1
|
Møbjerg A, Pedersen SD, Kjaer M, Yeung CC. Role of the tendon circadian clock in tendinopathy and implications for therapeutics. Int J Exp Pathol 2025; 106:e70001. [PMID: 40308034 PMCID: PMC12044137 DOI: 10.1111/iep.70001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 02/13/2025] [Accepted: 04/17/2025] [Indexed: 05/02/2025] Open
Abstract
Tendinopathy or tendon overuse injury is a major clinical problem for individuals and has a significant socio-economic cost. Its pathophysiology is not yet fully understood and involves multiple factors, including mechanical, cellular and molecular factors. The circadian rhythm has been shown to be a major regulator of extracellular matrix (ECM) homeostasis in several connective tissues, including tendon. Very recently, the human patellar tendon has been established as a peripheral clock tissue that exhibits dampening with chronic tendinopathy, and this has important translational and clinical relevance. This review summarises what is currently known about the role of the tendon circadian clock in collagen and tendon ECM homeostasis and proposes a role for circadian clock disruption in tendinopathy. A better understanding of the mechanisms that regulate tendon clock synchronisation could guide the development of new therapeutic strategies for managing tendon overuse injuries.
Collapse
Affiliation(s)
- Ask Møbjerg
- Department of Orthopedic Surgery, Institute of Sports Medicine CopenhagenCopenhagen University Hospital – Bispebjerg and FrederiksbergCopenhagenDenmark
- Department of Clinical MedicineUniversity of CopenhagenCopenhagenDenmark
| | - Sara Dietz Pedersen
- Department of Orthopedic Surgery, Institute of Sports Medicine CopenhagenCopenhagen University Hospital – Bispebjerg and FrederiksbergCopenhagenDenmark
- Department of Clinical MedicineUniversity of CopenhagenCopenhagenDenmark
| | - Michael Kjaer
- Department of Orthopedic Surgery, Institute of Sports Medicine CopenhagenCopenhagen University Hospital – Bispebjerg and FrederiksbergCopenhagenDenmark
- Department of Clinical MedicineUniversity of CopenhagenCopenhagenDenmark
| | - Ching‐Yan Chloé Yeung
- Department of Orthopedic Surgery, Institute of Sports Medicine CopenhagenCopenhagen University Hospital – Bispebjerg and FrederiksbergCopenhagenDenmark
- Department of Clinical MedicineUniversity of CopenhagenCopenhagenDenmark
| |
Collapse
|
2
|
Yamada Y, Torii A, Uruga Y, Sato Y, Matsubara Y, Matsumoto M, Nakamura M, Sato K, Miyamoto T. Platelet like cells differentiated from human adipose derived mesenchymal stem cells promote healing of tendinopathy in rats. Sci Rep 2025; 15:15015. [PMID: 40301586 PMCID: PMC12041348 DOI: 10.1038/s41598-025-99657-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 04/22/2025] [Indexed: 05/01/2025] Open
Abstract
Tendon and ligament disorders, such as tendinopathy, cause pain and limit levels of activities of daily living. Thus, devising methods to heal them is crucial. Although treatment with autologous platelet rich plasma (PRP) is reportedly useful against tendon injury, PRP requires blood sampling and its quality varies. Here we show that platelet-like cells (ASCL-PLCs) derived from a heterologous human adipose-derived mesenchymal stem cell line (ASCL) promote significant tendon repair in a collagenase-induced injury model in rat Achilles tendons. Single administration of human ASCL-PLCs to rat Achilles tendon after 2 weeks of collagenase treatment significantly increased tendon strength and improved semi-quantitative histological evaluation scores in 4 weeks relative to PBS-treated controls. Moreover, xeno-graft reactions were not evident in ASCL-PLC-administered rats. In vitro, ASCL-PLC treatment significantly upregulated Col1a1, Lox and Mkx gene expression in NIH3T3 fibroblasts and activated ERK signaling. Overall, ASCL-PLCs could serve as a useful tool to repair injured tendons and treat tendinopathy. This approach eliminates the need for blood sampling, ensures consistent quality, supports xeno-transplantation, and increases injured tendon strength.
Collapse
Affiliation(s)
- Yuichi Yamada
- Institute for Integrated Sports Medicine, Keio University School of Medicine, 35 Shinano-machi, Shinjuku-ku, Tokyo, 160-8582, Japan
- Department of Orthopedic Surgery, Keio University School of Medicine, 35 Shinano-machi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Akiko Torii
- Department of Orthopedic Surgery, Keio University School of Medicine, 35 Shinano-machi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Yukako Uruga
- Clinical and Translational Research Center, Keio University School of Medicine, 35 Shinano-machi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Yuiko Sato
- Department of Orthopedic Surgery, Keio University School of Medicine, 35 Shinano-machi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Yumiko Matsubara
- Clinical and Translational Research Center, Keio University School of Medicine, 35 Shinano-machi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Morio Matsumoto
- Department of Orthopedic Surgery, Keio University School of Medicine, 35 Shinano-machi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Masaya Nakamura
- Department of Orthopedic Surgery, Keio University School of Medicine, 35 Shinano-machi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Kazuki Sato
- Institute for Integrated Sports Medicine, Keio University School of Medicine, 35 Shinano-machi, Shinjuku-ku, Tokyo, 160-8582, Japan.
| | - Takeshi Miyamoto
- Department of Orthopedic Surgery, Keio University School of Medicine, 35 Shinano-machi, Shinjuku-ku, Tokyo, 160-8582, Japan.
- Department of Orthopedic Surgery, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto, 860-8556, Japan.
| |
Collapse
|
3
|
Roets B, Abrahamse H, Crous A. Biomaterial Properties and Differentiation Strategies for Tenogenic Differentiation of Mesenchymal Stem Cells. Cells 2025; 14:452. [PMID: 40136701 PMCID: PMC11940850 DOI: 10.3390/cells14060452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Revised: 03/10/2025] [Accepted: 03/17/2025] [Indexed: 03/27/2025] Open
Abstract
Tendinopathy is a prevalent musculoskeletal condition that affects both aging populations and individuals involved in repetitive, high-intensity activities, such as athletes. Current treatment options primarily address symptom management or involve surgery, which carries a significant risk of complications and re-injury. This highlights the need for regenerative medicine approaches that combine stem cells, biomaterials, and growth factors. However, achieving effective tenogenic differentiation remains challenging due to the absence of standardized differentiation protocols. Consequently, a review of existing research has been conducted to identify optimal biomaterial properties and growth factor protocols. Findings suggest that the ideal biomaterial for tenogenic differentiation should feature a 3D structure to preserve tenogenic expression, incorporate a combination of aligned micro- and nanofibers to promote differentiation, and require further investigation into optimal stiffness. Additionally, growth factor protocols should include an induction phase to initiate tenogenic lineage commitment, followed by a maintenance phase to support matrix production and maturation.
Collapse
Affiliation(s)
| | | | - Anine Crous
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein, P.O. Box 17011, Johannesburg 2028, South Africa; (B.R.); (H.A.)
| |
Collapse
|
4
|
Yamashita R, Tsutsui S, Mizumoto S, Watanabe T, Yamamoto N, Nakano K, Yamada S, Okamura T, Furuichi T. CANT1 Is Involved in Collagen Fibrogenesis in Tendons by Regulating the Synthesis of Dermatan/Chondroitin Sulfate Attached to the Decorin Core Protein. Int J Mol Sci 2025; 26:2463. [PMID: 40141107 PMCID: PMC11941851 DOI: 10.3390/ijms26062463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Revised: 03/06/2025] [Accepted: 03/08/2025] [Indexed: 03/28/2025] Open
Abstract
Tendons are connective tissues that join muscles and bones and are rich in glycosaminoglycans (GAGs). Decorin is a proteoglycan with one dermatan sulfate (DS) or chondroitin sulfate (CS) chain (a type of GAG) attached to its core protein and is involved in regulating the assembly of collagen fibrils in the tendon extracellular matrix (ECM). Calcium-activated nucleotidase 1 (CANT1), a nucleotidase that hydrolyzes uridine diphosphate into uridine monophosphate and phosphate, plays an important role in GAG synthesis in cartilage. In the present study, we performed detailed histological and biochemical analyses of the tendons from Cant1 knockout (Cant1-/-) mice. No abnormalities were observed in the tendons on postnatal day 1 (P1); however, remarkable hypoplasia was observed on P30 and P180. The collagen fibrils were more angular and larger in the Cant1-/- tendons than in the control (Ctrl) tendons. In the Cant1-/- tendons, the DS/CS content was significantly reduced, and the DC/CS chains attached to the decorin core protein became shorter than those in the Ctrl tendons. No abnormalities were observed in the proliferation and differentiation of tendon fibroblasts (tenocytes) in the Cant1-/- mice. These results strongly suggest that CANT1 dysfunction causes defective DS/CS synthesis, followed by impairment of decorin function, which regulates collagen fibrogenesis in the tendon ECM. Multiple joint dislocations are a clinical feature of Desbuquois dysplasia type 1 caused by human CANT1 mutations. The multiple joint dislocations associated with this genetic disorder may be attributed to tendon fragility resulting from CANT1 dysfunction.
Collapse
Affiliation(s)
- Rina Yamashita
- Laboratory of Laboratory Animal Science and Medicine, Graduate School of Veterinary Sciences, Iwate University, Morioka 020-8550, Japan;
- Laboratory of Laboratory Animal Science and Medicine, Co-Department of Veterinary Medicine, Faculty of Agriculture, Iwate University, Morioka 020-8550, Japan;
| | - Saki Tsutsui
- Laboratory of Laboratory Animal Science and Medicine, Co-Department of Veterinary Medicine, Faculty of Agriculture, Iwate University, Morioka 020-8550, Japan;
| | - Shuji Mizumoto
- Department of Pathobiochemistry, Faculty of Pharmacy, Meijo University, Nagoya 468-8503, Japan; (S.M.)
| | - Takafumi Watanabe
- Laboratory of Veterinary Anatomy, School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu 069-8501, Japan;
| | - Noritaka Yamamoto
- Department of Mechanical Engineering, Ritsumeikan University, Kusatsu 525-8577, Japan;
| | - Kenta Nakano
- Department of Laboratory Animal Medicine, Research Institute, National Center for Global Health and Medicine (NCGM), Shinjuku-ku 162-8655, Japan (T.O.)
| | - Shuhei Yamada
- Department of Pathobiochemistry, Faculty of Pharmacy, Meijo University, Nagoya 468-8503, Japan; (S.M.)
| | - Tadashi Okamura
- Department of Laboratory Animal Medicine, Research Institute, National Center for Global Health and Medicine (NCGM), Shinjuku-ku 162-8655, Japan (T.O.)
| | - Tatsuya Furuichi
- Laboratory of Laboratory Animal Science and Medicine, Graduate School of Veterinary Sciences, Iwate University, Morioka 020-8550, Japan;
- Laboratory of Laboratory Animal Science and Medicine, Co-Department of Veterinary Medicine, Faculty of Agriculture, Iwate University, Morioka 020-8550, Japan;
| |
Collapse
|
5
|
Wang J, Shang X, Zhou X, Chen H. Research advances of acoustic particle manipulation techniques in field-assisted manufacturing. NANOSCALE 2025; 17:5654-5671. [PMID: 39937064 DOI: 10.1039/d4nr04891a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/13/2025]
Abstract
Field-assisted manufacturing (FAM) technology, which employs external fields to transport and manipulate micro/nanoparticles for tailored arrangements and structures, can produce novel materials with specific properties and functions. Acoustic particle manipulation has attracted increasing attention in FAM due to its various advantages, such as a wide range of materials, ease of fabrication, rapid actuation, non-invasive operation and high biocompatibility. The present review summarizes the recent progress of acoustic particle manipulation in the FAM area, with respect to operation principles, fabrication and control of particles, and particle cluster patterning. The emphasis is placed on the recent innovative applications of microparticle manipulation realized by acoustic fields in different advanced manufacturing technologies. Finally, we provide our perspective on the current challenges and potential prospects of acoustic particle manipulation technology in FAM.
Collapse
Affiliation(s)
- Jiaqi Wang
- School of Mechanical Engineering and Automation, Beihang University, Beijing, China.
| | - Xiaopeng Shang
- School of Mechanical Engineering and Automation, Beihang University, Beijing, China.
| | - Xinzhao Zhou
- School of Mechanical Engineering and Automation, Beihang University, Beijing, China.
| | - Huawei Chen
- School of Mechanical Engineering and Automation, Beihang University, Beijing, China.
- Beijing Advanced Innovation Centre for Biomedical Engineering, Beihang University, Beijing, China
| |
Collapse
|
6
|
Pierantoni M, Sharma K, Kok J, Novak V, Eliasson P, Isaksson H. Quantification of 3D microstructures in Achilles tendons during in situ loading reveals anisotropic fiber response. Acta Biomater 2025; 194:246-257. [PMID: 39800097 DOI: 10.1016/j.actbio.2025.01.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 12/19/2024] [Accepted: 01/09/2025] [Indexed: 01/15/2025]
Abstract
While the number of studies investigating Achilles tendon pathologies has grown exponentially, more research is needed to gain a better understanding of the complex relation between its hierarchical structure, mechanical response, and failure. At the microscale, collagen fibers are, with some degree of dispersion, primarily aligned along the principal loading direction. However, during tension, rearrangements and reorientations of these fibers are believed to occur. As 3D micro-movements are hard to capture, the precise nature of this fiber reorganization remains unknown. This study aimed to visualize and quantify the intricate fiber changes occurring within rat Achilles tendons under tension. Rat tendons were in situ loaded with concurrent synchrotron phase contrast microCT imaging. The results are heterogenous and show that collagen fibers' response to loading is nonuniform and depends on anatomical orientation. Furthermore, damage propagation could be visualized, revealing that in the presence of heterotopic ossification, damage proceeds within the ossified deposits rather than at the interface between hard and soft tissues. Our approach could effectively capture the microstructural changes occurring during loading and shows promise in understanding the relation between microstructure and mechanical response for ex-vivo Achilles tendons and other biological tissues. STATEMENT OF SIGNIFICANCE: Achilles tendons endure high mechanical loads during daily motion and physical activities. Understanding the structural and mechanical responses of Achilles tendons to such loads is vital for elucidating their function in health and pathology. We have combined the use of synchrotron phase contrast microCT with in situ mechanical loading to contribute to a better understanding of the relation between microstructural response and organ scale mechanical properties. The proposed methodology will be valuable for future research into the interplay between structure, mechanics, and pathology of tendons, and for the development of more effective strategies to preserve tendon function and possibly mitigating musculoskeletal disorders.
Collapse
Affiliation(s)
- Maria Pierantoni
- Department of Biomedical Engineering, Lund University, Box 118, 221 00 Lund, Sweden.
| | - Kunal Sharma
- Department of Biomedical Engineering, Lund University, Box 118, 221 00 Lund, Sweden
| | - Joeri Kok
- Department of Biomedical Engineering, Lund University, Box 118, 221 00 Lund, Sweden
| | - Vladimir Novak
- Swiss Light Source, Paul Scherrer Institute, Villigen PSI 5232, Switzerland
| | - Pernilla Eliasson
- Department of Biomedical and Clinical Sciences, Linköping University, 581 83 Linköping, Sweden; Department of Orthopaedics, Sahlgrenska University Hospital, Gothenburg 413 45, Sweden
| | - Hanna Isaksson
- Department of Biomedical Engineering, Lund University, Box 118, 221 00 Lund, Sweden
| |
Collapse
|
7
|
Xu Z, Hou W, Zhang T, Chen R, Skutella T. Exploring molecular and cellular signaling pathways: Unraveling the pathogenesis of tendinopathy. J Orthop Translat 2025; 51:298-311. [PMID: 40201708 PMCID: PMC11978293 DOI: 10.1016/j.jot.2025.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 01/09/2025] [Accepted: 02/05/2025] [Indexed: 04/10/2025] Open
Abstract
Despite the long healing duration of tendon injuries, the outcomes of repairs are frequently suboptimal, resulting in persistent pain and reduced functionality. Current clinical approaches to tendinopathy are primarily symptomatic, encompassing nonsteroidal anti-inflammatory drugs (NSAIDs), corticosteroid injections, physical therapies, surgical interventions, loading programs, and pain management. Yet, these treatments have protracted timelines and their efficacy remains uncertain. This uncertainty stems largely from an incomplete understanding of tendinopathy's pathogenesis. Unraveling the mechanisms behind tendinopathy is essential for devising novel therapeutic strategies. In this context, this review systematic reviewed more recent cellular and molecular literature in tendinopathy, in order to summarize the up-to-date advancements including the structure and composition of healthy tendons, the pathophysiological changes in tendinopathy, the molecular pathways implicated in various forms of the condition, and current effective treatment methods. This review not only aims to offer insights but also to inspire further investigation into the mechanisms and clinical management of tendinopathy. The translational potential of this article A deficient understanding of the molecular mechanisms hampers the advancement of therapeutic strategies and drug development. Consequently, an in-depth examination of these molecular mechanisms is essential for comprehending the etiology of tendinopathy and for devising effective clinical management strategies.
