1
|
Zhang Y, Kunii M, Taniguchi M, Yoshimura SI, Harada A. Rab6-Mediated Polarized Transport of Synaptic Vesicle Precursors Is Essential for the Establishment of Neuronal Polarity and Brain Formation. J Neurosci 2024; 44:e2334232024. [PMID: 38830762 PMCID: PMC11223463 DOI: 10.1523/jneurosci.2334-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 05/13/2024] [Accepted: 05/26/2024] [Indexed: 06/05/2024] Open
Abstract
Neurons are highly polarized cells that are composed of a single axon and multiple dendrites. Axon-dendrite polarity is essential for proper tissue formation and brain functions. Intracellular protein transport plays an important role in the establishment of neuronal polarity. However, the regulatory mechanism of polarized transport remains unclear. Here, we show that Rab6, a small GTPase that acts on the regulation of intracellular vesicular trafficking, plays key roles in neuronal polarization and brain development. Central nervous system-specific Rab6a/b double knock-out (Rab6 DKO) mice of both sexes exhibit severe dysplasia of the neocortex and the cerebellum. In the Rab6 DKO neocortex, impaired axonal extension of neurons results in hypoplasia of the intermediate zone. In vitro, deletion of Rab6a and Rab6b in cultured neurons from both sexes causes the abnormal accumulation of synaptic vesicle precursors (SVPs) adjacent to the Golgi apparatus, which leads to defects in axonal extension and the loss of axon-dendrite polarity. Moreover, Rab6 DKO causes significant expansion of lysosomes in the soma in neurons. Overall, our results reveal that Rab6-mediated polarized transport of SVPs is crucial for neuronal polarization and subsequent brain formation.
Collapse
Affiliation(s)
- Yu Zhang
- Departments of Cell Biology, Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan
| | - Masataka Kunii
- Departments of Cell Biology, Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan
| | - Manabu Taniguchi
- Anatomy and Neuroscience, Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan
| | - Shin-Ichiro Yoshimura
- Departments of Cell Biology, Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan
| | - Akihiro Harada
- Departments of Cell Biology, Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan
| |
Collapse
|
2
|
Blazejewski SM, Bennison SA, Liu X, Toyo-Oka K. High-throughput kinase inhibitor screening reveals roles for Aurora and Nuak kinases in neurite initiation and dendritic branching. Sci Rep 2021; 11:8156. [PMID: 33854138 PMCID: PMC8047044 DOI: 10.1038/s41598-021-87521-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 03/31/2021] [Indexed: 12/25/2022] Open
Abstract
Kinases are essential regulators of a variety of cellular signaling processes, including neurite formation—a foundational step in neurodevelopment. Aberrant axonal sprouting and failed regeneration of injured axons are associated with conditions like traumatic injury, neurodegenerative disease, and seizures. Investigating the mechanisms underlying neurite formation will allow for identification of potential therapeutics. We used a kinase inhibitor library to screen 493 kinase inhibitors and observed that 45% impacted neuritogenesis in Neuro2a (N-2a) cells. Based on the screening, we further investigated the roles of Aurora kinases A, B, and C and Nuak kinases 1 and 2. The roles of Aurora and Nuak kinases have not been thoroughly studied in the nervous system. Inhibition or overexpression of Aurora and Nuak kinases in primary cortical neurons resulted in various neuromorphological defects, with Aurora A regulating neurite initiation, Aurora B and C regulating neurite initiation and elongation, all Aurora kinases regulating arborization, and all Nuak kinases regulating neurite initiation and elongation and arborization. Our high-throughput screening and analysis of Aurora and Nuak kinases revealed their functions and may contribute to the identification of therapeutics.
Collapse
Affiliation(s)
- Sara M Blazejewski
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA, 19129, USA
| | - Sarah A Bennison
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA, 19129, USA
| | - Xiaonan Liu
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA, 19129, USA
| | - Kazuhito Toyo-Oka
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA, 19129, USA.
| |
Collapse
|
3
|
Bennison SA, Blazejewski SM, Smith TH, Toyo-Oka K. Protein kinases: master regulators of neuritogenesis and therapeutic targets for axon regeneration. Cell Mol Life Sci 2020; 77:1511-1530. [PMID: 31659414 PMCID: PMC7166181 DOI: 10.1007/s00018-019-03336-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 09/16/2019] [Accepted: 10/08/2019] [Indexed: 12/25/2022]
Abstract
Proper neurite formation is essential for appropriate neuronal morphology to develop and defects at this early foundational stage have serious implications for overall neuronal function. Neuritogenesis is tightly regulated by various signaling mechanisms that control the timing and placement of neurite initiation, as well as the various processes necessary for neurite elongation to occur. Kinases are integral components of these regulatory pathways that control the activation and inactivation of their targets. This review provides a comprehensive summary of the kinases that are notably involved in regulating neurite formation, which is a complex process that involves cytoskeletal rearrangements, addition of plasma membrane to increase neuronal surface area, coupling of cytoskeleton/plasma membrane, metabolic regulation, and regulation of neuronal differentiation. Since kinases are key regulators of these functions during neuromorphogenesis, they have high potential for use as therapeutic targets for axon regeneration after injury or disease where neurite formation is disrupted.
Collapse
Affiliation(s)
- Sarah A Bennison
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA, 19129, USA
| | - Sara M Blazejewski
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA, 19129, USA
| | - Trevor H Smith
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA, 19129, USA
| | - Kazuhito Toyo-Oka
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA, 19129, USA.
| |
Collapse
|
4
|
Sotiropoulos I, Galas MC, Silva JM, Skoulakis E, Wegmann S, Maina MB, Blum D, Sayas CL, Mandelkow EM, Mandelkow E, Spillantini MG, Sousa N, Avila J, Medina M, Mudher A, Buee L. Atypical, non-standard functions of the microtubule associated Tau protein. Acta Neuropathol Commun 2017; 5:91. [PMID: 29187252 PMCID: PMC5707803 DOI: 10.1186/s40478-017-0489-6] [Citation(s) in RCA: 144] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Accepted: 10/30/2017] [Indexed: 12/21/2022] Open
Abstract
Since the discovery of the microtubule-associated protein Tau (MAPT) over 40 years ago, most studies have focused on Tau's role in microtubule stability and regulation, as well as on the neuropathological consequences of Tau hyperphosphorylation and aggregation in Alzheimer's disease (AD) brains. In recent years, however, research efforts identified new interaction partners and different sub-cellular localizations for Tau suggesting additional roles beyond its standard function as microtubule regulating protein. Moreover, despite the increasing research focus on AD over the last decades, Tau was only recently considered as a promising therapeutic target for the treatment and prevention of AD as well as for neurological pathologies beyond AD e.g. epilepsy, excitotoxicity, and environmental stress. This review will focus on atypical, non-standard roles of Tau on neuronal function and dysfunction in AD and other neurological pathologies providing novel insights about neuroplastic and neuropathological implications of Tau in both the central and the peripheral nervous system.
Collapse
Affiliation(s)
- Ioannis Sotiropoulos
- Life and Health Sciences Research Institute (ICVS), Medical School, University of Minho, Braga, Portugal.
- ICVS/3B's - PT Government Associate Laboratory, Guimarães, Braga, Portugal.
| | | | - Joana M Silva
- Life and Health Sciences Research Institute (ICVS), Medical School, University of Minho, Braga, Portugal
- ICVS/3B's - PT Government Associate Laboratory, Guimarães, Braga, Portugal
| | - Efthimios Skoulakis
- Division of Neuroscience, Biomedical Sciences Research Centre "Alexander Fleming", 16672, Vari, Greece
| | - Susanne Wegmann
- Alzheimer's Disease Research Laboratory, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, 02129, USA
| | - Mahmoud Bukar Maina
- School of Life Sciences, University of Sussex, Falmer, Brighton, East Sussex, BN1 9QG, UK
| | - David Blum
- Univ. Lille, Inserm, CHU Lille, UMR-S 1172 - JPArc, 59000, Lille, France
| | - Carmen Laura Sayas
- Centre for Biomedical Research of the Canary Islands (CIBICAN), Institute for Biomedical Technologies (ITB), Universidad de La Laguna (ULL), Tenerife, Spain
| | - Eva-Maria Mandelkow
- DZNE, German Center for Neurodegenerative Diseases, Bonn, Germany; CAESAR Research Institute, Bonn, Germany; Max-Planck-Institute for Metabolism Research, Köln, Germany
| | - Eckhard Mandelkow
- DZNE, German Center for Neurodegenerative Diseases, Bonn, Germany; CAESAR Research Institute, Bonn, Germany; Max-Planck-Institute for Metabolism Research, Köln, Germany
| | | | - Nuno Sousa
- Life and Health Sciences Research Institute (ICVS), Medical School, University of Minho, Braga, Portugal
- ICVS/3B's - PT Government Associate Laboratory, Guimarães, Braga, Portugal
| | - Jesus Avila
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Valderrebollo 5, 28041, Madrid, Spain
- Centro de Biología Molecular "Severo Ochoa" CSIC-UAM, Universidad Autónoma de Madrid, C/ Nicolás Cabrera 1, 28049, Madrid, Spain
| | - Miguel Medina
- CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, Madrid, Spain
- CIEN Foundation, Queen Sofia Foundation Alzheimer Center, Madrid, Spain
| | - Amrit Mudher
- Faculty of Natural and Environmental Sciences, University of Southampton Highfield Campus, Center for Biological Sciences, Southampton, UK
| | - Luc Buee
- Univ. Lille, Inserm, CHU Lille, UMR-S 1172 - JPArc, 59000, Lille, France
| |
Collapse
|
5
|
Zhou Y, Wu S, Liang C, Lin Y, Zou Y, Li K, Lu B, Shu M, Huang Y, Zhu W, Kang Z, Xu D, Hu J, Yan G. Transcriptional upregulation of microtubule-associated protein 2 is involved in the protein kinase A-induced decrease in the invasiveness of glioma cells. Neuro Oncol 2015; 17:1578-88. [PMID: 26014048 DOI: 10.1093/neuonc/nov060] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2013] [Accepted: 03/14/2015] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Malignant glioma is the most lethal primary tumor of the central nervous system, with notable cell invasion causing significant recurrence. Suppression of glioma invasion is very important for improving clinical outcomes. Drugs that directly disrupt the cytoskeleton have been developed for this purpose; however, drug resistance and unsatisfactory selectivity have limited their clinical use. Previously, we reported that protein kinase A (PKA, also known as cyclic-AMP dependent protein kinase) activation induced the differentiation of glioma cells. METHODS We used several small molecular inhibitors and RNA interference, combined with wound healing assays, Matrigel transwell assay, and microscopic observation, to determine whether activation of the PKA pathway could inhibit the invasion of human glioma cells. RESULTS Activation of PKA decreased the invasion of glioma cells. The mechanism operated via transcriptional upregulation of microtubule-associated protein 2 (MAP2), which was activated by the PKA pathway and led to ossification of microtubule dynamics via polymerization of tubulin. This resulted in morphological changes and a reduction in glioma cell invasion. Furthermore, chromosome immunoprecipitation and quantitative real-time polymerase chain reaction showed that signal transducer and activator of transcription 3 (STAT3) is involved in the transcriptional upregulation of MAP2. CONCLUSION Our findings suggested that PKA may represent a potential target for anti-invasion glioma therapy and that the downstream modulators (eg, STAT3/MAP2) partially mediate the effects of PKA.
