1
|
Vernon JJ. Modulation of the Human Microbiome: Probiotics, Prebiotics, and Microbial Transplants. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2025; 1472:277-294. [PMID: 40111698 DOI: 10.1007/978-3-031-79146-8_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/22/2025]
Abstract
The balance between health and disease is intrinsically linked to the interactions between microbial communities and the host. This complex environment of antagonism and synergy involves both prokaryotic and eukaryotic cells, whose collaborative metabolic pathways and immunomodulatory elements influence system homeostasis. As with the gut and other niches, the oral microbiome has the capacity to affect distal host sites. The ability to manipulate this environment holds the potential to impact local and systemic disease.With the increasing threat of antimicrobial resistance, novel approaches to reduce the burden of disease are essential. The use of probiotics and prebiotics is one such strategy. Probiotics introduce non-pathogenic bacteria into the environment to compete with pathogens for nutrients and attachment sites, or to produce metabolites that counteract disease aetiologies. Prebiotic compounds enhance the growth of health-associated organisms, offering additional benefits, whilst a conjunctive approach with probiotics potentially holds even greater promise. Though widely studied in the gastrointestinal context, their potential for treating oral diseases, such as dental caries and periodontitis, is less understood. Additionally, the use of microbial transplantations has demonstrated efficacy in other areas, reducing systemic inflammation and recolonising with commensal bacteria. Here we evaluate their use in the oral context and their modulatory impact on overall health.In this chapter, we discuss how pro- and prebiotic strategies seek to modulate both the oral and gut environments to promote oral health and prevent disease. We assess novel approaches for utilising health-associated microorganisms to combat oral disorders, either administered locally in the mouth or imparting influence through immune modulation via the oral-gut axis. By examining available clinical trial data, we aim to further understand the intricacies involved in this discipline. Furthermore, we consider the challenges facing the research community, including optimal candidate organism/compound selection and colonisation retention, as well as considerations for future research.
Collapse
Affiliation(s)
- Jon J Vernon
- Division of Oral Biology, School of Dentistry, University of Leeds, Leeds, UK.
| |
Collapse
|
2
|
Zhong Y, Kang X, Bai X, Pu B, Smerin D, Zhao L, Xiong X. The Oral-Gut-Brain Axis: The Influence of Microbes as a Link of Periodontitis With Ischemic Stroke. CNS Neurosci Ther 2024; 30:e70152. [PMID: 39675010 DOI: 10.1111/cns.70152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 11/03/2024] [Accepted: 11/20/2024] [Indexed: 12/17/2024] Open
Abstract
Periodontitis, a non-communicable chronic inflammation disease resulting from dysbiosis of the oral microbiota, has been demonstrated to have a positive association with the risk of ischemic stroke (IS). The major periodontal pathogens contribute to the progression of stroke-related risk factors such as obesity, diabetes, atherosclerosis, and hypertension. Transcriptional changes in periodontitis pathogens have been detected in oral samples from stroke patients, suggesting a new conceptual framework involving microorganisms. The bidirectional regulation between the gut and the central nervous system (CNS) is mediated by interactions between intestinal microflora and brain cells. The connection between the oral cavity and gut through microbiota indicates that the oral microbial community may play a role in mediating complex communication between the oral cavity and the CNS; however, underlying mechanisms have yet to be fully understood. In this review, we present an overview of key concepts and potential mechanisms of interaction between the oral-gut-brain axis based on previous research, focusing on how the oral microbiome (especially the periodontal pathogens) impacts IS and its risk factors, as well as the mediating role of immune system homeostasis, and providing potential preventive and therapeutic approaches.
Collapse
Affiliation(s)
- Yi Zhong
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xianhui Kang
- Department of Anesthesiology, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xiaofeng Bai
- Department of Oral and Maxillofacial Surgery, Stomatology Hospital, Zhejiang University School of Medicine, Zhejiang, China
| | - Bei Pu
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Daniel Smerin
- Department of Neurosurgery, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - Liang Zhao
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xiaoxing Xiong
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
3
|
Van Holm W, Zayed N, Lauwens K, Saghi M, Axelsson J, Aktan MK, Braem A, Simoens K, Vanbrabant L, Proost P, Van Holm B, Maes P, Boon N, Bernaerts K, Teughels W. Oral Biofilm Composition, Dissemination to Keratinocytes, and Inflammatory Attenuation Depend on Probiotic and Synbiotic Strain Specificity. Probiotics Antimicrob Proteins 2024:10.1007/s12602-024-10253-z. [PMID: 38619794 DOI: 10.1007/s12602-024-10253-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/01/2024] [Indexed: 04/16/2024]
Abstract
Several inflammatory diseases are characterized by a disruption in the equilibrium between the host and its microbiome. Due to the increase in resistance, the use of antibiotics for the widespread, nonspecific killing of microorganisms is at risk. Pro-microbial approaches focused on stimulating or introducing beneficial species antagonistic toward pathobionts may be a viable alternative for restoring the host-microbiome equilibrium. Unfortunately, not all potential probiotic or synbiotic species and even subspecies (to strain level) are equally effective for the designated pathology, leading to conflicting accounts of their efficacy. To assess the extent of these species- and strain-specific effects, 13 probiotic candidates were evaluated for their probiotic and synbiotic potential with glycerol on in vitro oral biofilms, dissemination from biofilms to keratinocytes, and anti-inflammatory activity. Species- and strain-specific effects and efficacies were observed in how they functioned as probiotics or synbiotics by influencing oral pathobionts and commensals within biofilms and affected the dissemination of pathobionts to keratinocytes, ranging from ineffective strains to strains that reduced pathobionts by 3 + log. In addition, a minority of the candidates exhibited the ability to mitigate the inflammatory response of LPS-stimulated monocytes. For a comprehensive assessment of probiotic therapy for oral health, a judicious selection of fully characterized probiotic strains that are specifically tailored to the designated pathology is required. This approach aims to challenge the prevailing perception of probiotics, shifting the focus away from "form over function." Rather than using unproven, hypothetical probiotic strains from known genera or species, one should choose strains that are actually functional in resolving the desired pathology before labelling them probiotics.
Collapse
Affiliation(s)
- Wannes Van Holm
- KU Leuven, Department of Oral Health Sciences, Periodontology and Oral Microbiology, B-3000, Leuven, Belgium
- Ghent University (UGent), Centre for Microbial Ecology and Technology (CMET), Ghent, Belgium
| | - Naiera Zayed
- KU Leuven, Department of Oral Health Sciences, Periodontology and Oral Microbiology, B-3000, Leuven, Belgium
- Ghent University (UGent), Centre for Microbial Ecology and Technology (CMET), Ghent, Belgium
- Faculty of Pharmacy, Menoufia University, Shebeen El-Kom, Egypt
| | - Katalina Lauwens
- KU Leuven, Department of Oral Health Sciences, Periodontology and Oral Microbiology, B-3000, Leuven, Belgium
| | - Mehraveh Saghi
- KU Leuven, Department of Oral Health Sciences, Periodontology and Oral Microbiology, B-3000, Leuven, Belgium
| | | | - Merve Kübra Aktan
- KU Leuven, Department of Materials Engineering (MTM), Biomaterials and Tissue Engineering, B-3000, Leuven, Belgium
| | - Annabel Braem
- KU Leuven, Department of Materials Engineering (MTM), Biomaterials and Tissue Engineering, B-3000, Leuven, Belgium
| | - Kenneth Simoens
- KU Leuven, Department of Chemical Engineering, Bio- and Chemical Systems Technology, B-3000, Leuven, Belgium
| | - Lotte Vanbrabant
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Research Group Immunity and Inflammation, B-3000, Leuven, Belgium
| | - Paul Proost
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Research Group Immunity and Inflammation, B-3000, Leuven, Belgium
| | - Bram Van Holm
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Laboratory of Clinical and Epidemiological Virology, B-3000, Leuven, Belgium
| | - Piet Maes
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Laboratory of Clinical and Epidemiological Virology, B-3000, Leuven, Belgium
| | - Nico Boon
- Ghent University (UGent), Centre for Microbial Ecology and Technology (CMET), Ghent, Belgium
| | - Kristel Bernaerts
- KU Leuven, Department of Chemical Engineering, Bio- and Chemical Systems Technology, B-3000, Leuven, Belgium
| | - Wim Teughels
- KU Leuven, Department of Oral Health Sciences, Periodontology and Oral Microbiology, B-3000, Leuven, Belgium.
| |
Collapse
|
4
|
Yadav M, Sehrawat N, Sharma AK, Kumar S, Singh R, Kumar A, Kumar A. Synbiotics as potent functional food: recent updates on therapeutic potential and mechanistic insight. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2024; 61:1-15. [PMID: 38192708 PMCID: PMC10771572 DOI: 10.1007/s13197-022-05621-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 10/14/2022] [Accepted: 11/03/2022] [Indexed: 11/15/2022]
Abstract
Synbiotics are the specific mixtures of prebiotics with probiotics intended to give health benefits to the host by stabilizing and supporting the gut microbiota.The prebiotic substance used in the synbiotics selectively favors the growth and metabolite production of probiotics. Gut microbiome dysbiosis may lead to generation and progression of various chronic diseases. Synbiotics act synergistically to modulate the gut ecosystem for improvement of metabolic health of the host. Probiotics have been found promising against various diseases being safer, effective, as an alternative or combinatorial therapy. Specific combinations of probiotics with suitable prebiotic substrate as synbiotics, may be the more effective therapeutic agents that can provide all benefits of probiotics as well as prebiotics. Though, effective combinations, dosage, mechanism of action, safety, cost effectiveness and other clinical investigations are required to be established along with other relevant aspects. Synbiotics have the potential to be functional food of importance in future. Present review summarizes the mechanistic overview of synbiotics related to gut microbiota, therapeutic potential and promising health benefits for human illnesses according to the available literature. In present scenario, synbiotics are more promising future alternatives as therapeutics to maintain healthy microbiota inside the host gut which directly affects the onset or development ofrelated disorders or diseases.
