1
|
Wu H, Shi X, Yang N, Xu S. Low Selenium Diet Inhibited CaMKII Activation via miR-365-3p/SelT Signaling Axis, Resulting in Myoblast Differentiation Disorders and Skeletal Muscle Damage in Broilers. Biol Trace Elem Res 2025:10.1007/s12011-025-04568-3. [PMID: 40085303 DOI: 10.1007/s12011-025-04568-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Accepted: 02/28/2025] [Indexed: 03/16/2025]
Abstract
Selenium (Se) mainly functions in the form of selenoproteins. Low Se diet causes skeletal muscle injury and expression changes in miRNA and selenoprotein. Selenoprotein T (SelT) is reported to be a key molecule in Ca2+/CaMKII signaling. But the role of SelT/Ca2+/CaMKII signals in low Se diet induced skeletal muscle damage of broilers and their underlying mechanisms remain poorly investigated. Here, we randomly divided 40 1-day-old Ross 308 male broilers into two groups, feeding them either a low-selenium diet or a normal diet for 42 days, to establish control and selenium-deficient broiler models. In vitro, we established chicken embryo models, and cultured chicken primary myoblasts. We showed that Se deficiency resulted in skeletal muscle damage and atrophy in broilers, and the protein level of SelT was decreased significantly (p < 0.05). Mechanistically, myotube formation depended on SelT-mediated p-CaMKII upregulation. The absence of SelT suppressed CaMKII activation and impaired myotube development by decreasing the ER-Ca2+ content (p < 0.05). On the contrary, overexpressing SelT by pCDNA-SelT transfection induced robust myotube growth, manifested by a marked increase of MHC abundance, yet KN-93 treatment could block this process (p < 0.05). In addition, in this work, we first identified miR-365-3p, a microRNA which targets SelT mRNA to inhibit myoblast differentiation by disrupting Ca2+ homeostasis (p < 0.05). In summary, our findings revealed that SelT deletion-mediated Ca2+ level downregulation caused by low Se diet hindered myoblast differentiation and myotube formation through suppressing CaMKII activation. Our study provides an attractive target for the cultivated meat industry.
Collapse
Affiliation(s)
- Hao Wu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Xu Shi
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Naixi Yang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Shiwen Xu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China.
- Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China.
| |
Collapse
|
2
|
Fan S, Wang K, Zhang T, Deng D, Shen J, Zhao B, Fu D, Chen X. Mechanisms and Therapeutic Potential of GPX4 in Pain Modulation. Pain Ther 2025; 14:21-45. [PMID: 39503961 PMCID: PMC11751247 DOI: 10.1007/s40122-024-00673-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 10/04/2024] [Indexed: 01/23/2025] Open
Abstract
Pain, a complex symptom encompassing both sensory and emotional dimensions, constitutes a significant global public health issue. Oxidative stress is a pivotal factor in the complex pathophysiology of pain, with glutathione peroxidase 4 (GPX4) recognized as a crucial antioxidant enzyme involved in both antioxidant defense mechanisms and ferroptosis pathways. This review systematically explores GPX4's functions across various pain models, including neuropathic, inflammatory, low back, and cancer-related pain. Specifically, the focus includes GPX4's physiological roles, antioxidant defense mechanisms, regulation of ferroptosis, involvement in signal transduction pathways, and metabolic regulation. By summarizing current research, we highlight the potential of GPX4-targeted therapies in pain management.
Collapse
Affiliation(s)
- Shiwen Fan
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, Wuhan, China
- Department of Anesthesiology, First Affiliated Hospital of Shihezi University, Shihezi, 832002, China
| | - Kaixin Wang
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, Wuhan, China
| | - Tianhao Zhang
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, Wuhan, China
| | - Daling Deng
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, Wuhan, China
| | - Jiwei Shen
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, Wuhan, China
| | - Bowen Zhao
- Department of Anesthesiology, First Affiliated Hospital of Shihezi University, Shihezi, 832002, China
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Daan Fu
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
- Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, Wuhan, China.
| | - Xiangdong Chen
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
- Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, Wuhan, China.
| |
Collapse
|
3
|
Salama RM, Eissa N, Doghish AS, Abulsoud AI, Abdelmaksoud NM, Mohammed OA, Abdel Mageed SS, Darwish SF. Decoding the secrets of longevity: unraveling nutraceutical and miRNA-Mediated aging pathways and therapeutic strategies. FRONTIERS IN AGING 2024; 5:1373741. [PMID: 38605867 PMCID: PMC11007187 DOI: 10.3389/fragi.2024.1373741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Accepted: 03/04/2024] [Indexed: 04/13/2024]
Abstract
MicroRNAs (miRNAs) are short RNA molecules that are not involved in coding for proteins. They have a significant function in regulating gene expression after the process of transcription. Their participation in several biological processes has rendered them appealing subjects for investigating age-related disorders. Increasing data indicates that miRNAs can be influenced by dietary variables, such as macronutrients, micronutrients, trace minerals, and nutraceuticals. This review examines the influence of dietary factors and nutraceuticals on the regulation of miRNA in relation to the process of aging. We examine the present comprehension of miRNA disruption in age-related illnesses and emphasize the possibility of dietary manipulation as a means of prevention or treatment. Consolidating animal and human research is essential to validate the significance of dietary miRNA control in living organisms, despite the abundance of information already provided by several studies. This review elucidates the complex interaction among miRNAs, nutrition, and aging, offering valuable insights into promising areas for further research and potential therapies for age-related disorders.
Collapse
Affiliation(s)
- Rania M. Salama
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Misr International University, Cairo, Egypt
| | - Nermin Eissa
- Department of Biomedical Sciences, College of Health Sciences, Abu Dhabi University, Abu Dhabi, United Arab Emirates
| | - Ahmed S. Doghish
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Cairo, Egypt
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, Egypt
| | - Ahmed I. Abulsoud
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, Egypt
- Biochemistry Department, Faculty of Pharmacy, Heliopolis University, Cairo, Egypt
| | | | - Osama A. Mohammed
- Department of Pharmacology, College of Medicine, University of Bisha, Bisha, Saudi Arabia
| | - Sherif S. Abdel Mageed
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Badr University in Cairo (BUC), Cairo, Egypt
| | - Samar F. Darwish
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Badr University in Cairo (BUC), Cairo, Egypt
| |
Collapse
|
4
|
Acute green tea intake attenuates circulating microRNA expression induced by a high-fat, high-saturated meal in obese women: A randomized crossover study. J Nutr Biochem 2023; 112:109203. [PMID: 36347450 DOI: 10.1016/j.jnutbio.2022.109203] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 07/04/2022] [Accepted: 11/02/2022] [Indexed: 11/07/2022]
Abstract
The objective of this study was to assess whether acute green tea (GT) supplementation attenuates inflammatory and oxidative stress biomarkers induced by high-fat, high-saturated (HFHS) meals in obese women, and to assess its ability to modulate circulating microRNA (miRNA) expression. This was a randomized, double-blind, crossover study. The study included obese women over 18 years old who had no comorbidities. In the first moment, patients were instructed to take 2 capsules of placebo or GT (738 mg) at 10:00 p.m. and to fast overnight. The next morning, a blood sample was collected, and an HFHS meal was offered to the patients. Another blood sample was collected 5 hours after the meal. In the second moment, patients who received placebo in the first moment now received the GT and vice-versa. Serum inflammatory and oxidative stress biomarkers were measured, and circulating levels of miRNA were evaluated. Fifteen women with mean age of 35.5±9.9 years were included in the final analysis. There was no difference regarding inflammatory and oxidative stress biomarkers. However, patients who consumed GT had lower circulating expression of 62 miRNAs compared with patients who did not consume GT. Predictive analysis of target genes showed 1,757 targets regulated by the 62 miRNAs. Notably, 5 miRNAs (miR-1297, miR-192-5p, miR-373-3p, miR-595 and miR-1266-5p) regulate genes associated with TGF-beta, CARM1, RSK, and BMP pathways. Our study showed that GT inhibited the expression of miRNAs induced by HFHS meal intake. These results shed light on the mechanisms involved in the beneficial effects of GT ingestion.
Collapse
|
5
|
Genchi G, Lauria G, Catalano A, Sinicropi MS, Carocci A. Biological Activity of Selenium and Its Impact on Human Health. Int J Mol Sci 2023; 24:2633. [PMID: 36768955 PMCID: PMC9917223 DOI: 10.3390/ijms24032633] [Citation(s) in RCA: 101] [Impact Index Per Article: 50.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 01/25/2023] [Accepted: 01/26/2023] [Indexed: 02/03/2023] Open
Abstract
Selenium (Se) is a naturally occurring metalloid element essential to human and animal health in trace amounts but it is harmful in excess. Se plays a substantial role in the functioning of the human organism. It is incorporated into selenoproteins, thus supporting antioxidant defense systems. Selenoproteins participate in the metabolism of thyroid hormones, control reproductive functions and exert neuroprotective effects. Among the elements, Se has one of the narrowest ranges between dietary deficiency and toxic levels. Its level of toxicity may depend on chemical form, as inorganic and organic species have distinct biological properties. Over the last decades, optimization of population Se intake for the prevention of diseases related to Se deficiency or excess has been recognized as a pressing issue in modern healthcare worldwide. Low selenium status has been associated with an increased risk of mortality, poor immune function, cognitive decline, and thyroid dysfunction. On the other hand, Se concentrations slightly above its nutritional levels have been shown to have adverse effects on a broad spectrum of neurological functions and to increase the risk of type-2 diabetes. Comprehension of the selenium biochemical pathways under normal physiological conditions is therefore an important issue to elucidate its effect on human diseases. This review gives an overview of the role of Se in human health highlighting the effects of its deficiency and excess in the body. The biological activity of Se, mainly performed through selenoproteins, and its epigenetic effect is discussed. Moreover, a brief overview of selenium phytoremediation and rhizofiltration approaches is reported.
Collapse
Affiliation(s)
- Giuseppe Genchi
- Dipartimento di Farmacia e Scienze della Salute e della Nutrizione, Università della Calabria, Arcavacata di Rende, 87036 Cosenza, Italy
| | - Graziantonio Lauria
- Dipartimento di Farmacia e Scienze della Salute e della Nutrizione, Università della Calabria, Arcavacata di Rende, 87036 Cosenza, Italy
| | - Alessia Catalano
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari “A. Moro”, 70125 Bari, Italy
| | - Maria Stefania Sinicropi
- Dipartimento di Farmacia e Scienze della Salute e della Nutrizione, Università della Calabria, Arcavacata di Rende, 87036 Cosenza, Italy
| | - Alessia Carocci
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari “A. Moro”, 70125 Bari, Italy
| |
Collapse
|
6
|
Wang M, Chen X, Fu G, Ge M. Glutathione peroxidase 2 overexpression promotes malignant progression and cisplatin resistance of KRAS‑mutated lung cancer cells. Oncol Rep 2022; 48:207. [PMID: 36222298 PMCID: PMC9579749 DOI: 10.3892/or.2022.8422] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Accepted: 08/02/2022] [Indexed: 11/29/2022] Open
Abstract
Kirsten rat sarcoma viral oncogene homolog (KRAS) aberrations frequently occur in patients with lung cancer. Oncogenic KRAS is characterized by excessive reactive oxygen species (ROS) accumulation, thus, ROS detoxification may contribute to KRAS‑driven lung tumorigenesis. In the present study, the influence of glutathione peroxidase 2 (GPX2) on malignant progression and cisplatin resistance of KRAS‑driven lung cancer was explored. The RNA sequencing data from TCGA lung cancer samples and GEO database were downloaded and analyzed. The effects of GPX2 on KRAS‑driven lung tumorigenesis were evaluated by western blotting, cell viability assay, soft agar assay, Transwell assay, tumor xenograft model, flow cytometry, BrdU incorporation assay, transcriptome RNA sequencing, luciferase reporter assay and RNA immunoprecipitation. In the present study, GPX2 was upregulated in patients with non‑small cell lung carcinoma (NSCLC), and positively correlated with poor overall survival. Ectopic GPX2 expression facilitated malignant progression of KRASG12C‑transformed BEAS‑2B cells. Moreover, GPX2 overexpression promoted growth, migration, invasion, tumor xenograft growth and cisplatin resistance of KRAS‑mutated NSCLC cells, while GPX2 knockdown exhibited the opposite effects. GPX2 overexpression reduced ROS accumulation and increased matrix metalloproteinase‑1 (MMP1) expression in KRAS‑mutated NSCLC cells. In addition, GPX2 was directly targeted by miR‑325‑3p, while MMP1 knockdown or miR‑325‑3p overexpression partially abrogated the effects of GPX2 in NSCLC cells. In conclusion, the results indicated that GPX2 facilitated malignant progression and cisplatin resistance of KRAS‑driven lung cancer, and inhibition of GPX2 may be a feasible strategy for lung cancer treatment, particularly in patients with active KRAS mutations.