Collapse
Affiliation(s)
- Zihan Xu
- Department of Neuroanatomy, Group for Regeneration and Reprogramming, Institute for Anatomy and Cell Biology, Medical Faculty, Heidelberg University, 69120, Heidelberg, Germany
| | - Wenjing Hou
- Department of Neuroanatomy, Group for Regeneration and Reprogramming, Institute for Anatomy and Cell Biology, Medical Faculty, Heidelberg University, 69120, Heidelberg, Germany
| | - Tao Zhang
- Department of Neuroanatomy, Group for Regeneration and Reprogramming, Institute for Anatomy and Cell Biology, Medical Faculty, Heidelberg University, 69120, Heidelberg, Germany
| | - Rui Chen
- Department of Reproductive Medicine, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, 266000, China
| | - Thomas Skutella
- Department of Neuroanatomy, Group for Regeneration and Reprogramming, Institute for Anatomy and Cell Biology, Medical Faculty, Heidelberg University, 69120, Heidelberg, Germany
| |
Collapse
|
8
|
Squier K, Waugh C, Callow J, Patola W, Hunt MA, Brunham LR, Jakobi J, Scott A. Understanding the impact of Achilles lipid content on tendon mechanical parameters: a cross-sectional study of people with familial hypercholesterolemia and healthy controls. BMC Musculoskelet Disord 2025; 26:183. [PMID: 39987058 PMCID: PMC11846310 DOI: 10.1186/s12891-025-08430-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 02/13/2025] [Indexed: 02/24/2025] Open
Abstract
BACKGROUND Familial hypercholesterolemia (FH) is a genetic condition that affects cholesterol metabolism, resulting in life-long elevated serum levels of low-density lipoprotein cholesterol. Systemically elevated cholesterol levels are associated with the onset of tendon injury and potentially lead to impaired mechanical properties. Applying a cross-sectional design, we examined whether FH patients present with altered Achilles biomechanics compared to healthy controls and conducted correlational analyses to determine the relationship between Achilles tendon biomechanics and tendon lipid or water content. METHODS Patients with FH (n = 33) and healthy controls (n = 31) were recruited from the Greater Vancouver area. Achilles cross sectional area, thickness, lipid and water content was determined using Dixon method magnetic resonance imaging (3.0T). Achilles mechanical properties were determined using synchronized dynamometry, motion capture, ultrasound and electromyography during ramped maximal voluntary isometric contractions, and stiffness and Young's modulus calculated. Between group differences were assessed with independent t-tests or Mann-Whitney U tests and Pearson's r or Spearman's ρ were employed for correlational analyses. Sensitivity analysis was conducted on FH patients diagnosed with Achilles xanthoma and the remaining FH patients. RESULTS FH patients had significantly elevated Achilles total water content (p = 0.006), cross-sectional area (p = 0.006), and thickness (p = 0.019). No between-group differences were observed in any of the biomechanical parameters. In patients with FH there were significant positive relationships between tendon lipid or water content and tendon strain (ρ = 0.35, p = 0.046; r = 0.42, p = 0.02, respectively). No significant relationships were observed in control participants. In patients with FH, increased tendon cross-sectional area was associated with reduced stiffness (r=-0.371, p = 0.033) and increased strain (r = 0.48, p = 0.005). The presence of xanthoma was associated with increased Achilles dimensions (p < 0.05), total water content (p = 0.03), strain (p = 0.029), and decreased Young's modulus (p = 0.001). CONCLUSION Increased Achilles lipid and water content is associated with increased tendon strain in people with FH and the presence of xanthoma might indicate altered tendon mechanics. This study holds relevance for individuals with hypercholesteremia, as best management practices advocate for physical activity as part of a healthy lifestyle.
Collapse
Affiliation(s)
- Kipling Squier
- Department of Physical Therapy, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada.
- Centre for Aging SMART at VCH, Vancouver Coastal Health Research Institute, Vancouver, BC, Canada.
| | - Charlie Waugh
- Department of Physical Therapy, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
- Centre for Aging SMART at VCH, Vancouver Coastal Health Research Institute, Vancouver, BC, Canada
| | - Joanne Callow
- School of Nursing, Faculty of Applied Science, University of British Columbia, Vancouver, BC, Canada
| | - Wayne Patola
- Department of Radiology, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Michael A Hunt
- Department of Physical Therapy, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
- Centre for Aging SMART at VCH, Vancouver Coastal Health Research Institute, Vancouver, BC, Canada
| | - Liam R Brunham
- Centre for Heart Lung Innovation, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Jennifer Jakobi
- School of Health & Exercise Sciences, University of British Columbia Okanagan, Kelowna, BC, Canada
- Aging in Place Research Cluster, University of British Columbia Okanagan, Kelowna, BC, Canada
| | - Alexander Scott
- Department of Physical Therapy, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
- Centre for Aging SMART at VCH, Vancouver Coastal Health Research Institute, Vancouver, BC, Canada
| |
Collapse
|
9
|
Cao X, Li J, Zhai W, Zhou B, Lin H, Wang Y. Inhibiting Friction-Induced Exogenous Adhesion via Robust Lubricative Core-Shell Nanofibers for High-Quality Tendon Repair. Biomacromolecules 2025; 26:1350-1361. [PMID: 39827415 DOI: 10.1021/acs.biomac.4c01729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
Friction is the trigger cause for excessive exogenous adhesion, leading to the poor self-repair of the tendon. To address this problem, we developed electrospun dual-functional nanofibers with surface robust superlubricated performance and bioactive agent delivery to regulate healing balance by reducing exogenous adhesion and promoting endogenous healing. Coaxial electrospinning and our previous developed in situ robust nanocoating growth techniques were employed to create the lubricative/repairable core-shell structured nanofibrous membrane (L/R-NM). The L/R-NM shell featured a robust coating of the zwitterionic PMPC polymer for strong hydration lubrication to resist exogenous healing. The core could achieve sustained platelet-rich plasma release to promote endogenous healing. Friction tests and cell experiments confirmed L/R-NM's prominent lubricating properties and antiadhesive performance in vitro. Rat tendon injury model evaluation indicated that L/R-NM effectively promotes high-quality tendon repair by inhibiting friction-induced exogenous adhesion and promoting endogenous healing. Therefore, we believe that L/R-NM will open a unique novel horizon for tendon repair.
Collapse
Affiliation(s)
- Xin Cao
- Department of Hepatobiliary Surgery, Hebei International Joint Research Center for Digital Twin Diagnosis and Treatment of Digestive Tract Tumors, Baoding Key Laboratory of Precision Diagnosis and Treatment of Digestive Tract Tumors, Affiliated Hospital of Hebei University, Baoding 071000, China
| | - Jinghua Li
- Department of Hepatobiliary Surgery, Hebei International Joint Research Center for Digital Twin Diagnosis and Treatment of Digestive Tract Tumors, Baoding Key Laboratory of Precision Diagnosis and Treatment of Digestive Tract Tumors, Affiliated Hospital of Hebei University, Baoding 071000, China
| | - Weijie Zhai
- Department of Hepatobiliary Surgery, Hebei International Joint Research Center for Digital Twin Diagnosis and Treatment of Digestive Tract Tumors, Baoding Key Laboratory of Precision Diagnosis and Treatment of Digestive Tract Tumors, Affiliated Hospital of Hebei University, Baoding 071000, China
| | - Bowen Zhou
- Department of Hepatobiliary Surgery, Hebei International Joint Research Center for Digital Twin Diagnosis and Treatment of Digestive Tract Tumors, Baoding Key Laboratory of Precision Diagnosis and Treatment of Digestive Tract Tumors, Affiliated Hospital of Hebei University, Baoding 071000, China
| | - Hao Lin
- Department of Mechanical Engineering, Beijing University of Technology, Beijing 100124, China
| | - Yi Wang
- Department of Hepatobiliary Surgery, Hebei International Joint Research Center for Digital Twin Diagnosis and Treatment of Digestive Tract Tumors, Baoding Key Laboratory of Precision Diagnosis and Treatment of Digestive Tract Tumors, Affiliated Hospital of Hebei University, Baoding 071000, China
- Department of Mechanical Engineering, Beijing University of Technology, Beijing 100124, China
| |
Collapse
|
10
|
Jiang J, Jang KH, Ahn SY, Jo CH. Changes in Gene Expression of the Extracellular Matrix in Patients with Full-Thickness Rotator Cuff Tears of Varying Sizes. Clin Orthop Surg 2025; 17:138-147. [PMID: 39912080 PMCID: PMC11791492 DOI: 10.4055/cios24125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 05/23/2024] [Accepted: 05/28/2024] [Indexed: 02/07/2025] Open
Abstract
Backgroud This study aimed to investigate changes in gene expression related to matrix synthesis in individuals with full-thickness rotator cuff tears (RCTs) and normal tendon tissues. The study also aimed to examine the differences in gene expression according to 4 distinct tear sizes. Methods A total of 12 patients with full-thickness RCTs were included in the study, all of whom underwent arthroscopic rotator cuff repair. The RCTs were stratified by size into small, medium, large, and massive. Tendon samples were harvested from the midpoint between the lateral end of the torn tendon and the musculotendinous junction. Subsequent analysis of the tissue samples revealed the mRNA expression levels of 11 collagen types, 6 proteoglycans, and 8 glycoproteins through real-time polymerase chain reaction techniques. For control purposes, supraspinatus tendon tissue was sourced from 3 patients who had proximal humerus fractures but did not present with RCTs. Results Among the 11 collagens and 14 non-collagenous protein (NCP) genes examined in this study, COL3A1 and COL10A1 showed a significant increase, whereas COL4A1 and COL14A1 showed a tendency to decrease compared to those in the normal group. ACAN significantly increased by 8.92-fold (p < 0.001) compared to that in the normal group, whereas DCN and LUM showed a tendency to decrease. FN1 and TNC increased significantly by 3.47-fold (p = 0.003) and 5.38-fold (p = 0.005), respectively, and the genes ELN, LAMA2, and THBS1 were all significantly reduced compared to those in the normal group. In the NCPs, almost all the genes with increased expression levels had the highest level in small size RCTs, and gene expression decreased as the size increased. The 3 proteoglycans (ACAN, BGN, and FMOD) showed the highest levels of expression in small size RCTs compared to those in the normal group, and 5 glycoproteins (COMP, FBN1, FN1, HAPLN1, and TNC) also showed the highest expression in small size RCTs. Conclusions We confirmed that most of the detected extracellular matrix gene expression changes were related to the size of the full-thickness RCTs. In NCPs, gene expression was increased in small-size tears, and gene expression levels were significantly reduced when the size increased.
Collapse
Affiliation(s)
- Jian Jiang
- Department of Translational Medicine, Seoul National University College of Medicine, Seoul, Korea
- Department of Orthopedic Surgery, SMG-SNU Boramae Medical Center, Seoul National University College of Medicine, Seoul, Korea
| | - Kwi-Hoon Jang
- Department of Orthopedic Surgery, SMG-SNU Boramae Medical Center, Seoul National University College of Medicine, Seoul, Korea
| | - Sung Yong Ahn
- Department of Translational Medicine, Seoul National University College of Medicine, Seoul, Korea
- Department of Orthopedic Surgery, SMG-SNU Boramae Medical Center, Seoul National University College of Medicine, Seoul, Korea
| | - Chris Hyunchul Jo
- Department of Translational Medicine, Seoul National University College of Medicine, Seoul, Korea
- Department of Orthopedic Surgery, SMG-SNU Boramae Medical Center, Seoul National University College of Medicine, Seoul, Korea
| |
Collapse
|
11
|
Alhaskawi A, Dong Y, Zou X, Zhou W, Ezzi SHA, Goutham Kota V, Hasan Abdulla Hasan Abdulla M, Abdalbary S, Lu H. Advancements in biomaterials and scaffold design for tendon repair and regeneration. J Appl Biomater Funct Mater 2025; 23:22808000241310684. [PMID: 40420476 DOI: 10.1177/22808000241310684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/28/2025] Open
Abstract
Tendon injuries present a significant clinical challenge due to their limited natural healing capacity and the mechanical demands placed on these tissues. This review provides a comprehensive evaluation of the current strategies and advancements in tendon repair and regeneration, focusing on biomaterial innovations and scaffold design. Through a systematic literature search of databases such as PubMed, Scopus, and Web of Science, key studies were analyzed to assess the efficacy of biocompatible materials like hydrogels, synthetic polymers, and fiber-reinforced scaffolds in promoting tendon healing. Emphasis is placed on the role of collagen fiber architecture, including fiber diameter, alignment, and crimping, in restoring the mechanical strength and functional properties of tendons. Additionally, the review highlights emerging techniques such as electrospinning, melt electrowriting, and hybrid textile methods that allow for precise scaffold designs mimicking native tendon structures. Cutting-edge approaches in regenerative medicine, including stem cell therapies, bioelectronic devices, and bioactive molecules, are also explored for their potential to enhance tendon repair. The findings underscore the transformative impact of these technologies on improving tendon biomechanics and functional recovery. Future research directions are outlined, aiming to overcome the current limitations in scaffold mechanical properties and integration at tendon-bone and tendon-muscle junctions. This review contributes to the development of more effective strategies for tendon regeneration, advancing both clinical outcomes and the field of orthopedic tissue engineering.
Collapse
Affiliation(s)
- Ahmad Alhaskawi
- Department of Orthopedics, The First Affiliated Hospital, Zhejiang University, Hangzhou, Zhejiang Province, P. R. China
| | - Yanzhao Dong
- Department of Orthopedics, The First Affiliated Hospital, Zhejiang University, Hangzhou, Zhejiang Province, P. R. China
| | - Xiaodi Zou
- Department of Orthopedics, The First Affiliated Hospital, Zhejiang University, Hangzhou, Zhejiang Province, P. R. China
- Department of Orthopedics, Zhejiang Chinese Medical University, The Second Affiliated School of Zhejiang Chinese Medical University, Hangzhou, Zhejiang Province, P.R. China
| | - Weijie Zhou
- Department of Orthopedics, No. 903 Hospital of PLA Joint Logistic Support Force, Hangzhou, Zhejiang Province, P. R. China
| | - Sohaib Hasan Abdullah Ezzi
- Department of Orthopaedics, Third Xiangya Hospital, Central South University, Changsha, Hunan Province, P. R. China
| | - Vishnu Goutham Kota
- Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, P. R. China
| | | | - Sahar Abdalbary
- Faculty of Physical Therapy, Department of Orthopedic Physical Therapy, Nahda University in Beni Suef, Beni Suef, Egypt
| | - Hui Lu
- Department of Orthopedics, The First Affiliated Hospital, Zhejiang University, Hangzhou, Zhejiang Province, P. R. China
| |
Collapse
|
12
|
Wang Y, Yung P, Lu G, Liu Y, Ding C, Mao C, Li ZA, Tuan RS. Musculoskeletal Organs-on-Chips: An Emerging Platform for Studying the Nanotechnology-Biology Interface. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2401334. [PMID: 38491868 PMCID: PMC11733728 DOI: 10.1002/adma.202401334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 03/11/2024] [Indexed: 03/18/2024]
Abstract
Nanotechnology-based approaches are promising for the treatment of musculoskeletal (MSK) disorders, which present significant clinical burdens and challenges, but their clinical translation requires a deep understanding of the complex interplay between nanotechnology and MSK biology. Organ-on-a-chip (OoC) systems have emerged as an innovative and versatile microphysiological platform to replicate the dynamics of tissue microenvironment for studying nanotechnology-biology interactions. This review first covers recent advances and applications of MSK OoCs and their ability to mimic the biophysical and biochemical stimuli encountered by MSK tissues. Next, by integrating nanotechnology into MSK OoCs, cellular responses and tissue behaviors may be investigated by precisely controlling and manipulating the nanoscale environment. Analysis of MSK disease mechanisms, particularly bone, joint, and muscle tissue degeneration, and drug screening and development of personalized medicine may be greatly facilitated using MSK OoCs. Finally, future challenges and directions are outlined for the field, including advanced sensing technologies, integration of immune-active components, and enhancement of biomimetic functionality. By highlighting the emerging applications of MSK OoCs, this review aims to advance the understanding of the intricate nanotechnology-MSK biology interface and its significance in MSK disease management, and the development of innovative and personalized therapeutic and interventional strategies.