Collapse
Affiliation(s)
- Mukesh Yadav
- Department of Biotechnology, MMEC, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala, Haryana India
| | - Nirmala Sehrawat
- Department of Biotechnology, MMEC, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala, Haryana India
| | - Anil Kumar Sharma
- Department of Biotechnology, MMEC, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala, Haryana India
| | - Sunil Kumar
- Department of Microbiology, Faculty of Biomedical Sciences, Kampala International University, Western Campus, Ishaka, Uganda
| | - Rajbir Singh
- Amity Institute of Biotechnology, Amity University Haryana, Gurugram, Haryana India
| | - Ashwani Kumar
- Department of Biotechnology, Chaudhary Bansi Lal University, Bhiwani, Haryana 127021 India
| | - Amit Kumar
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida, U.P. India
| |
Collapse
|
5
|
Sellami R, Van Holm W, Meschi N, Van Den Heuvel S, Pauwels M, Verspecht T, Vandamme K, Teughels W, Lambrechts P. Regenerative endodontic procedures in immature permanent teeth with pulp necrosis: the impact of microbiology on clinical and radiographic outcome. FRONTIERS IN DENTAL MEDICINE 2023; 4:1281337. [PMID: 39916917 PMCID: PMC11797765 DOI: 10.3389/fdmed.2023.1281337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 10/24/2023] [Indexed: 02/09/2025] Open
Abstract
Aims The current study aimed to determine how the disinfection strategy for regenerative endodontic procedures (REPs) influences overall bacterial load and REP outcomes. Different bacterial species in the teeth were also examined in this study. Methods A previously reported non-randomized controlled clinical research on REP ± leukocyte and platelet-rich fibrin gathered microbial samples from 14 of 29 patients during REP (LPRF). Four microbiological samples were obtained in two treatment sessions. S1 and S2 were taken before and after the first irrigation with 1.5% NaOCl and saline. Samples S3 and S4 were obtained before and after rinsing with 17% EDTA in the second treatment session. Microbial samples were identified using a quantitative polymerase chain reaction with species-specific primers. Results The total bacterial load recovered from patients showed a significant (p < 0.05) decrease after the first treatment and was maintained throughout the second treatment. Fusobacterium nucleatum, Treponema denticola, and Enterococcus faecalis were the most prevalent species in root canals, detected in all analyzed cases (100%), followed by Prevotella intermedia and Tannerella forsythia, both in six of 14 (42.9%) cases. The presence of these abundant species was significantly reduced after sample S1 was obtained. Parvimonas micra was present in four of 14 (28.6%) cases and Actinomyces naeslundii in two of 14 (14.3%) cases. Filifactor alocis, Porphyromonas endodontalis, and Porphyromonas gingivalis were each detected in only one of 14 (7.1%) cases. No statistical correlation could be made between bacterial species and clinical or radiographic outcomes due to the small sample size. In the LPRF group, two cases required retreatment due to early post-treatment flare-up, and two other cases presented radiographically presented a persistent apical periodontitis 3 years after treatment. In the control group, all analyzed cases were clinically asymptomatic after treatment, and radiographically, the final periapical index score at the last recall revealed healthy periapices. Conclusion The REP disinfection protocol of the present study seems to be satisfactorily effective in reducing the total bacterial load, omitting clinical symptoms and inducing periapical bone healing in immature permanent teeth with pulp necrosis. However, LPRF seems to prevent these outcomes from being achieved and should consequently therefore not be recommended in REPs.
Collapse
Affiliation(s)
- Rayann Sellami
- Department of Oral Health Sciences, Endodontology, KU Leuven & Dentistry, University Hospitals Leuven, Leuven, Belgium
| | - Wannes Van Holm
- Department of Oral Health Sciences, Periodontology, KU Leuven & Dentistry, University Hospitals Leuven, Leuven, Belgium
| | - Nastaran Meschi
- Section of Endodontology, Department of Oral Health Sciences, Ghent University, Ghent, Belgium
| | - Sarah Van Den Heuvel
- Department of Oral Health Sciences, Endodontology, KU Leuven & Dentistry, University Hospitals Leuven, Leuven, Belgium
| | - Martine Pauwels
- Department of Oral Health Sciences, Periodontology, KU Leuven & Dentistry, University Hospitals Leuven, Leuven, Belgium
| | - Tim Verspecht
- Department of Oral Health Sciences, Periodontology, KU Leuven & Dentistry, University Hospitals Leuven, Leuven, Belgium
| | - Kathleen Vandamme
- Department of Oral Health Sciences, Periodontology, KU Leuven & Dentistry, University Hospitals Leuven, Leuven, Belgium
| | - Wim Teughels
- Department of Oral Health Sciences, Periodontology, KU Leuven & Dentistry, University Hospitals Leuven, Leuven, Belgium
| | - Paul Lambrechts
- Department of Oral Health Sciences, Endodontology, KU Leuven & Dentistry, University Hospitals Leuven, Leuven, Belgium
| |
Collapse
|
6
|
Ghesquière J, Simoens K, Koos E, Boon N, Teughels W, Bernaerts K. Spatiotemporal monitoring of a periodontal multispecies biofilm model: demonstration of prebiotic treatment responses. Appl Environ Microbiol 2023; 89:e0108123. [PMID: 37768099 PMCID: PMC10617495 DOI: 10.1128/aem.01081-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Accepted: 07/26/2023] [Indexed: 09/29/2023] Open
Abstract
Biofilms are complex polymicrobial communities which are often associated with human infections such as the oral disease periodontitis. Studying these complex communities under controlled conditions requires in vitro biofilm model systems that mimic the natural environment as close as possible. This study established a multispecies periodontal model in the drip flow biofilm reactor in order to mimic the continuous flow of nutrients at the air-liquid interface in the oral cavity. The design is engineered to enable real-time characterization. A community of five bacteria, Streptococcus gordonii-GFPmut3*, Streptococcus oralis-GFPmut3*, Streptococcus sanguinis-pVMCherry, Fusobacterium nucleatum, and Porphyromonas gingivalis-SNAP26 is visualized using two distinct fluorescent proteins and the SNAP-tag. The biofilm in the reactor develops into a heterogeneous, spatially uniform, dense, and metabolically active biofilm with relative cell abundances similar to those in a healthy individual. Metabolic activity, structural features, and bacterial composition of the biofilm remain stable from 3 to 6 days. As a proof of concept for our periodontal model, the 3 days developed biofilm is exposed to a prebiotic treatment with L-arginine. Multifaceted effects of L-arginine on the oral biofilm were validated by this model setup. L-arginine showed to inhibit growth and incorporation of the pathogenic species and to reduce biofilm thickness and volume. Additionally, L-arginine is metabolized by Streptococcus gordonii-GFPmut3* and Streptococcus sanguinis-pVMCherry, producing high levels of ornithine and ammonium in the biofilm. In conclusion, our drip flow reactor setup is promising in studying spatiotemporal behavior of a multispecies periodontal community.ImportancePeriodontitis is a multifactorial chronic inflammatory disease in the oral cavity associated with the accumulation of microorganisms in a biofilm. Not the presence of the biofilm as such, but changes in the microbiota (i.e., dysbiosis) drive the development of periodontitis, resulting in the destruction of tooth-supporting tissues. In this respect, novel treatment approaches focus on maintaining the health-associated homeostasis of the resident oral microbiota. To get insight in dynamic biofilm responses, our research presents the establishment of a periodontal biofilm model including Streptococcus gordonii, Streptococcus oralis, Streptococcus sanguinis, Fusobacterium nucleatum, and Porphyromonas gingivalis. The added value of the model setup is the combination of simulating continuously changing natural mouth conditions with spatiotemporal biofilm profiling using non-destructive characterization tools. These applications are limited for periodontal biofilm research and would contribute in understanding treatment mechanisms, short- or long-term exposure effects, the adaptation potential of the biofilm and thus treatment strategies.
Collapse
Affiliation(s)
- Justien Ghesquière
- Chemical and Biochemical Reactor Engineering and Safety (CREaS), Department of Chemical Engineering, University of Leuven (KU Leuven), Leuven, Belgium
| | - Kenneth Simoens
- Chemical and Biochemical Reactor Engineering and Safety (CREaS), Department of Chemical Engineering, University of Leuven (KU Leuven), Leuven, Belgium
| | - Erin Koos
- Soft Matter, Rheology and Technology, Department of Chemical Engineering, University of Leuven (KU Leuven), Leuven, Belgium
| | - Nico Boon
- Center for Microbial Ecology and Technology (CMET), Ghent University (UGent), Gent, Belgium
| | - Wim Teughels
- Department of Oral Health Sciences, University of Leuven (KU Leuven) and Dentistry (Periodontology), University Hospitals Leuven, Leuven, Belgium
| | - Kristel Bernaerts
- Chemical and Biochemical Reactor Engineering and Safety (CREaS), Department of Chemical Engineering, University of Leuven (KU Leuven), Leuven, Belgium
| |
Collapse
|
7
|
Mohd Fuad AS, Amran NA, Nasruddin NS, Burhanudin NA, Dashper S, Arzmi MH. The Mechanisms of Probiotics, Prebiotics, Synbiotics, and Postbiotics in Oral Cancer Management. Probiotics Antimicrob Proteins 2023; 15:1298-1311. [PMID: 36048406 PMCID: PMC9434094 DOI: 10.1007/s12602-022-09985-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/22/2022] [Indexed: 11/29/2022]
Abstract
Oral carcinogenesis is preceded by oral diseases associated with inflammation such as periodontitis and oral candidiasis, which are contributed by chronic alcoholism, smoking, poor oral hygiene, and microbial infections. Dysbiosis is an imbalance of microbial composition due to oral infection, which has been reported to contribute to oral carcinogenesis. Therefore, in this review, we summarised the role of probiotics, prebiotics, synbiotics, and postbiotics in promoting a balanced oral microbiome, which may prevent oral carcinogenesis due to oral infections. Probiotics have been shown to produce biofilm, which possesses antibacterial activity against oral pathogens. Meanwhile, prebiotics can support growth and increase the benefit of probiotics. In addition, postbiotics possess antibacterial, anticariogenic, and anticancer properties that potentially aid in oral cancer prevention and treatment. The use of probiotics, prebiotics, synbiotics, and postbiotics for oral cancer management is still limited despite their vast potential, thus, discovering their prospects could herald a novel approach to disease prevention and treatment while participating in combating antimicrobial resistance.
Collapse
Affiliation(s)
- Aalina Sakiinah Mohd Fuad
- Cluster of Cancer Research Initiative IIUM (COCRII), International Islamic University Malaysia, 25200, Kuantan, Pahang, Malaysia
- Department of Biomedical Science, Kulliyyah of Allied Health Sciences, International Islamic University Malaysia, 25200, Kuantan, Pahang, Malaysia
| | - Nurul Aqilah Amran
- Cluster of Cancer Research Initiative IIUM (COCRII), International Islamic University Malaysia, 25200, Kuantan, Pahang, Malaysia
- Department of Pharmaceutical Technology, Kulliyyah of Pharmacy, International Islamic University Malaysia, 25200, Kuantan, Pahang, Malaysia
- Jardin Pharma Berhad, Sunway Subang Business Park, Selangor, 40150, Shah Alam, Malaysia
| | - Nurrul Shaqinah Nasruddin
- Department of Diagnostic Craniofacial and Bioscience, Faculty of Dentistry, Universiti Kebangsaan Malaysia, 50300, Kuala Lumpur, Malaysia
| | - Nor Aszlitah Burhanudin
- Department of Oral Maxillofacial Surgery and Oral Diagnosis, Kulliyyah of Dentistry, International Islamic University Malaysia, 25200, Kuantan, Pahang, Malaysia
| | - Stuart Dashper
- Melbourne Dental School, The University of Melbourne, Melbourne, Victoria, 3055, Australia
| | - Mohd Hafiz Arzmi
- Cluster of Cancer Research Initiative IIUM (COCRII), International Islamic University Malaysia, 25200, Kuantan, Pahang, Malaysia.
- Jardin Pharma Berhad, Sunway Subang Business Park, Selangor, 40150, Shah Alam, Malaysia.
- Department of Fundamental Dental and Medical Sciences, Kulliyyah of Dentistry, International Islamic University Malaysia, 25200, Kuantan, Pahang, Malaysia.
| |
Collapse
|
8
|
Santacroce L, Passarelli PC, Azzolino D, Bottalico L, Charitos IA, Cazzolla AP, Colella M, Topi S, Godoy FG, D’Addona A. Oral microbiota in human health and disease: A perspective. Exp Biol Med (Maywood) 2023; 248:1288-1301. [PMID: 37688509 PMCID: PMC10625343 DOI: 10.1177/15353702231187645] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/11/2023] Open
Abstract
The evolution of medical knowledge about oral microbiota has increased awareness of its important role for the entire human body health. A wide range of microbial species colonizing the oral cavity interact both with each other and with their host through complex pathways. Usually, these interactions lead to a harmonious coexistence (i.e. eubiosis). However, several factors - including diet, poor oral hygiene, tobacco smoking, and certain medications, among others - can disrupt this weak homeostatic balance (i.e. dysbiosis) with potential implications on both oral (i.e. development of caries and periodontal disease) and systemic health. This article is thus aimed at providing an overview on the importance of oral microbiota in mediating several physiological and pathological conditions affecting human health. In this context, strategies based on oral hygiene and diet as well as the role of probiotics supplementation are discussed.