Collapse
Affiliation(s)
- Yuxi Zhou
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China (Y.Z., S.W., Y.L., K.L., B.L., M.S., Y.H., W.Z., D.X., J.H., G.Y.); Department of Neurosurgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China (C.L.); Department of Imaging, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China (Y.Z., Z.K.); Department of Microbiology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China (J.H.)
| | - Sihan Wu
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China (Y.Z., S.W., Y.L., K.L., B.L., M.S., Y.H., W.Z., D.X., J.H., G.Y.); Department of Neurosurgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China (C.L.); Department of Imaging, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China (Y.Z., Z.K.); Department of Microbiology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China (J.H.)
| | - Chaofeng Liang
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China (Y.Z., S.W., Y.L., K.L., B.L., M.S., Y.H., W.Z., D.X., J.H., G.Y.); Department of Neurosurgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China (C.L.); Department of Imaging, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China (Y.Z., Z.K.); Department of Microbiology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China (J.H.)
| | - Yuan Lin
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China (Y.Z., S.W., Y.L., K.L., B.L., M.S., Y.H., W.Z., D.X., J.H., G.Y.); Department of Neurosurgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China (C.L.); Department of Imaging, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China (Y.Z., Z.K.); Department of Microbiology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China (J.H.)
| | - Yan Zou
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China (Y.Z., S.W., Y.L., K.L., B.L., M.S., Y.H., W.Z., D.X., J.H., G.Y.); Department of Neurosurgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China (C.L.); Department of Imaging, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China (Y.Z., Z.K.); Department of Microbiology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China (J.H.)
| | - Kai Li
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China (Y.Z., S.W., Y.L., K.L., B.L., M.S., Y.H., W.Z., D.X., J.H., G.Y.); Department of Neurosurgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China (C.L.); Department of Imaging, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China (Y.Z., Z.K.); Department of Microbiology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China (J.H.)
| | - Bingzheng Lu
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China (Y.Z., S.W., Y.L., K.L., B.L., M.S., Y.H., W.Z., D.X., J.H., G.Y.); Department of Neurosurgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China (C.L.); Department of Imaging, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China (Y.Z., Z.K.); Department of Microbiology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China (J.H.)
| | - Minfeng Shu
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China (Y.Z., S.W., Y.L., K.L., B.L., M.S., Y.H., W.Z., D.X., J.H., G.Y.); Department of Neurosurgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China (C.L.); Department of Imaging, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China (Y.Z., Z.K.); Department of Microbiology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China (J.H.)
| | - Yijun Huang
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China (Y.Z., S.W., Y.L., K.L., B.L., M.S., Y.H., W.Z., D.X., J.H., G.Y.); Department of Neurosurgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China (C.L.); Department of Imaging, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China (Y.Z., Z.K.); Department of Microbiology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China (J.H.)
| | - Wenbo Zhu
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China (Y.Z., S.W., Y.L., K.L., B.L., M.S., Y.H., W.Z., D.X., J.H., G.Y.); Department of Neurosurgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China (C.L.); Department of Imaging, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China (Y.Z., Z.K.); Department of Microbiology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China (J.H.)
| | - Zhuang Kang
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China (Y.Z., S.W., Y.L., K.L., B.L., M.S., Y.H., W.Z., D.X., J.H., G.Y.); Department of Neurosurgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China (C.L.); Department of Imaging, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China (Y.Z., Z.K.); Department of Microbiology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China (J.H.)
| | - Dong Xu
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China (Y.Z., S.W., Y.L., K.L., B.L., M.S., Y.H., W.Z., D.X., J.H., G.Y.); Department of Neurosurgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China (C.L.); Department of Imaging, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China (Y.Z., Z.K.); Department of Microbiology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China (J.H.)
| | - Jun Hu
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China (Y.Z., S.W., Y.L., K.L., B.L., M.S., Y.H., W.Z., D.X., J.H., G.Y.); Department of Neurosurgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China (C.L.); Department of Imaging, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China (Y.Z., Z.K.); Department of Microbiology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China (J.H.)
| | - Guangmei Yan
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China (Y.Z., S.W., Y.L., K.L., B.L., M.S., Y.H., W.Z., D.X., J.H., G.Y.); Department of Neurosurgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China (C.L.); Department of Imaging, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China (Y.Z., Z.K.); Department of Microbiology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China (J.H.)
| |
Collapse
|
6
|
Varela-Nallar L, Grabowski CP, Alfaro IE, Alvarez AR, Inestrosa NC. Role of the Wnt receptor Frizzled-1 in presynaptic differentiation and function. Neural Dev 2009; 4:41. [PMID: 19883499 PMCID: PMC2779803 DOI: 10.1186/1749-8104-4-41] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2009] [Accepted: 11/02/2009] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND The Wnt signaling pathway regulates several fundamental developmental processes and recently has been shown to be involved in different aspects of synaptic differentiation and plasticity. Some Wnt signaling components are localized at central synapses, and it is thus possible that this pathway could be activated at the synapse. RESULTS We examined the distribution of the Wnt receptor Frizzled-1 in cultured hippocampal neurons and determined that this receptor is located at synaptic contacts co-localizing with presynaptic proteins. Frizzled-1 was found in functional synapses detected with FM1-43 staining and in synaptic terminals from adult rat brain. Interestingly, overexpression of Frizzled-1 increased the number of clusters of Bassoon, a component of the active zone, while treatment with the extracellular cysteine-rich domain (CRD) of Frizzled-1 decreased Bassoon clustering, suggesting a role for this receptor in presynaptic differentiation. Consistent with this, treatment with the Frizzled-1 ligand Wnt-3a induced presynaptic protein clustering and increased functional presynaptic recycling sites, and these effects were prevented by co-treatment with the CRD of Frizzled-1. Moreover, in synaptically mature neurons Wnt-3a was able to modulate the kinetics of neurotransmitter release. CONCLUSION Our results indicate that the activation of the Wnt pathway through Frizzled-1 occurs at the presynaptic level, and suggest that the synaptic effects of the Wnt signaling pathway could be modulated by local activation through synaptic Frizzled receptors.
Collapse
Affiliation(s)
- Lorena Varela-Nallar
- Centro de Envejecimiento y Regeneración (CARE), Centro de Regulación Celular y Patología "Joaquín V Luco" (CRCP) and MIFAB, Chile
- Laboratorio de Señalización Celular, Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Catalina P Grabowski
- Centro de Envejecimiento y Regeneración (CARE), Centro de Regulación Celular y Patología "Joaquín V Luco" (CRCP) and MIFAB, Chile
| | - Iván E Alfaro
- Centro de Envejecimiento y Regeneración (CARE), Centro de Regulación Celular y Patología "Joaquín V Luco" (CRCP) and MIFAB, Chile
| | - Alejandra R Alvarez
- Laboratorio de Señalización Celular, Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Nibaldo C Inestrosa
- Centro de Envejecimiento y Regeneración (CARE), Centro de Regulación Celular y Patología "Joaquín V Luco" (CRCP) and MIFAB, Chile
| |
Collapse
|
7
|
Cueille N, Blanc CT, Popa-Nita S, Kasas S, Catsicas S, Dietler G, Riederer BM. Characterization of MAP1B heavy chain interaction with actin. Brain Res Bull 2007; 71:610-8. [PMID: 17292804 DOI: 10.1016/j.brainresbull.2006.12.003] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2006] [Revised: 12/01/2006] [Accepted: 12/01/2006] [Indexed: 10/23/2022]
Abstract
Microtubule-associated protein 1B is an essential protein during brain development and neurite outgrowth and was studied by several assays to further characterize actin as a major interacting partner. Tubulin and actin co-immunoprecipitated with MAP1B at similar ratios throughout development. Their identity was identified by mass spectrometry and was confirmed by Western blots. In contrast to previous reports, the MAP1B-actin interaction was not dependent on the MAP1B phosphorylation state, since actin was precipitated from brain tissue throughout development at similar ratios and equal amounts were precipitated before and after dephosphorylation with alkaline phosphatase. MAP1B heavy chain was able to bind actin directly and therefore the N-terminal part of MAP1B heavy chain must also contain an actin-binding site. The binding force of this interaction was measured by atomic force microscopy and values were in the same range as those of MAP1B binding to tubulin or that measured in MAP1B self-aggregation. Aggregation was confirmed by negative staining and electron microscopy. Experiments including COS-7 cells, PC12 cells, cytochalasin D and immunocytochemistry with subsequent confocal laser microscopy, suggested that MAP1B may bind to actin but has no obvious microfilament stabilizing effect. We conclude, that the MAP1B heavy chain has a microtubule-stabilization effect, and contains an actin-binding site that may play a role in the crosslinking of actin and microtubules, a function that may be important in neurite elongation.