Collapse
Affiliation(s)
- Yuwen Wang
- Department of Biomedical EngineeringThe Chinese University of Hong KongNTHong Kong SAR999077P. R. China
| | - Patrick Yung
- Center for Neuromusculoskeletal Restorative MedicineHong Kong Science ParkNTHong Kong SAR999077P. R. China
- Department of Orthopaedics and TraumatologyThe Chinese University of Hong KongNTHong Kong SAR999077P. R. China
- Institute for Tissue Engineering and Regenerative MedicineThe Chinese University of Hong KongNTHong Kong SAR999077P. R. China
| | - Gang Lu
- Center for Neuromusculoskeletal Restorative MedicineHong Kong Science ParkNTHong Kong SAR999077P. R. China
- School of Biomedical SciencesThe Chinese University of Hong KongNTHong Kong SAR999077P. R. China
| | - Yuwei Liu
- Department of Biomedical EngineeringThe Chinese University of Hong KongNTHong Kong SAR999077P. R. China
- The First Affiliated Hospital of Shenzhen UniversityShenzhen Second People's HospitalShenzhenGuangdong518037P. R. China
| | - Changhai Ding
- Clinical Research CentreZhujiang HospitalSouthern Medical UniversityGuangzhouGuangdong510260China
- Menzies Institute for Medical ResearchUniversity of TasmaniaHobartTasmania7000Australia
| | - Chuanbin Mao
- Department of Biomedical EngineeringThe Chinese University of Hong KongNTHong Kong SAR999077P. R. China
| | - Zhong Alan Li
- Department of Biomedical EngineeringThe Chinese University of Hong KongNTHong Kong SAR999077P. R. China
- Center for Neuromusculoskeletal Restorative MedicineHong Kong Science ParkNTHong Kong SAR999077P. R. China
- School of Biomedical SciencesThe Chinese University of Hong KongNTHong Kong SAR999077P. R. China
- Key Laboratory of Regenerative MedicineMinistry of EducationSchool of Biomedical SciencesFaculty of MedicineThe Chinese University of Hong KongHong Kong SAR999077P. R. China
- Shenzhen Research InstituteThe Chinese University of Hong KongShenzhen518172P. R. China
| | - Rocky S. Tuan
- Center for Neuromusculoskeletal Restorative MedicineHong Kong Science ParkNTHong Kong SAR999077P. R. China
- Department of Orthopaedics and TraumatologyThe Chinese University of Hong KongNTHong Kong SAR999077P. R. China
- Institute for Tissue Engineering and Regenerative MedicineThe Chinese University of Hong KongNTHong Kong SAR999077P. R. China
- School of Biomedical SciencesThe Chinese University of Hong KongNTHong Kong SAR999077P. R. China
| |
Collapse
|
13
|
Bloom ET, Sabanayagam CR, Benson JM, Lin LM, Ross JL, Caplan JL, Elliott DM. Neural network auto-segmentation of serial-block-face scanning electron microscopy images exhibit collagen fibril structural differences with tendon type and health. J Orthop Res 2025; 43:5-13. [PMID: 39180281 PMCID: PMC11756596 DOI: 10.1002/jor.25961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 07/01/2024] [Accepted: 07/11/2024] [Indexed: 08/26/2024]
Abstract
A U-Net machine learning algorithm was adapted to automatically segment tendon collagen fibril cross-sections from serial block face scanning electron microscopy (SBF-SEM) and create three-dimensional (3D) renderings. We compared the performance of routine Otsu thresholding and U-Net for a positional tendon that has low fibril density (rat tail tendon), an energy-storing tendon that has high fibril density (rat plantaris tendon), and a high fibril density tendon hypothesized to have disorganized 3D ultrastructure (degenerated rat plantaris tendon). The area segmentation of the tail and healthy plantaris tendon had excellent accuracy for both the Otsu and U-Net, with an Intersection over Union (IoU) of 0.8. With degeneration, only the U-Net could accurately segment the area, whereas Otsu IoU was only 0.45. For boundary validation, the U-Net outperformed Otsu segmentation for all tendons. The fibril diameter from U-Net was within 10% of the manual segmentation, however, the Otsu underestimated the fibril diameter by 39% in healthy plantaris and by 84% in the degenerated plantaris. Fibril geometry was averaged across the entire image stack and compared across tendon types. The tail had a lower fibril area fraction (58%) and larger fibril diameter (0.31 µm) than the healthy plantaris (67% and 0.21 µm) and degenerated plantaris tendon (66% and 0.19 µm). This method can be applied to a large variety of tissues to quantify 3D collagen fibril structure.
Collapse
Affiliation(s)
- Ellen T Bloom
- Department of Biomedical Engineering, University of Delaware, Newark, Delaware, USA
| | - Chandran R Sabanayagam
- Bio-Imaging Center, Delaware Biotechnology Institute, University of Delaware, Newark, Delaware, USA
| | - Jamie M Benson
- Department of Biomedical Engineering, University of Delaware, Newark, Delaware, USA
| | - Lily M Lin
- Department of Biomedical Engineering, University of Delaware, Newark, Delaware, USA
| | - Jean L Ross
- Bio-Imaging Center, Delaware Biotechnology Institute, University of Delaware, Newark, Delaware, USA
| | - Jeffrey L Caplan
- Bio-Imaging Center, Delaware Biotechnology Institute, University of Delaware, Newark, Delaware, USA
- Department of Plant and Soil Sciences, University of Delaware, Newark, Delaware, USA
| | - Dawn M Elliott
- Department of Biomedical Engineering, University of Delaware, Newark, Delaware, USA
| |
Collapse
|
14
|
Brouki Milan P, Masoumi F, Biazar E, Zare Jalise S, Mehrabi A. Exploiting the Potential of Decellularized Extracellular Matrix (ECM) in Tissue Engineering: A Review Study. Macromol Biosci 2025; 25:e2400322. [PMID: 39412772 DOI: 10.1002/mabi.202400322] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 09/03/2024] [Indexed: 01/14/2025]
Abstract
While significant progress has been made in creating polymeric structures for tissue engineering, the therapeutic application of these scaffolds remains challenging owing to the intricate nature of replicating the conditions of native organs and tissues. The use of human-derived biomaterials for therapeutic purposes closely imitates the properties of natural tissue, thereby assisting in tissue regeneration. Decellularized extracellular matrix (dECM) scaffolds derived from natural tissues have become popular because of their unique biomimetic properties. These dECM scaffolds can enhance the body's ability to heal itself or be used to generate new tissues for restoration, expanding beyond traditional tissue transfers and transplants. Enhanced knowledge of how ECM scaffold materials affect the microenvironment at the injury site is expected to improve clinical outcomes. In this review, recent advancements in dECM scaffolds are explored and relevant perspectives are offered, highlighting the development and application of these scaffolds in tissue engineering for various organs, such as the skin, nerve, bone, heart, liver, lung, and kidney.
Collapse
Affiliation(s)
- Peiman Brouki Milan
- Department of Tissue Engineering & Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, 144-961-4535, Iran
| | - Farimah Masoumi
- School of Medicine, Tonekabon Branch, Islamic Azad University, Tonekabon, 468-416-1167, Iran
| | - Esmaeil Biazar
- Department of Biomedical Engineering, Tonekabon Branch, Islamic Azad University, Tonekabon, 468-416-1167, Iran
| | - Saeedeh Zare Jalise
- Department of Tissue Engineering and Applied Cell Sciences, School of Medicine, Qom University of Medical Sciences, Qom, 371-364-9373, Iran
| | - Arezou Mehrabi
- School of Medicine, Tonekabon Branch, Islamic Azad University, Tonekabon, 468-416-1167, Iran
| |
Collapse
|
15
|
Zhang W, Rao Y, Wong SH, Wu Y, Zhang Y, Yang R, Tsui SK, Ker DFE, Mao C, Frith JE, Cao Q, Tuan RS, Wang DM. Transcriptome-Optimized Hydrogel Design of a Stem Cell Niche for Enhanced Tendon Regeneration. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2313722. [PMID: 39417770 PMCID: PMC11733723 DOI: 10.1002/adma.202313722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 09/04/2024] [Indexed: 10/19/2024]
Abstract
Bioactive hydrogels have emerged as promising artificial niches for enhancing stem cell-mediated tendon repair. However, a substantial knowledge gap remains regarding the optimal combination of niche features for targeted cellular responses, which often leads to lengthy development cycles and uncontrolled healing outcomes. To address this critical gap, an innovative, data-driven materiomics strategy is developed. This approach is based on in-house RNA-seq data that integrates bioinformatics and mathematical modeling, which is a significant departure from traditional trial-and-error methods. It aims to provide both mechanistic insights and quantitative assessments and predictions of the tenogenic effects of adipose-derived stem cells induced by systematically modulated features of a tendon-mimetic hydrogel (TenoGel). The knowledge generated has enabled a rational approach for TenoGel design, addressing key considerations, such as tendon extracellular matrix concentration, uniaxial tensile loading, and in vitro pre-conditioning duration. Remarkably, our optimized TenoGel demonstrated robust tenogenesis in vitro and facilitated tendon regeneration while preventing undesired ectopic ossification in a rat tendon injury model. These findings shed light on the importance of tailoring hydrogel features for efficient tendon repair. They also highlight the tremendous potential of the innovative materiomics strategy as a powerful predictive and assessment tool in biomaterial development for regenerative medicine.
Collapse
Affiliation(s)
- Wanqi Zhang
- School of Biomedical SciencesFaculty of MedicineThe Chinese University of Hong KongHong Kong SARChina
- Institute for Tissue Engineering and Regenerative MedicineThe Chinese University of Hong KongHong Kong SARChina
| | - Ying Rao
- School of Biomedical SciencesFaculty of MedicineThe Chinese University of Hong KongHong Kong SARChina
- Institute for Tissue Engineering and Regenerative MedicineThe Chinese University of Hong KongHong Kong SARChina
| | - Shing Hei Wong
- School of Biomedical SciencesFaculty of MedicineThe Chinese University of Hong KongHong Kong SARChina
- Hong Kong Bioinformatics CentreThe Chinese University of Hong KongHong Kong SARChina
| | - Yeung Wu
- School of Biomedical SciencesFaculty of MedicineThe Chinese University of Hong KongHong Kong SARChina
- Institute for Tissue Engineering and Regenerative MedicineThe Chinese University of Hong KongHong Kong SARChina
| | - Yuanhao Zhang
- School of Biomedical SciencesFaculty of MedicineThe Chinese University of Hong KongHong Kong SARChina
- Institute for Tissue Engineering and Regenerative MedicineThe Chinese University of Hong KongHong Kong SARChina
| | - Rui Yang
- Department of Sports MedicineOrthopedicsSun Yat‐Sen Memorial HospitalSun Yat‐Sen UniversityGuangzhou510120China
| | - Stephen Kwok‐Wing Tsui
- School of Biomedical SciencesFaculty of MedicineThe Chinese University of Hong KongHong Kong SARChina
- Hong Kong Bioinformatics CentreThe Chinese University of Hong KongHong Kong SARChina
| | - Dai Fei Elmer Ker
- School of Biomedical SciencesFaculty of MedicineThe Chinese University of Hong KongHong Kong SARChina
- Institute for Tissue Engineering and Regenerative MedicineThe Chinese University of Hong KongHong Kong SARChina
- Department of Biomedical EngineeringThe Hong Kong Polytechnic UniversityHong Kong SARChina
- Center for Neuromusculoskeletal Restorative MedicineHong Kong Science ParkHong Kong SARChina
- Department of Orthopaedics and TraumatologyFaculty of MedicineThe Chinese University of Hong KongHong Kong SAR999077China
| | - Chuanbin Mao
- Department of Biomedical EngineeringThe Chinese University of Hong KongHong Kong SARChina
| | - Jessica E. Frith
- Materials Science and EngineeringMonash UniversityClayton3800VICAustralia
- Australian Regenerative Medicine InstituteMonash UniversityClayton3800VICAustralia
- Australian Research Council Training Centre for Cell and Tissue Engineering TechnologiesMonash UniversityClayton3800VICAustralia
| | - Qin Cao
- School of Biomedical SciencesFaculty of MedicineThe Chinese University of Hong KongHong Kong SARChina
- Hong Kong Bioinformatics CentreThe Chinese University of Hong KongHong Kong SARChina
| | - Rocky S. Tuan
- School of Biomedical SciencesFaculty of MedicineThe Chinese University of Hong KongHong Kong SARChina
- Institute for Tissue Engineering and Regenerative MedicineThe Chinese University of Hong KongHong Kong SARChina
- Center for Neuromusculoskeletal Restorative MedicineHong Kong Science ParkHong Kong SARChina
- Department of Orthopaedics and TraumatologyFaculty of MedicineThe Chinese University of Hong KongHong Kong SAR999077China
| | - Dan Michelle Wang
- School of Biomedical SciencesFaculty of MedicineThe Chinese University of Hong KongHong Kong SARChina
- Institute for Tissue Engineering and Regenerative MedicineThe Chinese University of Hong KongHong Kong SARChina
- Center for Neuromusculoskeletal Restorative MedicineHong Kong Science ParkHong Kong SARChina
- Department of Orthopaedics and TraumatologyFaculty of MedicineThe Chinese University of Hong KongHong Kong SAR999077China
| |
Collapse
|
16
|
Li X, Lwin KT, Kumarasinghe HU, Iglesias-Ledon L, Bethi E, Wang Y, Fennelly C, Sylvia R, Hatz S, Olsen T, Herget T, Chen Y, Kaplan D. Quantifying Biomass and Visualizing Cell Coverage on Fibrous Scaffolds for Cultivated Meat Production. Curr Protoc 2024; 4:e70076. [PMID: 39699285 DOI: 10.1002/cpz1.70076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2024]
Abstract
Cultivated meat represents a transformative solution to environmental and ethical concerns of traditional meat industries, replicating livestock meat's texture and sensory attributes in vitro with a focus on cost, safety, and nutritional quality. Central to this process are biomaterial scaffolds that support tissue development from isolated animal cells grown in or on these matrices. Understanding scaffold interactions with cells, including scaffold degradation and biomass production, is crucial for process design and for scaling-up goals. In this article, we outline comprehensive methods to quantify scaffold-cell interactions for such scenarios, focusing on biomaterial scaffold degradation and changes in cell biomass [measured by cell weight, extracellular matrix (ECM) deposition, and cell coverage] during cell culture. We introduce two methodologies for assessing cell coverage: fixation and staining for detailed imaging analysis, and non-invasive, real-time evaluation across scaffolds. Here we focus on fiber-based scaffolds, while the assessments can be extrapolated to 2-dimensional (2D; films), and in part to 3-dimensional (3D; sponge) systems. Utilizing the C2C12 mouse myoblast cell line as a gold standard, the protocols deliver precise, step-by-step instructions for preparing fiber scaffolds (using silk proteins here), seeding cells, and monitoring key parameters for cultivated meat production, providing a framework for advancing cellular agriculture techniques. © 2024 Wiley Periodicals LLC. Basic Protocol 1: Fabrication and preparation of silk fiber scaffolds for cell seeding Support Protocol 1: Cultivation of C2C12 cells and seeding onto fibrous scaffolds Basic Protocol 2: Quantification of decellularized yarn scaffold degradation during cell culture Basic Protocol 3: Quantification of biomass variation and ECM deposition on yarn scaffolds during C2C12 cell culture Basic Protocol 4: Visualization of cell-laden yarn scaffolds and determination of cell coverage ratio using confocal microscopy Support Protocol 2: Real-time imaging of cell-laden yarn scaffolds using Celigo system Support Protocol 3: Applying green CellTracker fluorescent probes to C2C12 cells seeded on yarn scaffolds.
Collapse
Affiliation(s)
- Xinxin Li
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts
| | - Khin Thu Lwin
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts
| | | | | | - Eesha Bethi
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts
| | - Yushu Wang
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts
| | | | - Ryan Sylvia
- MilliporeSigma, Inc., Burlington, Massachusetts
| | | | | | | | - Ying Chen
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts
| | - David Kaplan
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts
| |
Collapse
|
17
|
West VC, Owen KE, Inguito KL, Ebron KMM, Reiner TN, Mirack CE, Le CH, de Cassia Marqueti R, Snipes S, Mousavizadeh R, King RE, Elliott DM, Parreno J. Actin Polymerization Status Regulates Tenocyte Homeostasis Through Myocardin-Related Transcription Factor-A. Cytoskeleton (Hoboken) 2024. [PMID: 39601363 DOI: 10.1002/cm.21962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 11/12/2024] [Accepted: 11/13/2024] [Indexed: 11/29/2024]
Abstract
The actin cytoskeleton is a potent regulator of tenocyte homeostasis. However, the mechanisms by which actin regulates tendon homeostasis are not entirely known. This study examined the regulation of tenocyte molecule expression by actin polymerization via the globular (G-) actin-binding transcription factor, myocardin-related transcription factor-a (MRTF). We determined that decreasing the proportion of G-actin in tenocytes by treatment with TGFβ1 increases nuclear MRTF. These alterations in actin polymerization and MRTF localization coincided with favorable alterations to tenocyte gene expression. In contrast, latrunculin A increases the proportion of G-actin in tenocytes and reduces nuclear MRTF, causing cells to acquire a tendinosis-like phenotype. To parse out the effects of F-actin depolymerization from regulation by MRTF, we treated tenocytes with cytochalasin D. Exposure of cells to cytochalasin D increases the proportion of G-actin in tenocytes. However, as compared to latrunculin A, cytochalasin D has a differential effect on MRTF localization by increasing nuclear MRTF. This led to an opposing effect on the regulation of a subset of genes. The differential regulation of genes by latrunculin A and cytochalasin D suggests that actin signals through MRTF to regulate a specific subset of genes. By targeting the deactivation of MRTF through the inhibitor CCG1423, we verify that MRTF regulates Type I Collagen, Tenascin C, Scleraxis, and α-smooth muscle actin in tenocytes. Actin polymerization status is a potent regulator of tenocyte homeostasis through the modulation of several downstream pathways, including MRTF. Understanding the regulation of tenocyte homeostasis by actin may lead to new therapeutic interventions against tendinopathies, such as tendinosis.
