1
|
Fernández de Santaella J, Koch NG, Widmer L, Nash MA. Amber Codon Mutational Scanning and Bioorthogonal PEGylation for Epitope Mapping of Antibody Binding Sites on Human Arginase-1. ACS Chem Biol 2025; 20:791-801. [PMID: 40168364 DOI: 10.1021/acschembio.4c00692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2025]
Abstract
Epitope mapping is crucial for understanding immunological responses to protein therapeutics. Here, we combined genetic code expansion and bacterial surface display to incorporate S-allylcysteine (SAC) into human arginase-1 (hArg1) via Methanococcoides burtonii pyrrolysyl-tRNA synthetase. Using an amber codon deep mutational scanning and sequencing workflow, we mapped SAC incorporation efficiency across the hArg1 sequence, providing insights into structural and sequence dependencies of noncanonical amino acid incorporation. We used mutually bioorthogonal allyl/tetrazine and azide/DBCO chemistries to achieve site-specific PEGylation and fluorescent labeling of hArg1, revealing insights into SAC side chain reactivity and solvent accessibility of residues in hArg1. This system was further applied to determine the binding epitope of a monoclonal antibody on the surface of hArg1, providing high-resolution data on the impact of PEGylation residue position on antibody binding. Our method produces high dimensional data of noncanonical amino acid incorporation efficiency, site-specific functionalization enabled by mutually bioorthogonal chemistries, and epitope mapping of therapeutic proteins.
Collapse
Affiliation(s)
- Jaime Fernández de Santaella
- Institute of Physical Chemistry, Department of Chemistry, University of Basel, 4058 Basel, Switzerland
- Department of Biosystems Science and Engineering, ETH Zurich, 4056 Basel, Switzerland
- National Center for Competence in Research (NCCR), Molecular Systems Engineering, 4058 Basel, Switzerland
| | - Nikolaj G Koch
- Institute of Physical Chemistry, Department of Chemistry, University of Basel, 4058 Basel, Switzerland
- Department of Biosystems Science and Engineering, ETH Zurich, 4056 Basel, Switzerland
| | - Lorenz Widmer
- Institute of Physical Chemistry, Department of Chemistry, University of Basel, 4058 Basel, Switzerland
- Department of Biosystems Science and Engineering, ETH Zurich, 4056 Basel, Switzerland
| | - Michael A Nash
- Institute of Physical Chemistry, Department of Chemistry, University of Basel, 4058 Basel, Switzerland
- Department of Biosystems Science and Engineering, ETH Zurich, 4056 Basel, Switzerland
- National Center for Competence in Research (NCCR), Molecular Systems Engineering, 4058 Basel, Switzerland
- Swiss Nanoscience Institute, 4056 Basel, Switzerland
| |
Collapse
|
2
|
Matsumoto K, Harada SY, Yoshida SY, Narumi R, Mitani TT, Yada S, Sato A, Morii E, Shimizu Y, Ueda HR. DECODE enables high-throughput mapping of antibody epitopes at single amino acid resolution. PLoS Biol 2025; 23:e3002707. [PMID: 39847587 PMCID: PMC11756784 DOI: 10.1371/journal.pbio.3002707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Accepted: 12/06/2024] [Indexed: 01/25/2025] Open
Abstract
Antibodies are extensively used in biomedical research, clinical fields, and disease treatment. However, to enhance the reproducibility and reliability of antibody-based experiments, it is crucial to have a detailed understanding of the antibody's target specificity and epitope. In this study, we developed a high-throughput and precise epitope analysis method, DECODE (Decoding Epitope Composition by Optimized-mRNA-display, Data analysis, and Expression sequencing). This method allowed identifying patterns of epitopes recognized by monoclonal or polyclonal antibodies at single amino acid resolution and predicted cross-reactivity against the entire protein database. By applying the obtained epitope information, it has become possible to develop a new 3D immunostaining method that increases the penetration of antibodies deep into tissues. Furthermore, to demonstrate the applicability of DECODE to more complex blood antibodies, we performed epitope analysis using serum antibodies from mice with experimental autoimmune encephalomyelitis (EAE). As a result, we were able to successfully identify an epitope that matched the sequence of the peptide inducing the disease model without relying on existing antigen information. These results demonstrate that DECODE can provide high-quality epitope information, improve the reproducibility of antibody-dependent experiments, diagnostics and therapeutics, and contribute to discover pathogenic epitopes from antibodies in the blood.
Collapse
Affiliation(s)
- Katsuhiko Matsumoto
- Laboratory for Synthetic Biology, RIKEN Center for Biosystems Dynamics Research, Osaka, Japan
- Department of Systems Pharmacology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Shoko Y. Harada
- Laboratory for Synthetic Biology, RIKEN Center for Biosystems Dynamics Research, Osaka, Japan
| | - Shota Y. Yoshida
- Laboratory for Synthetic Biology, RIKEN Center for Biosystems Dynamics Research, Osaka, Japan
- Department of Pathology, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Ryohei Narumi
- Laboratory for Synthetic Biology, RIKEN Center for Biosystems Dynamics Research, Osaka, Japan
| | - Tomoki T. Mitani
- Laboratory for Synthetic Biology, RIKEN Center for Biosystems Dynamics Research, Osaka, Japan
- Department of Systems Biology, Graduate school of Medicine, Osaka University, Osaka, Japan
- Department of Neurology, Graduate school of Medicine, Osaka University, Osaka, Japan
| | - Saori Yada
- Department of Systems Pharmacology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Aya Sato
- Laboratory for Cell-Free Protein Synthesis, RIKEN Center for Biosystems Dynamics Research, Osaka, Japan
| | - Eiichi Morii
- Department of Pathology, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Yoshihiro Shimizu
- Laboratory for Cell-Free Protein Synthesis, RIKEN Center for Biosystems Dynamics Research, Osaka, Japan
| | - Hiroki R. Ueda
- Laboratory for Synthetic Biology, RIKEN Center for Biosystems Dynamics Research, Osaka, Japan
- Department of Systems Pharmacology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- Department of Pathology, Graduate School of Medicine, Osaka University, Osaka, Japan
- Institute of Life Science, Kurume University, Kurume, Japan
| |
Collapse
|
3
|
Coutinho AL, Hom K, Polli JE. Prediction of Successful Amorphous Solid Dispersion Pairs through Liquid State Nuclear Magnetic Resonance. Mol Pharm 2024; 21:6153-6165. [PMID: 39482969 PMCID: PMC11615941 DOI: 10.1021/acs.molpharmaceut.4c00359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 10/16/2024] [Accepted: 10/17/2024] [Indexed: 11/03/2024]
Abstract
Amorphous solid dispersions (ASDs) function in part via a "parachute effect", i.e., polymer-enabled prolonged drug supersaturation, presumably through drug-polymer interactions in the liquid state. We aim to expand the utility of liquid state nuclear magnetic resonance (1HNMR) to streamline polymer selection for ASDs. Our hypothesis is that strong molecular interactions between polymer and drug in 1HNMR anticipate reduced precipitation kinetics in supersaturation studies. For three drug-polymer pairs (i.e., etravirine with each HPMC, HPMCAS-M, and PVP-VA), 1HNMR findings were compared to more common supersaturation studies. Drug-polymer interactions were assessed by saturation transfer difference NMR (STD-NMR) and T1 relaxation time. 2D-1H NOESY experiments were also performed. Supersaturation studies involved precipitation inhibition using the solvent-shift methodology. The results from STD-NMR and T1 relaxation time indicate etravirine bound preferably to HPMCAS-M > HPMC ≫ PVP-VA. STD-NMR and T1 relaxation time yielded insight into which fragments of etravirine structure bind with HPMCAS-M and HPMC. The strong interactions from STD-NMR and T1 relaxation time changes indicated that HPMCAS-M and HPMC, but not PVP-VA, are suitable polymers to maintain etravirine supersaturation and inhibit drug precipitation. 2D-1H NOESY results corroborate the findings of STD-NMR and T1 relaxation time, showing that etravirine interacts preferably to HPMCAS-M than to PVP-VA. Supersaturation studies using solvent-shift technique corroborated our hypothesis as predissolved HPMCAS-M and HPMC, but to a less extent PVP-VA, markedly promoted etravirine supersaturation and inhibited drug precipitation. Supersaturation studies agreed with STD-NMR and T1 relaxation time predictions, as HPMC and HPMCAS-M maintained etravirine in solution for longer time than PVP-VA. The results show promise of 1HNMR to streamline polymer selection in a nondestructive and resource sparing fashion for subsequent ASD development.
Collapse
Affiliation(s)
- Ana L. Coutinho
- Department of Pharmaceutical
Sciences, University of Maryland School
of Pharmacy, Baltimore, Maryland 21201, United States
| | - Kellie Hom
- Department of Pharmaceutical
Sciences, University of Maryland School
of Pharmacy, Baltimore, Maryland 21201, United States
| | - James E. Polli
- Department of Pharmaceutical
Sciences, University of Maryland School
of Pharmacy, Baltimore, Maryland 21201, United States
| |
Collapse
|
4
|
Gomes DEB, Yang B, Vanella R, Nash MA, Bernardi RC. Integrating Dynamic Network Analysis with AI for Enhanced Epitope Prediction in PD-L1:Affibody Interactions. J Am Chem Soc 2024; 146:23842-23853. [PMID: 39146039 DOI: 10.1021/jacs.4c05869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
Understanding binding epitopes involved in protein-protein interactions and accurately determining their structure are long-standing goals with broad applicability in industry and biomedicine. Although various experimental methods for binding epitope determination exist, these approaches are typically low throughput and cost-intensive. Computational methods have potential to accelerate epitope predictions; however, recently developed artificial intelligence (AI)-based methods frequently fail to predict epitopes of synthetic binding domains with few natural homologues. Here we have developed an integrated method employing generalized-correlation-based dynamic network analysis on multiple molecular dynamics (MD) trajectories, initiated from AlphaFold2Multimer structures, to unravel the structure and binding epitope of the therapeutic PD-L1:Affibody complex. Both AlphaFold2 and conventional molecular dynamics trajectory analysis were ineffective in distinguishing between two proposed binding models, parallel and perpendicular. However, our integrated approach, utilizing dynamic network analysis, demonstrated that the perpendicular mode was significantly more stable. These predictions were validated using a suite of experimental epitope mapping protocols, including cross-linking mass spectrometry and next-generation sequencing-based deep mutational scanning. Conversely, AlphaFold3 failed to predict a structure bound in the perpendicular pose, highlighting the necessity for exploratory research in the search for binding epitopes and challenging the notion that AI-generated protein structures can be accepted without scrutiny. Our research underscores the potential of employing dynamic network analysis to enhance AI-based structure predictions for more accurate identification of protein-protein interaction interfaces.
Collapse
Affiliation(s)
- Diego E B Gomes
- Department of Physics, Auburn University, Auburn, Alabama 36849, United States
| | - Byeongseon Yang
- Institute of Physical Chemistry, Department of Chemistry, University of Basel, Basel 4058, Switzerland
- Department of Biosystems Science and Engineering, ETH Zurich, Basel 4058, Switzerland
| | - Rosario Vanella
- Institute of Physical Chemistry, Department of Chemistry, University of Basel, Basel 4058, Switzerland
- Department of Biosystems Science and Engineering, ETH Zurich, Basel 4058, Switzerland
| | - Michael A Nash
- Institute of Physical Chemistry, Department of Chemistry, University of Basel, Basel 4058, Switzerland
- Department of Biosystems Science and Engineering, ETH Zurich, Basel 4058, Switzerland
| | - Rafael C Bernardi
- Department of Physics, Auburn University, Auburn, Alabama 36849, United States
| |
Collapse
|
5
|
Cervantes Rincón T, Kapoor T, Keeffe JR, Simonelli L, Hoffmann HH, Agudelo M, Jurado A, Peace A, Lee YE, Gazumyan A, Guidetti F, Cantergiani J, Cena B, Bianchini F, Tamagnini E, Moro SG, Svoboda P, Costa F, Reis MG, Ko AI, Fallon BA, Avila-Rios S, Reyes-Téran G, Rice CM, Nussenzweig MC, Bjorkman PJ, Ruzek D, Varani L, MacDonald MR, Robbiani DF. Human antibodies in Mexico and Brazil neutralizing tick-borne flaviviruses. Cell Rep 2024; 43:114298. [PMID: 38819991 PMCID: PMC11832053 DOI: 10.1016/j.celrep.2024.114298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 04/11/2024] [Accepted: 05/14/2024] [Indexed: 06/02/2024] Open
Abstract
Flaviviruses such as dengue virus (DENV), Zika virus (ZIKV), and yellow fever virus (YFV) are spread by mosquitoes and cause human disease and mortality in tropical areas. In contrast, Powassan virus (POWV), which causes severe neurologic illness, is a flavivirus transmitted by ticks in temperate regions of the Northern hemisphere. We find serologic neutralizing activity against POWV in individuals living in Mexico and Brazil. Monoclonal antibodies P002 and P003, which were derived from a resident of Mexico (where POWV is not reported), neutralize POWV lineage I by recognizing an epitope on the virus envelope domain III (EDIII) that is shared with a broad range of tick- and mosquito-borne flaviviruses. Our findings raise the possibility that POWV, or a flavivirus closely related to it, infects humans in the tropics.
