1
|
Ye ZW, Ong CP, Cao H, Tang K, Gray VS, Hinson Cheung PH, Wang J, Li W, Zhang H, Luo P, Ni T, Chan CP, Zhang M, Zhang Y, Ling GS, Yuan S, Jin DY. A live attenuated SARS-CoV-2 vaccine constructed by dual inactivation of NSP16 and ORF3a. EBioMedicine 2025; 114:105662. [PMID: 40132472 PMCID: PMC11985078 DOI: 10.1016/j.ebiom.2025.105662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 02/16/2025] [Accepted: 03/08/2025] [Indexed: 03/27/2025] Open
Abstract
BACKGROUND Live attenuated vaccines against SARS-CoV-2 activate all phases of host immunity resembling a natural infection and they block viral transmission more efficiently than existing vaccines in human use. In our prior work, we characterised an attenuated SARS-CoV-2 variant, designated d16, which harbours a D130A mutation in the NSP16 protein, inactivating its 2'-O-methyltransferase function. The d16 variant has demonstrated an ability to induce both mucosal and sterilising immunity in animal models. However, further investigation is required to identify any additional modifications to d16 that could mitigate concerns regarding potential virulence reversion and the suboptimal regulation of the proinflammatory response. METHODS Mutations were introduced into molecular clone of SARS-CoV-2 and live attenuated virus was recovered from cultured cells. Virological, biochemical and immunological assays were performed in vitro and in two animal models to access the protective efficacies of the candidate vaccine strain. FINDINGS Here we describe evaluation of a derivative of d16. We further modified the d16 variant by inverting the open reading frame of the ORF3a accessory protein, resulting in the d16i3a strain. This modification is anticipated to enhance safety and reduce pathogenicity. d16i3a appeared to be further attenuated in hamsters and transgenic mice compared to d16. Intranasal vaccination with d16i3a stimulated humoural, cell-mediated and mucosal immune responses, conferring sterilising protection against SARS-CoV-2 Delta and Omicron variants in animals. A version of d16i3a expressing the XBB.1.16 spike protein further expanded the vaccine's protection spectrum against circulating variants. Notably, this version has demonstrated efficacy as a booster in hamsters, providing protection against Omicron subvariants and achieving inhibition of viral transmission. INTERPRETATION Our work established a platform for generating safe and effective live attenuated vaccines by dual inactivation of NSP16 and ORF3a of SARS-CoV-2. FUNDING This work was supported by National Key Research and Development Program of China (2021YFC0866100, 2023YFC3041600, and 2023YFE0203400), Hong Kong Health and Medical Research Fund (COVID190114, CID-HKU1-9, and 23220712), Hong Kong Research Grants Council (C7142-20GF and T11-709/21-N), Hong Kong Innovation and Technology Commission grant (MHP/128/22), Guangzhou Laboratory (EKPG22-01) and Health@InnoHK (CVVT). Funding sources had no role in the writing of the manuscript or the decision to submit it for publication.
Collapse
Affiliation(s)
- Zi-Wei Ye
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 21 Sassoon Road, Pokfulam, Hong Kong Special Administrative Region of China
| | - Chon Phin Ong
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 21 Sassoon Road, Pokfulam, Hong Kong Special Administrative Region of China
| | - Hehe Cao
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 102 Pokfulam Road, Pokfulam, Hong Kong Special Administrative Region of China
| | - Kaiming Tang
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 102 Pokfulam Road, Pokfulam, Hong Kong Special Administrative Region of China
| | - Victor Sebastien Gray
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 21 Sassoon Road, Pokfulam, Hong Kong Special Administrative Region of China
| | - Pak-Hin Hinson Cheung
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 21 Sassoon Road, Pokfulam, Hong Kong Special Administrative Region of China
| | - Junjue Wang
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 21 Sassoon Road, Pokfulam, Hong Kong Special Administrative Region of China
| | - Weixin Li
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 21 Sassoon Road, Pokfulam, Hong Kong Special Administrative Region of China
| | - Hongzhuo Zhang
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 21 Sassoon Road, Pokfulam, Hong Kong Special Administrative Region of China
| | - Peng Luo
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 102 Pokfulam Road, Pokfulam, Hong Kong Special Administrative Region of China
| | - Tao Ni
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 21 Sassoon Road, Pokfulam, Hong Kong Special Administrative Region of China
| | - Chi Ping Chan
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 21 Sassoon Road, Pokfulam, Hong Kong Special Administrative Region of China
| | - Ming Zhang
- State Key Laboratory of Novel Vaccines for Emerging Infectious Diseases, China National Biotec Group Company Limited, Beijing, 100024, China
| | - Yuntao Zhang
- State Key Laboratory of Novel Vaccines for Emerging Infectious Diseases, China National Biotec Group Company Limited, Beijing, 100024, China
| | - Guang Sheng Ling
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 21 Sassoon Road, Pokfulam, Hong Kong Special Administrative Region of China
| | - Shuofeng Yuan
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 102 Pokfulam Road, Pokfulam, Hong Kong Special Administrative Region of China
| | - Dong-Yan Jin
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 21 Sassoon Road, Pokfulam, Hong Kong Special Administrative Region of China.
| |
Collapse
|
2
|
Liang L, Chen D, Han M, Liu LR, Luo L, Yue J. Impact of IL-32 gene polymorphisms on tuberculosis susceptibility in a Chinese Han population. Microb Pathog 2025; 200:107313. [PMID: 39842733 DOI: 10.1016/j.micpath.2025.107313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 12/26/2024] [Accepted: 01/18/2025] [Indexed: 01/24/2025]
Abstract
OBJECTIVE Interleukin (IL)-32, encoded by the IL-32 gene, is a crucial constituent of the autophagy pathway and is involved in the regulation of Mycobacterium tuberculosis (M.tb) infection, a major global health challenge. This study aimed to examine the potential association between IL-32 polymorphisms and susceptibility to Tuberculosis(TB), highlighting the significance of genetic factors in TB risk. DESIGN Sequence analysis of IL-32 was conducted in 570 individuals diagnosed with pulmonary tuberculosis (PTB), 363 individuals diagnosed with extrapulmonary tuberculosis (EPTB), and 604 healthy controls from the Chinese Han population, representing a broad spectrum of TB manifestations. Five single nucleotide polymorphisms(SNPs) were selected for analysis based on their potential impact on IL-32 function and TB susceptibility. RESULTS The study revealed that the polymorphism rs12934561C allele exhibits a positive correlation with elevated susceptibility to PTB (P = 0.003, OR (95%CI) = 1.28 (1.09-1.51)), highlighting its potential role as a biomarker for PTB risk. A noteworthy relationship was observed between the rs12934561 TT genotype and the decreased likelihood of PTB, further underscoring the complexity of IL-32's role in PTB susceptibility. Moreover, it was found that protective haplotypes for PTB are TCAAC (P = 0.001, OR (95%CI) = 0.75 (0.62-0.90)) and TCGTT (P = 0.002, OR (95%CI) = 0.47 (0.29-0.77)) may be present in IL-32; Conversely, the potential risk haplotypes for PTB are CCGAA (P = 0.007, OR (95%CI) = 1.29 (1.07-1.55)) and TCATT (P = 0.033, OR (95%CI) = 1.30 (1.02-1.66)), indicating genetic variations that increase PTB susceptibility. In contrast, neither allelic nor genotypic associations were statistically significant among EPTB cases, highlighting the distinct genetic influences on the different forms of TB. CONCLUSION In this study, we discovered that polymorphisms in IL-32 are significantly associated with increased susceptibility to pulmonary TB. This finding underscores the crucial role of genetic variation in the development of TB and provides a potential avenue for targeted interventions.
Collapse
Affiliation(s)
- Li Liang
- Department of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, 200433, China
| | - DaWen Chen
- Center of Clinical Laboratory Medicine, Zhongda Hospital, Southeast University, Nanjing, China
| | - Min Han
- Department of Clinical Laboratory Medicine, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, 200433, China
| | - Li-Rong Liu
- Department of Clinical Laboratory Medicine, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, 200433, China
| | - LiuLin Luo
- Department of Clinical Laboratory Medicine, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, 200433, China.
| | - Jun Yue
- Department of Clinical Laboratory Medicine, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, 200433, China.
| |
Collapse
|
3
|
Liu Z, Liu J, Wu Y, Zhou Z, Ousmane D, Zeinalzadeh Z, Wang J. Shared chemoresistance genes in ESCC and cervical Cancer: Insights from pharmacogenomics and Mendelian randomization. Int Immunopharmacol 2025; 147:113933. [PMID: 39755112 DOI: 10.1016/j.intimp.2024.113933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 10/29/2024] [Accepted: 12/21/2024] [Indexed: 01/06/2025]
Abstract
BACKGROUND Neoadjuvant chemotherapy, particularly the use of platinum-based compounds and taxanes, is pivotal in the treatment of epithelial-derived tumors, such as cervical cancer and esophageal squamous cell carcinoma (ESCC); however, resistance remains a significant challenge. Utilizing Mendelian randomization (MR) with pharmacogenomics offers a novel approach to understanding the genetic underpinnings of drug responses, thereby aiding in personalized treatment. METHODS Single-cell RNA sequencing (scRNA-seq) analysis revealed a shared cellular subpopulation of CD8 + T effector memory (CD8 + TEM) cells that are pivotal in mediating chemotherapy resistance in ESCC and cervical cancer. A two-sample approach was employed for MR using data from genome-wide association studies, focusing on single nucleotide polymorphisms (SNPs) linked to CD8 + TEM cell expression. The SNPs were carefully selected, and statistical models, including the Wald ratio and inverse variance weighted methods, were used for robust causal effect estimation. These were supplemented by MR-Egger and weighted median analyses to address pleiotropy and variant heterogeneity. 3-(4,5-Dimethylthiazol-2-yl)-2,5 diphenyl tetrazolium bromide (MTT) and immunohistochemistry assays were used to verify the relationship between the gene and drug sensitivity. RESULTS Increased proportion of CD8 + TEM cells were observed in resistant samples. MR identified IL32, SPOCK1, and TRBC2 as key genes associated with resistance to cisplatin, carboplatin, and paclitaxel, respectively. These findings were validated across various cohorts and underscored the role of CD8 + TEM cells in drug responsiveness. The results of the MTT and immunohistochemistry assays confirmed the MR findings. CONCLUSIONS Our study highlights the significant role of CD8 + TEM cells in the chemoresistance of ESCC and cervical cancer and identified three genetic markers crucial for resistance to common chemotherapeutic agents. These findings suggest potential pathways for developing personalized treatment strategies, offering clinically relevant insights that could enhance therapeutic efficacy and help overcome drug resistance in patients with ESCC or cervical cancer.
Collapse
Affiliation(s)
- Ziyu Liu
- Department of Pathology, Xiangya Hospital, Central South University, Changsha City, Hunan Province, China; Department of Pathology, School of Basic Medicine, Central South University, Changsha City, Hunan Province, China; FuRong Laboratory, Changsha City, Hunan Province, China
| | - Jie Liu
- Department of Pathology, Xiangya Hospital, Central South University, Changsha City, Hunan Province, China; Department of Pathology, School of Basic Medicine, Central South University, Changsha City, Hunan Province, China
| | - Yanhao Wu
- Department of Respiratory Medicine, National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha City, Hunan Province, China
| | - Zongjiang Zhou
- Department of Pathology, Xiangya Hospital, Central South University, Changsha City, Hunan Province, China; Department of Pathology, School of Basic Medicine, Central South University, Changsha City, Hunan Province, China
| | - Diabate Ousmane
- Department of Pathology, Xiangya Hospital, Central South University, Changsha City, Hunan Province, China; Department of Pathology, School of Basic Medicine, Central South University, Changsha City, Hunan Province, China
| | - Zahra Zeinalzadeh
- Department of Pathology, Xiangya Hospital, Central South University, Changsha City, Hunan Province, China; Department of Pathology, School of Basic Medicine, Central South University, Changsha City, Hunan Province, China
| | - Junpu Wang
- Department of Pathology, Xiangya Hospital, Central South University, Changsha City, Hunan Province, China; Department of Pathology, School of Basic Medicine, Central South University, Changsha City, Hunan Province, China; Ultrapathology (Biomedical Electron Microscopy) Center, Department of Pathology, Xiang-ya Hospital, Central South University, Changsha City, Hunan Province, China; Key Laboratory of Hunan Province in Neurodegenerative Disorders, Xiangya Hospital, Central South University, Changsha City, Hunan Province, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha City, Hunan Province, China; FuRong Laboratory, Changsha City, Hunan Province, China.
| |
Collapse
|
4
|
Wu X, Wang K, Li Q, Zhang Y, Wei P, Shan Y, Zhao G. Combining Single-Cell RNA Sequencing and Mendelian Randomization to Explore Novel Drug Targets for Parkinson's Disease. Mol Neurobiol 2025:10.1007/s12035-025-04700-3. [PMID: 39890696 DOI: 10.1007/s12035-025-04700-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 01/11/2025] [Indexed: 02/03/2025]
Abstract
Neuroinflammation is a key pathological factor of PD, and T cells play a central role in neuroinflammatory progression. However, the causal effect of T cell-related genes on the risk of PD is still unclear. We explored single-cell RNA sequencing (scRNA-Seq) datasets of the peripheral blood T cells of PD patients and healthy controls, and screened the differentially expressed genes (DEGs) in the cytotoxic CD4 + T cells relative to the other T cell subsets. Pseudo-time series analysis, cell-cell communication analysis, and metabolic pathway analysis was performed for the cytotoxic CD4 + T cells. The DEGs were also functionally annotated through GO and KEGG pathway enrichment analyses. The MR approach was used to establish causal effects of the DEGs (exposure) on PD risk (outcome), and explore new drug targets for PD. The findings of MR analysis were further validated by Steiger filtering, bidirectional MR, Bayesian colocalization analysis, and phenotype scanning, and the GWAS data from an independent PD case-control cohort was used for external validation of the results. Finally, differences in gene expression between PD patients and healthy controls were further validated in scRNA-Seq and bulk transcriptome sequencing data. We found that increased expression of IL-32, GNLY, MT2A, and ARPC2 was significantly associated with a higher risk of PD. In contrast, the increase in ARRB2 was closely related to a lower risk of PD. IL32, GNLY, MT2A, ARRB2, and ARPC2 are the causal genes and potential drug targets of PD. Cytotoxic CD4 + T cells are likely the key effectors of PD-related neuroinflammation. These findings provide new insights into the pathogenesis and treatment options for PD, and further research and clinical trials based on the five potential drug targets and neuroinflammation are necessary.
Collapse
Affiliation(s)
- Xiaolong Wu
- Department of Neurosurgery, Xuanwu Hospital of the Capital Medical University, Beijing, 100053, China
- International Neuroscience Institute (China-INI), Beijing, 100053, China
| | - Kailiang Wang
- Department of Neurosurgery, Xuanwu Hospital of the Capital Medical University, Beijing, 100053, China.
- International Neuroscience Institute (China-INI), Beijing, 100053, China.
| | - Qinghua Li
- Department of Neurosurgery, Xuanwu Hospital of the Capital Medical University, Beijing, 100053, China
- International Neuroscience Institute (China-INI), Beijing, 100053, China
| | - Yuqing Zhang
- Department of Functional Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
| | - Penghu Wei
- Department of Neurosurgery, Xuanwu Hospital of the Capital Medical University, Beijing, 100053, China
- International Neuroscience Institute (China-INI), Beijing, 100053, China
| | - Yongzhi Shan
- Department of Neurosurgery, Xuanwu Hospital of the Capital Medical University, Beijing, 100053, China
- International Neuroscience Institute (China-INI), Beijing, 100053, China
| | - Guoguang Zhao
- Department of Neurosurgery, Xuanwu Hospital of the Capital Medical University, Beijing, 100053, China.
- International Neuroscience Institute (China-INI), Beijing, 100053, China.
- Beijing Municipal Geriatric Medical Research Center, Beijing, 100053, China.
| |
Collapse
|
5
|
Liu L, Lin S, Bai J, Zhang B. Integrative Bioinformatics Analysis of Pyroptosis-Related Genes and Analysis of Immune Cell Infiltration in Infantile Hemangioma Regression. Clin Cosmet Investig Dermatol 2025; 18:291-302. [PMID: 39897091 PMCID: PMC11784316 DOI: 10.2147/ccid.s492535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 01/16/2025] [Indexed: 02/04/2025]
Abstract
Background Infantile hemangiomas (IHs) are characterized by spontaneous regression, and their pathogenesis involves immune cell infiltration and programmed cell death. The molecular pathways and mechanisms involved in pyroptosis in IHs are still unclear. This study aimed to identify genes related to pyroptosis in IH regression by bioinformatics methods and to explore the effects of these pyroptosis-related genes (PRGs) on disease pathology and immune cell infiltration. Methods The microarray dataset GSE127487 was assessed to identify differentially expressed genes (DEGs) between proliferation-phase IH (PIHs) and involution-phase IH (IIHs). The DEGs that overlapped with PRGs were considered IH-PRGs. The IH-PRGs were validated and subjected to functional enrichment analysis and Genomes pathway analyses. Gene set enrichment analysis (GSEA) was also performed to analyse the biological significance of the DEGs. The NetworkAnalyst database was used to analyse the correlation network of IH-PRGs and miRNAs as well as that of IH-PRGs and transcription factors. The STRING online database and Cytoscape were used to identify the hub-IH-PRGs. Additionally, a single-sample GSEA algorithm was applied to assess immune cell infiltration in IHs, and correlation analysis was performed between the hub-IH-PRGs and infiltrating immune cells. Results Fourteen IH-PRGs were identified. IL6, EGFR, IRF1 and IL32 were identified as hub-IH-PRGs and displayed excellent diagnostic performance. Immune cell infiltration analysis revealed notable differences in CD8+ T cells, Tgd cells and Th17 cells between PIHs and IIHs. IL-6 was significantly positively correlated with Th17 cell infiltration and significantly negatively correlated with Tgd cell infiltration; EGFR was negatively correlated with Tgd cell infiltration; and IRF1 and IL32 were significantly negatively correlated with Th17 cell infiltration. Conclusion Four PRGs, namely, IL6, EGFR, IRF1 and IL32, may play a significant role in IH regression. This study provides insights into the molecular mechanisms underlying IH pathogenesis, highlighting the importance of pyroptosis and immune cell infiltration.