Collapse
Affiliation(s)
- Valerie C West
- Department of Biomedical Engineering, University of Delaware, Newark, Delaware, USA
| | - Kaelyn E Owen
- Department of Biomedical Engineering, University of Delaware, Newark, Delaware, USA
| | - Kameron L Inguito
- Department of Biological Sciences, University of Delaware, Newark, Delaware, USA
| | - Karl Matthew M Ebron
- Department of Kinesiology and Applied Physiology, University of DE, Newark, Delaware, USA
| | - Tori N Reiner
- Department of Biological Sciences, University of Delaware, Newark, Delaware, USA
| | - Chloe E Mirack
- Department of Biological Sciences, University of Delaware, Newark, Delaware, USA
| | - Christian H Le
- Department of Biomedical Engineering, University of Delaware, Newark, Delaware, USA
| | - Rita de Cassia Marqueti
- Laboratory of Molecular Analysis, Graduate Program of Rehabilitation Sciences, University of Brasília, Brasília, Distrito Federal, Brazil
| | - Steven Snipes
- Department of Biological Sciences, University of Delaware, Newark, Delaware, USA
| | - Rouhollah Mousavizadeh
- Department of Physical Therapy, Faculty of Medicine, The University of British Columbia, Vancouver, Canada
| | - Rylee E King
- Department of Biological Sciences, University of Delaware, Newark, Delaware, USA
| | - Dawn M Elliott
- Department of Biomedical Engineering, University of Delaware, Newark, Delaware, USA
| | - Justin Parreno
- Department of Biomedical Engineering, University of Delaware, Newark, Delaware, USA
- Department of Biological Sciences, University of Delaware, Newark, Delaware, USA
| |
Collapse
|
18
|
Morya VK, Shahid H, Lang J, Kwak MK, Park SH, Noh KC. Advancements in Therapeutic Approaches for Degenerative Tendinopathy: Evaluating Efficacy and Challenges. Int J Mol Sci 2024; 25:11846. [PMID: 39519397 PMCID: PMC11545934 DOI: 10.3390/ijms252111846] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 10/31/2024] [Accepted: 11/02/2024] [Indexed: 11/16/2024] Open
Abstract
Degenerative tendinopathy results from the accumulation of minor injuries following unsuccessful tendon repair during acute tendon injuries. The process of tendon repair is prolonged and varies between individuals, making it susceptible to reinjury. Moreover, treating chronic tendinopathy often requires expensive and extensive rehabilitation, along with a variety of combined therapies to facilitate recovery. This condition significantly affects the quality of life of affected individuals, underscoring the urgent need for more efficient and cost-effective treatment options. Although traditional treatments have improved significantly and are being used as substitutes for surgical interventions, the findings have been inconsistent and conflicting. This review aims to clarify these issues by exploring the strengths and limitations of current treatments as well as recent innovations in managing various forms of degenerative tendinopathy.
Collapse
Affiliation(s)
- Vivek Kumar Morya
- Hallym University Dongtan Sacred Heart Hospital, Hwaseong-si 18450, Republic of Korea; (V.K.M.); (J.L.)
- School of Medicine, Hallym University, Chuncheon 24252, Republic of Korea
| | - Hamzah Shahid
- Hallym University Dongtan Sacred Heart Hospital, Hwaseong-si 18450, Republic of Korea; (V.K.M.); (J.L.)
- School of Medicine, Hallym University, Chuncheon 24252, Republic of Korea
| | - Jun Lang
- Hallym University Dongtan Sacred Heart Hospital, Hwaseong-si 18450, Republic of Korea; (V.K.M.); (J.L.)
- School of Medicine, Hallym University, Chuncheon 24252, Republic of Korea
| | - Mi Kyung Kwak
- Hallym University Dongtan Sacred Heart Hospital, Hwaseong-si 18450, Republic of Korea; (V.K.M.); (J.L.)
- School of Medicine, Hallym University, Chuncheon 24252, Republic of Korea
| | - Sin-Hye Park
- Department of Food Science & Nutrition, Hallym University, Chuncheon 24252, Republic of Korea
| | - Kyu-Cheol Noh
- School of Medicine, Hallym University, Chuncheon 24252, Republic of Korea
- Hallym University Sacred Heart Hospital, Anyang-si 14068, Republic of Korea
| |
Collapse
|
19
|
Nayagam SM, Ramachandran K, Selvaraj G, Sunmathi R, Easwaran M, Palraj ND, Anand K S SV, Muthurajan R, Tangavel C, Rajasekaran S. Identification of extracellular matrix proteins in plasma as a potential biomarker for intervertebral disc degeneration. EUROPEAN SPINE JOURNAL : OFFICIAL PUBLICATION OF THE EUROPEAN SPINE SOCIETY, THE EUROPEAN SPINAL DEFORMITY SOCIETY, AND THE EUROPEAN SECTION OF THE CERVICAL SPINE RESEARCH SOCIETY 2024; 33:4062-4075. [PMID: 39299936 DOI: 10.1007/s00586-024-08481-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 08/28/2024] [Accepted: 08/30/2024] [Indexed: 09/22/2024]
Abstract
PURPOSE Recently, there has been significant focus on extracellular matrix proteolysis due to its importance in the pathological progression of intervertebral disc degeneration (IVDD). The present study investigates the circulating levels of extracellular matrix proteins in the plasma of IVDD and determines their potential relevance as biomarkers in disc degeneration. METHODS Global proteomic analysis was performed in the plasma samples of 10 healthy volunteers (HV) and 10 diseased subjects (DS) after depletion of highly abundant proteins such as albumin and IgG. RESULTS We identified 144 and 135 matrix-associated proteins in plasma samples from healthy volunteers (HV) and patients with disc degeneration (DS), respectively. Among these, 49 of the matrix-associated proteins were identical to the proteins found in intervertebral disc (IVD) tissues retrieved from the in-house library. Applying stringent parameters, we selected 28 proteins, with 26 present in DS and 21 in HV. 19 proteins were found common between the groups, two of which-aggrecan (ACAN) and fibulin 1 (FBLN1) - showed statistically significant differences. Specifically, ACAN was up-regulated and FBLN1 was down-regulated in the DS-plasma. In particular, DS-plasma exhibited specific expression of collagen type 2a1 (COL2A1), native to the nucleus pulposus. CONCLUSION The distinct presence of collagen type 2a1 and the elevated expression of aggrecan in IVDD plasma may serve as the basis for the development of a potential biomarker for monitoring the progression of disc degeneration.
Collapse
Affiliation(s)
| | - Karthik Ramachandran
- Department of Spine Surgery, Ganga Hospital, 313, Mettupalayam Road, Coimbatore, India
| | - Ganesh Selvaraj
- Ganga Research Centre, 442, Vattamalaipalayam Road, NGGO colony, Coimbatore, India
| | - R Sunmathi
- Ganga Research Centre, 442, Vattamalaipalayam Road, NGGO colony, Coimbatore, India
| | - Murugesh Easwaran
- Ganga Research Centre, 442, Vattamalaipalayam Road, NGGO colony, Coimbatore, India
| | - Narmatha Devi Palraj
- Ganga Research Centre, 442, Vattamalaipalayam Road, NGGO colony, Coimbatore, India
| | - Sri Vijay Anand K S
- Department of Spine Surgery, Ganga Hospital, 313, Mettupalayam Road, Coimbatore, India
| | - Raveendran Muthurajan
- Department of Plant Biotechnology, Tamil Nadu Agricultural University, Lawley Road, Coimbatore, India
| | - Chitraa Tangavel
- Ganga Research Centre, 442, Vattamalaipalayam Road, NGGO colony, Coimbatore, India
| | - S Rajasekaran
- Department of Spine Surgery, Ganga Hospital, 313, Mettupalayam Road, Coimbatore, India.
| |
Collapse
|
20
|
Shama KA, Greenberg ZF, Tammame C, He M, Taylor BL. Diseased Tendon Models Demonstrate Influence of Extracellular Matrix Alterations on Extracellular Vesicle Profile. Bioengineering (Basel) 2024; 11:1019. [PMID: 39451395 PMCID: PMC11505312 DOI: 10.3390/bioengineering11101019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 10/02/2024] [Accepted: 10/08/2024] [Indexed: 10/26/2024] Open
Abstract
Tendons enable movement through their highly aligned extracellular matrix (ECM), predominantly composed of collagen I. Tendinopathies disrupt the structural integrity of tendons by causing fragmentation of collagen fibers, disorganization of fiber bundles, and an increase in glycosaminoglycans and microvasculature, thereby driving the apparent biomechanical and regenerative capacity in patients. Moreover, the complex cellular communication within the tendon microenvironment ultimately dictates the fate between healthy and diseased tendon, wherein extracellular vesicles (EVs) may facilitate the tendon's fate by transporting biomolecules within the tissue. In this study, we aimed to elucidate how the EV functionality is altered in the context of tendon microenvironments by using polycaprolactone (PCL) electrospun scaffolds mimicking healthy and pathological tendon matrices. Scaffolds were characterized for fiber alignment, mechanical properties, and cellular activity. EVs were isolated and analyzed for concentration, heterogeneity, and protein content. Our results show that our mimicked healthy tendon led to an increase in EV secretion and baseline metabolic activity over the mimicked diseased tendon, where reduced EV secretion and a significant increase in metabolic activity over 5 days were observed. These findings suggest that scaffold mechanics may influence EV functionality, offering insights into tendon homeostasis. Future research should further investigate how EV cargo affects the tendon's microenvironment.
Collapse
Affiliation(s)
- Kariman A. Shama
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL 32611, USA; (K.A.S.); (C.T.); (M.H.)
| | | | - Chadine Tammame
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL 32611, USA; (K.A.S.); (C.T.); (M.H.)
| | - Mei He
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL 32611, USA; (K.A.S.); (C.T.); (M.H.)
- Department of Pharmaceutics, University of Florida, Gainesville, FL 32603, USA;
| | - Brittany L. Taylor
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL 32611, USA; (K.A.S.); (C.T.); (M.H.)
| |
Collapse
|
21
|
Muscat S, Nichols AEC. Leveraging in vivo animal models of tendon loading to inform tissue engineering approaches. Front Bioeng Biotechnol 2024; 12:1449372. [PMID: 39434716 PMCID: PMC11491380 DOI: 10.3389/fbioe.2024.1449372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 09/24/2024] [Indexed: 10/23/2024] Open
Abstract
Tendon injuries disrupt successful transmission of force between muscle and bone, resulting in reduced mobility, increased pain, and significantly reduced quality of life for affected patients. There are currently no targeted treatments to improve tendon healing beyond conservative methods such as rest and physical therapy. Tissue engineering approaches hold great promise for designing instructive biomaterials that could improve tendon healing or for generating replacement graft tissue. More recently, engineered microphysiological systems to model tendon injuries have been used to identify therapeutic targets. Despite these advances, current tissue engineering efforts that aim to regenerate, replace, or model injured tendons have largely failed due in large part to a lack of understanding of how the mechanical environment of the tendon influences tissue homeostasis and how altered mechanical loading can promote or prevent disease progression. This review article draws inspiration from what is known about tendon loading from in vivo animal models and identifies key metrics that can be used to benchmark success in tissue engineering applications. Finally, we highlight important challenges and opportunities for the field of tendon tissue engineering that should be taken into consideration in designing engineered platforms to understand or improve tendon healing.
Collapse
Affiliation(s)
- Samantha Muscat
- Department of Pathology and Laboratory Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY, United States
- Department of Orthopedics and Physical Performance, Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, United States
| | - Anne E. C. Nichols
- Department of Orthopedics and Physical Performance, Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, United States
| |
Collapse
|
22
|
Leahy TP, Chenna SS, Soslowsky LJ, Dyment NA. Focal adhesion kinase regulates tendon cell mechanoresponse and physiological tendon development. FASEB J 2024; 38:e70050. [PMID: 39259535 PMCID: PMC11522781 DOI: 10.1096/fj.202400151r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 07/17/2024] [Accepted: 08/30/2024] [Indexed: 09/13/2024]
Abstract
Tendons enable locomotion by transmitting high tensile mechanical forces between muscle and bone via their dense extracellular matrix (ECM). The application of extrinsic mechanical stimuli via muscle contraction is necessary to regulate healthy tendon function. Specifically, applied physiological levels of mechanical loading elicit an anabolic tendon cell response, while decreased mechanical loading evokes a degradative tendon state. Although the tendon response to mechanical stimuli has implications in disease pathogenesis and clinical treatment strategies, the cell signaling mechanisms by which tendon cells sense and respond to mechanical stimuli within the native tendon ECM remain largely unknown. Therefore, we explored the role of cell-ECM adhesions in regulating tendon cell mechanotransduction by perturbing the genetic expression and signaling activity of focal adhesion kinase (FAK) through both in vitro and in vivo approaches. We determined that FAK regulates tendon cell spreading behavior and focal adhesion morphology, nuclear deformation in response to applied mechanical strain, and mechanosensitive gene expression. In addition, our data reveal that FAK signaling plays an essential role in in vivo tendon development and postnatal growth, as FAK-knockout mouse tendons demonstrated reduced tendon size, altered mechanical properties, differences in cellular composition, and reduced maturity of the deposited ECM. These data provide a foundational understanding of the role of FAK signaling as a critical regulator of in situ tendon cell mechanotransduction. Importantly, an increased understanding of tendon cell mechanotransductive mechanisms may inform clinical practice as well as lead to the discovery of diagnostic and/or therapeutic molecular targets.
Collapse
Affiliation(s)
- Thomas P. Leahy
- McKay Orthopaedic Laboratory, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Srish S. Chenna
- McKay Orthopaedic Laboratory, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Louis J. Soslowsky
- McKay Orthopaedic Laboratory, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Nathaniel A. Dyment
- McKay Orthopaedic Laboratory, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
23
|
West VC, Owen K, Inguito KL, Ebron KMM, Reiner T, Mirack CE, Le C, de Cassia Marqueti R, Snipes S, Mousavizadeh R, Elliott DM, Parreno J. Actin Polymerization Status Regulates Tendon Homeostasis through Myocardin-Related Transcription Factor-A. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.26.609684. [PMID: 39253450 PMCID: PMC11383320 DOI: 10.1101/2024.08.26.609684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
The actin cytoskeleton is a potent regulator of tenocyte homeostasis. However, the mechanisms by which actin regulates tendon homeostasis are not entirely known. This study examined the regulation of tenocyte molecule expression by actin polymerization via the globular (G-) actin-binding transcription factor, myocardin-related transcription factor-a (MRTF). We determined that decreasing the proportion of G-actin in tenocytes by treatment with TGFβ1 increases nuclear MRTF. These alterations in actin polymerization and MRTF localization coincided with favorable alterations to tenocyte gene expression. In contrast, latrunculin A increases the proportion of G-actin in tenocytes and reduces nuclear MRTF, causing cells to acquire a tendinosis-like phenotype. To parse out the effects of F-actin depolymerization from regulation by MRTF, we treated tenocytes with cytochalasin D. Similar to latrunculin A treatment, exposure of cells to cytochalasin D increases the proportion of G-actin in tenocytes. However, unlike latrunculin A treatment, cytochalasin D increases nuclear MRTF. Compared to latrunculin A treatment, cytochalasin D led to opposing effects on the expression of a subset of genes. The differential regulation of genes by latrunculin A and cytochalasin D suggests that actin signals through MRTF to regulate a specific subset of genes. By targeting the deactivation of MRTF through the inhibitor CCG1423, we verify that MRTF regulates Type I Collagen, Tenascin C, Scleraxis, and α-smooth muscle actin in tenocytes. Actin polymerization status is a potent regulator of tenocyte homeostasis through the modulation of several downstream pathways, including MRTF. Understanding the regulation of tenocyte homeostasis by actin may lead to new therapeutic interventions against tendinopathies, such as tendinosis.