Collapse
Affiliation(s)
- N Cueille
- Département de Biologie Cellulaire et de Morphologie, Université de Lausanne, 9 rue du bugnon, CH-1005 Lausanne, Switzerland
| | | | | | | | | | | | | |
Collapse
|
8
|
Riederer BM. Microtubule-associated protein 1B, a growth-associated and phosphorylated scaffold protein. Brain Res Bull 2006; 71:541-58. [PMID: 17292797 DOI: 10.1016/j.brainresbull.2006.11.012] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2006] [Accepted: 11/28/2006] [Indexed: 11/25/2022]
Abstract
Microtubule-associated protein 1B, MAP1B, is one of the major growth associated and cytoskeletal proteins in neuronal and glial cells. It is present as a full length protein or may be fragmented into a heavy chain and a light chain. It is essential to stabilize microtubules during the elongation of dendrites and neurites and is involved in the dynamics of morphological structures such as microtubules, microfilaments and growth cones. MAP1B function is modulated by phosphorylation and influences microtubule stability, microfilaments and growth cone motility. Considering its large size, several interactions with a variety of other proteins have been reported and there is increasing evidence that MAP1B plays a crucial role in the stability of the cytoskeleton and may have other cellular functions. Here we review molecular and functional aspects of this protein, evoke its role as a scaffold protein and have a look at several pathologies where the protein may be involved.
Collapse
Affiliation(s)
- Beat M Riederer
- Département de Biologie Cellulaire et de Morphologi), Université de Lausanne, 9 rue du Bugnon, CH-1005 Lausanne, Switzerland.
| |
Collapse
|
9
|
Armentano M, Filosa A, Andolfi G, Studer M. COUP-TFI is required for the formation of commissural projections in the forebrain by regulating axonal growth. Development 2006; 133:4151-62. [PMID: 17021036 DOI: 10.1242/dev.02600] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
The transcription factor COUP-TFI (NR2F1), an orphan member of the nuclear receptor superfamily, is an important regulator of neurogenesis, cellular differentiation and cell migration. In the forebrain, COUP-TFI controls the connectivity between thalamus and cortex and neuronal tangential migration in the basal telencephalon. Here, we show that COUP-TFI is required for proper axonal growth and guidance of all major forebrain commissures. Fibres of the corpus callosum, the hippocampal commissure and the anterior commissure project aberrantly and fail to cross the midline in COUP-TFI null mutants. Moreover, hippocampal neurons lacking COUP-TFI have a defect in neurite outgrowth and show an abnormal axonal morphology. To search for downstream effectors, we used microarray analysis and showed that, in the absence of COUP-TFI, expression of various cytoskeleton molecules involved in neuronal morphogenesis is affected. Diminished protein levels of the microtubule-associated protein MAP1B and increased levels of the GTP-binding protein RND2 were confirmed in the developing cortex in vivo and in primary hippocampal neurons in vitro. Therefore, based on morphological studies, gene expression profiling and primary cultured neurons, the present data uncover a previously unappreciated intrinsic role for COUP-TFI in axonal growth in vivo and supply one of the premises for COUP-TFI coordination of neuronal morphogenesis in the developing forebrain.
Collapse
Affiliation(s)
- Maria Armentano
- TIGEM (Telethon Institute of Genetics and Medicine Disorders Program, Via P. Castellino 111, 80131 Napoli, Italy
| | | | | | | |
Collapse
|
10
|
Jacobson C, Schnapp B, Banker GA. A Change in the Selective Translocation of the Kinesin-1 Motor Domain Marks the Initial Specification of the Axon. Neuron 2006; 49:797-804. [PMID: 16543128 DOI: 10.1016/j.neuron.2006.02.005] [Citation(s) in RCA: 212] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2005] [Revised: 01/07/2006] [Accepted: 02/03/2006] [Indexed: 12/25/2022]
Abstract
We used the accumulation of constitutively active kinesin motor domains as a measure of where kinesins translocate in developing neurons. Throughout development, truncated Kinesin-3 accumulates at the tips of all neurites. In contrast, Kinesin-1 selectively accumulates in only a subset of neurites. Before neurons become polarized, truncated Kinesin-1 accumulates transiently in a single neurite. Coincident with axon specification, truncated Kinesin-1 accumulates only in the emerging axon and no longer appears in any other neurite. The translocation of Kinesin-1 along a biochemically distinct track leading to the nascent axon could ensure the selective delivery of Kinesin-1 cargoes to the axon and hence contribute to its molecular specification. Imaging YFP-tagged truncated Kinesin-1 provides the most precise definition to date of when neuronal polarity first emerges and allows visualization of the molecular differentiation of the axon in real time.
Collapse
Affiliation(s)
- Catherine Jacobson
- Center for Research on Occupational and Environmental Toxicology, Oregon Health & Science University, Portland, Oregon 97239, USA
| | | | | |
Collapse
|
11
|
Bondallaz P, Barbier A, Soehrman S, Grenningloh G, Riederer BM. The control of microtubule stability in vitro and in transfected cells by MAP1B and SCG10. ACTA ACUST UNITED AC 2006; 63:681-95. [PMID: 17009328 DOI: 10.1002/cm.20154] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
In neurons, the regulation of microtubules plays an important role for neurite outgrowth, axonal elongation, and growth cone steering. SCG10 family proteins are the only known neuronal proteins that have a strong destabilizing effect, are highly enriched in growth cones and are thought to play an important role during axonal elongation. MAP1B, a microtubule-stabilizing protein, is found in growth cones as well, therefore it was important to test their effect on microtubules in the presence of both proteins. We used recombinant proteins in microtubule assembly assays and in transfected COS-7 cells to analyze their combined effects in vitro and in living cells, respectively. Individually, both proteins showed their expected activities in microtubule stabilization and destruction respectively. In MAP1B/SCG10 double-transfected cells, MAP1B could not protect microtubules from SCG10-induced disassembly in most cells, in particular not in cells that contained high levels of SCG10. This suggests that SCG10 is more potent to destabilize microtubules than MAP1B to rescue them. In microtubule assembly assays, MAP1B promoted microtubule formation at a ratio of 1 MAP1B per 70 tubulin dimers while a ratio of 1 SCG10 per two tubulin dimers was needed to destroy microtubules. In addition to its known binding to tubulin dimers, SCG10 binds also to purified microtubules in growth cones of dorsal root ganglion neurons in culture. In conclusion, neuronal microtubules are regulated by antagonistic effects of MAP1B and SCG10 and a fine tuning of the balance of these proteins may be critical for the regulation of microtubule dynamics in growth cones.
Collapse
Affiliation(s)
- Percy Bondallaz
- Département de Biologie Cellulaire et de Morphologie, University of Lausanne, 1005 Lausanne, Switzerland
| | | | | | | | | |
Collapse
|
12
|
Bouquet C, Soares S, von Boxberg Y, Ravaille-Veron M, Propst F, Nothias F. Microtubule-associated protein 1B controls directionality of growth cone migration and axonal branching in regeneration of adult dorsal root ganglia neurons. J Neurosci 2005; 24:7204-13. [PMID: 15306655 PMCID: PMC6729172 DOI: 10.1523/jneurosci.2254-04.2004] [Citation(s) in RCA: 125] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
During development, microtubule-associated protein 1B (MAP1B) is one of the earliest MAPs, preferentially localized in axons and growth cones, and plays a role in axonal outgrowth. Although generally downregulated in the adult, we have shown that MAP1B is constitutively highly expressed in adult dorsal root ganglia (DRGs) and associated with central sprouting and peripheral regeneration of these neurons. Mutant mice with a complete MAP1B null allele that survive until adulthood exhibit a reduced myelin sheath diameter and conductance velocity of peripheral axons and lack of the corpus callosum. Here, to determine the function of MAP1B in axonal regeneration, we used cultures of adult DRG explants and/or dissociated neurons derived from this map1b-/- mouse line. Whereas the overall length of regenerating neurites lacking MAP1B was similar to wild-type controls, our analysis revealed two main defects. First, map1b-/- neurites exhibited significantly (twofold) higher terminal and collateral branching. Second, the turning capacity of growth cones (i.e., "choice" of a proper orientation) was impaired. In addition, lack of MAP1B may affect the post-translational modification of tubulin polymers: quantitative analysis showed a reduced amount of acetylated microtubules within growth cones, whereas the distribution of tyrosinated or detyrosinated microtubules was normal. Both growth cone turning and axonal branch formation are known to involve local regulation of the microtubule network. Our results demonstrate that MAP1B plays a role in these processes during plastic changes in the adult. In particular, the data suggest MAP1B implication in the locally coordinated assembly of cytoskeletal components required for branching and straight directional axon growth.
Collapse
Affiliation(s)
- Céline Bouquet
- Unité Mixte de Recherche 7101, Centre National de la Recherche Scientifique-Université Pierre et Marie Curie, Laboratory Neurobiologie des Signaux Intercellulaires, Institut Fédératif de Recherche-Biologie Intégrative, Paris, France
| | | | | | | | | | | |
Collapse
|
13
|
Alfei L, Soares S, Alunni A, Ravaille-Veron M, Von Boxberg Y, Nothias F. Expression of MAP1B protein and its phosphorylated form MAP1B-P in the CNS of a continuously growing fish, the rainbow trout. Brain Res 2004; 1009:54-66. [PMID: 15120583 DOI: 10.1016/j.brainres.2004.02.043] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/19/2004] [Indexed: 11/28/2022]
Abstract
Microtubule-associated protein-1B (MAP1B), and particularly its phosphorylated isoform MAP1B-P, play an important role in axonal outgrowth during development of the mammalian nervous system and have also been shown to be associated with axonal plasticity in the adult. Here, we used antibodies and mRNA probes directed against mammalian MAP1B to extend our analysis to fish species, trout (Oncorhynchus mykiss), at different stages of development. The specificity of the cross-reaction of our anti-total-MAP1B/MAP1B-P antibodies was confirmed by Western blotting. Trout MAP1B-like proteins exhibited about the same apparent molecular weight (320 kDa) as rat-MAP1B. Immunohistochemistry and in situ hybridization analysis performed on hindbrain and spinal cord revealed the presence of MAP1B in neurons and some glial subpopulations. Primary sensory neurons and motoneurons maintain high levels of MAP1B expression from early stages throughout adulthood, as has been shown for mammals. Unlike mammals, however, MAP1B and axon-specific MAP1B-P continue to be strongly expressed by hindbrain neurons projecting into spinal cord, with the important exception of Mauthner cells. MAP1B/MAP1B-P immunostaining were also detected elsewhere within the brain, including axons of the retino-tectal projection. This obvious difference between adult fish and mammals is likely to reflect the capacity of fish for continued growth and regeneration. Our results suggest that MAP1B/MAP1B-P expression is generally maintained in neurons known to regenerate after axotomy. The regenerative potential of the adult nervous system may in fact depend on continued expression of neuron-intrinsic growth related proteins, a feature of MAP1B that appears phylogenetically conserved.