Collapse
Affiliation(s)
- Lan Liu
- Pediatric Surgery Department, Fujian Children’s Hospital (Fujian Branch of Shanghai Children’s Medical Center), Fuzhou City, Fujian Province, People’s Republic of China
- Pediatric Surgery Department, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou City, Fujian Province, People’s Republic of China
| | - Sheng Lin
- Pediatric Surgery Department, Fujian Children’s Hospital (Fujian Branch of Shanghai Children’s Medical Center), Fuzhou City, Fujian Province, People’s Republic of China
- Pediatric Surgery Department, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou City, Fujian Province, People’s Republic of China
| | - Jianxi Bai
- Pediatric Surgery Department, Fujian Children’s Hospital (Fujian Branch of Shanghai Children’s Medical Center), Fuzhou City, Fujian Province, People’s Republic of China
- Pediatric Surgery Department, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou City, Fujian Province, People’s Republic of China
| | - Bing Zhang
- Pediatric Surgery Department, Fujian Children’s Hospital (Fujian Branch of Shanghai Children’s Medical Center), Fuzhou City, Fujian Province, People’s Republic of China
- Pediatric Surgery Department, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou City, Fujian Province, People’s Republic of China
| |
Collapse
|
6
|
Kurzen N, Mubarak M, Eigemann J, Seiringer P, Wasserer S, Hillig C, Menden M, Biedermann T, Schmidt-Weber CB, Eyerich K, Jargosch M, Eyerich S, Lauffer F. Death-Associated Protein Kinase 1 Dampens Keratinocyte Necroptosis and Expression of Inflammatory Genes in Lichen Planus. J Invest Dermatol 2024:S0022-202X(24)03039-2. [PMID: 39746570 DOI: 10.1016/j.jid.2024.11.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 10/30/2024] [Accepted: 11/12/2024] [Indexed: 01/04/2025]
Abstract
Lichen planus (LP) is a chronic inflammatory disease affecting the skin, mucosa, nail, and hair. Previous studies demonstrated a pivotal role of type 1 immunity in LP because infiltrating T cells trigger apoptosis and necroptosis in the epidermis. In this study, we investigated the role of DAPK1 in LP with special focus on its role in mediating cell death and inflammation. Bulk RNA sequencing of skin biopsies revealed a high expression of DAPK1 in LP compared with that in psoriasis and atopic dermatitis. DAPK1 expression in human keratinocytes was induced by IFN-γ, TNF, and IL-32. CRISPR/Cas9-mediated DAPK1 knockout led to a decreased rate of cell death and induction of proapoptotic proteins (BAX, cPARP) in human keratinocytes upon stimulation with the supernatant T cells derived from LP skin biopsies. Meanwhile, DAPK1 knockout resulted in an induction of kinases involved in necroptosis (RIPK3) and an upregulation of inflammatory genes (CXCL9, CXCL10, CXCL11, IL32, CCL2) after stimulation with LP supernatant T cells. In summary, we demonstrate that DAPK1 mediates keratinocyte apoptosis under type 1 inflammatory conditions and thereby counteracts necroptosis and regulation of inflammatory genes. These findings point toward previously unreported therapeutic approaches for activating or stabilizing DAPK1 in LP.
Collapse
Affiliation(s)
- Nils Kurzen
- Department of Dermatology and Allergy, Technical University of Munich, Munich, Germany
| | - Menna Mubarak
- Department of Dermatology and Allergy, Technical University of Munich, Munich, Germany; Department of Dermatology and Venereology, Medical Center, University of Freiburg, Freiburg, Germany
| | - Jessica Eigemann
- Department of Dermatology and Allergy, Technical University of Munich, Munich, Germany; Center of Allergy and Environment (ZAUM), Technical University and Helmholtz Center Munich, Munich, Germany
| | - Peter Seiringer
- Department of Dermatology and Allergy, Technical University of Munich, Munich, Germany
| | - Sophia Wasserer
- Department of Dermatology and Allergy, Technical University of Munich, Munich, Germany
| | - Christina Hillig
- Computational Health Center, Institute of Computational Biology, Helmholtz Munich, Neuherberg, Germany
| | - Michael Menden
- Computational Health Center, Institute of Computational Biology, Helmholtz Munich, Neuherberg, Germany; Department of Biochemistry & Pharmacology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Australia
| | - Tilo Biedermann
- Department of Dermatology and Allergy, Technical University of Munich, Munich, Germany
| | - Carsten B Schmidt-Weber
- Center of Allergy and Environment (ZAUM), Technical University and Helmholtz Center Munich, Munich, Germany
| | - Kilian Eyerich
- Department of Dermatology and Venereology, Medical Center, University of Freiburg, Freiburg, Germany
| | - Manja Jargosch
- Department of Dermatology and Allergy, Technical University of Munich, Munich, Germany; Center of Allergy and Environment (ZAUM), Technical University and Helmholtz Center Munich, Munich, Germany
| | - Stefanie Eyerich
- Center of Allergy and Environment (ZAUM), Technical University and Helmholtz Center Munich, Munich, Germany
| | - Felix Lauffer
- Department of Dermatology and Allergy, Technical University of Munich, Munich, Germany; Department of Dermatology and Allergy, Ludwig-Maximilians University Hospital, Munich, Germany.
| |
Collapse
|
7
|
Yan Z, Yang S, Lin C, Yan J, Liu M, Tang S, Jia W, Liu J, Liu H. Advances in plant oxygen sensing: endogenous and exogenous mechanisms. J Genet Genomics 2024:S1673-8527(24)00329-1. [PMID: 39638088 DOI: 10.1016/j.jgg.2024.11.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 11/26/2024] [Accepted: 11/26/2024] [Indexed: 12/07/2024]
Abstract
Oxygen is essential for the biochemical processes that sustain life in eukaryotic organisms. Although plants produce oxygen through photosynthesis, they often struggle to survive in low-oxygen environments, such as during flooding or submergence. To endure these conditions, they must reprogram their developmental and metabolic networks, and the adaptation process involves the continuous detection of both exogenous hypoxic signals and endogenous oxygen gradients. Recent research has significantly advanced our understanding of how plants respond to both endogenous and exogenous hypoxia signals. In this review, we explore advancements in both areas, comparing them to responses in animals, with a primary focus on how plants perceive and respond to exogenous hypoxic conditions, particularly those caused by flooding or submergence, as well as the hypoxia signaling pathways in different crops. Additionally, we discuss the interplay between endogenous and exogenous hypoxia signals in plants. Finally, we discuss future research directions aimed at improving crop resilience to flooding by integrating the perception and responses to both endogenous and exogenous signals. Through these efforts, we aspire to contribute to the development of crop varieties that are not only highly resistant but also experience minimal growth and yield penalties, thereby making substantial contributions to agricultural science.
Collapse
Affiliation(s)
- Zhen Yan
- Key Laboratory for Bio-resources and Eco-environment & State Key Lab of Hydraulics & Mountain River Engineering, Sichuan Zoige Alpine Wetland Ecosystem National Observation and Research Station, Key Laboratory for Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan 610065, China; National Demonstration Center for Experimental Biology Education (Sichuan University), Chengdu, Sichuan 610065, China
| | - Songyi Yang
- Key Laboratory for Bio-resources and Eco-environment & State Key Lab of Hydraulics & Mountain River Engineering, Sichuan Zoige Alpine Wetland Ecosystem National Observation and Research Station, Key Laboratory for Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan 610065, China
| | - Chen Lin
- Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Jin Yan
- Key Laboratory for Bio-resources and Eco-environment & State Key Lab of Hydraulics & Mountain River Engineering, Sichuan Zoige Alpine Wetland Ecosystem National Observation and Research Station, Key Laboratory for Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan 610065, China
| | - Meng Liu
- Key Laboratory for Bio-resources and Eco-environment & State Key Lab of Hydraulics & Mountain River Engineering, Sichuan Zoige Alpine Wetland Ecosystem National Observation and Research Station, Key Laboratory for Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan 610065, China
| | - Si Tang
- Key Laboratory for Bio-resources and Eco-environment & State Key Lab of Hydraulics & Mountain River Engineering, Sichuan Zoige Alpine Wetland Ecosystem National Observation and Research Station, Key Laboratory for Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan 610065, China
| | - Weitao Jia
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China
| | - Jianquan Liu
- Key Laboratory for Bio-resources and Eco-environment & State Key Lab of Hydraulics & Mountain River Engineering, Sichuan Zoige Alpine Wetland Ecosystem National Observation and Research Station, Key Laboratory for Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan 610065, China
| | - Huanhuan Liu
- Key Laboratory for Bio-resources and Eco-environment & State Key Lab of Hydraulics & Mountain River Engineering, Sichuan Zoige Alpine Wetland Ecosystem National Observation and Research Station, Key Laboratory for Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan 610065, China; National Demonstration Center for Experimental Biology Education (Sichuan University), Chengdu, Sichuan 610065, China.
| |
Collapse
|
8
|
Akula S, Alvarado-Vazquez A, Haide Mendez Enriquez E, Bal G, Franke K, Wernersson S, Hallgren J, Pejler G, Babina M, Hellman L. Characterization of Freshly Isolated Human Peripheral Blood B Cells, Monocytes, CD4+ and CD8+ T Cells, and Skin Mast Cells by Quantitative Transcriptomics. Int J Mol Sci 2024; 25:13050. [PMID: 39684762 DOI: 10.3390/ijms252313050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 11/25/2024] [Accepted: 12/01/2024] [Indexed: 12/18/2024] Open
Abstract
Quantitative transcriptomics offers a new way to obtain a detailed picture of freshly isolated cells. By direct isolation, the cells are unaffected by in vitro culture, and the isolation at cold temperatures maintains the cells relatively unaltered in phenotype by avoiding activation through receptor cross-linking or plastic adherence. Simultaneous analysis of several cell types provides the opportunity to obtain detailed pictures of transcriptomic differences between them. Here, we present such an analysis focusing on four human blood cell populations and compare those to isolated human skin mast cells. Pure CD19+ peripheral blood B cells, CD14+ monocytes, and CD4+ and CD8+ T cells were obtained by fluorescence-activated cell sorting, and KIT+ human connective tissue mast cells (MCs) were purified by MACS sorting from healthy skin. Detailed information concerning expression levels of the different granule proteases, protease inhibitors, Fc receptors, other receptors, transcription factors, cell signaling components, cytoskeletal proteins, and many other protein families relevant to the functions of these cells were obtained and comprehensively discussed. The MC granule proteases were found exclusively in the MC samples, and the T-cell granzymes in the T cells, of which several were present in both CD4+ and CD8+ T cells. High levels of CD4 were also observed in MCs and monocytes. We found a large variation between the different cell populations in the expression of Fc receptors, as well as for lipid mediators, proteoglycan synthesis enzymes, cytokines, cytokine receptors, and transcription factors. This detailed quantitative comparative analysis of more than 780 proteins of importance for the function of these populations can now serve as a good reference material for research into how these entities shape the role of these cells in immunity and tissue homeostasis.
Collapse
Affiliation(s)
- Srinivas Akula
- Department of Cell and Molecular Biology, Uppsala University, The Biomedical Center, Box 596, SE-751 24 Uppsala, Sweden
- Department of Animal Biosciences, Swedish University of Agricultural Sciences, Box 7023, SE-75007 Uppsala, Sweden
| | - Abigail Alvarado-Vazquez
- Department of Medical Biochemistry and Microbiology, The Biomedical Center, Box 582, SE-75123 Uppsala, Sweden
| | - Erika Haide Mendez Enriquez
- Department of Medical Biochemistry and Microbiology, The Biomedical Center, Box 582, SE-75123 Uppsala, Sweden
| | - Gürkan Bal
- Institute of Allergology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Hindenburgdamm 30, 12203 Berlin, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Immunology and Allergology IA, Hindenburgdamm 30, 12203 Berlin, Germany
| | - Kristin Franke
- Institute of Allergology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Hindenburgdamm 30, 12203 Berlin, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Immunology and Allergology IA, Hindenburgdamm 30, 12203 Berlin, Germany
| | - Sara Wernersson
- Department of Animal Biosciences, Swedish University of Agricultural Sciences, Box 7023, SE-75007 Uppsala, Sweden
| | - Jenny Hallgren
- Department of Medical Biochemistry and Microbiology, The Biomedical Center, Box 582, SE-75123 Uppsala, Sweden
| | - Gunnar Pejler
- Department of Medical Biochemistry and Microbiology, The Biomedical Center, Box 582, SE-75123 Uppsala, Sweden
| | - Magda Babina
- Institute of Allergology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Hindenburgdamm 30, 12203 Berlin, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Immunology and Allergology IA, Hindenburgdamm 30, 12203 Berlin, Germany
| | - Lars Hellman
- Department of Cell and Molecular Biology, Uppsala University, The Biomedical Center, Box 596, SE-751 24 Uppsala, Sweden
| |
Collapse
|
9
|
Li P, Que Y, Wong C, Lin Y, Qiu J, Gao B, Zhou H, Hu W, Shi H, Peng Y, Huang D, Gao W, Qiu X, Liang A. IL-32 aggravates metabolic disturbance in human nucleus pulposus cells by activating FAT4-mediated Hippo/YAP signaling. Int Immunopharmacol 2024; 141:112966. [PMID: 39178518 DOI: 10.1016/j.intimp.2024.112966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 07/21/2024] [Accepted: 08/15/2024] [Indexed: 08/26/2024]
Abstract
Extracellular matrix (ECM) metabolism disorders in the inflammatory microenvironment play a key role in the pathogenesis of intervertebral disc degeneration (IDD). Interleukin-32 (IL-32) has been reported to be involved in the progression of various inflammatory diseases; however, it remains unclear whether it participates in the matrix metabolism of nucleus pulposus (NP) cells. Therefore, this study aimed to investigate the mechanism of IL-32 on regulating the ECM metabolism in the inflammatory microenvironment. RNA-seq was used to identify aberrantly expressed genes in NP cells in the inflammatory microenvironment. Western blotting, real-time quantitative PCR, immunohistochemistry and immunofluorescence analysis were performed to measure the expression of IL-32 and metabolic markers in human NP tissues or NP cells treated with or without tumor necrosis factor-α (TNF-α). In vivo, an adeno-associated virus overexpressing IL-32 was injected into the caudal intervertebral discs of rats to assess its effect on IDD. Proteins interacting with IL-32 were identified via immunoprecipitation and mass spectrometry. Lentivirus overexpressing IL-32 or knocking down Fat atypical cadherin 4 (FAT4), yes-associated protein (YAP) inhibitor-Verteporfin (VP) were used to treat human NP cells, to explore the pathogenesis of IL-32. Hippo/YAP signaling activity was verified in human NP tissues. IL-32 expression was significantly upregulated in degenerative NP tissues, as indicated in the clinical samples. Furthermore, IL-32 was remarkably overexpressed in TNF-α-induced degenerative NP cells. IL-32 overexpression induced IDD progression in the rat model. Mechanistically, the elevation of IL-32 in the inflammatory microenvironment enhanced its interactions with FAT4 and mammalian sterile 20-like kinase1/2 (MST1/2) proteins, prompting MST1/2 phosphorylation, and activating the Hippo/YAP signaling pathway, causing matrix metabolism disorder in NP cells. Our results suggest that IL-32 mediates matrix metabolism disorders in NP cells in the inflammatory micro-environment via the FAT4/MST/YAP axis, providing a theoretical basis for the precise treatment of IDD.
Collapse
Affiliation(s)
- Pengfei Li
- Department of Orthopedic Surgery, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China; Department of Orthopedic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yichen Que
- Department of Orthopedic Surgery, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China; Department of Orthopedic Surgery, The Affiliated Qingyuan Hospital (Qingyuan People's Hospital), Guangzhou Medical Universit, Qingyuan, Guangdong, China
| | - Chipiu Wong
- Department of Orthopedic Surgery, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Youxi Lin
- Department of Orthopedic Surgery, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Jincheng Qiu
- Department of Minimally Invasive Spine Surgery, Panyu Hospital of Traditional Chinese Medicine, Guangzhou, Guangdong, China
| | - Bo Gao
- Department of Orthopedic Surgery, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Hang Zhou
- Department of Orthopedic Surgery, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Wenjun Hu
- Department of Orthopedic Surgery, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Huihong Shi
- Department of Orthopedic Surgery, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yan Peng
- Department of Orthopedic Surgery, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Dongsheng Huang
- Department of Orthopedic Surgery, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Wenjie Gao
- Department of Orthopedic Surgery, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China.
| | - Xianjian Qiu
- Department of Orthopedic Surgery, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China.
| | - Anjing Liang
- Department of Orthopedic Surgery, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China.
| |
Collapse
|
10
|
Liu J, Li W, Wang J, Bai L, Xu J, Chen X, Wang S, Li L, Xu X. IL-32 regulates trophoblast invasion through miR-205-NFκB-MMP2/9 axis contributing to the pregnancy-induced hypertension†. Biol Reprod 2024; 111:780-799. [PMID: 39101465 DOI: 10.1093/biolre/ioae118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 05/26/2024] [Accepted: 08/01/2024] [Indexed: 08/06/2024] Open
Abstract
Interleukin-32 is a species-specific cytokine that plays an important role in inflammation, cancer, and other diseases; however, its role in reproductive and pregnancy-related diseases remains unknown. This study aimed to investigate the role of interleukin-32 in reproductive and pregnancy-related diseases. Placental tissues from patients with pregnancy-induced hypertension, healthy pregnant women, and trophoblast lines were analysed. Interleukin-32 expression was quantified via polymerase chain reaction and immunohistochemistry, and functional assays were performed after interleukin-32 modulation. Interleukin-32 was identified only in placental mammals, such as Carnivora, Cetartiodactyla, Chiroptera, Dermoptera, Lagomorpha, Perissodactyla, and Primates via bioinformatics. Immunohistochemistry and polymerase chain reaction revealed that interleukin-32 was highly expressed in human placental villi, poorly expressed in decidua and endometrial tissues, and was not detected in mouse tissues. Second, interleukin-32 upregulates miR-205 expression by increasing DROSHA expression, and miR-205 promotes interleukin-32 expression by targeting its promoter region. Interleukin-32 and miR-205 significantly enhanced the invasion ability of HTR8/SVneo cells (a trophoblast cell line) and the tube formation ability of human umbilical vein endothelial cells. Through quantitative reverse transcription polymerase chain reaction and western blotting, the interleukin-32/miR-205 loop increased MMP2 and MMP9 expression in HTR-8/SVneo cells via the nuclear factor kappa B signaling pathway. Finally, using quantitative reverse transcription polymerase chain reaction, interleukin-32 and miR-205 expression levels were significantly lower in the placentas of patients with pregnancy-induced hypertension than in women with normal pregnancies. In conclusion, interleukin-32 regulates trophoblast invasion through the miR-205-nuclear factor kappa B-MMP2/9 pathway, which is involved in pregnancy-induced hypertension.