Collapse
Affiliation(s)
- Valerie C. West
- Department of Biomedical Engineering, University of Delaware, Newark, DE, USA
| | - Kaelyn Owen
- Department of Biomedical Engineering, University of Delaware, Newark, DE, USA
| | - Kameron L. Inguito
- Department of Biological Sciences, University of Delaware, Newark, DE, USA
| | | | - Tori Reiner
- Department of Biological Sciences, University of Delaware, Newark, DE, USA
| | - Chloe E. Mirack
- Department of Biological Sciences, University of Delaware, Newark, DE, USA
| | - Christian Le
- Department of Biomedical Engineering, University of Delaware, Newark, DE, USA
| | - Rita de Cassia Marqueti
- Laboratory of Molecular Analysis, Graduate Program of Rehabilitation Sciences, University of Brasília, Brasília, Distrito Federal, Brazil
| | - Steven Snipes
- Department of Biological Sciences, University of Delaware, Newark, DE, USA
| | - Rouhollah Mousavizadeh
- Department of Physical Therapy, Faculty of Medicine, The University of British Columbia, Vancouver, Canada
| | - Dawn M. Elliott
- Department of Biomedical Engineering, University of Delaware, Newark, DE, USA
| | - Justin Parreno
- Department of Biomedical Engineering, University of Delaware, Newark, DE, USA
- Department of Biological Sciences, University of Delaware, Newark, DE, USA
| |
Collapse
|
24
|
Nakamichi R, Asahara H. The role of mechanotransduction in tendon. J Bone Miner Res 2024; 39:814-820. [PMID: 38795012 PMCID: PMC11301520 DOI: 10.1093/jbmr/zjae074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 04/04/2024] [Accepted: 05/24/2024] [Indexed: 05/27/2024]
Abstract
Tendons play an important role in the maintenance of motor function by connecting muscles and bones and transmitting forces. Particularly, the role of mechanical stress has primarily focused on the key mechanism of tendon homeostasis, with much research on this topic. With the recent development of molecular biological techniques, the mechanisms of mechanical stress sensing and signal transduction have been gradually elucidated with the identification of mechanosensor in tendon cells and the master regulator in tendon development. This review provides a comprehensive overview of the structure and function of tendon tissue, including the role for physical performance and the detailed mechanism of mechanotransduction in its regulation. An important lesson is that the role of mechanotransduction in tendon tissue is only partially clarified, indicating the complexity of the mechanisms of motor function and fueling increasing interest in uncovering these mechanisms.
Collapse
Affiliation(s)
- Ryo Nakamichi
- Department of Molecular and Cellular Biology, Scripps Research, 10550 North Torrey Pines Road, MBB-102, La Jolla, CA 92037, United States
- Department of Systems Biomedicine, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-Ku, Tokyo 113-8510, Japan
- Department of Orthopaedic Surgery, Okayama University hospital, 2-5-1 Shikata-Cho, Kita-Ku, Okayama 700-8558, Japan
| | - Hiroshi Asahara
- Department of Molecular and Cellular Biology, Scripps Research, 10550 North Torrey Pines Road, MBB-102, La Jolla, CA 92037, United States
- Department of Systems Biomedicine, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-Ku, Tokyo 113-8510, Japan
| |
Collapse
|
25
|
Gonzalez FM, Gleason CN, Tran A, Wasyliw C, Risk BB, Faulkner ES, Blackmon AM, Reiter DA. Differences in Achilles tendon mechanical properties between professional ballet dancers and collegiate athletes utilizing shear wave elastography. Skeletal Radiol 2024; 53:1381-1388. [PMID: 38277027 DOI: 10.1007/s00256-024-04564-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 01/01/2024] [Accepted: 01/03/2024] [Indexed: 01/27/2024]
Abstract
PURPOSE To report normative stiffness parameters obtained using shear wave elastography in dorsiflexion from the Achilles tendons in asymptomatic professional ballet dancers and compare them with college-level athletes. METHODS An Institutional Review Board (IRB)-approved study consists of 28 professional ballet dancers and 64 asymptomatic collegiate athletes. The athletes were further subdivided into runner and non-runner disciplines. Shear wave elastography (SWE) measurements were made in maximum ankle dorsiflexion position. RESULTS AND DISCUSSION Forty-eight (52%) males and 44 (48%) females were examined with an overall mean age of 22.2 (± 3.8 years). There were no significant SWE differences between dominant and non-dominant legs in both groups and comparing spin vs. non-spin leg of ballet dancers (p > 0.05). Ballet dancers had significantly higher short-axis velocity values than runners and non-runners (2.34 m/s increase and 2.79 m/s increase, respectively, p < 0.001). Long-axis velocity was significantly higher in ballet dancers compared to non-runners (by 0.80 m/s, p < 0.001), but was not different between ballet dancers and runners (p > 0.05). Short-axis modulus was significantly higher in dancers compared to runners and non-runners (by 135.2 kPa and 159.2 kPa, respectively, p < 0.001). Long-axis modulus (LAM) was not significantly different in ballet dancers when compared to runners. CONCLUSION Asymptomatic professional ballet dancers exhibit greater short-axis tendon stiffness compared to athletes and greater long-axis tendon stiffness compared to non-runners but similar to runners. The functional benefit from elevated short-axis stiffness in dancers is not clear but may be related to greater axial loading and adaptations of the tendon matrix.
Collapse
Affiliation(s)
| | | | - Andrew Tran
- Emory University School of Medicine, Atlanta, GA, USA
- Department of Radiology, Thomas Jefferson Hospital, Philadelphia, PA, USA
| | | | - Benjamin B Risk
- Department of Biostatistics & Bioinformatics, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | | | | | - David A Reiter
- Department of Orthopaedics, Emory School of Medicine, Atlanta, GA, USA
- Department of Radiology and Imaging Sciences, Emory School of Medicine, Atlanta, GA, USA
- Department of Biomedical Engineering, Emory University and Georgia Tech, Atlanta, GA, USA
| |
Collapse
|
26
|
Epanomeritakis IE, Eleftheriou A, Economou A, Lu V, Khan W. Mesenchymal Stromal Cells for the Enhancement of Surgical Flexor Tendon Repair in Animal Models: A Systematic Review and Meta-Analysis. Bioengineering (Basel) 2024; 11:656. [PMID: 39061739 PMCID: PMC11274147 DOI: 10.3390/bioengineering11070656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 06/09/2024] [Accepted: 06/24/2024] [Indexed: 07/28/2024] Open
Abstract
Flexor tendon lacerations are primarily treated by surgical repair. Limited intrinsic healing ability means the repair site can remain weak. Furthermore, adhesion formation may reduce range of motion post-operatively. Mesenchymal stromal cells (MSCs) have been trialled for repair and regeneration of multiple musculoskeletal structures. Our goal was to determine the efficacy of MSCs in enhancing the biomechanical properties of surgically repaired flexor tendons. A PRISMA systematic review was conducted using four databases (PubMed, Ovid, Web of Science, and CINAHL) to identify studies using MSCs to augment surgical repair of flexor tendon injuries in animals compared to surgical repair alone. Nine studies were included, which investigated either bone marrow- or adipose-derived MSCs. Results of biomechanical testing were extracted and meta-analyses were performed regarding the maximum load, friction and properties relating to viscoelastic behaviour. There was no significant difference in maximum load at final follow-up. However, friction, a surrogate measure of adhesions, was significantly reduced following the application of MSCs (p = 0.04). Other properties showed variable results and dissipation of the therapeutic benefits of MSCs over time. In conclusion, MSCs reduce adhesion formation following tendon injury. This may result from their immunomodulatory function, dampening the inflammatory response. However, this may come at the cost of favourable healing which will restore the tendon's viscoelastic properties. The short duration of some improvements may reflect MSCs' limited survival or poor retention. Further investigation is needed to clarify the effect of MSC therapy and optimise its duration of action.
Collapse
Affiliation(s)
| | - Andreas Eleftheriou
- School of Clinical Medicine, University of Cambridge, Cambridge CB2 0SP, UK; (A.E.); (A.E.); (V.L.)
| | - Anna Economou
- School of Clinical Medicine, University of Cambridge, Cambridge CB2 0SP, UK; (A.E.); (A.E.); (V.L.)
| | - Victor Lu
- School of Clinical Medicine, University of Cambridge, Cambridge CB2 0SP, UK; (A.E.); (A.E.); (V.L.)
| | - Wasim Khan
- Department of Trauma and Orthopaedic Surgery, Addenbrooke’s Hospital, University of Cambridge, Cambridge CB2 0QQ, UK
| |
Collapse
|
27
|
Augustin G, Jeong JH, Kim M, Hur SS, Lee JH, Hwang Y. Stem Cell‐Based Therapies and Tissue Engineering Innovations for Tendinopathy: A Comprehensive Review of Current Strategies and Future Directions. ADVANCED THERAPEUTICS 2024; 7. [DOI: 10.1002/adtp.202300425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Indexed: 01/06/2025]
Abstract
AbstractTendon diseases commonly lead to physical disability, exerting a profound impact on the routine of affected patients. These conditions respond poorly to existing treatments, presenting a substantial challenge for orthopedic scientists. Research into clinical translational therapy has yet to yield highly versatile interventions capable of effectively addressing tendon diseases, including tendinopathy. Stem cell‐based therapies have emerged as a promising avenue for modifying the biological milieu through the secretion of regenerative and immunomodulatory factors. The current review provides an overview of the intricate tendon microenvironment, encompassing various tendon stem progenitor cells within distinct tendon sublocations, gene regulation, and pathways pertinent to tendon development, and the pathology of tendon diseases. Subsequently, the advantages of stem cell‐based therapies are discussed that utilize distinct types of autologous and allogeneic stem cells for tendon regeneration at the translational level. Moreover, this review outlines the challenges, gaps, and future innovations to propose a consolidated stem cell‐based therapy to treat tendinopathy. Finally, regenerative soluble therapies, insoluble bio‐active therapies, along with insoluble bio‐active therapies, and implantable 3D scaffolds for tendon tissue engineering are discussed, thereby presenting a pathway toward enhanced tissue regeneration and engineering.
Collapse
Affiliation(s)
- George Augustin
- Department of Anesthesiology and Pain Medicine Soonchunhyang University Bucheon Hospital Soonchunhyang University College of Medicine Bucheon‐Si 14584 Republic of Korea
- Soonchunhyang Institute of Medi‐bio Science (SIMS) Soonchunhyang University Cheonan‐Si, Chungnam‐Do 31151 Republic of Korea
- Department of Biochemistry and Biophysics Oregon State University Corvallis OR 92331 USA
| | - Ji Hoon Jeong
- Soonchunhyang Institute of Medi‐bio Science (SIMS) Soonchunhyang University Cheonan‐Si, Chungnam‐Do 31151 Republic of Korea
- Department of Integrated Biomedical Science Soonchunhyang University Asan‐si, Chungnam‐Do 31538 Republic of Korea
| | - Min‐Kyu Kim
- Department of Anesthesiology and Pain Medicine Soonchunhyang University Bucheon Hospital Soonchunhyang University College of Medicine Bucheon‐Si 14584 Republic of Korea
- Soonchunhyang Institute of Medi‐bio Science (SIMS) Soonchunhyang University Cheonan‐Si, Chungnam‐Do 31151 Republic of Korea
| | - Sung Sik Hur
- Soonchunhyang Institute of Medi‐bio Science (SIMS) Soonchunhyang University Cheonan‐Si, Chungnam‐Do 31151 Republic of Korea
| | - Joon Ho Lee
- Department of Anesthesiology and Pain Medicine Soonchunhyang University Bucheon Hospital Soonchunhyang University College of Medicine Bucheon‐Si 14584 Republic of Korea
| | - Yongsung Hwang
- Soonchunhyang Institute of Medi‐bio Science (SIMS) Soonchunhyang University Cheonan‐Si, Chungnam‐Do 31151 Republic of Korea
- Department of Integrated Biomedical Science Soonchunhyang University Asan‐si, Chungnam‐Do 31538 Republic of Korea
| |
Collapse
|
28
|
Li H, Li Y, Xiang L, Luo S, Zhang Y, Li S. Therapeutic potential of GDF-5 for enhancing tendon regenerative healing. Regen Ther 2024; 26:290-298. [PMID: 39022600 PMCID: PMC11252783 DOI: 10.1016/j.reth.2024.03.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 03/24/2024] [Accepted: 03/28/2024] [Indexed: 07/20/2024] Open
Abstract
Tendon injury is a common disorder of the musculoskeletal system, with a higher possibility of occurrence in elderly individuals and athletes. After a tendon injury, the tendon suffers from inadequate and slow healing, resulting in the formation of fibrotic scar tissue, ending up with inferior functional properties. Therapeutic strategies involving the application of growth factors have been advocated to promote tendon healing. Growth and differentiation-5 (GDF-5) represents one such factor that has shown promising effect on tendon healing in animal models and in vitro cultures. Although promising, these studies are limited as the molecular mechanisms by which GDF-5 exerts its effect remain incompletely understood. Starting from broadly introducing essential elements of current understanding about GDF-5, the present review aims to define the effect of GDF-5 and its possible mechanisms of action in tendon healing. Nevertheless, we still need more in vivo studies to explore dosage, application time and delivery strategy of GDF-5, so as to pave the way for future clinical translation.
Collapse
Affiliation(s)
- Hanyue Li
- School of Physical Education, Southwest Medical University, PR China
| | - Yini Li
- Department of Ultrasound, The Affiliated Hospital of Southwest Medical University, Sichuan, PR China
| | - Linmei Xiang
- Department of Dermatology, The Affiliated Hospital of Southwest Medical University, Luzhou, PR China
| | - Shengyu Luo
- School of Physical Education, Southwest Medical University, PR China
| | - Yan Zhang
- Luzhou Vocational and Technical College, PR China
| | - Sen Li
- Division of Spine Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, PR China
| |
Collapse
|
29
|
Konar S, Leung S, Tay ML, Coleman B, Dalbeth N, Cornish J, Naot D, Musson DS. Novel In Vitro Platform for Studying the Cell Response to Healthy and Diseased Tendon Matrices. ACS Biomater Sci Eng 2024; 10:3293-3305. [PMID: 38666422 DOI: 10.1021/acsbiomaterials.4c00414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2024]
Abstract
Current in vitro models poorly represent the healthy or diseased tendon microenvironment, limiting the translation of the findings to clinics. The present work aims to establish a physiologically relevant in vitro tendon platform that mimics biophysical aspects of a healthy and tendinopathic tendon matrix using a decellularized bovine tendon and to characterize tendon cells cultured using this platform. Bovine tendons were subjected to various decellularization techniques, with the efficacy of decellularization determined histologically. The biomechanical and architectural properties of the decellularized tendons were characterized using an atomic force microscope. Tendinopathy-mimicking matrices were prepared by treating the decellularized tendons with collagenase for 3 h or collagenase-chondroitinase (CC) for 1 h. The tendon tissue collected from healthy and tendinopathic patients was characterized using an atomic force microscope and compared to that of decellularized matrices. Healthy human tendon-derived cells (hTDCs) from the hamstring tendon were cultured on the decellularized matrices for 24 or 48 h, with cell morphology characterized using f-actin staining and gene expression characterized using real-time PCR. Tendon matrices prepared by freeze-thawing and 48 h nuclease treatment were fully decellularized, and the aligned structure and tendon stiffness (1.46 MPa) were maintained. Collagenase treatment prepared matrices with a disorganized architecture and reduced stiffness (0.75 MPa), mimicking chronic tendinopathy. Treatment with CC prepared matrices with a disorganized architecture without altering stiffness, mimicking early tendinopathy (1.52 MPa). hTDCs on a healthy tendon matrix were elongated, and the scleraxis (SCX) expression was maintained. On tendinopathic matrices, hTDCs had altered morphological characteristics and lower SCX expression. The expression of genes related to actin polymerization, matrix degradation and remodeling, and immune cell invasion were higher in hTDCs on tendinopathic matrices. Overall, the present study developed a physiological in vitro system to mimic healthy tendons and early and late tendinopathy, and it can be used to better understand tendon cell characteristics in healthy and diseased states.
Collapse
Affiliation(s)
- Subhajit Konar
- Department of Nutrition and Dietetics, University of Auckland, Auckland 1142, New Zealand
| | - Sophia Leung
- Department of Anatomy and Medical Imaging, University of Auckland, Auckland 1142, New Zealand
| | - Mei Lin Tay
- Department of Surgery, University of Auckland, Auckland 1142, New Zealand
| | - Brendan Coleman
- Department of Orthopaedics, Middlemore Hospital, Auckland 1640, New Zealand
| | - Nicola Dalbeth
- Department of Medicine, University of Auckland, Auckland 1142, New Zealand
| | - Jillian Cornish
- Department of Medicine, University of Auckland, Auckland 1142, New Zealand
| | - Dorit Naot
- Department of Nutrition and Dietetics, University of Auckland, Auckland 1142, New Zealand
| | - David S Musson
- Department of Nutrition and Dietetics, University of Auckland, Auckland 1142, New Zealand
| |
Collapse
|
30
|
Guvatova ZG, Kobelyatskaya AA, Kudasheva ER, Pudova EA, Bulavkina EV, Churov AV, Tkacheva ON, Moskalev AA. Matrisome Transcriptome Dynamics during Tissue Aging. Life (Basel) 2024; 14:593. [PMID: 38792614 PMCID: PMC11121957 DOI: 10.3390/life14050593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/23/2024] [Accepted: 04/25/2024] [Indexed: 05/26/2024] Open
Abstract
The extracellular matrix (ECM) is a complex three-dimensional network of macromolecules that provides structural support for the cells and plays a significant role in tissue homeostasis and repair. Growing evidence indicates that dysregulation of ECM remodeling contributes to various pathological conditions in the body, including age-associated diseases. In this work, gene expression data of normal human tissues obtained from the Genotype-Tissue Expression project, as well as data from MatrisomeDB 2.0, the ECM-protein knowledge database, are used to estimate the age-dependent matrisome transcriptome dynamics in the blood, heart, brain, liver, kidneys, lungs, and muscle. Differential gene expression (DE) analysis revealed dozens of matrisome genes encoding both structural elements of the ECM and ECM-associated proteins, which had a tissue-specific expression profile with age. Among common DE genes that changed expression with age in at least three tissues, COL18A1, MFAP1, IGFBP7, AEBP1, LTBP2, LTBP4, LG14, EFEMP1, PRELP, BGN, FAM20B, CTSC, CTSS, and CLEC2B were observed. The findings of the study also reveal that there are sex-specific alterations during aging in the matrisome gene expression. Taken together, the results obtained in this work may help in understanding the role of the ECM in tissue aging and might prove valuable for the future development of the field of ECM research in general.