Collapse
Affiliation(s)
- Laura Alfei
- Department of Animal Biology, University of Rome La Sapienza, 00161 Rome, Italy
| | | | | | | | | | | |
Collapse
|
14
|
Soares S, von Boxberg Y, Lombard MC, Ravaille-Veron M, Fischer I, Eyer J, Nothias F. Phosphorylated MAP1B is induced in central sprouting of primary afferents in response to peripheral injury but not in response to rhizotomy. Eur J Neurosci 2002; 16:593-606. [PMID: 12270035 DOI: 10.1046/j.1460-9568.2002.02126.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
A peripheral nerve lesion induces sprouting of primary afferents from dorsal root ganglion (DRG) neurons into lamina II of the dorsal horn. Modifications of the environment in consequence to the axotomy provide an extrinsic stimulus. A potential neuron-intrinsic factor that may permit axonal sprouting is microtubule-associated protein 1B (MAP1B) in a specific phosphorylated form (MAP1B-P), restricted to growing or regenerating axons. We show here that both in rat and mouse, a sciatic nerve cut is rapidly followed by the appearance of MAP1B-P expression in lamina II, increasing to a maximum between 8 and 15 days, and diminishing after three months. Evidence is provided that sprouting and induction of MAP1B-P expression after peripheral injury are phenomena concerning essentially myelinated axons. This is in accordance with in situ hybridization data showing especially high MAP1B-mRNA levels in large size DRG neurons that give rise to myelinated fibers. We then employed a second lesion model, multiple rhizotomy with one spared root. In this case, unmyelinated CGRP expressing fibers do indeed sprout, but coexpression of MAP1B-P and CGRP is never observed in lamina II. Finally, because a characteristic of myelinated fibers is their high content in neurofilament protein heavy subunit (NF-H), we used NF-H-LacZ transgenic mice to verify that MAP1B-P induction and central sprouting were not affected by perturbing the axonal organization of neurofilaments. We conclude that MAP1B-P is well suited as a rapidly expressed, axon-intrinsic marker associated with plasticity of myelinated fibers.
Collapse
Affiliation(s)
- Sylvia Soares
- UMR7101, CNRS-UPMC, Université P & M Curie, 75005 Paris, France
| | | | | | | | | | | | | |
Collapse
|
15
|
Jones LB, Johnson N, Byne W. Alterations in MAP2 immunocytochemistry in areas 9 and 32 of schizophrenic prefrontal cortex. Psychiatry Res 2002; 114:137-48. [PMID: 12113896 DOI: 10.1016/s0925-4927(02)00022-7] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
A variety of lines of converging evidence implicate the prefrontal cortex (PFC) in schizophrenia. Studies employing Nissl stains have suggested that PFC dendrites may be atrophic in schizophrenia; however, Nissl stains do not reveal dendrites. We employed MAP2 immunocytochemistry, which stains dendrites to examine cortical layers III and V in two areas of the PFC (areas 9 and 32). Occipital cortex (area 17) was examined as a control region. Tissues from seven schizophrenics and seven non-psychiatric controls were examined. Immunostaining was quantitated by area fraction analysis. MAP2 area fraction was decreased in both layers in both regions of PFC, but not in occipital cortex. Area 9 exhibited a 42% reduction in layer V and a 36% reduction in layer III. Area 32 exhibited a 31% reduction in layer V and a 36% reduction in layer III. Neither region exhibited a significant change in the density of pyramidal cells. These data are consistent with the hypothesis of a schizophrenia-associated decrease in dendritic material in the PFC.
Collapse
Affiliation(s)
- Liesl B Jones
- Lehman College, Department Biological Sciences, 250 Bedford Park Blvd., NY 10468, Bronx, USA.
| | | | | |
Collapse
|
16
|
Dieterich DC, Trivedi N, Engelmann R, Gundelfinger ED, Gordon-Weeks PR, Kreutz MR. Partial regeneration and long-term survival of rat retinal ganglion cells after optic nerve crush is accompanied by altered expression, phosphorylation and distribution of cytoskeletal proteins. Eur J Neurosci 2002; 15:1433-43. [PMID: 12028353 DOI: 10.1046/j.1460-9568.2002.01977.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In a screen to identify genes that are expressed differentially in the retina after partial optic nerve crush, we identified MAP1B as an up-regulated transcript. Western blot analysis of inner retina protein preparations confirmed changes in the protein composition of the microtubule-associated cytoskeleton of crushed vs. uncrushed nerve. MAP1B immunoreactivity and transcript levels were elevated for two weeks after crush. Immunostaining and Western blots with monoclonal antibodies directed against developmentally regulated phosphorylation sites on MAP1B revealed a gradient of MAP1B phosphorylation from the proximal optic nerve stump to the soma of retinal ganglion cells. Most interestingly, using antibodies directed against developmentally regulated phosphorylation sites on MAP1B, we observed that a significant number of crushed optic nerve axons develop MAP1B-immunopositive growth cones, which cross the crush site and migrate along the distal nerve fragment. In parallel, an abnormal distribution of highly phosphorylated neurofilament protein (pNF-H) in the cell soma and dendrites of presumably axotomized retinal ganglion cells was observed following partial nerve crush. This redistribution is present for the period between day 7 and 28 postcrush and is not seen in cells that stay connected to the superior colliculus. Axotomized ganglion cells, which contain pNF-H in soma and dendrites appear to have been disconnected from the colliculus at an early stage but survive axonal trauma for long periods.
Collapse
Affiliation(s)
- Daniela C Dieterich
- AG Molecular Mechanisms of Plasticity, Department of Neurochemistry/Molecular Biology, Leibniz Institute for Neurobiology, Magdeburg, Germany
| | | | | | | | | | | |
Collapse
|
17
|
Cassimeris L, Spittle C. Regulation of microtubule-associated proteins. INTERNATIONAL REVIEW OF CYTOLOGY 2002; 210:163-226. [PMID: 11580206 DOI: 10.1016/s0074-7696(01)10006-9] [Citation(s) in RCA: 160] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Microtubule-associated proteins (MAPs) function to regulate the assembly dynamics and organization of microtubule polymers. Upstream regulation of MAP activities is the major mechanism used by cells to modify and control microtubule assembly and organization. This review summarizes the functional activities of MAPs found in animal cells and discusses how these MAPs are regulated. Mechanisms controlling gene expression, isoform-specific expression, protein localization, phosphorylation, and degradation are discussed. Additional regulatory mechanisms include synergy or competition between MAPs and the activities of cofactors or binding partners. For each MAP it is likely that regulation in vivo reflects a composite of multiple regulatory mechanisms.
Collapse
Affiliation(s)
- L Cassimeris
- Department of Biological Sciences, Lehigh University Bethlehem, Pennsylvania 18015, USA
| | | |
Collapse
|
18
|
Skaper SD, Moore SE, Walsh FS. Cell signalling cascades regulating neuronal growth-promoting and inhibitory cues. Prog Neurobiol 2001; 65:593-608. [PMID: 11728645 DOI: 10.1016/s0301-0082(01)00017-x] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
During development of the nervous system, neurons extend axons over considerable distances in a highly stereospecific fashion in order to innervate their targets in an appropriate manner. This involves the recognition, by the axonal growth cone, of guidance cues that determine the pathway taken by the axons. These guidance cues can act to promote and/or repel growth cone advance, and they can act either locally or at a distance from their place of synthesis. The directed growth of axons is partly governed by cell adhesion molecules (CAMs) on the neuronal growth cone that bind to CAMs on the surface of other axons or non-neuronal cells. In vitro assays have established the importance of the CAMs (N-CAM, N-cadherin and the L1 glycoprotein) in promoting axonal growth over cells, such as Schwann cells, astrocytes and muscle cells. Strong evidence now exists implicating the fibroblast growth factor receptor tyrosine kinase as the primary signal transduction molecule in the CAM pathway. Cell adhesion molecules are important constituents of synapses, and CAMs appear to play important and diverse roles in regulating synaptic plasticity associated with learning and memory. Negative extracellular signals which physically direct neurite growth have also been described. The latter include the neuronal growth inhibitory proteins Nogo and myelin-associated glycoprotein, as well as the growth cone collapsing Semaphorins/neuropilins. Although less well characterised, evidence is now beginning to emerge describing a role for Rho kinase-mediated signalling in inhibition of neurite outgrowth. This review focuses on some of the major themes and ideas associated with this fast-moving field of neuroscience.