Collapse
Affiliation(s)
- Mei Wang
- Department of Laboratory Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Xu Chen
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Guang Fu
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Mingjian Ge
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| |
Collapse
|
7
|
He Y, Peng L, Zhao X, Fan X, Tang X, Shi G, Li S. Selenium Deficiency Induces Inflammatory Response and Decreased Antimicrobial Peptide Expression in Chicken Jejunum Through Oxidative Stress. Biol Trace Elem Res 2022; 201:3461-3473. [PMID: 36208383 DOI: 10.1007/s12011-022-03442-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 10/03/2022] [Indexed: 11/28/2022]
Abstract
Selenium deficiency can affect the level of selenoprotein in organs and tissues and cause inflammation. However, the mechanism of selenium deficiency on jejunal injury in chickens remains unclear. In this study, we established a selenium deficiency model in chickens by feeding a low selenium diet and observed ultrastructural and pathological changes in the jejunum. The expression levels of 25 selenoproteins, the levels of oxidative stress, tight junction (TJ) proteins, and antimicrobial peptides (AMP), as well as the expression levels of factors related to inflammatory signaling pathways, were examined in the intestine and analyzed using principal component analysis (PCA). The results of PCA and quantitative real-time PCR (qRT-PCR) showed that selenium deficiency mainly affected the expression of antioxidant selenoproteins in chicken jejunum, especially glutathione peroxidases, thioredoxin reductase, and iodothyronine deiodinase, thus weakening the antioxidant function in the intestine and inducing oxidative stress. We also found disruption of intestinal TJ structures, a significant reduction in TJ protein expression, and downregulation of antimicrobial peptide levels, suggesting that selenium deficiency led to damage of the intestinal barrier. In addition, a significant increase in inflammatory cell infiltration and expression of inflammatory factors was observed in the jejunum, indicating that selenium deficiency induces inflammatory injury. In conclusion, selenium deficiency downregulates antioxidant selenoproteins levels, induces oxidative stress, decreases intestinal AMP levels, and leads to inflammatory injury and disruption of the intestinal barrier in the jejunum. These results shed new light on the molecular mechanisms of intestinal damage caused by selenium deficiency.
Collapse
Affiliation(s)
- Yujiao He
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Lin Peng
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Xiaochun Zhao
- Animal Disease Control and Prevention of Heilongjiang Province, Harbin, 150069, China
| | - Xue Fan
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Xinyu Tang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Guangliang Shi
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China.
| | - Shu Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China.
| |
Collapse
|
8
|
Tian FY, Kennedy EM, Hermetz K, Burt A, Everson TM, Punshon T, Jackson BP, Hao K, Chen J, Karagas MR, Koestler DC, Marsit C. Selenium-associated differentially expressed microRNAs and their targeted mRNAs across the placental genome in two U.S. birth cohorts. Epigenetics 2022; 17:1234-1245. [PMID: 34784848 PMCID: PMC9542509 DOI: 10.1080/15592294.2021.2003044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 10/21/2021] [Accepted: 11/02/2021] [Indexed: 10/19/2022] Open
Abstract
Selenium is an important micronutrient for foetal development. MicroRNAs play an important role in the function of the placenta, in communication between the placenta and maternal systems, and their expression can be altered through environmental and nutritional cues. To investigate the associations between placental selenium concentration and microRNA expression in the placenta, our observational study included 393 mother-child pairs from the New Hampshire Birth Cohort Study (NHBCS) and the Rhode Island Child Health Study (RICHS). Placental selenium concentrations were quantified using inductively coupled plasma mass spectrometry, and microRNA transcripts were measured using RNA-seq. We fit negative binomial additive models for assessing the association between selenium and microRNAs. We used the microRNA Data Integration Portal (mirDIP) to predict the target mRNAs of the differentially expressed microRNAs and verified the relationships between miRNA and mRNA targets in a subset of samples using existing whole transcriptome data (N = 199). We identified a non-monotonic association between selenium concentration and the expression of miR-216a-5p/miR-217-5p cluster (effective degrees of freedom, EDF = 2.44 and 2.08; FDR = 3.08 × 10-5) in placenta. Thirty putative target mRNAs of miR-216a-5p and/or miR-217-5p were identified computationally and empirically and were enriched in selenium metabolic pathways (driven by selenoprotein coding genes, TXNRD2 and SELENON). Our findings suggest that selenium influences placental microRNA expression. Further, miR-216a-5p and its putative target mRNAs could be the potential mechanistic targets of the health effect of selenium.
Collapse
Affiliation(s)
- Fu-Ying Tian
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, Georgia, USA
| | - Elizabeth M. Kennedy
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, Georgia, USA
| | - Karen Hermetz
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, Georgia, USA
| | - Amber Burt
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, Georgia, USA
| | - Todd M. Everson
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, Georgia, USA
| | - Tracy Punshon
- Department of Biological Sciences, Dartmouth College, Hanover, New Hampshire, USA
| | - Brian P. Jackson
- Department of Earth Sciences, Dartmouth College, Hanover, New Hampshire, USA
| | - Ke Hao
- Department of Genetics and Genome Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Jia Chen
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Margaret R. Karagas
- Department of Epidemiology, Geisel School of Medicine, Dartmouth College, Hanover, New Hampshire, USA
- Children’s Environmental Health and Disease Prevention Research Center at Dartmouth, Dartmouth College, Hanover, New Hampshire, USA
| | - Devin C. Koestler
- The University Kansas Cancer Center, The University of Kansas Medical Center, Kansas City, Kansas, USA
- Department of Biostatistics & Data Science, The University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Carmen Marsit
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, Georgia, USA
| |
Collapse
|
9
|
Yu Y, Zhang J, Wang J, Sun B. MicroRNAs: The novel mediators for nutrient-modulating biological functions. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.05.028] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
10
|
Xu Y, Huang X, Luo Q, Zhang X. MicroRNAs Involved in Oxidative Stress Processes Regulating Physiological and Pathological Responses. Microrna 2021; 10:164-180. [PMID: 34279211 DOI: 10.2174/2211536610666210716153929] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 05/16/2021] [Accepted: 05/18/2021] [Indexed: 11/22/2022]
Abstract
Oxidative stress influences several physiological and pathological cellular events, including cell differentiation, excessive growth, proliferation, apoptosis, and the inflammatory response. Therefore, oxidative stress is involved in the pathogenesis of various diseases, including pulmonary fibrosis, epilepsy, hypertension, atherosclerosis, Parkinson's disease, cardiovascular disease, and Alzheimer's disease. Recent studies have shown that several microRNAs (miRNAs) are involved in developing various diseases caused by oxidative stress and that miRNAs may be helpful to determine the inflammatory characteristics of immune responses during infection and disease. This review describes the known effects of miRNAs on reactive oxygen species to induce oxidative stress and the miRNA regulatory mechanisms involved in the uncoupling of Keap1-Nrf2 complexes. Finally, we summarized the functions of miRNAs in several antioxidant genes. Understanding the crosstalk between miRNAs and oxidative stress-inducing factors during physiological and pathological cellular events may have implications for designing more effective treatments for immune diseases.
Collapse
Affiliation(s)
- Yongjie Xu
- Guangdong Provincial Key Laboratory of Conservation and Precision Utilization of Characteristic Agricultural Resources in Mountainous Areas, School of Life Science of Jiaying University, Guangdong Innovation Centre for Science and Technology of Wuhua Yellow Chicken, Meizhou 514015, China
| | - Xunhe Huang
- Guangdong Provincial Key Laboratory of Conservation and Precision Utilization of Characteristic Agricultural Resources in Mountainous Areas, School of Life Science of Jiaying University, Guangdong Innovation Centre for Science and Technology of Wuhua Yellow Chicken, Meizhou 514015, China
| | - Qingbin Luo
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science/ Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou 510642, China
| | - Xiquan Zhang
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science/ Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
11
|
Zhi Y, Gao L, Wang B, Ren W, Liang KX, Zhi K. Ferroptosis Holds Novel Promise in Treatment of Cancer Mediated by Non-coding RNAs. Front Cell Dev Biol 2021; 9:686906. [PMID: 34235152 PMCID: PMC8255676 DOI: 10.3389/fcell.2021.686906] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Accepted: 05/21/2021] [Indexed: 12/17/2022] Open
Abstract
Ferroptosis is a newly identified form of regulated cell death that is associated with iron metabolism and oxidative stress. As a physiological mechanism, ferroptosis selectively removes cancer cells by regulating the expression of vital chemical molecules. Current findings on regulation of ferroptosis have largely focused on the function of non-coding RNAs (ncRNAs), especially microRNAs (miRNAs), in mediating ferroptotic cell death, while the sponging effect of circular RNAs (circRNAs) has not been widely studied. In this review, we discuss the molecular regulation of ferroptosis and highlight the value of circRNAs in controlling ferroptosis and carcinogenesis. Herein, we deliberate future role of this emerging form of regulated cell death in cancer therapeutics and predict the progression and prognosis of oncogenesis in future clinical therapy.
Collapse
Affiliation(s)
- Yuan Zhi
- Department of Oral and Maxillofacial Surgery, The Second Xiangya Hospital, Central South University, Changsha, China.,Xiangya School of Stomatology, Central South University, Changsha, China
| | - Ling Gao
- Department of Oral and Maxillofacial Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China.,Key Lab of Oral Clinical Medicine, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Baisheng Wang
- Department of Oral and Maxillofacial Surgery, Xiangya Stomatological Hospital and School of Stomatology, Central South University, Changsha, China
| | - Wenhao Ren
- Department of Oral and Maxillofacial Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China.,Key Lab of Oral Clinical Medicine, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Kristina Xiao Liang
- Neuro-SysMed, Center of Excellence for Clinical Research in Neurological Diseases, Haukeland University Hospital, Bergen, Norway.,Department of Clinical Medicine (K1), University of Bergen, Bergen, Norway
| | - Keqian Zhi
- Department of Oral and Maxillofacial Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China.,Key Lab of Oral Clinical Medicine, The Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
12
|
Huang X, Dong YL, Li T, Xiong W, Zhang X, Wang PJ, Huang JQ. Dietary Selenium Regulates microRNAs in Metabolic Disease: Recent Progress. Nutrients 2021; 13:1527. [PMID: 34062793 PMCID: PMC8147315 DOI: 10.3390/nu13051527] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 04/24/2021] [Accepted: 04/27/2021] [Indexed: 02/01/2023] Open
Abstract
Selenium (Se) is an essential element for the maintenance of a healthy physiological state. However, due to environmental and dietary factors and the narrow safety range of Se, diseases caused by Se deficiency or excess have gained considerable traction in recent years. In particular, links have been identified between low Se status, cognitive decline, immune disorders, and increased mortality, whereas excess Se increases metabolic risk. Considerable evidence has suggested microRNAs (miRNAs) regulate interactions between the environment (including the diet) and genes, and play important roles in several diseases, including cancer. MiRNAs target messenger RNAs to induce changes in proteins including selenoprotein expression, ultimately generating disease. While a plethora of data exists on the epigenetic regulation of other dietary factors, nutrient Se epigenetics and especially miRNA regulated mechanisms remain unclear. Thus, this review mainly focuses on Se metabolism, pathogenic mechanisms, and miRNAs as key regulatory factors in Se-related diseases. Finally, we attempt to clarify the regulatory mechanisms underpinning Se, miRNAs, selenoproteins, and Se-related diseases.
Collapse
Affiliation(s)
- Xin Huang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Nutrition and Health, China Agricultural University, Beijing 100083, China; (X.H.); (Y.-L.D.); (T.L.); (W.X.); (X.Z.); (P.-J.W.)
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, Ministry of Education, China Agricultural University, Beijing 100083, China
| | - Yu-Lan Dong
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Nutrition and Health, China Agricultural University, Beijing 100083, China; (X.H.); (Y.-L.D.); (T.L.); (W.X.); (X.Z.); (P.-J.W.)
- College of Veterinary Medicine, China Agricultural University, Beijing 100083, China
| | - Tong Li
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Nutrition and Health, China Agricultural University, Beijing 100083, China; (X.H.); (Y.-L.D.); (T.L.); (W.X.); (X.Z.); (P.-J.W.)
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, Ministry of Education, China Agricultural University, Beijing 100083, China
| | - Wei Xiong
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Nutrition and Health, China Agricultural University, Beijing 100083, China; (X.H.); (Y.-L.D.); (T.L.); (W.X.); (X.Z.); (P.-J.W.)