Collapse
Affiliation(s)
- Tomás Cervantes Rincón
- Institute for Research in Biomedicine, Università della Svizzera italiana, 6500 Bellinzona, Switzerland
| | - Tania Kapoor
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA
| | - Jennifer R Keeffe
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Luca Simonelli
- Institute for Research in Biomedicine, Università della Svizzera italiana, 6500 Bellinzona, Switzerland
| | - Hans-Heinrich Hoffmann
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY 10065, USA
| | - Marianna Agudelo
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA
| | - Andrea Jurado
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY 10065, USA
| | - Avery Peace
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY 10065, USA
| | - Yu E Lee
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Anna Gazumyan
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA
| | - Francesca Guidetti
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA
| | - Jasmine Cantergiani
- Institute for Research in Biomedicine, Università della Svizzera italiana, 6500 Bellinzona, Switzerland
| | - Benedetta Cena
- Institute for Research in Biomedicine, Università della Svizzera italiana, 6500 Bellinzona, Switzerland
| | - Filippo Bianchini
- Institute for Research in Biomedicine, Università della Svizzera italiana, 6500 Bellinzona, Switzerland
| | - Elia Tamagnini
- Institute for Research in Biomedicine, Università della Svizzera italiana, 6500 Bellinzona, Switzerland
| | - Simone G Moro
- Institute for Research in Biomedicine, Università della Svizzera italiana, 6500 Bellinzona, Switzerland
| | - Pavel Svoboda
- Veterinary Research Institute, Brno, Czech Republic; Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Ceske Budejovice, Czech Republic; Institute of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic; Department of Pharmacology and Pharmacy, Faculty of Veterinary Medicine, University of Veterinary Sciences, Brno, Czech Republic
| | - Federico Costa
- Institute of Collective Health, Federal University of Bahia, Salvador, BA 40025, Brazil; Gonçalo Moniz Institute, Oswaldo Cruz Foundation, Ministry of Health, Salvador, BA 40296, Brazil; Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT 06511, USA
| | - Mitermayer G Reis
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation, Ministry of Health, Salvador, BA 40296, Brazil; Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT 06511, USA; Faculty of Medicine of Bahia, Federal University of Bahia, Salvador 40025, Brazil
| | - Albert I Ko
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation, Ministry of Health, Salvador, BA 40296, Brazil; Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT 06511, USA
| | - Brian A Fallon
- Department of Psychiatry, Columbia University, and New York State Psychiatric Institute, New York, NY 10027, USA
| | | | - Gustavo Reyes-Téran
- National Institute of Respiratory Diseases, Mexico City, CP 14080, Mexico; Coordination of the National Institutes of Health and High Specialty Hospitals, Ministry of Health, Mexico City, CP 14610, Mexico
| | - Charles M Rice
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY 10065, USA
| | - Michel C Nussenzweig
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA; Howard Hughes Medical Institute, The Rockefeller University, New York, NY 10065, USA
| | - Pamela J Bjorkman
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Daniel Ruzek
- Veterinary Research Institute, Brno, Czech Republic; Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Ceske Budejovice, Czech Republic; Institute of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Luca Varani
- Institute for Research in Biomedicine, Università della Svizzera italiana, 6500 Bellinzona, Switzerland
| | - Margaret R MacDonald
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY 10065, USA.
| | - Davide F Robbiani
- Institute for Research in Biomedicine, Università della Svizzera italiana, 6500 Bellinzona, Switzerland.
| |
Collapse
|
6
|
Lin N, Miyamoto K, Ogawara T, Sakurai S, Kizaka-Kondoh S, Kadonosono T. Epitope binning for multiple antibodies simultaneously using mammalian cell display and DNA sequencing. Commun Biol 2024; 7:652. [PMID: 38806676 PMCID: PMC11133372 DOI: 10.1038/s42003-024-06363-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 05/21/2024] [Indexed: 05/30/2024] Open
Abstract
Epitope binning, an approach for grouping antibodies based on epitope similarities, is a critical step in antibody drug discovery. However, conventional methods are complex, involving individual antibody production. Here, we established Epitope Binning-seq, an epitope binning platform for simultaneously analyzing multiple antibodies. In this system, epitope similarity between the query antibodies (qAbs) displayed on antigen-expressing cells and a fluorescently labeled reference antibody (rAb) targeting a desired epitope is analyzed by flow cytometry. The qAbs with epitope similar to the rAb can be identified by next-generation sequencing analysis of fluorescence-negative cells. Sensitivity and reliability of this system are confirmed using rAbs, pertuzumab and trastuzumab, which target human epidermal growth factor receptor 2. Epitope Binning-seq enables simultaneous epitope evaluation of 14 qAbs at various abundances in libraries, grouping them into respective epitope bins. This versatile platform is applicable to diverse antibodies and antigens, potentially expediting the identification of clinically useful antibodies.
Collapse
Affiliation(s)
- Ning Lin
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, 226-8501, Japan
| | - Kotaro Miyamoto
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, 226-8501, Japan
| | - Takumi Ogawara
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, 226-8501, Japan
| | - Saki Sakurai
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, 226-8501, Japan
| | - Shinae Kizaka-Kondoh
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, 226-8501, Japan
| | - Tetsuya Kadonosono
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, 226-8501, Japan.
| |
Collapse
|
7
|
Fojtík L, Kalaninová Z, Fiala J, Halada P, Chmelík J, Man P, Kukačka Z, Novák P. Structural Characterization of Monoclonal Antibodies and Epitope Mapping by FFAP Footprinting. Anal Chem 2024; 96:7386-7393. [PMID: 38698660 PMCID: PMC11099888 DOI: 10.1021/acs.analchem.3c04161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 04/22/2024] [Accepted: 04/23/2024] [Indexed: 05/05/2024]
Abstract
Covalent labeling in combination with mass spectrometry is a powerful approach used in structural biology to study protein structures, interactions, and dynamics. Recently, the toolbox of covalent labeling techniques has been expanded with fast fluoroalkylation of proteins (FFAP). FFAP is a novel radical labeling method that utilizes fluoroalkyl radicals generated from hypervalent Togni reagents for targeting aromatic residues. This report further demonstrates the benefits of FFAP as a new method for structural characterization of therapeutic antibodies and interaction interfaces of antigen-antibody complexes. The results obtained from human trastuzumab and its complex with human epidermal growth factor receptor 2 (HER2) correlate well with previously published structural data and demonstrate the potential of FFAP in structural biology.
Collapse
Affiliation(s)
- Lukáš Fojtík
- Institute
of Microbiology of the Czech Academy of Sciences, Prague 142 20, Czech Republic
- Faculty
of Science, Charles University in Prague, Prague 128 00, Czech Republic
| | - Zuzana Kalaninová
- Institute
of Microbiology of the Czech Academy of Sciences, Prague 142 20, Czech Republic
- Faculty
of Science, Charles University in Prague, Prague 128 00, Czech Republic
| | - Jan Fiala
- Institute
of Microbiology of the Czech Academy of Sciences, Prague 142 20, Czech Republic
| | - Petr Halada
- Institute
of Microbiology of the Czech Academy of Sciences, Prague 142 20, Czech Republic
| | - Josef Chmelík
- Institute
of Microbiology of the Czech Academy of Sciences, Prague 142 20, Czech Republic
| | - Petr Man
- Institute
of Microbiology of the Czech Academy of Sciences, Prague 142 20, Czech Republic
| | - Zdeněk Kukačka
- Institute
of Microbiology of the Czech Academy of Sciences, Prague 142 20, Czech Republic
| | - Petr Novák
- Institute
of Microbiology of the Czech Academy of Sciences, Prague 142 20, Czech Republic
- Faculty
of Science, Charles University in Prague, Prague 128 00, Czech Republic
| |
Collapse
|
8
|
Adhikari J, Heffernan J, Edeling M, Fernandez E, Jethva PN, Diamond MS, Fremont DH, Gross ML. Epitope Mapping of Japanese Encephalitis Virus Neutralizing Antibodies by Native Mass Spectrometry and Hydrogen/Deuterium Exchange. Biomolecules 2024; 14:374. [PMID: 38540792 PMCID: PMC10967844 DOI: 10.3390/biom14030374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 03/12/2024] [Accepted: 03/14/2024] [Indexed: 06/27/2024] Open
Abstract
Japanese encephalitis virus (JEV) remains a global public health concern due to its epidemiological distribution and the existence of multiple strains. Neutralizing antibodies against this infection have shown efficacy in in vivo studies. Thus, elucidation of the epitopes of neutralizing antibodies can aid in the design and development of effective vaccines against different strains of JEV. Here, we describe a combination of native mass spectrometry (native-MS) and hydrogen/deuterium exchange mass spectrometry (HDX-MS) to complete screening of eight mouse monoclonal antibodies (MAbs) against JEV E-DIII to identify epitope regions. Native-MS was used as a first pass to identify the antibodies that formed a complex with the target antigen, and it revealed that seven of the eight monoclonal antibodies underwent binding. Native mass spectra of a MAb (JEV-27) known to be non-binding showed broad native-MS peaks and poor signal, suggesting the protein is a mixture or that there are impurities in the sample. We followed native-MS with HDX-MS to locate the binding sites for several of the complex-forming antibodies. This combination of two mass spectrometry-based approaches should be generally applicable and particularly suitable for screening of antigen-antibody and other protein-protein interactions when other traditional approaches give unclear results or are difficult, unavailable, or need to be validated.
Collapse
Affiliation(s)
- Jagat Adhikari
- Department of Chemistry, Washington University in St. Louis, Saint Louis, MO 63130, USA; (J.A.); (P.N.J.)
| | - James Heffernan
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO 63130, USA; (J.H.); (M.E.); (E.F.); (M.S.D.); (D.H.F.)
| | - Melissa Edeling
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO 63130, USA; (J.H.); (M.E.); (E.F.); (M.S.D.); (D.H.F.)
| | - Estefania Fernandez
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO 63130, USA; (J.H.); (M.E.); (E.F.); (M.S.D.); (D.H.F.)
| | - Prashant N. Jethva
- Department of Chemistry, Washington University in St. Louis, Saint Louis, MO 63130, USA; (J.A.); (P.N.J.)
| | - Michael S. Diamond
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO 63130, USA; (J.H.); (M.E.); (E.F.); (M.S.D.); (D.H.F.)
- Department of Medicine, Washington University School of Medicine, Saint Louis, MO 63130, USA
- Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, Saint Louis, MO 63130, USA
- Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, MO 63130, USA
| | - Daved H. Fremont
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO 63130, USA; (J.H.); (M.E.); (E.F.); (M.S.D.); (D.H.F.)
- Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, MO 63130, USA
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, Saint Louis, MO 63130, USA
| | - Michael L. Gross
- Department of Chemistry, Washington University in St. Louis, Saint Louis, MO 63130, USA; (J.A.); (P.N.J.)
| |
Collapse
|
9
|
Gomes DEB, Yang B, Vanella R, Nash MA, Bernardi RC. Integrating Dynamic Network Analysis with AI for Enhanced Epitope Prediction in PD-L1:Affibody Interactions. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.08.579577. [PMID: 38370725 PMCID: PMC10871313 DOI: 10.1101/2024.02.08.579577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
Understanding binding epitopes involved in protein-protein interactions and accurately determining their structure is a long standing goal with broad applicability in industry and biomedicine. Although various experimental methods for binding epitope determination exist, these approaches are typically low throughput and cost intensive. Computational methods have potential to accelerate epitope predictions, however, recently developed artificial intelligence (AI)-based methods frequently fail to predict epitopes of synthetic binding domains with few natural homologs. Here we have developed an integrated method employing generalized-correlation-based dynamic network analysis on multiple molecular dynamics (MD) trajectories, initiated from AlphaFold2 Multimer structures, to unravel the structure and binding epitope of the therapeutic PD-L1:Affibody complex. Both AlphaFold2 and conventional molecular dynamics trajectory analysis alone each proved ineffectual in differentiating between two putative binding models referred to as parallel and perpendicular. However, our integrated approach based on dynamic network analysis showed that the perpendicular mode was significantly more stable. These predictions were validated using a suite of experimental epitope mapping protocols including cross linking mass spectrometry and next-generation sequencing-based deep mutational scanning. Our research highlights the potential of deploying dynamic network analysis to refine AI-based structure predictions for precise predictions of protein-protein interaction interfaces.
Collapse
|
10
|
Röwer C, Olaleye OO, Bischoff R, Glocker MO. Mass Spectrometric ITEM-ONE and ITEM-TWO Analyses Confirm and Refine an Assembled Epitope of an Anti-Pertuzumab Affimer. Biomolecules 2023; 14:24. [PMID: 38254624 PMCID: PMC10813730 DOI: 10.3390/biom14010024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 12/13/2023] [Accepted: 12/21/2023] [Indexed: 01/24/2024] Open
Abstract
Intact Transition Epitope Mapping-One-step Non-covalent force Exploitation (ITEM-ONE) analysis reveals an assembled epitope on the surface of Pertuzumab, which is recognized by the anti-Pertuzumab affimer 00557_709097. It encompasses amino acid residues NSGGSIYNQRFKGR, which are part of CDR2, as well as residues FTLSVDR, which are located on the variable region of Pertuzumab's heavy chain and together form a surface area of 1381.46 Å2. Despite not being part of Pertuzumab's CDR2, the partial sequence FTLSVDR marks a unique proteotypic Pertuzumab peptide. Binding between intact Pertuzumab and the anti-Pertuzumab affimer was further investigated using the Intact Transition Epitope Mapping-Thermodynamic Weak-force Order (ITEM-TWO) approach. Quantitative analysis of the complex dissociation reaction in the gas phase afforded a quasi-equilibrium constant (KD m0g#) of 3.07 × 10-12. The experimentally determined apparent enthalpy (ΔHm0g#) and apparent free energy (ΔGm0g#) of the complex dissociation reaction indicate that the opposite reaction-complex formation-is spontaneous at room temperature. Due to strong binding to Pertuzumab and because of recognizing Pertuzumab's unique partial amino acid sequences, the anti-Pertuzumab affimer 00557_709097 is considered excellently suitable for implementation in Pertuzumab quantitation assays as well as for the accurate therapeutic drug monitoring of Pertuzumab in biological fluids.
Collapse
Affiliation(s)
- Claudia Röwer
- Proteome Center Rostock, Medical Faculty and Natural Science Faculty, University of Rostock, 18057 Rostock, Germany
| | - Oladapo O. Olaleye
- Department of Analytical Biochemistry, Faculty of Science & Engineering, University of Groningen, 9713 AV Groningen, The Netherlands
| | - Rainer Bischoff
- Department of Analytical Biochemistry, Faculty of Science & Engineering, University of Groningen, 9713 AV Groningen, The Netherlands
| | - Michael O. Glocker
- Proteome Center Rostock, Medical Faculty and Natural Science Faculty, University of Rostock, 18057 Rostock, Germany
| |
Collapse
|
11
|
Mashhadi IS, Safarnejad MR, Shahmirzaie M, Aliahmadi A, Ghassempour A, Aboul-Enein HY. Determination of the epitopic peptides of fig mosaic virus and the single-chain variable fragment antibody by mass spectrometry. Anal Biochem 2023; 681:115319. [PMID: 37716512 DOI: 10.1016/j.ab.2023.115319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 09/08/2023] [Accepted: 09/10/2023] [Indexed: 09/18/2023]
Abstract
The study of antibody-antigen interactions, through epitope mapping, enhances our understanding of antibody neutralization and antigenic determinant recognition. Epitope mapping, employing monoclonal antibodies and mass spectrometry, has emerged as a rapid and precise method to investigate viral antigenic determinants. In this report, we propose an approach to improve the accuracy of epitopic peptide interaction rate recognition. To achieve this, we investigated the interaction between the nucleocapsid protein of fig mosaic virus (FMV-NP) and single-chain variable fragment antibodies (scFv-Ab). These scFv-Ab maintain high specificity similar to whole monoclonal antibodies, but they are smaller in size. We coupled this with matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS). The experimental design involved using two different enzymes to digest FMV-NP separately. The resulting peptides were then incubated separately with the desired scFv-Ab at different incubation times and antibody concentrations. This allowed us to monitor the relative rate of epitopic peptide interaction with the antibody. The results demonstrated that, at a 1:1 ratio and after 2 h of interaction, the residues 122-136, 148-157, and 265-276 exhibited high-rate epitopic peptide binding, with reductions in peak intensity of 78%, 21%, and 22%, respectively. Conversely, the residues 250-264 showed low-rate binding, with a 15% reduction in peak intensity. This epitope mapping approach, utilizing scFv-Ab, two different enzymes, and various incubation times, offers a precise and dependable analysis for monitoring and recognizing the binding kinetics of antigenic determinants. Furthermore, this method can be applied to study any kind of antigens.
Collapse
Affiliation(s)
- Ilnaz Soleimani Mashhadi
- Department of Phytochemistry, Medicinal Plants and Drugs Research Institute, Shahid Beheshti University, G.C., Evin, Tehran, Iran
| | - Mohammad Reza Safarnejad
- Iranian Research Institute of Plant Protection, Agricultural Research, Education and Extension Organization (AREEO), Tehran, Iran
| | - Morteza Shahmirzaie
- Pharmaceutical Sciences Research Center, Shahid Beheshti University of Medical Sciences, Niayesh Highway, Valiasr Ave, Tehran, Iran
| | - Atousa Aliahmadi
- Department of Biology, Medicinal Plants and Drugs Research Institute, Shahid Beheshti University, Tehran, Iran
| | - Alireza Ghassempour
- Department of Phytochemistry, Medicinal Plants and Drugs Research Institute, Shahid Beheshti University, G.C., Evin, Tehran, Iran.
| | - Hassan Y Aboul-Enein
- Pharmaceutical and Medicinal Chemistry Department, Pharmaceutical and Drug Industries Research Division, National Research Centre, Dokki, Giza, 12622, Egypt.
| |
Collapse
|
12
|
Fernández-Quintero ML, Pomarici ND, Fischer ALM, Hoerschinger VJ, Kroell KB, Riccabona JR, Kamenik AS, Loeffler JR, Ferguson JA, Perrett HR, Liedl KR, Han J, Ward AB. Structure and Dynamics Guiding Design of Antibody Therapeutics and Vaccines. Antibodies (Basel) 2023; 12:67. [PMID: 37873864 PMCID: PMC10594513 DOI: 10.3390/antib12040067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/10/2023] [Accepted: 10/13/2023] [Indexed: 10/25/2023] Open
Abstract
Antibodies and other new antibody-like formats have emerged as one of the most rapidly growing classes of biotherapeutic proteins. Understanding the structural features that drive antibody function and, consequently, their molecular recognition is critical for engineering antibodies. Here, we present the structural architecture of conventional IgG antibodies alongside other formats. We emphasize the importance of considering antibodies as conformational ensembles in solution instead of focusing on single-static structures because their functions and properties are strongly governed by their dynamic nature. Thus, in this review, we provide an overview of the unique structural and dynamic characteristics of antibodies with respect to their antigen recognition, biophysical properties, and effector functions. We highlight the numerous technical advances in antibody structure prediction and design, enabled by the vast number of experimentally determined high-quality structures recorded with cryo-EM, NMR, and X-ray crystallography. Lastly, we assess antibody and vaccine design strategies in the context of structure and dynamics.
Collapse
Affiliation(s)
- Monica L. Fernández-Quintero
- Institute of General, Inorganic and Theoretical Chemistry, University of Innsbruck, Innrain 80/82, A-6020 Innsbruck, Austria
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Nancy D. Pomarici
- Institute of General, Inorganic and Theoretical Chemistry, University of Innsbruck, Innrain 80/82, A-6020 Innsbruck, Austria
| | - Anna-Lena M. Fischer
- Institute of General, Inorganic and Theoretical Chemistry, University of Innsbruck, Innrain 80/82, A-6020 Innsbruck, Austria
| | - Valentin J. Hoerschinger
- Institute of General, Inorganic and Theoretical Chemistry, University of Innsbruck, Innrain 80/82, A-6020 Innsbruck, Austria
| | - Katharina B. Kroell
- Institute of General, Inorganic and Theoretical Chemistry, University of Innsbruck, Innrain 80/82, A-6020 Innsbruck, Austria
| | - Jakob R. Riccabona
- Institute of General, Inorganic and Theoretical Chemistry, University of Innsbruck, Innrain 80/82, A-6020 Innsbruck, Austria
| | - Anna S. Kamenik
- Institute of General, Inorganic and Theoretical Chemistry, University of Innsbruck, Innrain 80/82, A-6020 Innsbruck, Austria
| | - Johannes R. Loeffler
- Institute of General, Inorganic and Theoretical Chemistry, University of Innsbruck, Innrain 80/82, A-6020 Innsbruck, Austria
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - James A. Ferguson
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Hailee R. Perrett
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Klaus R. Liedl
- Institute of General, Inorganic and Theoretical Chemistry, University of Innsbruck, Innrain 80/82, A-6020 Innsbruck, Austria
| | - Julianna Han
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Andrew B. Ward
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| |
Collapse
|
13
|
Rampuria P, Mosyak L, Root AR, Svenson K, Agostino MJ, LaVallie ER. Molecular insights into recognition of GUCY2C by T-cell engaging bispecific antibody anti-GUCY2CxCD3. Sci Rep 2023; 13:13408. [PMID: 37591971 PMCID: PMC10435522 DOI: 10.1038/s41598-023-40467-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 08/10/2023] [Indexed: 08/19/2023] Open
Abstract
The intestinal epithelial receptor Guanylyl Cyclase C (GUCY2C) is a tumor-associated cell surface antigen expressed across gastrointestinal malignancies that can serve as an efficacious target for colorectal cancer immunotherapy. Here, we describe a yeast surface-display approach combined with an orthogonal peptide-based mapping strategy to identify the GUCY2C binding epitope of a novel anti-GUCY2CxCD3 bispecific antibody (BsAb) that recently advanced into the clinic for the treatment of cancer. The target epitope was localized to the N-terminal helix H2 of human GUCY2C, which enabled the determination of the crystal structure of the minimal GUCY2C epitope in complex with the anti-GUCY2C antibody domain. To understand if this minimal epitope covers the entire antibody binding region and to investigate the impact of epitope position on the antibody's activity, we further determined the structure of this interaction in the context of the full-length extracellular domain (ECD) of GUCY2C. We found that this epitope is positioned on the protruding membrane-distal helical region of GUCY2C and that its specific location on the surface of GUCY2C dictates the close spatial proximity of the two antigen arms in a diabody arrangement essential to the tumor killing activity of GUCY2CxCD3 BsAb.