Collapse
Affiliation(s)
- Luigi Santacroce
- Interdisciplinary Department of Medicine, Section of Microbiology and Virology, School of Medicine, University Hospital of Bari, Bari 70124, Italy
| | - Pier Carmine Passarelli
- Department of Head, Neck and Sense Organs, Division of Oral Surgery and Implantology, Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica del Sacro Cuore, Rome 00168, Italy
| | - Domenico Azzolino
- Geriatric Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan 20122, Italy
| | - Lucrezia Bottalico
- Department of Clinical Disciplines, School of Technical Medical Sciences, University of Elbasan “A. Xhuvani,” Elbasan 3001, Albania
| | - Ioannis Alexandros Charitos
- Department of Clinical Disciplines, School of Technical Medical Sciences, University of Elbasan “A. Xhuvani,” Elbasan 3001, Albania
- Istituti Clinici Scientifici Maugeri IRCCS, Institute of Bari, Bari 70124, Italy
| | - Angela Pia Cazzolla
- Department of Clinical and Experimental Medicine, Riuniti University Hospital of Foggia, Foggia 71122, Italy
| | - Marica Colella
- Interdisciplinary Department of Medicine, Section of Microbiology and Virology, School of Medicine, University Hospital of Bari, Bari 70124, Italy
| | - Skender Topi
- Department of Clinical Disciplines, School of Technical Medical Sciences, University of Elbasan “A. Xhuvani,” Elbasan 3001, Albania
| | - Franklin Garcia Godoy
- Bioscience Research Center, College of Dentistry, University of Tennessee Health Science Center, Memphis, TN 38163, USA
- The Forsyth Institute, Cambridge, MA 02142, USA
- Department of Surgery, Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA
| | - Antonio D’Addona
- Department of Head, Neck and Sense Organs, Division of Oral Surgery and Implantology, Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica del Sacro Cuore, Rome 00168, Italy
| |
Collapse
|
9
|
Van Holm W, Carvalho R, Delanghe L, Eilers T, Zayed N, Mermans F, Bernaerts K, Boon N, Claes I, Lebeer S, Teughels W. Antimicrobial potential of known and novel probiotics on in vitro periodontitis biofilms. NPJ Biofilms Microbiomes 2023; 9:3. [PMID: 36681674 PMCID: PMC9867767 DOI: 10.1038/s41522-023-00370-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 01/04/2023] [Indexed: 01/22/2023] Open
Abstract
Several oral diseases are characterized by a shift within the oral microbiome towards a pathogenic, dysbiotic composition. Broad-spectrum antimicrobials are often part of patient care. However, because of the rising antibiotic resistance, alternatives are increasingly desirable. Alternatively, supplying beneficial species through probiotics is increasingly showing favorable results. Unfortunately, these probiotics are rarely evaluated comparatively. In this study, the in vitro effects of three known and three novel Lactobacillus strains, together with four novel Streptococcus salivarius strains were comparatively evaluated for antagonistic effects on proximal agar growth, antimicrobial properties of probiotic supernatant and the probiotic's effects on in vitro periodontal biofilms. Strain-specific effects were observed as differences in efficacy between genera and differences within genera. While some of the Lactobacillus candidates were able to reduce the periodontal pathobiont A. actinomycetemcomitans, the S. salivarius strains were not. However, the S. salivarius strains were more effective against periodontal pathobionts P. intermedia, P. gingivalis, and F. nucleatum. Vexingly, most of the Lactobacillus strains also negatively affected the prevalence of commensal species within the biofilms, while this was lower for S. salivarius strains. Both within lactobacilli and streptococci, some strains showed significantly more inhibition of the pathobionts, indicating the importance of proper strain selection. Additionally, some species showed reductions in non-target species, which can result in unexpected and unexplored effects on the whole microbiome.
Collapse
Affiliation(s)
- Wannes Van Holm
- grid.5596.f0000 0001 0668 7884Department of Oral Health Sciences, University of Leuven (KU Leuven), Leuven, Belgium ,grid.5342.00000 0001 2069 7798Centre for Microbial Ecology and Technology (CMET), Ghent University (UGent), Gent, Belgium
| | - Rita Carvalho
- grid.5596.f0000 0001 0668 7884Department of Oral Health Sciences, University of Leuven (KU Leuven), Leuven, Belgium
| | - Lize Delanghe
- grid.5284.b0000 0001 0790 3681Department of Bioscience Engineering, University of Antwerp, Antwerp, Belgium
| | - Tom Eilers
- grid.5284.b0000 0001 0790 3681Department of Bioscience Engineering, University of Antwerp, Antwerp, Belgium
| | - Naiera Zayed
- grid.5596.f0000 0001 0668 7884Department of Oral Health Sciences, University of Leuven (KU Leuven), Leuven, Belgium ,grid.5342.00000 0001 2069 7798Centre for Microbial Ecology and Technology (CMET), Ghent University (UGent), Gent, Belgium ,grid.411775.10000 0004 0621 4712Faculty of Pharmacy, Menoufia University, Shibin el Kom, Egypt
| | - Fabian Mermans
- grid.5342.00000 0001 2069 7798Centre for Microbial Ecology and Technology (CMET), Ghent University (UGent), Gent, Belgium
| | - Kristel Bernaerts
- grid.5596.f0000 0001 0668 7884Bio- and Chemical Systems Technology, Reactor Engineering and Safety, Department of Chemical Engineering, University of Leuven (KU Leuven), Leuven, Belgium
| | - Nico Boon
- grid.5342.00000 0001 2069 7798Centre for Microbial Ecology and Technology (CMET), Ghent University (UGent), Gent, Belgium
| | | | - Sarah Lebeer
- grid.5284.b0000 0001 0790 3681Department of Bioscience Engineering, University of Antwerp, Antwerp, Belgium
| | - Wim Teughels
- grid.5596.f0000 0001 0668 7884Department of Oral Health Sciences, University of Leuven (KU Leuven), Leuven, Belgium
| |
Collapse
|
10
|
Tonelli A, Lumngwena EN, Ntusi NAB. The oral microbiome in the pathophysiology of cardiovascular disease. Nat Rev Cardiol 2023; 20:386-403. [PMID: 36624275 DOI: 10.1038/s41569-022-00825-3] [Citation(s) in RCA: 60] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/01/2022] [Indexed: 01/11/2023]
Abstract
Despite advances in our understanding of the pathophysiology of many cardiovascular diseases (CVDs) and expansion of available therapies, the global burden of CVD-associated morbidity and mortality remains unacceptably high. Important gaps remain in our understanding of the mechanisms of CVD and determinants of disease progression. In the past decade, much research has been conducted on the human microbiome and its potential role in modulating CVD. With the advent of high-throughput technologies and multiomics analyses, the complex and dynamic relationship between the microbiota, their 'theatre of activity' and the host is gradually being elucidated. The relationship between the gut microbiome and CVD is well established. Much less is known about the role of disruption (dysbiosis) of the oral microbiome; however, interest in the field is growing, as is the body of literature from basic science and animal and human investigations. In this Review, we examine the link between the oral microbiome and CVD, specifically coronary artery disease, stroke, peripheral artery disease, heart failure, infective endocarditis and rheumatic heart disease. We discuss the various mechanisms by which oral dysbiosis contributes to CVD pathogenesis and potential strategies for prevention and treatment.
Collapse
Affiliation(s)
- Andrea Tonelli
- Division of Cardiology, Department of Medicine, University of Cape Town and Groote Schuur Hospital, Cape Town, South Africa.,Cardiovascular Research Unit, Christiaan Barnard Division of Cardiothoracic Surgery, Department of Surgery, University of Cape Town and Groote Schuur Hospital, Cape Town, South Africa.,Cape Heart Institute, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa.,Extramural Research Unit on the Intersection of Noncommunicable Diseases and Infectious Disease, South African Medical Research Council, Cape Town, South Africa
| | - Evelyn N Lumngwena
- Cape Heart Institute, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa.,School of Clinical Medicine, Faculty of Health Sciences, University of Witwatersrand, Johannesburg, South Africa.,Centre for the Study of Emerging and Re-emerging Infections, Institute for Medical Research and Medicinal Plant Studies, Ministry of Scientific Research and Innovation, Yaoundé, Cameroon
| | - Ntobeko A B Ntusi
- Division of Cardiology, Department of Medicine, University of Cape Town and Groote Schuur Hospital, Cape Town, South Africa. .,Cape Heart Institute, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa. .,Extramural Research Unit on the Intersection of Noncommunicable Diseases and Infectious Disease, South African Medical Research Council, Cape Town, South Africa. .,Cape Universities Body Imaging Centre, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa. .,Wellcome Centre for Infectious Disease Research, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa.
| |
Collapse
|
11
|
Neculae E, Gosav EM, Valasciuc E, Dima N, Floria M, Tanase DM. The Oral Microbiota in Valvular Heart Disease: Current Knowledge and Future Directions. LIFE (BASEL, SWITZERLAND) 2023; 13:life13010182. [PMID: 36676130 PMCID: PMC9862471 DOI: 10.3390/life13010182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 12/31/2022] [Accepted: 01/06/2023] [Indexed: 01/11/2023]
Abstract
Oral microbiota formation begins from birth, and everything from genetic components to the environment, alongside the host's behavior (such as diet, smoking, oral hygiene, and even physical activity), contributes to oral microbiota structure. Even though recent studies have focused on the gut microbiota's role in systemic diseases, the oral microbiome represents the second largest community of microorganisms, making it a new promising therapeutic target. Periodontitis and dental caries are considered the two main consequences of oral bacterial imbalance. Studies have shown that oral dysbiosis effects are not limited locally. Due to technological advancement, research identified oral bacterial species in heart valves. This evidence links oral dysbiosis with the development of valvular heart disease (VHD). This review focuses on describing the mechanism behind prolonged local inflammation and dysbiosis, that can induce bacteriemia by direct or immune-mediated mechanisms and finally VHD. Additionally, we highlight emerging therapies based on controlling oral dysbiosis, periodontal disease, and inflammation with immunological and systemic effects, that exert beneficial effects in VHD management.