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, Ministry of Education, China Agricultural University, Beijing 100083, China
| | - Xu Zhang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Nutrition and Health, China Agricultural University, Beijing 100083, China; (X.H.); (Y.-L.D.); (T.L.); (W.X.); (X.Z.); (P.-J.W.)
| | - Peng-Jie Wang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Nutrition and Health, China Agricultural University, Beijing 100083, China; (X.H.); (Y.-L.D.); (T.L.); (W.X.); (X.Z.); (P.-J.W.)
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, Ministry of Education, China Agricultural University, Beijing 100083, China
| | - Jia-Qiang Huang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Nutrition and Health, China Agricultural University, Beijing 100083, China; (X.H.); (Y.-L.D.); (T.L.); (W.X.); (X.Z.); (P.-J.W.)
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, Ministry of Education, China Agricultural University, Beijing 100083, China
| |
Collapse
|
13
|
Liang ZZ, Zhu RM, Li YL, Jiang HM, Li RB, Wang Q, Tang LY, Ren ZF. Differential epigenetic profiles induced by sodium selenite in breast cancer cells. J Trace Elem Med Biol 2021; 64:126677. [PMID: 33246299 DOI: 10.1016/j.jtemb.2020.126677] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 10/28/2020] [Accepted: 11/05/2020] [Indexed: 12/16/2022]
Abstract
OBJECTIVES Selenium (Se) was a potential anticancer micronutrient with proposed epigenetic effect. However, the Se-induced epigenome in breast cancer cells was yet to be studied. METHODS The profiles of DNA methylation, microRNA (miRNA), long non-coding RNA (lncRNA), and message RNA (mRNA) in breast cancer cells treated with sodium selenite were examined by microarrays. We verified the epigenetic modifications by integrating their predicted target genes and differentially expressed mRNAs. The epigenetically regulated genes were further validated in a breast cancer cohort by associating with tumor progression. We conducted a series of bioinformatics analyses to assess the biological function of these validated genes and identified the critical genes. RESULTS The Se-induced epigenome regulated the expression of 959 genes, and 349 of them were further validated in the breast cancer cohort. Biological function analyses suggested that these validated genes were enriched in several cancer-related pathways, such as PI3K/Akt and metabolic pathways. Based on the degrees of expression change, hazard ratio difference, and connectivity, NEDD4L and FMO5 were identified as the critical genes. CONCLUSIONS These results confirmed the epigenetic effects of sodium selenite and revealed the epigenetic profiles in breast cancer cells, which would help understand the mechanisms of Se against breast cancer.
Collapse
Affiliation(s)
- Zhuo-Zhi Liang
- School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Rui-Mei Zhu
- School of Public Health, Sun Yat-sen University, Guangzhou 510080, China; The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Yue-Lin Li
- School of Public Health, Sun Yat-sen University, Guangzhou 510080, China; The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Hong-Mei Jiang
- School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Ruo-Bi Li
- School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Qing Wang
- School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Lu-Ying Tang
- The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China.
| | - Ze-Fang Ren
- School of Public Health, Sun Yat-sen University, Guangzhou 510080, China.
| |
Collapse
|
14
|
Moretti R, Soglia D, Chessa S, Sartore S, Finocchiaro R, Rasero R, Sacchi P. Identification of SNPs Associated with Somatic Cell Score in Candidate Genes in Italian Holstein Friesian Bulls. Animals (Basel) 2021; 11:366. [PMID: 33535694 PMCID: PMC7912858 DOI: 10.3390/ani11020366] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 01/28/2021] [Accepted: 01/29/2021] [Indexed: 01/01/2023] Open
Abstract
Mastitis is an infectious disease affecting the mammary gland, leading to inflammatory reactions and to heavy economic losses due to milk production decrease. One possible way to tackle the antimicrobial resistance issue stemming from antimicrobial therapy is to select animals with a genetic resistance to this disease. Therefore, aim of this study was to analyze the genetic variability of the SNPs found in candidate genes related to mastitis resistance in Holstein Friesian bulls. Target regions were amplified, sequenced by Next-Generation Sequencing technology on the Illumina® MiSeq, and then analyzed to find correlation with mastitis related phenotypes in 95 Italian Holstein bulls chosen with the aid of a selective genotyping approach. On a total of 557 detected mutations, 61 showed different genotype distribution in the tails of the deregressed EBVs for SCS and 15 were identified as significantly associated with the phenotype using two different approaches. The significant SNPs were identified in intergenic or intronic regions of six genes, known to be key components in the immune system (namely CXCR1, DCK, NOD2, MBL2, MBL1 and M-SAA3.2). These SNPs could be considered as candidates for a future genetic selection for mastitis resistance, although further studies are required to assess their presence in other dairy cattle breeds and their possible negative correlation with other traits.
Collapse
Affiliation(s)
- Riccardo Moretti
- Department of Veterinary Science, University of Turin, 10095 Turin, Italy; (R.M.); (D.S.); (S.S.); (R.R.); (P.S.)
| | - Dominga Soglia
- Department of Veterinary Science, University of Turin, 10095 Turin, Italy; (R.M.); (D.S.); (S.S.); (R.R.); (P.S.)
| | - Stefania Chessa
- Department of Veterinary Science, University of Turin, 10095 Turin, Italy; (R.M.); (D.S.); (S.S.); (R.R.); (P.S.)
| | - Stefano Sartore
- Department of Veterinary Science, University of Turin, 10095 Turin, Italy; (R.M.); (D.S.); (S.S.); (R.R.); (P.S.)
| | - Raffaella Finocchiaro
- Associazione Nazionale Allevatori Razza Frisona e Jersey Italiana—ANAFIJ, 26100 Cremona, Italy;
| | - Roberto Rasero
- Department of Veterinary Science, University of Turin, 10095 Turin, Italy; (R.M.); (D.S.); (S.S.); (R.R.); (P.S.)
| | - Paola Sacchi
- Department of Veterinary Science, University of Turin, 10095 Turin, Italy; (R.M.); (D.S.); (S.S.); (R.R.); (P.S.)
| |
Collapse
|
15
|
Vernia F, Longo S, Stefanelli G, Viscido A, Latella G. Dietary Factors Modulating Colorectal Carcinogenesis. Nutrients 2021; 13:nu13010143. [PMID: 33401525 PMCID: PMC7824178 DOI: 10.3390/nu13010143] [Citation(s) in RCA: 99] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 12/28/2020] [Accepted: 12/29/2020] [Indexed: 12/14/2022] Open
Abstract
The development of colorectal cancer, responsible for 9% of cancer-related deaths, is favored by a combination of genetic and environmental factors. The modification of diet and lifestyle may modify the risk of colorectal cancer (CRC) and prevent neoplasia in up to 50% of cases. The Western diet, characterized by a high intake of fat, red meat and processed meat has emerged as an important contributor. Conversely, a high intake of dietary fiber partially counteracts the unfavorable effects of meat through multiple mechanisms, including reduced intestinal transit time and dilution of carcinogenic compounds. Providing antioxidants (e.g., vitamins C and E) and leading to increased intraluminal production of protective fermentation products, like butyrate, represent other beneficial and useful effects of a fiber-rich diet. Protective effects on the risk of developing colorectal cancer have been also advocated for some specific micronutrients like vitamin D, selenium, and calcium. Diet-induced modifications of the gut microbiota modulate colonic epithelial cell homeostasis and carcinogenesis. This can have, under different conditions, opposite effects on the risk of CRC, through the production of mutagenic and carcinogenic agents or, conversely, of protective compounds. The aim of this review is to summarize the most recent evidence on the role of diet as a potential risk factor for the development of colorectal malignancies, as well as providing possible prevention dietary strategies.
Collapse
|
16
|
Campo-Sabariz J, Moral-Anter D, Brufau MT, Briens M, Pinloche E, Ferrer R, Martín-Venegas R. 2-Hydroxy-(4-methylseleno)butanoic Acid Is Used by Intestinal Caco-2 Cells as a Source of Selenium and Protects against Oxidative Stress. J Nutr 2019; 149:2191-2198. [PMID: 31504719 DOI: 10.1093/jn/nxz190] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 06/13/2019] [Accepted: 07/23/2019] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Selenium (Se) participates in different functions in humans and other animals through its incorporation into selenoproteins as selenocysteine. Inadequate dietary Se is considered a risk factor for several chronic diseases associated with oxidative stress. OBJECTIVE The role of 2-hydroxy-(4-methylseleno)butanoic acid (HMSeBA), an organic form of Se used in animal nutrition, in supporting selenoprotein synthesis and protecting against oxidative stress was investigated in an in vitro model of intestinal Caco-2 cells. METHODS Glutathione peroxidase (GPX) and thioredoxin reductase (TXNRD) activities, selenoprotein P1 protein (SELENOP) and gene (SELENOP) expression, and GPX1 and GPX2 gene expression were studied in Se-deprived (FBS removal) and further HMSeBA-supplemented (0.1-625 μM, 72 h) cultures. The effect of HMSeBA supplementation (12.5 and 625 μM, 24 h) on oxidative stress induced by H2O2 (1 mM) was evaluated by the production of reactive oxygen species (ROS), 4-hydroxy-2-nonenal (4-HNE) adducts, and protein carbonyl residues compared with a sodium selenite control (SS, 5 μM). RESULTS Se deprivation induced a reduction (P < 0.05) in GPX activity (62%), GPX1 expression, and both SELENOP (33%) and SELENOP expression. In contrast, an increase (P < 0.05) in GPX2 expression and no effect in TXNRD activity (P = 0.09) were observed. HMSeBA supplementation increased (P < 0.05) GPX activity (12.5-625 μM, 1.68-1.82-fold) and SELENOP protein expression (250 and 625 μM, 1.87- and 2.04-fold). Moreover, HMSeBA supplementation increased (P < 0.05) GPX1 (12.5 and 625 μM), GPX2 (625 μM), and SELENOP (12.5 and 625 μM) expression. HMSeBA (625 μM) was capable of decreasing (P < 0.05) ROS (32%), 4-HNE adduct (49%), and protein carbonyl residue (75%) production after H2O2 treatment. CONCLUSION Caco-2 cells can use HMSeBA as an Se source for selenoprotein synthesis, resulting in protection against oxidative stress.
Collapse
Affiliation(s)
- Joan Campo-Sabariz
- Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain.,Nutrition and Food Safety Research Institute, University of Barcelona, Barcelona, Spain
| | - David Moral-Anter
- Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain.,Nutrition and Food Safety Research Institute, University of Barcelona, Barcelona, Spain
| | - M Teresa Brufau
- Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain.,Nutrition and Food Safety Research Institute, University of Barcelona, Barcelona, Spain
| | | | | | - Ruth Ferrer
- Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain.,Nutrition and Food Safety Research Institute, University of Barcelona, Barcelona, Spain
| | - Raquel Martín-Venegas
- Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain.,Nutrition and Food Safety Research Institute, University of Barcelona, Barcelona, Spain
| |
Collapse
|
17
|
Lorente-Cebrián S, Herrera K, I. Milagro F, Sánchez J, de la Garza AL, Castro H. miRNAs and Novel Food Compounds Related to the Browning Process. Int J Mol Sci 2019; 20:E5998. [PMID: 31795191 PMCID: PMC6928892 DOI: 10.3390/ijms20235998] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 10/26/2019] [Accepted: 10/28/2019] [Indexed: 02/08/2023] Open
Abstract
Obesity prevalence is rapidly increasing worldwide. With the discovery of brown adipose tissue (BAT) in adult humans, BAT activation has emerged as a potential strategy for increasing energy expenditure. Recently, the presence of a third type of fat, referred to as beige or brite (brown in white), has been recognized to be present in certain kinds of white adipose tissue (WAT) depots. It has been suggested that WAT can undergo the process of browning in response to stimuli that induce and enhance the expression of thermogenesis: a metabolic feature typically associated with BAT. MicroRNAs (miRNAs) are small transcriptional regulators that control gene expression in a variety of tissues, including WAT and BAT. Likewise, it was shown that several food compounds could influence miRNAs associated with browning, thus, potentially contributing to the management of excessive adipose tissue accumulation (obesity) through specific nutritional and dietetic approaches. Therefore, this has created significant excitement towards the development of a promising dietary strategy to promote browning/beiging in WAT to potentially contribute to combat the growing epidemic of obesity. For this reason, we summarize the current knowledge about miRNAs and food compounds that could be applied in promoting adipose browning, as well as the cellular mechanisms involved.