Collapse
Affiliation(s)
- Jianbing Liu
- School of Basic Medical Sciences, Shanxi Medical University, Xinjian South Road 56#, Taiyuan, 030001, Shanxi, China
- Key Laboratory of Cellular Physiology(Shanxi Medical University), Ministry of Education, Xinjian South Road 56#, Taiyuan, 030001, Shanxi, China
| | - Wenlong Li
- School of Basic Medical Sciences, Shanxi Medical University, Xinjian South Road 56#, Taiyuan, 030001, Shanxi, China
| | - Jinjuan Wang
- School of Basic Medical Sciences, Shanxi Medical University, Xinjian South Road 56#, Taiyuan, 030001, Shanxi, China
| | - Lina Bai
- School of Basic Medical Sciences, Shanxi Medical University, Xinjian South Road 56#, Taiyuan, 030001, Shanxi, China
| | - Jing Xu
- School of Basic Medical Sciences, Shanxi Medical University, Xinjian South Road 56#, Taiyuan, 030001, Shanxi, China
| | - Xihua Chen
- Reproductive Physiology Laboratory, National Research Institute for Family Planning, Da Hui Si Road 12#, Haidian District, Beijing, 100081, China
| | - Shufang Wang
- Department of Forensic Medicine, Xinxiang Medical University, Jinhui Road 191#, Xinxiang, 453003, Henan, China
| | - Li Li
- School of Basic Medical Sciences, Shanxi Medical University, Xinjian South Road 56#, Taiyuan, 030001, Shanxi, China
- Key Laboratory of Cellular Physiology(Shanxi Medical University), Ministry of Education, Xinjian South Road 56#, Taiyuan, 030001, Shanxi, China
| | - Xiangbo Xu
- Reproductive Physiology Laboratory, National Research Institute for Family Planning, Da Hui Si Road 12#, Haidian District, Beijing, 100081, China
- NHC Key Laboratory of Reproductive Health Engineering Technology Research (NRIFP), Da Hui Si Road 12#, Haidian District, Beijing, 100081, China
| |
Collapse
|
11
|
Liu J, Yang K, Lin X, Xu J, Cui X, Hao J, Wang W, Wang W, Li L, Hao M. IL-32/NFκB/miR-205 loop sustains the high expression of IL-32 and enhances the motility of cervical cancer cells. Hum Cell 2024; 37:1434-1445. [PMID: 38902566 DOI: 10.1007/s13577-024-01094-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 05/29/2024] [Indexed: 06/22/2024]
Abstract
Human papillomavirus (HPV) infection is a major contributor to cervical cancer. Persistent HPV infection can trigger the expression of IL-32, yet the precise role of IL-32 in the occurrence and development of cervical cancer remains elusive. To investigate this, qRT‒PCR and western blotting were utilized to measure the mRNA and protein expression levels; bioinformatics analysis was used to screen differentially expressed miRNAs; wound healing and transwell assays were conducted to evaluate cell migration and invasion capabilities. Comparative analysis revealed significantly elevated IL-32 expression in cervical cancer tissues and cell lines compared to control groups. In SiHa and/or HeLa, overexpression of IL-32 and IL-32 exposure markedly upregulated miR-205, whereas its knockdown resulted in a substantial downregulation of miR-205. Furthermore, miR-205 also could significantly regulate the expression of IL-32 in HeLa and SiHa cells. Upregulation and downregulation of IL-32 led to a significant increase or decrease in NFκB expression, respectively. Treatment with BAY11-7082 (an NFκB inhibitor) notably decreased miR-205 expression but had no effect on IL-32 levels. qRT‒PCR and western blotting analyses demonstrated that both overexpression and underexpression of IL-32 and miR-205 significantly enhanced or reduced MMP2 and MMP9 expression in cervical cancer cells, respectively. Knockdown of IL-32 significantly inhibited the migration and invasion of HeLa and SiHa; conversely, treatment with rIL-32α and rIL-32γ notably promoted their migration and invasion. In brief, IL-32 is highly expressed via the formation of a positive regulatory loop with NFκB/miR-205, contributing to the persistence of inflammation and promoting the progression of cervical cancer.
Collapse
Affiliation(s)
- Jianbing Liu
- Departments of Obstetrics and Gynecology, Second Hospital of Shanxi Medical University, Taiyuan, 036000, Shanxi, China
- School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Kai Yang
- School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Xiaoyu Lin
- School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Jing Xu
- School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Xiaohua Cui
- School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Jianqing Hao
- School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Wei Wang
- Departments of Obstetrics and Gynecology, Second Hospital of Shanxi Medical University, Taiyuan, 036000, Shanxi, China
| | - Wenhao Wang
- Departments of Obstetrics and Gynecology, Second Hospital of Shanxi Medical University, Taiyuan, 036000, Shanxi, China
| | - Li Li
- School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, 030001, Shanxi, China.
| | - Min Hao
- Departments of Obstetrics and Gynecology, Second Hospital of Shanxi Medical University, Taiyuan, 036000, Shanxi, China.
| |
Collapse
|
12
|
Sanna FC, Benešová I, Pervan P, Krenz A, Wurzel A, Lohmayer R, Mühlbauer J, Wöllner A, Köhl N, Menevse AN, Stamova S, Volpin V, Beckhove P, Xydia M. IL-2 and TCR stimulation induce expression and secretion of IL-32β by human T cells. Front Immunol 2024; 15:1437224. [PMID: 39211051 PMCID: PMC11357969 DOI: 10.3389/fimmu.2024.1437224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 07/22/2024] [Indexed: 09/04/2024] Open
Abstract
IL-32 expression is important for pathogen clearance but detrimental in chronic inflammation, autoimmunity, and cancer. T cells are major IL-32 producers in these diseases and key mediators of pathogen and tumor elimination but also autoimmune destruction. However, their contribution to IL-32 biology during immune responses is hardly understood due to several isoforms with divergent inflammatory properties. Here, we identified IL-32β as the predominant isoform in various T cell subsets of healthy individuals and breast cancer patients with the highest levels detected in intratumoral regulatory T cells. We show that IL-32β is induced by IL-2 but IL-32β release requires T Cell Receptor rather than IL2R stimulation. Using inhibitors of protein secretion pathways and serial (ultra)centrifugation of T cell supernatants, we demonstrate that T cells actively secrete IL-32β unconventionally, as a free protein and, to a minor degree, through exosomes. Thus, our data identify activated T cells as major IL-32β secretors in health and cancer.
Collapse
Affiliation(s)
| | - Iva Benešová
- Interventional Immunology, Leibniz Institute for Immunotherapy, Regensburg, Germany
| | - Philip Pervan
- Interventional Immunology, Leibniz Institute for Immunotherapy, Regensburg, Germany
| | - Adriana Krenz
- Interventional Immunology, Leibniz Institute for Immunotherapy, Regensburg, Germany
| | - Alexander Wurzel
- Interventional Immunology, Leibniz Institute for Immunotherapy, Regensburg, Germany
| | - Robert Lohmayer
- Interventional Immunology, Leibniz Institute for Immunotherapy, Regensburg, Germany
- Algorithmic Bioinformatics, Leibniz Institute for Immunotherapy, Regensburg, Germany
| | - Jasmin Mühlbauer
- Interventional Immunology, Leibniz Institute for Immunotherapy, Regensburg, Germany
| | - Amélie Wöllner
- Department of Internal Medicine III, Hematology and Medical Oncology, University Medical Center, Regensburg, Germany
- Bavarian Cancer Research Center (BZKF), Regensburg, Germany
| | - Nina Köhl
- Department of Internal Medicine III, Hematology and Medical Oncology, University Medical Center, Regensburg, Germany
- Bavarian Cancer Research Center (BZKF), Regensburg, Germany
| | - Ayse Nur Menevse
- Interventional Immunology, Leibniz Institute for Immunotherapy, Regensburg, Germany
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Slava Stamova
- Interventional Immunology, Leibniz Institute for Immunotherapy, Regensburg, Germany
| | - Valentina Volpin
- Interventional Immunology, Leibniz Institute for Immunotherapy, Regensburg, Germany
| | - Philipp Beckhove
- Interventional Immunology, Leibniz Institute for Immunotherapy, Regensburg, Germany
- Department of Internal Medicine III, Hematology and Medical Oncology, University Medical Center, Regensburg, Germany
| | - Maria Xydia
- Interventional Immunology, Leibniz Institute for Immunotherapy, Regensburg, Germany
- Bavarian Cancer Research Center (BZKF), Regensburg, Germany
| |
Collapse
|
13
|
Leng K, Rooney B, McCarthy F, Xia W, Rose IVL, Bax S, Chin M, Fathi S, Herrington KA, Leonetti M, Kao A, Fancy SPJ, Elias JE, Kampmann M. mTOR activation induces endolysosomal remodeling and nonclassical secretion of IL-32 via exosomes in inflammatory reactive astrocytes. J Neuroinflammation 2024; 21:198. [PMID: 39118084 PMCID: PMC11312292 DOI: 10.1186/s12974-024-03165-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 07/03/2024] [Indexed: 08/10/2024] Open
Abstract
Astrocytes respond and contribute to neuroinflammation by adopting inflammatory reactive states. Although recent efforts have characterized the gene expression signatures associated with these reactive states, the cell biology underlying inflammatory reactive astrocyte phenotypes remains under-explored. Here, we used CRISPR-based screening in human iPSC-derived astrocytes to identify mTOR activation a driver of cytokine-induced endolysosomal system remodeling, manifesting as alkalinization of endolysosomal compartments, decreased autophagic flux, and increased exocytosis of certain endolysosomal cargos. Through endolysosomal proteomics, we identified and focused on one such cargo-IL-32, a disease-associated pro-inflammatory cytokine not present in rodents, whose secretion mechanism is not well understood. We found that IL-32 was partially secreted in extracellular vesicles likely to be exosomes. Furthermore, we found that IL-32 was involved in the polarization of inflammatory reactive astrocyte states and was upregulated in astrocytes in multiple sclerosis lesions. We believe that our results advance our understanding of cell biological pathways underlying inflammatory reactive astrocyte phenotypes and identify potential therapeutic targets.
Collapse
Affiliation(s)
- Kun Leng
- Institute for Neurodegenerative Diseases, University of California, San Francisco, San Francisco, CA, USA.
- Biomedical Sciences Graduate Program, University of California, San Francisco, San Francisco, CA, USA.
- Medical Scientist Training Program, University of California, San Francisco, San Francisco, CA, USA.
| | - Brendan Rooney
- Institute for Neurodegenerative Diseases, University of California, San Francisco, San Francisco, CA, USA
| | | | - Wenlong Xia
- Departments of Neurology and Pediatrics, School of Medicine, University of California, San Francisco, CA, USA
| | - Indigo V L Rose
- Institute for Neurodegenerative Diseases, University of California, San Francisco, San Francisco, CA, USA
- Neuroscience Graduate Program, University of California, San Francisco, San Francisco, CA, USA
- Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
| | - Sophie Bax
- Chan Zuckerberg Biohub, San Francisco, CA, USA
| | - Marcus Chin
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
- Small Molecule Discovery Center, Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA, USA
| | - Saeed Fathi
- Medical Scientist Training Program, University of California, San Francisco, San Francisco, CA, USA
| | - Kari A Herrington
- Center for Advanced Microscopy, University of California, San Francisco, San Francisco, CA, USA
| | | | - Aimee Kao
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
| | - Stephen P J Fancy
- Departments of Neurology and Pediatrics, School of Medicine, University of California, San Francisco, CA, USA
| | | | - Martin Kampmann
- Institute for Neurodegenerative Diseases, University of California, San Francisco, San Francisco, CA, USA.
- Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA.
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
14
|
Park HM, Park JY, Kim NY, Kim H, Kim HG, Son DJ, Hong JT, Yoon DY. Recombinant Human IL-32θ Induces Polarization Into M1-like Macrophage in Human Monocytic Cells. Immune Netw 2024; 24:e27. [PMID: 38974209 PMCID: PMC11224673 DOI: 10.4110/in.2024.24.e27] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 04/24/2024] [Accepted: 04/29/2024] [Indexed: 07/09/2024] Open
Abstract
The tumor microenvironment (TME) is formed by several immune cells. Notably, tumor-associated macrophages (TAMs) are existed in the TME that induce angiogenesis, metastasis, and proliferation of cancer cells. Recently, a point-mutated variant of IL-32θ was discovered in breast cancer tissues, which suppressed migration and proliferation through intracellular pathways. Although the relationship between cancer and IL-32 has been previously studied, the effects of IL-32θ on TAMs remain elusive. Recombinant human IL-32θ (rhIL-32θ) was generated using an Escherichia coli expression system. To induce M0 macrophage polarization, THP-1 cells were stimulated with PMA. After PMA treatment, the cells were cultured with IL-4 and IL-13, or rhIL-32θ. The mRNA level of M1 macrophage markers (IL-1β, TNFα, inducible nitric oxide synthase) were increased by rhIL-32θ in M0 macrophages. On the other hand, the M2 macrophage markers (CCL17, CCL22, TGFβ, CD206) were decreased by rhIL-32θ in M2 macrophages. rhIL-32θ induced nuclear translocation of the NF-κB via regulation of the MAPK (p38) pathway. In conclusion, point-mutated rhIL-32θ induced the polarization to M1-like macrophages through the MAPK (p38) and NF-κB (p65/p50) pathways.
Collapse
Affiliation(s)
- Hyo-Min Park
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Korea
| | - Jae-Young Park
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Korea
| | - Na-Yeon Kim
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Korea
| | | | | | - Dong-Ju Son
- College of Pharmacy and Medical Research Center, Chungbuk National University, Cheongju 28160, Korea
| | - Jin Tae Hong
- College of Pharmacy and Medical Research Center, Chungbuk National University, Cheongju 28160, Korea
| | - Do-Young Yoon
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Korea
| |
Collapse
|
15
|
Wang X, Yang C, Quan C, Li J, Hu Y, Liu P, Guan L, Li L. The regulation and potential role of interleukin-32 in tuberculous pleural effusion. Front Immunol 2024; 15:1342641. [PMID: 38803498 PMCID: PMC11128554 DOI: 10.3389/fimmu.2024.1342641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 04/22/2024] [Indexed: 05/29/2024] Open
Abstract
The possible protective effect of interleukin-32 (IL-32) in Mycobacterium tuberculosis (Mtb) infection has been indicated. However, few studies have been focused on IL-32 in tuberculosis patients. Additionally, the regulation of IL-32 production has rarely been reported. In the present study, the production, regulation, and role of IL-32 in tuberculous pleurisy (TBP) were investigated. We found that the content of IL-32 in tuberculous pleural effusion (TPE) was higher than the level in the malignant pleural effusion and transudative pleural effusion. The level of IL-32 mRNA in pleural fluid mononuclear cells (PFMCs) was higher than that in peripheral blood mononuclear cells (PBMCs) of patients with TBP, and this difference was mainly reflected in the splice variants of IL-32α, IL-32β, and IL-32γ. Compared with the PBMCs, PFMCs featured higher IL-32β/IL-32γ and IL-32α/IL-32γ ratios. In addition, lipopolysaccharide (LPS), Bacillus Calmette-Guérin (BCG), and H37Ra stimulation could induce IL-32 production in the PFMCs. IL-32 production was positively correlated with the TNF-α, IFN-γ, and IL-1Ra levels in TPE, whereas IFN-γ, but not TNF-α or IL-1Ra, could induce the production of IL-32 in PFMCs. Furthermore, IL-32γ could induce the TNF-α production in PFMCs. Monocytes and macrophages were the main sources of IL-32 in PFMCs. Nevertheless, direct cell-cell contact between lymphocytes and monocytes/macrophages plays an important role in enhancing IL-32 production by monocyte/macrophage cells. Finally, compared with the non-tuberculous pleural effusion, the purified CD4+ and CD8+ T cells in TPE expressed higher levels of intracellular IL-32. Our results suggested that, as a potential biomarker, IL-32 may play an essential role in the protection against Mtb infection in patients with TBP. However, further studies need to be carried out to clarify the functions and mechanisms of the IFN-γ/IL-32/TNF-α axis in patients with TBP.
Collapse
Affiliation(s)
- Xuan Wang
- Wuhan Pulmonary Hospital, Wuhan Institute for Tuberculosis Control, Wuhan, Hubei, China
| | - Chengqing Yang
- Wuhan Pulmonary Hospital, Wuhan Institute for Tuberculosis Control, Wuhan, Hubei, China
| | - Chao Quan
- Wuhan Pulmonary Hospital, Wuhan Institute for Tuberculosis Control, Wuhan, Hubei, China
| | - Jun Li
- Wuhan Pulmonary Hospital, Wuhan Institute for Tuberculosis Control, Wuhan, Hubei, China
| | - Yan Hu
- Wuhan Pulmonary Hospital, Wuhan Institute for Tuberculosis Control, Wuhan, Hubei, China
| | - Peng Liu
- Wuhan Pulmonary Hospital, Wuhan Institute for Tuberculosis Control, Wuhan, Hubei, China
| | - Lulu Guan
- Wuhan Pulmonary Hospital, Wuhan Institute for Tuberculosis Control, Wuhan, Hubei, China
| | - Li Li
- Wuhan Pulmonary Hospital, Wuhan Institute for Tuberculosis Control, Wuhan, Hubei, China
- Wuhan Center for Clinical Laboratory, Wuhan, Hubei, China
| |
Collapse
|
16
|
Atteih SE, Armbruster CR, Hilliam Y, Rapsinski GJ, Bhusal JK, Krainz LL, Gaston JR, DuPont M, Zemke AC, Alcorn JF, Moore JA, Cooper VS, Lee SE, Forno E, Bomberger JM. Effects of highly effective modulator therapy on the dynamics of the respiratory mucosal environment and inflammatory response in cystic fibrosis. Pediatr Pulmonol 2024; 59:1266-1273. [PMID: 38353361 PMCID: PMC11058019 DOI: 10.1002/ppul.26898] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 01/07/2024] [Accepted: 01/27/2024] [Indexed: 04/30/2024]
Abstract
BACKGROUND While the widespread initiation of elexacaftor/tezacaftor/ivacaftor (ETI) has led to dramatic clinical improvements among persons with cystic fibrosis (pwCF), little is known about how ETI affects the respiratory mucosal inflammatory and physiochemical environment, or how these changes relate to lung function. METHODS We performed a prospective, longitudinal study of adults with CF and chronic rhinosinusitis (CF-CRS) followed at our CF center (n = 18). Endoscopic upper respiratory tract (paranasal sinus) aspirates from multiple visit dates, both pre- and post-ETI initiation, were collected and tested for cytokines, metals, pH, and lactate levels. Generalized estimating equations were used to identify relationships between ETI and upper respiratory tract (URT) biomarker levels, and between URT biomarkers and lung function or clinical sinus parameters. RESULTS ETI was associated with decreased upper respiratory mucosal cytokines B-cell activating factor (BAFF), IL-12p40, IL-32, IL-8, IL-22 and soluble tumor necrosis factor-1 (sTNFR1), and an increase in a proliferation-inducing ligand (APRIL) and IL-19. ETI was also associated with decreased URT levels of copper, manganese, and zinc. In turn, lower URT levels of BAFF, IL-8, lactate, and potassium were each associated with ~1.5% to 4.3% improved forced expiratory volume in 1 s (FEV1), while higher levels of IFNγ, iron, and selenium were associated with ~2% to 10% higher FEV1. CONCLUSIONS Our observations suggest a dampening of inflammatory signals and restriction in microbial nutrients in the upper respiratory tract with ETI. These findings improve our understanding of how ETI impacts the mucosal environment in the respiratory tract, and may give insight into the improved infectious and inflammatory status and the resulting clinical improvements seen in pwCF.
