarathlal K Chandran
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani-333031, Rajasthan, India
| | - Violina Kakoty
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani-333031, Rajasthan, India
| |
Collapse
|
21
|
Lo CH, Lim CKW, Ding Z, Wickramasinghe SP, Braun AR, Ashe KH, Rhoades E, Thomas DD, Sachs JN. Targeting the ensemble of heterogeneous tau oligomers in cells: A novel small molecule screening platform for tauopathies. Alzheimers Dement 2019; 15:1489-1502. [PMID: 31653529 DOI: 10.1016/j.jalz.2019.06.4954] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 05/30/2019] [Accepted: 06/19/2019] [Indexed: 12/22/2022]
Abstract
OBJECTIVE Understanding the heterogeneous pathology in Alzheimer's disease and related tauopathies is one of the most urgent and fundamental challenges facing the discovery of novel disease-modifying therapies. Through monitoring ensembles of toxic and nontoxic tau oligomers spontaneously formed in cells, our biosensor technology can identify tool compounds that modulate tau oligomer structure and toxicity, providing much needed insight into the nature and properties of toxic tau oligomers. BACKGROUND Tauopathies are a group of neurodegenerative disorders characterized by pathologic aggregation of the microtubule binding protein tau. Recent studies suggest that tau oligomers are the primary toxic species in tauopathies. NEW/UPDATED HYPOTHESIS We hypothesize that tau biosensors capable of monitoring tau oligomer conformation are able to identify tool compounds that modulate the structure and conformation of these tau assemblies, providing key insight into the unique structural fingerprints of toxic tau oligomers. These fingerprints will provide gravely needed biomarker profiles to improve staging of early tauopathy pathology and generate lead compounds for potential new therapeutics. Our time-resolved fluorescence resonance energy transfer biosensors provide us an exquisitely sensitive technique to monitor minute structural changes in monomer and oligomer conformation. In this proof-of-concept study, we identified a novel tool compound, MK-886, which directly binds tau, perturbs the conformation of toxic tau oligomers, and rescues tau-induced cytotoxicity. Furthermore, we show that MK-886 alters the conformation of tau monomer at the proline-rich and microtubule binding regions, stabilizing an on-pathway oligomer. MAJOR CHALLENGES FOR THE HYPOTHESIS Our approach monitors changes in the ensemble of assemblies that are spontaneously formed in cells but does not specifically isolate or enrich unique toxic tau species. However, time-resolved fluorescence resonance energy transfer does not provide high-resolution, atomic scale information, requiring additional experimental techniques to resolve the structural features stabilized by different tool compounds. LINKAGE TO OTHER MAJOR THEORIES Our biosensor technology is broadly applicable to other areas of tauopathy therapeutic development. These biosensors can be readily modified for different isoforms of tau, specific post-translational modifications, and familial Alzheimer's disease-associated mutations. We are eager to explore tau interactions with chaperone proteins, monitor cross-reactivity with other intrinsically disordered proteins, and target seeded oligomer pathology.
Collapse
Affiliation(s)
- Chih Hung Lo
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, USA
| | - Colin Kin-Wye Lim
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, USA
| | - Zhipeng Ding
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, USA
| | - Sanjula P Wickramasinghe
- Biochemistry and Molecular Biophysics Graduate Group, University of Pennsylvania, Philadelphia, PA, USA
| | - Anthony R Braun
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, USA
| | - Karen H Ashe
- Department of Neurology, University of Minnesota, Minneapolis, MN, USA; Department of Neuroscience, University of Minnesota, Minneapolis, MN, USA; N. Bud Grossman Center for Memory Research and Care, University of Minnesota, Minneapolis, MN, USA; Geriatric Research, Education, and Clinical Centers, Veterans Affairs Medical Center, Minneapolis, MN, USA
| | - Elizabeth Rhoades
- Biochemistry and Molecular Biophysics Graduate Group, University of Pennsylvania, Philadelphia, PA, USA; Department of Chemistry, University of Pennsylvania, Philadelphia, PA, USA
| | - David D Thomas
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, USA; Photonic Pharma LLC, Minneapolis, MN, USA
| | - Jonathan N Sachs
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, USA.
| |
Collapse
|
22
|
Ganeshpurkar A, Swetha R, Kumar D, Gangaram GP, Singh R, Gutti G, Jana S, Kumar D, Kumar A, Singh SK. Protein-Protein Interactions and Aggregation Inhibitors in Alzheimer's Disease. Curr Top Med Chem 2019; 19:501-533. [PMID: 30836921 DOI: 10.2174/1568026619666190304153353] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2018] [Revised: 10/31/2018] [Accepted: 11/20/2018] [Indexed: 12/13/2022]
Abstract
BACKGROUND Alzheimer's Disease (AD), a multifaceted disorder, involves complex pathophysiology and plethora of protein-protein interactions. Thus such interactions can be exploited to develop anti-AD drugs. OBJECTIVE The interaction of dynamin-related protein 1, cellular prion protein, phosphoprotein phosphatase 2A and Mint 2 with amyloid β, etc., studied recently, may have critical role in progression of the disease. Our objective has been to review such studies and their implications in design and development of drugs against the Alzheimer's disease. METHODS Such studies have been reviewed and critically assessed. RESULTS Review has led to show how such studies are useful to develop anti-AD drugs. CONCLUSION There are several PPIs which are current topics of research including Drp1, Aβ interactions with various targets including PrPC, Fyn kinase, NMDAR and mGluR5 and interaction of Mint2 with PDZ domain, etc., and thus have potential role in neurodegeneration and AD. Finally, the multi-targeted approach in AD may be fruitful and opens a new vista for identification and targeting of PPIs in various cellular pathways to find a cure for the disease.
Collapse
Affiliation(s)
- Ankit Ganeshpurkar
- Pharmaceutical Chemistry Research Laboratory, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, India
| | - Rayala Swetha
- Pharmaceutical Chemistry Research Laboratory, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, India
| | - Devendra Kumar
- Pharmaceutical Chemistry Research Laboratory, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, India
| | - Gore P Gangaram
- Pharmaceutical Chemistry Research Laboratory, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, India
| | - Ravi Singh
- Pharmaceutical Chemistry Research Laboratory, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, India
| | - Gopichand Gutti
- Pharmaceutical Chemistry Research Laboratory, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, India
| | - Srabanti Jana
- Pharmaceutical Chemistry Research Laboratory, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, India
| | - Dileep Kumar
- Pharmaceutical Chemistry Research Laboratory, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, India
| | - Ashok Kumar
- Pharmaceutical Chemistry Research Laboratory, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, India
| | - Sushil K Singh
- Pharmaceutical Chemistry Research Laboratory, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, India
| |
Collapse
|
23
|
Despres C, Di J, Cantrelle FX, Li Z, Huvent I, Chambraud B, Zhao J, Chen J, Chen S, Lippens G, Zhang F, Linhardt R, Wang C, Klärner FG, Schrader T, Landrieu I, Bitan G, Smet-Nocca C. Major Differences between the Self-Assembly and Seeding Behavior of Heparin-Induced and in Vitro Phosphorylated Tau and Their Modulation by Potential Inhibitors. ACS Chem Biol 2019; 14:1363-1379. [PMID: 31046227 PMCID: PMC6636790 DOI: 10.1021/acschembio.9b00325] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
![]()
Self-assembly of
the microtubule-associated protein tau into neurotoxic
oligomers, fibrils, and paired helical filaments, and cell-to-cell
spreading of these pathological tau species are critical processes
underlying the pathogenesis of Alzheimer’s disease and other
tauopathies. Modulating the self-assembly process and inhibiting formation
and spreading of such toxic species are promising strategies for therapy
development. A challenge in investigating tau self-assembly in vitro
is that, unlike most amyloidogenic proteins, tau does not aggregate
in the absence of posttranslational modifications (PTM), aggregation
inducers, or preformed seeds. The most common induction method is
addition of polyanions, such as heparin; yet, this artificial system
may not represent adequately tau self-assembly in vivo, which is driven
by aberrant phosphorylation and other PTMs, potentially leading to
in vitro data that do not reflect the behavior of tau and its interaction
with modulators in vivo. To tackle these challenges, methods for in
vitro phosphorylation of tau to produce aggregation-competent forms
recently have been introduced (Despres
et al. (2017) Proc. Natl. Acad. Sci. U.S.A., 114, 9080−908528784767). However, the oligomerization, seeding, and interaction