Collapse
Affiliation(s)
- Silvia Lorente-Cebrián
- Department of Nutrition, Food Science and Physiology/Centre for Nutrition Research, Faculty of Pharmacy and Nutrition, University of Navarra, 31008 Pamplona, Spain; (S.L.-C.)
- Navarra Institute for Health Research, Navarra Institute for Health Research, 31008 Pamplona, Spain
| | - Katya Herrera
- Centro de Investigación en Nutrición y Salud Pública, Facultad de Salud Pública y Nutrición, Universidad Autonoma de Nuevo Leon, 64460 Monterrey, Mexico; (K.H.)
- Nutrition Unit, Center for Research and Development in Health Sciences, Universidad Autonoma de Nuevo Leon, 64460 Monterrey, Mexico
| | - Fermín I. Milagro
- Department of Nutrition, Food Science and Physiology/Centre for Nutrition Research, Faculty of Pharmacy and Nutrition, University of Navarra, 31008 Pamplona, Spain; (S.L.-C.)
- Navarra Institute for Health Research, Navarra Institute for Health Research, 31008 Pamplona, Spain
- CIBERobn, Fisiopatología de la Obesidad y la Nutrición, Carlos III Health Institute, 28029 Madrid, Spain
| | - Juana Sánchez
- Laboratory of Molecular Biology, Nutrition and Biotechnology (Nutrigenomics and Obesity), University of the Balearic Islands, 07122 Palma, Spain;
- Instituto de Investigación Sanitaria Illes Balears, 07020 Palma, Spain
| | - Ana Laura de la Garza
- Centro de Investigación en Nutrición y Salud Pública, Facultad de Salud Pública y Nutrición, Universidad Autonoma de Nuevo Leon, 64460 Monterrey, Mexico; (K.H.)
- Nutrition Unit, Center for Research and Development in Health Sciences, Universidad Autonoma de Nuevo Leon, 64460 Monterrey, Mexico
| | - Heriberto Castro
- Centro de Investigación en Nutrición y Salud Pública, Facultad de Salud Pública y Nutrición, Universidad Autonoma de Nuevo Leon, 64460 Monterrey, Mexico; (K.H.)
- Nutrition Unit, Center for Research and Development in Health Sciences, Universidad Autonoma de Nuevo Leon, 64460 Monterrey, Mexico
| |
Collapse
|
18
|
Structural analysis of human SEPHS2 protein, a selenocysteine machinery component, over-expressed in triple negative breast cancer. Sci Rep 2019; 9:16131. [PMID: 31695102 PMCID: PMC6834634 DOI: 10.1038/s41598-019-52718-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 10/22/2019] [Indexed: 12/21/2022] Open
Abstract
Selenophosphate synthetase 2 (SEPHS2) synthesizes selenide and ATP into selenophosphate, the selenium donor for selenocysteine (Sec), which is cotranslationally incorporated into selenoproteins. The action and regulatory mechanisms of SEPHS2 as well as its role in carcinogenesis (especially breast cancer) remain ambiguous and need further clarification. Therefore, lacking an experimentally determined structure for SEPHS2, we first analyzed the physicochemical properties of its sequence, modeled its three-dimensional structure and studied its conformational behavior to identify the key residues (named HUB nodes) responsible for protein stability and to clarify the molecular mechanisms by which it induced its function. Bioinformatics analysis evidenced higher amplification frequencies of SEPHS2 in breast cancer than in other cancer types. Therefore, because triple negative breast cancer (TNBC) is biologically the most aggressive breast cancer subtype and its treatment represents a challenge due to the absence of well-defined molecular targets, we evaluated SEPHS2 expression in two TNBC cell lines and patient samples. We demonstrated mRNA and protein overexpression to be correlated with aggressiveness and malignant tumor grade, suggesting that this protein could potentially be considered a prognostic marker and/or therapeutic target for TNBC.
Collapse
|
19
|
Choi JY, An BC, Jung IJ, Kim JH, Lee SW. MiR-921 directly downregulates GPx3 in A549 lung cancer cells. Gene 2019; 700:163-167. [DOI: 10.1016/j.gene.2019.02.086] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 01/31/2019] [Accepted: 02/13/2019] [Indexed: 02/06/2023]
|
20
|
MicroRNA-33-3p Regulates Vein Endothelial Cell Apoptosis in Selenium-Deficient Broilers by Targeting E4F1. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:6274010. [PMID: 31249647 PMCID: PMC6556262 DOI: 10.1155/2019/6274010] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 03/22/2019] [Accepted: 05/05/2019] [Indexed: 12/11/2022]
Abstract
Selenium (Se) is a type of nutrient element. The tissues of organisms can have pathological damage, including apoptosis, due to Se deficiency. Apoptosis is an important cell process and plays a key role in vascular disease and Se-deficient symptoms. In this study, the Se-deficient broiler model was duplicated, miR-33-3p in the vein was overexpressed in response to Se-deficiency, and miR-33-3p target gene E4F transcription factor 1 (E4F1) expression was also confirmed. We utilized ectopic miR-33-3p expression to validate its function for apoptosis. The results showed that miR-33-3p-targeted E4F1 are involved in the glucose-regulated protein 78- (GRP78-) induced endoplasmic reticulum stress (ERS) apoptosis pathway. We presumed that Se deficiency might trigger apoptosis via downregulating miR-33-3p. Interestingly, the miR-33-3p inhibitor and VER-155008 (GRP78 inhibitor) partly hindered the apoptosis caused by Se deficiency. Thus, the above information provides a new avenue toward understanding the mechanism of Se deficiency and reveals a novel apoptotic injury regulation model in vascular disease.
Collapse
|
21
|
Zou L, Xiong X, Yang H, Wang K, Zhou J, Lv D, Yin Y. Identification of microRNA transcriptome reveals that miR-100 is involved in the renewal of porcine intestinal epithelial cells. SCIENCE CHINA-LIFE SCIENCES 2019; 62:816-828. [PMID: 31016537 DOI: 10.1007/s11427-018-9338-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Revised: 11/15/2018] [Accepted: 11/15/2018] [Indexed: 01/30/2023]
Abstract
MicroRNAs play important roles in various cellular processes, including differentiation, proliferation and survival. Using a pig model, this study sought to identify the miRNAs responsible for crypt-villus axis renewal of the small intestinal epithelium. Compared to the villus upper cells, there were 15 up-regulated and 41 down-regulated miRNAs in the crypt cells of the jejunum. Notably, we found that miR-100 was expressed more in the villus upper cells than in the crypt cells, suggesting an effect on intestinal epithelium differentiation. Overexpression of miR-100 increased the activity of alkaline phosphatase, confirming that miR-100 promoted IPEC-J2 cell differentiation. MiR-100 can inhibit cell proliferation as evidenced by CCK-8 and cell cycle assay results. We also showed that miR-100 significantly inhibited the migration of IPEC-J2 cells and promoted cell apoptosis through caspase-3-dependent cleavage of Bcl-2. Furthermore, FGFR3 was identified as a potential target of miR-100 by bioinformatics analysis. We confirmed that overexpression of miR-100 suppressed FGFR3 expression in IPEC-J2 cells by directly targeting the FGFR3 3'-UTR. This is the first report of miRNAs acting on the renewal of the intestinal crypt-villus axis. Our results also showed that miR-100 promotes the differentiation and apoptosis, and inhibits the proliferation and migration of enterocytes of pigs.
Collapse
Affiliation(s)
- Lijun Zou
- Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, School of Life Sciences, Hunan Normal University, Changsha, 410081, China
- Key Laboratory for Agro-Ecological Processes in Subtropical Regions, Institute of Subtropical Agriculture, the Chinese Academy of Sciences, Changsha, 410125, China
- Laboratory of Basic Biology, Hunan First Normal University, Changsha, 410205, China
| | - Xia Xiong
- Key Laboratory for Agro-Ecological Processes in Subtropical Regions, Institute of Subtropical Agriculture, the Chinese Academy of Sciences, Changsha, 410125, China.
| | - Huansheng Yang
- Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, School of Life Sciences, Hunan Normal University, Changsha, 410081, China
| | - Kexing Wang
- Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, School of Life Sciences, Hunan Normal University, Changsha, 410081, China
| | - Jian Zhou
- Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, School of Life Sciences, Hunan Normal University, Changsha, 410081, China
- Key Laboratory for Agro-Ecological Processes in Subtropical Regions, Institute of Subtropical Agriculture, the Chinese Academy of Sciences, Changsha, 410125, China
| | - Dinghong Lv
- Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, School of Life Sciences, Hunan Normal University, Changsha, 410081, China
| | - Yulong Yin
- Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, School of Life Sciences, Hunan Normal University, Changsha, 410081, China.
- Key Laboratory for Agro-Ecological Processes in Subtropical Regions, Institute of Subtropical Agriculture, the Chinese Academy of Sciences, Changsha, 410125, China.
| |
Collapse
|
22
|
Fernandes J, Hu X, Ryan Smith M, Go YM, Jones DP. Selenium at the redox interface of the genome, metabolome and exposome. Free Radic Biol Med 2018; 127:215-227. [PMID: 29883789 PMCID: PMC6168380 DOI: 10.1016/j.freeradbiomed.2018.06.002] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 05/19/2018] [Accepted: 06/02/2018] [Indexed: 02/06/2023]
Abstract
Selenium (Se) is a redox-active environmental mineral that is converted to only a small number of metabolites and required for a relatively small number of mammalian enzymes. Despite this, dietary and environmental Se has extensive impact on every layer of omics space. This highlights a need for global network response structures to provide reference for targeted, hypothesis-driven Se research. In this review, we survey the Se research literature from the perspective of the responsive physical and chemical barrier between an organism (functional genome) and its environment (exposome), which we have previously termed the redox interface. Recent advances in metabolomics allow molecular phenotyping of the integrated genome-metabolome-exposome structure. Use of metabolomics with transcriptomics to map functional network responses to supplemental Se in mice revealed complex network responses linked to dyslipidemia and weight gain. Central metabolic hubs in the network structure in liver were not directly linked to transcripts for selenoproteins but were, instead, linked to transcripts for glucose transport and fatty acid β-oxidation. The experimental results confirm the survey of research literature in showing that Se interacts with the functional genome through a complex network response structure. The results imply that systematic application of data-driven integrated omics methods to models with controlled Se exposure could disentangle health benefits and risks from Se exposures and also serve more broadly as an experimental paradigm for exposome research.
Collapse
Affiliation(s)
- Jolyn Fernandes
- Department of Medicine, Emory University, Atlanta, GA 30322, United States
| | - Xin Hu
- Department of Medicine, Emory University, Atlanta, GA 30322, United States
| | - M Ryan Smith
- Department of Medicine, Emory University, Atlanta, GA 30322, United States
| | - Young-Mi Go
- Department of Medicine, Emory University, Atlanta, GA 30322, United States.
| | - Dean P Jones
- Department of Medicine, Emory University, Atlanta, GA 30322, United States.
| |
Collapse
|
23
|
Zhang L, Zeng H, Cheng WH. Beneficial and paradoxical roles of selenium at nutritional levels of intake in healthspan and longevity. Free Radic Biol Med 2018; 127:3-13. [PMID: 29782991 DOI: 10.1016/j.freeradbiomed.2018.05.067] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 05/15/2018] [Accepted: 05/17/2018] [Indexed: 11/15/2022]
Abstract
Accumulation of genome and macromolecule damage is a hallmark of aging, age-associated degeneration, and genome instability syndromes. Although processes of aging are irreversible, they can be modulated by genome maintenance pathways and environmental factors such as diet. Selenium (Se) confers its physiological functions mainly through selenoproteins, but Se compounds and other proteins that incorporate Se nonspecifically also impact optimal health. Bruce Ames proposed that the aging process could be mitigated by a subset of low-hierarchy selenoproteins whose levels are preferentially reduced in response to Se deficiency. Consistent with this notion, results from two selenotranscriptomic studies collectively implicate three low-hierarchy selenoproteins in age or senescence. Experimental evidence generally supports beneficial roles of selenoproteins in the protection against damage accumulation and redox imbalance, but some selenoproteins have also been reported to unexpectedly display harmful functions under sporadic conditions. While longevity and healthspan are usually thought to be projected in parallel, emerging evidence suggests a trade-off between longevity promotion and healthspan deterioration with damage accumulation. We propose that longevity promotion under conditions of Se deficiency may be attributed to 1) stress-response hormesis, an advantageous event of resistance to toxic chemicals at low doses; 2) reduced expression of selenoproteins with paradoxical functions to a lesser extent. In particular, selenoprotein H is an evolutionally conserved nuclear selenoprotein postulated to confer Se functions in redox regulation, genome maintenance, and senescence. This review highlights the need to pinpoint roles of specific selenoproteins and Se compounds in healthspan and lifespan for a better understanding of Se contribution at nutritional levels of intake to healthy aging.