Collapse
Affiliation(s)
- Samar E Atteih
- Division of Pediatric Pulmonology, Department of Pediatrics, University of Pittsburgh Medical Center, Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Catherine R Armbruster
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| | - Yasmin Hilliam
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| | - Glenn J Rapsinski
- Division of Pediatric Infectious Diseases, Department of Pediatrics, University of Pittsburgh Medical Center, Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Junu Koirala Bhusal
- Department of Microbiology and Molecular Genetics, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Leah L Krainz
- Department of Microbiology and Molecular Genetics, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Jordan R Gaston
- Department of Microbiology and Molecular Genetics, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Matthew DuPont
- Department of Microbiology and Molecular Genetics, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Anna C Zemke
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - John F Alcorn
- Department of Pediatrics, University of Pittsburgh Medical Center, Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - John A Moore
- Department of Otolaryngology-Head and Neck Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Vaughn S Cooper
- Department of Microbiology and Molecular Genetics, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Stella E Lee
- Division of Otolaryngology, Head and Neck Surgery, Department of Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Erick Forno
- Division of Pediatric Pulmonology, Department of Pediatrics, University of Pittsburgh Medical Center, Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Jennifer M Bomberger
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| |
Collapse
|
17
|
Jo H, Shin S, Agura T, Jeong S, Ahn H, Lee J, Kim Y, Kang JS. The Role of α-Enolase on the Production of Interleukin (IL)-32 in Con A-Mediated Inflammation and Rheumatoid Arthritis (RA). Pharmaceuticals (Basel) 2024; 17:531. [PMID: 38675491 PMCID: PMC11054489 DOI: 10.3390/ph17040531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 04/17/2024] [Accepted: 04/18/2024] [Indexed: 04/28/2024] Open
Abstract
Interleukin (IL)-32 is produced by T lymphocytes, natural killer cells, monocytes, and epithelial cells. IL-32 induces the production of pro-inflammatory cytokines such as tumor necrosis factor (TNF)-α, IL-1β, IL-6, and IL-8, and IL-32 expression is highly increased in rheumatoid arthritis (RA) patients. Enolase-1 (ENO1) is a glycolytic enzyme and the stimulation of ENO1 induces high levels of pro-inflammatory cytokines in concanavalin A (Con A)-activated peripheral blood mononuclear cells (PBMCs) and macrophages in RA patients. In addition, there are many reports that anti-ENO1 antibody is correlated with the disease progression of RA. It implies that ENO1 could regulate IL-32 production during inflammation related to the pathogenesis of RA. Therefore, we investigated the role of ENO1 in IL-32 production using Con A-activated PBMCs and RA PBMCs. IL-32 expression is increased by ENO1 stimulation using real-time PCR and ELISA. In addition, we confirmed that IL-32 production was decreased in Con A-activated PBMCs and RA PBMCs pre-treated with NF-κB or p38 MAPK pathway inhibitors. Taken together, these results suggest that ENO1 plays an important role in inflammation through the induction of IL-32 production by the activation of the NF-κB and p38 MAPK pathways.
Collapse
Affiliation(s)
- Hyejung Jo
- Laboratory of Vitamin C and Antioxidant Immunology, Department of Anatomy and Cell Biology, Seoul National University College of Medicine, Seoul 03080, Republic of Korea; (H.J.); (T.A.); (S.J.); (H.A.); (J.L.); (Y.K.)
| | - Seulgi Shin
- Institute of Allergy and Clinical Immunology, Seoul National University Medical Research Center, Seoul 03080, Republic of Korea;
| | - Tomoyo Agura
- Laboratory of Vitamin C and Antioxidant Immunology, Department of Anatomy and Cell Biology, Seoul National University College of Medicine, Seoul 03080, Republic of Korea; (H.J.); (T.A.); (S.J.); (H.A.); (J.L.); (Y.K.)
| | - Seoyoun Jeong
- Laboratory of Vitamin C and Antioxidant Immunology, Department of Anatomy and Cell Biology, Seoul National University College of Medicine, Seoul 03080, Republic of Korea; (H.J.); (T.A.); (S.J.); (H.A.); (J.L.); (Y.K.)
| | - Hyovin Ahn
- Laboratory of Vitamin C and Antioxidant Immunology, Department of Anatomy and Cell Biology, Seoul National University College of Medicine, Seoul 03080, Republic of Korea; (H.J.); (T.A.); (S.J.); (H.A.); (J.L.); (Y.K.)
| | - Junmyung Lee
- Laboratory of Vitamin C and Antioxidant Immunology, Department of Anatomy and Cell Biology, Seoul National University College of Medicine, Seoul 03080, Republic of Korea; (H.J.); (T.A.); (S.J.); (H.A.); (J.L.); (Y.K.)
| | - Yejin Kim
- Laboratory of Vitamin C and Antioxidant Immunology, Department of Anatomy and Cell Biology, Seoul National University College of Medicine, Seoul 03080, Republic of Korea; (H.J.); (T.A.); (S.J.); (H.A.); (J.L.); (Y.K.)
- Institute of Allergy and Clinical Immunology, Seoul National University Medical Research Center, Seoul 03080, Republic of Korea;
| | - Jae Seung Kang
- Laboratory of Vitamin C and Antioxidant Immunology, Department of Anatomy and Cell Biology, Seoul National University College of Medicine, Seoul 03080, Republic of Korea; (H.J.); (T.A.); (S.J.); (H.A.); (J.L.); (Y.K.)
- Institute of Allergy and Clinical Immunology, Seoul National University Medical Research Center, Seoul 03080, Republic of Korea;
- Artificial Intelligence Institute, Seoul National University, Seoul 08826, Republic of Korea
- Department of Applied Bioengineering, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
18
|
Hong W, Yang H, Wang X, Shi J, Zhang J, Xie J. The Role of mRNA Alternative Splicing in Macrophages Infected with Mycobacterium tuberculosis: A Field Needing to Be Discovered. Molecules 2024; 29:1798. [PMID: 38675618 PMCID: PMC11052237 DOI: 10.3390/molecules29081798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 04/07/2024] [Accepted: 04/11/2024] [Indexed: 04/28/2024] Open
Abstract
Mycobacterium tuberculosis (Mtb) is one of the major causes of human death. In its battle with humans, Mtb has fully adapted to its host and developed ways to evade the immune system. At the same time, the human immune system has developed ways to respond to Mtb. The immune system responds to viral and bacterial infections through a variety of mechanisms, one of which is alternative splicing. In this study, we summarized the overall changes in alternative splicing of the transcriptome after macrophages were infected with Mtb. We found that after infection with Mtb, cells undergo changes, including (1) directly reducing the expression of splicing factors, which affects the regulation of gene expression, (2) altering the original function of proteins through splicing, which can involve gene truncation or changes in protein domains, and (3) expressing unique isoforms that may contribute to the identification and development of tuberculosis biomarkers. Moreover, alternative splicing regulation of immune-related genes, such as IL-4, IL-7, IL-7R, and IL-12R, may be an important factor affecting the activation or dormancy state of Mtb. These will help to fully understand the immune response to Mtb infection, which is crucial for the development of tuberculosis biomarkers and new drug targets.
Collapse
Affiliation(s)
- Weiling Hong
- Jinhua Advanced Research Institute, Jinhua 321019, China; (W.H.); (H.Y.); (X.W.); (J.S.)
| | - Hongxing Yang
- Jinhua Advanced Research Institute, Jinhua 321019, China; (W.H.); (H.Y.); (X.W.); (J.S.)
| | - Xiao Wang
- Jinhua Advanced Research Institute, Jinhua 321019, China; (W.H.); (H.Y.); (X.W.); (J.S.)
| | - Jingyi Shi
- Jinhua Advanced Research Institute, Jinhua 321019, China; (W.H.); (H.Y.); (X.W.); (J.S.)
| | - Jian Zhang
- Zhejiang University Medical Center, Hangzhou 311113, China;
| | - Jianping Xie
- Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, School of Life Sciences, Southwest University, Beibei, Chongqing 400715, China
| |
Collapse
|
19
|
Shannon MJ, McNeill GL, Koksal B, Baltayeva J, Wächter J, Castellana B, Peñaherrera MS, Robinson WP, Leung PCK, Beristain AG. Single-cell assessment of primary and stem cell-derived human trophoblast organoids as placenta-modeling platforms. Dev Cell 2024; 59:776-792.e11. [PMID: 38359834 DOI: 10.1016/j.devcel.2024.01.023] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 11/15/2023] [Accepted: 01/23/2024] [Indexed: 02/17/2024]
Abstract
Human trophoblast stem cells (hTSCs) and related trophoblast organoids are state-of-the-art culture systems that facilitate the study of trophoblast development and human placentation. Using single-cell transcriptomics, we evaluate how organoids derived from freshly isolated first-trimester trophoblasts or from established hTSC cell lines reproduce developmental cell trajectories and transcriptional regulatory processes defined in vivo. Although organoids from primary trophoblasts and hTSCs overall model trophoblast differentiation with accuracy, specific features related to trophoblast composition, trophoblast differentiation, and transcriptional drivers of trophoblast development show levels of misalignment. This is best illustrated by the identification of an expanded progenitor state in stem cell-derived organoids that is nearly absent in vivo and transcriptionally shares both villous cytotrophoblast and extravillous trophoblast characteristics. Together, this work provides a comprehensive resource that identifies strengths and limitations of current trophoblast organoid platforms.
Collapse
Affiliation(s)
- Matthew J Shannon
- The British Columbia Children's Hospital Research Institute, Vancouver, BC, Canada; Department of Obstetrics & Gynecology, The University of British Columbia, Vancouver, BC, Canada
| | - Gina L McNeill
- The British Columbia Children's Hospital Research Institute, Vancouver, BC, Canada; Department of Obstetrics & Gynecology, The University of British Columbia, Vancouver, BC, Canada
| | - Burak Koksal
- The British Columbia Children's Hospital Research Institute, Vancouver, BC, Canada; Department of Obstetrics & Gynecology, The University of British Columbia, Vancouver, BC, Canada
| | - Jennet Baltayeva
- The British Columbia Children's Hospital Research Institute, Vancouver, BC, Canada; Department of Obstetrics & Gynecology, The University of British Columbia, Vancouver, BC, Canada
| | - Jasmin Wächter
- Department of Obstetrics and Gynecology, Medical University of Vienna, Vienna, Austria
| | - Barbara Castellana
- The British Columbia Children's Hospital Research Institute, Vancouver, BC, Canada; Department of Obstetrics & Gynecology, The University of British Columbia, Vancouver, BC, Canada
| | - Maria S Peñaherrera
- The British Columbia Children's Hospital Research Institute, Vancouver, BC, Canada; Department of Medical Genetics, The University of British Columbia, Vancouver, BC, Canada
| | - Wendy P Robinson
- The British Columbia Children's Hospital Research Institute, Vancouver, BC, Canada; Department of Medical Genetics, The University of British Columbia, Vancouver, BC, Canada
| | - Peter C K Leung
- The British Columbia Children's Hospital Research Institute, Vancouver, BC, Canada; Department of Obstetrics & Gynecology, The University of British Columbia, Vancouver, BC, Canada
| | - Alexander G Beristain
- The British Columbia Children's Hospital Research Institute, Vancouver, BC, Canada; Department of Obstetrics & Gynecology, The University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
20
|
Park HM, Park JY, Kim NY, Kim J, Pham TH, Hong JT, Yoon DY. Modulatory effects of point-mutated IL-32θ (A94V) on tumor progression in triple-negative breast cancer cells. Biofactors 2024; 50:294-310. [PMID: 37658685 DOI: 10.1002/biof.2005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 08/01/2023] [Indexed: 09/03/2023]
Abstract
Breast cancer is a frequently diagnosed cancer and the leading cause of death among women worldwide. Tumor-associated macrophages stimulate cytokines and chemokines, which induce angiogenesis, metastasis, proliferation, and tumor-infiltrating immune cells. Although interleukin-32 (IL-32) has been implicated in the development and modulation of several cancers, its function in breast cancer remains elusive. Mutation of interleukin-32θ (IL-32θ) in the tissues of patients with breast cancer was detected by Sanger sequencing. RT-qPCR was used to detect the mRNA levels of inflammatory cytokines, chemokines, and mediators. The secreted proteins were detected using respective enzyme-linked immunosorbent assays. Evaluation of the inhibitory effect of mutant IL-32θ on proliferation, migration, epithelial-mesenchymal transition (EMT), and cell cycle arrest in breast cancer cells was conducted using MTS assays, migration assays, and Western blotting. A point mutation (281C>T, Ala94Val) was detected in IL-32θ in both breast tumors and adjacent normal tissues, which suppressed the expression of pro-inflammatory factors, EMT factors, and cell cycle related factors. Mutated IL-32θ inhibited the expression of inflammatory factors by regulating the NF-κB pathway. Furthermore, mutated IL-32θ suppressed EMT markers and cell cycle related factors through the FAK/PI3K/AKT pathway. It was inferred that mutated IL-32θ modulates breast cancer progression. Mutated IL-32θ (A94V) inhibited inflammation, EMT, and proliferation in breast cancer by regulating the NF-κB (p65/p50) and FAK-PI3K-GSK3 pathways.
Collapse
Affiliation(s)
- Hyo-Min Park
- Department of Bioscience and Biotechnology, Konkuk University, Seoul, Republic of Korea
| | - Jae-Young Park
- Department of Bioscience and Biotechnology, Konkuk University, Seoul, Republic of Korea
| | - Na-Yeon Kim
- Department of Bioscience and Biotechnology, Konkuk University, Seoul, Republic of Korea
| | - Jinju Kim
- Department of Bioscience and Biotechnology, Konkuk University, Seoul, Republic of Korea
| | - Thu-Huyen Pham
- Department of Bioscience and Biotechnology, Konkuk University, Seoul, Republic of Korea
| | - Jin Tae Hong
- College of Pharmacy and Medical Research Center, Chungbuk National University, Chungbuk, Republic of Korea
| | - Do-Young Yoon
- Department of Bioscience and Biotechnology, Konkuk University, Seoul, Republic of Korea
| |
Collapse
|
21
|
Gniadecki R, Osman M, Hennesey D, O'Keefe S, Thomsen SF, Iyer A. Architecture of skin inflammation in psoriasis revealed by spatial transcriptomics. Clin Immunol 2023; 256:109771. [PMID: 37708923 DOI: 10.1016/j.clim.2023.109771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/24/2023] [Accepted: 09/10/2023] [Indexed: 09/16/2023]
Abstract
Psoriasis is a chronic inflammatory skin disease, thought to be predominantly mediated by TH17 cells. Significance of other inflammatory pathways and the innate immune system is not well understood and the spatial heterogeneity of inflammation in the skin has largely been overlooked. Our aim was to create a comprehensive map of skin inflammation in psoriasis, exploring the tissue patterning of inflammation. In situ whole transcriptome sequencing (spatial sequencing) was performed on lesional psoriatic skin in four patients with moderate-to-severe disease to quantify all expressed genes within a tissue section. Transcriptional analysis revealed three major inflammatory niches in psoriasis skin, each with distinct cytokine circuits and chemokines: the hyperplastic epidermis, upper (papillary) dermis, and reticular dermis. Interestingly, key cytokines such as IL-23, IL-17 s, and TNFα were not notably present in the skin's transcriptomic signature. Unexpectedly, IL-32 showed strong expression in the dermis. Our findings underscore the complexity of psoriatic inflammation, highlighting its architectural heterogeneity and the roles of innate cytokines. Both IL-32 and IL-1 family cytokines appear to play critical roles in the dermal and epidermal inflammation, respectively, and may provide pharmacological targets to improve the control of the inflammatory process.
Collapse
Affiliation(s)
- Robert Gniadecki
- Division of Dermatology, Department of Medicine, University of Alberta, Canada.
| | - Mohammed Osman
- Division of Rheumatology, Department of Medicine, University of Alberta, Canada
| | - Dylan Hennesey
- Division of Dermatology, Department of Medicine, University of Alberta, Canada
| | - Sandra O'Keefe
- Division of Dermatology, Department of Medicine, University of Alberta, Canada
| | | | - Aishwarya Iyer
- Division of Dermatology, Department of Medicine, University of Alberta, Canada
| |
Collapse
|
22
|
Adawy A, Li L, Hirao H, Irie T, Yoshii D, Yano H, Fujiwara Y, Esumi S, Honda M, Suzu S, Komohara Y, Hibi T. Potential involvement of IL-32 in cell-to-cell communication between macrophages and hepatoblastoma. Pediatr Surg Int 2023; 39:275. [PMID: 37751001 DOI: 10.1007/s00383-023-05557-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/31/2023] [Indexed: 09/27/2023]
Abstract
PURPOSE This study investigated the expression of interleukin 32 (IL-32) in hepatoblastoma, the most common primary pediatric liver tumor, and its possible roles in tumorigenesis. METHODS IL-32 expression was investigated in two hepatoblastoma cell lines (Hep G2 and HuH 6) in the steady state and after co-culture with macrophages by RNA-seq analysis and RT-qPCR, and after stimulation with chemotherapy. Cultured macrophages were stimulated by IL-32 isoforms followed by RT-qPCR and western blot analysis. IL-32 immunohistochemical staining (IHC) was performed using specimens from 21 hepatoblastoma patients. Clustering analysis was also performed using scRNA-seq data downloaded from Gene Expression Omnibus. RESULTS The IL-32 gene is expressed by hepatoblastoma cell lines; expression is upregulated by paracrine cell-cell communication with macrophages, also by carboplatin and etoposide. IL-32 causes protumor activation of macrophages with upregulation of PD-L1, IDO-1, IL-6, and IL-10. In the patient pool, IHC was positive only in 48% of cases. However, in the downloaded dataset, IL-32 gene expression was negative. CONCLUSION IL-32 was detected in hepatoblastoma cell lines, but not in all hepatoblastoma patients. We hypothesized that stimulation such as chemotherapy might induce expression of IL-32, which might be a critical mediator of chemoresistance in hepatoblastoma through inducing protumor activation in macrophages.