Collapse
Affiliation(s)
- Zulfiya G. Guvatova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
- Russian Clinical Research Center for Gerontology, Pirogov Russian National Research Medical University, Ministry of Healthcare of the Russian Federation, 129226 Moscow, Russia
| | | | - Eveline R. Kudasheva
- Russian Clinical Research Center for Gerontology, Pirogov Russian National Research Medical University, Ministry of Healthcare of the Russian Federation, 129226 Moscow, Russia
| | - Elena A. Pudova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Elizaveta V. Bulavkina
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Alexey V. Churov
- Russian Clinical Research Center for Gerontology, Pirogov Russian National Research Medical University, Ministry of Healthcare of the Russian Federation, 129226 Moscow, Russia
| | - Olga N. Tkacheva
- Russian Clinical Research Center for Gerontology, Pirogov Russian National Research Medical University, Ministry of Healthcare of the Russian Federation, 129226 Moscow, Russia
| | - Alexey A. Moskalev
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
- Russian Clinical Research Center for Gerontology, Pirogov Russian National Research Medical University, Ministry of Healthcare of the Russian Federation, 129226 Moscow, Russia
| |
Collapse
|
31
|
DiIorio SE, Young B, Parker JB, Griffin MF, Longaker MT. Understanding Tendon Fibroblast Biology and Heterogeneity. Biomedicines 2024; 12:859. [PMID: 38672213 PMCID: PMC11048404 DOI: 10.3390/biomedicines12040859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/06/2024] [Accepted: 04/08/2024] [Indexed: 04/28/2024] Open
Abstract
Tendon regeneration has emerged as an area of interest due to the challenging healing process of avascular tendon tissue. During tendon healing after injury, the formation of a fibrous scar can limit tendon strength and lead to subsequent complications. The specific biological mechanisms that cause fibrosis across different cellular subtypes within the tendon and across different tendons in the body continue to remain unknown. Herein, we review the current understanding of tendon healing, fibrosis mechanisms, and future directions for treatments. We summarize recent research on the role of fibroblasts throughout tendon healing and describe the functional and cellular heterogeneity of fibroblasts and tendons. The review notes gaps in tendon fibrosis research, with a focus on characterizing distinct fibroblast subpopulations in the tendon. We highlight new techniques in the field that can be used to enhance our understanding of complex tendon pathologies such as fibrosis. Finally, we explore bioengineering tools for tendon regeneration and discuss future areas for innovation. Exploring the heterogeneity of tendon fibroblasts on the cellular level can inform therapeutic strategies for addressing tendon fibrosis and ultimately reduce its clinical burden.
Collapse
Affiliation(s)
- Sarah E. DiIorio
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA; (S.E.D.); (B.Y.); (J.B.P.); (M.F.G.)
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Bill Young
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA; (S.E.D.); (B.Y.); (J.B.P.); (M.F.G.)
| | - Jennifer B. Parker
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA; (S.E.D.); (B.Y.); (J.B.P.); (M.F.G.)
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Michelle F. Griffin
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA; (S.E.D.); (B.Y.); (J.B.P.); (M.F.G.)
| | - Michael T. Longaker
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA; (S.E.D.); (B.Y.); (J.B.P.); (M.F.G.)
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| |
Collapse
|
32
|
Djalali-Cuevas A, Rettel M, Stein F, Savitski M, Kearns S, Kelly J, Biggs M, Skoufos I, Tzora A, Prassinos N, Diakakis N, Zeugolis DI. Macromolecular crowding in human tenocyte and skin fibroblast cultures: A comparative analysis. Mater Today Bio 2024; 25:100977. [PMID: 38322661 PMCID: PMC10846491 DOI: 10.1016/j.mtbio.2024.100977] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 12/22/2023] [Accepted: 01/24/2024] [Indexed: 02/08/2024] Open
Abstract
Although human tenocytes and dermal fibroblasts have shown promise in tendon engineering, no tissue engineered medicine has been developed due to the prolonged ex vivo time required to develop an implantable device. Considering that macromolecular crowding has the potential to substantially accelerate the development of functional tissue facsimiles, herein we compared human tenocyte and dermal fibroblast behaviour under standard and macromolecular crowding conditions to inform future studies in tendon engineering. Basic cell function analysis made apparent the innocuousness of macromolecular crowding for both cell types. Gene expression analysis of the without macromolecular crowding groups revealed expression of tendon related molecules in human dermal fibroblasts and tenocytes. Protein electrophoresis and immunocytochemistry analyses showed significantly increased and similar deposition of collagen fibres by macromolecular crowding in the two cell types. Proteomics analysis demonstrated great similarities between human tenocyte and dermal fibroblast cultures, as well as the induction of haemostatic, anti-microbial and tissue-protective proteins by macromolecular crowding in both cell populations. Collectively, these data rationalise the use of either human dermal fibroblasts or tenocytes in combination with macromolecular crowding in tendon engineering.
Collapse
Affiliation(s)
- Adrian Djalali-Cuevas
- Laboratory of Animal Science, Nutrition and Biotechnology, School of Agriculture, University of Ioannina, Arta, Greece
- School of Veterinary Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
- Regenerative, Modular & Developmental Engineering Laboratory (REMODEL), Charles Institute of Dermatology, Conway Institute of Biomolecular & Biomedical Research and School of Mechanical & Materials Engineering, University College Dublin (UCD), Dublin, Ireland
| | - Mandy Rettel
- Proteomics Core Facility, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Frank Stein
- Proteomics Core Facility, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Mikhail Savitski
- Proteomics Core Facility, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | | | - Jack Kelly
- Galway University Hospital, Galway, Ireland
| | - Manus Biggs
- Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Building, University of Galway, Galway, Ireland
| | - Ioannis Skoufos
- Laboratory of Animal Science, Nutrition and Biotechnology, School of Agriculture, University of Ioannina, Arta, Greece
| | - Athina Tzora
- Laboratory of Animal Science, Nutrition and Biotechnology, School of Agriculture, University of Ioannina, Arta, Greece
| | - Nikitas Prassinos
- School of Veterinary Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Nikolaos Diakakis
- School of Veterinary Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Dimitrios I. Zeugolis
- Regenerative, Modular & Developmental Engineering Laboratory (REMODEL), Charles Institute of Dermatology, Conway Institute of Biomolecular & Biomedical Research and School of Mechanical & Materials Engineering, University College Dublin (UCD), Dublin, Ireland
| |
Collapse
|
33
|
Malhi BS, Jang H, Malhi MS, Berry DB, Jerban S. Tendon evaluation with ultrashort Echo Time (UTE) MRI: A Systematic Review. FRONTIERS IN MUSCULOSKELETAL DISORDERS 2024; 2:1324050. [PMID: 39867448 PMCID: PMC11759502 DOI: 10.3389/fmscd.2024.1324050] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
Tendon disease ranks among the leading reasons patients consult their general practitioners, comprising approximately one-third of musculoskeletal appointments. Magnetic resonance imaging (MRI) is regarded as the gold standard for assessing tendons. Due to their short transverse relaxation time (T2), Tendons show up as a signal void in conventional MRI scans, which employ sequences with echo times (TEs) around several milliseconds. Ultrashort echo time (UTE) sequences utilize TEs that are 100-1,000 times shorter than those used in conventional sequences. This enables the direct visualization of tendons and assessment of their relaxation times, which is the basis for quantitative MRI. A systematic review was conducted on publications after 1990 in Google Scholar and PubMed databases. The search terms "ultrashort echo time," "tendon," and "UTE" were used to identify studies related to this investigation. This review discussed the current knowledge in quantitative UTE-MRI imaging of tendons. Quantitative UTE-T1, UTE-T2*, UTE-MT, and UTE-T1ρ techniques were described, and their reported applications in the literature were summarized in this review. We also discussed the advantages and challenges of these techniques and how these quantitative biomarkers may change in response to tendon pathology.
Collapse
Affiliation(s)
- Bhavsimran Singh Malhi
- Department of Radiology, University of California, San Diego, San Diego, CA, United States
| | - Hyungseok Jang
- Department of Radiology, University of California, San Diego, San Diego, CA, United States
| | | | - David B. Berry
- Department of Orthopaedic Surgery, University of California, San Diego, San Diego, CA, United States
| | - Saeed Jerban
- Department of Radiology, University of California, San Diego, San Diego, CA, United States
| |
Collapse
|
34
|
Huang S, Rao Y, Ju AL, Ker DFE, Blocki AM, Wang DM, Tuan RS. Non-collagenous proteins, rather than the collagens, are key biochemical factors that mediate tenogenic bioactivity of tendon extracellular matrix. Acta Biomater 2024; 176:99-115. [PMID: 38142795 DOI: 10.1016/j.actbio.2023.12.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 12/17/2023] [Accepted: 12/19/2023] [Indexed: 12/26/2023]
Abstract
Despite the growing clinical use of extracellular matrix (ECM)-based biomaterials for tendon repair, undesired healing outcomes or complications have frequently been reported. A major scientific challenge has been the limited understanding of their functional compositions and mechanisms of action due to the complex nature of tendon ECM. Previously, we have reported a soluble ECM fraction from bovine tendons (tECM) by urea extraction, which exhibited strong, pro-tenogenic bioactivity on human adipose-derived stem cells (hASCs). In this study, to advance our previous findings and gain insights into the biochemical nature of its pro-tenogenesis activity, tECM was fractionated using (i) an enzymatic digestion approach (pepsin, hyaluronidase, and chondroitinase) to yield various enzyme-digested tECM fractions; and (ii) a gelation-based approach to yield collagen matrix-enriched (CM) and non-collagenous matrix-enriched (NCM) fractions. Their tenogenic bioactivity on hASCs was assessed. Our results collectively indicated that non-collagenous tECM proteins, rather than collagens, are likely the important biochemical factors responsible for tECM pro-tenogenesis bioactivity. Mechanistically, RNA-seq analysis revealed that tECM and its non-collagenous portion induced similar transcriptional profiles of hASCs, particularly genes associated with cell proliferation, collagen synthesis, and tenogenic differentiation, which were distinct from transcriptome induced by its collagenous portion. From an application perspective, the enhanced solubility of the non-collagenous tECM, compared to tECM, should facilitate its combination with various water-soluble biomaterials for tissue engineering protocols. Our work provides insight into the molecular characterization of native tendon ECM, which will help to effectively translate their functional components into the design of well-defined, ECM biomaterials for tendon regeneration. STATEMENT OF SIGNIFICANCE: Significant progress has been made in extracellular matrix (ECM)-based biomaterials for tendon repair. However, their effectiveness remains debated, with conflicting research and clinical findings. Understanding the functional composition and mechanisms of action of ECM is crucial for developing safe and effective bioengineered scaffolds. Expanding on our previous work with bovine tendon ECM extracts (tECM) exhibiting strong pro-tenogenesis activity, we fractionated tECM to evaluate its bioactive moieties. Our findings indicate that the non-collagenous matrix within tECM, rather than the collagenous portions, plays a major role in the pro-tenogenesis bioactivity on human adipose-derived stem cells. These insights will drive further optimization of ECM-based biomaterials, including our advanced method for preparing highly soluble, non-collagenous matrix-enriched tendon ECM for effective tendon repair.
Collapse
Affiliation(s)
- Shuting Huang
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China; Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China; Center for Neuromusculoskeletal Restorative Medicine, Science Park, Hong Kong SAR, China.
| | - Ying Rao
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China; Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China.
| | - Adler Leigh Ju
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China; Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Dai Fei Elmer Ker
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China; Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China; Ministry of Education Key Laboratory for Regenerative Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China; Department of Orthopaedics and Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China; Center for Neuromusculoskeletal Restorative Medicine, Science Park, Hong Kong SAR, China
| | - Anna M Blocki
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China; Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China; Department of Orthopaedics and Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China; Center for Neuromusculoskeletal Restorative Medicine, Science Park, Hong Kong SAR, China
| | - Dan Michelle Wang
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China; Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China; Ministry of Education Key Laboratory for Regenerative Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China; Department of Orthopaedics and Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China; Center for Neuromusculoskeletal Restorative Medicine, Science Park, Hong Kong SAR, China.
| | - Rocky S Tuan
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China; Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China; Center for Neuromusculoskeletal Restorative Medicine, Science Park, Hong Kong SAR, China.
| |
Collapse
|
35
|
Wu J, Yun Z, Song W, Yu T, Xue W, Liu Q, Sun X. Highly oriented hydrogels for tissue regeneration: design strategies, cellular mechanisms, and biomedical applications. Theranostics 2024; 14:1982-2035. [PMID: 38505623 PMCID: PMC10945336 DOI: 10.7150/thno.89493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 01/19/2024] [Indexed: 03/21/2024] Open
Abstract
Many human tissues exhibit a highly oriented architecture that confers them with distinct mechanical properties, enabling adaptation to diverse and challenging environments. Hydrogels, with their water-rich "soft and wet" structure, have emerged as promising biomimetic materials in tissue engineering for repairing and replacing damaged tissues and organs. Highly oriented hydrogels can especially emulate the structural orientation found in human tissue, exhibiting unique physiological functions and properties absent in traditional homogeneous isotropic hydrogels. The design and preparation of highly oriented hydrogels involve strategies like including hydrogels with highly oriented nanofillers, polymer-chain networks, void channels, and microfabricated structures. Understanding the specific mechanism of action of how these highly oriented hydrogels affect cell behavior and their biological applications for repairing highly oriented tissues such as the cornea, skin, skeletal muscle, tendon, ligament, cartilage, bone, blood vessels, heart, etc., requires further exploration and generalization. Therefore, this review aims to fill that gap by focusing on the design strategy of highly oriented hydrogels and their application in the field of tissue engineering. Furthermore, we provide a detailed discussion on the application of highly oriented hydrogels in various tissues and organs and the mechanisms through which highly oriented structures influence cell behavior.
Collapse
Affiliation(s)
- Jiuping Wu
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
- Translational Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Zhihe Yun
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun 130041, China
| | - Wenlong Song
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130023, China
| | - Tao Yu
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun 130041, China
| | - Wu Xue
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun 130041, China
| | - Qinyi Liu
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun 130041, China
| | - Xinzhi Sun
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| |
Collapse
|
36
|
Cenni V, Sabatelli P, Di Martino A, Merlini L, Antoniel M, Squarzoni S, Neri S, Santi S, Metti S, Bonaldo P, Faldini C. Collagen VI Deficiency Impairs Tendon Fibroblasts Mechanoresponse in Ullrich Congenital Muscular Dystrophy. Cells 2024; 13:378. [PMID: 38474342 PMCID: PMC10930931 DOI: 10.3390/cells13050378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 02/06/2024] [Accepted: 02/19/2024] [Indexed: 03/14/2024] Open
Abstract
The pericellular matrix (PCM) is a specialized extracellular matrix that surrounds cells. Interactions with the PCM enable the cells to sense and respond to mechanical signals, triggering a proper adaptive response. Collagen VI is a component of muscle and tendon PCM. Mutations in collagen VI genes cause a distinctive group of inherited skeletal muscle diseases, and Ullrich congenital muscular dystrophy (UCMD) is the most severe form. In addition to muscle weakness, UCMD patients show structural and functional changes of the tendon PCM. In this study, we investigated whether PCM alterations due to collagen VI mutations affect the response of tendon fibroblasts to mechanical stimulation. By taking advantage of human tendon cultures obtained from unaffected donors and from UCMD patients, we analyzed the morphological and functional properties of cellular mechanosensors. We found that the length of the primary cilia of UCMD cells was longer than that of controls. Unlike controls, in UCMD cells, both cilia prevalence and length were not recovered after mechanical stimulation. Accordingly, under the same experimental conditions, the activation of the Hedgehog signaling pathway, which is related to cilia activity, was impaired in UCMD cells. Finally, UCMD tendon cells exposed to mechanical stimuli showed altered focal adhesions, as well as impaired activation of Akt, ERK1/2, p38MAPK, and mechanoresponsive genes downstream of YAP. By exploring the response to mechanical stimulation, for the first time, our findings uncover novel unreported mechanistic aspects of the physiopathology of UCMD-derived tendon fibroblasts and point at a role for collagen VI in the modulation of mechanotransduction in tendons.
Collapse
Affiliation(s)
- Vittoria Cenni
- CNR-Institute of Molecular Genetics, via di Barbiano 1/10, 40136 Bologna, Italy (S.S.); (S.S.)
- IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy
| | - Patrizia Sabatelli
- CNR-Institute of Molecular Genetics, via di Barbiano 1/10, 40136 Bologna, Italy (S.S.); (S.S.)
- IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy
| | - Alberto Di Martino
- 1st Orthopedics and Traumatology Department, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy; (A.D.M.); (C.F.)