Collapse
Affiliation(s)
- S D Skaper
- Neurology Centre of Excellence for Drug Discovery, GlaxoSmithKline Pharmaceuticals, New Frontiers Science Park, Third Avenue, Essex CM19 5AW, Harlow, UK
| | | | | |
Collapse
|
19
|
Teng J, Takei Y, Harada A, Nakata T, Chen J, Hirokawa N. Synergistic effects of MAP2 and MAP1B knockout in neuronal migration, dendritic outgrowth, and microtubule organization. J Cell Biol 2001; 155:65-76. [PMID: 11581286 PMCID: PMC2150794 DOI: 10.1083/jcb.200106025] [Citation(s) in RCA: 224] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
MAP1B and MAP2 are major members of neuronal microtubule-associated proteins (MAPs). To gain insights into the function of MAP2 in vivo, we generated MAP2-deficient (map2(-/-)) mice. They developed without any apparent abnormalities, which indicates that MAP2 is dispensable in mouse survival. Because previous reports suggest a functional redundancy among MAPs, we next generated mice lacking both MAP2 and MAP1B to test their possible synergistic functions in vivo. Map2(-/-)map1b(-/-) mice died in their perinatal period. They showed not only fiber tract malformations but also disrupted cortical patterning caused by retarded neuronal migration. In spite of this, their cortical layer maintained an "inside-out" pattern. Detailed observation of primary cultures of hippocampal neurons from map2(-/-)map1b(-/-) mice revealed inhibited microtubule bundling and neurite elongation. In these neurons, synergistic effects caused by the loss of MAP2 and MAP1B were more apparent in dendrites than in axons. The spacing of microtubules was reduced significantly in map2(-/-)map1b(-/-) mice in vitro and in vivo. These results suggest that MAP2 and MAP1B have overlapping functions in neuronal migration and neurite outgrowth by organizing microtubules in developing neurons both for axonal and dendritic morphogenesis but more dominantly for dendritic morphogenesis.
Collapse
Affiliation(s)
- J Teng
- Department of Cell Biology and Anatomy, Graduate School of Medicine, University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | | | | | | | | | | |
Collapse
|
20
|
Pimenta AF, Strick PL, Levitt P. Novel proteoglycan epitope expressed in functionally discrete patterns in primate cortical and subcortical regions. J Comp Neurol 2001. [DOI: 10.1002/1096-9861(20010212)430:3<369::aid-cne1037>3.0.co;2-c] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
21
|
Ma D, Connors T, Nothias F, Fischer I. Regulation of the expression and phosphorylation of microtubule-associated protein 1B during regeneration of adult dorsal root ganglion neurons. Neuroscience 2000; 99:157-70. [PMID: 10924960 DOI: 10.1016/s0306-4522(00)00141-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Microtubule-associated protein 1B is a major constituent of the neuronal cytoskeleton during the early stages of development. This protein and its phosphorylated isoform, microtubule-associated protein 1B-P, defined by the monoclonal antibody 1B-P [Boyne L. J. et al. (1995) J. Neurosci. Res. 40, 439-450], are present in growing axons and concentrated in the distal end near the growth cone. In most regions of the central nervous system, microtubule-associated protein 1B and microtubule-associated protein 1B-P are developmentally down-regulated. They remain, however, at relatively high levels in the adult peripheral nervous system, where microtubule-associated protein 1B-P is localized exclusively in axons. The aim of this study was to examine the levels of microtubule-associated protein 1B and its phosphorylated isoform during regenerative growth of peripheral axons. Following transection and re-apposition of the sciatic nerve at midthigh, the levels of total microtubule-associated protein 1B, microtubule-associated protein 1B-P and microtubule-associated protein 1B messenger RNA were analysed in dorsal root ganglion neurons and sciatic nerve axons using western blots and RNase protection assays. After the lesion, there was a small decrease in the levels of microtubule-associated protein 1B and its messenger RNA in dorsal root ganglion neurons. The proximal axonal stump showed a similar decrease in the levels of microtubule-associated protein 1B 30days after lesion and returned to normal 60-90days post-lesion. In the distal stump of the sciatic nerve, the levels of microtubule-associated protein 1B increased dramatically and rapidly between three and 14days, but the protein was localized mainly in activated Schwann cells and myelin-like structures, and not in axons [Ma D. et al. (1999) Brain Res. 823, 141-153]. With the regeneration of axons into the distal stump, an intense expression of microtubule-associated protein 1B was observed in these axons. Microtubule-associated protein 1B-P, however, disappeared from the degenerated distal axonal stump as early as three days post-operation, and was absent in the regenerating axons and in Schwann cells between three and 14days. The levels of microtubule-associated protein 1B-P recovered slowly and did not reach the normal levels even after 90days post-operation. In contrast to the response following transection, the levels of microtubule-associated protein 1B and microtubule-associated protein 1B-P were much less affected after nerve crush. We propose that the relatively high levels of microtubule-associated protein 1B and its messenger RNA in adult dorsal root ganglions support peripheral neuron regeneration. The presence of microtubule-associated protein 1B in the regenerating axons suggests that microtubule-associated protein 1B is involved in axonal growth during peripheral nerve regeneration. However, the phosphorylated microtubule-associated protein 1B-P isoform, associated with growing axons during development, is not present in the regenerating axons after transection, presumably because of changes in the activities of kinases and phosphatases associated with the injury. These observations underscore the difference between axonal development and regeneration and the importance of injury-related effects that occur locally.
Collapse
Affiliation(s)
- D Ma
- Department of Neurobiology and Anatomy, Medical College of Pennsylvania Hahnemann University, 3200 Henry Avenue, Philadelphia, PA 19129, USA
| | | | | | | |
Collapse
|
22
|
Axonal transport of microtubule-associated protein 1B (MAP1B) in the sciatic nerve of adult rat: distinct transport rates of different isoforms. J Neurosci 2000. [PMID: 10704485 DOI: 10.1523/jneurosci.20-06-02112.2000] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Cytoskeletal proteins are axonally transported with slow components a and b (SCa and SCb). In peripheral nerves, the transport velocity of SCa, which includes neurofilaments and tubulin, is 1-2 mm/d, whereas SCb, which includes actin, tubulin, and numerous soluble proteins, moves as a heterogeneous wave at 2-4 mm/d. We have shown that two isoforms of microtubule-associated protein 1B (MAP1B), which can be separated on SDS polyacrylamide gels on the basis of differences in their phosphorylation states (band I and band II), were transported at two different rates. All of band I MAP1B moved as a coherent wave at a velocity of 7-9 mm/d, distinct from slow axonal transport components SCa and SCb. Several other proteins were detected within the component that moved at the velocity of 7-9 mm/d, including the leading wave of tubulin and actin. The properties of this component define a distinct fraction of the slow axonal transport that we suggest to term slow component c (SCc). The relatively fast transport of the phosphorylated MAP1B isoform at 7-9 mm/d may account for the high concentration of phosphorylated MAP1B in the distal end of growing axons. In contrast to band I MAP1B, the transport profile of band II was complex and contained components moving with SCa and SCb and a leading edge at SCc. Thus, MAP1B isoforms in different phosphorylation states move with distinct components of slow axonal transport, possibly because of differences in their abilities to associate with other proteins.
Collapse
|
23
|
Mack TG, Koester MP, Pollerberg GE. The microtubule-associated protein MAP1B is involved in local stabilization of turning growth cones. Mol Cell Neurosci 2000; 15:51-65. [PMID: 10662505 DOI: 10.1006/mcne.1999.0802] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
For the development of the nervous system it is crucial that growth cones detect environmental information and react by altering their growth direction. The latter process is thought to depend on local stabilization of growth cone microtubules. We have obtained evidence of a role for the microtubule-associated protein MAP1B, in particular a mode 1 phosphoisoform of the molecule, P1-MAP1B, in this process. P1-MAP1B is tightly associated with the cytoskeleton and is present at highest concentrations in the distal axon and the growth cone of chick retinal ganglion cells. In growth cones turning at nonpermissive substrate borders, P1-MAP1B is restricted to regions which are stabilized. Unilateral neutralization of P1-MAP1B in one-half the growth cone by microscale chromophore-assisted laser inactivation changes growth cone motility, morphology, and growth direction. The results indicate a functional role for P1-MAP1B in local growth cone stabilization and thus growth cone steering.
Collapse
Affiliation(s)
- T G Mack
- Institute of Zoology, University of Heidelberg, Im Neuenheimer Feld 232, Heidelberg, D-69120, Germany
| | | | | |
Collapse
|
24
|
Emery DL, Raghupathi R, Saatman KE, Fischer I, Grady MS, McIntosh TK. Bilateral growth-related protein expression suggests a transient increase in regenerative potential following brain trauma. J Comp Neurol 2000. [DOI: 10.1002/1096-9861(20000828)424:3<521::aid-cne9>3.0.co;2-8] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
25
|
Ekinci FJ, Malik KU, Shea TB. Activation of the L voltage-sensitive calcium channel by mitogen-activated protein (MAP) kinase following exposure of neuronal cells to beta-amyloid. MAP kinase mediates beta-amyloid-induced neurodegeneration. J Biol Chem 1999; 274:30322-7. [PMID: 10514528 DOI: 10.1074/jbc.274.42.30322] [Citation(s) in RCA: 134] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Neuronal degeneration in Alzheimer's disease (AD) has been variously attributed to increases in cytosolic calcium, reactive oxygen species, and phosphorylated forms of the microtubule-associated protein tau. beta-Amyloid (betaA), which accumulates extracellularly in AD brain, induces calcium influx in culture via the L voltage-sensitive calcium channel. Since this channel is normally activated by protein kinase A-mediated phosphorylation, we examined kinase activities recruited following betaA treatment of cortical neurons and SH-SY-5Y neuroblastoma. betaA increased channel phosphorylation; this increase was unaffected by the protein kinase A inhibitor H89 but was reduced by the mitogen-activated protein (MAP) kinase inhibitor PD98059. Pharmacological and antisense oligonucleotide-mediated reduction of MAP kinase activity also reduced betaA-induced accumulation of calcium, reactive oxygen species, phospho-tau immunoreactivity, and apoptosis. These findings indicate that MAP kinase mediates multiple aspects of betaA-induced neurotoxicity and indicates that calcium influx initiates neurodegeneration in AD. betaA increased MAP kinase-mediated phosphorylation of membrane-associated proteins and reduced phosphorylation of cytosolic proteins without increasing overall MAP kinase activity. Increasing MAP kinase activity with epidermal growth factor did not increase channel phosphorylation. These findings indicate that redirection, rather than increased activation, of MAP kinase activity mediates betaA-induced neurotoxicity.