Collapse
Affiliation(s)
- Pragya Rampuria
- Biomedicine Design, Pfizer Inc., 610 Main St., Cambridge, MA, 02139, USA.
| | - Lidia Mosyak
- Biomedicine Design, Pfizer Inc., 610 Main St., Cambridge, MA, 02139, USA.
| | - Adam R Root
- Generate Biomedicines Inc, Cambridge, MA, USA
| | - Kristine Svenson
- Biomedicine Design, Pfizer Inc., 610 Main St., Cambridge, MA, 02139, USA
| | | | - Edward R LaVallie
- Biomedicine Design, Pfizer Inc., 610 Main St., Cambridge, MA, 02139, USA
| |
Collapse
|
14
|
Palma M. Epitopes and Mimotopes Identification Using Phage Display for Vaccine Development against Infectious Pathogens. Vaccines (Basel) 2023; 11:1176. [PMID: 37514992 PMCID: PMC10384025 DOI: 10.3390/vaccines11071176] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 06/23/2023] [Accepted: 06/27/2023] [Indexed: 07/30/2023] Open
Abstract
Traditional vaccines use inactivated or weakened forms of pathogens which could have side effects and inadequate immune responses. To overcome these challenges, phage display has emerged as a valuable tool for identifying specific epitopes that could be used in vaccines. This review emphasizes the direct connection between epitope identification and vaccine development, filling a crucial gap in the field. This technique allows vaccines to be engineered to effectively stimulate the immune system by presenting carefully selected epitopes. Phage display involves screening libraries of random peptides or gene/genome fragments using serum samples from infected, convalescent, or vaccinated individuals. This method has been used to identify epitopes from various pathogens including SARS-CoV-2, Mycobacterium tuberculosis, hepatitis viruses, H5N1, HIV-1, Human T-lymphotropic virus 1, Plasmodium falciparum, Trypanosoma cruzi, and Dirofilaria repens. Bacteriophages offer advantages such as being immunogenic carriers, low production costs, and customization options, making them a promising alternative to traditional vaccines. The purpose of this study has been to highlight an approach that encompasses the entire process from epitope identification to vaccine production using a single technique, without requiring additional manipulation. Unlike conventional methods, phage display demonstrates exceptional efficiency and speed, which could provide significant advantages in critical scenarios such as pandemics.
Collapse
Affiliation(s)
- Marco Palma
- Institute for Globally Distributed Open Research and Education (IGDORE), 03181 Torrevieja, Spain
- Protheragen Inc., Ronkonkoma, NY 11779, USA
| |
Collapse
|
15
|
Jethva PN, Gross ML. Hydrogen Deuterium Exchange and other Mass Spectrometry-based Approaches for Epitope Mapping. FRONTIERS IN ANALYTICAL SCIENCE 2023; 3:1118749. [PMID: 37746528 PMCID: PMC10512744 DOI: 10.3389/frans.2023.1118749] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
Antigen-antibody interactions are a fundamental subset of protein-protein interactions responsible for the "survival of the fittest". Determining the interacting interface of the antigen, called an epitope, and that on the antibody, called a paratope, is crucial to antibody development. Because each antigen presents multiple epitopes (unique footprints), sophisticated approaches are required to determine the target region for a given antibody. Although X-ray crystallography, Cryo-EM, and nuclear magnetic resonance can provide atomic details of an epitope, they are often laborious, poor in throughput, and insensitive. Mass spectrometry-based approaches offer rapid turnaround, intermediate structural resolution, and virtually no size limit for the antigen, making them a vital approach for epitope mapping. In this review, we describe in detail the principles of hydrogen deuterium exchange mass spectrometry in application to epitope mapping. We also show that a combination of MS-based approaches can assist or complement epitope mapping and push the limit of structural resolution to the residue level. We describe in detail the MS methods used in epitope mapping, provide our perspective about the approaches, and focus on elucidating the role that HDX-MS is playing now and in the future by organizing a discussion centered around several improvements in prototype instrument/applications used for epitope mapping. At the end, we provide a tabular summary of the current literature on HDX-MS-based epitope mapping.
Collapse
Affiliation(s)
- Prashant N. Jethva
- Department of Chemistry, Washington University in St. Louis, St Louis, MO 63130, USA
| | - Michael L. Gross
- Department of Chemistry, Washington University in St. Louis, St Louis, MO 63130, USA
| |
Collapse
|
16
|
Olaleye O, Graf C, Spanov B, Govorukhina N, Groves MR, van de Merbel NC, Bischoff R. Determination of Binding Sites on Trastuzumab and Pertuzumab to Selective Affimers Using Hydrogen-Deuterium Exchange Mass Spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2023; 34:775-783. [PMID: 36960982 PMCID: PMC10080681 DOI: 10.1021/jasms.3c00069] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/10/2023] [Accepted: 03/16/2023] [Indexed: 06/18/2023]
Abstract
Hydrogen-deuterium exchange mass spectrometry (HDX-MS) is a method to probe the solvent accessibility and conformational dynamics of a protein or a protein-ligand complex with respect to exchangeable amide hydrogens. Here, we present the application of HDX-MS to determine the binding sites of Affimer reagents to the monoclonal antibodies trastuzumab and pertuzumab, respectively. Intact and subunit level HDX-MS analysis of antibody-affimer complexes showed significant protection from HDX in the antibody Fab region upon affimer binding. Bottom-up HDX-MS experiments including online pepsin digestion revealed that the binding sites of the affimer reagents were mainly located in the complementarity-determining region (CDR) 2 of the heavy chain of the respective antibodies. Three-dimensional models of the binding interaction between the affimer reagents and the antibodies were built by homology modeling and molecular docking based on the HDX data.
Collapse
Affiliation(s)
- Oladapo Olaleye
- Analytical
Biochemistry, Department of Pharmacy, University
of Groningen, A. Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Christian Graf
- Novartis
Technical Research & Development Biologics, Hexal AG, Keltenring
1 + 3, 82041 Oberhaching, Germany
| | - Baubek Spanov
- Analytical
Biochemistry, Department of Pharmacy, University
of Groningen, A. Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Natalia Govorukhina
- Analytical
Biochemistry, Department of Pharmacy, University
of Groningen, A. Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Matthew R. Groves
- Drug
Design, Department of Pharmacy, University
of Groningen, A. Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Nico C. van de Merbel
- Analytical
Biochemistry, Department of Pharmacy, University
of Groningen, A. Deusinglaan 1, 9713 AV Groningen, The Netherlands
- ICON
Bioanalytical Laboratories, Amerikaweg 18, 9407 TK Assen, The Netherlands
| | - Rainer Bischoff
- Analytical
Biochemistry, Department of Pharmacy, University
of Groningen, A. Deusinglaan 1, 9713 AV Groningen, The Netherlands
| |
Collapse
|
17
|
Hogan JM, Lee PS, Wong SC, West SM, Morishige WH, Bee C, Tapia GC, Rajpal A, Strop P, Dollinger G. Residue-Level Characterization of Antibody Binding Epitopes Using Carbene Chemical Footprinting. Anal Chem 2023; 95:3922-3931. [PMID: 36791402 DOI: 10.1021/acs.analchem.2c03091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
Characterization of antibody binding epitopes is an important factor in therapeutic drug discovery, as the binding site determines and drives antibody pharmacology and pharmacokinetics. Here, we present a novel application of carbene chemical footprinting with mass spectrometry for identification of antibody binding epitopes at the single-residue level. Two different photoactivated diazirine reagents provide complementary labeling information allowing structural refinement of the antibody binding interface. We applied this technique to map the epitopes of multiple MICA and CTLA-4 antibodies and validated the findings with X-ray crystallography and yeast surface display epitope mapping. The characterized epitopes were used to understand biolayer interferometry-derived competitive binding results at the structural level. We show that carbene footprinting provides fast and high-resolution epitope information critical in the antibody selection process and enables mechanistic understanding of function to accelerate the drug discovery process.
Collapse
Affiliation(s)
- Jason M Hogan
- Discovery Biotherapeutics, Bristol Myers Squibb, 700 Bay Road, Redwood City, California 94063, United States
| | - Peter S Lee
- Discovery Biotherapeutics, Bristol Myers Squibb, 700 Bay Road, Redwood City, California 94063, United States
| | - Susan C Wong
- Discovery Biotherapeutics, Bristol Myers Squibb, 700 Bay Road, Redwood City, California 94063, United States
| | - Sean M West
- Discovery Biotherapeutics, Bristol Myers Squibb, 700 Bay Road, Redwood City, California 94063, United States
| | - Winse H Morishige
- Discovery Biotherapeutics, Bristol Myers Squibb, 700 Bay Road, Redwood City, California 94063, United States
| | - Christine Bee
- Discovery Biotherapeutics, Bristol Myers Squibb, 700 Bay Road, Redwood City, California 94063, United States
| | - Gamze Camdere Tapia
- Discovery Biotherapeutics, Bristol Myers Squibb, 700 Bay Road, Redwood City, California 94063, United States
| | - Arvind Rajpal
- Discovery Biotherapeutics, Bristol Myers Squibb, 700 Bay Road, Redwood City, California 94063, United States
| | - Pavel Strop
- Discovery Biotherapeutics, Bristol Myers Squibb, 700 Bay Road, Redwood City, California 94063, United States
| | - Gavin Dollinger
- Discovery Biotherapeutics, Bristol Myers Squibb, 700 Bay Road, Redwood City, California 94063, United States
| |
Collapse
|
18
|
Haque HME, Mantis NJ, Weis DD. High-Throughput Epitope Mapping by Hydrogen Exchange-Mass Spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2023; 34:123-127. [PMID: 36449379 DOI: 10.1021/jasms.2c00255] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
In this paper, we introduce a screening protocol for epitope mapping by hydrogen exchange mass spectrometry (HX-MS) that has higher throughput than a traditional HX-MS epitope mapping. In the screening protocol, three HX labeling times (20, 1000, and 86400 s) are each measured without replicates. The experimental protocol is anchored on a single epitope mapping experiment conducted using the traditional complete protocol (five HX times measured in triplicate) that is used to define HX times and define significance limits. Previously, we reported traditional epitope mapping results on the Borrelia burgdorferi outer surface protein A (OspA) antigen that are in excellent agreement with the X-ray crystallography results. Here, we show that the screening protocol and complete HX-MS identify identical epitopes of OspA but that the screening protocol has a 5-fold higher throughput.
Collapse
Affiliation(s)
- H M Emranul Haque
- Department of Chemistry, University of Kansas, Lawrence, Kansas66045, United States
| | - Nicholas J Mantis
- Division of Infectious Diseases, Wadsworth Center, New York State Department of Health, Albany, New York12208, United States
| | - David D Weis
- Department of Chemistry, University of Kansas, Lawrence, Kansas66045, United States
| |
Collapse
|
19
|
Dang X, Guelen L, Lutje Hulsik D, Ermakov G, Hsieh EJ, Kreijtz J, Stammen-Vogelzangs J, Lodewijks I, Bertens A, Bramer A, Guadagnoli M, Nazabal A, van Elsas A, Fischmann T, Juan V, Beebe A, Beaumont M, van Eenennaam H. Epitope mapping of monoclonal antibodies: a comprehensive comparison of different technologies. MAbs 2023; 15:2285285. [PMID: 38010385 PMCID: PMC10730160 DOI: 10.1080/19420862.2023.2285285] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 11/15/2023] [Indexed: 11/29/2023] Open
Abstract
Monoclonal antibodies have become an important class of therapeutics in the last 30 years. Because the mechanism of action of therapeutic antibodies is intimately linked to their binding epitopes, identification of the epitope of an antibody to the antigen plays a central role during antibody drug development. The gold standard of epitope mapping, X-ray crystallography, requires a high degree of proficiency with no guarantee of success. Here, we evaluated six widely used alternative methods for epitope identification (peptide array, alanine scan, domain exchange, hydrogen-deuterium exchange, chemical cross-linking, and hydroxyl radical footprinting) in five antibody-antigen combinations (pembrolizumab+PD1, nivolumab+PD1, ipilimumab+CTLA4, tremelimumab+CTLA4, and MK-5890+CD27). The advantages and disadvantages of each technique are demonstrated by our data and practical advice on when and how to apply specific epitope mapping techniques during the drug development process is provided. Our results suggest chemical cross-linking most accurately identifies the epitope as defined by crystallography.