Collapse
Affiliation(s)
- Ahmad Adawy
- Department of Cell Pathology, Graduate School of Medical Sciences, Kumamoto University, Honjo 1-1-1, Chuouku, Kumamoto, 860-8556, Japan
- Department of Pediatric Surgery and Transplantation, Kumamoto University Graduate School of Medical Sciences, Kumamoto, Japan
- Department of Pediatric Surgery, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Lianbo Li
- Department of Cell Pathology, Graduate School of Medical Sciences, Kumamoto University, Honjo 1-1-1, Chuouku, Kumamoto, 860-8556, Japan
- Department of Pediatric Surgery and Transplantation, Kumamoto University Graduate School of Medical Sciences, Kumamoto, Japan
- Chengdu Women's and Children's Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Hiroki Hirao
- Department of Cell Pathology, Graduate School of Medical Sciences, Kumamoto University, Honjo 1-1-1, Chuouku, Kumamoto, 860-8556, Japan
- Department of Pediatric Surgery and Transplantation, Kumamoto University Graduate School of Medical Sciences, Kumamoto, Japan
| | - Tomoaki Irie
- Department of Cell Pathology, Graduate School of Medical Sciences, Kumamoto University, Honjo 1-1-1, Chuouku, Kumamoto, 860-8556, Japan
- Department of Pediatric Surgery and Transplantation, Kumamoto University Graduate School of Medical Sciences, Kumamoto, Japan
| | - Daiki Yoshii
- Department of Cell Pathology, Graduate School of Medical Sciences, Kumamoto University, Honjo 1-1-1, Chuouku, Kumamoto, 860-8556, Japan
| | - Hiromu Yano
- Department of Cell Pathology, Graduate School of Medical Sciences, Kumamoto University, Honjo 1-1-1, Chuouku, Kumamoto, 860-8556, Japan
| | - Yukio Fujiwara
- Department of Cell Pathology, Graduate School of Medical Sciences, Kumamoto University, Honjo 1-1-1, Chuouku, Kumamoto, 860-8556, Japan
| | - Shigeyuki Esumi
- Department of Anatomy and Neurobiology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Masaki Honda
- Department of Pediatric Surgery and Transplantation, Kumamoto University Graduate School of Medical Sciences, Kumamoto, Japan
| | - Shinya Suzu
- Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan
| | - Yoshihiro Komohara
- Department of Cell Pathology, Graduate School of Medical Sciences, Kumamoto University, Honjo 1-1-1, Chuouku, Kumamoto, 860-8556, Japan.
- Center for Metabolic Regulation of Healthy Aging, Kumamoto University, Kumamoto, Japan.
| | - Taizo Hibi
- Department of Pediatric Surgery and Transplantation, Kumamoto University Graduate School of Medical Sciences, Kumamoto, Japan
| |
Collapse
|
23
|
Wallimann A, Schenk M. IL-32 as a potential biomarker and therapeutic target in skin inflammation. Front Immunol 2023; 14:1264236. [PMID: 37727785 PMCID: PMC10505650 DOI: 10.3389/fimmu.2023.1264236] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 08/15/2023] [Indexed: 09/21/2023] Open
Abstract
IL-32 is a recently described cytokine that performs a variety of functions under inflammatory conditions. Serum IL-32 has been shown to be elevated in several diseases, including type 2 diabetes, cancer, systemic lupus erythematosus, HIV infection, and atopic diseases including atopic dermatitis. There are nine different isoforms of IL-32, with IL-32γ being the most biologically active one. The following review summarizes the different roles of the various IL-32 isoforms in the context of skin inflammation, with a focus on atopic dermatitis.
Collapse
Affiliation(s)
- Alexandra Wallimann
- Christine Kühne – Center for Allergy Research and Education (CK-CARE), Davos, Switzerland
| | - Mirjam Schenk
- Christine Kühne – Center for Allergy Research and Education (CK-CARE), Davos, Switzerland
- Institute of Tissue Medicine and Pathology, Experimental Pathology, University of Bern, Bern, Switzerland
| |
Collapse
|
24
|
Schilcher K, Dayoub R, Kubitza M, Riepl J, Klein K, Buechler C, Melter M, Weiss TS. Saturated Fat-Mediated Upregulation of IL-32 and CCL20 in Hepatocytes Contributes to Higher Expression of These Fibrosis-Driving Molecules in MASLD. Int J Mol Sci 2023; 24:13222. [PMID: 37686029 PMCID: PMC10487578 DOI: 10.3390/ijms241713222] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 08/20/2023] [Accepted: 08/24/2023] [Indexed: 09/10/2023] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) comprises a spectrum of liver diseases, ranging from liver steatosis to metabolic dysfunction-associated steatohepatitis (MASH), increasing the risk of developing cirrhosis and hepatocellular carcinoma (HCC). Fibrosis within MASLD is critical for disease development; therefore, the identification of fibrosis-driving factors is indispensable. We analyzed the expression of interleukin 32 (IL-32) and chemokine CC ligand 20 (CCL20), which are known to be linked with inflammation and fibrosis, and for their expression in MASLD and hepatoma cells. RT-PCR, ELISA and Western blotting analyses were performed in both human liver samples and an in vitro steatosis model. IL-32 and CCL20 mRNA expression was increased in tissues of patients with NASH compared to normal liver tissue. Stratification for patatin-like phospholipase domain-containing protein 3 (PNPLA3) status revealed significance for IL-32 only in patients with I148M (rs738409, CG/GG) carrier status. Furthermore, a positive correlation was observed between IL-32 expression and steatosis grade, and between IL-32 as well as CCL20 expression and fibrosis grade. Treatment with the saturated fatty acid palmitic acid (PA) induced mRNA and protein expression of IL-32 and CCL20 in hepatoma cells. This induction was mitigated by the substitution of PA with monounsaturated oleic acid (OA), suggesting the involvement of oxidative stress. Consequently, analysis of stress-induced signaling pathways showed the activation of Erk1/2 and p38 MAPK, which led to an enhanced expression of IL-32 and CCL20. In conclusion, cellular stress in liver epithelial cells induced by PA enhances the expression of IL-32 and CCL20, both known to trigger inflammation and fibrosis.
Collapse
Affiliation(s)
- Katharina Schilcher
- Children’s University Hospital (KUNO), University Hospital Regensburg, 93053 Regensburg, Germany
| | - Rania Dayoub
- Children’s University Hospital (KUNO), University Hospital Regensburg, 93053 Regensburg, Germany
| | - Marion Kubitza
- Children’s University Hospital (KUNO), University Hospital Regensburg, 93053 Regensburg, Germany
| | - Jakob Riepl
- Children’s University Hospital (KUNO), University Hospital Regensburg, 93053 Regensburg, Germany
| | - Kathrin Klein
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology and University of Tuebingen, 70376 Stuttgart, Germany
| | - Christa Buechler
- Department of Internal Medicine I, University Hospital Regensburg, 93053 Regensburg, Germany
| | - Michael Melter
- Children’s University Hospital (KUNO), University Hospital Regensburg, 93053 Regensburg, Germany
| | - Thomas S. Weiss
- Children’s University Hospital (KUNO), University Hospital Regensburg, 93053 Regensburg, Germany
- Center for Liver Cell Research, University Hospital Regensburg, 93053 Regensburg, Germany
| |
Collapse
|
25
|
Pontzen DL, Bahls M, Albrecht D, Felix SB, Dörr M, Ittermann T, Nauck M, Friedrich N. Low-grade inflammation is associated with a heterogeneous lipoprotein subclass profile in an apparently healthy population sample. Lipids Health Dis 2023; 22:100. [PMID: 37434164 PMCID: PMC10334607 DOI: 10.1186/s12944-023-01856-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 06/22/2023] [Indexed: 07/13/2023] Open
Abstract
BACKGROUND AND AIMS Prevention measures for cardiovascular diseases (CVD) have shifted their focus from lipoproteins to the immune system. However, low-grade inflammation and dyslipidemia are tightly entangled. The objective of this study was to assess the relations between a broad panel of inflammatory biomarkers and lipoprotein subclass parameters. METHODS We utilized data from the population-based Study of Health in Pomerania (SHIP-TREND, n = 403). Plasma concentrations of 37 inflammatory markers were measured by a bead-based assay. Furthermore, we employed nuclear magnetic resonance spectroscopy to measure total cholesterol, total triglycerides, total phospholipids as well as the fractional concentrations of cholesterol, triglycerides, phospholipids, ApoA1, ApoA2 and ApoB in all major lipoprotein subclasses. Associations between inflammatory biomarkers and lipoprotein subclasses were analyzed by adjusted linear regression models. RESULTS APRIL, BAFF, TWEAK, sCD30, Pentraxin-3, sTNFR1, sTNFR2, Osteocalcin, Chitinase 3-like 1, IFN-alpha2, IFN-gamma, IL-11, IL-12p40, IL-29, IL-32, IL-35, TSLP, MMP1 and MMP2 were related with lipoprotein subclass components, forming two distinct clusters. APRIL had inverse relations to HDL-C (total and subclasses) and HDL Apo-A1 and Apo-A2 content. MMP-2 was inversely related to VLDL-C (total and subclasses), IDL-C as well as LDL5/6-C and VLDL-TG, IDL-TG, total triglycerides as well as LDL5/5-TG and HDL4-TG. Additionally, we identified a cluster of cytokines linked to the Th1-immune response, which were associated with an atherogenic lipoprotein profile. CONCLUSION Our findings expand the existing knowledge of inflammation-lipoprotein interactions, many of which are suggested to be involved in the pathogeneses of chronic non-communicable diseases. The results of our study support the use of immunomodulatory substances for the treatment and possibly prevention of CVD.
Collapse
Affiliation(s)
- Daniel L Pontzen
- University Medicine Greifswald, Ferdinand-Sauerbruch-Str. 17475, Greifswald, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Greifswald, Greifswald, Germany
| | - Martin Bahls
- University Medicine Greifswald, Ferdinand-Sauerbruch-Str. 17475, Greifswald, Germany.
- German Centre for Cardiovascular Research (DZHK), Partner Site Greifswald, Greifswald, Germany.
| | - Diana Albrecht
- Institute for Community Medicine, SHIP-KEF, University Medicine Greifswald, Greifswald, Germany
- Leibniz Institute Greifswald, Leibniz Institute for Plasma Science and Technology eV, Greifswald, Germany
| | - Stephan B Felix
- University Medicine Greifswald, Ferdinand-Sauerbruch-Str. 17475, Greifswald, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Greifswald, Greifswald, Germany
| | - Marcus Dörr
- University Medicine Greifswald, Ferdinand-Sauerbruch-Str. 17475, Greifswald, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Greifswald, Greifswald, Germany
| | - Till Ittermann
- German Centre for Cardiovascular Research (DZHK), Partner Site Greifswald, Greifswald, Germany
- Institute for Community Medicine, SHIP-KEF, University Medicine Greifswald, Greifswald, Germany
| | - Matthias Nauck
- German Centre for Cardiovascular Research (DZHK), Partner Site Greifswald, Greifswald, Germany
- Institute of Clinical Chemistry and Laboratory Medicine, University Medicine Greifswald, Greifswald, Germany
| | - Nele Friedrich
- German Centre for Cardiovascular Research (DZHK), Partner Site Greifswald, Greifswald, Germany
- Institute of Clinical Chemistry and Laboratory Medicine, University Medicine Greifswald, Greifswald, Germany
| |
Collapse
|
26
|
Kastnes M, Aass KR, Bouma SA, Årseth C, Zahoor M, Yurchenko M, Standal T. The pro-tumorigenic cytokine IL-32 has a high turnover in multiple myeloma cells due to proteolysis regulated by oxygen-sensing cysteine dioxygenase and deubiquitinating enzymes. Front Oncol 2023; 13:1197542. [PMID: 37313466 PMCID: PMC10258340 DOI: 10.3389/fonc.2023.1197542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 05/16/2023] [Indexed: 06/15/2023] Open
Abstract
IL-32 is a pro-inflammatory cytokine expressed by several types of cancer cells and immune cells. Currently, no treatment targeting IL-32 is available, and its intracellular and exosomal localization make IL-32 less accessible to drugs. We previously showed that hypoxia promotes IL-32 expression through HIF1α in multiple myeloma cells. Here, we demonstrate that high-speed translation and ubiquitin-dependent proteasomal degradation lead to a rapid IL-32 protein turnover. We find that IL-32 protein half-life is regulated by the oxygen-sensing cysteine-dioxygenase ADO and that deubiquitinases actively remove ubiquitin from IL-32 and promote protein stability. Deubiquitinase inhibitors promoted the degradation of IL-32 and may represent a strategy for reducing IL-32 levels in multiple myeloma. The fast turnover and enzymatic deubiquitination of IL-32 are conserved in primary human T cells; thus, deubiquitinase inhibitors may also affect T-cell responses in various diseases.
Collapse
Affiliation(s)
- Martin Kastnes
- Centre of Molecular Inflammation Research, Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Kristin Roseth Aass
- Centre of Molecular Inflammation Research, Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Siri Anshushaug Bouma
- Centre of Molecular Inflammation Research, Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Charlotte Årseth
- Centre of Molecular Inflammation Research, Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Muhammad Zahoor
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Mariia Yurchenko
- Centre of Molecular Inflammation Research, Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Therese Standal
- Centre of Molecular Inflammation Research, Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
- Department of Hematology, St.Olavs University Hospital, Trondheim, Norway
| |
Collapse
|
27
|
Tang R, Jin P, Shen C, Lin W, Yu L, Hu X, Meng T, Zhang L, Peng L, Xiao X, Eggenhuizen P, Ooi JD, Wu X, Ding X, Zhong Y. Single-cell RNA sequencing reveals the transcriptomic landscape of kidneys in patients with ischemic acute kidney injury. Chin Med J (Engl) 2023; 136:1177-1187. [PMID: 37083129 PMCID: PMC10278705 DOI: 10.1097/cm9.0000000000002679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Indexed: 04/22/2023] Open
Abstract
BACKGROUND Ischemic acute kidney injury (AKI) is a common syndrome associated with considerable mortality and healthcare costs. Up to now, the underlying pathogenesis of ischemic AKI remains incompletely understood, and specific strategies for early diagnosis and treatment of ischemic AKI are still lacking. Here, this study aimed to define the transcriptomic landscape of AKI patients through single-cell RNA sequencing (scRNA-seq) analysis in kidneys. METHODS In this study, scRNA-seq technology was applied to kidneys from two ischemic AKI patients, and three human public scRNA-seq datasets were collected as controls. Differentially expressed genes (DEGs) and cell clusters of kidneys were determined. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis, as well as the ligand-receptor interaction between cells, were performed. We also validated several DEGs expression in kidneys from human ischemic AKI and ischemia/reperfusion (I/R) injury induced AKI mice through immunohistochemistry staining. RESULTS 15 distinct cell clusters were determined in kidney from subjects of ischemic AKI and control. The injured proximal tubules (PT) displayed a proapoptotic and proinflammatory phenotype. PT cells of ischemic AKI had up-regulation of novel pro-apoptotic genes including USP47 , RASSF4 , EBAG9 , IER3 , SASH1 , SEPTIN7 , and NUB1 , which have not been reported in ischemic AKI previously. Several hub genes were validated in kidneys from human AKI and renal I/R injury mice, respectively. Furthermore, PT highly expressed DEGs enriched in endoplasmic reticulum stress, autophagy, and retinoic acid-inducible gene I (RIG-I) signaling. DEGs overexpressed in other tubular cells were primarily enriched in nucleotide-binding and oligomerization domain (NOD)-like receptor signaling, estrogen signaling, interleukin (IL)-12 signaling, and IL-17 signaling. Overexpressed genes in kidney-resident immune cells including macrophages, natural killer T (NKT) cells, monocytes, and dendritic cells were associated with leukocyte activation, chemotaxis, cell adhesion, and complement activation. In addition, the ligand-receptor interactions analysis revealed prominent communications between macrophages and monocytes with other cells in the process of ischemic AKI. CONCLUSION Together, this study reveals distinct cell-specific transcriptomic atlas of kidney in ischemic AKI patients, altered signaling pathways, and potential cell-cell crosstalk in the development of AKI. These data reveal new insights into the pathogenesis and potential therapeutic strategies in ischemic AKI.
Collapse
Affiliation(s)
- Rong Tang
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
- Key Laboratory of Biological Nanotechnology of National Health Commission, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Peng Jin
- Department of Organ Transplantation, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Chanjuan Shen
- Department of Hematology, The Affiliated Zhuzhou Hospital Xiangya Medical College, Central South University, Zhuzhou, Hunan 412007, China
| | - Wei Lin
- Key Laboratory of Biological Nanotechnology of National Health Commission, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Leilin Yu
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
- Department of Nephrology, Jiujiang Hospital of Traditional Chinese Medicine, Jiujiang, Jiangxi 332099, China
| | - Xueling Hu
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Ting Meng
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
- Key Laboratory of Biological Nanotechnology of National Health Commission, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Linlin Zhang
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Ling Peng
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Xiangcheng Xiao
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
- Key Laboratory of Biological Nanotechnology of National Health Commission, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Peter Eggenhuizen
- Department of Medicine, Centre for Inflammatory Diseases, Monash Medical Centre, Monash University, Clayton, VIC 3168, Australia
| | - Joshua D. Ooi
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
- Department of Medicine, Centre for Inflammatory Diseases, Monash Medical Centre, Monash University, Clayton, VIC 3168, Australia
| | - Xueqin Wu
- Department of Nephrology, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, China
| | - Xiang Ding
- Department of Organ Transplantation, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Yong Zhong
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
- Key Laboratory of Biological Nanotechnology of National Health Commission, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| |
Collapse
|
28
|
Mao XR, Zhang XX, Xu ZQ, Zhao N, Fu L, Peng SF, Chai J. Hepatic interleukin 32 attenuates liver injury through repression of necroptosis in cholestasis. J Dig Dis 2023; 24:293-304. [PMID: 37261903 DOI: 10.1111/1751-2980.13196] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 05/08/2023] [Accepted: 05/30/2023] [Indexed: 06/03/2023]
Abstract
OBJECTIVE We aimed to evaluate the association between interleukin (IL)-32 and necroptosis in cholestatic liver injury. METHODS Levels of necroptosis-related markers in cholestatic and control patients, including the receptor-interacting serine-threonine kinase 3 (RIPK3), receptor-interacting serine-threonine kinase 1 (RIPK1), and mixed lineage kinase domain-like (MLKL) were measured. Animal experiments in C57BL/6J and transgenic mice with IL32β/γ overexpression were also conducted to confirm the effect of IL-32 on necroptosis in cholestasis, which was induced by α-naphthylisothiocyanate (ANIT) and 1% lithocholic acid (LCA). PLC/PRF/5-ASBT and primary mouse hepatocytes were utilized for the investigation of the regulation and mechanism of IL-32 in cholestasis. RESULTS In the liver tissues of cholestatic patients, the mRNA and protein expressions of RIPK1, RIPK3, and MLKL were increased and associated with IL-32 expression. In addition, expressions of these indicators in the liver of 1% LCA- and ANIT-induced mouse models were significantly increased, while they were markedly decreased in hIL32βLTg and hIL32γLTg mice. After bile acid stimulation, IL-32 and phosphorylated Akt (p-Akt) expressions significantly elevated in a dose-dependent manner. After treated with tumor necrosis factor (TNF)-α, IL-32 inhibited MLKL expression in primary mouse hepatocytes. CONCLUSION IL-32 is negatively associated with necroptosis in cholestatic patients. Moreover, IL-32 is induced by p-Akt and effectively attenuates necroptosis in ANIT- or 1% LCA-induced cholestasis.