Collapse
Affiliation(s)
- F J Ekinci
- Center for Cellular Neurobiology, Department of Biological Sciences, University of Massachusetts, Lowell, Massachusetts 01854, USA
| | | | | |
Collapse
|
26
|
Rabacchi SA, Kruk B, Hamilton J, Carney C, Hoffman JR, Meyer SL, Springer JE, Baird DH. BDNF and NT4/5 promote survival and neurite outgrowth of pontocerebellar mossy fiber neurons. ACTA ACUST UNITED AC 1999. [DOI: 10.1002/(sici)1097-4695(199908)40:2<254::aid-neu11>3.0.co;2-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
27
|
Liu Y, Himes BT, Solowska J, Moul J, Chow SY, Park KI, Tessler A, Murray M, Snyder EY, Fischer I. Intraspinal delivery of neurotrophin-3 using neural stem cells genetically modified by recombinant retrovirus. Exp Neurol 1999; 158:9-26. [PMID: 10448414 DOI: 10.1006/exnr.1999.7079] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Neural stem cells have been shown to participate in the repair of experimental CNS disorders. To examine their potential in spinal cord repair, we used retroviral vectors to genetically modify a clone of neural stem cells, C17, to overproduce neurotrophin-3 (NT-3). The cells were infected with a retrovirus construct containing the NT-3.IRES.lacZ/neo sequence and cloned by limiting dilution and selection for lacZ expression. We studied the characteristics of the modified neural stem cells in vitro and after transplantation into the intact spinal cord of immunosuppressed adult rats. Our results show that: (i) most of the genetically modified cells express both NT-3 and lacZ genes with a high coexpression ratio in vitro and after transplantation; and (ii) large numbers of the xenografted cells survive in the spinal cord of adult rats for at least 2 months, differentiate into neuronal and glial phenotypes, and migrate for long distances. We conclude that genetically modified neural stem cells, acting as a source of neurotrophic factors, have the potential to participate in spinal cord repair.
Collapse
Affiliation(s)
- Y Liu
- Department of Neurobiology and Anatomy, Medical College of Pennsylvania Hahnemann University, Philadelphia 19129, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Ma D, Chow S, Obrocka M, Connors T, Fischer I. Induction of microtubule-associated protein 1B expression in Schwann cells during nerve regeneration. Brain Res 1999; 823:141-53. [PMID: 10095020 DOI: 10.1016/s0006-8993(99)01148-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Microtubule-associated protein 1B (MAP1B) is expressed at high levels during development of the nervous system and is localized primarily in neurons while specific phosphorylated isoforms of MAP1B are localized exclusively in growing axons. The levels of MAP1B are down regulated in most regions of the adult CNS, but remain high in neurons and axons of the PNS. This study demonstrates that the expression of MAP1B is induced in adult Schwann cells following sciatic nerve lesion and regeneration. High levels of both mRNA and the MAP1B protein were detected in Schwann cells associated with the axotomized distal stump. Expression of MAP1B was also observed in cultured primary Schwann cells from neonatal rats. The properties of the MAP1B protein in cultured Schwann cells were further characterized by Western blot analysis using specific antibodies that recognize the N-terminal, middle and C-terminal domains of MAP1B. All of these antibodies detected a protein of 320-340 kDa demonstrating that MAP1B expressed by Schwann cells is very similar, or identical, to MAP1B expressed by neurons. The phosphorylation of MAP1B in Schwann cells was also studied using monoclonal antibodies (mAb) that recognize specific phosphorylation epitopes. The results indicated that the expression of MAP1B in Schwann cells exhibited a differential phosphorylation state that was recognized by mAb 1B6 but not by other mAbs, including 1B-P, 150 and RT97, that recognize phosphorylated MAP1B in growing axons. We therefore conclude that MAP1B is expressed in Schwann cells during both development and axonal regeneration, suggesting that the developmental pattern of MAP1B in these cells is recapitulated in adult Schwann cells during the early stages of regeneration and remyelination of injured peripheral axons. The presence of MAP1B in Schwann cells may support morphological changes of these cells, particularly the formation of processes prior to their differentiation into myelin forming Schwann cells.
Collapse
Affiliation(s)
- D Ma
- Department of Neurobiology and Anatomy, Medical College of Pennsylvania Hahnemann University, 3200 Henry Avenue, Philadelphia, PA 19129, USA
| | | | | | | | | |
Collapse
|
29
|
Tögel M, Wiche G, Propst F. Novel features of the light chain of microtubule-associated protein MAP1B: microtubule stabilization, self interaction, actin filament binding, and regulation by the heavy chain. J Biophys Biochem Cytol 1998; 143:695-707. [PMID: 9813091 PMCID: PMC2148156 DOI: 10.1083/jcb.143.3.695] [Citation(s) in RCA: 129] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Previous studies on the role of microtubule-associated protein 1B (MAP1B) in adapting microtubules for nerve cell-specific functions have examined the activity of the entire MAP1B protein complex consisting of heavy and light chains and revealed moderate effects on microtubule stability. Here we have analyzed the effects of the MAP1B light chain in the absence or presence of the heavy chain by immunofluorescence microscopy of transiently transfected cells. Distinct from all other MAPs, the MAP1B light chain-induced formation of stable but apparently flexible microtubules resistant to the effects of nocodazole and taxol. Light chain activity was inhibited by the heavy chain. In addition, the light chain was found to harbor an actin filament binding domain in its COOH terminus. By coimmunoprecipitation experiments using epitope-tagged fragments of MAP1B we showed that light chains can dimerize or oligomerize. Furthermore, we localized the domains for heavy chain-light chain interaction to regions containing sequences homologous to MAP1A. Our findings assign several crucial activities to the MAP1B light chain and suggest a new model for the mechanism of action of MAP1B in which the heavy chain might act as the regulatory subunit of the MAP1B complex to control light chain activity.
Collapse
Affiliation(s)
- M Tögel
- Institute of Biochemistry and Molecular Cell Biology, Vienna Biocenter, University of Vienna, A-1030 Vienna, Austria
| | | | | |
Collapse
|
30
|
Bulinski JC, Ohm T, Roder H, Spruston N, Turner DA, Wheal HV. Changes in dendritic structure and function following hippocampal lesions: correlations with developmental events? Prog Neurobiol 1998; 55:641-50. [PMID: 9670222 DOI: 10.1016/s0301-0082(98)00023-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Recovery after nervous system lesions may lead to partial re-institution of developmental schemes and processes. Here we review several of these proposed schemes, with the conclusion that though some processes may involve re-expression of embryonic phenotypes, there are many processes invoked during recovery from lesions that do not mirror developmental phenomena. The inability to fully revert to embryonic schemes because of adult phenotype may partially account for the decreased recovery observed in adults compared to that noted after lesions during development.
Collapse
Affiliation(s)
- J C Bulinski
- Department of Anatomy & Cell Biology, Columbia University, College of Physicians & Surgeons, New York, NY 10032-3702, USA.
| | | | | | | | | | | |
Collapse
|
31
|
Soares S, Fischer I, Ravaille-Veron M, Vincent JD, Nothias F. Induction of MAP1B phosphorylation in target-deprived afferent fibers after kainic acid lesion in the adult rat. J Comp Neurol 1998. [DOI: 10.1002/(sici)1096-9861(19980629)396:2<193::aid-cne5>3.0.co;2-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
32
|
Katsetos CD, Herman MM, Balin BJ, Vinores SA, Hessler RB, Arking EJ, Karkavelas G, Frankfurter A. Class III beta-tubulin isotype (beta III) in the adrenal medulla: III. Differential expression of neuronal and glial antigens identifies two distinct populations of neuronal and glial-like (sustentacular) cells in the PC12 rat pheochromocytoma cell line maintained in a Gelfoam matrix system. Anat Rec (Hoboken) 1998; 250:351-65. [PMID: 9517852 DOI: 10.1002/(sici)1097-0185(199803)250:3<351::aid-ar10>3.0.co;2-n] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND The rat PC12 pheochromocytoma cell line provides an established system for the study of neuronal differentiation. To our knowledge, glial differentiation has not been reported in this cell line. METHODS We have studied, by immunohistochemistry and immunoblotting, the presence of neuronal cytoskeletal antigens [class III beta-tubulin isotype (beta III), microtubule associated proteins MAP2, MAP1B and tau, and different neurofilament (NF) protein components], and synaptophysin in comparison with the glial fibrillary acidic protein (GFAP) and S-100 protein in the PC12 cell line. In three different experiments, PC12 cells were maintained in a three-dimensional gelatin foam (Gelfoam) matrix system for up to 34 days with and without treatment with 1 mM dibutyryl cyclic (dc)AMP. Immunohistochemistry was performed on explants ranging from 2 to 32 days-in vitro, which were fixed in either Bouin's solution, 70% ethanol, or 10% neutral-buffered formalin and embedded in paraffin. Immunoblotting was performed on Gelfoam explants with a panel of antibodies against all aforementioned neuronal and glial markers. Additional immunoblot experiments using anti-GFAP and anti-beta III monoclonal antibodies in cell suspensions and homogenates from PC12 monolayer cultures were carried out to compare growth conditions in relation to the expression of these proteins. RESULTS Beta III and MAP2 were demonstrated by immunohistochemistry and immunoblotting of PC12 explants maintained for up to 32 days in Gelfoam matrices with and without treatment with dcAMP. Intense filamentous and granular beta III staining of PC12 cells was observed in dcAMP-treated cultures concomitant with neuronal morphologic alterations (neuritogenesis and ganglionic phenotype). In untreated cultures, beta III staining was present in less differentiated cells, as well in cells undergoing neuritic development. The neuronal phenotype of PC12 cells was confirmed by staining for MAP2, tau, and NF proteins, as well as for synaptophysin. The presence of beta III, MAP2, MAP1B, tau, and NF proteins was confirmed by immunoblotting. Clusters of GFAP-positive and S-100 protein-positive spindle cells, phenotypically distinct from the chromaffin-like or neuronal cells, were demonstrated in Gelfoam explants at 5-30 days in vitro. In 30-day-old cultures treated with dcAMP, there was strong filamentous GFAP and diffuse S-100 protein staining in an increased number of sustentacular-like PC12 cells. GFAP staining was corroborated by immunoblotting of explants maintained under identical conditions in vitro. In contrast, immunoblots performed on homogenates from PC12 suspension and monolayer cultures were GFAP-negative. CONCLUSIONS Neuronal and glial-like, presumed sustentacular, phenotypes were demonstrated in PC12 cells grown in Gelfoam matrices with and without treatment with dcAMP for up to 34 days. To our knowledge, the occurrence of glial differentiation in the PC12 line is a hitherto unreported finding. Adult rat medullary sustentacular cells are known to express S-100 and GFA proteins (Suzuki and Kachi, Kaibogaku Zasshi-Anat 70(2): 130-139, 1995), and the organ culture system employed in our study may well have favored this direction of differentiation.