Collapse
Affiliation(s)
- Ecaterina Neculae
- Department of Gastroenterology, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
- Institute of Gastroenterology and Hepatology, “Sf. Spiridon” County Clinical Emergency Hospital Iasi, 700111 Iasi, Romania
| | - Evelina Maria Gosav
- Department of Internal Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
- Internal Medicine Clinic, “St. Spiridon” County Clinical Emergency Hospital Iasi, 700111 Iasi, Romania
| | - Emilia Valasciuc
- Department of Internal Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
- Internal Medicine Clinic, “St. Spiridon” County Clinical Emergency Hospital Iasi, 700111 Iasi, Romania
| | - Nicoleta Dima
- Department of Internal Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
- Internal Medicine Clinic, “St. Spiridon” County Clinical Emergency Hospital Iasi, 700111 Iasi, Romania
| | - Mariana Floria
- Department of Internal Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
- Internal Medicine Clinic, “St. Spiridon” County Clinical Emergency Hospital Iasi, 700111 Iasi, Romania
- Correspondence:
| | - Daniela Maria Tanase
- Department of Internal Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
- Internal Medicine Clinic, “St. Spiridon” County Clinical Emergency Hospital Iasi, 700111 Iasi, Romania
| |
Collapse
|
12
|
Biofilm ecology associated with dental caries: Understanding of microbial interactions in oral communities leads to development of therapeutic strategies targeting cariogenic biofilms. ADVANCES IN APPLIED MICROBIOLOGY 2023; 122:27-75. [PMID: 37085193 DOI: 10.1016/bs.aambs.2023.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
Abstract
A biofilm is a sessile community characterized by cells attached to the surface and organized into a complex structural arrangement. Dental caries is a biofilm-dependent oral disease caused by infection with cariogenic pathogens, such as Streptococcus mutans, and associated with frequent exposure to a sugar-rich diet and poor oral hygiene. The virulence of cariogenic biofilms is often associated with the spatial organization of S. mutans enmeshed with exopolysaccharides on tooth surfaces. However, in the oral cavity, S. mutans does not act alone, and several other microbes contribute to cariogenic biofilm formation. Microbial communities in cariogenic biofilms are spatially organized into complex structural arrangements of various microbes and extracellular matrices. The balance of microbiota diversity with reduced diversity and a high proportion of acidogenic-aciduric microbiota within the biofilm is closely related to the disease state. Understanding the characteristics of polymicrobial biofilms and the association of microbial interactions within the biofilm (e.g., symbiosis, cooperation, and competition) in terms of their potential role in the pathogenesis of oral disease would help develop new strategies for interventions in virulent biofilm formation.
Collapse
|
13
|
Colamarino AN, Johnson TM, Boudreaux DM, Dutner JM, Stancoven BW, Lincicum AR, Akers JA. Influence of Lactobacillus reuteri, Bifidobacterium animalis subsp. lactis, and prebiotic inulin on dysbiotic dental biofilm composition ex vivo. J Periodontol 2022. [PMID: 36542391 DOI: 10.1002/jper.22-0505] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 12/05/2022] [Accepted: 12/10/2022] [Indexed: 12/24/2022]
Abstract
BACKGROUND Probiotic bacterial supplementation has shown promising results in the treatment of periodontitis and the maintenance of periodontal health. The purpose of this investigation was to evaluate the influence of Lactobacillus reuteri or Bifidobacterium animalis subsp. lactis supplementation with and without prebiotic inulin on biofilm composition using an ex vivo biofilm model. METHODS Subgingival plaque specimens from three periodontitis-affected human donors were used to grow biofilms on hydroxyapatite disks in media supplemented with varying combinations of prebiotic inulin, Lactobacillus reuteri, and Bifidobacterium animalis subsp. lactis. Relative abundances of bacterial genera present in mature biofilms were evaluated using 16S rRNA next-generation sequencing. Diversity metrics of microbial communities were evaluated using a next-generation microbiome bioinformatics platform. RESULTS Inulin supplementation produced statistically significant dose-dependent increases in relative abundances of Lactobacillus and Bifidobacterium species (p < 0.001) with concomitant decreases in relative abundances of Streptococcus, Veillonella, Fusobacterium, Parvimonas, and Prevotella species (p < 0.001). Inoculation with L. reuteri or B. animalis subsp. lactis increased the relative abundance of only the supplemented probiotic genera (p < 0.05). Supplemental inulin led to a statistically significant decrease in biofilm alpha diversity (p < 0.001). CONCLUSIONS The described ex vivo model appears suitable for investigating the effects of probiotic bacteria, prebiotic oligosaccharides, and combinations thereof on biofilm composition and complexity. Within the limitations imposed by this model, results from the present study underscore the potential for prebiotic inulin to modify biofilm composition favorably. Additional research further elucidating biologic rationale and controlled clinical research defining therapeutic benefits is warranted.
Collapse
Affiliation(s)
- Aaron N Colamarino
- Department of Periodontics, Army Postgraduate Dental School, Uniformed Services University of the Health Sciences, Fort Gordon, Georgia, USA
| | - Thomas M Johnson
- Department of Periodontics, Army Postgraduate Dental School, Uniformed Services University of the Health Sciences, Fort Gordon, Georgia, USA
| | | | - Joseph M Dutner
- Department of Endodontics, Army Postgraduate Dental School, Uniformed Services University of the Health Sciences, Fort Gordon, Georgia, USA
| | - Brian W Stancoven
- Department of Periodontics, Army Postgraduate Dental School, Uniformed Services University of the Health Sciences, Fort Gordon, Georgia, USA
| | - Adam R Lincicum
- Department of Periodontics, Army Postgraduate Dental School, Uniformed Services University of the Health Sciences, Fort Gordon, Georgia, USA
| | - Joshua A Akers
- Department of Periodontics, Army Postgraduate Dental School, Uniformed Services University of the Health Sciences, Fort Gordon, Georgia, USA
| |
Collapse
|
14
|
Rismayuddin NAR, Mohd Badri PEA, Ismail AF, Othman N, Bandara HMHN, Arzmi MH. Synbiotic Musa acuminata skin extract and Streptococcus salivarius K12 inhibit candida species biofilm formation. BIOFOULING 2022; 38:614-627. [PMID: 35899682 DOI: 10.1080/08927014.2022.2105142] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 07/12/2022] [Accepted: 07/19/2022] [Indexed: 06/15/2023]
Abstract
This study aimed to determine the effect of synbiotic Musa acuminata skin extract (MASE) and Streptococcus salivarius K12 (K12) on Candida species biofilm formation. Liquid chromatography quadrupole time-of-flight (LC-Q-TOF-MS) was conducted to characterize MASE. To determine the effect of synbiotic on Candida biofilm, 200 µL of RPMI-1640 containing Candida, K12, and MASE were pipetted into the same well and incubated at 37 °C for 72 h. A similar protocol was repeated with K12 or MASE to determine the probiotic and prebiotic effects, respectively. Dimorphism, biofilm biomass, and Candida total cell count (TCC) were determined. A total of 60 compounds were detected in MASE. C. albicans (ALT5) and Candida lusitaniae exhibited the highest reduction in biofilm biomass when co-cultured with prebiotic (77.70 ± 7.67%) and synbiotic (97.73 ± 0.28%), respectively. All Candida spp. had decreased TCC and hyphae when co-cultured with synbiotic. In conclusion, MASE and K12 inhibit Candida biofilm formation.
Collapse
Affiliation(s)
- Nurul Alia Risma Rismayuddin
- Cluster of Cancer Research Initiative IIUM (COCRII), International Islamic University Malaysia, Kuantan, Pahang, Malaysia
- Department of Fundamental Dental and Medical Sciences, Kulliyyah of Dentistry, International Islamic University Malaysia, Kuantan, Pahang, Malaysia
| | - Puteri Elysa Alia Mohd Badri
- Department of Biotechnology, Kulliyyah of Science, International Islamic University Malaysia, Kuantan, Pahang, Malaysia
| | - Ahmad Faisal Ismail
- Department of Paediatric Dentistry and Dental Public Health, Kulliyyah of Dentistry, International Islamic University Malaysia, Kuantan, Pahang, Malaysia
| | - Noratikah Othman
- Department of Basic Medical Sciences, Kulliyyah of Nursing, International Islamic University Malaysia, Kuantan, Pahang, Malaysia
| | - H M H N Bandara
- Bristol Dental School, University of Bristol, Bristol, United Kingdom
| | - Mohd Hafiz Arzmi
- Cluster of Cancer Research Initiative IIUM (COCRII), International Islamic University Malaysia, Kuantan, Pahang, Malaysia
- Department of Fundamental Dental and Medical Sciences, Kulliyyah of Dentistry, International Islamic University Malaysia, Kuantan, Pahang, Malaysia
| |
Collapse
|
15
|
Santonocito S, Giudice A, Polizzi A, Troiano G, Merlo EM, Sclafani R, Grosso G, Isola G. A Cross-Talk between Diet and the Oral Microbiome: Balance of Nutrition on Inflammation and Immune System's Response during Periodontitis. Nutrients 2022; 14:2426. [PMID: 35745156 PMCID: PMC9227938 DOI: 10.3390/nu14122426] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 06/04/2022] [Accepted: 06/08/2022] [Indexed: 12/25/2022] Open
Abstract
Over the last few decades, studies on the oral microbiome have increased awareness that the balance between the host and the microbial species that coexist in it is essential for oral health at all stages of life. However, this balance is extremely difficult to maintain, and many factors can disrupt it: general eating habits, sugar consumption, tobacco smoking, oral hygiene, and use of antibiotics and other antimicrobials. It is now known that alterations in the oral microbiota are responsible for developing and promoting many oral diseases, including periodontal disease. In this context, diet is an area for further investigation as it has been observed that the intake of particular foods, such as farmed animal meat, dairy products, refined vegetable oils, and processed cereals, affects the composition of the microbiota, leading to an increased representation of acid-producing and acid-tolerant organisms and periodontal pathogens. However, little is known about the influence of diet on the oral microbiome and the creation of a suitable microenvironment for the development of periodontal disease. The aim of the present study is to evaluate current knowledge on the role of diet in the oral dysbiosis underlying periodontal disease.
Collapse
Affiliation(s)
- Simona Santonocito
- Unit of Periodontology, Department of General Surgery and Surgical-Medical Specialties, School of Dentistry, University of Catania, 95124 Catania, Italy; (S.S.); (R.S.); (G.I.)
| | - Amerigo Giudice
- Unit of Dentistry, Department of Health Sciences, University of Catanzaro “Magna Graecia”, 88100 Catanzaro, Italy;
| | - Alessandro Polizzi
- Unit of Periodontology, Department of General Surgery and Surgical-Medical Specialties, School of Dentistry, University of Catania, 95124 Catania, Italy; (S.S.); (R.S.); (G.I.)
| | - Giuseppe Troiano
- Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy;
| | - Emanuele Maria Merlo
- Department of Human and Pediatric Pathology “Gaetano Barresi”, University of Messina, 98122 Messina, Italy;
| | - Rossana Sclafani
- Unit of Periodontology, Department of General Surgery and Surgical-Medical Specialties, School of Dentistry, University of Catania, 95124 Catania, Italy; (S.S.); (R.S.); (G.I.)
| | - Giuseppe Grosso
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy
| | - Gaetano Isola
- Unit of Periodontology, Department of General Surgery and Surgical-Medical Specialties, School of Dentistry, University of Catania, 95124 Catania, Italy; (S.S.); (R.S.); (G.I.)
| |
Collapse
|
16
|
Di Stefano M, Polizzi A, Santonocito S, Romano A, Lombardi T, Isola G. Impact of Oral Microbiome in Periodontal Health and Periodontitis: A Critical Review on Prevention and Treatment. Int J Mol Sci 2022; 23:5142. [PMID: 35563531 PMCID: PMC9103139 DOI: 10.3390/ijms23095142] [Citation(s) in RCA: 96] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 04/29/2022] [Accepted: 05/02/2022] [Indexed: 02/07/2023] Open
Abstract
The skin, oral cavity, digestive and reproductive tracts of the human body harbor symbiotic and commensal microorganisms living harmoniously with the host. The oral cavity houses one of the most heterogeneous microbial communities found in the human organism, ranking second in terms of species diversity and complexity only to the gastrointestinal microbiota and including bacteria, archaea, fungi, and viruses. The accumulation of microbial plaque in the oral cavity may lead, in susceptible individuals, to a complex host-mediated inflammatory and immune response representing the primary etiological factor of periodontal damage that occurs in periodontitis. Periodontal disease is a chronic inflammatory condition affecting about 20-50% of people worldwide and manifesting clinically through the detection of gingival inflammation, clinical attachment loss (CAL), radiographic assessed resorption of alveolar bone, periodontal pockets, gingival bleeding upon probing, teeth mobility and their potential loss in advanced stages. This review will evaluate the changes characterizing the oral microbiota in healthy periodontal tissues and those affected by periodontal disease through the evidence present in the literature. An important focus will be placed on the immediate and future impact of these changes on the modulation of the dysbiotic oral microbiome and clinical management of periodontal disease.