with assembly modulators of the different forms of tau have not been
studied to date. To address these knowledge gaps, we compared here
side-by-side the self-assembly and seeding activity of heparin-induced
tau with two forms of in vitro phosphorylated tau and tested how the
molecular tweezer CLR01, a negatively charged compound, affected these
processes. Tau was phosphorylated by incubation either with activated
extracellular signal-regulated kinase 2 or with a whole rat brain
extract. Seeding activity was measured using a fluorescence-resonance
energy transfer-based biosensor-cell method. We also used solution-state
NMR to investigate the binding sites of CLR01 on tau and how they
were impacted by phosphorylation. Our systematic structure–activity
relationship study demonstrates that heparin-induced tau behaves differently
from in vitro phosphorylated tau. The aggregation rates of the different
forms are distinct as is the intracellular localization of the induced
aggregates, which resemble brain-derived tau strains suggesting that
heparin-induced tau and in vitro phosphorylated tau have different
conformations, properties, and activities. CLR01 inhibits aggregation
and seeding of both heparin-induced and in vitro phosphorylated tau
dose-dependently, although heparin induction interferes with the interaction
between CLR01 and tau.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Jianle Chen
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou, Zhejiang 310029, China
| | - Shiguo Chen
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou, Zhejiang 310029, China
| | - Guy Lippens
- Lille University CNRS UMR 8576, UGSF, F-59000 Lille, France
| | | | - Robert Linhardt
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou, Zhejiang 310029, China
| | | | - Frank-Gerrit Klärner
- Institute of Organic Chemistry, University of Duisburg-Essen, 45141 Essen, Germany
| | - Thomas Schrader
- Institute of Organic Chemistry, University of Duisburg-Essen, 45141 Essen, Germany
| | | | | | | |
Collapse
|
24
|
Chen D, Drombosky KW, Hou Z, Sari L, Kashmer OM, Ryder BD, Perez VA, Woodard DR, Lin MM, Diamond MI, Joachimiak LA. Tau local structure shields an amyloid-forming motif and controls aggregation propensity. Nat Commun 2019; 10:2493. [PMID: 31175300 PMCID: PMC6555816 DOI: 10.1038/s41467-019-10355-1] [Citation(s) in RCA: 121] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 05/08/2019] [Indexed: 11/09/2022] Open
Abstract
Tauopathies are neurodegenerative diseases characterized by intracellular amyloid deposits of tau protein. Missense mutations in the tau gene (MAPT) correlate with aggregation propensity and cause dominantly inherited tauopathies, but their biophysical mechanism driving amyloid formation is poorly understood. Many disease-associated mutations localize within tau's repeat domain at inter-repeat interfaces proximal to amyloidogenic sequences, such as 306VQIVYK311. We use cross-linking mass spectrometry, recombinant protein and synthetic peptide systems, in silico modeling, and cell models to conclude that the aggregation-prone 306VQIVYK311 motif forms metastable compact structures with its upstream sequence that modulates aggregation propensity. We report that disease-associated mutations, isomerization of a critical proline, or alternative splicing are all sufficient to destabilize this local structure and trigger spontaneous aggregation. These findings provide a biophysical framework to explain the basis of early conformational changes that may underlie genetic and sporadic tau pathogenesis.
Collapse
Affiliation(s)
- Dailu Chen
- Center for Alzheimer's and Neurodegenerative Diseases, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
- Molecular Biophysics Graduate Program, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Kenneth W Drombosky
- Center for Alzheimer's and Neurodegenerative Diseases, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Zhiqiang Hou
- Center for Alzheimer's and Neurodegenerative Diseases, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Levent Sari
- Green Center for Molecular, Computational and Systems Biology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Omar M Kashmer
- Center for Alzheimer's and Neurodegenerative Diseases, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Bryan D Ryder
- Center for Alzheimer's and Neurodegenerative Diseases, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
- Molecular Biophysics Graduate Program, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Valerie A Perez
- Center for Alzheimer's and Neurodegenerative Diseases, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
- Molecular Biophysics Graduate Program, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - DaNae R Woodard
- Center for Alzheimer's and Neurodegenerative Diseases, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Milo M Lin
- Green Center for Molecular, Computational and Systems Biology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Marc I Diamond
- Center for Alzheimer's and Neurodegenerative Diseases, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Lukasz A Joachimiak
- Center for Alzheimer's and Neurodegenerative Diseases, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA.
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA.
| |
Collapse
|
25
|
Goschorska M, Baranowska-Bosiacka I, Gutowska I, Metryka E, Skórka-Majewicz M, Chlubek D. Potential Role of Fluoride in the Etiopathogenesis of Alzheimer's Disease. Int J Mol Sci 2018; 19:ijms19123965. [PMID: 30544885 PMCID: PMC6320968 DOI: 10.3390/ijms19123965] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 12/06/2018] [Accepted: 12/06/2018] [Indexed: 12/18/2022] Open
Abstract
The etiopathogenesis of Alzheimer's disease has not been fully explained. Now, the disease is widely attributed both to genetic and environmental factors. It is believed that only a small percentage of new AD cases result solely from genetic mutations, with most cases attributed to environmental factors or to the interaction of environmental factors with preexistent genetic determinants. Fluoride is widespread in the environment and it easily crosses the blood⁻brain barrier. In the brain fluoride affects cellular energy metabolism, synthesis of inflammatory factors, neurotransmitter metabolism, microglial activation, and the expression of proteins involved in neuronal maturation. Finally, and of specific importance to its role in Alzheimer's disease, studies report fluoride-induced apoptosis and inflammation within the central nervous system. This review attempts to elucidate the potential relationship between the effects of fluoride exposure and the pathogenesis of Alzheimer's disease. We describe the impact of fluoride-induced oxidative stress and inflammation in the pathogenesis of AD and demonstrate a role for apoptosis in disease progression, as well as a mechanism for its initiation by fluoride. The influence of fluoride on processes of AD initiation and progression is complex and warrants further investigation, especially considering growing environmental fluoride pollution.
Collapse
Affiliation(s)
- Marta Goschorska
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powst. Wlkp. 72, 70-111 Szczecin, Poland.
| | - Irena Baranowska-Bosiacka
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powst. Wlkp. 72, 70-111 Szczecin, Poland.
| | - Izabela Gutowska
- Department of Biochemistry and Human Nutrition, Pomeranian Medical University in Szczecin, Broniewskiego 24, 71-460 Szczecin, Poland.
| | - Emilia Metryka
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powst. Wlkp. 72, 70-111 Szczecin, Poland.
| | - Marta Skórka-Majewicz
- Department of Biochemistry and Human Nutrition, Pomeranian Medical University in Szczecin, Broniewskiego 24, 71-460 Szczecin, Poland.
| | - Dariusz Chlubek
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powst. Wlkp. 72, 70-111 Szczecin, Poland.
| |
Collapse
|
26
|
Cheng Y, Bai F. The Association of Tau With Mitochondrial Dysfunction in Alzheimer's Disease. Front Neurosci 2018; 12:163. [PMID: 29623026 PMCID: PMC5874499 DOI: 10.3389/fnins.2018.00163] [Citation(s) in RCA: 169] [Impact Index Per Article: 24.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Accepted: 02/28/2018] [Indexed: 01/01/2023] Open
Abstract
Increasing evidence suggests that abnormally hyperphosphorylated tau plays a vital role in the pathogenesis of Alzheimer's disease (AD). Mitochondrial dysfunction also has a recognized role in the pathophysiology of AD. In recent years, mitochondrial dysfunction has been strongly associated with tau pathology in AD. Overexpression of hyperphosphorylated and aggregated tau appears to damage the axonal transport, leading to abnormal mitochondrial distribution. In addition, pathological tau impairs mitochondrial dynamics by regulating mitochondrial fission/fusion proteins, and further causes mitochondrial dysfunction and neuronal damage. Moreover, mitochondrial dysfunction is also involved in promoting tau pathology in AD. In this article, we evaluate the relationship between phosphorylated tau and mitochondrial dysfunction in AD.