Collapse
Affiliation(s)
- Xibei Dang
- Pharmacokinetics, Merck & Co. Inc, Kenilworth, NJ, USA
| | - Lars Guelen
- Research, Aduro Biotech Europe, Oss, The Netherlands
| | | | | | | | - Joost Kreijtz
- Research, Aduro Biotech Europe, Oss, The Netherlands
| | | | | | | | - Arne Bramer
- Research, Aduro Biotech Europe, Oss, The Netherlands
| | | | | | | | | | - Veronica Juan
- Pharmacokinetics, Merck & Co. Inc, Kenilworth, NJ, USA
| | - Amy Beebe
- Pharmacokinetics, Merck & Co. Inc, Kenilworth, NJ, USA
| | | | | |
Collapse
|
20
|
Yurina V, Adianingsih OR. Predicting epitopes for vaccine development using bioinformatics tools. Ther Adv Vaccines Immunother 2022; 10:25151355221100218. [PMID: 35647486 PMCID: PMC9130818 DOI: 10.1177/25151355221100218] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 04/14/2022] [Indexed: 11/20/2022] Open
Abstract
Epitope-based DNA vaccine development is one application of bioinformatics or
in silico studies, that is, computational methods,
including mathematical, chemical, and biological approaches, which are widely
used in drug development. Many in silico studies have been
conducted to analyze the efficacy, safety, toxicity effects, and interactions of
drugs. In the vaccine design process, in silico studies are
performed to predict epitopes that could trigger T-cell and B-cell reactions
that would produce both cellular and humoral immune responses. Immunoinformatics
is the branch of bioinformatics used to study the relationship between immune
responses and predicted epitopes. Progress in immunoinformatics has been rapid
and has led to the development of a variety of tools that are used for the
prediction of epitopes recognized by B cells or T cells as well as the antigenic
responses. However, the in silico approach to vaccine design is
still relatively new; thus, this review is aimed at increasing understanding of
the importance of in silico studies in the design of vaccines
and thereby facilitating future research in this field.
Collapse
Affiliation(s)
- Valentina Yurina
- Department of Pharmacy, Medical Faculty, Universitas Brawijaya, Jalan Veteran, Malang 65145, East Java, Indonesia
| | | |
Collapse
|
21
|
Vishweshwaraiah YL, Dokholyan NV. Toward rational vaccine engineering. Adv Drug Deliv Rev 2022; 183:114142. [PMID: 35150769 PMCID: PMC8931536 DOI: 10.1016/j.addr.2022.114142] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/31/2022] [Accepted: 02/07/2022] [Indexed: 12/29/2022]
Abstract
Technological revolutions in several fields have pushed the boundaries of vaccine design and provided new avenues for vaccine development. Next-generation vaccine platforms have shown promise in targeting challenging antigens, for which traditional approaches have been ineffective. With advances in protein engineering, structural biology, computational biology and immunology, the structural vaccinology approach, which uses protein structure information to develop immunogens, holds promise for future vaccine design. In this review, we highlight various vaccine development strategies, along with their advantages and limitations. We discuss the rational vaccine design approach, which focuses on structure-based vaccine design. Finally, we discuss antigen engineering using the epitope-scaffold approach, gaps in structural vaccinology, and remaining challenges in vaccine design.
Collapse
Affiliation(s)
| | - Nikolay V Dokholyan
- Department of Pharmacology, Penn State College of Medicine, Hershey, PA 17033-0850, USA; Department of Biochemistry & Molecular Biology, Penn State College of Medicine, Hershey, PA 17033-0850, USA; Department of Chemistry, Pennsylvania State University, University Park, PA 16802, USA; Department of Biomedical Engineering, Pennsylvania State University, University Park, PA 16802, USA.
| |
Collapse
|
22
|
Liu Y, Liu S, Xu C, Lin M, Li Y, Shen C, Liang Y, Sun X, Wang D, Lü P, Liu X. Epitopes prediction for microcystin-LR by molecular docking. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 227:112925. [PMID: 34717216 DOI: 10.1016/j.ecoenv.2021.112925] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 09/24/2021] [Accepted: 10/18/2021] [Indexed: 06/13/2023]
Abstract
Microcystin-LR (MC-LR) is one of the most worldwide harmful cyanobacterial toxins. A lots of antibodies against MC-LR have been generated and characterized. However, the knowledge about the epitopes of MC-LR was still limited. The objective of this study was to analyze the epitopes of MC-LR and demonstrate the binding mode of MC-LR with its antibody. The variable genes of a mouse hybridoma cell line (Mab5H1-3B3) raised against MC-LR have been cloned and assembled in a single chain variable fragment (scFv), and then soluble expressed in E.coli BL21. Based on the scFv, the IC50 and IC10 for MC-LR were determined to be 7.45 nM and 0.30 nM by competitive ELISA. And the scFv also showed 115% and 112% cross-reactivities to MC-RR and MC-YR, and 59% to MC-LA. By molecular docking, the binding mode between MC-LR and its scFv was demonstrated. A hydrogen bond interaction was observed between the carbonyl group of Adda5 residue of MC-LR and its scFv, and the guanidyl group of Arg4 residue and phenyl group of Adda5 residue of MC-LR were also involved in the interaction. These predicted epitopes were supported by antibody cross-reactivity data. By comparing the antibody informatics of MC-LR scFv with its predicted paratopes, VH-CDR1 was crucial for MC-LR binding, and its specificity could be tuned by engineering in Vκ-CDR1 and Vκ-CDR3. These information would be useful for the hapten design for microcystins or improving the properties of MC-LR scFv in vitro.
Collapse
Affiliation(s)
- Yuan Liu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; Key Laboratory of Food Quality and Safety of Jiangsu Province, Nanjing 210014, China.
| | - Shu Liu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; Key Laboratory of Food Quality and Safety of Jiangsu Province, Nanjing 210014, China
| | - Chongxin Xu
- Key Laboratory of Food Quality and Safety of Jiangsu Province, Nanjing 210014, China
| | - Manman Lin
- Key Laboratory of Food Quality and Safety of Jiangsu Province, Nanjing 210014, China
| | - Yihang Li
- Key Laboratory of Food Quality and Safety of Jiangsu Province, Nanjing 210014, China
| | - Cheng Shen
- Key Laboratory of Food Quality and Safety of Jiangsu Province, Nanjing 210014, China
| | - Ying Liang
- Key Laboratory of Food Quality and Safety of Jiangsu Province, Nanjing 210014, China
| | - Xing Sun
- Key Laboratory of Food Quality and Safety of Jiangsu Province, Nanjing 210014, China
| | - Donglan Wang
- Key Laboratory of Food Quality and Safety of Jiangsu Province, Nanjing 210014, China.
| | - Peng Lü
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, China
| | - Xianjin Liu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; Key Laboratory of Food Quality and Safety of Jiangsu Province, Nanjing 210014, China
| |
Collapse
|
23
|
Norman RL, Singh R, Muskett FW, Parrott EL, Rufini A, Langridge JI, Runau F, Dennison A, Shaw JA, Piletska E, Canfarotta F, Ng LL, Piletsky S, Jones DJL. Mass spectrometric detection of KRAS protein mutations using molecular imprinting. NANOSCALE 2021; 13:20401-20411. [PMID: 34854867 PMCID: PMC8675027 DOI: 10.1039/d1nr03180e] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 11/27/2021] [Indexed: 05/07/2023]
Abstract
Cancer is a disease of cellular evolution where single base changes in the genetic code can have significant impact on the translation of proteins and their activity. Thus, in cancer research there is significant interest in methods that can determine mutations and identify the significant binding sites (epitopes) of antibodies to proteins in order to develop novel therapies. Nano molecularly imprinted polymers (nanoMIPs) provide an alternative to antibodies as reagents capable of specifically capturing target molecules depending on their structure. In this study, we used nanoMIPs to capture KRAS, a critical oncogene, to identify mutations which when present are indicative of oncological progress. Herein, coupling nanoMIPs (capture) and liquid chromatography-mass spectrometry (detection), LC-MS has allowed us to investigate mutational assignment and epitope discovery. Specifically, we have shown epitope discovery by generating nanoMIPs to a recombinant KRAS protein and identifying three regions of the protein which have been previously assigned as epitopes using much more time-consuming protocols. The mutation status of the released tryptic peptide was identified by LC-MS following capture of the conserved region of KRAS using nanoMIPS, which were tryptically digested, thus releasing the sequence of a non-conserved (mutated) region. This approach was tested in cell lines where we showed the effective genotyping of a KRAS cell line and in the plasma of cancer patients, thus demonstrating its ability to diagnose precisely the mutational status of a patient. This work provides a clear line-of-sight for the use of nanoMIPs to its translation from research into diagnostic and clinical utility.
Collapse
Affiliation(s)
- Rachel L Norman
- Leicester Cancer Research Centre, Leicester Royal Infirmary, University of Leicester, Leicester, LE1 5WW, UK.
| | - Rajinder Singh
- Leicester Cancer Research Centre, Leicester Royal Infirmary, University of Leicester, Leicester, LE1 5WW, UK.
| | - Frederick W Muskett
- Department of Molecular and Cell Biology, University of Leicester, LE1 7RH Leicester, UK
- Leicester Institute of Structural and Chemical Biology, University of Leicester, LE1 7RH Leicester, UK
| | - Emma L Parrott
- Leicester Cancer Research Centre, Leicester Royal Infirmary, University of Leicester, Leicester, LE1 5WW, UK.
| | - Alessandro Rufini
- Leicester Cancer Research Centre, Leicester Royal Infirmary, University of Leicester, Leicester, LE1 5WW, UK.
| | | | - Franscois Runau
- Leicester Cancer Research Centre, Leicester Royal Infirmary, University of Leicester, Leicester, LE1 5WW, UK.
| | - Ashley Dennison
- Leicester Cancer Research Centre, Leicester Royal Infirmary, University of Leicester, Leicester, LE1 5WW, UK.
| | - Jacqui A Shaw
- Leicester Cancer Research Centre, Leicester Royal Infirmary, University of Leicester, Leicester, LE1 5WW, UK.
| | - Elena Piletska
- MIP Diagnostics, The Exchange Building, Colworth Park, MK44 1LQ, Bedford, UK
- School of Chemistry, University of Leicester, University Road, Leicester, LE1 7RH, UK
| | | | - Leong L Ng
- Department of Cardiovascular Sciences, University of Leicester and National Institute for Health Research Leicester Biomedical Research Centre, Glenfield Hospital, Leicester, LE1 7RH, UK
| | - Sergey Piletsky
- MIP Diagnostics, The Exchange Building, Colworth Park, MK44 1LQ, Bedford, UK
- School of Chemistry, University of Leicester, University Road, Leicester, LE1 7RH, UK
| | - Donald J L Jones
- Leicester Cancer Research Centre, Leicester Royal Infirmary, University of Leicester, Leicester, LE1 5WW, UK.
- Department of Cardiovascular Sciences, University of Leicester and National Institute for Health Research Leicester Biomedical Research Centre, Glenfield Hospital, Leicester, LE1 7RH, UK
| |
Collapse
|
24
|
Sgrignani J, Cecchinato V, Fassi EMA, D'Agostino G, Garofalo M, Danelon G, Pedotti M, Simonelli L, Varani L, Grazioso G, Uguccioni M, Cavalli A. Systematic Development of Peptide Inhibitors Targeting the CXCL12/HMGB1 Interaction. J Med Chem 2021; 64:13439-13450. [PMID: 34510899 DOI: 10.1021/acs.jmedchem.1c00852] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
During inflammatory reactions, the production and release of chemotactic factors guide the recruitment of selective leukocyte subpopulations. The alarmin HMGB1 and the chemokine CXCL12, both released in the microenvironment, can form a heterocomplex, which exclusively acts on the chemokine receptor CXCR4, enhancing cell migration, and in some pathological conditions such as rheumatoid arthritis exacerbates the immune response. An excessive cell influx at the inflammatory site can be diminished by disrupting the heterocomplex. Here, we report the computationally driven identification of the first peptide (HBP08) binding HMGB1 and selectively inhibiting the activity of the CXCL12/HMGB1 heterocomplex. Furthermore, HBP08 binds HMGB1 with the highest affinity reported so far (Kd of 0.8 ± 0.4 μM). The identification of this peptide represents an important step toward the development of innovative pharmacological tools for the treatment of severe chronic inflammatory conditions characterized by an uncontrolled immune response.