Collapse
Affiliation(s)
- Li Zhang
- Department of Food Science, Nutrition and Health Promotion, Mississippi State University, MS 39762, USA
| | - Huawei Zeng
- USDA, Agricultural Research Service, Grand Forks Human Nutrition Center, Grand Forks, ND 58202, USA
| | - Wen-Hsing Cheng
- Department of Food Science, Nutrition and Health Promotion, Mississippi State University, MS 39762, USA.
| |
Collapse
|
24
|
Selenium-Related Transcriptional Regulation of Gene Expression. Int J Mol Sci 2018; 19:ijms19092665. [PMID: 30205557 PMCID: PMC6163693 DOI: 10.3390/ijms19092665] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 09/04/2018] [Accepted: 09/05/2018] [Indexed: 12/12/2022] Open
Abstract
The selenium content of the body is known to control the expression levels of numerous genes, both so-called selenoproteins and non-selenoproteins. Selenium is a trace element essential to human health, and its deficiency is related to, for instance, cardiovascular and myodegenerative diseases, infertility and osteochondropathy called Kashin–Beck disease. It is incorporated as selenocysteine to the selenoproteins, which protect against reactive oxygen and nitrogen species. They also participate in the activation of the thyroid hormone, and play a role in immune system functioning. The synthesis and incorporation of selenocysteine occurs via a special mechanism, which differs from the one used for standard amino acids. The codon for selenocysteine is a regular in-frame stop codon, which can be passed by a specific complex machinery participating in translation elongation and termination. This includes a presence of selenocysteine insertion sequence (SECIS) in the 3′-untranslated part of the selenoprotein mRNAs. Nonsense-mediated decay is involved in the regulation of the selenoprotein mRNA levels, but other mechanisms are also possible. Recent transcriptional analyses of messenger RNAs, microRNAs and long non-coding RNAs combined with proteomic data of samples from Keshan and Kashin–Beck disease patients have identified new possible cellular pathways related to transcriptional regulation by selenium.
Collapse
|
25
|
Liu T, Yang T, Xu Z, Tan S, Pan T, Wan N, Li S. MicroRNA-193b-3p regulates hepatocyte apoptosis in selenium-deficient broilers by targeting MAML1. J Inorg Biochem 2018; 186:235-245. [DOI: 10.1016/j.jinorgbio.2018.06.013] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Revised: 06/14/2018] [Accepted: 06/24/2018] [Indexed: 02/08/2023]
|
26
|
Yang T, Liu T, Cao C, Xu S. miR‐200a‐5p augments cardiomyocyte hypertrophy induced by glucose metabolism disorder via the regulation of selenoproteins. J Cell Physiol 2018; 234:4095-4103. [DOI: 10.1002/jcp.27206] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 07/16/2018] [Indexed: 12/14/2022]
Affiliation(s)
- Tianshu Yang
- College of Veterinary Medicine Northeast Agricultural University Harbin China
| | - Tianqi Liu
- College of Veterinary Medicine Northeast Agricultural University Harbin China
| | - Changyu Cao
- Foshan University, College of Life and Science Foshan China
| | - Shiwen Xu
- College of Veterinary Medicine Northeast Agricultural University Harbin China
- Key Laboratory of Animal Cellular and Genetic Engineering of Heilongjiang Province Northeast Agricultural University Harbin China
| |
Collapse
|
27
|
Serrão VHB, Silva IR, da Silva MTA, Scortecci JF, de Freitas Fernandes A, Thiemann OH. The unique tRNASec and its role in selenocysteine biosynthesis. Amino Acids 2018; 50:1145-1167. [DOI: 10.1007/s00726-018-2595-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Accepted: 05/26/2018] [Indexed: 12/26/2022]
|
28
|
Kinoshita C, Aoyama K, Nakaki T. Neuroprotection afforded by circadian regulation of intracellular glutathione levels: A key role for miRNAs. Free Radic Biol Med 2018; 119:17-33. [PMID: 29198727 DOI: 10.1016/j.freeradbiomed.2017.11.023] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 11/21/2017] [Accepted: 11/27/2017] [Indexed: 01/17/2023]
Abstract
Circadian rhythms are approximately 24-h oscillations of physiological and behavioral processes that allow us to adapt to daily environmental cycles. Like many other biological functions, cellular redox status and antioxidative defense systems display circadian rhythmicity. In the central nervous system (CNS), glutathione (GSH) is a critical antioxidant because the CNS is extremely vulnerable to oxidative stress; oxidative stress, in turn, causes several fatal diseases, including neurodegenerative diseases. It has long been known that GSH level shows circadian rhythm, although the mechanism underlying GSH rhythm production has not been well-studied. Several lines of recent evidence indicate that the expression of antioxidant genes involved in GSH homeostasis as well as circadian clock genes are regulated by post-transcriptional regulator microRNA (miRNA), indicating that miRNA plays a key role in generating GSH rhythm. Interestingly, several reports have shown that alterations of miRNA expression as well as circadian rhythm have been known to link with various diseases related to oxidative stress. A growing body of evidence implicates a strong correlation between antioxidative defense, circadian rhythm and miRNA function, therefore, their dysfunctions could cause numerous diseases. It is hoped that continued elucidation of the antioxidative defense systems controlled by novel miRNA regulation under circadian control will advance the development of therapeutics for the diseases caused by oxidative stress.
Collapse
Affiliation(s)
- Chisato Kinoshita
- Department of Pharmacology, Teikyo University School of Medicine, 2-11-1 Kaga, Itabashi-ku, Tokyo 173-8605, Japan
| | - Koji Aoyama
- Department of Pharmacology, Teikyo University School of Medicine, 2-11-1 Kaga, Itabashi-ku, Tokyo 173-8605, Japan
| | - Toshio Nakaki
- Department of Pharmacology, Teikyo University School of Medicine, 2-11-1 Kaga, Itabashi-ku, Tokyo 173-8605, Japan.
| |
Collapse
|
29
|
Matoušková P, Hanousková B, Skálová L. MicroRNAs as Potential Regulators of Glutathione Peroxidases Expression and Their Role in Obesity and Related Pathologies. Int J Mol Sci 2018; 19:ijms19041199. [PMID: 29662007 PMCID: PMC5979329 DOI: 10.3390/ijms19041199] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Revised: 04/08/2018] [Accepted: 04/10/2018] [Indexed: 12/19/2022] Open
Abstract
Glutathione peroxidases (GPxs) belong to the eight-member family of phylogenetically related enzymes with different cellular localization, but distinct antioxidant function. Several GPxs are important selenoproteins. Dysregulated GPx expression is connected with severe pathologies, including obesity and diabetes. We performed a comprehensive bioinformatic analysis using the programs miRDB, miRanda, TargetScan, and Diana in the search for hypothetical microRNAs targeting 3′untranslated regions (3´UTR) of GPxs. We cross-referenced the literature for possible intersections between our results and available reports on identified microRNAs, with a special focus on the microRNAs related to oxidative stress, obesity, and related pathologies. We identified many microRNAs with an association with oxidative stress and obesity as putative regulators of GPxs. In particular, miR-185-5p was predicted by a larger number of programs to target six GPxs and thus could play the role as their master regulator. This microRNA was altered by selenium deficiency and can play a role as a feedback control of selenoproteins’ expression. Through the bioinformatics analysis we revealed the potential connection of microRNAs, GPxs, obesity, and other redox imbalance related diseases.
Collapse
Affiliation(s)
- Petra Matoušková
- Faculty of Pharmacy, Department of Biochemical Sciences, Charles University, 500 05, Hradec Králové, Czech Republic.
| | - Barbora Hanousková
- Faculty of Pharmacy, Department of Biochemical Sciences, Charles University, 500 05, Hradec Králové, Czech Republic.
| | - Lenka Skálová
- Faculty of Pharmacy, Department of Biochemical Sciences, Charles University, 500 05, Hradec Králové, Czech Republic.
| |
Collapse
|
30
|
|
31
|
Sasso A, Latella G. Dietary components that counteract the increased risk of colorectal cancer related to red meat consumption. Int J Food Sci Nutr 2017; 69:536-548. [PMID: 29096565 DOI: 10.1080/09637486.2017.1393503] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Western-style diets are associated with an increased risk of colorectal cancer (CRC). In particular, a strong correlation has been documented between CRC and the consumption of large amounts of red meat, especially processed red meat. Compared with white meat, red meat contains high levels of haem iron, a molecule that can exert a variety of genotoxic and other adverse effects on the colonic epithelium. According to current international guidelines, the reduction of red meat intake combined with the consumption of food containing antioxidant and chemoprotective substances may significantly reduce the risk of developing CRC. The dietary strategies that can help to contrast the harmful effects of haem iron are reported and discussed in this review.
Collapse
Affiliation(s)
- Arianna Sasso
- a Division of Gastroenterology, Hepatology and Nutrition, Department of Life, Health, and Environmental Sciences , University of L'Aquila , L'Aquila , Italy
| | - Giovanni Latella
- a Division of Gastroenterology, Hepatology and Nutrition, Department of Life, Health, and Environmental Sciences , University of L'Aquila , L'Aquila , Italy
| |
Collapse
|
32
|
|
33
|
Quintanilha BJ, Reis BZ, Duarte GBS, Cozzolino SMF, Rogero MM. Nutrimiromics: Role of microRNAs and Nutrition in Modulating Inflammation and Chronic Diseases. Nutrients 2017; 9:nu9111168. [PMID: 29077020 PMCID: PMC5707640 DOI: 10.3390/nu9111168] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Revised: 10/22/2017] [Accepted: 10/23/2017] [Indexed: 12/12/2022] Open
Abstract
Nutrimiromics studies the influence of the diet on the modification of gene expression due to epigenetic processes related to microRNAs (miRNAs), which may affect the risk for the development of chronic diseases. miRNAs are a class of non-coding endogenous RNA molecules that are usually involved in post-transcriptional gene silencing by inducing mRNA degradation or translational repression by binding to a target messenger RNA. They can be controlled by environmental and dietary factors, particularly by isolated nutrients or bioactive compounds, indicating that diet manipulation may hold promise as a therapeutic approach in modulating the risk of chronic diseases. This review summarizes the evidence regarding the influence of nutrients and bioactive compounds on the expression of miRNAs related to inflammation and chronic disease in several models (cell culture, animal models, and human trials).
Collapse
Affiliation(s)
- Bruna J Quintanilha
- Nutritional Genomics and Inflammation Laboratory, Department of Nutrition, School of Public Health, University of São Paulo, 01246-904 São Paulo, Brazil.
- Food Research Center (FoRC), 05508-000 São Paulo, Brazil.
| | - Bruna Z Reis
- Nutrition and Minerals Laboratory, Department of Food and Experimental Nutrition, University of São Paulo, 05508-000 São Paulo, Brazil.
| | - Graziela B Silva Duarte
- Nutrition and Minerals Laboratory, Department of Food and Experimental Nutrition, University of São Paulo, 05508-000 São Paulo, Brazil.
| | - Silvia M F Cozzolino
- Nutrition and Minerals Laboratory, Department of Food and Experimental Nutrition, University of São Paulo, 05508-000 São Paulo, Brazil.
| | - Marcelo M Rogero
- Nutritional Genomics and Inflammation Laboratory, Department of Nutrition, School of Public Health, University of São Paulo, 01246-904 São Paulo, Brazil.
- Food Research Center (FoRC), 05508-000 São Paulo, Brazil.
| |
Collapse
|
34
|
Hosnedlova B, Kepinska M, Skalickova S, Fernandez C, Ruttkay-Nedecky B, Malevu TD, Sochor J, Baron M, Melcova M, Zidkova J, Kizek R. A Summary of New Findings on the Biological Effects of Selenium in Selected Animal Species-A Critical Review. Int J Mol Sci 2017; 18:E2209. [PMID: 29065468 PMCID: PMC5666889 DOI: 10.3390/ijms18102209] [Citation(s) in RCA: 123] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 10/10/2017] [Accepted: 10/11/2017] [Indexed: 12/18/2022] Open
Abstract
Selenium is an essential trace element important for many physiological processes, especially for the functions of immune and reproductive systems, metabolism of thyroid hormones, as well as antioxidant defense. Selenium deficiency is usually manifested by an increased incidence of retention of placenta, metritis, mastitis, aborts, lowering fertility and increased susceptibility to infections. In calves, lambs and kids, the selenium deficiency demonstrates by WMD (white muscle disease), in foals and donkey foals, it is associated with incidence of WMD and yellow fat disease, and in pigs it causes VESD (vitamin E/selenium deficiency) syndrome. The prevention of these health disorders can be achieved by an adequate selenium supplementation to the diet. The review summarizes the survey of knowledge on selenium, its biological significance in the organism, the impact of its deficiency in mammalian livestock (comparison of ruminants vs. non-ruminants, herbivore vs. omnivore) and possibilities of its peroral administration. The databases employed were as follows: Web of Science, PubMed, MEDLINE and Google Scholar.