Collapse
Affiliation(s)
- Xiu Ru Mao
- Department of Hepatology and Infectious Diseases, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
- Department of Gastroenterology, Institute of Digestive Diseases of PLA, Cholestatic Liver Diseases Certer and Center for Metabolic Associated Fatty Liver Disease, The First Affiliated Hospital (Southwest Hospital) to Third Military Medical University (Army Medical University), Chongqing, China
| | - Xiao Xun Zhang
- Department of Gastroenterology, Institute of Digestive Diseases of PLA, Cholestatic Liver Diseases Certer and Center for Metabolic Associated Fatty Liver Disease, The First Affiliated Hospital (Southwest Hospital) to Third Military Medical University (Army Medical University), Chongqing, China
| | - Zi Qian Xu
- Department of Gastroenterology, Institute of Digestive Diseases of PLA, Cholestatic Liver Diseases Certer and Center for Metabolic Associated Fatty Liver Disease, The First Affiliated Hospital (Southwest Hospital) to Third Military Medical University (Army Medical University), Chongqing, China
| | - Nan Zhao
- Department of Gastroenterology, Institute of Digestive Diseases of PLA, Cholestatic Liver Diseases Certer and Center for Metabolic Associated Fatty Liver Disease, The First Affiliated Hospital (Southwest Hospital) to Third Military Medical University (Army Medical University), Chongqing, China
| | - Lei Fu
- Department of Hepatology and Infectious Diseases, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Shi Fang Peng
- Department of Hepatology and Infectious Diseases, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Jin Chai
- Department of Gastroenterology, Institute of Digestive Diseases of PLA, Cholestatic Liver Diseases Certer and Center for Metabolic Associated Fatty Liver Disease, The First Affiliated Hospital (Southwest Hospital) to Third Military Medical University (Army Medical University), Chongqing, China
| |
Collapse
|
29
|
Cui H, Diedrich JK, Wu DC, Lim JJ, Nottingham RM, Moresco JJ, Yates JR, Blencowe BJ, Lambowitz AM, Schimmel P. Arg-tRNA synthetase links inflammatory metabolism to RNA splicing and nuclear trafficking via SRRM2. Nat Cell Biol 2023; 25:592-603. [PMID: 37059883 DOI: 10.1038/s41556-023-01118-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 02/27/2023] [Indexed: 04/16/2023]
Abstract
Cells respond to perturbations such as inflammation by sensing changes in metabolite levels. Especially prominent is arginine, which has known connections to the inflammatory response. Aminoacyl-tRNA synthetases, enzymes that catalyse the first step of protein synthesis, can also mediate cell signalling. Here we show that depletion of arginine during inflammation decreased levels of nuclear-localized arginyl-tRNA synthetase (ArgRS). Surprisingly, we found that nuclear ArgRS interacts and co-localizes with serine/arginine repetitive matrix protein 2 (SRRM2), a spliceosomal and nuclear speckle protein, and that decreased levels of nuclear ArgRS correlated with changes in condensate-like nuclear trafficking of SRRM2 and splice-site usage in certain genes. These splice-site usage changes cumulated in the synthesis of different protein isoforms that altered cellular metabolism and peptide presentation to immune cells. Our findings uncover a mechanism whereby an aminoacyl-tRNA synthetase cognate to a key amino acid that is metabolically controlled during inflammation modulates the splicing machinery.
Collapse
Affiliation(s)
- Haissi Cui
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA
| | - Jolene K Diedrich
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA
| | - Douglas C Wu
- Institute for Cellular and Molecular Biology and Departments of Molecular Biosciences and Oncology, University of Texas at Austin, Austin, TX, USA
| | - Justin J Lim
- The Donnelly Centre, University of Toronto, Toronto, Ontario, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Ryan M Nottingham
- Institute for Cellular and Molecular Biology and Departments of Molecular Biosciences and Oncology, University of Texas at Austin, Austin, TX, USA
| | - James J Moresco
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA
- Center for the Genetics of Host Defense, UT Southwestern Medical Center, Dallas, TX, USA
| | - John R Yates
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA
| | - Benjamin J Blencowe
- The Donnelly Centre, University of Toronto, Toronto, Ontario, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Alan M Lambowitz
- Institute for Cellular and Molecular Biology and Departments of Molecular Biosciences and Oncology, University of Texas at Austin, Austin, TX, USA.
| | - Paul Schimmel
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA.
| |
Collapse
|
30
|
Song J, Sun J, Wang Y, Ding Y, Zhang S, Ma X, Chang F, Fan B, Liu H, Bao C, Meng W. CeRNA network identified hsa-miR-17-5p, hsa-miR-106a-5p and hsa-miR-2355-5p as potential diagnostic biomarkers for tuberculosis. Medicine (Baltimore) 2023; 102:e33117. [PMID: 36930090 PMCID: PMC10019109 DOI: 10.1097/md.0000000000033117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 02/08/2023] [Indexed: 03/18/2023] Open
Abstract
This study aims to analyze the regulatory non-coding RNAs in the pathological process of tuberculosis (TB), and identify novel diagnostic biomarkers. A longitudinal study was conducted in 5 newly diagnosed pulmonary tuberculosis patients, peripheral blood samples were collected before and after anti-TB treatment for 6 months, separately. After whole transcriptome sequencing, the differentially expressed RNAs (DE RNAs) were filtrated with |log2 (fold change) | > log2(1.5) and P value < .05 as screening criteria. Then functional annotation was actualized by gene ontology enrichment analysis, and enrichment pathway analysis was conducted by Kyoto Encyclopedia of Genes and Genomes database. And finally, the competitive endogenous RNA (ceRNA) regulatory network was established according to the interaction of ceRNA pairs and miRNA-mRNA pairs. Five young women were recruited and completed this study. Based on the differential expression analysis, a total of 1469 mRNAs, 996 long non-coding RNAs, 468 circular RNAs, and 86 miRNAs were filtrated as DE RNAs. Functional annotation demonstrated that those DE-mRNAs were strongly involved in the cellular process (n = 624), metabolic process (n = 513), single-organism process (n = 505), cell (n = 651), cell part (n = 650), organelle (n = 569), and binding (n = 629). Enrichment pathway analysis revealed that the differentially expressed genes were mainly enriched in HTLV-l infection, T cell receptor signaling pathway, glycosaminoglycan biosynthesis-heparan sulfate/heparin, and Hippo signaling pathway. CeRNA networks revealed that hsa-miR-17-5p, hsa-miR-106a-5p and hsa-miR-2355-5p might be regarded as potential diagnostic biomarkers for TB. Immunomodulation-related genes are differentially expressed in TB patients, and hsa-miR-106a-5p, hsa-miR-17-5p, hsa-miR-2355-5p might serve as potential diagnostic biomarkers.
Collapse
Affiliation(s)
- Jie Song
- School of Public Health, Xinxiang Medical University, Xinxiang, China
| | - Jiaguan Sun
- School of Public Health, Xinxiang Medical University, Xinxiang, China
| | - Yuqing Wang
- The 4th People’s Hospital of Qinghai Province, Xining, China
| | - Yuehe Ding
- The 4th People’s Hospital of Qinghai Province, Xining, China
| | - Shengrong Zhang
- The 4th People’s Hospital of Qinghai Province, Xining, China
| | - Xiuzhen Ma
- The 4th People’s Hospital of Qinghai Province, Xining, China
| | - Fengxia Chang
- The 4th People’s Hospital of Qinghai Province, Xining, China
| | - Bingdong Fan
- The 4th People’s Hospital of Qinghai Province, Xining, China
| | - Hongjuan Liu
- The 4th People’s Hospital of Qinghai Province, Xining, China
| | - Chenglan Bao
- The 4th People’s Hospital of Qinghai Province, Xining, China
| | - Weimin Meng
- The 4th People’s Hospital of Qinghai Province, Xining, China
| |
Collapse
|
31
|
Aass KR, Tryggestad SS, Mjelle R, Kastnes MH, Nedal TMV, Misund K, Standal T. IL-32 is induced by activation of toll-like receptors in multiple myeloma cells. Front Immunol 2023; 14:1107844. [PMID: 36875074 PMCID: PMC9978100 DOI: 10.3389/fimmu.2023.1107844] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 02/06/2023] [Indexed: 02/18/2023] Open
Abstract
Multiple myeloma (MM) is a hematological cancer characterized by accumulation of malignant plasma cells in the bone marrow. The patients are immune suppressed and suffer from recurrent and chronic infections. Interleukin-32 is a non-conventional, pro-inflammatory cytokine expressed in a subgroup of MM patients with a poor prognosis. IL-32 has also been shown to promote proliferation and survival of the cancer cells. Here we show that activation of toll-like receptors (TLRs) promotes expression of IL-32 in MM cells through NFκB activation. In patient-derived primary MM cells, IL-32 expression is positively associated with expression of TLRs. Furthermore, we found that several TLR genes are upregulated from diagnosis to relapse in individual patients, predominantly TLRs sensing bacterial components. Interestingly, upregulation of these TLRs coincides with an increase in IL-32. Taken together, these results support a role for IL-32 in microbial sensing in MM cells and suggest that infections can induce expression of this pro-tumorigenic cytokine in MM patients.
Collapse
Affiliation(s)
- Kristin Roseth Aass
- Centre of Molecular Inflammation Research, Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Synne Stokke Tryggestad
- Centre of Molecular Inflammation Research, Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Robin Mjelle
- Centre of Molecular Inflammation Research, Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway.,Bioinformatics Core Facility - BioCore, Norwegian University of Science and Technology, Trondheim, Norway.,Department of Pathology, St. Olavs University Hospital, Trondheim, Norway
| | - Martin H Kastnes
- Centre of Molecular Inflammation Research, Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Tonje Marie Vikene Nedal
- Centre of Molecular Inflammation Research, Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Kristine Misund
- Centre of Molecular Inflammation Research, Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Therese Standal
- Centre of Molecular Inflammation Research, Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway.,Department of Hematology, St. Olavs University Hospital, Trondheim, Norway
| |
Collapse
|
32
|
Decombis S, Papin A, Bellanger C, Sortais C, Dousset C, Le Bris Y, Riveron T, Blandin S, Hulin P, Tessoulin B, Rouel M, Le Gouill S, Moreau-Aubry A, Pellat-Deceunynck C, Chiron D. The IL32/BAFF axis supports prosurvival dialogs in the lymphoma ecosystem and is disrupted by NIK inhibition. Haematologica 2022; 107:2905-2917. [PMID: 35263985 PMCID: PMC9713562 DOI: 10.3324/haematol.2021.279800] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 02/09/2022] [Indexed: 12/14/2022] Open
Abstract
Aggressive B-cell malignancies, such as mantle cell lymphoma (MCL), are microenvironment-dependent tumors and a better understanding of the dialogs occurring in lymphoma-protective ecosystems will provide new perspectives to increase treatment efficiency. To identify novel molecular regulations, we performed a transcriptomic analysis based on the comparison of circulating MCL cells (n=77) versus MCL lymph nodes (n=107) together with RNA sequencing of malignant (n=8) versus normal B-cell (n=6) samples. This integrated analysis led to the discovery of microenvironment-dependent and tumor-specific secretion of interleukin-32 beta (IL32β), whose expression was confirmed in situ within MCL lymph nodes by multiplex immunohistochemistry. Using ex vivo models of primary MCL cells (n=23), we demonstrated that, through the secretion of IL32β, the tumor was able to polarize monocytes into specific MCL-associated macrophages, which in turn favor tumor survival. We highlighted that while IL32β-stimulated macrophages secreted several protumoral factors, they supported tumor survival through a soluble dialog, mostly driven by BAFF. Finally, we demonstrated the efficacy of selective NIK/alternative-NFkB inhibition to counteract microenvironment-dependent induction of IL32β and BAFF-dependent survival of MCL cells. These data uncovered the IL32β/BAFF axis as a previously undescribed pathway involved in lymphoma-associated macrophage polarization and tumor survival, which could be counteracted through selective NIK inhibition.
Collapse
Affiliation(s)
- Salomé Decombis
- Nantes Université, Inserm, CNRS, Université d'Angers, CRCI2NA, Nantes - France; L'Héma-NexT, i-Site NexT, Nantes, France; GDR3697 Micronit, CNRS
| | - Antonin Papin
- Nantes Université, Inserm, CNRS, Université d'Angers, CRCI2NA, Nantes - France; L'Héma-NexT, i-Site NexT, Nantes, France; GDR3697 Micronit, CNRS
| | - Céline Bellanger
- Nantes Université, Inserm, CNRS, Université d'Angers, CRCI2NA, Nantes - France; L'Héma-NexT, i-Site NexT, Nantes, France; GDR3697 Micronit, CNRS
| | - Clara Sortais
- Nantes Université, Inserm, CNRS, Université d'Angers, CRCI2NA, Nantes - France; L'Héma-NexT, i-Site NexT, Nantes, France; GDR3697 Micronit, CNRS; Service d'Hématologie Clinique, Unité d'Investigation Clinique, CHU, Nantes
| | - Christelle Dousset
- Nantes Université, Inserm, CNRS, Université d'Angers, CRCI2NA, Nantes - France; L'Héma-NexT, i-Site NexT, Nantes, France; GDR3697 Micronit, CNRS; Service d'Hématologie Clinique, Unité d'Investigation Clinique, CHU, Nantes
| | - Yannick Le Bris
- Nantes Université, Inserm, CNRS, Université d'Angers, CRCI2NA, Nantes - France; L'Héma-NexT, i-Site NexT, Nantes, France; GDR3697 Micronit, CNRS; Service d'Hématologie Biologique, CHU, Nantes
| | - Thiphanie Riveron
- Nantes Université, Inserm, CNRS, Université d'Angers, CRCI2NA, Nantes - France; L'Héma-NexT, i-Site NexT, Nantes, France; GDR3697 Micronit, CNRS
| | - Stéphanie Blandin
- SFR-Santé, INSERM UMS016, CNRS UMS 3556, FED 4202, UNIV Nantes, CHU, Nantes
| | - Philippe Hulin
- SFR-Santé, INSERM UMS016, CNRS UMS 3556, FED 4202, UNIV Nantes, CHU, Nantes
| | - Benoit Tessoulin
- Nantes Université, Inserm, CNRS, Université d'Angers, CRCI2NA, Nantes - France; L'Héma-NexT, i-Site NexT, Nantes, France; GDR3697 Micronit, CNRS; Service d'Hématologie Clinique, Unité d'Investigation Clinique, CHU, Nantes
| | - Mathieu Rouel
- Nantes Université, Inserm, CNRS, Université d'Angers, CRCI2NA, Nantes - France; L'Héma-NexT, i-Site NexT, Nantes, France; GDR3697 Micronit, CNRS
| | - Steven Le Gouill
- Nantes Université, Inserm, CNRS, Université d'Angers, CRCI2NA, Nantes - France; L'Héma-NexT, i-Site NexT, Nantes, France; GDR3697 Micronit, CNRS; Service d'Hématologie Clinique, Unité d'Investigation Clinique, CHU, Nantes
| | - Agnès Moreau-Aubry
- Nantes Université, Inserm, CNRS, Université d'Angers, CRCI2NA, Nantes - France; L'Héma-NexT, i-Site NexT, Nantes, France; GDR3697 Micronit, CNRS
| | - Catherine Pellat-Deceunynck
- Nantes Université, Inserm, CNRS, Université d'Angers, CRCI2NA, Nantes - France; L'Héma-NexT, i-Site NexT, Nantes, France; GDR3697 Micronit, CNRS
| | - David Chiron
- Nantes Université, Inserm, CNRS, Université d'Angers, CRCI2NA, Nantes - France; L'Héma-NexT, i-Site NexT, Nantes, France; GDR3697 Micronit, CNRS.
| |
Collapse
|
33
|
Borzouei S, Gholamian-Hamadan M, Behzad M. Impact of interleukin-32α on T helper cell-related cytokines, transcription factors, and proliferation in patients with type 2 diabetes mellitus. Immunopharmacol Immunotoxicol 2022; 45:268-276. [PMID: 36263937 DOI: 10.1080/08923973.2022.2138430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
OBJECTIVE The ability of interleukin (IL)-32α to induce T helper (Th) 1, Th17, and Treg cytokines (IFN-γ, IL-17, and IL-10, respectively), and transcription factors [(signal transducer and activator of transcription (STAT) 1 and T-box (T-bet) for Th1, STAT3 and retinoid-related orphan receptor (ROR)-γt for Th17, and STAT5 and forkhead box P3 (Foxp3) for Treg)] were investigated in type 2 diabetes mellitus (T2DM). IL-32α effects on Th cell proliferation and related factors including IL-2 and NF-κB were also explored. METHODS Serum levels of IL-32α in 31 patients and 31 healthy controls (HCs) were determined by ELISA assay. CD4+ T cells cultured with polyclonal activators in the presence and absence of recombinant IL-32α (rIL-32α). Gene expressions in cultured Th cells were assessed with real-time PCR. Cytokines in supernatants were measured with ELISA. Proliferation experiments were assessed by flow cytometry. RESULTS The patients showed significant increase in IL-32α levels compared with HCs and its levels were positively correlated with fasting plasma glucose and hemoglobin A1c. rIL-32α enhanced IL-17 and IL-2 production, increased ROR-γt and NF-κB expression, and enhanced Th proliferation in both patients and HCs. In patients, IL-17, ROR-γt, NF-κB, and proliferation levels were higher than those in HCs, in cultures with and without rIL-32α (rIL-32α+ and rIL-32α-). IL-2 levels in rIL-32α+cultures of patients were significantly higher than the HCs, and it was positively correlated with proliferation rate and NF-κB expression. CONCLUSIONS Aberrant IL-32α levels are participated in T2DM pathogenesis. IL-32α potently induces Th17-related factors and amplifies the proliferative function of T cells.