Collapse
Affiliation(s)
- Ying Cheng
- Department of Neurology, Affiliated ZhongDa Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Feng Bai
- Department of Neurology, Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| |
Collapse
|
27
|
Chen Q, Du Y, Zhang K, Liang Z, Li J, Yu H, Ren R, Feng J, Jin Z, Li F, Sun J, Zhou M, He Q, Sun X, Zhang H, Tian M, Ling D. Tau-Targeted Multifunctional Nanocomposite for Combinational Therapy of Alzheimer's Disease. ACS NANO 2018; 12:1321-1338. [PMID: 29364648 DOI: 10.1021/acsnano.7b07625] [Citation(s) in RCA: 188] [Impact Index Per Article: 26.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Alzheimer's disease (AD) remains an incurable disease and lacks efficient diagnostic methods. Most AD treatments have focused on amyloid-β (Aβ) targeted therapy; however, it is time to consider the alternative theranostics due to accumulated findings of weak correlation between Aβ deposition and cognition, as well as the failures of Phase III clinical trial on Aβ targeted therapy. Recent studies have shown that the tau pathway is closely associated with clinical development of AD symptoms, which might be a potential therapeutic target. We herein construct a methylene blue (MB, a tau aggregation inhibitor) loaded nanocomposite (CeNC/IONC/MSN-T807), which not only possesses high binding affinity to hyperphosphorylated tau but also inhibits multiple key pathways of tau-associated AD pathogenesis. We demonstrate that these nanocomposites can relieve the AD symptoms by mitigating mitochondrial oxidative stress, suppressing tau hyperphosphorylation, and preventing neuronal death both in vitro and in vivo. The memory deficits of AD rats are significantly rescued upon treatment with MB loaded CeNC/IONC/MSN-T807. Our results indicate that hyperphosphorylated tau-targeted multifunctional nanocomposites could be a promising therapeutic candidate for Alzheimer's disease.
Collapse
Affiliation(s)
- Qing Chen
- Department of Nuclear Medicine and PET/CT Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University , Hangzhou, Zhejiang 310009, P.R. China
| | - Yang Du
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University , 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, P.R. China
| | - Kai Zhang
- Department of Nuclear Medicine and PET/CT Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University , Hangzhou, Zhejiang 310009, P.R. China
| | - Zeyu Liang
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University , 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, P.R. China
| | - Jinquan Li
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University , 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, P.R. China
| | - Hao Yu
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University , 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, P.R. China
| | - Rong Ren
- College of Chemical & Biological Engineering, Zhejiang University , Hangzhou, Zhejiang 310027, P.R. China
| | - Jin Feng
- Department of Nuclear Medicine and PET/CT Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University , Hangzhou, Zhejiang 310009, P.R. China
| | - Zhiming Jin
- Jiangsu Huayi Technology Limited Company , Changshu, Jiangsu 215522, P.R. China
| | - Fangyuan Li
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University , 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, P.R. China
- Key Laboratory of Biomedical Engineering of the Ministry of Education, College of Biomedical Engineering & Instrument Science, Zhejiang University , Hangzhou, Zhejiang 310058, P.R. China
| | - Jihong Sun
- Department of Radiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University , Hangzhou, Zhejiang 310016, P.R. China
| | - Min Zhou
- Department of Nuclear Medicine and PET/CT Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University , Hangzhou, Zhejiang 310009, P.R. China
| | - Qinggang He
- College of Chemical & Biological Engineering, Zhejiang University , Hangzhou, Zhejiang 310027, P.R. China
| | - Xiaolian Sun
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health , Bethesda, Maryland 20892, United States
| | - Hong Zhang
- Department of Nuclear Medicine and PET/CT Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University , Hangzhou, Zhejiang 310009, P.R. China
- Collaborative Innovation Center for Brain Science, Fudan University , Shanghai 200032, P.R. China
| | - Mei Tian
- Department of Nuclear Medicine and PET/CT Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University , Hangzhou, Zhejiang 310009, P.R. China
- Collaborative Innovation Center for Brain Science, Fudan University , Shanghai 200032, P.R. China
| | - Daishun Ling
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University , 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, P.R. China
- Key Laboratory of Biomedical Engineering of the Ministry of Education, College of Biomedical Engineering & Instrument Science, Zhejiang University , Hangzhou, Zhejiang 310058, P.R. China
| |
Collapse
|
28
|
Abstract
Alzheimer's disease is characterized in part by the intracellular misfolding and aggregation of tau protein. The aggregates, which range in size from small oligomers to large filaments, are markers for disease diagnosis and staging, potential vectors for disease propagation, and candidate sources of neurotoxicity. Here we present protocols for synthesizing large tau aggregates characterized by filamentous morphology and cross-β-sheet structure from monomeric full-length tau precursors in vitro. We also describe their detection and quantification through thioflavin dye binding, filter trap, and transmission electron microscopy methods. These methods cover applications requiring high-throughput capability as well as those requiring high-resolution analysis of aggregation mechanism.
Collapse
|
29
|
Khosravi Z, Nasiri Khalili MA, Moradi S, Hassan Sajedi R, Zeinoddini M. The Molecular Chaperone Artemin Efficiently Blocks Fibrillization of TAU Protein In Vitro. CELL JOURNAL 2017; 19:569-577. [PMID: 29105391 PMCID: PMC5672095 DOI: 10.22074/cellj.2018.4510] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Accepted: 11/03/2016] [Indexed: 11/17/2022]
Abstract
Objective Aggregation of the TAU proteins in the form of neurofibrillary tangles (NFTs) in the brain is a common risk
factor in tauopathies including Alzheimer’s disease (AD). Several strategies have been implemented to target NFTs,
among which chaperones, which facilitate the proper folding of proteins, appear to hold great promise in effectively
inhibiting TAU polymerization. The aim of this study was to analyze the impact of the chaperone Artemin on TAU
aggregation in vitro.
Materials and Methods In this experimental study, recombinant TAU- or Artemin proteins were expressed in E.coli
bacteria, and purified using ion-exchange and affinity chromatography. Sodium dodecyl sulfate-poly acrylamide gel
electrophoresis (SDS-PAGE) was used to run the extracted proteins and check their purity. Heparin was used as an
aggregation inducer. The interaction kinetics of TAU aggregation and disassembly was performed using thioflavin T
(ThT) fluorescence analysis and circular dichroism (CD) spectroscopy.
Results Ion-exchange and affinity chromatography yielded highly pure TAU and Artemin proteins for subsequent
analyses. In addition, we found that heparin efficiently induced TAU fibrillization 48 hours post-incubation, as evidenced
by ThT assay. Importantly, Artemin was observed to effectively block the aggregation of both physiologic- and supra-
physiologic TAU concentrations in a dose-dependent manner, as judged by ThT and CD spectroscopy analyses.
Conclusion Our collective results show, for the first time, that the chaperone Artemin could significantly inhibit
aggregation of the TAU proteins in a dose-dependent manner, and support Artemin as a potential potent blocker of TAU
aggregation in people with AD.