Collapse
Affiliation(s)
- Bozena Hosnedlova
- Department of Viticulture and Enology, Faculty of Horticulture, Mendel University in Brno, Valtická 337, CZ-691 44 Lednice, Czech Republic.
| | - Marta Kepinska
- Department of Biomedical and Environmental Analyses, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211, 50-556 Wroclaw, Poland.
| | - Sylvie Skalickova
- Central Laboratory, Faculty of Pharmacy, University of Veterinary and Pharmaceutical Sciences Brno, Palackeho 1946/1, 612 42 Brno, Czech Republic.
| | - Carlos Fernandez
- School of Pharmacy and Life Sciences, Robert Gordon University, Garthdee Road, Aberdeen AB107GJ, UK.
| | - Branislav Ruttkay-Nedecky
- Central Laboratory, Faculty of Pharmacy, University of Veterinary and Pharmaceutical Sciences Brno, Palackeho 1946/1, 612 42 Brno, Czech Republic.
| | | | - Jiri Sochor
- Department of Viticulture and Enology, Faculty of Horticulture, Mendel University in Brno, Valtická 337, CZ-691 44 Lednice, Czech Republic.
| | - Mojmir Baron
- Department of Viticulture and Enology, Faculty of Horticulture, Mendel University in Brno, Valtická 337, CZ-691 44 Lednice, Czech Republic.
| | - Magdalena Melcova
- Department of Biochemistry and Microbiology, University of Chemistry and Technology, Technicka 3, 166 28 Prague, Czech Republic.
| | - Jarmila Zidkova
- Department of Biochemistry and Microbiology, University of Chemistry and Technology, Technicka 3, 166 28 Prague, Czech Republic.
| | - Rene Kizek
- Department of Biomedical and Environmental Analyses, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211, 50-556 Wroclaw, Poland.
- Central Laboratory, Faculty of Pharmacy, University of Veterinary and Pharmaceutical Sciences Brno, Palackeho 1946/1, 612 42 Brno, Czech Republic.
| |
Collapse
|
35
|
Cao L, Zhang L, Zeng H, Wu RT, Wu TL, Cheng WH. Analyses of Selenotranscriptomes and Selenium Concentrations in Response to Dietary Selenium Deficiency and Age Reveal Common and Distinct Patterns by Tissue and Sex in Telomere-Dysfunctional Mice. J Nutr 2017; 147:1858-1866. [PMID: 28855418 DOI: 10.3945/jn.117.247775] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Revised: 02/14/2017] [Accepted: 08/07/2017] [Indexed: 11/14/2022] Open
Abstract
Background: The hierarchies of tissue selenium distribution and selenotranscriptomes are thought to critically affect healthspan and longevity.Objective: We determined selenium status and selenotranscriptomes in response to long-term dietary selenium deficiency and age in tissues of male and female mice.Methods: Weanling telomerase RNA component knockout C57BL/6 mice were fed a selenium-deficient (0.03 mg Se/kg) Torula yeast-based AIN-93G diet or a diet supplemented with sodium selenate (0.15 mg Se/kg) until age 18 or 24 mo. Plasma, hearts, kidneys, livers, and testes were collected to assay for selenotranscriptomes, selected selenoproteins, and tissue selenium concentrations. Data were analyzed with the use of 2-factor ANOVA (diet × age) in both sexes.Results: Dietary selenium deficiency decreased (P ≤ 0.05) selenium concentrations (65-72%) and glutathione peroxidase (GPX) 3 (82-94%) and selenoprotein P (SELENOP) (17-41%) levels in the plasma of both sexes of mice and mRNA levels (9-68%) of 4, 4, and 12 selenoproteins in the heart, kidney, and liver of males, respectively, and 5, 16, and 14 selenoproteins, respectively, in females. Age increased selenium concentrations and SELENOP levels (27% and 30%, respectively; P ≤ 0.05) in the plasma of males only but decreased (12-46%; P < 0.05) mRNA levels of 1, 5, and 13 selenoproteins in the heart, kidney, and liver of males, respectively, and 6, 5, and 0 selenoproteins, respectively, in females. Among these mRNAs, selenoprotein H (Selenoh), selenoprotein M (Selenom), selenoprotein W (Selenow), methionine-R-sulfoxide reductase 1 (MsrB1), Gpx1, Gpx3, thioredoxin reductase 1 (Txnrd1), Txnrd2, selenoprotein S (Selenos), selenoprotein F (Selenof), and selenoprotein O (Selenoo) responded in parallel to dietary selenium deficiency and age in ≥1 tissue or sex, or both. Dietary selenium deficiency upregulated (40-160%; P ≤ 0.05) iodothyronine deiodinase 2 (Dio2) and selenoprotein N (Selenon) in the kidneys of males. Age upregulated (11-44%; P < 0.05) Selenon in the kidneys of males, selenoprotein K (Selenok) and selenoprotein I (Selenoi) in the kidneys of females, and Selenof and Selenok in the testes.Conclusions: These results illustrate tissue-specific sexual dimorphisms of selenium status and selenotranscriptomes because of dietary selenium deficiency and age.
Collapse
Affiliation(s)
- Lei Cao
- Departments of Food Science, Nutrition and Health Promotion and
| | - Li Zhang
- Departments of Food Science, Nutrition and Health Promotion and
| | - Huawei Zeng
- Grand Forks Human Nutrition Center, Agricultural Research Service, USDA, Grand Forks, ND; and
| | - Ryan Ty Wu
- Department of Nutrition and Food Science, University of Maryland, College Park, MD
| | - Tung-Lung Wu
- Mathematics and Statistics, Mississippi State University, Mississippi State, MS
| | - Wen-Hsing Cheng
- Departments of Food Science, Nutrition and Health Promotion and
| |
Collapse
|
36
|
Sun W, Wang Q, Guo Y, Zhao Y, Wang X, Zhang Z, Deng G, Guo M. Selenium suppresses inflammation by inducing microRNA-146a in Staphylococcus aureus-infected mouse mastitis model. Oncotarget 2017; 8:110949-110964. [PMID: 29340029 PMCID: PMC5762297 DOI: 10.18632/oncotarget.20740] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Accepted: 08/04/2017] [Indexed: 01/29/2023] Open
Abstract
We studied the effects of selenium (Se) on the inflammatory response in Staphylococcus aureus (S. aureus)-infected mastitis-model mice and mammary epithelial cells. In infected mice, Se elicited a dose-dependent decrease in mammary gland pathology that included inflammatory cell infiltration, disorganized acinar structure and mammary cell necrosis. Se decreased inflammation by increasing miR-146a and decreasing TLR2/6 as well as NF-κB and MAPK signaling pathways in mammary tissue from infected mice and mammary epithelial cells. A miR-146a inhibitor suppressed the anti-inflammatory effects of Se in infected mammary epithelial cells. Se, miR-146a and TLR2 were associated in determining the inflammatory response in mouse with infection-induced mastitis. Thus, Se inhibits pro-inflammatory responses in mammary tissues from S. aureus-infected mice by inducing miR-146a.
Collapse
Affiliation(s)
- Weijing Sun
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | - Qi Wang
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | - Yingfang Guo
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | - Yifan Zhao
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | - Xinying Wang
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | - Zhenbiao Zhang
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | - Ganzhen Deng
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | - Mengyao Guo
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| |
Collapse
|
37
|
Pan JH, Abernathy B, Kim YJ, Lee JH, Kim JH, Shin EC, Kim JK. Cruciferous vegetables and colorectal cancer prevention through microRNA regulation: A review. Crit Rev Food Sci Nutr 2017; 58:2026-2038. [DOI: 10.1080/10408398.2017.1300134] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Jeong Hoon Pan
- School of Human Environmental Sciences, University of Arkansas, Fayetteville, Arkansas, USA
| | - Breann Abernathy
- Department of Food Science and Nutrition, University of Minnesota, St. Paul, Minnesota, USA
| | - Young Jun Kim
- Department of Food and Biotechnology, Korea University, Sejong, Republic of Korea
| | - Jin Hyup Lee
- Department of Food and Biotechnology, Korea University, Sejong, Republic of Korea
| | - Jun Ho Kim
- Department of Food and Biotechnology, Korea University, Sejong, Republic of Korea
| | - Eui Cheol Shin
- Department of Food Science, Gyeongnam National University of Science and Technology, Jinju, Republic of Korea
| | - Jae Kyeom Kim
- School of Human Environmental Sciences, University of Arkansas, Fayetteville, Arkansas, USA
| |
Collapse
|
38
|
Expression profiling indicating low selenium-sensitive microRNA levels linked to cell cycle and cell stress response pathways in the CaCo-2 cell line. Br J Nutr 2017; 117:1212-1221. [PMID: 28571588 DOI: 10.1017/s0007114517001143] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Se is an essential micronutrient for human health, and fluctuations in Se levels and the potential cellular dysfunction associated with it may increase the risk for disease. Although Se has been shown to influence several biological pathways important in health, little is known about the effect of Se on the expression of microRNA (miRNA) molecules regulating these pathways. To explore the potential role of Se-sensitive miRNA in regulating pathways linked with colon cancer, we profiled the expression of 800 miRNA in the CaCo-2 human adenocarcinoma cell line in response to a low-Se (72 h at <40 nm) environment using nCounter direct quantification. These data were then examined using a range of in silico databases to identify experimentally validated miRNA-mRNA interactions and the biological pathways involved. We identified ten Se-sensitive miRNA (hsa-miR-93-5p, hsa-miR-106a-5p, hsa-miR-205-5p, hsa-miR-200c-3p, hsa-miR-99b-5p, hsa-miR-302d-3p, hsa-miR-373-3p, hsa-miR-483-3p, hsa-miR-512-5p and hsa-miR-4454), which regulate 3588 mRNA in key pathways such as the cell cycle, the cellular response to stress, and the canonical Wnt/β-catenin, p53 and ERK/MAPK signalling pathways. Our data show that the effects of low Se on biological pathways may, in part, be due to these ten Se-sensitive miRNA. Dysregulation of the cell cycle and of the stress response pathways due to low Se may influence key genes involved in carcinogenesis.
Collapse
|
39
|
Zheng X, Hu X, Ge T, Li M, Shi M, Luo J, Lai H, Nie T, Li F, Li H. MicroRNA-328 is involved in the effect of selenium on hydrogen peroxide-induced injury in H9c2 cells. J Biochem Mol Toxicol 2017; 31. [PMID: 28544404 DOI: 10.1002/jbt.21920] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Revised: 02/21/2017] [Accepted: 02/25/2017] [Indexed: 01/29/2023]
Abstract
Oxidative stress induces apoptosis in cardiac cells, and antioxidants attenuate the injury. MicroRNAs (miRNAs) are also involved in cell death; therefore, this study aimed to investigate the role of miRNAs in the effect of selenium on oxidative stress-induced apoptosis. The effects of sodium selenite were analyzed via cell viability, superoxide dismutase (SOD) activity, and malondialdehyde (MDA) concentration. Flow cytometry was used to evaluate cell apoptosis. Fura-2AM was used to calculate intracellular Ca2+ concentration. Sodium selenite could ameliorate hydrogen peroxide (H2 O2 )-induced cell apoptosis and improve expression levels of glutathione peroxidase and thioredoxin reductase. Pretreatment with sodium selenite improved SOD activity and reduced MDA concentration. Treatments with H2 O2 or sodium selenite decreased miR-328 levels. MiR-328 overexpression enhanced cell apoptosis, reduced ATP2A2 levels, and increased intracellular Ca2+ concentration, while inhibition produced opposite effects. MiR-328 might be involved in the effect of sodium selenite on H2 O2 -induced cell death in H9c2 cells.