Collapse
Affiliation(s)
- Mattia Di Stefano
- Department of General Surgery and Surgical-Medical Specialties, School of Dentistry, University of Catania, 95124 Catania, Italy; (M.D.S.); (G.I.)
| | - Alessandro Polizzi
- Department of General Surgery and Surgical-Medical Specialties, School of Dentistry, University of Catania, 95124 Catania, Italy; (M.D.S.); (G.I.)
| | - Simona Santonocito
- Department of General Surgery and Surgical-Medical Specialties, School of Dentistry, University of Catania, 95124 Catania, Italy; (M.D.S.); (G.I.)
| | - Alessandra Romano
- Department of General Surgery and Surgical-Medical Specialties, Unit of Hematology, University of Catania, 95124 Catania, Italy;
| | - Teresa Lombardi
- Department of Health Sciences, Magna Græcia University, 88100 Catanzaro, Italy;
| | - Gaetano Isola
- Department of General Surgery and Surgical-Medical Specialties, School of Dentistry, University of Catania, 95124 Catania, Italy; (M.D.S.); (G.I.)
| |
Collapse
|
17
|
Sánchez MC, Velapatiño A, Llama-Palacios A, Valdés A, Cifuentes A, Ciudad MJ, Collado L. Metataxonomic and metabolomic evidence of biofilm homeostasis disruption related to caries: an in vitro study. Mol Oral Microbiol 2022; 37:81-96. [PMID: 35129864 PMCID: PMC9303636 DOI: 10.1111/omi.12363] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 01/19/2022] [Accepted: 01/24/2022] [Indexed: 11/30/2022]
Abstract
The ecological dysbiosis of a biofilm includes not only bacterial changes but also changes in their metabolism. Related to oral biofilms, changes in metabolic activity are crucial endpoint, linked directly to the pathogenicity of oral diseases. Despite the advances in caries research, detailed microbial and metabolomic etiology is yet to be fully clarified. To advance this knowledge, a meta‐taxonomic approach based on 16S rRNA gene sequencing and an untargeted metabolomic approach based on an ultra‐high performance liquid chromatography‐quadrupole time‐of‐flight mass spectrometry analysis (UHPLC/Q‐TOF‐MS) were conducted. To this end, an in vitro biofilm model derived from the saliva of healthy participants were developed, under commensal and cariogenic conditions by adding sucrose as the disease trigger. The cariogenic biofilms showed a significant increase of Firmicutes phyla (p = 0.019), due to the significant increase in the genus Streptococcus (p = 0.010), and Fusobacter (p < 0.001), by increase Fusobacterium (p < 0.001) and Sphingomonas (p = 0.024), while suffered a decrease in Actinobacteria (p < 0.001). As a consequence of the shift in microbiota composition, significant extracellular metabolomics changes were detected, showed 59 metabolites of the 120 identified significantly different in terms of relative abundance between the cariogenic/commensal biofilms (Rate of change > 2 and FDR < 0.05). Forty‐two metabolites were significantly higher in abundance in the cariogenic biofilms, whereas 17 metabolites were associated significantly with the commensal biofilms, principally related protein metabolism, with peptides and amino acids as protagonists, latter represented by histidine, arginine, l‐methionine, glutamic acid, and phenylalanine derivatives.
Collapse
Affiliation(s)
- María C Sánchez
- Department of Medicine, Faculty of Medicine, University Complutense, Madrid, Spain.,GINTRAMIS research group (Translational research group on microbiota and health), Faculty of Medicine, University Complutense, Madrid, Spain
| | - Angela Velapatiño
- Department of Medicine, Faculty of Medicine, University Complutense, Madrid, Spain
| | - Arancha Llama-Palacios
- Department of Medicine, Faculty of Medicine, University Complutense, Madrid, Spain.,GINTRAMIS research group (Translational research group on microbiota and health), Faculty of Medicine, University Complutense, Madrid, Spain
| | - Alberto Valdés
- Foodomics Laboratory, Institute of Food Science Research (CIAL, CSIC), Madrid, Spain
| | - Alejandro Cifuentes
- Foodomics Laboratory, Institute of Food Science Research (CIAL, CSIC), Madrid, Spain
| | - María J Ciudad
- Department of Medicine, Faculty of Medicine, University Complutense, Madrid, Spain.,GINTRAMIS research group (Translational research group on microbiota and health), Faculty of Medicine, University Complutense, Madrid, Spain
| | - Luis Collado
- Department of Medicine, Faculty of Medicine, University Complutense, Madrid, Spain.,GINTRAMIS research group (Translational research group on microbiota and health), Faculty of Medicine, University Complutense, Madrid, Spain
| |
Collapse
|
18
|
Li S, Su B, He QS, Wu H, Zhang T. Alterations in the oral microbiome in HIV infection: causes, effects and potential interventions. Chin Med J (Engl) 2021; 134:2788-2798. [PMID: 34670249 PMCID: PMC8667981 DOI: 10.1097/cm9.0000000000001825] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Indexed: 12/02/2022] Open
Abstract
ABSTRACT A massive depletion of CD4+ T lymphocytes has been described in early and acute human immunodeficiency virus (HIV) infection, leading to an imbalance between the human microbiome and immune responses. In recent years, a growing interest in the alterations in gut microbiota in HIV infection has led to many studies; however, only few studies have been conducted to explore the importance of oral microbiome in HIV-infected individuals. Evidence has indicated the dysbiosis of oral microbiota in people living with HIV (PLWH). Potential mechanisms might be related to the immunodeficiency in the oral cavity of HIV-infected individuals, including changes in secretory components such as reduced levels of enzymes and proteins in saliva and altered cellular components involved in the reduction and dysfunction of innate and adaptive immune cells. As a result, disrupted oral immunity in HIV-infected individuals leads to an imbalance between the oral microbiome and local immune responses, which may contribute to the development of HIV-related diseases and HIV-associated non-acquired immunodeficiency syndrome comorbidities. Although the introduction of antiretroviral therapy (ART) has led to a significant decrease in occurrence of the opportunistic oral infections in HIV-infected individuals, the dysbiosis in oral microbiome persists. Furthermore, several studies with the aim to investigate the ability of probiotics to regulate the dysbiosis of oral microbiota in HIV-infected individuals are ongoing. However, the effects of ART and probiotics on oral microbiome in HIV-infected individuals remain unclear. In this article, we review the composition of the oral microbiome in healthy and HIV-infected individuals and the possible effect of oral microbiome on HIV-associated oral diseases. We also discuss how ART and probiotics influence the oral microbiome in HIV infection. We believe that a deeper understanding of composition and function of the oral microbiome is critical for the development of effective preventive and therapeutic strategies for HIV infection.
Collapse
Affiliation(s)
- Shuang Li
- Beijing Key Laboratory for HIV/AIDS Research, Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing 100069, China
| | - Bin Su
- Beijing Key Laboratory for HIV/AIDS Research, Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing 100069, China
| | - Qiu-Shui He
- Institute of Biomedicine, Research Center for Infections and Immunity, University of Turku, Turku 20520, Finland
| | - Hao Wu
- Beijing Key Laboratory for HIV/AIDS Research, Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing 100069, China
| | - Tong Zhang
- Beijing Key Laboratory for HIV/AIDS Research, Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing 100069, China
| |
Collapse
|
19
|
Namour M, Mobadder ME, Mulongo B, Fagnart O, Harb A, Peremans A, Verspecht T, Teughels W, Nammour S, Rompen E. Assessment of Disinfection Potential of Q-Switch Nd: YAG Laser on Contaminated Titanium Implant Surfaces. MATERIALS 2021; 14:ma14206078. [PMID: 34683666 PMCID: PMC8537820 DOI: 10.3390/ma14206078] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 09/27/2021] [Accepted: 10/08/2021] [Indexed: 12/21/2022]
Abstract
Peri-implantitis (PI) is a relatively frequent pathology that compromises the overall survival of the dental implant. Adjunctive approaches for the conventional mechanical debridement are being suggested to optimize the treatment of PI. The goal of the study was the assessment of the disinfection potential of the Q-Switch Nd: YAG laser on contaminated titanium implant surfaces. A total of 72 sterile titanium discs were used and divided into three groups: 24 contaminated titanium discs treated with the laser (study Group L), 24 contaminated titanium discs with no treatment (control 1—Group C), and 24 sterile titanium discs with no treatment (control 2—Group S). Multi-species biofilm was used: Porphyromonas gingivalis, Fusobacterium nucleatum, Aggregatibacter actinomycetemcomitans, Streptococcus mutans, Streptococcus sobrinus, and Prevotella intermedia. Commensal bacteria were included also: Actinomyces naeslundii, Actinomyces viscosus, Streptococcus cristatus, Streptococcus gordonii, Streptococcus mitis, Streptococcus oralis, Streptococcus sanguinis, Streptococcus parasanguinis, and Veillonella parvula. Parameters delivered per pulse on the targeted surfaces of the titanium discs were an energy density of 0.597 J/cm2 each pulse, a pulse power of 270 mW, a laser beam spot of 2.4 mm in diameter, and a rate of repetition of 10 Hertz (Hz) for a pulse duration of 6 nanoseconds (ns). The mode was no contact, and a distance of 500 micrometers was used with a total time of irradiation equal to 2 s (s). The collection of microbiological samples was made for all groups; colony-forming units (CFU) were identified by two different practitioners, and the average of their examinations was considered for each sample. The average of the TBC (CFU/mL) was calculated for each group. Values were 0.000 CFU/mL, 4767 CFU/mL, and 0.000 CFU/mL for Group L, Group C, and Group S, respectively. Therefore, the suggested treatment protocol was able to provoke a total disinfection of the contaminated titanium surfaces. A statistical difference was only found between Group L vs. Group C and between Group S vs. Group C. The difference was not significant between Group S and Group L. In conclusion, the present study confirmed that the Q-Switch Nd: YAG laser under our specific conditions can provide a total disinfection of the contaminated titanium surfaces.
Collapse
Affiliation(s)
- Melanie Namour
- Department of Dental Sciences, Faculty of Medicine, University of Liege, 4000 Liege, Belgium; (M.N.); (M.E.M.); (E.R.)
| | - Marwan El Mobadder
- Department of Dental Sciences, Faculty of Medicine, University of Liege, 4000 Liege, Belgium; (M.N.); (M.E.M.); (E.R.)
| | - Baudouin Mulongo
- Laboratoire de Microbiologie CEBIODI, Hospital Saint Jean, 32, Boulevard du Jardin Botanique, 1000 Bruxelles, Belgium; (B.M.); (O.F.)
| | - Olivier Fagnart
- Laboratoire de Microbiologie CEBIODI, Hospital Saint Jean, 32, Boulevard du Jardin Botanique, 1000 Bruxelles, Belgium; (B.M.); (O.F.)
| | - Assaf Harb
- Laboratoire CEBIODI, Hospital Saint Anne, Saint Remi, 1070 Brussels, Belgium;
| | - André Peremans
- Laboratoire Physique de la Matière et du Rayonnement, Université de Namur, 5000 Namur, Belgium;
| | - Tim Verspecht
- Department of Oral Health Sciences, University of Leuven (KU Leuven), Kapucijnenvoer 33, 3000 Leuven, Belgium;
| | - Wim Teughels
- Department of Oral Health Sciences, Dentistry, University of Leuven (KU Leuven), University Hospitals Leuven, Kapucijnenvoer 33, 3000 Leuven, Belgium;
| | - Samir Nammour
- Department of Dental Sciences, Faculty of Medicine, University of Liege, 4000 Liege, Belgium; (M.N.); (M.E.M.); (E.R.)