Collapse
Affiliation(s)
- Shiva Borzouei
- Department of Internal Medicine, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | | | - Mahdi Behzad
- Department of Immunology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
34
|
Du J, Shao MM, Yi FS, Huang ZY, Qiao X, Chen QY, Shi HZ, Zhai K. Interleukin 32 as a Potential Marker for Diagnosis of Tuberculous Pleural Effusion. Microbiol Spectr 2022; 10:e0255321. [PMID: 35880892 PMCID: PMC9430160 DOI: 10.1128/spectrum.02553-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 07/08/2022] [Indexed: 01/13/2023] Open
Abstract
Accurate differential diagnosis is the key to choosing the correct treatment for pleural effusion. The present study aimed to assess whether interleukin 32 (IL-32) could be a new biomarker of tuberculous pleural effusion (TPE) and to explore the biological role of IL-32 in TPE. IL-32 levels were evaluated in the pleural effusions of 131 patients with undetermined pleural effusion from Wuhan and Beijing cohorts using an enzyme-linked immunosorbent assay method. Macrophages from TPE patients were transfected with IL-32-specific small interfering RNA (siRNA), and adenosine deaminase (ADA) expression was determined by real-time PCR and colorimetric methods. With a cutoff value of 247.9 ng/mL, the area under the curve of the receiver operating characteristic (ROC) curve for IL-32 was 0.933 for TPE, and the sensitivity and specificity were 88.4% and 93.4%, respectively. A multivariate logistic regression model with relatively good diagnostic performance was established. IL-32-specific siRNA downregulated ADA expression in macrophages, and IL-32γ treatment significantly induced ADA expression. Our results indicate that IL-32 in pleural effusion may be a novel biomarker for identifying patients with TPE. In addition, our multivariate model is acceptable to rule in or rule out TPE across diverse prevalence settings. Furthermore, IL-32 may modulate ADA expression in the tuberculosis microenvironment. (This study has been registered at ChiCTR under registration number ChiCTR2100051112 [https://www.chictr.org.cn/index.aspx].) IMPORTANCE Tuberculous pleural effusion (TPE) is a common form of extrapulmonary tuberculosis, with manifestations ranging from benign effusion with spontaneous absorption to effusion with pleural thickening, empyema, and even fibrosis, which can lead to a lasting impairment of lung function. Therefore, it is of great significance to find a rapid method to establish early diagnosis and apply antituberculosis therapy in the early stage. This study indicates that interleukin 32 (IL-32) in pleural effusion is a new high-potency marker to distinguish TPE from pleural effusions with other etiologies. A multivariate model combining age, adenosine deaminase (ADA), lactic dehydrogenase, and IL-32 may reliably rule in TPE in intermediate- or high-prevalence areas. Additionally, we observed that IL-32 might regulate ADA expression in macrophages in the tuberculosis microenvironment. Therefore, this study provides new insights into the role of IL-32 in the tuberculosis microenvironment.
Collapse
Affiliation(s)
- Juan Du
- Department of Respiratory and Critical Care Medicine, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
- Clinical Center for Pleural Diseases, Capital Medical University, Beijing, China
| | - Ming-Ming Shao
- Department of Respiratory and Critical Care Medicine, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
- Clinical Center for Pleural Diseases, Capital Medical University, Beijing, China
| | - Feng-Shuang Yi
- Department of Respiratory and Critical Care Medicine, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
- Clinical Center for Pleural Diseases, Capital Medical University, Beijing, China
| | - Zhong-Yin Huang
- Department of Respiratory and Critical Care Medicine, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
- Clinical Center for Pleural Diseases, Capital Medical University, Beijing, China
| | - Xin Qiao
- Department of Respiratory and Critical Care Medicine, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
- Clinical Center for Pleural Diseases, Capital Medical University, Beijing, China
| | - Qing-Yu Chen
- Department of Respiratory and Critical Care Medicine, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
- Clinical Center for Pleural Diseases, Capital Medical University, Beijing, China
| | - Huan-Zhong Shi
- Department of Respiratory and Critical Care Medicine, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
- Clinical Center for Pleural Diseases, Capital Medical University, Beijing, China
| | - Kan Zhai
- Department of Respiratory and Critical Care Medicine, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
- Clinical Center for Pleural Diseases, Capital Medical University, Beijing, China
| |
Collapse
|
35
|
The crosstalk of the human microbiome in breast and colon cancer: A metabolomics analysis. Crit Rev Oncol Hematol 2022; 176:103757. [PMID: 35809795 DOI: 10.1016/j.critrevonc.2022.103757] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 06/28/2022] [Accepted: 07/04/2022] [Indexed: 11/20/2022] Open
Abstract
The human microbiome's role in colon and breast cancer is described in this review. Understanding how the human microbiome and metabolomics interact with breast and colon cancer is the chief area of this study. First, the role of the gut and distal microbiome in breast and colon cancer is investigated, and the direct relationship between microbial dysbiosis and breast and colon cancer is highlighted. This work also focuses on the many metabolomic techniques used to locate prospective biomarkers, make an accurate diagnosis, and research new therapeutic targets for cancer treatment. This review clarifies the influence of anti-tumor medications on the microbiota and the proactive measures that can be taken to treat cancer using a variety of therapies, including radiotherapy, chemotherapy, next-generation biotherapeutics, gene-based therapy, integrated omics technology, and machine learning.
Collapse
|
36
|
Mohamed MS, Ghaly S, Azmy KH, Mohamed GA. Assessment of interleukin 32 as a novel biomarker for non-alcoholic fatty liver disease. EGYPTIAN LIVER JOURNAL 2022. [DOI: 10.1186/s43066-022-00189-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Non-alcoholic fatty liver disease (NAFLD) is a metabolic disorder characterised by enhanced hepatic fat deposition and inflammation. Efforts to manage NAFLD are limited by the poorly characterised pathological processes and the lack of precise non-invasive markers, thus, proving the need to further study the involved cytokines, which, in turn, may represent novel molecular targets with possible diagnostic and therapeutic applications. Hence, we aimed to assess the diagnostic utility of serum interleukin 32 (IL-32) in NAFLD cases. This case-control study included 40 NAFLD patients and 40 healthy controls. The serum IL-32 concentrations were assessed by the enzyme-linked immunosorbent assay (ELISA).
Results
The serum IL-32 concentrations were significantly higher in NAFLD cases than controls (76 [45.5–111.125] vs. 13 [8–15] pg/mL, P < 0.001, respectively). IL-32 at a cut-off point > 22.5 pg/mL had 100% sensitivity, 87.50% specificity, 88.9% positive predictive value, 100% negative predictive value, and 98.2% accuracy in detecting the NAFLD cases.
Conclusion
Serum IL-32 could be considered a novel non-invasive marker for NAFLD. Further investigations are warranted to verify the potential utility of IL-32 in the clinical setting.
Collapse
|
37
|
Conod A, Silvano M, Ruiz i Altaba A. On the origin of metastases: Induction of pro-metastatic states after impending cell death via ER stress, reprogramming, and a cytokine storm. Cell Rep 2022; 38:110490. [PMID: 35263600 DOI: 10.1016/j.celrep.2022.110490] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 12/07/2021] [Accepted: 02/14/2022] [Indexed: 12/12/2022] Open
Abstract
How metastatic cells arise is unclear. Here, we search for the induction of recently characterized pro-metastatic states as a surrogate for the origin of metastasis. Since cell-death-inducing therapies can paradoxically promote metastasis, we ask if such treatments induce pro-metastatic states in human colon cancer cells. We find that post-near-death cells acquire pro-metastatic states (PAMEs) and form distant metastases in vivo. These PAME ("let's go" in Greek) cells exhibit a multifactorial cytokine storm as well as signs of enhanced endoplasmic reticulum (ER) stress and nuclear reprogramming, requiring CXCL8, INSL4, IL32, PERK-CHOP, and NANOG. PAMEs induce neighboring tumor cells to become PAME-induced migratory cells (PIMs): highly migratory cells that re-enact the storm and enhance PAME migration. Metastases are thus proposed to originate from the induction of pro-metastatic states through intrinsic and extrinsic cues in a pro-metastatic tumoral ecosystem, driven by an impending cell-death experience involving ER stress modulation, metastatic reprogramming, and paracrine recruitment via a cytokine storm.
Collapse
Affiliation(s)
- Arwen Conod
- Department of Genetic Medicine and Development, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Marianna Silvano
- Department of Genetic Medicine and Development, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Ariel Ruiz i Altaba
- Department of Genetic Medicine and Development, Faculty of Medicine, University of Geneva, Geneva, Switzerland.
| |
Collapse
|
38
|
Brueggeman JM, Zhao J, Schank M, Yao ZQ, Moorman JP. Trained Immunity: An Overview and the Impact on COVID-19. Front Immunol 2022; 13:837524. [PMID: 35251030 PMCID: PMC8891531 DOI: 10.3389/fimmu.2022.837524] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 01/28/2022] [Indexed: 01/13/2023] Open
Abstract
Effectively treating infectious diseases often requires a multi-step approach to target different components involved in disease pathogenesis. Similarly, the COVID-19 pandemic has become a global health crisis that requires a comprehensive understanding of Severe Acute Respiratory Syndrome Corona Virus 2 (SARS-CoV-2) infection to develop effective therapeutics. One potential strategy to instill greater immune protection against COVID-19 is boosting the innate immune system. This boosting, termed trained immunity, employs immune system modulators to train innate immune cells to produce an enhanced, non-specific immune response upon reactivation following exposure to pathogens, a process that has been studied in the context of in vitro and in vivo clinical studies prior to the COVID-19 pandemic. Evaluation of the underlying pathways that are essential to inducing protective trained immunity will provide insight into identifying potential therapeutic targets that may alleviate the COVID-19 crisis. Here we review multiple immune training agents, including Bacillus Calmette-Guérin (BCG), β-glucan, and lipopolysaccharide (LPS), and the two most popular cell types involved in trained immunity, monocytes and natural killer (NK) cells, and compare the signaling pathways involved in innate immunity. Additionally, we discuss COVID-19 trained immunity clinical trials, emphasizing the potential of trained immunity to fight SARS-CoV-2 infection. Understanding the mechanisms by which training agents activate innate immune cells to reprogram immune responses may prove beneficial in developing preventive and therapeutic targets against COVID-19.
Collapse
Affiliation(s)
- Justin M. Brueggeman
- Center of Excellence in Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States,Division of Infectious, Inflammatory and Immunologic Diseases, Department of Internal Medicine, Quillen College of Medicine, East Tennessee State University (ETSU), Johnson City, TN, United States,Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, TN, United States
| | - Juan Zhao
- Center of Excellence in Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States,Division of Infectious, Inflammatory and Immunologic Diseases, Department of Internal Medicine, Quillen College of Medicine, East Tennessee State University (ETSU), Johnson City, TN, United States
| | - Madison Schank
- Center of Excellence in Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States,Division of Infectious, Inflammatory and Immunologic Diseases, Department of Internal Medicine, Quillen College of Medicine, East Tennessee State University (ETSU), Johnson City, TN, United States
| | - Zhi Q. Yao
- Center of Excellence in Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States,Division of Infectious, Inflammatory and Immunologic Diseases, Department of Internal Medicine, Quillen College of Medicine, East Tennessee State University (ETSU), Johnson City, TN, United States,Hepatitis (HCV/HBV/HIV) Program, James H. Quillen VA Medical Center, Department of Veterans Affairs, Johnson City, TN, United States
| | - Jonathan P. Moorman
- Center of Excellence in Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States,Division of Infectious, Inflammatory and Immunologic Diseases, Department of Internal Medicine, Quillen College of Medicine, East Tennessee State University (ETSU), Johnson City, TN, United States,Hepatitis (HCV/HBV/HIV) Program, James H. Quillen VA Medical Center, Department of Veterans Affairs, Johnson City, TN, United States,*Correspondence: Jonathan P. Moorman,
| |
Collapse
|
39
|
Aass KR, Mjelle R, Kastnes MH, Tryggestad SS, van den Brink LM, Aass Roseth I, Westhrin M, Zahoor M, Moen SH, Vikene Nedal TM, Buene G, Misund K, Sponaas AM, Ma Q, Sundan A, Groen RW, Slørdahl TS, Waage A, Standal T. Intracellular IL-32 regulates mitochondrial metabolism, proliferation, and differentiation of malignant plasma cells. iScience 2022; 25:103605. [PMID: 35005550 PMCID: PMC8717606 DOI: 10.1016/j.isci.2021.103605] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 10/13/2021] [Accepted: 12/08/2021] [Indexed: 02/06/2023] Open
Abstract
Interleukin-32 (IL-32) is a nonclassical cytokine expressed in cancers, inflammatory diseases, and infections. Its expression is regulated by two different oxygen sensing systems; HIF1α and cysteamine dioxygenase (ADO), indicating that IL-32 may be involved in the response to hypoxia. We here demonstrate that endogenously expressed, intracellular IL-32 interacts with components of the mitochondrial respiratory chain and promotes oxidative phosphorylation. Knocking out IL-32 in three myeloma cell lines reduced cell survival and proliferation in vitro and in vivo. High-throughput transcriptomic and MS-metabolomic profiling of IL-32 KO cells revealed that cells depleted of IL-32 had perturbations in metabolic pathways, with accumulation of lipids, pyruvate precursors, and citrate. IL-32 was expressed in a subgroup of myeloma patients with inferior survival, and primary myeloma cells expressing IL-32 had a gene signature associated with immaturity, proliferation, and oxidative phosphorylation. In conclusion, we demonstrate a previously unrecognized role of IL-32 in the regulation of plasma cell metabolism. Intracellular IL-32 is an endogenous growth factor for malignant plasma cells IL-32 interacts with components of the electron transport chain IL-32 promotes oxidative phosphorylation IL-32 is expressed by immature, CD45 + highly proliferating malignant plasma cells
Collapse
Affiliation(s)
- Kristin Roseth Aass
- Centre of Molecular Inflammation Research, Norwegian University of Science and Technology, Trondheim 7491, Norway.,Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim 7491, Norway
| | - Robin Mjelle
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim 7491, Norway
| | - Martin H Kastnes
- Centre of Molecular Inflammation Research, Norwegian University of Science and Technology, Trondheim 7491, Norway.,Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim 7491, Norway
| | - Synne S Tryggestad
- Centre of Molecular Inflammation Research, Norwegian University of Science and Technology, Trondheim 7491, Norway.,Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim 7491, Norway
| | - Luca M van den Brink
- Centre of Molecular Inflammation Research, Norwegian University of Science and Technology, Trondheim 7491, Norway
| | - Ingrid Aass Roseth
- Centre of Molecular Inflammation Research, Norwegian University of Science and Technology, Trondheim 7491, Norway.,Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim 7491, Norway
| | - Marita Westhrin
- Centre of Molecular Inflammation Research, Norwegian University of Science and Technology, Trondheim 7491, Norway
| | - Muhammad Zahoor
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo 0372, Norway
| | - Siv H Moen
- Centre of Molecular Inflammation Research, Norwegian University of Science and Technology, Trondheim 7491, Norway.,Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim 7491, Norway
| | - Tonje M Vikene Nedal
- Centre of Molecular Inflammation Research, Norwegian University of Science and Technology, Trondheim 7491, Norway.,Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim 7491, Norway
| | - Glenn Buene
- Centre of Molecular Inflammation Research, Norwegian University of Science and Technology, Trondheim 7491, Norway.,Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim 7491, Norway
| | - Kristine Misund
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim 7491, Norway
| | - Anne-Marit Sponaas
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim 7491, Norway
| | - Qianli Ma
- Centre of Molecular Inflammation Research, Norwegian University of Science and Technology, Trondheim 7491, Norway.,Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim 7491, Norway
| | - Anders Sundan
- Centre of Molecular Inflammation Research, Norwegian University of Science and Technology, Trondheim 7491, Norway.,Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim 7491, Norway
| | - Richard Wj Groen
- Department of Hematology, Cancer Center Amsterdam, VU University Medical Center, Amsterdam 1081, the Netherlands
| | - Tobias S Slørdahl
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim 7491, Norway.,Department of Hematology, St.Olavs University Hospital, Trondheim 7491, Norway
| | - Anders Waage
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim 7491, Norway.,Department of Hematology, St.Olavs University Hospital, Trondheim 7491, Norway
| | - Therese Standal
- Centre of Molecular Inflammation Research, Norwegian University of Science and Technology, Trondheim 7491, Norway.,Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim 7491, Norway.,Department of Hematology, St.Olavs University Hospital, Trondheim 7491, Norway
| |
Collapse
|
40
|
Flook M, Escalera-Balsera A, Gallego-Martinez A, Espinosa-Sanchez JM, Aran I, Soto-Varela A, Lopez-Escamez JA. DNA Methylation Signature in Mononuclear Cells and Proinflammatory Cytokines May Define Molecular Subtypes in Sporadic Meniere Disease. Biomedicines 2021; 9:1530. [PMID: 34829759 PMCID: PMC8615058 DOI: 10.3390/biomedicines9111530] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 10/19/2021] [Accepted: 10/21/2021] [Indexed: 12/15/2022] Open
Abstract
Meniere Disease (MD) is a multifactorial disorder of the inner ear characterized by vertigo attacks associated with sensorineural hearing loss and tinnitus with a significant heritability. Although MD has been associated with several genes, no epigenetic studies have been performed on MD. Here we performed whole-genome bisulfite sequencing in 14 MD patients and six healthy controls, with the aim of identifying an MD methylation signature and potential disease mechanisms. We observed a high number of differentially methylated CpGs (DMC) when comparing MD patients to controls (n= 9545), several of them in hearing loss genes, such as PCDH15, ADGRV1 and CDH23. Bioinformatic analyses of DMCs and cis-regulatory regions predicted phenotypes related to abnormal excitatory postsynaptic currents, abnormal NMDA-mediated receptor currents and abnormal glutamate-mediated receptor currents when comparing MD to controls. Moreover, we identified various DMCs in genes previously associated with cochleovestibular phenotypes in mice. We have also found 12 undermethylated regions (UMR) that were exclusive to MD, including two UMR in an inter CpG island in the PHB gene. We suggest that the DNA methylation signature allows distinguishing between MD patients and controls. The enrichment analysis confirms previous findings of a chronic inflammatory process underlying MD.