Collapse
Affiliation(s)
- Zahra Khosravi
- Department of Biosciences and Biotechnology, Malek Ashtar University of Technology, Tehran, Iran
| | | | - Sharif Moradi
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.,Department of Developmental Biology, University of Science and Culture, Tehran, Iran
| | - Reza Hassan Sajedi
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Mehdi Zeinoddini
- Department of Biosciences and Biotechnology, Malek Ashtar University of Technology, Tehran, Iran
| |
Collapse
|
30
|
A meta-analysis and review examining a possible role for oxidative stress and singlet oxygen in diverse diseases. Biochem J 2017; 474:2713-2731. [PMID: 28768713 DOI: 10.1042/bcj20161058] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Revised: 06/22/2017] [Accepted: 06/23/2017] [Indexed: 01/29/2023]
Abstract
From kinetic data (k, T) we calculated the thermodynamic parameters for various processes (nucleation, elongation, fibrillization, etc.) of proteinaceous diseases that are related to the β-amyloid protein (Alzheimer's), to tau protein (Alzheimer's, Pick's), to α-synuclein (Parkinson's), prion, amylin (type II diabetes), and to α-crystallin (cataract). Our calculations led to ΔG≠ values that vary in the range 92.8-127 kJ mol-1 at 310 K. A value of ∼10-30 kJ mol-1 is the activation energy for the diffusion of reactants, depending on the reaction and the medium. The energy needed for the excitation of O2 from the ground to the first excited state (1Δg, singlet oxygen) is equal to 92 kJ mol-1 So, the ΔG≠ is equal to the energy needed for the excitation of ground state oxygen to the singlet oxygen (1Δg first excited) state. The similarity of the ΔG≠ values is an indication that a common mechanism in the above disorders may be taking place. We attribute this common mechanism to the (same) role of the oxidative stress and specifically of singlet oxygen, (1Δg), to the above-mentioned processes: excitation of ground state oxygen to the singlet oxygen, 1Δg, state (92 kJ mol-1), and reaction of the empty π* orbital with high electron density regions of biomolecules (∼10-30 kJ mol-1 for their diffusion). The ΔG≠ for cases of heat-induced cell killing (cancer) lie also in the above range at 310 K. The present paper is a review and meta-analysis of literature data referring to neurodegenerative and other disorders.
Collapse
|
31
|
Di Primio C, Quercioli V, Siano G, Rovere M, Kovacech B, Novak M, Cattaneo A. The Distance between N and C Termini of Tau and of FTDP-17 Mutants Is Modulated by Microtubule Interactions in Living Cells. Front Mol Neurosci 2017; 10:210. [PMID: 28713242 PMCID: PMC5492851 DOI: 10.3389/fnmol.2017.00210] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Accepted: 06/14/2017] [Indexed: 11/22/2022] Open
Abstract
The microtubule (MT)-associated protein Tau is a natively unfolded protein, involved in a number of neurodegenerative disorders, collectively called tauopathies, aggregating in neurofibrillary tangles (NFT). It is an open question how the conversion from a MT bound molecule to an aggregation-prone Tau species occurs and, also, if and how tauopathy-related mutations affect its behavior in the cell. To address these points, we exploited a genetically encoded FRET sensor based on the full length Tau protein, to monitor in real time Tau conformational changes in different conditions in live cells. By studying the FRET signal we found that soluble Tau molecules, detached from MTs, display an unfolded structure. On the contrary, we observed an increased FRET signal generated by Tau monomers bound to MT, indicating that the association with MTs induced a folding of Tau protein, decreasing the distance between its N and C termini. We exploited the FRET sensor to investigate the impact of FTDP-17 mutations and of phosphorylation-site mutations on Tau folding and mobility in live cells. We demonstrated that the FTDP-17 Tau mutations weaken the interaction of Tau with cellular MTs, shifting the equilibrium towards the soluble pool while, conversely, phosphorylation site mutations shift the equilibrium of Tau towards the MT-bound state and a more closed conformation.
Collapse
Affiliation(s)
| | | | - Giacomo Siano
- Bio@SNS Laboratory, Scuola Normale SuperiorePisa, Italy
| | - Matteo Rovere
- Bio@SNS Laboratory, Scuola Normale SuperiorePisa, Italy
| | - Branislav Kovacech
- Institute of Neuroimmunology, Slovak Academy of Sciences, Axon Neuroscience SEBratislava, Slovakia
| | - Michal Novak
- Institute of Neuroimmunology, Slovak Academy of Sciences, Axon Neuroscience SEBratislava, Slovakia
| | | |
Collapse
|
32
|
Abstract
Both Alzheimer's disease (AD) and type 2 diabetes mellitus (DM) are two common
forms of disease worldwide and many studies indicate that people with diabetes,
especially DM, are at higher risk of developing AD. AD is characterized by
progressive cognitive decline and accumulation of β-amyloid (Aβ)
forming senile plaques. DM is a metabolic disorder characterized by
hyperglycemia in the context of insulin resistance and relative lack of insulin.
Both diseases also share common characteristics such as loss of cognitive
function and inflammation. Inflammation resulting from Aβ further induces
production of Aβ1-42 peptides. Inflammation due to
overnutrition induces insulin resistance and consequently DM. Memory deficit and
a decrease in GLUT4 and hippocampal insulin signaling have been observed in
animal models of insulin resistance. The objective of this review was to show
the shared characteristics of AD and DM.
Collapse
Affiliation(s)
- Aparecida Marcelino de Nazareth
- Physiotherapist, Specialist in Neurofunctional Physical Therapy, Master of Neurosciences from the (UFSC), SC, Brazil, and PhD in Sciences (Pharmacology and Medicinal Chemistry) from the Federal University of Rio de Janeiro (UFRJ), RJ, Brazil
| |
Collapse
|
33
|
Au NPB, Ma CHE. Recent Advances in the Study of Bipolar/Rod-Shaped Microglia and their Roles in Neurodegeneration. Front Aging Neurosci 2017; 9:128. [PMID: 28522972 PMCID: PMC5415568 DOI: 10.3389/fnagi.2017.00128] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Accepted: 04/18/2017] [Indexed: 01/06/2023] Open
Abstract
Microglia are the resident immune cells of the central nervous system (CNS) and they contribute to primary inflammatory responses following CNS injuries. The morphology of microglia is closely associated with their functional activities. Most previous research efforts have attempted to delineate the role of ramified and amoeboid microglia in the pathogenesis of neurodegenerative diseases. In addition to ramified and amoeboid microglia, bipolar/rod-shaped microglia were first described by Franz Nissl in 1899 and their presence in the brain was closely associated with the pathology of infectious diseases and sleeping disorders. However, studies relating to bipolar/rod-shaped microglia are very limited, largely due to the lack of appropriate in vitro and in vivo experimental models. Recent studies have reported the formation of bipolar/rod-shaped microglia trains in in vivo models of CNS injury, including diffuse brain injury, focal transient ischemia, optic nerve transection and laser-induced ocular hypertension (OHT). These bipolar/rod-shaped microglia formed end-to-end alignments in close proximity to the adjacent injured axons, but they showed no interactions with blood vessels or other types of glial cell. Recent studies have also reported on a highly reproducible in vitro culture model system to enrich bipolar/rod-shaped microglia that acts as a powerful tool with which to characterize this form of microglia. The molecular aspects of bipolar/rod-shaped microglia are of great interest in the field of CNS repair. This review article focuses on studies relating to the morphology and transformation of microglia into the bipolar/rod-shaped form, along with the differential gene expression and spatial distribution of bipolar/rod-shaped microglia in normal and pathological CNSs. The spatial arrangement of bipolar/rod-shaped microglia is crucial in the reorganization and remodeling of neuronal and synaptic circuitry following CNS injuries. Finally, we discuss the potential neuroprotective roles of bipolar/rod-shaped microglia, and the possibility of transforming ramified/amoeboid microglia into bipolar/rod-shaped microglia. This will be of considerable clinical benefit in the development of novel therapeutic strategies for treating various neurodegenerative diseases and promoting CNS repair after injury.
Collapse
Affiliation(s)
- Ngan Pan Bennett Au
- Department of Biomedical Sciences, City University of Hong KongKowloon Tong, Hong Kong
| | - Chi Him Eddie Ma
- Department of Biomedical Sciences, City University of Hong KongKowloon Tong, Hong Kong.,Centre for Biosystems, Neuroscience, and Nanotechnology, City University of Hong KongKowloon Tong, Hong Kong.,State Key Laboratory in Marine Pollution, City University of Hong KongKowloon Tong, Hong Kong
| |
Collapse
|
34
|
Sanabria-Castro A, Alvarado-Echeverría I, Monge-Bonilla C. Molecular Pathogenesis of Alzheimer's Disease: An Update. Ann Neurosci 2017; 24:46-54. [PMID: 28588356 DOI: 10.1159/000464422] [Citation(s) in RCA: 289] [Impact Index Per Article: 36.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2016] [Accepted: 07/26/2016] [Indexed: 01/15/2023] Open
Abstract
Dementia is a chronic or progressive syndrome, characterized by impaired cognitive capacity beyond what could be considered a consequence of normal aging. It affects the memory, thinking process, orientation, comprehension, calculation, learning ability, language, and judgment; although awareness is usually unaffected. Alzheimer's disease (AD) is the most common form of dementia; symptoms include memory loss, difficulty solving problems, disorientation in time and space, among others. The disease was first described in 1906 at a conference in Tubingen, Germany by Alois Alzheimer. One hundred and ten years since its first documentation, many aspects of the pathophysiology of AD have been discovered and understood, however gaps of knowledge continue to exist. This literature review summarizes the main underlying neurobiological mechanisms in AD, including the theory with emphasis on amyloid peptide, cholinergic hypothesis, glutamatergic neurotransmission, the role of tau protein, and the involvement of oxidative stress and calcium.