- Correspondence: ; Tel.: +32-478-508-724
| | - Eric Rompen
- Department of Dental Sciences, Faculty of Medicine, University of Liege, 4000 Liege, Belgium; (M.N.); (M.E.M.); (E.R.)
| |
Collapse
|
20
|
Haas AN, Furlaneto F, Gaio EJ, Gomes SC, Palioto DB, Castilho RM, Sanz M, Messora MR. New tendencies in non-surgical periodontal therapy. Braz Oral Res 2021; 35:e095. [PMID: 34586209 DOI: 10.1590/1807-3107bor-2021.vol35.0095] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Accepted: 03/31/2021] [Indexed: 12/11/2022] Open
Abstract
The aim of this review was to update the evidence of new approaches to non-surgical therapy (NSPT) in the treatment of periodontitis. Preclinical and clinical studies addressing the benefits of adjunctive antimicrobial photodynamic therapy, probiotics, prebiotics/synbiotics, statins, pro-resolving mediators, omega-6 and -3, ozone, and epigenetic therapy were scrutinized and discussed. Currently, the outcomes of these nine new approaches, when compared with subgingival debridement alone, did not demonstrate a significant added clinical benefit. However, some of these new alternative interventions may have the potential to improve the outcomes of NSPT alone. Future evidence based on randomized controlled clinical trials would help clinicians and patients in the selection of different adjunctive therapies.
Collapse
Affiliation(s)
- Alex Nogueira Haas
- Universidade Federal do Rio Grande do Sul - UFRGS, School of Dentistry, Department of Periodontology, Porto Alegre, RS, Brazil
| | - Flavia Furlaneto
- Universidade de São Paulo - USP, School of Dentistry of Ribeirão Preto, Department of Oral Surgery and Periodontology, Ribeirão Preto, SP, Brazil
| | - Eduardo José Gaio
- Universidade Federal do Rio Grande do Sul - UFRGS, School of Dentistry, Department of Periodontology, Porto Alegre, RS, Brazil
| | - Sabrina Carvalho Gomes
- Universidade Federal do Rio Grande do Sul - UFRGS, School of Dentistry, Department of Periodontology, Porto Alegre, RS, Brazil
| | - Daniela Bazan Palioto
- Universidade de São Paulo - USP, School of Dentistry of Ribeirão Preto, Department of Oral Surgery and Periodontology, Ribeirão Preto, SP, Brazil
| | - Rogerio Moraes Castilho
- Michigan University, School of Dentistry, Department of Periodontics and Oral Medicine, Ann Arbor, MI, USA
| | - Mariano Sanz
- Complutense University of Madrid, Etiology and Therapy of Periodontal and Peri-implant Diseases Research Group, Madrid, Spain
| | - Michel Reis Messora
- Universidade de São Paulo - USP, School of Dentistry of Ribeirão Preto, Department of Oral Surgery and Periodontology, Ribeirão Preto, SP, Brazil
| |
Collapse
|
21
|
In Vitro Study of Cricket Chitosan's Potential as a Prebiotic and a Promoter of Probiotic Microorganisms to Control Pathogenic Bacteria in the Human Gut. Foods 2021; 10:foods10102310. [PMID: 34681361 PMCID: PMC8534966 DOI: 10.3390/foods10102310] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 09/17/2021] [Accepted: 09/26/2021] [Indexed: 02/06/2023] Open
Abstract
In this study, cricket chitosan was used as a prebiotic. Lactobacillus fermentum, Lactobacillus acidophilus, and Bifidobacterium adolescentis were identified as probiotic bacteria. Cricket chitin was deacetylated to chitosan and added to either De Man Rogosa and Sharpe or Salmonella/Shigella bacterial growth media at the rates of 1%, 5%, 10%, or 20% to obtain chitosan-supplemented media. The growth of the probiotic bacteria was monitored on chitosan-supplemented media after 6, 12, 24, and 48 h upon incubation at 37 °C. Growth of Salmonella typhi in the presence of probiotic bacteria in chitosan-supplemented media was evaluated under similar conditions to those of the growth of probiotic bacteria by measuring growth inhibition zones (in mm) around the bacterial colonies. All chitosan concentrations significantly increased the populations of probiotic bacteria and decreased the populations of pathogenic bacteria. During growth, there was a significant pH change in the media with all probiotic bacteria. Inhibition zones from probiotic bacteria growth supernatant against Salmonella typhi were most apparent at 16 mm and statistically significant in connection with a 10% chitosan concentration. This study suggests cricket-derived chitosan can function as a prebiotic, with an ability to eliminate pathogenic bacteria in the presence of probiotic bacteria.
Collapse
|
22
|
Zayed N, Boon N, Bernaerts K, Chatzigiannidou I, Van Holm W, Verspecht T, Teughels W. Differences in chlorhexidine mouthrinses formulations influence the quantitative and qualitative changes in in-vitro oral biofilms. J Periodontal Res 2021; 57:52-62. [PMID: 34581434 DOI: 10.1111/jre.12937] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 09/12/2021] [Indexed: 12/28/2022]
Abstract
OBJECTIVE Chlorhexidine mouthrinses are marketed in different formulations. This study aimed at investigating qualitative and quantitative changes in in-vitro multispecies oral biofilms, induced by different chlorhexidine-containing mouthrinses. BACKGROUND DATA Earlier studies comparing chlorhexidine mouthrinses are either clinical studies or in-vitro studies assessing the antimicrobial efficacy of the mouthrinses. However, no clear investigations are available regarding ecological impact of different chlorhexidine formulations on in-vitro multispecies oral biofilms after rinsing with different chlorhexidine formulations. METHODS Nine commercially available chlorhexidine mouthrinses were selected. Multispecies oral communities (14 species) were grown for 48 h in a Biostat-B Twin bioreactor. After that, they were used to develop biofilms on the surface of hydroxyapatite disks in 24-well pates for 48 h. Biofilms were then rinsed once or multiple times with the corresponding mouthrinse. Biofilms were collected before starting the rinsing experiment and every 24 h for 3 days and vitality quantitative PCR was performed. The experiment was repeated 3 independent times on 3 different days and the results were analyzed using a linear mixed model. RESULTS The mouthrinses provoked different effects in terms of change in total viable bacterial load (VBL), ecology, and community structure of the multispecies biofilms. There was no relation between chlorhexidine concentrations, presence, or absence of cetylpyridinium chloride and/or alcohol, and the observed effects. Some tested chlorhexidine mouthrinses (MC, HG, HH, and HI) strongly lowered the total VBL (≈1007 Geq/ml), but disrupted biofilm symbiosis (≥40% of the biofilms communities are pathobionts). On the other hand, other tested chlorhexidine mouthrinses (MD, ME, and HF) had limited impact on total VBL (≥1010 Geq/ml), but improved the biofilm ecology and community structure (≤10% of the biofilms communities are pathobionts). CONCLUSION Not all chlorhexidine mouthrinses have the same effect on oral biofilms. Their effect seems to be strongly product dependent and vary according to their compositions and formulations.
Collapse
Affiliation(s)
- Naiera Zayed
- Department of Oral Health Sciences, University of Leuven (KU Leuven), Leuven, Belgium.,Center for Microbial Ecology and Technology (CMET), Ghent University (UGent), Gent, Belgium.,Department of Microbiology and Immunology, Faculty of Pharmacy, Menoufia University, Menoufia, Egypt
| | - Nico Boon
- Center for Microbial Ecology and Technology (CMET), Ghent University (UGent), Gent, Belgium
| | - Kristel Bernaerts
- Department of Chemical Engineering, Bio- and Chemical Systems Technology, Reactor Engineering and Safety, Leuven Chem&Tech, University of Leuven (KU Leuven), Leuven, Belgium
| | - Ioanna Chatzigiannidou
- Center for Microbial Ecology and Technology (CMET), Ghent University (UGent), Gent, Belgium
| | - Wannes Van Holm
- Department of Oral Health Sciences, University of Leuven (KU Leuven), Leuven, Belgium.,Center for Microbial Ecology and Technology (CMET), Ghent University (UGent), Gent, Belgium
| | - Tim Verspecht
- Department of Oral Health Sciences, University of Leuven (KU Leuven), Leuven, Belgium.,Center for Microbial Ecology and Technology (CMET), Ghent University (UGent), Gent, Belgium
| | - Wim Teughels
- Department of Oral Health Sciences, University of Leuven (KU Leuven), Leuven, Belgium.,Dentistry, University Hospitals Leuven, Leuven, Belgium
| |
Collapse
|
23
|
Nguyen T, Brody H, Radaic A, Kapila Y. Probiotics for periodontal health-Current molecular findings. Periodontol 2000 2021; 87:254-267. [PMID: 34463979 PMCID: PMC8448672 DOI: 10.1111/prd.12382] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Dysbiosis of the oral microbiome is associated with a variety of oral and systemic diseases, including periodontal disease. Oral dysbiosis in periodontal disease leads to an exacerbated host immune response that induces progressive periodontal tissue destruction and ultimately tooth loss. To counter the disease‐associated dysbiosis of the oral cavity, strategies have been proposed to reestablish a “healthy” microbiome via the use of probiotics. This study reviews the literature on the use of probiotics for modifying the oral microbial composition toward a beneficial state that might alleviate disease progression. Four in vitro and 10 preclinical studies were included in the analysis, and these studies explored the effects of probiotics on cultured biofilm growth and bacterial gene expressions, as well as modulation of the host response to inflammation. The current molecular findings on probiotics provide fundamental evidence for further clinical research for the use of probiotics in periodontal therapy. They also point out an important caveat: Changing the biofilm composition might alter the normal oral flora that is beneficial and/or critical for oral health.
Collapse
Affiliation(s)
- Trang Nguyen
- Department of Orofacial Sciences, School of Dentistry, University of California San Francisco, San Francisco, California, USA
| | - Hanna Brody
- Department of Orofacial Sciences, School of Dentistry, University of California San Francisco, San Francisco, California, USA
| | - Alan Radaic
- Department of Orofacial Sciences, School of Dentistry, University of California San Francisco, San Francisco, California, USA
| | - Yvonne Kapila
- Department of Orofacial Sciences, School of Dentistry, University of California San Francisco, San Francisco, California, USA
| |
Collapse
|
24
|
Comparison of the modulatory effects of three structurally similar potential prebiotic substrates on an in vitro multi-species oral biofilm. Sci Rep 2021; 11:15033. [PMID: 34294810 PMCID: PMC8298493 DOI: 10.1038/s41598-021-94510-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 07/13/2021] [Indexed: 11/08/2022] Open
Abstract
Previous research identified potential prebiotic substrates for oral health like the structural analogues N-acetyl-D-mannosamine (NADM) and N-acetyl-D-glucosamine (NADG). The main hypothesis of the current study was twofold. Firstly, it was hypothesized that the modulatory effects of NADM are not limited to changes in multi-species oral biofilm composition, but also include effects on metabolism, virulence, and inflammatory potential. Secondly, the presence and orientation of their N-acetyl group could play a role. Therefore, a comparison was made between the effects of NADM, NADG and D-(+)-mannose on multi-species oral biofilms. Besides a beneficial compositional shift, NADM-treated biofilms also showed an altered metabolism, a reduced virulence and a decreased inflammatory potential. At a substrate concentration of 1 M, these effects were pronounced for all biofilm aspects, whereas at ~ 0.05 M (1%(w/v)) only the effects on virulence were pronounced. When comparing between substrates, both the presence and orientation of the N-acetyl group played a role. However, this was generally only at 1 M and dependent on the biofilm aspect. Overall, NADM was found to have different effects at two concentrations that beneficially modulate in vitro multi-species oral biofilm composition, metabolism, virulence and inflammatory potential. The presence and orientation of the N-acetyl group influenced these effects.