Collapse
Affiliation(s)
- Xiaolin Zheng
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, Heilongjiang, 150081, People's Republic of China
| | - Xiaoyan Hu
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, Heilongjiang, 150081, People's Republic of China
| | - Tangdong Ge
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, Heilongjiang, 150081, People's Republic of China
| | - Mengdi Li
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, Heilongjiang, 150081, People's Republic of China
| | - Minxia Shi
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, Heilongjiang, 150081, People's Republic of China
| | - Jincheng Luo
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, Heilongjiang, 150081, People's Republic of China
| | - Hehuan Lai
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, Heilongjiang, 150081, People's Republic of China
| | - Tingting Nie
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, Heilongjiang, 150081, People's Republic of China
| | - Fenglan Li
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, Heilongjiang, 150081, People's Republic of China
| | - Hui Li
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, Heilongjiang, 150081, People's Republic of China
| |
Collapse
|
40
|
Liu C, Sun Z, Xu Z, Liu T, Pan T, Li S. Down-regulation of microRNA-155 promotes selenium deficiency-induced apoptosis by tumor necrosis factor receptor superfamily member 1B in the broiler spleen. Oncotarget 2017; 8:58513-58525. [PMID: 28938575 PMCID: PMC5601671 DOI: 10.18632/oncotarget.17222] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Accepted: 03/22/2017] [Indexed: 12/18/2022] Open
Abstract
The aim of this work was to explore the microRNA profile and the effect of microRNA-155 on apoptosis in the spleen of selenium-deficient broilers. We replicated the splenic-apoptotic model in selenium-deficient broilers. In vitro, microRNA-155 oligonucleotides were transfected into lymphocytes and subsequently treated with H2O2. We observed that selenium deficiency altered the microRNA profile and decreased the expression of microRNA-155 in the broiler spleens. Tumor necrosis factor receptor superfamily member 1B was verified as a target of microRNA-155 in the splenocytes. Morphological changes, increased levels of tumor necrosis factor receptor superfamily member 1B, c-Jun N-terminal kinase, Bak, Bax, Cyt-c, caspase9 and caspase3 and decreased levels of Bcl-2 demonstrated that selenium deficiency induced apoptosis in the spleen tissues. In vitro, microRNA-155 m inhibited the levels of ROS and reduced apoptosis compared with microRNA-155i in the lymphocytes. These results suggested that the reduced levels of microRNA-155 due to selenium deficiency could promote oxidative stress-induced apoptosis by increased tumor necrosis factor receptor superfamily member 1B in splenic cells.
Collapse
Affiliation(s)
- Ci Liu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, P. R. China
| | - Zhepeng Sun
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, P. R. China
| | - Zhe Xu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, P. R. China
| | - Tianqi Liu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, P. R. China
| | - Tingru Pan
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, P. R. China
| | - Shu Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, P. R. China
| |
Collapse
|
41
|
Feng N, Wang Y, Zheng M, Yu X, Lin H, Ma RN, Shi O, Zheng X, Gao M, Yu H, Garmire L, Qian B. Genome-wide analysis of DNA methylation and their associations with long noncoding RNA/mRNA expression in non-small-cell lung cancer. Epigenomics 2017; 9:137-153. [PMID: 28111977 DOI: 10.2217/epi-2016-0120] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
AIM The goal of this study is to identify differentially methylated (DM) loci associated with long noncoding RNA (lncRNA)/mRNA expression in non-small-cell lung cancer (NSCLC). MATERIALS & METHODS Microarrays were used to interrogate genome-wide methylation and expression of lncRNA/mRNA in NSCLC. RESULTS We identified 113,644 DM loci between tumors and adjacent tissues. Among them, 26,310 DM loci were associated with 1685 differentially expressed genes, and 839 genes had significant correlations between methylation and expression, of which 26 hypermethylated loci in transcription start site 200 were correlated with low gene expression. We validated the correlations between methylation and expression in five genes (CDO1, C2orf40, SCARF1, ZFP106 and IFFO1) using pyrosequencing and quantitative polymerase chain reaction. We also found significant correlations between lncRNAs and mRNAs, and validated four of the correlations with quantitative polymerase chain reaction. CONCLUSION Integrated analysis of genome-wide DNA methylation and lncRNA/mRNA expression allows us to identify new DM loci-correlated with gene expression in NSCLC.
Collapse
Affiliation(s)
- Nannan Feng
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital & Faculty of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yu Wang
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital & Faculty of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- Tianjin Key Laboratory of Cancer Prevention & Therapy, Tianjin Medical University Cancer Institute & Hospital, Tianjin 300060, China
| | - Min Zheng
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital & Faculty of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Xiao Yu
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital & Faculty of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Hongyan Lin
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital & Faculty of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Rong-Na Ma
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital & Faculty of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Oumin Shi
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital & Faculty of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Xiangqian Zheng
- Tianjin Key Laboratory of Cancer Prevention & Therapy, Tianjin Medical University Cancer Institute & Hospital, Tianjin 300060, China
| | - Ming Gao
- Tianjin Key Laboratory of Cancer Prevention & Therapy, Tianjin Medical University Cancer Institute & Hospital, Tianjin 300060, China
| | - Herbert Yu
- Cancer Epidemiology Program, University of Hawaii Cancer Center, 701 Ilalo Street, Honolulu, HI 96813, USA
| | - Lana Garmire
- Cancer Epidemiology Program, University of Hawaii Cancer Center, 701 Ilalo Street, Honolulu, HI 96813, USA
| | - Biyun Qian
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital & Faculty of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| |
Collapse
|
42
|
Lee K, Ferguson LR. MicroRNA biomarkers predicting risk, initiation and progression of colorectal cancer. World J Gastroenterol 2016; 22:7389-7401. [PMID: 27672263 PMCID: PMC5011656 DOI: 10.3748/wjg.v22.i33.7389] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Revised: 06/10/2016] [Accepted: 08/01/2016] [Indexed: 02/06/2023] Open
Abstract
Colorectal cancer is a major global cause of morbidity and mortality. Current strategies employed to increase detection of early, curable stages of this disease are contributing to a reduction of the negative health impact from it. While there is a genetic component to the risk of disease, diet and environment are known to have major effects on the risk of an individual for developing the disease. However, there is the potential to reduce the impact of this disease further by preventing disease development. Biomarkers which can either predict the risk for or early stages of colorectal cancer could allow intervention at a time when prospects could be modified by environmental factors, including lifestyle and diet choices. Thus, such biomarkers could be used to identify high risk individuals who would benefit from lifestyle and dietary interventions to prevent this disease. This review will give an overview on one type of biomarker in the form of microRNAs, which have the potential to predict an individual’s risk for colorectal cancer, as well as providing a highly sensitive and non-invasive warning of disease presence and/or progression. MicroRNA biomarkers which have been studied and whose levels look promising for this purpose include MiR-18a, MiR-21, MiR-92a, MiR-135b, MiR-760, MiR-601. Not only have several individual microRNAs appeared promising as biomarkers, but panels of these may be even more useful. Furthermore, understanding dietary sources and ways of dietary modulation of these microRNAs might be fruitful in reducing the incidence and slowing the progression of colorectal cancer.
Collapse
|
43
|
Juszczuk-Kubiak E, Bujko K, Cymer M, Wicińska K, Gabryszuk M, Pierzchała M. Effect of Inorganic Dietary Selenium Supplementation on Selenoprotein and Lipid Metabolism Gene Expression Patterns in Liver and Loin Muscle of Growing Lambs. Biol Trace Elem Res 2016; 172:336-345. [PMID: 26701332 PMCID: PMC4930946 DOI: 10.1007/s12011-015-0592-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Accepted: 12/14/2015] [Indexed: 12/15/2022]
Abstract
Effect of selenium (Se) supplementation on the selenoprotein and lipid metabolism gene expression patterns in ruminants, especially in lambs is not yet fully understood. The aim of study was to evaluate the effect of Se supplementation on the messenger RNA (mRNA) expression patterns of selected selenoproteins and genes related to lipid metabolism in growing lambs. The experiment was conducted on 48 Polish Merino lambs divided into two groups (n = 24): control (C)-lambs fed with a basal diet (BD) with no Se supplementation, and supplemented (S)-lambs fed with a BD, supplemented with 0.5 mg Se/kg as sodium selenate for 8 weeks. Expression of 12 selenoproteins and six genes related to lipid metabolism was analyzed in the liver and longissimus dorsi (LD) muscle of growing lambs by qPCR. Significant differences were found in the expression of GPX1, GPX2, SEPM, SEPW1, SEP15, SEPGS2, and TXNRD1 in the liver, and GPX1, SEPP1, SEPN1, SEPW1, SEP15, and MSRB1 in the LD muscle between S and C lambs. Se supplementation mainly upregulated SEPW1, SEP15 (P < 0.001; P < 0.01) mRNA expression in the liver, and GPX1, SEPP1, SEPN1, SEPW1 (P < 0.001; P < 0.01) in the muscle of S group. On the other hand, significant decrease in GPX2 (P < 0.01), SEPM (P < 0.001), and SEPHS2 (P < 0.01) mRNA expression levels were observed in the liver of S group of lambs. Se supplementation did not affect PON1, LXRα, and PPARα mRNA expression levels, but a significant increase in mRNA levels of APOE and LPL in the LD muscle (P < 0.05) as well as LPL (P < 0.05) in the liver were noticed in the group of Se supplemented lambs. Our study confirmed that, in lambs, similarly to other species, mRNA expression patterns of several selenoproteins highly depend on dietary Se levels, and their expression is ruled by hierarchical principles and tissue-specific mechanisms. Moreover, the study showed that changes Se intake leads to different levels of genes expression related with lipid metabolism.
Collapse
Affiliation(s)
- Edyta Juszczuk-Kubiak
- Laboratory of Genome and Transcriptome Sequencing, Department of Molecular Biology, Institute of Genetics and Animal Breeding, Polish Academy of Sciences, Jastrzębiec, Poland.
| | - Kamila Bujko
- Laboratory of Genome and Transcriptome Sequencing, Department of Molecular Biology, Institute of Genetics and Animal Breeding, Polish Academy of Sciences, Jastrzębiec, Poland
| | - Monika Cymer
- Laboratory of Genome and Transcriptome Sequencing, Department of Molecular Biology, Institute of Genetics and Animal Breeding, Polish Academy of Sciences, Jastrzębiec, Poland
| | - Krystyna Wicińska
- Laboratory of Genome and Transcriptome Sequencing, Department of Molecular Biology, Institute of Genetics and Animal Breeding, Polish Academy of Sciences, Jastrzębiec, Poland
| | - Mirosław Gabryszuk
- Department of Animal Breeding, Institute of Genetics and Animal Breeding, Polish Academy of Sciences, Jastrzębiec, Poland
| | - Mariusz Pierzchała
- Department of Genomics, Institute of Genetics and Animal Breeding, Polish Academy of Sciences, Jastrzębiec, Poland
| |
Collapse
|
44
|
Zupanic A, Meplan C, Huguenin GVB, Hesketh JE, Shanley DP. Modeling and gene knockdown to assess the contribution of nonsense-mediated decay, premature termination, and selenocysteine insertion to the selenoprotein hierarchy. RNA (NEW YORK, N.Y.) 2016; 22:1076-1084. [PMID: 27208313 PMCID: PMC4911915 DOI: 10.1261/rna.055749.115] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Accepted: 04/25/2016] [Indexed: 06/05/2023]
Abstract
The expression of selenoproteins, a specific group of proteins that incorporates selenocysteine, is hierarchically regulated by the availability of Se, with some, but not all selenoprotein mRNA transcripts decreasing in abundance with decreasing Se. Selenocysteine insertion into the peptide chain occurs during translation following recoding of an internal UGA stop codon. There is increasing evidence that this UGA recoding competes with premature translation termination, which is followed by nonsense-mediated decay (NMD) of the transcript. In this study, we tested the hypothesis that the susceptibility of different selenoprotein mRNAs to premature termination during translation and differential sensitivity of selenoprotein transcripts to NMD are major factors in the selenoprotein hierarchy. Selenoprotein transcript abundance was measured in Caco-2 cells using real-time PCR under different Se conditions and the data obtained fitted to mathematical models of selenoprotein translation. A calibrated model that included a combination of differential sensitivity of selenoprotein transcripts to NMD and different frequency of non-NMD related premature translation termination was able to fit all the measurements. The model predictions were tested using SiRNA to knock down expression of the crucial NMD factor UPF1 (up-frameshift protein 1) and selenoprotein mRNA expression. The calibrated model was able to predict the effect of UPF1 knockdown on gene expression for all tested selenoproteins, except SPS2 (selenophosphate synthetase), which itself is essential for selenoprotein synthesis. These results indicate an important role for NMD in the hierarchical regulation of selenoprotein mRNAs, with the exception of SPS2 whose expression is likely regulated by a different mechanism.