Collapse
Affiliation(s)
- Alfredo Sanabria-Castro
- Research Unit, Hospital San Juan de Dios, Costa Rican Social Security Fund (CCSS), San José, Costa Rica
| | | | - Cecilia Monge-Bonilla
- Research Unit, Hospital San Juan de Dios, Costa Rican Social Security Fund (CCSS), San José, Costa Rica
| |
Collapse
|
35
|
Spangenberg EE, Green KN. Inflammation in Alzheimer's disease: Lessons learned from microglia-depletion models. Brain Behav Immun 2017; 61:1-11. [PMID: 27395435 PMCID: PMC5218993 DOI: 10.1016/j.bbi.2016.07.003] [Citation(s) in RCA: 267] [Impact Index Per Article: 33.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Revised: 06/22/2016] [Accepted: 07/05/2016] [Indexed: 12/12/2022] Open
Abstract
Microglia are the primary immune cell of the brain and function to protect the central nervous system (CNS) from injury and invading pathogens. In the homeostatic brain, microglia serve to support neuronal health through synaptic pruning, promoting normal brain connectivity and development, and through release of neurotrophic factors, providing support for CNS integrity. However, recent evidence indicates that the homeostatic functioning of these cells is lost in neurodegenerative disease, including Alzheimer's disease (AD), ultimately contributing to a chronic neuroinflammatory environment in the brain. Importantly, the development of compounds and genetic models to ablate the microglial compartment has emerged as effective tools to further our understanding of microglial function in AD. Use of these models has identified roles of microglia in several pathological facets of AD, including tau propagation, synaptic stripping, neuronal loss, and cognitive decline. Although culminating evidence utilizing these microglial ablation models reports an absence of CNS-endogenous and peripheral myeloid cell involvement in Aβ phagocytosis, recent data indicates that targeting microglia-evoked neuroinflammation in AD may be essential for potential therapeutics. Therefore, identifying altered signaling pathways in the microglia-devoid brain may assist with the development of effective inflammation-based therapies in AD.
Collapse
Affiliation(s)
- Elizabeth E. Spangenberg
- Department of Neurobiology and Behavior, Institute for Memory Impairments and Neurological Disorders
| | - Kim N. Green
- Department of Neurobiology and Behavior, Institute for Memory Impairments and Neurological Disorders
| |
Collapse
|
36
|
Jangholi A, Ashrafi-Kooshk MR, Arab SS, Riazi G, Mokhtari F, Poorebrahim M, Mahdiuni H, Kurganov BI, Moosavi-Movahedi AA, Khodarahmi R. Appraisal of role of the polyanionic inducer length on amyloid formation by 412-residue 1N4R Tau protein: A comparative study. Arch Biochem Biophys 2016; 609:1-19. [DOI: 10.1016/j.abb.2016.09.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Revised: 09/08/2016] [Accepted: 09/12/2016] [Indexed: 10/21/2022]
|
37
|
Khanna MR, Kovalevich J, Lee VMY, Trojanowski JQ, Brunden KR. Therapeutic strategies for the treatment of tauopathies: Hopes and challenges. Alzheimers Dement 2016; 12:1051-1065. [PMID: 27751442 PMCID: PMC5116305 DOI: 10.1016/j.jalz.2016.06.006] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Accepted: 06/09/2016] [Indexed: 01/25/2023]
Abstract
A group of neurodegenerative diseases referred to as tauopathies are characterized by the presence of brain cells harboring inclusions of pathological species of the tau protein. These disorders include Alzheimer's disease and frontotemporal lobar degeneration due to tau pathology, including progressive supranuclear palsy, corticobasal degeneration, and Pick's disease. Tau is normally a microtubule (MT)-associated protein that appears to play an important role in ensuring proper axonal transport, but in tauopathies tau becomes hyperphosphorylated and disengages from MTs, with consequent misfolding and deposition into inclusions that mainly affect neurons but also glia. A body of experimental evidence suggests that the development of tau inclusions leads to the neurodegeneration observed in tauopathies, and there is a growing interest in developing tau-directed therapeutic agents. The following review provides a summary of strategies under investigation for the potential treatment of tauopathies, highlighting both the promises and challenges associated with these various therapeutic approaches.
Collapse
Affiliation(s)
- Mansi R Khanna
- Department of Pathology and Laboratory Medicine, Center for Neurodegenerative Disease Research, Institute on Aging, University of Pennsylvania, Philadelphia, PA, USA
| | - Jane Kovalevich
- Department of Pathology and Laboratory Medicine, Center for Neurodegenerative Disease Research, Institute on Aging, University of Pennsylvania, Philadelphia, PA, USA
| | - Virginia M-Y Lee
- Department of Pathology and Laboratory Medicine, Center for Neurodegenerative Disease Research, Institute on Aging, University of Pennsylvania, Philadelphia, PA, USA
| | - John Q Trojanowski
- Department of Pathology and Laboratory Medicine, Center for Neurodegenerative Disease Research, Institute on Aging, University of Pennsylvania, Philadelphia, PA, USA
| | - Kurt R Brunden
- Department of Pathology and Laboratory Medicine, Center for Neurodegenerative Disease Research, Institute on Aging, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
38
|
Chaves RS, Kazi AI, Silva CM, Almeida MF, Lima RS, Carrettiero DC, Demasi M, Ferrari MFR. Presence of insoluble Tau following rotenone exposure ameliorates basic pathways associated with neurodegeneration. IBRO Rep 2016; 1:32-45. [PMID: 30135926 PMCID: PMC6084878 DOI: 10.1016/j.ibror.2016.09.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Revised: 09/23/2016] [Accepted: 09/24/2016] [Indexed: 01/24/2023] Open
Abstract
Protein aggregation is an important feature of neurodegenerative disorders. In Alzheimer's disease (AD) protein aggregates are composed of hyperphosphorylated Tau and amyloid beta peptide (Aβ). Despite the involvement and identification of the molecular composition of these aggregates, their role in AD pathophysiology is not fully understood. However, depositions of these insoluble aggregates are typically reported as pathogenic and toxic for cell homeostasis. New evidences suggest that the deposition of these aggregates is a protective mechanism that preserves cell from toxic insults associated with the early stages of neurodegenerative diseases. To better understand the biological role of the protein aggregation with regard its effects in cellular homeostasis, the present study investigated the role of insoluble Tau and Tau aggregates on crucial cellular parameters such as redox homeostasis, proteasome activity and autophagy in hippocampal cell cultures and hippocampus of aged Lewis rats using a rotenone-induced aggregation model. Neurons were exposed to rotenone in different concentrations and exposure times aiming to determine the interval required for Tau aggregation. Our experimental design allowed us to demonstrate that rotenone exposure induces Tau hyperphosphorylation and aggregation in a concentration and time-dependent manner. Oxidative stress triggered by rotenone exposure was observed with the absence of Tau aggregates and was reduced or absent when Tau aggregates were present. This reduction of oxidative stress along with the presence of insoluble Tau was independent of alterations in antioxidant enzymes activities or cell death. In addition, rotenone induced oxidative stress was mainly associated with decrease in proteasome activity and autophagy flux. Conversely, when insoluble Tau appeared, autophagy turns to be overactivated while proteasome activity remained low. Our studies significantly advance the understanding that Tau aggregation might exert protective cellular effects, at least briefly, when neurons are facing neurodegeneration stimulus. We believe that our data add more complexity for the understanding of protein aggregation role in AD etiology.