Collapse
|
25
|
Gurbanov R, Karadağ H, Karaçam S, Samgane G. Tapioca Starch Modulates Cellular Events in Oral Probiotic Streptococcus salivarius Strains. Probiotics Antimicrob Proteins 2021; 13:195-207. [PMID: 32601954 DOI: 10.1007/s12602-020-09678-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Considering the implications of microbiota in health, scientists are in search of microbiota-oriented strategies for the effective prevention and/or treatment of a wide variety of serious diseases. A microbiota comprises diverse microorganisms with either probiotic or pathogenic properties. The fermentation of prebiotic carbohydrates by probiotic bacteria can affect host metabolism. Therefore, understanding the prebiotic-mediated metabolic modulations in probiotics is crucial to develop functional foods for the improvement of disturbed microbiota. Studies have emphasized the importance of prebiotics in probiotic therapies for mucosal diseases and highlighted the need for extensive research on oral bacteria. In the present study, the cellular events have been studied in batch cultures of probiotic Streptococcus salivarius exposed to the natural prebiotic, tapioca starch (TS). TS modulated the keystone metabolic events in Streptococcus salivarius in a dose-dependent manner. Besides increasing the live cell counts and altering the colony morphologies, TS affected the protein metabolism in terms of cellular expression and conformational changes in protein secondary structures. After treatment with TS, the nucleic acid synthesis increased and B-DNA was more than A- and Z-DNA, together with the diminished fatty acids and increased polysaccharide synthesis. The study results can be considered for the assessment of functional foods and probiotics in oral health.
Collapse
Affiliation(s)
- Rafig Gurbanov
- Department of Molecular Biology and Genetics, Bilecik Şeyh Edebali University, 11230, Bilecik, Turkey.
- Biotechnology Application and Research Center, Bilecik Şeyh Edebali University, 11230, Bilecik, Turkey.
| | - Hazel Karadağ
- Biotechnology Application and Research Center, Bilecik Şeyh Edebali University, 11230, Bilecik, Turkey
| | - Sevinç Karaçam
- Biotechnology Application and Research Center, Bilecik Şeyh Edebali University, 11230, Bilecik, Turkey
| | - Gizem Samgane
- Biotechnology Application and Research Center, Bilecik Şeyh Edebali University, 11230, Bilecik, Turkey
| |
Collapse
|
26
|
Verspecht T, Van Holm W, Boon N, Bernaerts K, Daep CA, Masters JG, Zayed N, Quirynen M, Teughels W. Potential prebiotic substrates modulate composition, metabolism, virulence and inflammatory potential of an in vitro multi-species oral biofilm. J Oral Microbiol 2021; 13:1910462. [PMID: 33968313 PMCID: PMC8079042 DOI: 10.1080/20002297.2021.1910462] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Background: Modulation of the commensal oral microbiota constitutes a promising preventive/therapeutic approach in oral healthcare. The use of prebiotics for maintaining/restoring the health-associated homeostasis of the oral microbiota has become an important research topic. Aims: This study hypothesised that in vitro 14-species oral biofilms can be modulated by (in)direct stimulation of beneficial/commensal bacteria with new potential prebiotic substrates tested at 1 M and 1%(w/v), resulting in more host-compatible biofilms with fewer pathogens, decreased virulence and less inflammatory potential. Methods: Established biofilms were repeatedly rinsed with N-acetyl-D-glucosamine, α-D-lactose, D-(+)-trehalose or D-(+)-raffinose at 1 M or 1%(w/v). Biofilm composition, metabolic profile, virulence and inflammatory potential were eventually determined. Results: Repeated rinsing caused a shift towards a more health-associated microbiological composition, an altered metabolic profile, often downregulated virulence gene expression and decreased the inflammatory potential on oral keratinocytes. At 1 M, the substrates had pronounced effects on all biofilm aspects, whereas at 1%(w/v) they had a pronounced effect on virulence gene expression and a limited effect on inflammatory potential. Conclusion: Overall, this study identified four new potential prebiotic substrates that exhibit different modulatory effects at two different concentrations that cause in vitro multi-species oral biofilms to become more host-compatible.
Collapse
Affiliation(s)
- Tim Verspecht
- Department of Oral Health Sciences, University of Leuven (KU Leuven), Leuven, Belgium.,Department of Biotechnology, Center for Microbial Ecology and Technology (CMET), Ghent University (UGent), Gent, Belgium
| | - Wannes Van Holm
- Department of Oral Health Sciences, University of Leuven (KU Leuven), Leuven, Belgium.,Department of Biotechnology, Center for Microbial Ecology and Technology (CMET), Ghent University (UGent), Gent, Belgium
| | - Nico Boon
- Department of Biotechnology, Center for Microbial Ecology and Technology (CMET), Ghent University (UGent), Gent, Belgium
| | - Kristel Bernaerts
- Bio- and Chemical Systems Technology, Reactor Engineering and Safety, Department of Chemical Engineering, University of Leuven (KU Leuven), Leuven Chem & Tech, Leuven, Belgium
| | - Carlo A Daep
- Colgate-Palmolive Technology Center, Piscataway, NJ USA
| | | | - Naiera Zayed
- Department of Oral Health Sciences, University of Leuven (KU Leuven), Leuven, Belgium.,Department of Biotechnology, Center for Microbial Ecology and Technology (CMET), Ghent University (UGent), Gent, Belgium.,Faculty of Pharmacy, Menoufia University, Egypt
| | - Marc Quirynen
- Department of Oral Health Sciences, University of Leuven (KU Leuven), Leuven, Belgium.,Dentistry, University Hospitals Leuven, Leuven, Belgium
| | - Wim Teughels
- Department of Oral Health Sciences, University of Leuven (KU Leuven), Leuven, Belgium.,Dentistry, University Hospitals Leuven, Leuven, Belgium
| |
Collapse
|
27
|
Radaic A, Kapila YL. The oralome and its dysbiosis: New insights into oral microbiome-host interactions. Comput Struct Biotechnol J 2021; 19:1335-1360. [PMID: 33777334 PMCID: PMC7960681 DOI: 10.1016/j.csbj.2021.02.010] [Citation(s) in RCA: 223] [Impact Index Per Article: 55.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 02/13/2021] [Accepted: 02/16/2021] [Indexed: 02/06/2023] Open
Abstract
The oralome is the summary of the dynamic interactions orchestrated between the ecological community of oral microorganisms (comprised of up to approximately 1000 species of bacteria, fungi, viruses, archaea and protozoa - the oral microbiome) that live in the oral cavity and the host. These microorganisms form a complex ecosystem that thrive in the dynamic oral environment in a symbiotic relationship with the human host. However, the microbial composition is significantly affected by interspecies and host-microbial interactions, which in turn, can impact the health and disease status of the host. In this review, we discuss the composition of the oralome and inter-species and host-microbial interactions that take place in the oral cavity and examine how these interactions change from healthy (eubiotic) to disease (dysbiotic) states. We further discuss the dysbiotic signatures associated with periodontitis and caries and their sequalae, (e.g., tooth/bone loss and pulpitis), and the systemic diseases associated with these oral diseases, such as infective endocarditis, atherosclerosis, diabetes, Alzheimer's disease and head and neck/oral cancer. We then discuss current computational techniques to assess dysbiotic oral microbiome changes. Lastly, we discuss current and novel techniques for modulation of the dysbiotic oral microbiome that may help in disease prevention and treatment, including standard hygiene methods, prebiotics, probiotics, use of nano-sized drug delivery systems (nano-DDS), extracellular polymeric matrix (EPM) disruption, and host response modulators.
Collapse
Affiliation(s)
- Allan Radaic
- Kapila Laboratory, Orofacial Sciences Department, School of Dentistry, University of California, San Francisco (UCSF), San Francisco, CA, USA
| | - Yvonne L. Kapila
- Kapila Laboratory, Orofacial Sciences Department, School of Dentistry, University of California, San Francisco (UCSF), San Francisco, CA, USA
| |
Collapse
|
28
|
Cleaver LM, Moazzez RV, Carpenter GH. Evidence for Proline Utilization by Oral Bacterial Biofilms Grown in Saliva. Front Microbiol 2021; 11:619968. [PMID: 33552029 PMCID: PMC7855038 DOI: 10.3389/fmicb.2020.619968] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 12/21/2020] [Indexed: 12/29/2022] Open
Abstract
Within the mouth bacteria are starved of saccharides as their main nutrient source between meals and it is unclear what drives their metabolism. Previously oral in vitro biofilms grown in saliva have shown proteolytic degradation of salivary proteins and increased extracellular proline. Although arginine and glucose have been shown before to have an effect on oral biofilm growth and activity, there is limited evidence for proline. Nuclear magnetic resonance (NMR) spectroscopy was used to identify extracellular metabolites produced by bacteria in oral biofilms grown on hydroxyapatite discs. Biofilms were inoculated with stimulated whole mouth saliva and then grown for 7 days using sterilized stimulated whole mouth saliva supplemented with proline, arginine or glucose as a growth-medium. Overall proline had a beneficial effect on biofilm growth-with significantly fewer dead bacteria present by biomass and surface area of the biofilms (p < 0.05). Where arginine and glucose significantly increased and decreased pH, respectively, the pH of proline supplemented biofilms remained neutral at pH 7.3-7.5. SDS-polyacrylamide gel electrophoresis of the spent saliva from proline and arginine supplemented biofilms showed inhibition of salivary protein degradation of immature biofilms. NMR analysis of the spent saliva revealed that proline supplemented biofilms were metabolically similar to unsupplemented biofilms, but these biofilms actively metabolized proline to 5-aminopentanoate, butyrate and propionate, and actively utilized glycine. This study shows that in a nutrient limited environment, proline has a beneficial effect on in vitro oral biofilms grown from a saliva inoculum.
Collapse
Affiliation(s)
- Leanne M. Cleaver
- Centre for Host Microbiome Interactions, King's College London Faculty of Dentistry, Oral and Craniofacial Sciences, London, United Kingdom
| | - Rebecca V. Moazzez
- Centre for Oral, Clinical and Translational Science, King's College London Faculty of Dentistry, Oral and Craniofacial Sciences, London, United Kingdom
| | - Guy H. Carpenter
- Centre for Host Microbiome Interactions, King's College London Faculty of Dentistry, Oral and Craniofacial Sciences, London, United Kingdom
| |
Collapse
|
29
|
Bijle MN, Ekambaram M, Lo ECM, Yiu CKY. Synbiotics in caries prevention: A scoping review. PLoS One 2020; 15:e0237547. [PMID: 32785270 PMCID: PMC7423128 DOI: 10.1371/journal.pone.0237547] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 07/28/2020] [Indexed: 02/07/2023] Open
Abstract
The scoping review aimed to examine the evidence on the role of synbiotics in caries prevention. PubMed, SCOPUS, and Web of Science databases search were performed. Any in vitro study, clinical trial, systematic review with/without meta-analysis, umbrella review/meta-evaluation, narrative review addressing the role of synbiotics in caries prevention were included in the scoping review. Data were extracted from the included studies using pre-approved registered protocol. Twenty-eight records were identified, of which 5 in vitro studies, 1 quasi-experimental clinical trial and 1 narrative review were included in the present review. No controlled clinical trials or systematic reviews on the role of synbiotics in caries prevention could be identified. Except 1, all in vitro studies examined the combined effect of saccharides and lactobacilli spp. as potential synbiotics on the growth of Streptococcus mutans. However, the proposed synbiotics in 4 in vitro studies either did not qualify or remained ambiguous of its eligibility as a potential synbiotic for caries prevention. One recent in vitro study explored the possibility of L-arginine and Lactobacillus rhamnosus GG synbiotic for caries prevention. The quasi-experimental clinical study without a control arm did not explicitly mention the intervention composition and thus, its synbiotic potential remains unclear. A narrative review highlighted the potential of combining arginine (prebiotic) with arginolytic bacteria (probiotic) as a synbiotic, which appears promising for caries prevention. The eligibility of the proposed synbiotics as a true synbiotic needs to be carefully addressed. Due to a lack of controlled clinical studies on synbiotics for caries prevention, evidence on their caries-preventive potential is weak. Future studies are needed to examine the combination of amino acids (esp. arginine) with probiotics as a potential synbiotic against cariogenic pathogens.