- Department of Biomedical and Neuromotor Science, DIBINEM, University of Bologna, 40136 Bologna, Italy;
| | - Luciano Merlini
- Department of Biomedical and Neuromotor Science, DIBINEM, University of Bologna, 40136 Bologna, Italy;
| | - Manuela Antoniel
- CNR-Institute of Molecular Genetics, via di Barbiano 1/10, 40136 Bologna, Italy (S.S.); (S.S.)
- IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy
| | - Stefano Squarzoni
- CNR-Institute of Molecular Genetics, via di Barbiano 1/10, 40136 Bologna, Italy (S.S.); (S.S.)
- IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy
| | - Simona Neri
- Medicine and Rheumatology Unit, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy;
| | - Spartaco Santi
- CNR-Institute of Molecular Genetics, via di Barbiano 1/10, 40136 Bologna, Italy (S.S.); (S.S.)
- IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy
| | - Samuele Metti
- Department of Molecular Medicine, University of Padova, 35122 Padova, Italy; (S.M.); (P.B.)
| | - Paolo Bonaldo
- Department of Molecular Medicine, University of Padova, 35122 Padova, Italy; (S.M.); (P.B.)
| | - Cesare Faldini
- 1st Orthopedics and Traumatology Department, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy; (A.D.M.); (C.F.)
- Department of Biomedical and Neuromotor Science, DIBINEM, University of Bologna, 40136 Bologna, Italy;
| |
Collapse
|
37
|
Wise BC, Mora KE, Lee W, Buckley MR. Murine Hind Limb Explant Model for Studying the Mechanobiology of Achilles Tendon Impingement. J Vis Exp 2023:10.3791/65801. [PMID: 38145383 PMCID: PMC11952120 DOI: 10.3791/65801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2023] Open
Abstract
Tendon impingement upon bone generates a multiaxial mechanical strain environment with markedly elevated transverse compressive strain, which elicits a localized fibrocartilage phenotype characterized by accumulation of glycosaminoglycan (GAG)-rich matrix and remodeling of the collagen network. While fibrocartilage is a normal feature in impinged regions of healthy tendons, excess GAG deposition and disorganization of the collagen network are hallmark features of tendinopathy. Accordingly, impingement is clinically recognized as an important extrinsic factor in the initiation and progression of tendinopathy. Nevertheless, the mechanobiology underlying tendon impingement remains understudied. Prior efforts to elucidate the cellular response to tendon impingement have applied uniaxial compression to cells and excised tendon explants in vitro. However, isolated cells lack a three-dimensional extracellular environment crucial to mechanoresponse, and both in vitro and excised explant studies fail to recapitulate the multiaxial strain environment generated by tendon impingement in vivo, which depends on anatomical features of the impinged region. Moreover, in vivo models of tendon impingement lack control over the mechanical strain environment. To overcome these limitations, we present a novel murine hind limb explant model suitable for studying the mechanobiology of Achilles tendon impingement. This model maintains the Achilles tendon in situ to preserve local anatomy and reproduces the multiaxial strain environment generated by impingement of the Achilles tendon insertion upon the calcaneus during passively applied ankle dorsiflexion while retaining cells within their native environment. We describe a tissue culture protocol integral to this model and present data establishing sustained explant viability over 7 days. The representative results demonstrate enhanced histological GAG staining and decreased collagen fiber alignment secondary to impingement, suggesting elevated fibrocartilage formation. This model can easily be adapted to investigate different mechanical loading regimens and allows for the manipulation of molecular pathways of interest to identify mechanisms mediating phenotypic change in the Achilles tendon in response to impingement.
Collapse
Affiliation(s)
- Brian C Wise
- Department of Biomedical Engineering, University of Rochester; Department of Orthopaedics, Center for Musculoskeletal Research, University of Rochester Medical Center
| | - Keshia E Mora
- Department of Biomedical Engineering, University of Rochester; Department of Orthopaedics, Center for Musculoskeletal Research, University of Rochester Medical Center
| | - Whasil Lee
- Department of Biomedical Engineering, University of Rochester; Department of Orthopaedics, Center for Musculoskeletal Research, University of Rochester Medical Center; Department of Pharmacology and Physiology, University of Rochester Medical Center
| | - Mark R Buckley
- Department of Biomedical Engineering, University of Rochester; Department of Orthopaedics, Center for Musculoskeletal Research, University of Rochester Medical Center;
| |
Collapse
|
38
|
Kwan KYC, Ng KWK, Rao Y, Zhu C, Qi S, Tuan RS, Ker DFE, Wang DM. Effect of Aging on Tendon Biology, Biomechanics and Implications for Treatment Approaches. Int J Mol Sci 2023; 24:15183. [PMID: 37894875 PMCID: PMC10607611 DOI: 10.3390/ijms242015183] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/07/2023] [Accepted: 09/20/2023] [Indexed: 10/29/2023] Open
Abstract
Tendon aging is associated with an increasing prevalence of tendon injuries and/or chronic tendon diseases, such as tendinopathy, which affects approximately 25% of the adult population. Aged tendons are often characterized by a reduction in the number and functionality of tendon stem/progenitor cells (TSPCs), fragmented or disorganized collagen bundles, and an increased deposition of glycosaminoglycans (GAGs), leading to pain, inflammation, and impaired mobility. Although the exact pathology is unknown, overuse and microtrauma from aging are thought to be major causative factors. Due to the hypovascular and hypocellular nature of the tendon microenvironment, healing of aged tendons and related injuries is difficult using current pain/inflammation and surgical management techniques. Therefore, there is a need for novel therapies, specifically cellular therapy such as cell rejuvenation, due to the decreased regenerative capacity during aging. To augment the therapeutic strategies for treating tendon-aging-associated diseases and injuries, a comprehensive understanding of tendon aging pathology is needed. This review summarizes age-related tendon changes, including cell behaviors, extracellular matrix (ECM) composition, biomechanical properties and healing capacity. Additionally, the impact of conventional treatments (diet, exercise, and surgery) is discussed, and recent advanced strategies (cell rejuvenation) are highlighted to address aged tendon healing. This review underscores the molecular and cellular linkages between aged tendon biomechanical properties and the healing response, and provides an overview of current and novel strategies for treating aged tendons. Understanding the underlying rationale for future basic and translational studies of tendon aging is crucial to the development of advanced therapeutics for tendon regeneration.
Collapse
Affiliation(s)
- Ka Yu Carissa Kwan
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China; (K.Y.C.K.); (K.W.K.N.); (Y.R.); (C.Z.); (R.S.T.); (D.F.E.K.)
- Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Ka Wai Kerry Ng
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China; (K.Y.C.K.); (K.W.K.N.); (Y.R.); (C.Z.); (R.S.T.); (D.F.E.K.)
- Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Ying Rao
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China; (K.Y.C.K.); (K.W.K.N.); (Y.R.); (C.Z.); (R.S.T.); (D.F.E.K.)
- Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Chenxian Zhu
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China; (K.Y.C.K.); (K.W.K.N.); (Y.R.); (C.Z.); (R.S.T.); (D.F.E.K.)
- Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Shengcai Qi
- Department of Prosthodontics, Shanghai Stomatological Hospital, Fudan University, Shanghai 200040, China;
| | - Rocky S. Tuan
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China; (K.Y.C.K.); (K.W.K.N.); (Y.R.); (C.Z.); (R.S.T.); (D.F.E.K.)
- Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
- Center for Neuromusculoskeletal Restorative Medicine, Hong Kong Science Park, Hong Kong SAR, China
- Department of Orthopaedics and Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Dai Fei Elmer Ker
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China; (K.Y.C.K.); (K.W.K.N.); (Y.R.); (C.Z.); (R.S.T.); (D.F.E.K.)
- Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
- Center for Neuromusculoskeletal Restorative Medicine, Hong Kong Science Park, Hong Kong SAR, China
- Department of Orthopaedics and Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
- Ministry of Education Key Laboratory for Regenerative Medicine, School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Dan Michelle Wang
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China; (K.Y.C.K.); (K.W.K.N.); (Y.R.); (C.Z.); (R.S.T.); (D.F.E.K.)
- Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
- Center for Neuromusculoskeletal Restorative Medicine, Hong Kong Science Park, Hong Kong SAR, China
- Department of Orthopaedics and Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
- Ministry of Education Key Laboratory for Regenerative Medicine, School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
39
|
Marvin JC, Brakewood ME, Poon MLS, Andarawis-Puri N. Regenerative MRL/MpJ tendon cells exhibit sex differences in morphology, proliferation, mechanosensitivity, and cell-ECM organization. J Orthop Res 2023; 41:2273-2286. [PMID: 37004178 DOI: 10.1002/jor.25562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 02/10/2023] [Accepted: 03/24/2023] [Indexed: 04/03/2023]
Abstract
Clinical and animal studies have reported the influence of sex on the incidence and progression of tendinopathy, which results in disparate structural and biomechanical outcomes. However, there remains a paucity in our understanding of the sex-specific biological mechanisms underlying effective tendon healing. To overcome this hurdle, our group has investigated the impact of sex on tendon regeneration using the super-healer Murphy Roths Large (MRL/MpJ) mouse strain. We have previously shown that the scarless healing capacity of MRL/MpJ patellar tendons is associated with sexually dimorphic regulation of gene expression for pathways involved in fibrosis, cell migration, adhesion, and extracellular matrix (ECM) remodeling following an acute mid-substance injury. Thus, we hypothesized that MRL/MpJ scarless tendon healing is mediated by sex-specific and temporally distinct orchestration of cell-ECM interactions. Accordingly, the present study comparatively evaluated MRL/MpJ tendon cells on two-dimensional (2D; glass) and scaffold platforms to examine cell behavior under biochemical and topographical cues associated with tendon homeostasis and healing. Female MRL/MpJ cells showed reduced 2D migration and spreading area accompanied by enhanced mechanosensing, ECM alignment, and fibronectin-mediated cell proliferation compared to male MRL/MpJ cells. Interestingly, female MRL/MpJ cells cultured on isotropic scaffolds showed diminished cell-ECM organization compared to male MRL/MpJ cells. Lastly, MRL/MpJ cells elicited enhanced cytoskeletal elongation and alignment, ECM deposition and organization, and connexin 43-mediated intercellular communication compared to male B6 cells, regardless of culture condition or sex. These results provide insight into the cellular features conserved within the MRL/MpJ phenotype and potential sex-specific targets for the development of more equitable therapeutics.
Collapse
Affiliation(s)
- Jason C Marvin
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York, USA
| | - Molly E Brakewood
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York, USA
| | - Mong L S Poon
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, New York, USA
| | - Nelly Andarawis-Puri
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, New York, USA
- Hospital for Special Surgery, New York, New York, USA
| |
Collapse
|
40
|
Szczesny SE, Corr DT. Tendon cell and tissue culture: Perspectives and recommendations. J Orthop Res 2023; 41:2093-2104. [PMID: 36794495 DOI: 10.1002/jor.25532] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/19/2023] [Accepted: 02/08/2023] [Indexed: 02/17/2023]
Abstract
The wide variety of cell and tissue culture systems used to study and engineer tendons can make it difficult to choose the best approach and "optimal" culture conditions to test a given hypothesis. Therefore, a breakout session was organized at the 2022 ORS Tendon Section Meeting that focused on establishing a set of guidelines for conducting cell and tissue culture studies of tendon. This paper summarizes the outcomes of that discussion and presents recommendations for future studies. In the case of studying tendon cell behavior, cell and tissue culture systems are reductionist models in which the culture conditions should be strictly defined to approximate the in vivo condition as closely as possible. In contrast, for tissue engineering tendon replacements, the culture conditions do not need to replicate native tendon, but the outcome measures for success should be narrowly defined for the specific clinical application. Common recommendations for both applications are that researchers should perform a baseline phenotypic characterization of the cells that are ultimately used for experimentation. For models of tendon cell behavior, culture conditions should be well justified by existing literature and meticulously reported, tissue explant viability should be assessed, and comparisons to in vivo conditions should be made to determine baseline physiological relevance. For tissue engineering applications, the functional/structural/compositional outcome targets should be defined by the specific tendons they seek to replace, with key biologic and material properties prioritized for construct assessment. Lastly, when engineering tendon replacements, researchers should utilize clinically approved cGMP materials to facilitate clinical translation.
Collapse
Affiliation(s)
- Spencer E Szczesny
- Department of Biomedical Engineering, Pennsylvania State University, University Park, Pennsylvania, USA
- Department of Orthopaedics and Rehabilitation, Pennsylvania State University, Hershey, Pennsylvania, USA
| | - David T Corr
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, New York, USA
| |
Collapse
|
41
|
Huang AH, Galloway JL. Current and emerging technologies for defining and validating tendon cell fate. J Orthop Res 2023; 41:2082-2092. [PMID: 37211925 DOI: 10.1002/jor.25632] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 05/09/2023] [Accepted: 05/18/2023] [Indexed: 05/23/2023]
Abstract
The tendon field has been flourishing in recent years with the advent of new tools and model systems. The recent ORS 2022 Tendon Section Conference brought together researchers from diverse disciplines and backgrounds, showcasing studies in biomechanics and tissue engineering to cell and developmental biology and using models from zebrafish and mouse to humans. This perspective aims to summarize progress in tendon research as it pertains to understanding and studying tendon cell fate. The successful integration of new technologies and approaches have the potential to further propel tendon research into a new renaissance of discovery. However, there are also limitations with the current methodologies that are important to consider when tackling research questions. Altogether, we will highlight recent advances and technologies and propose new avenues to explore tendon biology.
Collapse
Affiliation(s)
- Alice H Huang
- Department of Orthopedic Surgery, Columbia University, New York, New York, USA
| | - Jenna L Galloway
- Department of Orthopaedic Surgery, Center for Regenerative Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Harvard Stem Cell Institute, Harvard University, Cambridge, Massachusetts, USA
| |
Collapse
|
42
|
Shojaee A. Equine tendon mechanical behaviour: Prospects for repair and regeneration applications. Vet Med Sci 2023; 9:2053-2069. [PMID: 37471573 PMCID: PMC10508504 DOI: 10.1002/vms3.1205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 05/03/2023] [Accepted: 07/06/2023] [Indexed: 07/22/2023] Open
Abstract
Tendons are dense connective tissues that play an important role in the biomechanical function of the musculoskeletal system. The mechanical forces have been implicated in every aspect of tendon biology. Tendon injuries are frequently occurring and their response to treatments is often unsatisfactory. A better understanding of tendon biomechanics and mechanobiology can help develop treatment options to improve clinical outcomes. Recently, tendon tissue engineering has gained more attention as an alternative treatment due to its potential to overcome the limitations of current treatments. This review first provides a summary of tendon mechanical properties, focusing on recent findings of tendon mechanobiological responses. In the next step, we highlight the biomechanical parameters of equine energy-storing and positional tendons. The final section is devoted to how mechanical loading contributes to tenogenic differentiation using bioreactor systems. This study may help develop novel strategies for tendon injury prevention or accelerate and improve tendon healing.
Collapse
Affiliation(s)
- Asiyeh Shojaee
- Division of PhysiologyDepartment of Basic SciencesFaculty of Veterinary MedicineFerdowsi University of MashhadMashhadIran
| |
Collapse
|
43
|
Dabrowska S, Ekiert-Radecka M, Karbowniczek J, Weglarz WP, Heljak M, Lojkowski M, Obuchowicz R, Swieszkowski W, Mlyniec A. Calcification alters the viscoelastic properties of tendon fascicle bundles depending on matrix content. Acta Biomater 2023; 166:360-374. [PMID: 37172636 DOI: 10.1016/j.actbio.2023.05.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 04/18/2023] [Accepted: 05/03/2023] [Indexed: 05/15/2023]
Abstract
Tendon fascicle bundles are often used as biological grafts and thus must meet certain quality requirements, such as excluding calcification, which alters the biomechanical properties of soft tissues. In this work, we investigate the influence of early-stage calcification on the mechanical and structural properties of tendon fascicle bundles with varying matrix content. The calcification process was modeled using sample incubation in concentrated simulated body fluid. Mechanical and structural properties were investigated using uniaxial tests with relaxation periods, dynamic mechanical analysis, as well as magnetic resonance imaging and atomic force microscopy. Mechanical tests showed that the initial phase of calcification causes an increase in the elasticity, storage, and loss modulus, as well as a drop in the normalized value of hysteresis. Further calcification of the samples results in decreased modulus of elasticity and a slight increase in the normalized value of hysteresis. Analysis via MRI and scanning electron microscopy showed that incubation alters fibrillar relationships within the tendon structure and the flow of body fluids. In the initial stage of calcification, calcium phosphate crystals are barely visible; however, extending the incubation time for the next 14 days results in the appearance of calcium phosphate crystals within the tendon structure and leads to damage in its structure. Our results show that the calcification process modifies the collagen-matrix relationships and leads to a change in their mechanical properties. These findings will help to understand the pathogenesis of clinical conditions caused by calcification process, leading to the development of effective treatments for these conditions. STATEMENT OF SIGNIFICANCE: This study investigates how calcium mineral deposition in tendons affects their mechanical response and which processes are responsible for this phenomenon. By analyzing the elastic and viscoelastic properties of animal fascicle bundles affected by calcification induced via incubation in concentrated simulated body fluid, the study sheds light on the relationship between structural and biochemical changes in tendons and their altered mechanical response. This understanding is crucial for optimizing tendinopathy treatment and preventing tendon injury. The findings provide insights into the calcification pathway and its resulting changes in the biomechanical behaviors of affected tendons, which have been previously unclear.