Collapse
Affiliation(s)
- Jacopo Sgrignani
- Institute for Research in Biomedicine, Università della Svizzera italiana, CH-6500 Bellinzona, Switzerland
| | - Valentina Cecchinato
- Institute for Research in Biomedicine, Università della Svizzera italiana, CH-6500 Bellinzona, Switzerland
| | - Enrico M A Fassi
- Institute for Research in Biomedicine, Università della Svizzera italiana, CH-6500 Bellinzona, Switzerland.,Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, 20133 Milan, Italy
| | - Gianluca D'Agostino
- Institute for Research in Biomedicine, Università della Svizzera italiana, CH-6500 Bellinzona, Switzerland
| | - Maura Garofalo
- Institute for Research in Biomedicine, Università della Svizzera italiana, CH-6500 Bellinzona, Switzerland
| | - Gabriela Danelon
- Institute for Research in Biomedicine, Università della Svizzera italiana, CH-6500 Bellinzona, Switzerland
| | - Mattia Pedotti
- Institute for Research in Biomedicine, Università della Svizzera italiana, CH-6500 Bellinzona, Switzerland
| | - Luca Simonelli
- Institute for Research in Biomedicine, Università della Svizzera italiana, CH-6500 Bellinzona, Switzerland
| | - Luca Varani
- Institute for Research in Biomedicine, Università della Svizzera italiana, CH-6500 Bellinzona, Switzerland
| | - Giovanni Grazioso
- Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, 20133 Milan, Italy
| | - Mariagrazia Uguccioni
- Institute for Research in Biomedicine, Università della Svizzera italiana, CH-6500 Bellinzona, Switzerland.,Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, 20090 Milan, Italy
| | - Andrea Cavalli
- Institute for Research in Biomedicine, Università della Svizzera italiana, CH-6500 Bellinzona, Switzerland.,Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland
| |
Collapse
|
25
|
Mapping conformational epitopes by NMR spectroscopy. Curr Opin Virol 2021; 49:1-6. [PMID: 33989923 DOI: 10.1016/j.coviro.2021.04.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 03/28/2021] [Accepted: 04/07/2021] [Indexed: 11/21/2022]
Abstract
Antibodies recognize their target with high affinity and specificity. This is important for pathogen neutralization, which plays a crucial role in defense against disease. Antibodies are powerful tools in the development of new therapeutics, such as vaccines, to fight diseases such as viral infections and even cancer. The development of monoclonal and specific antibodies is time-consuming and expensive, but it can be greatly simplified with structural and allosteric information. Nuclear magnetic resonance (NMR) is a powerful technique to study protein structure and dynamics, and it has proven to be efficient to analyze large protein complexes, despite the overall size limitation. Here, we discuss NMR approaches efficiently used to conformational epitope mapping.
Collapse
|
26
|
Ma M, Qi H, Hu C, Xu Z, Wu F, Wang N, Lai D, Li Y, Zhang H, Jiang H, Meng Q, Guo S, Kang Y, Zhao X, Li H, Tao SC. The binding epitope of sintilimab on PD-1 revealed by AbMap. Acta Biochim Biophys Sin (Shanghai) 2021; 53:628-635. [PMID: 33637989 DOI: 10.1093/abbs/gmab020] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Indexed: 12/24/2022] Open
Abstract
PD-1 plays an important role as an immune checkpoint. Sintilimab is a newly approved PD-1 antibody for cancer immunotherapy with an unknown binding epitope on PD-1. In this study, to elucidate the molecular mechanism by which sintilimab blocks PD-1 activation, we applied Antibody binding epitope Mapping (AbMap) to identify the binding epitope of sintilimab. An epitope was successfully identified, i.e. SLAPKA, aa 127-132. By constructing a series of point mutations, the dominant residues S127, L128, A129, P130, and A132 of PD-1 were further validated by western blot analysis, biolayer interferometry, and flow cytometry. Structural analysis showed that the epitope is partially within the binding interface of PD-1 and PD-L1, and this epitope also partially overlaps with that of nivolumab and pembrolizumab. These results demonstrate that sintilimab can attenuate PD-1 activation by directly competing with the interaction between PD-1 and PD-L1 through binding with the key residues of the FG loop on PD-1. This study also demonstrates the high efficiency and accuracy of AbMap for determining the binding epitope of therapeutic antibodies.
Collapse
Affiliation(s)
- Mingliang Ma
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Huan Qi
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Chuansheng Hu
- Bio-ID Center, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zhaowei Xu
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Fanlin Wu
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai 200240, China
- School of Agriculture, Lu Dong University, Yantai 264025, Shandong, China
| | - Nan Wang
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai 200240, China
- Department of Biomedical Engineering, School of Medicine, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Tsinghua University, Beijing 100084, China
| | - Danyun Lai
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yang Li
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Hainan Zhang
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Hewei Jiang
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Qingfeng Meng
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Shujuan Guo
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yani Kang
- Bio-ID Center, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xiaodong Zhao
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Hua Li
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
- Bio-ID Center, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Sheng-ce Tao
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai 200240, China
- State Key Laboratory for Oncogenes, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
27
|
Gómez-Redondo M, Delgado S, Núñez-Franco R, Jiménez-Osés G, Ardá A, Jiménez-Barbero J, Gimeno A. The two domains of human galectin-8 bind sialyl- and fucose-containing oligosaccharides in an independent manner. A 3D view by using NMR. RSC Chem Biol 2021; 2:932-941. [PMID: 34179785 PMCID: PMC8190895 DOI: 10.1039/d1cb00051a] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The interaction of human galectin-8 and its two separate N-terminal and C-terminal carbohydrate recognition domains (CRD) to their natural ligands has been analysed using a synergistic combination of experimental NMR and ITC methods, and molecular dynamics simulations. Both domains bind the minimal epitopes N-acetyllactosamine (1) and Galβ1–3GalNAc (2) in a similar manner. However, the N-terminal and C-terminal domains show exquisite and opposing specificity to bind either Neu5Ac- or Fuc-containing ligands, respectively. Moreover, the addition of the high-affinity ligands specific for one of the CRDs does not make any effect on the binding at the alternative one. Thus, the two CRDs behave independently and may simultaneously target different molecular entities to promote clustering through the generation of supramolecular assemblies. NMR, ITC, and MD data show that the two domains of human galectin-8 independently recognize sialyl- and fucosyl-containing glycans.![]()
Collapse
Affiliation(s)
- Marcos Gómez-Redondo
- CIC bioGUNE, Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park Building 800 48160 Derio Spain
| | - Sandra Delgado
- CIC bioGUNE, Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park Building 800 48160 Derio Spain
| | - Reyes Núñez-Franco
- CIC bioGUNE, Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park Building 800 48160 Derio Spain
| | - Gonzalo Jiménez-Osés
- CIC bioGUNE, Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park Building 800 48160 Derio Spain .,lkerbasque, Basque Foundation for Science Plaza Euskadi 5 48009 Bilbao Spain
| | - Ana Ardá
- CIC bioGUNE, Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park Building 800 48160 Derio Spain .,lkerbasque, Basque Foundation for Science Plaza Euskadi 5 48009 Bilbao Spain
| | - Jesús Jiménez-Barbero
- CIC bioGUNE, Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park Building 800 48160 Derio Spain .,lkerbasque, Basque Foundation for Science Plaza Euskadi 5 48009 Bilbao Spain.,Departament of Organic Chemistry ll, Faculty of Science & Technology, University of the Basque Country 48940 Leioa Spain
| | - Ana Gimeno
- CIC bioGUNE, Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park Building 800 48160 Derio Spain
| |
Collapse
|
28
|
Steels A, Vannevel L, Zwaenepoel O, Gettemans J. Nb-induced stabilisation of p53 in HPV-infected cells. Sci Rep 2019; 9:12680. [PMID: 31481667 PMCID: PMC6722090 DOI: 10.1038/s41598-019-49061-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 08/13/2019] [Indexed: 11/23/2022] Open
Abstract
Cervical cancer is caused by a persistent infection of the mucosal epithelia with high-risk human papilloma viruses (HPVs). The viral oncoprotein E6 is responsible for the inactivation of the tumour suppressor p53 and thus plays a crucial role in HPV-induced tumorigenesis. The viral E6 protein forms a trimeric complex with the endogenous E3 ubiquitine ligase E6AP and the DNA-binding domain (DBD) of p53, which results in the polyubiquitination and proteasomal degradation of p53. We have developed nanobodies (Nbs) against the DBD of p53, which substantially stabilise p53 in HeLa cells. The observed effect is specific for HPV-infected cells, since similar effects were not seen for U2OS cells. Despite the fact that the stabilised p53 was strongly nuclear enriched, its tumour suppressive functions were hampered. We argue that the absence of a tumour suppressive effect is caused by inhibition of p53 transactivation in both HPV-infected and HPV-negative cells. The inactivation of the transcriptional activity of p53 was associated with an increased cellular proliferation and viability of HeLa cells. In conclusion, we demonstrate that p53 DBD Nbs positively affect protein stability whilst adversely affecting protein function, attesting to their ability to modulate protein properties in a very subtle manner.
Collapse
Affiliation(s)
- Anneleen Steels
- Department of Biomolecular Medicine, Faculty of Medicine and Health Sciences, Campus Rommelaere, A. Baertsoenkaai 3, Ghent University, Ghent, Belgium
| | - Laura Vannevel
- Department of Biomolecular Medicine, Faculty of Medicine and Health Sciences, Campus Rommelaere, A. Baertsoenkaai 3, Ghent University, Ghent, Belgium
| | - Olivier Zwaenepoel
- Department of Biomolecular Medicine, Faculty of Medicine and Health Sciences, Campus Rommelaere, A. Baertsoenkaai 3, Ghent University, Ghent, Belgium
| | - Jan Gettemans
- Department of Biomolecular Medicine, Faculty of Medicine and Health Sciences, Campus Rommelaere, A. Baertsoenkaai 3, Ghent University, Ghent, Belgium.
| |
Collapse
|
29
|
Valente AP, Moraes AH. Zika virus proteins at an atomic scale: how does structural biology help us to understand and develop vaccines and drugs against Zika virus infection? J Venom Anim Toxins Incl Trop Dis 2019; 25:e20190013. [PMID: 31523227 PMCID: PMC6727858 DOI: 10.1590/1678-9199-jvatitd-2019-0013] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
In Brazil and in other tropical areas Zika virus infection was directly associated with clinical complications as microcephaly in newborn children whose mothers were infected during pregnancy and the Guillain-Barré syndrome in adults. Recently, research has been focused on developing new vaccines and drug candidates against Zika virus infection since none of those are available. In order to contribute to vaccine and drug development efforts, it becomes important the understanding of the molecular basis of the Zika virus recognition, infection and blockade. To this purpose, it is essential the structural determination of the Zika virus proteins. The genome sequencing of the Zika virus identified ten proteins, being three structural (protein E, protein C and protein prM) and seven non-structural proteins (NS1, NS2A, NS2B, NS3, NS4A, NS4B and NS5). Together, these proteins are the main targets for drugs and antibody recognition. Here we examine new discoveries on high-resolution structural biology of Zika virus, observing the interactions and functions of its proteins identified via state-of-art structural methodologies as X-ray crystallography, nuclear magnetic resonance spectroscopy and cryogenic electronic microscopy. The aim of the present study is to contribute to the understanding of the structural basis of Zika virus infection at an atomic level and to point out similarities and differences to others flaviviruses.