Collapse
Affiliation(s)
- Rodrigo S Chaves
- Department of Genetics and Evolutionary Biology - Institute for Biosciences, University of Sao Paulo, Sao Paulo, SP, Brazil
| | - Amajad I Kazi
- Department of Genetics and Evolutionary Biology - Institute for Biosciences, University of Sao Paulo, Sao Paulo, SP, Brazil
| | - Carolliny M Silva
- Department of Genetics and Evolutionary Biology - Institute for Biosciences, University of Sao Paulo, Sao Paulo, SP, Brazil
| | - Michael F Almeida
- Department of Genetics and Evolutionary Biology - Institute for Biosciences, University of Sao Paulo, Sao Paulo, SP, Brazil
| | - Raquel S Lima
- Department of Genetics and Evolutionary Biology - Institute for Biosciences, University of Sao Paulo, Sao Paulo, SP, Brazil
| | | | - Marilene Demasi
- Laboratory of Biochemistry and Biophysics - Butantan Institute, Sao Paulo, SP, Brazil
| | - Merari F R Ferrari
- Department of Genetics and Evolutionary Biology - Institute for Biosciences, University of Sao Paulo, Sao Paulo, SP, Brazil
| |
Collapse
|
39
|
Arendt T, Stieler JT, Holzer M. Tau and tauopathies. Brain Res Bull 2016; 126:238-292. [PMID: 27615390 DOI: 10.1016/j.brainresbull.2016.08.018] [Citation(s) in RCA: 429] [Impact Index Per Article: 47.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Revised: 08/31/2016] [Accepted: 08/31/2016] [Indexed: 12/11/2022]
|
40
|
Bodea L, Eckert A, Ittner LM, Piguet O, Götz J. Tau physiology and pathomechanisms in frontotemporal lobar degeneration. J Neurochem 2016; 138 Suppl 1:71-94. [PMID: 27306859 PMCID: PMC5094566 DOI: 10.1111/jnc.13600] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Revised: 01/31/2016] [Accepted: 02/24/2016] [Indexed: 12/27/2022]
Abstract
Frontotemporal lobar degeneration (FTLD) has been associated with toxic intracellular aggregates of hyperphosphorylated tau (FTLD-tau). Moreover, genetic studies identified mutations in the MAPT gene encoding tau in familial cases of the disease. In this review, we cover a range of aspects of tau function, both in the healthy and diseased brain, discussing several in vitro and in vivo models. Tau structure and function in the healthy brain is presented, accentuating its distinct compartmentalization in neurons and its role in microtubule stabilization and axonal transport. Furthermore, tau-driven pathology is discussed, introducing current concepts and the underlying experimental evidence. Different aspects of pathological tau phosphorylation, the protein's genomic and domain organization as well as its spreading in disease, together with MAPT-associated mutations and their respective models are presented. Dysfunction related to other post-transcriptional modifications and their effect on normal neuronal functions such as cell cycle, epigenetics and synapse dynamics are also discussed, providing a mechanistic explanation for the observations made in FTLD-tau cases, with the possibility for therapeutic intervention. In this review, we cover aspects of tau function, both in the healthy and diseased brain, referring to different in vitro and in vivo models. In healthy neurons, tau is compartmentalized, with higher concentrations found in the distal part of the axon. Cargo molecules are sensitive to this gradient. A disturbed tau distribution, as found in frontotemporal lobar degeneration (FTLD-tau), has severe consequences for cellular physiology: tau accumulates in the neuronal soma and dendrites, leading among others to microtubule depolymerization and impaired axonal transport. Tau forms insoluble aggregates that sequester additional molecules stalling cellular physiology. Neuronal communication is gradually lost as toxic tau accumulates in dendritic spines with subsequent degeneration of synapses and synaptic loss. Thus, by providing a mechanistic explanation for the observations made in FTLD-tau cases, arises a possibility for therapeutic interventions. This article is part of the Frontotemporal Dementia special issue.
Collapse
Affiliation(s)
- Liviu‐Gabriel Bodea
- Clem Jones Centre for Ageing Dementia ResearchQueensland Brain InstituteThe University of QueenslandBrisbaneQLDAustralia
| | - Anne Eckert
- Neurobiology LaboratoryPsychiatric University Clinics BaselUniversity of BaselBaselSwitzerland
| | - Lars Matthias Ittner
- Dementia Research UnitSchool of Medical SciencesFaculty of MedicineUniversity of New South WalesSydneyNSWAustralia
| | | | - Jürgen Götz
- Clem Jones Centre for Ageing Dementia ResearchQueensland Brain InstituteThe University of QueenslandBrisbaneQLDAustralia
| |
Collapse
|
41
|
Kepp KP. Alzheimer's disease due to loss of function: A new synthesis of the available data. Prog Neurobiol 2016; 143:36-60. [PMID: 27327400 DOI: 10.1016/j.pneurobio.2016.06.004] [Citation(s) in RCA: 95] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Revised: 06/10/2016] [Accepted: 06/11/2016] [Indexed: 12/11/2022]
Abstract
Alzheimer's Disease (AD) is a highly complex disease involving a broad range of clinical, cellular, and biochemical manifestations that are currently not understood in combination. This has led to many views of AD, e.g. the amyloid, tau, presenilin, oxidative stress, and metal hypotheses. The amyloid hypothesis has dominated the field with its assumption that buildup of pathogenic β-amyloid (Aβ) peptide causes disease. This paradigm has been criticized, yet most data suggest that Aβ plays a key role in the disease. Here, a new loss-of-function hypothesis is synthesized that accounts for the anomalies of the amyloid hypothesis, e.g. the curious pathogenicity of the Aβ42/Aβ40 ratio, the loss of Aβ caused by presenilin mutation, the mixed phenotypes of APP mutations, the poor clinical-biochemical correlations for genetic variant carriers, and the failure of Aβ reducing drugs. The amyloid-loss view accounts for recent findings on the structure and chemical features of Aβ variants and their coupling to human patient data. The lost normal function of APP/Aβ is argued to be metal transport across neuronal membranes, a view with no apparent anomalies and substantially more explanatory power than the gain-of-function amyloid hypothesis. In the loss-of-function scenario, the central event of Aβ aggregation is interpreted as a loss of soluble, functional monomer Aβ rather than toxic overload of oligomers. Accordingly, new research models and treatment strategies should focus on remediation of the functional amyloid balance, rather than strict containment of Aβ, which, for reasons rationalized in this review, has failed clinically.
Collapse
Affiliation(s)
- Kasper P Kepp
- Technical University of Denmark, DTU Chemistry, DK-2800 Kongens Lyngby, Denmark.
| |
Collapse
|
42
|
Xu L, Zheng J, Margittai M, Nussinov R, Ma B. How Does Hyperphopsphorylation Promote Tau Aggregation and Modulate Filament Structure and Stability? ACS Chem Neurosci 2016; 7:565-75. [PMID: 26854860 PMCID: PMC7831686 DOI: 10.1021/acschemneuro.5b00294] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Tau proteins are hyperphosphorylated at common sites in their N- and C-terminal domains in at least three neurodegenerative diseases, Parkinson, dementia with Lewy bodies, and Alzheimer's, suggesting specific pathology but general mechanism. Full-length human tau filament comprises a rigid core and a two-layered fuzzy coat. Tau is categorized into two groups of isoforms, with either four repeats (R1-R4) or three repeats (R1, R3, and R4); their truncated constructs are respectively called K18 and K19. Using multiscale molecular dynamics simulations, we explored the conformational consequences of hyperhposphorylation on tau's repeats. Our lower conformational energy filament models suggest a rigid filament core with a radius of ∼30 to 40 Å and an outer layer with a thickness of ∼140 Å consisting of a double-layered polyelectrolyte. The presence of the phosphorylated terminal domains alters the relative stabilities in the K18 ensemble, thus shifting the populations of the full-length filaments. However, the structure with the straight repeats in the core region is still the most stable, similar to the truncated K18 peptide species without the N- and C-terminus. Our simulations across different scales of resolution consistently reveal that hyperphosphorylation of the two terminal domains decreases the attractive interactions among the N- and C-terminus and repeat domain. To date, the relationship on the conformational level between phosphorylation and aggregation has not been understood. Our results suggest that the exposure of the repeat domain upon hyperphosphorylation could enhance tau filament aggregation. Thus, we discovered that even though these neurodegenerative diseases vary and their associated tau filaments are phosphorylated to different extents, remarkably, the three pathologies appear to share a common tau aggregation mechanism.