Collapse
Affiliation(s)
- Mohammed Nadeem Bijle
- Paediatric Dentistry, Faculty of Dentistry, The University of Hong Kong, Hong Kong, Hong Kong
| | - Manikandan Ekambaram
- Paediatric Dentistry, Faculty of Dentistry, University of Otago, Dunedin, New Zealand
| | - Edward C. M. Lo
- Dental Public Health, Faculty of Dentistry, The University of Hong Kong, Hong Kong, Hong Kong
| | - Cynthia Kar Yung Yiu
- Paediatric Dentistry, Faculty of Dentistry, The University of Hong Kong, Hong Kong, Hong Kong
| |
Collapse
|
30
|
Q-Switch Nd:YAG Laser-Assisted Elimination of Multi-Species Biofilm on Titanium Surfaces. MATERIALS 2020; 13:ma13071573. [PMID: 32235332 PMCID: PMC7177273 DOI: 10.3390/ma13071573] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 03/25/2020] [Accepted: 03/27/2020] [Indexed: 12/19/2022]
Abstract
(1) Background: The relatively high prevalence of peri-implantitis (PI) and the lack of a standard method for decontamination of the dental implant surface have pushed us to conduct further research in the field. Bacterial biofilms were found to play a primordial role in the etiology of PI. Therefore, the aim is to evaluate the efficacy of a laser-assisted elimination of biofilm protocol in the removal of a multi-species biofilm on titanium surfaces. (2) Methods: In total, 52 titanium discs (grade 4) were used. The study group consisted of 13 titanium disks contaminated with multi-species biofilms and subsequently irradiated with the laser (T + BF + L). The control groups consisted of the following types of titanium disks: 13 contaminated with multi-species biofilms (T + BF), 13 sterile and irradiated (T + L), 13 sterile and untreated (T). Q-Switch Nd:YAG laser Irradiation parameters were the following: energy density equal to 0.597 J/cm2 per pulse, power equal to 270 milliwatt per pulse, 2.4 mm of spot diameter, and 10 Hz repetition rate for pulse duration of six nanoseconds (ns). The laser irradiation was made during 2 s of total time in non-contact and at 0.5 mm away from the titanium disc surface. After treatment, presence of biofilms on the disks was evaluated by staining with crystal violet (CV), which was measured as optical density at six hundred thirty nm, and statistical analyses were done. (3) Results: the optical density values were 0.004 ± 0.004 for the study group T + BF + L, 0.120 ± 0.039 for group T + BF, 0.006 ± 0.003 for group T + L, and 0.007 ± 0.007 for group T. For the study group, laser treatment resulted in a total elimination of the biofilm, with mean values statistically significantly lower than those of contaminated titanium surfaces and similar to those of sterile titanium surfaces. (4) Conclusions: Our irradiation protocol provided a significant elimination of the multi-species biofilm on titanium surfaces. Laser treated titanium surfaces were biofilm-free, similar to the sterile ones.
Collapse
|
31
|
Jiménez-Hernández N, Serrano-Villar S, Domingo A, Pons X, Artacho A, Estrada V, Moya A, Gosalbes MJ. Modulation of Saliva Microbiota through Prebiotic Intervention in HIV-Infected Individuals. Nutrients 2019; 11:1346. [PMID: 31208015 PMCID: PMC6627446 DOI: 10.3390/nu11061346] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 06/07/2019] [Accepted: 06/12/2019] [Indexed: 02/07/2023] Open
Abstract
Human immunodeficiency virus (HIV) infection is characterized by an early depletion of the mucosal associated T helper (CD4+) cells that impair the host immunity and impact the oral and gut microbiomes. Although, the HIV-associated gut microbiota was studied in depth, few works addressed the dysbiosis of oral microbiota in HIV infection and, to our knowledge, no studies on intervention with prebiotics were performed. We studied the effect of a six-week-long prebiotic administration on the salivary microbiota in HIV patients and healthy subjects. Also, the co-occurrence of saliva microorganisms in the fecal bacteria community was explored. We assessed salivary and feces microbiota composition using deep 16S ribosomal RNA (rRNA) gene sequencing with Illumina methodology. At baseline, the different groups shared the same most abundant genera, but the HIV status had an impact on the saliva microbiota composition and diversity parameters. After the intervention with prebiotics, we found a drastic decrease in alpha diversity parameters, as well as a change of beta diversity, without a clear directionality toward a healthy microbiota. Interestingly, we found a differential response to the prebiotics, depending on the initial microbiota. On the basis of 100% identity clustering, we detected saliva sequences in the feces datasets, suggesting a drag of microorganisms from the upper to the lower gastrointestinal tract.
Collapse
Affiliation(s)
- Nuria Jiménez-Hernández
- Área de Genómica y Salud, Fundación para el Fomento de la Investigación Sanitaria y Biomédica de la Comunitat Valenciana (FISABIO), 46020 Valencia, Spain.
- CIBER en Epidemiología y Salud Pública, 28029 Madrid, Spain.
| | - Sergio Serrano-Villar
- Departamento de Enfermedades Infecciosas, Hospital Universitario Ramón y Cajal, 28034 Madrid, Spain.
| | - Alba Domingo
- Área de Genómica y Salud, Fundación para el Fomento de la Investigación Sanitaria y Biomédica de la Comunitat Valenciana (FISABIO), 46020 Valencia, Spain.
| | - Xavier Pons
- Área de Genómica y Salud, Fundación para el Fomento de la Investigación Sanitaria y Biomédica de la Comunitat Valenciana (FISABIO), 46020 Valencia, Spain.
| | - Alejandro Artacho
- Área de Genómica y Salud, Fundación para el Fomento de la Investigación Sanitaria y Biomédica de la Comunitat Valenciana (FISABIO), 46020 Valencia, Spain.
| | - Vicente Estrada
- Unidad de Enfermedades Infecciosas/Medicina Interna, Hospital Clínico San Carlos-IdiSSC, Universidad Complutense, 28040 Madrid, Spain.
| | - Andrés Moya
- Área de Genómica y Salud, Fundación para el Fomento de la Investigación Sanitaria y Biomédica de la Comunitat Valenciana (FISABIO), 46020 Valencia, Spain.
- CIBER en Epidemiología y Salud Pública, 28029 Madrid, Spain.
- Instituto de Biología Integrativa de Sistemas, Universidad de Valencia y CSIC, 46980 Paterna, Valencia, Spain.
| | - María José Gosalbes
- Área de Genómica y Salud, Fundación para el Fomento de la Investigación Sanitaria y Biomédica de la Comunitat Valenciana (FISABIO), 46020 Valencia, Spain.
- CIBER en Epidemiología y Salud Pública, 28029 Madrid, Spain.
| |
Collapse
|
32
|
Zaura E, Twetman S. Critical Appraisal of Oral Pre- and Probiotics for Caries Prevention and Care. Caries Res 2019; 53:514-526. [PMID: 30947169 DOI: 10.1159/000499037] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 02/20/2019] [Indexed: 11/19/2022] Open
Abstract
In recent years, the concept of preventing caries-related microbial dysbiosis by enhancing the growth and survival of health-associated oral microbiota has emerged. In this article, the current evidence for the role of oral pre- and probiotics in caries prevention and caries management is discussed. Prebiotics are defined as "substrates that are selectively utilized by host microorganisms conferring a health benefit." With regard to caries, this would include alkali-generating substances such as urea and arginine, which are metabolized by some oral bacteria, resulting in ammonia production and increase in pH. While there is no evidence that urea added to chewing gums or mouth rinses significantly contributes to caries inhibition, multiple studies have shown that arginine in consumer products can exert an inhibitory effect on the caries process. Probiotics are "live microorganisms which when administrated in adequate amounts confer a health benefit on the host." Clinical trials have suggested that school-based programs with milk supplemented with probiotics and probiotic lozenges can reduce caries development in preschool children and in schoolchildren with high caries risk. Due to issues with research ethics (prebiotics) and risk of bias (prebiotics, probiotics), the confidence in the effect estimate is however limited. Further long-term clinical studies are needed with orally derived probiotic candidates, including the health-economic perspectives. In particular, the development and evaluation of oral synbiotic products, containing both prebiotics and a probiotic, would be of interest in the future management of dental caries.
Collapse
Affiliation(s)
- Egija Zaura
- Department of Preventive Dentistry, Academic Centre for Dentistry Amsterdam, University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Svante Twetman
- Department of Odontology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark,
| |
Collapse
|
33
|
Baker JL, Edlund A. Exploiting the Oral Microbiome to Prevent Tooth Decay: Has Evolution Already Provided the Best Tools? Front Microbiol 2019; 9:3323. [PMID: 30687294 PMCID: PMC6338091 DOI: 10.3389/fmicb.2018.03323] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Accepted: 12/20/2018] [Indexed: 12/22/2022] Open
Abstract
To compete in the relatively exposed oral cavity, resident microbes must avoid being replaced by newcomers. This selective constraint, coupled with pressure on the host to cultivate a beneficial microbiome, has rendered a commensal oral microbiota that displays colonization resistance, protecting the human host from invasive species, including pathogens. Rapid increases in carbohydrate consumption have disrupted the evolved homeostasis between the oral microbiota and dental health, reflected by the high prevalence of dental caries. Development of novel modalities to prevent caries has been the subject of a breadth of research. This mini review provides highlights of these endeavors and discusses the rationale and pitfalls behind the major avenues of approach. Despite efficacy, fluoride and other broad-spectrum interventions are unlikely to further reduce the incidence of dental caries. The most promising methodologies in development are those that exploit the exclusive nature of the healthy oral microbiome. Probiotics derived from the dental plaque of healthy individuals sharply antagonize cariogenic species, such as Streptococcus mutans. Meanwhile, targeted antimicrobials allow for the killing of specific pathogens, allowing reestablishment of a healthy microbiome, presumably with its protective effects. The oral microbiota manufactures a massive array of small molecules, some of which are correlated with health and are likely to antagonize pathogens. The prohibitive cost associated with sufficiently rigorous clinical trials, and the status of dental caries as a non-life-threatening condition will likely continue to impede the advancement of new therapeutics to market. Nevertheless, there is room for optimism, as it appears evolution may have already provided the best tools.
Collapse
Affiliation(s)
| | - Anna Edlund
- Genomic Medicine Group, J. Craig Venter Institute, La Jolla, CA, United States
| |
Collapse
|