Collapse
Affiliation(s)
- C D Katsetos
- Neuropathology Laboratory, Hahnemann University, Philadelphia, Pennsylvania, USA
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Stroth U, Meffert S, Gallinat S, Unger T. Angiotensin II and NGF differentially influence microtubule proteins in PC12W cells: role of the AT2 receptor. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 1998; 53:187-95. [PMID: 9473667 DOI: 10.1016/s0169-328x(97)00298-2] [Citation(s) in RCA: 71] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Angiotensin AT2 receptors have been shown to play a role in cell differentiation characterized by neurite outgrowth in neuronal cells of different origin. To further investigate AT2 receptor-mediated events leading to neurite formation, we examined the effect of AT2 receptor stimulation on the microtubule components, beta-tubulin, MAP1B and MAP2, by Western blot analysis and immunofluorescence in quiescent and nerve growth factor (NGF)-differentiated PC12W cells. These proteins are involved in neurite extension and neuronal maturation. Whereas NGF (0.5, 10, and 50 ng/ml) up-regulated these proteins after 3 days of stimulation, angiotensin II (ANG II; 10(-7) M) induced a different pattern. In quiescent PC12W cells, AT2 receptor stimulation up-regulated polymerized beta-tubulin and MAP2 but down-regulated MAP1B protein levels. In PC12W cells, differentiated by NGF (0.5 ng/ml), ANG II elevated polymerized beta-tubulin and reduced MAP1B. All ANG II effects were abolished by the AT2 receptor antagonist PD123177 (10(-5) M) but not affected by the AT1 receptor antagonist losartan (10(-5) M). These results implicate a specific role of AT2 receptors in cell differentiation and nerve regeneration via regulation of the cytoskeleton.
Collapse
Affiliation(s)
- U Stroth
- Department of Pharmacology, Christian-Albrechts University, Hospitalstrasse 4, D-24105 Kiel, Germany.
| | | | | | | |
Collapse
|
34
|
Nothias F, Vernier P, von Boxberg Y, Mirman S, Vincent JD. Modulation of NCAM polysialylation is associated with morphofunctional modifications in the hypothalamo-neurohypophysial system during lactation. Eur J Neurosci 1997; 9:1553-65. [PMID: 9283810 DOI: 10.1111/j.1460-9568.1997.tb01513.x] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Post-transcriptional modification of the neural cell adhesion molecule (NCAM) by polysialic acid significantly decreases NCAM adhesiveness and more generally modifies cell-cell interactions. Polysialic acid-NCAM (PSA-NCAM) is mainly expressed in the developing nervous system. In the adult, its expression is restricted to regions that retain morphological plasticity, such as the hypothalamo-neurohypophysial system during lactation in rats. Since cell-cell interactions and synaptic contacts in the hypothalamo-neurohypophysial system are greatly increased during lactation, we examined whether PSA-NCAM expression is modified during this period. Immunohistochemistry and immunoblotting showed that, compared with virgin rats, PSA-NCAM dramatically decreased during lactation in both the supraoptic nuclei and the neurohypophysis, and returned to its initial level only after weaning. This decrease was progressive and became significant only at the end of the first week of lactation. By contrast, modifications in the level of NCAM protein or changes in the splicing pattern of NCAM mRNAs could not be detected. The decline in polysialic acid on the NCAM molecule could strengthen membrane appositions, thereby stabilizing the newly established synapses and neurohaemal contacts in the hypothalamo-neurohypophysial system that accompany the increased neuronal activity that occurs during lactation. We also studied the regulation of the phosphorylated microtubule-associated protein-1B (MAP1B-P), whose distribution pattern largely overlaps with that of PSA-NCAM in the adult brain. Expression of MAP1B-P was greatly increased during lactation in the hypothalamic axons projecting into the neurohypophysis. Thus, the expression patterns of both PSA-NCAM and MAP1B-P may reflect the permanent structural plasticity characterizing the hypothalamo-neurohypophysial system in the adult.
Collapse
Affiliation(s)
- F Nothias
- Institut Alfred Fessard, CNRS, Gif-Sur-Yvette, France
| | | | | | | | | |
Collapse
|
35
|
Johnstone M, Goold RG, Fischer I, Gordon-Weeks PR. The neurofilament antibody RT97 recognises a developmentally regulated phosphorylation epitope on microtubule-associated protein 1B. J Anat 1997; 191 ( Pt 2):229-44. [PMID: 9306199 PMCID: PMC1467675 DOI: 10.1046/j.1469-7580.1997.19120229.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Microtubules are important for the growth and maintenance of stable neuronal processes and their organisation is controlled partly by microtubule-associated proteins (MAPs). MAP 1B is the first MAP to be expressed in neurons and plays an important role in neurite outgrowth. MAP 1B is phosphorylated at multiple sites and it is believed that the function of the protein is regulated by its phosphorylation state. We have shown that the monoclonal antibody (mAb) RT97, which recognises phosphorylated epitopes on neurofilament proteins, fetal tau, and on Alzheimer's paired helical filament-tau, also recognises a developmentally regulated phosphorylation epitope on MAP 1B. In the rat cerebellum, Western blot analysis shows that mAb RT97 recognises the upper band of the MAP 1B doublet and that the amount of this epitope peaks very early postnatally and decreases with increasing age so that it is absent in the adult, despite the continued expression of MAP 1B in the adult. We confirmed that mAb RT97 binds to MAP 1B by showing that it recognises MAP 1B immunoprecipitated from postnatal rat cerebellum using polyclonal antibodies to recombinant MAP 1B proteins. We established that the RT97 epitope on MAP 1B is phosphorylated by showing that antibody binding was abolished by alkaline phosphatase treatment of immunoblots. Epitope mapping experiments suggest that the mAb RT97 site on MAP 1B is near the N-terminus of the molecule. Despite our immunoblotting data, immunostaining of sections of postnatal rat cerebellum with mAb RT97 shows a staining pattern typical of neurofilaments with no apparent staining of MAP 1B. For instance, basket cell axons and axons in the granule cell layer and white matter stained, whereas parallel fibres did not. These results suggest that the MAP 1B epitope is masked or lost under the immunocytochemical conditions in which the cerebellar sections are prepared. The upper band of the MAP 1B doublet is believed to be predominantly phosphorylated by proline-directed protein kinases (PDPKs). PDPKs are also good candidates for phosphorylating neurofilament proteins and tau and therefore we postulate that the sites recognised by RT97 on these neuronal cytoskeletal proteins may be phosphorylated by similar kinases. Important goals are to determine the precise location of the RT97 epitope on MAP 1B and the kinase responsible.
Collapse
Affiliation(s)
- M Johnstone
- Developmental Biology Research Centre, Randall Institute, Kings College, London, UK
| | | | | | | |
Collapse
|
36
|
Nunez J, Fischer I. Microtubule-associated proteins (MAPs) in the peripheral nervous system during development and regeneration. J Mol Neurosci 1997; 8:207-22. [PMID: 9297633 DOI: 10.1007/bf02736834] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
In this article, we have described the structure and distribution of the various variants of the microtubule-associated proteins (MAPs), tau, MAP2, MAP1A, and MAP1B, that are expressed in the dorsal root ganglion (DRG) and spinal cord during development and regeneration. We have summarized the data on their gene structure and compared the sequence of the major transcripts encoding these MAPs that are expressed in the brain, the spinal cord, and the DRG. Finally, we have surveyed the studies that used a variety of experimental approaches (e.g., antisense inhibition, transgenic knockouts, and expression in neuronal and nonneuronal cells) to understand the functional significance of MAPs heterogeneity and differences observed between the central nervous system (CNS) and the peripheral nervous system (PNS) both during development and regeneration.
Collapse
Affiliation(s)
- J Nunez
- Department of Neurobiology and Anatomy, Allegheny University, Philadelphia, PA 19129, USA
| | | |
Collapse
|
37
|
Two alternative promoters direct neuron-specific expression of the rat microtubule-associated protein 1B gene. J Neurosci 1996. [PMID: 8756433 DOI: 10.1523/jneurosci.16-16-05026.1996] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Microtubule-associated protein 1B (MAP1B) is a major constituent of the neuronal cytoskeleton that is expressed at high levels during early brain development and plays a role in axonal growth and neuronal plasticity. Previous studies suggested that the regulation of its gene expression is primarily at the transcriptional level. Thus, the characterization of the promoter region should help to define regulatory elements that control neuron-specific and developmental expression of the MAP1B gene. We have isolated genomic clones containing up to 11 kb of the upstream region of the rat MAP1B gene, sequenced approximately 1.8 kb upstream from the translation start codon, and identified several consensus sequences. These sequences include a consensus element common to several neuronal genes, a TCC repeat, a cAMP response element, and two TATA boxes that were 134 nucleotides apart from each other. S1 nuclease and RNase protection assays identified two corresponding groups of transcription initiation sites that were used selectively in distinct regions of the nervous system and during different stages of development. Transient transfection assays with neuronal and non-neuronal cell lines demonstrated that each TATA sequence and its corresponding adjacent region could independently direct neuron-specific expression of a reporter gene. Furthermore, the transcription of the reporter gene was initiated from the same sites as those of the MAP1B gene in vivo. These results suggest that two alternative and overlapping promoters, one inducible and the other constitutive, regulate the temporal and tissue-specific expression of the rat MAP1B gene.