Collapse
Affiliation(s)
- Liang Xu
- School of Chemistry, Dalian University of Technology, Dalian 116024, China
| | - Jie Zheng
- Department of Chemical & Biomolecular Engineering, The University of Akron, Akron, Ohio 44325, United States
| | - Martin Margittai
- Department of Chemistry and Biochemistry, University of Denver, Denver, Colorado 80208, United States
| | - Ruth Nussinov
- Sackler Institute of Molecular Medicine, Department of Human Genetics and Molecular Medicine, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
- Basic Research Program, Leidos Biomedical Research, Inc., Cancer and Inflammation Program, Frederick National Laboratory for Cancer Research, NCI, Frederick, Maryland 21702, United States
| | - Buyong Ma
- Basic Research Program, Leidos Biomedical Research, Inc., Cancer and Inflammation Program, Frederick National Laboratory for Cancer Research, NCI, Frederick, Maryland 21702, United States
| |
Collapse
|
43
|
Barage SH, Sonawane KD. Amyloid cascade hypothesis: Pathogenesis and therapeutic strategies in Alzheimer's disease. Neuropeptides 2015; 52:1-18. [PMID: 26149638 DOI: 10.1016/j.npep.2015.06.008] [Citation(s) in RCA: 399] [Impact Index Per Article: 39.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Revised: 06/24/2015] [Accepted: 06/24/2015] [Indexed: 01/08/2023]
Abstract
Alzheimer's disease is an irreversible, progressive neurodegenerative disorder. Various therapeutic approaches are being used to improve the cholinergic neurotransmission, but their role in AD pathogenesis is still unknown. Although, an increase in tau protein concentration in CSF has been described in AD, but several issues remains unclear. Extensive and accurate analysis of CSF could be helpful to define presence of tau proteins in physiological conditions, or released during the progression of neurodegenerative disease. The amyloid cascade hypothesis postulates that the neurodegeneration in AD caused by abnormal accumulation of amyloid beta (Aβ) plaques in various areas of the brain. The amyloid hypothesis has continued to gain support over the last two decades, particularly from genetic studies. Therefore, current research progress in several areas of therapies shall provide an effective treatment to cure this devastating disease. This review critically evaluates general biochemical and physiological functions of Aβ directed therapeutics and their relevance.
Collapse
Affiliation(s)
- Sagar H Barage
- Department of Biotechnology, Shivaji University, Kolhapur 416004, Maharashtra (M.S.), India
| | - Kailas D Sonawane
- Structural Bioinformatics Unit, Department of Biochemistry, Shivaji University, Kolhapur 416004, Maharashtra (M.S.), India; Department of Microbiology, Shivaji University, Kolhapur 416004, Maharashtra (M.S.), India.
| |
Collapse
|
44
|
Dinkel PD, Holden MR, Matin N, Margittai M. RNA Binds to Tau Fibrils and Sustains Template-Assisted Growth. Biochemistry 2015; 54:4731-40. [PMID: 26177386 PMCID: PMC4526887 DOI: 10.1021/acs.biochem.5b00453] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Tau fibrils are the main proteinacious components of neurofibrillary lesions in Alzheimer disease. Although RNA molecules are sequestered into these lesions, their relationship to Tau fibrils is only poorly understood. Such understanding, however, is important, as short fibrils can transfer between neurons and nonproteinacious factors including RNA could play a defining role in modulating the latter process. Here, we used sedimentation assays combined with electron paramagnetic resonance (EPR), fluorescence, and absorbance spectroscopy to determine the effects of RNA on Tau fibril structure and growth. We observe that, in the presence of RNA, three-repeat (3R) and four-repeat (4R) Tau form fibrils with parallel, in-register arrangement of β-strands and exhibit an asymmetric seeding barrier in which 4R Tau grows onto 3R Tau seeds but not vice versa. These structural features are similar to those previously observed for heparin-induced fibrils, indicating that basic conformational properties are conserved, despite their being molecular differences of the nucleating agents. Furthermore, RNA sustains template-assisted growth and binds to the fibril surface and can be exchanged by heparin. These findings suggest that, in addition to mediating fibrillization, cofactors decorating the surface of Tau fibrils may modulate biological interactions and thereby influence the spreading of Tau pathology in the human brain.
Collapse
Affiliation(s)
- Paul D Dinkel
- Department of Chemistry and Biochemistry, University of Denver, Denver, Colorado 80208, United States
| | - Michael R Holden
- Department of Chemistry and Biochemistry, University of Denver, Denver, Colorado 80208, United States
| | - Nadira Matin
- Department of Chemistry and Biochemistry, University of Denver, Denver, Colorado 80208, United States
| | - Martin Margittai
- Department of Chemistry and Biochemistry, University of Denver, Denver, Colorado 80208, United States
| |
Collapse
|
45
|
Meyer V, Dinkel PD, Rickman Hager E, Margittai M. Amplification of Tau fibrils from minute quantities of seeds. Biochemistry 2014; 53:5804-9. [PMID: 25153692 PMCID: PMC4165214 DOI: 10.1021/bi501050g] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
![]()
The
propagation of Tau pathology in Alzheimer’s disease
(AD) is thought to proceed through templated conversion of Tau protein
into fibrils and cell-to-cell transfer of elongation-competent seeds.
To investigate the efficiency of Tau conversion, we adapted the protein
misfolding cyclic amplification assay used for the conversion of prions.
Utilizing heparin as a cofactor and employing repetitive cycles of
shearing and growth, synthetic Tau fibrils and Tau fibrils in AD brain
extract are progressively amplified. Concurrently, self-nucleation
is suppressed. The results highlight breakage-induced replication
of Tau fibrils as a potential facilitator of disease spread.
Collapse
Affiliation(s)
- Virginia Meyer
- Department of Chemistry and Biochemistry, University of Denver , Denver, Colorado 80208, United States
| | | | | | | |
Collapse
|
46
|
Camero S, Benítez MJ, Cuadros R, Hernández F, Ávila J, Jiménez JS. Thermodynamics of the interaction between Alzheimer's disease related tau protein and DNA. PLoS One 2014; 9:e104690. [PMID: 25126942 PMCID: PMC4134230 DOI: 10.1371/journal.pone.0104690] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Accepted: 07/10/2014] [Indexed: 11/18/2022] Open
Abstract
Tau hyperphosphorylation can be considered as one of the hallmarks of Alzheimer's disease and other tauophaties. Besides its well-known role as a microtubule associated protein, Tau displays a key function as a protector of genomic integrity in stress situations. Phosphorylation has been proven to regulate multiple processes including nuclear translocation of Tau. In this contribution, we are addressing the physicochemical nature of DNA-Tau interaction including the plausible influence of phosphorylation. By means of surface plasmon resonance (SPR) we measured the equilibrium constant and the free energy, enthalpy and entropy changes associated to the Tau-DNA complex formation. Our results show that unphosphorylated Tau binding to DNA is reversible. This fact is in agreement with the protective role attributed to nuclear Tau, which stops binding to DNA once the insult is over. According to our thermodynamic data, oscillations in the concentration of dephosphorylated Tau available to DNA must be the variable determining the extent of Tau binding and DNA protection. In addition, thermodynamics of the interaction suggest that hydrophobicity must represent an important contribution to the stability of the Tau-DNA complex. SPR results together with those from Tau expression in HEK cells show that phosphorylation induces changes in Tau protein which prevent it from binding to DNA. The phosphorylation-dependent regulation of DNA binding is analogous to the Tau-microtubules binding inhibition induced by phosphorylation. Our results suggest that hydrophobicity may control Tau location and DNA interaction and that impairment of this Tau-DNA interaction, due to Tau hyperphosphorylation, could contribute to Alzheimer's pathogenesis.