Collapse
Affiliation(s)
- Ana Paula Valente
- National Center of Magnetic Resonance, Leopoldo de Meis Institute of Medical Biochemistry, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil
| | - Adolfo Henrique Moraes
- Department of Chemistry, Institute of Exact Sciences, Federal University of Minas Gerais (UFMG), Belo Horizonte, MG, Brazil
| |
Collapse
|
30
|
Danquah BD, Röwer C, Opuni KM, El-Kased R, Frommholz D, Illges H, Koy C, Glocker MO. Intact Transition Epitope Mapping - Targeted High-Energy Rupture of Extracted Epitopes (ITEM-THREE). Mol Cell Proteomics 2019; 18:1543-1555. [PMID: 31147491 PMCID: PMC6683010 DOI: 10.1074/mcp.ra119.001429] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 05/14/2019] [Indexed: 12/31/2022] Open
Abstract
Epitope mapping, which is the identification of antigenic determinants, is essential for the design of novel antibody-based therapeutics and diagnostic tools. ITEM-THREE is a mass spectrometry-based epitope mapping method that can identify epitopes on antigens upon generating an immune complex in electrospray-compatible solutions by adding an antibody of interest to a mixture of peptides from which at least one holds the antibody's epitope. This mixture is nano-electrosprayed without purification. Identification of the epitope peptide is performed within a mass spectrometer that provides an ion mobility cell sandwiched in-between two collision cells and where this ion manipulation setup is flanked by a quadrupole mass analyzer on one side and a time-of-flight mass analyzer on the other side. In a stepwise fashion, immune-complex ions are separated from unbound peptide ions and dissociated to release epitope peptide ions. Immune complex-released peptide ions are separated from antibody ions and fragmented by collision induced dissociation. Epitope-containing peptide fragment ions are recorded, and mass lists are submitted to unsupervised data base search thereby retrieving both, the amino acid sequence of the epitope peptide and the originating antigen. ITEM-THREE was developed with antiTRIM21 and antiRA33 antibodies for which the epitopes were known, subjecting them to mixtures of synthetic peptides of which one contained the respective epitope. ITEM-THREE was then successfully tested with an enzymatic digest of His-tagged recombinant human β-actin and an antiHis-tag antibody, as well as with an enzymatic digest of recombinant human TNFα and an antiTNFα antibody whose epitope was previously unknown.
Collapse
Affiliation(s)
- Bright D Danquah
- ‡Proteome Center Rostock, University Medicine Rostock, Rostock, Germany
| | - Claudia Röwer
- ‡Proteome Center Rostock, University Medicine Rostock, Rostock, Germany
| | | | - Reham El-Kased
- ¶Microbiology and Immunology Faculty of Pharmacy, The British University in Egypt, Cairo, Egypt
| | - David Frommholz
- ‖University of Applied Sciences Bonn-Rhein-Sieg, Immunology and Cell Biology, Rheinbach, Germany
| | - Harald Illges
- ‖University of Applied Sciences Bonn-Rhein-Sieg, Immunology and Cell Biology, Rheinbach, Germany;; **University of Applied Sciences Bonn-Rhein-Sieg, Institute for Functional Gene Analytics, Rheinbach, Germany
| | - Cornelia Koy
- ‡Proteome Center Rostock, University Medicine Rostock, Rostock, Germany
| | - Michael O Glocker
- ‡Proteome Center Rostock, University Medicine Rostock, Rostock, Germany.
| |
Collapse
|
31
|
Wollacott AM, Robinson LN, Ramakrishnan B, Tissire H, Viswanathan K, Shriver Z, Babcock GJ. Structural prediction of antibody-APRIL complexes by computational docking constrained by antigen saturation mutagenesis library data. J Mol Recognit 2019; 32:e2778. [DOI: 10.1002/jmr.2778] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 11/21/2018] [Accepted: 12/06/2018] [Indexed: 12/29/2022]
|
32
|
Lin M, Krawitz D, Callahan MD, Deperalta G, Wecksler AT. Characterization of ELISA Antibody-Antigen Interaction using Footprinting-Mass Spectrometry and Negative Staining Transmission Electron Microscopy. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2018; 29:961-971. [PMID: 29512051 DOI: 10.1007/s13361-017-1883-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 12/21/2017] [Accepted: 12/22/2017] [Indexed: 06/08/2023]
Abstract
We describe epitope mapping data using multiple covalent labeling footprinting-mass spectrometry (MS) techniques coupled with negative stain transmission electron microscopy (TEM) data to analyze the antibody-antigen interactions in a sandwich enzyme-linked immunosorbant assay (ELISA). Our hydroxyl radical footprinting-MS data using fast photochemical oxidation of proteins (FPOP) indicates suppression of labeling across the antigen upon binding either of the monoclonal antibodies (mAbs) utilized in the ELISA. Combining these data with Western blot analysis enabled the identification of the putative epitopes that appeared to span regions containing N-linked glycans. An additional structural mapping technique, carboxyl group footprinting-mass spectrometry using glycine ethyl ester (GEE) labeling, was used to confirm the epitopes. Deglycosylation of the antigen resulted in loss of potency in the ELISA, supporting the FPOP and GEE labeling data by indicating N-linked glycans are necessary for antigen binding. Finally, mapping of the epitopes onto the antigen crystal structure revealed an approximate 90° relative spatial orientation, optimal for a noncompetitive binding ELISA. TEM data shows both linear and diamond antibody-antigen complexes with a similar binding orientation as predicted from the two footprinting-MS techniques. This study is the first of its kind to utilize multiple bottom-up footprinting-MS techniques and TEM visualization to characterize the monoclonal antibody-antigen binding interactions of critical reagents used in a quality control (QC) lot-release ELISA. Graphical Abstract ᅟ.
Collapse
Affiliation(s)
- Margaret Lin
- Analytical Operations, Genentech Inc., 1 DNA Way, South San Francisco, CA, 94080, USA
| | - Denise Krawitz
- CMC Paradigms LLC, 49 Oak Springs Drive, San Anselmo, CA, 94960, USA
| | - Matthew D Callahan
- Protein Analytical Chemistry, Genentech Inc., 1 DNA Way, South San Francisco, CA, 94080, USA
| | - Galahad Deperalta
- Protein Analytical Chemistry, Genentech Inc., 1 DNA Way, South San Francisco, CA, 94080, USA
| | - Aaron T Wecksler
- Protein Analytical Chemistry, Genentech Inc., 1 DNA Way, South San Francisco, CA, 94080, USA.
| |
Collapse
|
33
|
Abstract
Therapeutic antibodies constitute one of the fastest areas of growth in the field of biologic drugs. A molecular understanding of how antibodies interact with their target antigens is known as epitope mapping. The data provided by epitope mapping is extremely valuable in the process of antibody humanization, as well as in vaccine design. In many cases the epitope recognized by the antibody is a complex, discontinuous 3D conformational epitope. Mapping the interactions of an antibody to a conformational epitope is difficult by many standard approaches. X-ray crystallography is considered to be the gold standard of epitope mapping as it can provide a near atomic resolution model of the antibody-antigen interaction. An X-ray structure allows for inspection of specific antibody-antigen interactions, even in the case of complex conformational epitopes. The method described here can be adapted for structure determination and epitope mapping of any antibody fragment to a simple or complex antigen.
Collapse
Affiliation(s)
- Moeko Toride King
- Department of Chemistry, California State University Fresno, 2555 E San Ramon Ave, Fresno, CA, 93740, USA
| | - Cory L Brooks
- Department of Chemistry, California State University Fresno, 2555 E San Ramon Ave, Fresno, CA, 93740, USA.
| |
Collapse
|
34
|
Wang J, Bardelli M, Espinosa DA, Pedotti M, Ng TS, Bianchi S, Simonelli L, Lim EXY, Foglierini M, Zatta F, Jaconi S, Beltramello M, Cameroni E, Fibriansah G, Shi J, Barca T, Pagani I, Rubio A, Broccoli V, Vicenzi E, Graham V, Pullan S, Dowall S, Hewson R, Jurt S, Zerbe O, Stettler K, Lanzavecchia A, Sallusto F, Cavalli A, Harris E, Lok SM, Varani L, Corti D. A Human Bi-specific Antibody against Zika Virus with High Therapeutic Potential. Cell 2017; 171:229-241.e15. [PMID: 28938115 PMCID: PMC5673489 DOI: 10.1016/j.cell.2017.09.002] [Citation(s) in RCA: 103] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Revised: 06/14/2017] [Accepted: 08/31/2017] [Indexed: 11/15/2022]
Abstract
Zika virus (ZIKV), a mosquito-borne flavivirus, causes devastating congenital birth defects. We isolated a human monoclonal antibody (mAb), ZKA190, that potently cross-neutralizes multi-lineage ZIKV strains. ZKA190 is highly effective in vivo in preventing morbidity and mortality of ZIKV-infected mice. NMR and cryo-electron microscopy show its binding to an exposed epitope on DIII of the E protein. ZKA190 Fab binds all 180 E protein copies, altering the virus quaternary arrangement and surface curvature. However, ZIKV escape mutants emerged in vitro and in vivo in the presence of ZKA190, as well as of other neutralizing mAbs. To counter this problem, we developed a bispecific antibody (FIT-1) comprising ZKA190 and a second mAb specific for DII of E protein. In addition to retaining high in vitro and in vivo potencies, FIT-1 robustly prevented viral escape, warranting its development as a ZIKV immunotherapy.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Antibodies, Monoclonal/administration & dosage
- Antibodies, Monoclonal/chemistry
- Antibodies, Monoclonal/therapeutic use
- Antibodies, Neutralizing/administration & dosage
- Antibodies, Neutralizing/chemistry
- Antibodies, Neutralizing/therapeutic use
- Antibodies, Viral/administration & dosage
- Antibodies, Viral/chemistry
- Antibodies, Viral/therapeutic use
- Cryoelectron Microscopy
- Epitopes
- Humans
- Magnetic Resonance Spectroscopy
- Mice
- Models, Molecular
- Sequence Alignment
- Viral Envelope Proteins/chemistry
- Zika Virus/chemistry
- Zika Virus/immunology
- Zika Virus Infection/therapy
Collapse
Affiliation(s)
- Jiaqi Wang
- Program in Emerging Infectious Diseases, Duke-National University of Singapore Medical School, Singapore 169857, Singapore; Centre for BioImaging Sciences, National University of Singapore, Singapore 117557, Singapore
| | - Marco Bardelli
- Insitute for Research in Biomedicine, Università della Svizzera italiana, Via Vincenzo Vela 6, 6500 Bellinzona, Switzerland
| | - Diego A Espinosa
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, 185 Li Ka Shing Center, 1951 Oxford Street, Berkeley, California, 94720-3370, USA
| | - Mattia Pedotti
- Insitute for Research in Biomedicine, Università della Svizzera italiana, Via Vincenzo Vela 6, 6500 Bellinzona, Switzerland
| | - Thiam-Seng Ng
- Program in Emerging Infectious Diseases, Duke-National University of Singapore Medical School, Singapore 169857, Singapore; Centre for BioImaging Sciences, National University of Singapore, Singapore 117557, Singapore
| | - Siro Bianchi
- Humabs BioMed SA a subsidiary of Vir Biotechnology, Inc., Via Mirasole 1, 6500 Bellinzona, Switzerland
| | - Luca Simonelli
- Insitute for Research in Biomedicine, Università della Svizzera italiana, Via Vincenzo Vela 6, 6500 Bellinzona, Switzerland
| | - Elisa X Y Lim
- Program in Emerging Infectious Diseases, Duke-National University of Singapore Medical School, Singapore 169857, Singapore; Centre for BioImaging Sciences, National University of Singapore, Singapore 117557, Singapore
| | - Mathilde Foglierini
- Insitute for Research in Biomedicine, Università della Svizzera italiana, Via Vincenzo Vela 6, 6500 Bellinzona, Switzerland
| | - Fabrizia Zatta
- Humabs BioMed SA a subsidiary of Vir Biotechnology, Inc., Via Mirasole 1, 6500 Bellinzona, Switzerland
| | - Stefano Jaconi
- Humabs BioMed SA a subsidiary of Vir Biotechnology, Inc., Via Mirasole 1, 6500 Bellinzona, Switzerland
| | - Martina Beltramello
- Humabs BioMed SA a subsidiary of Vir Biotechnology, Inc., Via Mirasole 1, 6500 Bellinzona, Switzerland
| | - Elisabetta Cameroni
- Humabs BioMed SA a subsidiary of Vir Biotechnology, Inc., Via Mirasole 1, 6500 Bellinzona, Switzerland
| | - Guntur Fibriansah
- Program in Emerging Infectious Diseases, Duke-National University of Singapore Medical School, Singapore 169857, Singapore; Centre for BioImaging Sciences, National University of Singapore, Singapore 117557, Singapore
| | - Jian Shi
- Centre for BioImaging Sciences, National University of Singapore, Singapore 117557, Singapore; CryoEM unit, Department of Biological Sciences, National University of Singapore, Singapore 117557
| | - Taylor Barca
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, 185 Li Ka Shing Center, 1951 Oxford Street, Berkeley, California, 94720-3370, USA
| | - Isabel Pagani
- Viral Pathogens and Biosafety Unit, San Raffaele Scientific Institute, Via Olgettina 58, 20132 Milan, Italy
| | - Alicia Rubio
- Viral Pathogens and Biosafety Unit, San Raffaele Scientific Institute, Via Olgettina 58, 20132 Milan, Italy
| | - Vania Broccoli
- Viral Pathogens and Biosafety Unit, San Raffaele Scientific Institute, Via Olgettina 58, 20132 Milan, Italy; CNR-Institute of Neuroscience, Via Vanvitelli 32, 20129, Milan, Italy
| | - Elisa Vicenzi
- Viral Pathogens and Biosafety Unit, San Raffaele Scientific Institute, Via Olgettina 58, 20132 Milan, Italy
| | - Victoria Graham
- National Infection Service, Public Health England, Porton Down, Salisbury, Wiltshire, UK
| | - Steven Pullan
- National Infection Service, Public Health England, Porton Down, Salisbury, Wiltshire, UK
| | - Stuart Dowall
- National Infection Service, Public Health England, Porton Down, Salisbury, Wiltshire, UK
| | - Roger Hewson
- National Infection Service, Public Health England, Porton Down, Salisbury, Wiltshire, UK
| | - Simon Jurt
- Department of Chemistry, University of Zurich, Zurich, Switzerland
| | - Oliver Zerbe
- Department of Chemistry, University of Zurich, Zurich, Switzerland
| | - Karin Stettler
- Humabs BioMed SA a subsidiary of Vir Biotechnology, Inc., Via Mirasole 1, 6500 Bellinzona, Switzerland
| | - Antonio Lanzavecchia
- Insitute for Research in Biomedicine, Università della Svizzera italiana, Via Vincenzo Vela 6, 6500 Bellinzona, Switzerland
| | - Federica Sallusto
- Insitute for Research in Biomedicine, Università della Svizzera italiana, Via Vincenzo Vela 6, 6500 Bellinzona, Switzerland
| | - Andrea Cavalli
- Insitute for Research in Biomedicine, Università della Svizzera italiana, Via Vincenzo Vela 6, 6500 Bellinzona, Switzerland
| | - Eva Harris
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, 185 Li Ka Shing Center, 1951 Oxford Street, Berkeley, California, 94720-3370, USA
| | - Shee-Mei Lok
- Program in Emerging Infectious Diseases, Duke-National University of Singapore Medical School, Singapore 169857, Singapore; Centre for BioImaging Sciences, National University of Singapore, Singapore 117557, Singapore.