Collapse
Affiliation(s)
- Marisa Flook
- Otology & Neurotology Group CTS495, Department of Genomic Medicine, GENYO, Centre for Genomics and Oncological Research, Pfizer University of Granada Andalusian Regional Government, PTS, 18016 Granada, Spain; (M.F.); (A.E.-B.); (A.G.-M.); (J.M.E.-S.)
- Sensorineural Pathology Programme, Centro de Investigación Biomédica en Red en Enfermedades Raras, CIBERER, 28029 Madrid, Spain
- Department of Otolaryngology, Instituto de Investigación Biosanitaria ibs.Granada, Hospital Universitario Virgen de las Nieves, Universidad de Granada, 18014 Granada, Spain
| | - Alba Escalera-Balsera
- Otology & Neurotology Group CTS495, Department of Genomic Medicine, GENYO, Centre for Genomics and Oncological Research, Pfizer University of Granada Andalusian Regional Government, PTS, 18016 Granada, Spain; (M.F.); (A.E.-B.); (A.G.-M.); (J.M.E.-S.)
- Sensorineural Pathology Programme, Centro de Investigación Biomédica en Red en Enfermedades Raras, CIBERER, 28029 Madrid, Spain
- Department of Otolaryngology, Instituto de Investigación Biosanitaria ibs.Granada, Hospital Universitario Virgen de las Nieves, Universidad de Granada, 18014 Granada, Spain
| | - Alvaro Gallego-Martinez
- Otology & Neurotology Group CTS495, Department of Genomic Medicine, GENYO, Centre for Genomics and Oncological Research, Pfizer University of Granada Andalusian Regional Government, PTS, 18016 Granada, Spain; (M.F.); (A.E.-B.); (A.G.-M.); (J.M.E.-S.)
- Sensorineural Pathology Programme, Centro de Investigación Biomédica en Red en Enfermedades Raras, CIBERER, 28029 Madrid, Spain
- Department of Otolaryngology, Instituto de Investigación Biosanitaria ibs.Granada, Hospital Universitario Virgen de las Nieves, Universidad de Granada, 18014 Granada, Spain
| | - Juan Manuel Espinosa-Sanchez
- Otology & Neurotology Group CTS495, Department of Genomic Medicine, GENYO, Centre for Genomics and Oncological Research, Pfizer University of Granada Andalusian Regional Government, PTS, 18016 Granada, Spain; (M.F.); (A.E.-B.); (A.G.-M.); (J.M.E.-S.)
- Sensorineural Pathology Programme, Centro de Investigación Biomédica en Red en Enfermedades Raras, CIBERER, 28029 Madrid, Spain
- Department of Otolaryngology, Instituto de Investigación Biosanitaria ibs.Granada, Hospital Universitario Virgen de las Nieves, Universidad de Granada, 18014 Granada, Spain
| | - Ismael Aran
- Department of Otolaryngology, Complexo Hospitalario de Pontevedra, 36071 Pontevedra, Spain;
| | - Andres Soto-Varela
- Division of Otoneurology, Department of Otorhinolaryngology, Complexo Hospitalario Universitario, 15706 Santiago de Compostela, Spain;
| | - Jose Antonio Lopez-Escamez
- Otology & Neurotology Group CTS495, Department of Genomic Medicine, GENYO, Centre for Genomics and Oncological Research, Pfizer University of Granada Andalusian Regional Government, PTS, 18016 Granada, Spain; (M.F.); (A.E.-B.); (A.G.-M.); (J.M.E.-S.)
- Sensorineural Pathology Programme, Centro de Investigación Biomédica en Red en Enfermedades Raras, CIBERER, 28029 Madrid, Spain
- Department of Otolaryngology, Instituto de Investigación Biosanitaria ibs.Granada, Hospital Universitario Virgen de las Nieves, Universidad de Granada, 18014 Granada, Spain
- Division of Otolaryngology, Department of Surgery, University of Granada, 18011 Granada, Spain
| |
Collapse
|
41
|
Qian SJ, Huang QR, Chen RY, Mo JJ, Zhou LY, Zhao Y, Li B, Lai HC. Single-Cell RNA Sequencing Identifies New Inflammation-Promoting Cell Subsets in Asian Patients With Chronic Periodontitis. Front Immunol 2021; 12:711337. [PMID: 34566966 PMCID: PMC8455889 DOI: 10.3389/fimmu.2021.711337] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 08/17/2021] [Indexed: 01/01/2023] Open
Abstract
Periodontitis is a highly prevalent chronic inflammatory disease leading to periodontal tissue breakdown and subsequent tooth loss, in which excessive host immune response accounts for most of the tissue damage and disease progression. Despite of the imperative need to develop host modulation therapy, the inflammatory responses and cell population dynamics which are finely tuned by the pathological microenvironment in periodontitis remained unclear. To investigate the local microenvironment of the inflammatory response in periodontitis, 10 periodontitis patients and 10 healthy volunteers were involved in this study. Single-cell transcriptomic profilings of gingival tissues from two patients and two healthy donors were performed. Histology, immunohistochemistry, and flow cytometry analysis were performed to further validate the identified cell subtypes and their involvement in periodontitis. Based on our single-cell resolution analysis, we identified HLA-DR-expressing endothelial cells and CXCL13+ fibroblasts which are highly associated with immune regulation. We also revealed the involvement of the proinflammatory NLRP3+ macrophages in periodontitis. We further showed the increased cell-cell communication between macrophage and T/B cells in the inflammatory periodontal tissues. Our data generated an intriguing catalog of cell types and interaction networks in the human gingiva and identified new inflammation-promoting cell subtypes involved in chronic periodontitis, which will be helpful in advancing host modulation therapy.
Collapse
Affiliation(s)
- Shu-jiao Qian
- Department of Oral and Maxillo-facial Dentistry, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- National Clinical Research Center for Oral Diseases, Shanghai, China
- Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai Jiao Tong University, Shanghai, China
| | - Qian-ru Huang
- Department of Immunology and Microbiology, Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Rui-ying Chen
- Department of Oral and Maxillo-facial Dentistry, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- National Clinical Research Center for Oral Diseases, Shanghai, China
- Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai Jiao Tong University, Shanghai, China
| | - Jia-ji Mo
- Department of Oral and Maxillo-facial Dentistry, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- National Clinical Research Center for Oral Diseases, Shanghai, China
- Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai Jiao Tong University, Shanghai, China
| | - Lin-yi Zhou
- Department of Oral and Maxillo-facial Dentistry, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- National Clinical Research Center for Oral Diseases, Shanghai, China
- Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai Jiao Tong University, Shanghai, China
| | - Yi Zhao
- Department of Immunology and Microbiology, Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bin Li
- Department of Immunology and Microbiology, Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Hong-chang Lai
- Department of Oral and Maxillo-facial Dentistry, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- National Clinical Research Center for Oral Diseases, Shanghai, China
- Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
42
|
Impact of interleukin-32 germ-line rs28372698 and intronic rs12934561 polymorphisms on cancer development: A systematic review and meta-analysis. Int Immunopharmacol 2021; 99:107964. [PMID: 34271417 DOI: 10.1016/j.intimp.2021.107964] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 05/21/2021] [Accepted: 07/05/2021] [Indexed: 11/24/2022]
Abstract
OBJECTIVE The pro-inflammatory cytokine IL-32 has high susceptibility to develop cancer. But no previous meta-analysis was done to provide firm evidence. This systematic review and meta-analysis was designed to evaluate the association of IL-32 gene polymorphisms (rs28372698 and rs12934561) with cancer. METHOD Eligible studies were selected using authentic databases searching from January 2013 to January 2021. Demographic data and genotypic information were extracted and organized from the selected studies. Review Manager (RevMan) version 5.4 was used to perform data analysis and data arrangement for meta-analysis. RESULTS A total of seven studies with 3395 patients and 3781 controls were included in this study. IL-32 rs28372698 polymorphism implied that mutant allele (TT) carriers had a significantly higher risk of cancer (OR = 1.43, p = 0.032). Codominant 3, recessive and allele models also showed 1.36-, 1.38- and 1.11-fold increased risk, respectively (p < 0.05). Besides, the Asian population showed a significantly increased risk in codominant 2 (OR = 1.74), codominant 3 (OR = 1.78), recessive (OR = 1.76) and allele model (OR = 1.16). IL-32 rs12934561 showed significantly reduced cancer risk in codominant 1 (OR = 0.66. p = 0.035), codominant 2 (OR = 0.76, p = 0.007), and dominant model (OR = 0.72, p = 0.012). After subgroup analysis, an association of rs12934561 was found in Asians (codominant 1: OR = 0.54, p = 7.28 × 10-8; codominant 2: OR = 1.40, p = 0.019; codominant 3: OR = 0.76, p = 0.0006; dominant model: OR = 0.64, p = 1.12 × 10-5; overdominant model: OR = 0.64, p = 3.92 × 10-7) but not in Caucasians. After stratifying with the control source, a significant (p < 0.05) association of rs28372698 and rs12934561 was found with cancer in population-based controls. No publication bias was found, and the outcome of this meta-analysis was not influenced by any individual study confirmed from sensitivity analysis. Moreover, trial sequential analysis (TSA) established a link between rs28372698 and rs12934561 polymorphisms and cancer. CONCLUSION The outcome of this meta-analysis revealed that IL-32 rs28372698 and rs12934561 polymorphisms are associated with cancer. Moreover, the Asian dynasty had a significant association compared to Caucasians.
Collapse
|
43
|
Olszańska J, Pietraszek-Gremplewicz K, Nowak D. Melanoma Progression under Obesity: Focus on Adipokines. Cancers (Basel) 2021; 13:cancers13092281. [PMID: 34068679 PMCID: PMC8126042 DOI: 10.3390/cancers13092281] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 05/01/2021] [Accepted: 05/05/2021] [Indexed: 12/16/2022] Open
Abstract
Simple Summary Obesity is a rapidly growing public health problem and the reason for numerous diseases in the human body, including cancer. This article reviews the current knowledge of the effect of molecules secreted by adipose tissue-adipokines on melanoma progression. We also discuss the role of these factors as markers of incidence, metastasis, and melanoma patient survival. Understanding the functions of adipokines will lead to knowledge of whether and how obesity promotes melanoma growth. Abstract Obesity is a growing problem in the world and is one of the risk factors of various cancers. Among these cancers is melanoma, which accounts for the majority of skin tumor deaths. Current studies are looking for a correlation between obesity and melanoma. They suspect that a potential cause of its development is connected to the biology of adipokines, active molecules secreted by adipose tissue. Under physiological conditions, adipokines control many processes, including lipid and glucose homeostasis, insulin sensitivity, angiogenesis, and inflammations. However, when there is an increased amount of fat in the body, their secretion is dysregulated. This article reviews the current knowledge of the effect of adipokines on melanoma growth. This work focuses on the molecular pathways by which adipose tissue secreted molecules modify the angiogenesis, migration, invasion, proliferation, and death of melanoma cells. We also discuss the role of these factors as markers of incidence, metastasis, and melanoma patient survival. Understanding the functions of adipokines will lead to knowledge of whether and how obesity promotes melanoma growth. Further studies may contribute to the innovations of therapies and the use of adipokines as predictive and/or prognostic biomarkers.
Collapse
|
44
|
Wu K, Zeng J, Shi X, Xie J, Li Y, Zheng H, Peng G, Zhu G, Tang D, Wu S. Targeting TIGIT Inhibits Bladder Cancer Metastasis Through Suppressing IL-32. Front Pharmacol 2021; 12:801493. [PMID: 35069212 PMCID: PMC8766971 DOI: 10.3389/fphar.2021.801493] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 11/24/2021] [Indexed: 02/05/2023] Open
Abstract
Bladder cancer is a highly metastatic tumor and one of the most common malignancies originating in the urinary tract. Despite the efficacy of immune checkpoints, including programmed cell death-1 (PD-1) and cytotoxic T-lymphocyte-associated protein 4 (CTLA-4), the effect of immunotherapy for bladder cancer remains unsatisfactory. Therefore, it is urgent to develop new targets to expand immunotherapeutic options. In this study, we utilized single-cell sequencing to explore the cell composition of tumors and detected a subset of Treg cells with high expression of T-cell immunoreceptor with immunoglobulin and immunoreceptor tyrosine-based inhibitory motif domain (TIGIT) and interleukin (IL)-32. The antitumor immune response was suppressed by this subset of Treg cells, while IL-32 promoted bladder cancer metastasis. Nevertheless, targeting TIGIT not only reversed immunosuppression by restoring the antitumor immune response mediated by T cells but also suppressed the secretion of IL-32 and inhibited the metastasis of bladder cancer cells. Thus, our study provided novel insights into immunosuppression in bladder cancer and highlighted TIGIT as a novel target for immunotherapy of bladder cancer. We also illustrated the mechanism of the dual effect of targeting TIGIT and revealed the metastasis-promoting effect of IL-32 in bladder cancer. Collectively, these findings raise the possibility of utilizing TIGIT as a target against bladder cancer from the bench to the bedside.
Collapse
Affiliation(s)
- Kang Wu
- Department of Urology, The Third Affiliated Hospital of Shenzhen University (Luohu Hospital Group), Shenzhen, China
- Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- Shenzhen Following Precision Medicine Research Institute, Shenzhen, China
| | - Jun Zeng
- Department of Genetics and Cell Biology, College of Life Sciences, Chongqing Normal University, Chongqing, China
| | - Xulian Shi
- Department of Urology, The Third Affiliated Hospital of Shenzhen University (Luohu Hospital Group), Shenzhen, China
- Shenzhen Following Precision Medicine Research Institute, Shenzhen, China
| | - Jiajia Xie
- Department of Urology, The Third Affiliated Hospital of Shenzhen University (Luohu Hospital Group), Shenzhen, China
- Shenzhen Following Precision Medicine Research Institute, Shenzhen, China
| | - Yuqing Li
- Department of Urology, The Third Affiliated Hospital of Shenzhen University (Luohu Hospital Group), Shenzhen, China
- Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- Shenzhen Following Precision Medicine Research Institute, Shenzhen, China
| | - Haoxiang Zheng
- Department of Urology, The Third Affiliated Hospital of Shenzhen University (Luohu Hospital Group), Shenzhen, China
- Shenzhen Following Precision Medicine Research Institute, Shenzhen, China
| | - Guoyu Peng
- Department of Urology, The Third Affiliated Hospital of Shenzhen University (Luohu Hospital Group), Shenzhen, China
- Shenzhen Following Precision Medicine Research Institute, Shenzhen, China
| | - Guanghui Zhu
- Department of Urology, The Third Affiliated Hospital of Shenzhen University (Luohu Hospital Group), Shenzhen, China
- Shenzhen Following Precision Medicine Research Institute, Shenzhen, China
| | - Dongdong Tang
- Department of Urology, The Third Affiliated Hospital of Shenzhen University (Luohu Hospital Group), Shenzhen, China
- Shenzhen Following Precision Medicine Research Institute, Shenzhen, China
| | - Song Wu
- Department of Urology, The Third Affiliated Hospital of Shenzhen University (Luohu Hospital Group), Shenzhen, China
- Medical Laboratory of Shenzhen Luohu People’s Hospital, Shenzhen, China
- Teaching Center of Shenzhen Luohu Hospital, Shantou University Medical College, Shantou, China
- Department of Urology and Guangdong Key Laboratory of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- *Correspondence: Song Wu,
| |
Collapse
|
45
|
Lara-Reyna S, Poulter JA, Vasconcelos EJR, Kacar M, McDermott MF, Tooze R, Doffinger R, Savic S. Identification of Critical Transcriptomic Signaling Pathways in Patients with H Syndrome and Rosai-Dorfman Disease. J Clin Immunol 2020; 41:441-457. [PMID: 33284430 PMCID: PMC7858559 DOI: 10.1007/s10875-020-00932-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 11/18/2020] [Indexed: 11/24/2022]
Abstract
Biallelic mutations in SLC29A3 cause histiocytosis-lymphadenopathy plus syndrome, also known as H syndrome (HS). HS is a complex disorder, with ~ 25% of patients developing autoinflammatory complications consisting of unexplained fevers, persistently elevated inflammatory markers, and unusual lymphadenopathies, with infiltrating CD68+, S100+, and CD1a- histiocytes, resembling the immunophenotype found in Rosai-Dorfman disease (RDD). We investigated the transcriptomic profiles of monocytes, non-activated (M0), classically activated (M1), and alternatively activated macrophages (M2) in two patients with HS, one without autoinflammatory (HS1) and one with autoinflammatory complications (HS2). RNA sequencing revealed a dysregulated transcriptomic profile in both HS patients compared to healthy controls (HC). HS2, when compared to HS1, had several differentially expressed genes, including genes associated with lymphocytic-histiocytic predominance (e.g. NINL) and chronic immune activation (e.g. B2M). The transcriptomic and cytokine profiles of HS patients were comparable to patients with SAID with high levels of TNF. SERPINA1 gene expression was found to be upregulated in all patients studied. Moreover, higher levels of IFNγ were found in the serum of both HS patients when compared to HC. Gene ontology (GO) enrichment analysis of the DEGs in HS patients revealed the terms "type I IFN," "IFNγ signaling pathway," and "immune responses" as the top 3 most significant terms for monocytes. Gene expression analysis of lymph node biopsies from sporadic and H syndrome-associated RDD suggests common underlying pathological process. In conclusion, monocytes and macrophages from both HS patients showed transcriptomic profiles similar to SAIDs and also uniquely upregulated IFNγ signature. These findings may help find better therapeutic options for this rare disorder.
Collapse
Affiliation(s)
- Samuel Lara-Reyna
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds, LS9 7TF, UK.,Leeds Institute of Medical Research, University of Leeds, Leeds, LS9 7TF, UK
| | - James A Poulter
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds, LS9 7TF, UK.,Leeds Institute of Medical Research, University of Leeds, Leeds, LS9 7TF, UK
| | | | - Mark Kacar
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds, LS9 7TF, UK.,Department of Clinical Immunology and Allergy, St James's University Hospital, Leeds, LS9 7TF, UK
| | - Michael F McDermott
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds, LS9 7TF, UK
| | - Reuben Tooze
- Section of Experimental Haematology, Leeds Institute of Cancer and Pathology, University of Leeds, Leeds, UK
| | - Rainer Doffinger
- Department of Clinical Biochemistry and Immunology, Addenbrooke's Hospital, Cambridge, CB2 2QQ, UK
| | - Sinisa Savic
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds, LS9 7TF, UK. .,Department of Clinical Immunology and Allergy, St James's University Hospital, Leeds, LS9 7TF, UK.
| |
Collapse
|