Collapse
|
38
|
Hoffman JR, Boyne LJ, Levitt P, Fischer I. Short exposure to methylazoxymethanol causes a long-term inhibition of axonal outgrowth from cultured embryonic rat hippocampal neurons. J Neurosci Res 1996; 46:349-59. [PMID: 8933374 DOI: 10.1002/(sici)1097-4547(19961101)46:3<349::aid-jnr8>3.0.co;2-k] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Methylazoxymethanol (MAM) is an alkylating agent that is used to induce microencephaly by killing mitotically active neuroblasts. We found that at later developmental times, MAM exposure can result in abnormal fiber growth in vivo. However, there have not been any previous studies on the effects of MAM on differentiating neurons. We examined the outcome of short exposure to MAM on postmitotic embryonic hippocampal cultures during the establishment of axonal polarity. At 0, 1, or 2 days in vitro (DIV), neurons were treated with 0.1 nM-1 microM MAM for 3 hr and then transferred to glial conditioned media. At 3 DIV, the cells were fixed and analyzed by immunofluorescent staining for neuron viability and differentiation. Control cells initiate several minor processes; one process elongates rapidly at about 1 DIV eventually becoming an axon, while extensive dendritic growth occurs after 3-4 DIV. Neurons treated with 1 microM MAM at 0 or 1 DIV showed a marked inhibition of neurite growth and withdrawal of axons without affecting cell viability. These cells continued to show minimal neurite outgrowth at 7 DIV, even when transferred to a glial coculture. In contrast, cells treated initially with MAM, after neuronal polarity is established at 2 DIV, showed no effect on axonal growth. To determine the effects of MAM on the neuronal cytoskeleton, we examined the in vitro assembly of brain microtubules in a one cycle assay. Exposure to MAM depleted the soluble pool of proteins, including microtubule-associated protein 1B (MAP1B) and MAP2, which are required for neurite outgrowth, through a nonspecific process. Under non-saturating conditions, there were no changes in the total amount of microtubules assembled or the coassembly of MAP1B and MAP2 in the presence of MAM. These results demonstrate that MAM can directly affect differentiating neurons, indicating that an early disruption of axonal outgrowth may have long-term effects.
Collapse
Affiliation(s)
- J R Hoffman
- Department of Biology, Beaver College, Glenside, PA 19038, USA
| | | | | | | |
Collapse
|
39
|
Boyne LJ, Fischer I, Shea TB. Role of vimentin in early stages of neuritogenesis in cultured hippocampal neurons. Int J Dev Neurosci 1996; 14:739-48. [PMID: 8960981 DOI: 10.1016/s0736-5748(96)00053-6] [Citation(s) in RCA: 54] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Vimentin is expressed initially by nearly all neuronal precursors in vivo, and is replaced by neurofilaments shortly after the immature neurons become post-mitotic. Moreover, both vimentin and neurofilaments can be detected transiently within the same neurite, leaving open the possibility that vimentin may play a role in the early stages of neuritogenesis. In the present study, cultured hippocampal neurons, which transiently express vimentin in culture, were treated with sense- and antisense-oriented deoxyoligonucleotides encoding regions of the vimentin sequence that overlap the translation initiation codon. Antisense oligonucleotide treatment reduced vimentin-immunoreactivity to background levels. Moreover, while 90-100% of cultured hippocampal neurons elaborated neurites within the first 24 hr following plating, only 24-30% did so in the presence of vimentin antisense oligonucleotides. Inhibition of neurite outgrowth was reversible following removal of antisense oligonucleotide. These findings substantiate earlier studies in neuroblastoma cells, indicating a possible role for vimentin in the initiation of neurite outgrowth.
Collapse
Affiliation(s)
- L J Boyne
- Department of Anatomy and Neurobiology, Medical College of Pennsylvania, Philadelphia 19129, USA
| | | | | |
Collapse
|
40
|
Liu D, Fischer I. Isolation and sequencing of the 5' end of the rat microtubule-associated protein (MAP1B)-encoding cDNA. Gene X 1996; 171:307-8. [PMID: 8666295 DOI: 10.1016/0378-1119(95)00061-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
We have isolated and sequenced the 5' end of the cDNA encoding the rat microtubule-associated protein 1B (MAP1B). We found that this region is highly homologous to the corresponding regions of the human [Lien et al., 22 (1994) 273-280] and mouse [Noble et al., J. Cell Biol. 109 (1989) 3367-3376] MAP1B genes. The combination of the sequence that we are presenting with the previously published sequence [Zauner et al., Eur. J. Cell Biol. 57 (1992) 66-74], represents the complete rat MAP1B cDNA coding sequence.
Collapse
Affiliation(s)
- D Liu
- Department of Neurobiology and Anatomy, Medical College of Pennsylvania and Hahnemann University, Philadelphia 19129, USA
| | | |
Collapse
|
41
|
Nothias F, Fischer I, Murray M, Mirman S, Vincent JD. Expression of a phosphorylated isoform of MAP1B is maintained in adult central nervous system areas that retain capacity for structural plasticity. J Comp Neurol 1996; 368:317-34. [PMID: 8725342 DOI: 10.1002/(sici)1096-9861(19960506)368:3<317::aid-cne1>3.0.co;2-8] [Citation(s) in RCA: 56] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Microtubule-associated protein IB (MAP1B) is the first MAP to be detected in the developing nervous system, and it becomes markedly down-regulated postnatally. Its expression, particularly that of its phosphorylated isoform, is associated with axonal growth. To determine whether adult central nervous system (CNS) areas that retain immunoreactivity for MAP1B are associated with morphological plasticity, we compared the distribution of a phosphorylated MAP1B isoform (MAP1B-P) to the distribution of total MAP1B protein and MAP1B-mRNA. Although they were present only at very low levels, both protein and message were found ubiquitously in almost all adult CNS neurons. The intensity of staining, however, varied markedly among different regions, with only a few nuclei retaining relatively high levels. MAP1B-P was restricted to axons, whereas total MAP1B was present in cell bodies and processes. Relatively to total MAP1B protein and its mRNA, MAP1B-P levels decreased more dramatically with maturation, and they were detectable in only a few specific areas that underwent structural modifications. These included primary afferents and motor neurons, olfactory tubercles, habenular and raphe projections to interpeduncular nuclei, septum, and the hypothalamus. The distribution pattern of MAP1B-P was compared to that of the embryonic N-CAM rich in polysialic acid (PSA-NCAM). We found that the PSA-NCAM immunostaining was largely overlapped with that of MAP1B-P in the adult CNS. These results suggest that, like PSA-NCAM, MAP1B may be one of the molecules expressed during brain development that also plays a role in structural remodeling in the adult.
Collapse
Affiliation(s)
- F Nothias
- Institut Alfred Fessard, CNRS/UPR 2212, Gif-Sur-Yvettte, France
| | | | | | | | | |
Collapse
|
42
|
Abstract
A morphogenic role of neurotransmitters during cellular differentiation in vitro has been demonstrated in recent years. Using in situ hybridization, we confirm the presence of the D1 receptor at E16 and show additionally that the transcript is relatively widespread and present in both proliferative and differentiating areas of the cerebral wall. Because DA receptor expression precedes the arrival of presynaptic terminals during forebrain development, we examined the role of DA in cerebral cortical neuron differentiation in vitro, using immunohistochemical markers of dendrites, microtubule-associated-membrane protein 2 (MAP2) and axons, neurofilament protein (NF-H). Neurite length, cell size, and cell viability in response to D1 and D2 receptor agonists SKF38393 and quinpirole, respectively, and to DA were analyzed in neurons obtained from embryonic (E) day 16 rats. We have shown that 1) paradoxically, DA at different concentrations can either stimulate or inhibit neurite outgrowth; 2) there is a bimodal pattern of DA-induced axonal outgrowth, i.e., at low and high doses; 3) D2 receptor activation induces neurite outgrowth while D1 receptor activation is inhibitory; 4) D2-mediated neurite elongation is preferentially axonal while D1 receptor activation reduces both axonal and dendritic outgrowth; 5) low doses of DA promote the expression of cytoskeletal components of axonal maturation; and 6) D1 receptor activation decreases neuronal size. We suggest that DA may influence cellular differentiation and circuitry formation early in development of the cerebral cortex through receptor-mediated effects on process outgrowth, which could lead to effects on circuit formation.
Collapse
Affiliation(s)
- B S Reinoso
- Department of Neuroscience and Cell Biology, Robert Wood Johnson Medical School, UMDNJ, Piscataway 08854, USA
| | | | | |
Collapse
|
43
|
DiTella MC, Feiguin F, Carri N, Kosik KS, Cáceres A. MAP-1B/TAU functional redundancy during laminin-enhanced axonal growth. J Cell Sci 1996; 109 ( Pt 2):467-77. [PMID: 8838670 DOI: 10.1242/jcs.109.2.467] [Citation(s) in RCA: 92] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
When cultured cerebellar macroneurons develop attached to a laminin-containing substrate or after the acute addition of laminin to the tissue culture medium, there is an acceleration in the rate and extent of axonal elongation. Furthermore, laminin is capable of inducing axonal formation and microtubule stabilization in neurons arrested at stage II of neuritic development by tau suppression (Caceres and Kosik, 1990; Caceres et al., 1991). Laminin-enhanced or induced axonal extension is paralleled by a selective and dramatic incorporation of phosphorylated MAP-1b into axonal microtubules. Axonal formation in neurons growing in the presence of laminin is prevented by treatment of the cultures with a mixture of MAP-1b and tau antisense oligonucleotides, but not by the single suppression of any one of these MAPs. However, suppression of MAP-1b, but not of tau, greatly reduces the increase in the rate and extent of axonal elongation induced by laminin. No such effects are elicited by MAP-1b antisense oligonucleotides in neurons growing in the absence of laminin, e.g. polylysine alone, where most of the MAP-1b present in the cells is dephosphorylated and not associated with the cytoskeleton. Taken collectively, these data suggest that, with regard to axonal elongation, MAP-1b and tau can be functionally substituted, and that extracellular matrix molecules, such as laminin, affect axonal extension by promoting the in vivo utilization of MAP-1b.
Collapse
Affiliation(s)
- M C DiTella
- Instituto de Investigación Médica Mercedes y Martín Ferreyra, Córdoba, Argentina
| | | | | | | | | |
Collapse
|