| | - Luca Varani
- Insitute for Research in Biomedicine, Università della Svizzera italiana, Via Vincenzo Vela 6, 6500 Bellinzona, Switzerland.
| | - Davide Corti
- Humabs BioMed SA a subsidiary of Vir Biotechnology, Inc., Via Mirasole 1, 6500 Bellinzona, Switzerland.
| |
Collapse
|
35
|
Deng B, Zhu S, Macklin AM, Xu J, Lento C, Sljoka A, Wilson DJ. Suppressing allostery in epitope mapping experiments using millisecond hydrogen / deuterium exchange mass spectrometry. MAbs 2017; 9:1327-1336. [PMID: 28933661 PMCID: PMC5680795 DOI: 10.1080/19420862.2017.1379641] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023] Open
Abstract
Localization of the interface between the candidate antibody and its antigen target, commonly known as epitope mapping, is a critical component of the development of therapeutic monoclonal antibodies. With the recent availability of commercial automated systems, hydrogen / deuterium eXchange (HDX) is rapidly becoming the tool for mapping epitopes preferred by researchers in both industry and academia. However, this approach has a significant drawback in that it can be confounded by ‘allosteric’ structural and dynamic changes that result from the interaction, but occur far from the point(s) of contact. Here, we introduce a ‘kinetic’ millisecond HDX workflow that suppresses allosteric effects in epitope mapping experiments. The approach employs a previously introduced microfluidic apparatus that enables millisecond HDX labeling times with on-chip pepsin digestion and electrospray ionization. The ‘kinetic’ workflow also differs from conventional HDX-based epitope mapping in that the antibody is introduced to the antigen at the onset of HDX labeling. Using myoglobin / anti-myoglobin as a model system, we demonstrate that at short ‘kinetic’ workflow labeling times (i.e., 200 ms), the HDX signal is already fully developed at the ‘true’ epitope, but is still largely below the significance threshold at allosteric sites. Identification of the ‘true’ epitope is supported by computational docking predictions and allostery modeling using the rigidity transmission allostery algorithm.
Collapse
Affiliation(s)
- Bin Deng
- a Chemistry Department , York University , 4700 Keele Street, Toronto , ON , Canada.,b The Centre for Research in Mass Spectrometry , York University , Toronto , ON , Canada
| | - Shaolong Zhu
- a Chemistry Department , York University , 4700 Keele Street, Toronto , ON , Canada.,b The Centre for Research in Mass Spectrometry , York University , Toronto , ON , Canada
| | - Andrew M Macklin
- a Chemistry Department , York University , 4700 Keele Street, Toronto , ON , Canada.,b The Centre for Research in Mass Spectrometry , York University , Toronto , ON , Canada
| | - Jianrong Xu
- c Department of Pharmacology, Institute of Medical Sciences , Shanghai Jiao Tong University School of Medicine , Shanghai , P.R. China
| | - Cristina Lento
- a Chemistry Department , York University , 4700 Keele Street, Toronto , ON , Canada.,b The Centre for Research in Mass Spectrometry , York University , Toronto , ON , Canada
| | - Adnan Sljoka
- d Department of Informatics , Kwansei Gakuin University , Nishinomiya , Hyogo , Japan
| | - Derek J Wilson
- a Chemistry Department , York University , 4700 Keele Street, Toronto , ON , Canada.,b The Centre for Research in Mass Spectrometry , York University , Toronto , ON , Canada
| |
Collapse
|
36
|
Antibody Binding Modulates Conformational Exchange in Domain III of Dengue Virus E Protein. J Virol 2015; 90:1802-11. [PMID: 26637461 DOI: 10.1128/jvi.02314-15] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Accepted: 11/25/2015] [Indexed: 02/05/2023] Open
Abstract
UNLABELLED Domain III of dengue virus E protein (DIII) participates in the recognition of cell receptors and in structural rearrangements required for membrane fusion and ultimately viral infection; furthermore, it contains epitopes for neutralizing antibodies and has been considered a potential vaccination agent. In this work, we addressed various structural aspects of DIII and their relevance for both the dengue virus infection mechanism and antibody recognition. We provided a dynamic description of DIII at physiological and endosomal pHs and in complex with the neutralizing human antibody DV32.6. We observed conformational exchange in the isolated DIII, in regions important for the packing of E protein dimers on the virus surface. This conformational diversity is likely to facilitate the partial detachment of DIII from the other E protein domains, which is required to achieve fusion to the host cellular membranes and to expose the epitopes of many anti-DIII antibodies. A comparison of DIII of two dengue virus serotypes revealed many common features but also some possibly unexpected differences. Antibody binding to DIII of dengue virus serotype 4 attenuated the conformational exchange in the epitope region but, surprisingly, generated exchange in other parts of DIII through allosteric effects. IMPORTANCE Many studies have provided extensive structural information on the E protein and particularly on DIII, also in complex with antibodies. However, there is very scarce information regarding the molecular dynamics of DIII, and almost nothing is available on the dynamic effect of antibody binding, especially at the quantitative level. This work provides one of the very rare descriptions of the effect of antibody binding on antigen dynamics.
Collapse
|
37
|
Structural and Computational Biology in the Design of Immunogenic Vaccine Antigens. J Immunol Res 2015; 2015:156241. [PMID: 26526043 PMCID: PMC4615220 DOI: 10.1155/2015/156241] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Accepted: 08/02/2015] [Indexed: 01/08/2023] Open
Abstract
Vaccination is historically one of the most important medical interventions for the prevention of infectious disease. Previously, vaccines were typically made of rather crude mixtures of inactivated or attenuated causative agents. However, over the last 10–20 years, several important technological and computational advances have enabled major progress in the discovery and design of potently immunogenic recombinant protein vaccine antigens. Here we discuss three key breakthrough approaches that have potentiated structural and computational vaccine design. Firstly, genomic sciences gave birth to the field of reverse vaccinology, which has enabled the rapid computational identification of potential vaccine antigens. Secondly, major advances in structural biology, experimental epitope mapping, and computational epitope prediction have yielded molecular insights into the immunogenic determinants defining protective antigens, enabling their rational optimization. Thirdly, and most recently, computational approaches have been used to convert this wealth of structural and immunological information into the design of improved vaccine antigens. This review aims to illustrate the growing power of combining sequencing, structural and computational approaches, and we discuss how this may drive the design of novel immunogens suitable for future vaccines urgently needed to increase the global prevention of infectious disease.
Collapse
|
38
|
Loyau J, Didelot G, Malinge P, Ravn U, Magistrelli G, Depoisier JF, Pontini G, Poitevin Y, Kosco-Vilbois M, Fischer N, Thore S, Rousseau F. Robust Antibody-Antigen Complexes Prediction Generated by Combining Sequence Analyses, Mutagenesis, In Vitro Evolution, X-ray Crystallography and In Silico Docking. J Mol Biol 2015; 427:2647-62. [PMID: 26013163 DOI: 10.1016/j.jmb.2015.05.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Revised: 05/18/2015] [Accepted: 05/19/2015] [Indexed: 11/15/2022]
Abstract
Hu 15C1 is a potent anti-human Toll-like receptor 4 (TLR4) neutralizing antibody. To better understand the molecular basis of its biological activity, we used a multidisciplinary approach to generate an accurate model of the Hu 15C1-TLR4 complex. By combining site-directed mutagenesis, in vitro antibody evolution, affinity measurements and X-ray crystallography of Fab fragments, we identified key interactions across the Hu 15C1-TLR4 interface. These contact points were used as restraints to predict the structure of the Fab region of Hu 15C1 bound to TLR4 using computational molecular docking. This model was further evaluated and validated by additional site-directed mutagenesis studies. The predicted structure of the Hu 15C1-TLR4 complex indicates that the antibody antagonizes the receptor dimerization necessary for its activation. This study exemplifies how iterative cycles of antibody engineering can facilitate the discovery of components of antibody-target interactions.
Collapse
Affiliation(s)
- Jérémy Loyau
- Novimmune SA, Chemin des Aulx 14, 1228 Plan-les-Ouates, Switzerland
| | - Gérard Didelot
- Novimmune SA, Chemin des Aulx 14, 1228 Plan-les-Ouates, Switzerland
| | - Pauline Malinge
- Novimmune SA, Chemin des Aulx 14, 1228 Plan-les-Ouates, Switzerland
| | - Ulla Ravn
- Novimmune SA, Chemin des Aulx 14, 1228 Plan-les-Ouates, Switzerland
| | | | | | | | - Yves Poitevin
- Novimmune SA, Chemin des Aulx 14, 1228 Plan-les-Ouates, Switzerland
| | | | - Nicolas Fischer
- Novimmune SA, Chemin des Aulx 14, 1228 Plan-les-Ouates, Switzerland
| | - Stéphane Thore
- Department of Molecular Biology, University of Geneva, Quai Ernest-Ansermet 30, 1211 Geneva, Switzerland
| | - François Rousseau
- Novimmune SA, Chemin des Aulx 14, 1228 Plan-les-Ouates, Switzerland.
| |
Collapse
|