Collapse
Affiliation(s)
- Sergio Camero
- Departamento de Química Física Aplicada, Universidad Autónoma de Madrid, Madrid, Spain
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, (CSIC/UAM), Madrid, Spain
| | - María J. Benítez
- Departamento de Química Física Aplicada, Universidad Autónoma de Madrid, Madrid, Spain
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, (CSIC/UAM), Madrid, Spain
| | - Raquel Cuadros
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, (CSIC/UAM), Madrid, Spain
| | - Félix Hernández
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, (CSIC/UAM), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Jesús Ávila
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, (CSIC/UAM), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Juan S. Jiménez
- Departamento de Química Física Aplicada, Universidad Autónoma de Madrid, Madrid, Spain
- * E-mail:
| |
Collapse
|
47
|
Huang Y, Wu Z, Cao Y, Lang M, Lu B, Zhou B. Zinc binding directly regulates tau toxicity independent of tau hyperphosphorylation. Cell Rep 2014; 8:831-42. [PMID: 25066125 PMCID: PMC4306234 DOI: 10.1016/j.celrep.2014.06.047] [Citation(s) in RCA: 93] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2013] [Revised: 05/20/2014] [Accepted: 06/24/2014] [Indexed: 01/13/2023] Open
Abstract
Tau hyperphosphorylation is thought to underlie tauopathy. Working in a Drosophila tauopathy model expressing a human Tau mutant (hTauR406W, or Tau*), we show that zinc contributes to the development of Tau toxicity through two independent actions: by increasing Tau phosphorylation and, more significantly, by directly binding to Tau. Elimination of zinc binding through amino acid substitution of Cys residues has a minimal effect on phosphorylation levels yet essentially eliminates Tau toxicity. The toxicity of the zinc-binding-deficient mutant Tau* (Tau*C2A) and overexpression of native Drosophila Tau, also lacking the corresponding zinc-binding Cys residues, are largely impervious to zinc concentration. Importantly, restoration of zinc-binding ability to Tau* by introduction of a zinc-binding residue (His) into the original Cys positions restores zinc-responsive toxicities in proportion to zinc-binding affinities. These results indicate zinc binding is a substantial contributor to tauopathy and have implications for therapy development.
Collapse
Affiliation(s)
- Yunpeng Huang
- State Key Laboratory of Biomembrane and Membrane Biotechnology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Zhihao Wu
- State Key Laboratory of Biomembrane and Membrane Biotechnology, School of Life Sciences, Tsinghua University, Beijing 100084, China; Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Yu Cao
- State Key Laboratory of Biomembrane and Membrane Biotechnology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Minglin Lang
- State Key Laboratory of Biomembrane and Membrane Biotechnology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Bingwei Lu
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Bing Zhou
- State Key Laboratory of Biomembrane and Membrane Biotechnology, School of Life Sciences, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
48
|
Spears W, Furgerson M, Sweetnam JM, Evans P, Gearing M, Fechheimer M, Furukawa R. Hirano bodies differentially modulate cell death induced by tau and the amyloid precursor protein intracellular domain. BMC Neurosci 2014; 15:74. [PMID: 24929931 PMCID: PMC4084581 DOI: 10.1186/1471-2202-15-74] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2014] [Accepted: 06/06/2014] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Hirano bodies are actin-rich paracrystalline inclusions found in brains of patients with Alzheimer's disease (AD), frontotemporal dementia (FTD), and in normal aged individuals. Although studies of post-mortem brain tissue provide clues of etiology, the physiological function of Hirano bodies remains unknown. A cell culture model was utilized to study the interactions of mutant tau proteins, model Hirano bodies, and GSK3β in human astrocytoma cells. RESULTS Most tau variants showed co-localization with model Hirano bodies. Cosedimentation assays revealed this interaction may be direct, as recombinant purified forms of tau are all capable of binding F-actin. Model Hirano bodies had no effect or enhanced cell death induced by tau in the absence of amyloid precursor protein intracellular domain (AICD). In the presence of AICD and tau, synergistic cell death was observed in most cases, and model Hirano bodies decreased this synergistic cell death, except for forms of tau that caused significant cell death in the presence of Hirano bodies only. A role for the kinase GSK3β is suggested by the finding that a dominant negative form of GSK3β reduces this synergistic cell death. A subset of Hirano bodies in brain tissue of both Alzheimer's disease and normal aged individuals was found to contain tau, with some Hirano bodies in Alzheimer's disease brains containing hyperphosphorylated tau. CONCLUSION The results demonstrate a complex interaction between tau and AICD involving activation of GSK3β in promoting cell death, and the ability of Hirano bodies to modulate this process.
Collapse
Affiliation(s)
- William Spears
- Department of Cellular Biology, University of Georgia, Athens, GA 30602, USA
| | - Matthew Furgerson
- Department of Cellular Biology, University of Georgia, Athens, GA 30602, USA
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA
| | | | - Parker Evans
- Department of Cellular Biology, University of Georgia, Athens, GA 30602, USA
| | - Marla Gearing
- Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Marcus Fechheimer
- Department of Cellular Biology, University of Georgia, Athens, GA 30602, USA
| | - Ruth Furukawa
- Department of Cellular Biology, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
49
|
Xie M, Shi R, Pan Y, Zeng T, Chen Q, Wang S, Liao X. Proteasome Inhibition-Induced Downregulation of Akt/GSK-3β Pathway Contributes to Abnormality of Tau in Hippocampal Slice. Mol Neurobiol 2014; 50:888-95. [DOI: 10.1007/s12035-014-8702-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Accepted: 03/31/2014] [Indexed: 12/30/2022]
|
50
|
Schafer KN, Cisek K, Huseby CJ, Chang E, Kuret J. Structural determinants of Tau aggregation inhibitor potency. J Biol Chem 2013; 288:32599-32611. [PMID: 24072703 DOI: 10.1074/jbc.m113.503474] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Small-molecule Tau aggregation inhibitors are under investigation as potential therapeutic agents against Alzheimer disease. Many such inhibitors have been identified in vitro, but their potency-driving features, and their molecular targets in the Tau aggregation pathway, have resisted identification. Previously we proposed ligand polarizability, a measure of electron delocalization, as a candidate descriptor of inhibitor potency. Here we tested this hypothesis by correlating the ground state polarizabilities of cyanine, phenothiazine, and arylmethine derivatives calculated using ab initio quantum methods with inhibitory potency values determined in the presence of octadecyl sulfate inducer under reducing conditions. A series of rhodanine analogs was analyzed as well using potency values disclosed in the literature. Results showed that polarizability and inhibitory potency directly correlated within all four series. To identify putative binding targets, representative members of the four chemotypes were added to aggregation reactions, where they were found to stabilize soluble, but SDS-resistant Tau species at the expense of filamentous aggregates. Using SDS resistance as a secondary assay, and a library of Tau deletion and missense mutants as targets, interaction with cyanine was localized to the microtubule binding repeat region. Moreover, the SDS-resistant phenotype was completely dependent on the presence of octadecyl sulfate inducer, but not intact PHF6/PH6* hexapeptide motifs, indicating that cyanine interacted with a species in the aggregation pathway prior to nucleus formation. Together the data suggest that flat, highly polarizable ligands inhibit Tau aggregation by interacting with folded species in the aggregation pathway and driving their assembly into soluble but highly stable Tau oligomers.
Collapse
Affiliation(s)
- Kelsey N Schafer
- From the Department of Molecular and Cellular Biochemistry, College of Medicine, The Ohio State University, Columbus, Ohio 43210
| | - Katryna Cisek
- From the Department of Molecular and Cellular Biochemistry, College of Medicine, The Ohio State University, Columbus, Ohio 43210
| | - Carol J Huseby
- From the Department of Molecular and Cellular Biochemistry, College of Medicine, The Ohio State University, Columbus, Ohio 43210
| | - Edward Chang
- From the Department of Molecular and Cellular Biochemistry, College of Medicine, The Ohio State University, Columbus, Ohio 43210
| | - Jeff Kuret
- From the Department of Molecular and Cellular Biochemistry, College of Medicine, The Ohio State University, Columbus, Ohio 43210.
| |
Collapse
|