Collapse
Affiliation(s)
- Sylwia Dabrowska
- AGH University of Science and Technology, Faculty of Mechanical Engineering and Robotics, Krakow, Poland.
| | - Martyna Ekiert-Radecka
- AGH University of Science and Technology, Faculty of Mechanical Engineering and Robotics, Krakow, Poland.
| | - Joanna Karbowniczek
- AGH University of Science and Technology, Faculty of Metals Engineering and Industrial Computer Science, Krakow, Poland.
| | | | - Marcin Heljak
- Warsaw University of Technology, Faculty of Materials Science and Engineering, Warsaw, Poland.
| | - Maciej Lojkowski
- Warsaw University of Technology, Faculty of Materials Science and Engineering, Warsaw, Poland; Centre for Advanced Materials and Technologies CEZAMAT, Warsaw University of Technology, Warsaw, Poland.
| | - Rafal Obuchowicz
- Jagiellonian University Collegium Medicum, Department of Radiology, Krakow, Poland.
| | - Wojciech Swieszkowski
- Warsaw University of Technology, Faculty of Materials Science and Engineering, Warsaw, Poland.
| | - Andrzej Mlyniec
- AGH University of Science and Technology, Faculty of Mechanical Engineering and Robotics, Krakow, Poland.
| |
Collapse
|
44
|
Jones CL, Penney BT, Theodossiou SK. Engineering Cell-ECM-Material Interactions for Musculoskeletal Regeneration. Bioengineering (Basel) 2023; 10:bioengineering10040453. [PMID: 37106640 PMCID: PMC10135874 DOI: 10.3390/bioengineering10040453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 03/23/2023] [Accepted: 03/28/2023] [Indexed: 04/29/2023] Open
Abstract
The extracellular microenvironment regulates many of the mechanical and biochemical cues that direct musculoskeletal development and are involved in musculoskeletal disease. The extracellular matrix (ECM) is a main component of this microenvironment. Tissue engineered approaches towards regenerating muscle, cartilage, tendon, and bone target the ECM because it supplies critical signals for regenerating musculoskeletal tissues. Engineered ECM-material scaffolds that mimic key mechanical and biochemical components of the ECM are of particular interest in musculoskeletal tissue engineering. Such materials are biocompatible, can be fabricated to have desirable mechanical and biochemical properties, and can be further chemically or genetically modified to support cell differentiation or halt degenerative disease progression. In this review, we survey how engineered approaches using natural and ECM-derived materials and scaffold systems can harness the unique characteristics of the ECM to support musculoskeletal tissue regeneration, with a focus on skeletal muscle, cartilage, tendon, and bone. We summarize the strengths of current approaches and look towards a future of materials and culture systems with engineered and highly tailored cell-ECM-material interactions to drive musculoskeletal tissue restoration. The works highlighted in this review strongly support the continued exploration of ECM and other engineered materials as tools to control cell fate and make large-scale musculoskeletal regeneration a reality.
Collapse
Affiliation(s)
- Calvin L Jones
- Department of Mechanical and Biomedical Engineering, Boise State University, 1910 University Dr MS2085, Boise, ID 83725, USA
| | - Brian T Penney
- Department of Mechanical and Biomedical Engineering, Boise State University, 1910 University Dr MS2085, Boise, ID 83725, USA
| | - Sophia K Theodossiou
- Department of Mechanical and Biomedical Engineering, Boise State University, 1910 University Dr MS2085, Boise, ID 83725, USA
| |
Collapse
|
45
|
Costa FR, Costa Marques MR, Costa VC, Santos GS, Martins RA, Santos MDS, Santana MHA, Nallakumarasamy A, Jeyaraman M, Lana JVB, Lana JFSD. Intra-Articular Hyaluronic Acid in Osteoarthritis and Tendinopathies: Molecular and Clinical Approaches. Biomedicines 2023; 11:biomedicines11041061. [PMID: 37189679 DOI: 10.3390/biomedicines11041061] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 03/10/2023] [Accepted: 03/29/2023] [Indexed: 04/03/2023] Open
Abstract
Musculoskeletal diseases continue to rise on a global scale, causing significant socioeconomic impact and decreased quality of life. The most common disorders affecting musculoskeletal structures are osteoarthritis and tendinopathies, complicated orthopedic conditions responsible for major pain and debilitation. Intra-articular hyaluronic acid (HA) has been a safe, effective, and minimally invasive therapeutic tool for treating these diseases. Several studies from bedside to clinical practice reveal the multiple benefits of HA such as lubrication, anti-inflammation, and stimulation of cellular activity associated with proliferation, differentiation, migration, and secretion of additional molecules. Collectively, these effects have demonstrated positive outcomes that assist in the regeneration of chondral and tendinous tissues which are otherwise destroyed by the predominant catabolic and inflammatory conditions seen in tissue injury. The literature describes the physicochemical, mechanical, and biological properties of HA, their commercial product types, and clinical applications individually, while their interfaces are seldom reported. Our review addresses the frontiers of basic sciences, products, and clinical approaches. It provides physicians with a better understanding of the boundaries between the processes that lead to diseases, the molecular mechanisms that contribute to tissue repair, and the benefits of the HA types for a conscientious choice. In addition, it points out the current needs for the treatments.
Collapse
|
46
|
Di Martino A, Cescon M, D’Agostino C, Schilardi F, Sabatelli P, Merlini L, Faldini C. Collagen VI in the Musculoskeletal System. Int J Mol Sci 2023; 24:5095. [PMID: 36982167 PMCID: PMC10049728 DOI: 10.3390/ijms24065095] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 02/26/2023] [Accepted: 03/01/2023] [Indexed: 03/10/2023] Open
Abstract
Collagen VI exerts several functions in the tissues in which it is expressed, including mechanical roles, cytoprotective functions with the inhibition of apoptosis and oxidative damage, and the promotion of tumor growth and progression by the regulation of cell differentiation and autophagic mechanisms. Mutations in the genes encoding collagen VI main chains, COL6A1, COL6A2 and COL6A3, are responsible for a spectrum of congenital muscular disorders, namely Ullrich congenital muscular dystrophy (UCMD), Bethlem myopathy (BM) and myosclerosis myopathy (MM), which show a variable combination of muscle wasting and weakness, joint contractures, distal laxity, and respiratory compromise. No effective therapeutic strategy is available so far for these diseases; moreover, the effects of collagen VI mutations on other tissues is poorly investigated. The aim of this review is to outline the role of collagen VI in the musculoskeletal system and to give an update about the tissue-specific functions revealed by studies on animal models and from patients' derived samples in order to fill the knowledge gap between scientists and the clinicians who daily manage patients affected by collagen VI-related myopathies.
Collapse
Affiliation(s)
- Alberto Di Martino
- I Orthopedic and Traumatology Department, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy
- Department of Biomedical and Neuromotor Science, DIBINEM, University of Bologna, 40136 Bologna, Italy
| | - Matilde Cescon
- Department of Molecular Medicine, University of Padova, 35131 Padova, Italy
| | - Claudio D’Agostino
- I Orthopedic and Traumatology Department, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy
- Department of Biomedical and Neuromotor Science, DIBINEM, University of Bologna, 40136 Bologna, Italy
| | - Francesco Schilardi
- I Orthopedic and Traumatology Department, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy
- Department of Biomedical and Neuromotor Science, DIBINEM, University of Bologna, 40136 Bologna, Italy
| | - Patrizia Sabatelli
- Unit of Bologna, CNR-Institute of Molecular Genetics “Luigi Luca Cavalli-Sforza”, 40136 Bologna, Italy
- IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy
| | - Luciano Merlini
- Department of Biomedical and Neuromotor Science, DIBINEM, University of Bologna, 40136 Bologna, Italy
| | - Cesare Faldini
- I Orthopedic and Traumatology Department, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy
- Department of Biomedical and Neuromotor Science, DIBINEM, University of Bologna, 40136 Bologna, Italy
| |
Collapse
|
47
|
Murtola T, Richards C. The impact of age-related increase in passive muscle stiffness on simulated upper limb reaching. ROYAL SOCIETY OPEN SCIENCE 2023; 10:221453. [PMID: 36778951 PMCID: PMC9905985 DOI: 10.1098/rsos.221453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 01/18/2023] [Indexed: 06/18/2023]
Abstract
Ageing changes the musculoskeletal and neural systems, potentially affecting a person's ability to perform daily living activities. One of these changes is increased passive stiffness of muscles, but its contribution to performance is difficult to separate experimentally from other ageing effects such as loss of muscle strength or cognitive function. A computational upper limb model was used to study the effects of increasing passive muscle stiffness on reaching performance across the model's workspace (all points reachable with a given model geometry). The simulations indicated that increased muscle stiffness alone caused deterioration of reaching accuracy, starting from the edges of the workspace. Re-tuning the model's control parameters to match the ageing muscle properties does not fully reverse ageing effects but can improve accuracy in selected regions of the workspace. The results suggest that age-related muscle stiffening, isolated from other ageing effects, impairs reaching performance. The model also exhibited oscillatory instability in a few simulations when the controller was tuned to the presence of passive muscle stiffness. This instability is not observed in humans, implying the presence of natural stabilizing strategies, thus pointing to the adaptive capacity of neural control systems as a potential area of future investigation in age-related muscle stiffening.
Collapse
Affiliation(s)
- Tiina Murtola
- Department of Comparative Biomedical Sciences, Royal Veterinary College, London, UK
| | - Christopher Richards
- Department of Comparative Biomedical Sciences, Royal Veterinary College, London, UK
| |
Collapse
|
48
|
Quintero D, Perucca Orfei C, Kaplan LD, de Girolamo L, Best TM, Kouroupis D. The roles and therapeutic potentialof mesenchymal stem/stromal cells and their extracellular vesicles in tendinopathies. Front Bioeng Biotechnol 2023; 11:1040762. [PMID: 36741745 PMCID: PMC9892947 DOI: 10.3389/fbioe.2023.1040762] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 01/04/2023] [Indexed: 01/20/2023] Open
Abstract
Tendinopathies encompass a highly prevalent, multi-faceted spectrum of disorders, characterized by activity-related pain, compromised function, and propensity for an extended absence from sport and the workplace. The pathophysiology of tendinopathy continues to evolve. For decades, it has been related primarily to repetitive overload trauma but more recently, the onset of tendinopathy has been attributed to the tissue's failed attempt to heal after subclinical inflammatory and immune challenges (failed healing model). Conventional tendinopathy management produces only short-term symptomatic relief and often results in incomplete repair or healing leading to compromised tendon function. For this reason, there has been increased effort to develop therapeutics to overcome the tissue's failed healing response by targeting the cellular metaplasia and pro-inflammatory extra-cellular environment. On this basis, stem cell-based therapies have been proposed as an alternative therapeutic approach designed to modify the course of the various tendon pathologies. Mesenchymal stem/stromal cells (MSCs) are multipotent stem cells often referred to as "medicinal signaling cells" due to their immunomodulatory and anti-inflammatory properties that can produce a pro-regenerative microenvironment in pathological tendons. However, the adoption of MSCs into clinical practice has been limited by FDA regulations and perceived risk of adverse events upon infusion in vivo. The introduction of cell-free approaches, such as the extracellular vesicles of MSCs, has encouraged new perspectives for the treatment of tendinopathies, showing promising short-term results. In this article, we review the most recent advances in MSC-based and MSC-derived therapies for tendinopathies. Preclinical and clinical studies are included with comment on future directions of this rapidly developing therapeutic modality, including the importance of understanding tissue loading and its relationship to any treatment regimen.
Collapse
Affiliation(s)
- Daniel Quintero
- Department of Orthopaedics, UHealth Sports Medicine Institute, Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Carlotta Perucca Orfei
- Laboratorio di Biotecnologie Applicate all’Ortopedia, IRCCS Istituto Ortopedico Galeazzi, Milan, Italy
| | - Lee D. Kaplan
- Department of Orthopaedics, UHealth Sports Medicine Institute, Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Laura de Girolamo
- Laboratorio di Biotecnologie Applicate all’Ortopedia, IRCCS Istituto Ortopedico Galeazzi, Milan, Italy
| | - Thomas M. Best
- Department of Orthopaedics, UHealth Sports Medicine Institute, Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Dimitrios Kouroupis
- Department of Orthopaedics, UHealth Sports Medicine Institute, Miller School of Medicine, University of Miami, Miami, FL, United States,Diabetes Research Institute & Cell Transplant Center, Miller School of Medicine, University of Miami, Miami, FL, United States,*Correspondence: Dimitrios Kouroupis,
| |
Collapse
|
49
|
Choi S, Moon JR, Park N, Im J, Kim YE, Kim JH, Kim J. Bone-Adhesive Anisotropic Tough Hydrogel Mimicking Tendon Enthesis. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2206207. [PMID: 36314423 DOI: 10.1002/adma.202206207] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 10/18/2022] [Indexed: 06/16/2023]
Abstract
Tendon consists of soft collagen, yet it is mechanically strong and firmly adhered to the bone owing to its hierarchically anisotropic structure and unique tendon-to-bone integration (enthesis), respectively. Despite the recent advances in biomaterials, hydrogels simultaneously providing tendon-like high mechanical properties and strong adhesion to bone-mimicking enthesis is still challenging. Here, a strong, stiff, and adhesive triple-network (TN) anisotropic hydrogel that mimics a bone-adhering tendon is shown. The tough adhesive TN hydrogel is developed by combining imidazole-containing polyaspartamide (providing multiple hydrogen bonds to the bone surface) and energy-dissipative alginate-polyacrylamide double-network. To mimic the anisotropic structure and high mechanical properties of tendons, the bone-adhered TN hydrogel is linearly stretched and subsequently fixed via secondary cross-linking. The resulting hydrogel exhibits high tensile modulus and strength while maintaining a high bone adhesion without chemical modification of the bone surface. Furthermore, a bone-ligament-bone structure with strong bone adhesion reminiscent of the natural ligament is realized.
Collapse
Affiliation(s)
- Suji Choi
- School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
| | - Jong Ryul Moon
- School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
| | - Nuri Park
- School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
| | - Jihye Im
- School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
| | - Ye Eun Kim
- School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
| | - Ji-Heung Kim
- School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
| | - Jaeyun Kim
- School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences & Technology (SAIHST), Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
- Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
- Institute of Quantum Biophysics (IQB), Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
| |
Collapse
|
50
|
Marvin JC, Mochida A, Paredes J, Vaughn B, Andarawis-Puri N. Detergent-Free Decellularization Preserves the Mechanical and Biological Integrity of Murine Tendon. Tissue Eng Part C Methods 2022; 28:646-655. [PMID: 36326204 PMCID: PMC9807253 DOI: 10.1089/ten.tec.2022.0135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 09/28/2022] [Indexed: 11/06/2022] Open
Abstract
Tissue decellularization has demonstrated widespread applications across numerous organ systems for tissue engineering and regenerative medicine applications. Decellularized tissues are expected to retain structural and/or compositional features of the natural extracellular matrix (ECM), enabling investigation of biochemical factors and cell-ECM interactions that drive tissue homeostasis, healing, and disease. However, the dense collagenous tendon matrix has limited the efficacy of traditional decellularization strategies without the aid of harsh chemical detergents and/or physical agitation that disrupt tissue integrity and denature proteins involved in regulating cell behavior. In this study, we adapted and established the advantages of a detergent-free decellularization method that relies on latrunculin B actin destabilization, alternating hypertonic-hypotonic salt and water incubations, nuclease-assisted elimination of cellular material, and protease inhibitor supplementation under aseptic conditions. Our method maintained the collagen molecular structure (i.e., minimal extent of denaturation), while adequately removing cells and preserving bulk mechanical properties. Furthermore, we demonstrated that decellularized tendon ECM-derived coatings isolated from different mouse strains, injury states (i.e., naive and acutely injured/"provisional"), and anatomical sites harness distinct biochemical cues and robustly maintain tendon cell viability in vitro. Together, our work provides a simple and scalable decellularization method to facilitate mechanistic studies that will expand our fundamental understanding of tendon ECM and cell biology. Impact statement In this study, we present a decellularization method for tendon that does not rely on any detergent or physical processing techniques. We assessed the impact of detergent-free decellularization using tissue, cellular, and molecular level analyses and validated the preservation of gross fiber architecture, collagen molecular structure, and extracellular matrix (ECM)-associated biological cues that are essential for studying physiological cell-ECM interactions. Finally, we demonstrated the applicability of this method for healthy and injured tendon environments, across mouse strains, and for different types of tendons, illustrating the utility of this approach for isolating the contributions of biochemical cues within unique tendon ECM microenvironments.
Collapse
Affiliation(s)
- Jason C. Marvin
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York, USA
| | - Ai Mochida
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York, USA
| | - Juan Paredes
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York, USA
| | - Brenna Vaughn
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York, USA
| | - Nelly Andarawis-Puri
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, New York, USA
- Hospital for Special Surgery, New York, New York, USA
| |
Collapse
|