Collapse
Affiliation(s)
- Anze Zupanic
- Centre for Integrated Systems Biology of Ageing and Nutrition, Newcastle University, Newcastle-upon-Tyne NE4 5PL, United Kingdom Eawag, Institute for Aquatic Science and Technology, 8600 Dübendorf, Switzerland
| | - Catherine Meplan
- Centre for Integrated Systems Biology of Ageing and Nutrition, Newcastle University, Newcastle-upon-Tyne NE4 5PL, United Kingdom Institute for Cell and Molecular Biosciences and Human Nutrition Research Centre, Newcastle University, Newcastle-upon-Tyne NE2 4HH, United Kingdom
| | - Grazielle V B Huguenin
- Institute for Cell and Molecular Biosciences and Human Nutrition Research Centre, Newcastle University, Newcastle-upon-Tyne NE2 4HH, United Kingdom Faculty of Medicine, Federal University of Rio de Janeiro, Rio de Janeiro, CEP: 21941-902, Brazil
| | - John E Hesketh
- Centre for Integrated Systems Biology of Ageing and Nutrition, Newcastle University, Newcastle-upon-Tyne NE4 5PL, United Kingdom Institute for Cell and Molecular Biosciences and Human Nutrition Research Centre, Newcastle University, Newcastle-upon-Tyne NE2 4HH, United Kingdom
| | - Daryl P Shanley
- Centre for Integrated Systems Biology of Ageing and Nutrition, Newcastle University, Newcastle-upon-Tyne NE4 5PL, United Kingdom Institute for Cell and Molecular Biosciences and Human Nutrition Research Centre, Newcastle University, Newcastle-upon-Tyne NE2 4HH, United Kingdom
| |
Collapse
|
45
|
Potenza N, Castiello F, Panella M, Colonna G, Ciliberto G, Russo A, Costantini S. Human MiR-544a Modulates SELK Expression in Hepatocarcinoma Cell Lines. PLoS One 2016; 11:e0156908. [PMID: 27275761 PMCID: PMC4898719 DOI: 10.1371/journal.pone.0156908] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Accepted: 05/20/2016] [Indexed: 02/07/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is a multi-factorial cancer with a very poor prognosis; therefore, there are several investigations aimed at the comprehension of the molecular mechanisms leading to development and progression of HCC and at the definition of new therapeutic strategies. We have recently evaluated the expression of selenoproteins in HCC cell lines in comparison with normal hepatocytes. Recent results have shown that some of them are down- and others up-regulated, including the selenoprotein K (SELK), whose expression was also induced by sodium selenite treatment on cells. However, so far very few studies have been dedicated to a possible effect of microRNAs on the expression of selenoproteins and their implication in HCC. In this study, the analysis of SELK 3'UTR by bioinformatics tools led to the identification of eight sites potentially targeted by human microRNAs. They were then subjected to a validation test based on luciferase reporter constructs transfected in HCC cell lines. In this functional screening, miR-544a was able to interact with SELK 3'UTR suppressing the reporter activity. Transfection of a miR-544a mimic or inhibitor was then shown to decrease or increase, respectively, the translation of the endogenous SELK mRNA. Intriguingly, miR-544a expression was found to be modulated by selenium treatment, suggesting a possible role in SELK induction by selenium.
Collapse
Affiliation(s)
- Nicoletta Potenza
- Dipartimento di Scienze e Tecnologie Ambientali, Biologiche e Farmaceutiche, Seconda Università di Napoli, Caserta, Italia
| | - Filomena Castiello
- Dipartimento di Scienze e Tecnologie Ambientali, Biologiche e Farmaceutiche, Seconda Università di Napoli, Caserta, Italia
| | - Marta Panella
- Dipartimento di Scienze e Tecnologie Ambientali, Biologiche e Farmaceutiche, Seconda Università di Napoli, Caserta, Italia
| | - Giovanni Colonna
- Servizio di Informatica Medica, Azienda Ospedaliera Universitaria, Seconda Università di Napoli, Napoli, Italia
| | - Gennaro Ciliberto
- Direttore Scientifico, Istituto Nazionale Tumori “Fondazione G. Pascale”- IRCCS, Napoli, Italia
| | - Aniello Russo
- Dipartimento di Scienze e Tecnologie Ambientali, Biologiche e Farmaceutiche, Seconda Università di Napoli, Caserta, Italia
| | - Susan Costantini
- CROM, Istituto Nazionale Tumori “Fondazione G. Pascale”—IRCCS, Napoli, Italia
| |
Collapse
|
46
|
La Sala L, Cattaneo M, De Nigris V, Pujadas G, Testa R, Bonfigli AR, Genovese S, Ceriello A. Oscillating glucose induces microRNA-185 and impairs an efficient antioxidant response in human endothelial cells. Cardiovasc Diabetol 2016; 15:71. [PMID: 27137793 PMCID: PMC4852407 DOI: 10.1186/s12933-016-0390-9] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Accepted: 04/21/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Intracellular antioxidant response to high glucose is mediated by Cu/Mn-superoxide dismutases (SOD-1/SOD-2), catalase (CAT) and glutathione peroxidases (GPx), particularly glutathione peroxidase-1 (GPx-1). Although oscillating glucose can induce a more deleterious effect than high glucose on endothelial cells, the mechanism by which oscillating glucose exerts its dangerous effects is incompletely understood; however, the involvement of oxidative damage has been generally accepted. In this study we sought to determine whether oscillating glucose differentially modulates antioxidant response, and to elucidate the potential regulatory mechanisms exerted by the microRNA-185 (miR-185). METHODS Human endothelial cells were exposed for 1 week to constant and oscillating high glucose. SOD-1, SOD-2, CAT and GPx-1, as well as two markers of oxidative stress [8-hydroxy-2'-deoxyguanosine (8-OHdG) and the phosphorylated form of H2AX (γ-H2AX)] were measured at the end of the experiment. Intracellular miR-185 was measured and loss-of function assays were performed in HUVEC. Bioinformatic tool was used to predict the link between miR-185 on 3'UTR of GPx-1 gene. Luciferase assay was performed to confirm the binding on HUVEC. RESULTS After exposure to constant high glucose SOD-1 and GPx-1 increased, while in oscillating glucose SOD-1 increased and GPx-1 did not. SOD-2 and CAT remained unchanged under both conditions. A critical involvement of oscillating glucose-induced miR-185 in the dysregulation of endogenous GPx-1 was found. Computational analyses predict GPx-1 as miR-185's target. HUVEC cultures were used to confirm glucose's causal role on the expression of miR-185, its target mRNA and protein and finally the activation of antioxidant response. In vitro luciferase assays confirmed computational predictions targeting of miR-185 on 3'-UTR of GPx-1 mRNA. Knockdown of miR-185, using anti-miR-185 inhibitor, was accompanied by a significant upregulation of GPx-1 in oscillating glucose. 8-OHdG and γ-H2AX increased more in oscillating glucose than in constant high glucose. CONCLUSIONS Glucose oscillations may exert more deleterious effects on the endothelium than high glucose, likely due to an impaired response of GPx-1, coupled by the upregulation of miR-185.
Collapse
Affiliation(s)
- Lucia La Sala
- Department of Cardiovascular Research, IRCCS MultiMedica, Milan, MI, Italy
| | - Monica Cattaneo
- Department of Cardiovascular Research, IRCCS MultiMedica, Milan, MI, Italy
| | - Valeria De Nigris
- Insititut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS) and Centro de Investigación Biomedica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Barcelona, Spain
| | - Gemma Pujadas
- Insititut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS) and Centro de Investigación Biomedica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Barcelona, Spain
| | - Roberto Testa
- Experimental Models in Clinical Pathology, INRCA-IRCCS National Institute, Ancona, Italy
| | - Anna R Bonfigli
- Scientific Direction, INRCA, Via S. Margherita, 5, Ancona, 60124, Italy
| | - Stefano Genovese
- Department of Cardiovascular Research, IRCCS MultiMedica, Milan, MI, Italy
| | - Antonio Ceriello
- Insititut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS) and Centro de Investigación Biomedica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Barcelona, Spain.
| |
Collapse
|
47
|
Abstract
Alterations of epigenetic marks are linked to normal development and cellular differentiation as well as to the progression of common chronic diseases. The plasticity of these marks provides potential for disease therapies and prevention strategies. Macro- and micro-nutrients have been shown to modulate disease risk in part via effects on the epigenome. The essential micronutrient selenium affects human health outcomes, e.g., cancers, cardiovascular and autoimmune diseases, via selenoproteins and through a range of biologically active dietary selenocompounds and metabolism products thereof. This review provides an assessment of the current literature regarding epigenetic effects of dietary and synthetic selenocompounds, which include the modulation of marks and editors of epigenetic information and interference with one-carbon metabolism, which provides the methyl donor for DNA methylation. The relevance of a selenium-epigenome interaction for human health is discussed, and we also indicate where future studies will be helpful to gain a deeper understanding of epigenetic effects elicited by selenium.
Collapse
Affiliation(s)
- Bodo Speckmann
- a German Institute of Human Nutrition Potsdam-Rehbruecke ; Department of Molecular Toxicology ; Nuthetal , Germany
| | | |
Collapse
|
48
|
Odriozola L, Corrales FJ. Discovery of nutritional biomarkers: future directions based on omics technologies. Int J Food Sci Nutr 2015; 66 Suppl 1:S31-S40. [PMID: 26241009 DOI: 10.3109/09637486.2015.1038224] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Understanding the interactions between food and human biology is of utmost importance to facilitate the development of more efficient nutritional interventions that might improve our wellness status and future health outcomes by reducing risk factors for non-transmittable chronic diseases, such as cardiovascular diseases, cancer, obesity and metabolic syndrome. Dissection of the molecular mechanisms that mediate the physiological effects of diets and bioactive compounds is one of the main goals of current nutritional investigation and the food industry as might lead to the discovery of novel biomarkers. It is widely recognized that the availability of robust nutritional biomarkers represents a bottleneck that delays the innovation process of the food industry. In this regard, omics sciences have opened up new avenues of research and opportunities in nutrition. Advances in mass spectrometry, nuclear magnetic resonance, next generation sequencing and microarray technologies allow massive genome, gene expression, proteomic and metabolomic profiling, obtaining a global and in-depth analysis of physiological/pathological scenarios. For this reason, omics platforms are most suitable for the discovery and characterization of novel nutritional markers that will define the nutritional status of both individuals and populations in the near future, and to identify the nutritional bioactive compounds responsible for the health outcomes.
Collapse
Affiliation(s)
- Leticia Odriozola
- Proteomics Laboratory, Center for Applied Medical Research (CIMA), University of Navarra , Pamplona , Spain
| | | |
Collapse
|
49
|
Manipulating miRNA Expression: A Novel Approach for Colon Cancer Prevention and Chemotherapy. ACTA ACUST UNITED AC 2015; 1:141-153. [PMID: 26029495 DOI: 10.1007/s40495-015-0020-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Small non-coding RNA has been implicated in the control of various cellular processes such as proliferation, apoptosis, and differentiation. About 50% of the miRNA genes are positioned in cancer-associated genomic regions. Several studies have shown that miRNA expression is deregulated in cancer and modulating their expression has reversed the cancer phenotype. Therefore, mechanisms to modulate microRNA (miRNA) activity have provided a novel opportunity for cancer prevention and therapy. In addition, a common cause for development of colorectal cancers is environmental and lifestyle factors. One such factor, diet has been shown to modulate miRNA expression in colorectal cancer patients. In this chapter, we will summarize the work demonstrating that miRNAs are novel promising drug targets for cancer chemoprevention and therapy. Improved delivery, increased stability and enhanced regulation of off-target effects will overcome the current challenges of this exciting approach in the field of cancer prevention and therapy.
Collapse
|
50
|
Bermingham EN, Hesketh JE, Sinclair BR, Koolaard JP, Roy NC. Selenium-enriched foods are more effective at increasing glutathione peroxidase (GPx) activity compared with selenomethionine: a meta-analysis. Nutrients 2014; 6:4002-31. [PMID: 25268836 PMCID: PMC4210904 DOI: 10.3390/nu6104002] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Revised: 08/20/2014] [Accepted: 08/21/2014] [Indexed: 12/27/2022] Open
Abstract
Selenium may play a beneficial role in multi-factorial illnesses with genetic and environmental linkages via epigenetic regulation in part via glutathione peroxidase (GPx) activity. A meta-analysis was undertaken to quantify the effects of dietary selenium supplementation on the activity of overall GPx activity in different tissues and animal species and to compare the effectiveness of different forms of dietary selenium. GPx activity response was affected by both the dose and form of selenium (p < 0.001). There were differences between tissues on the effects of selenium supplementation on GPx activity (p < 0.001); however, there was no evidence in the data of differences between animal species (p = 0.95). The interactions between dose and tissue, animal species and form were significant (p < 0.001). Tissues particularly sensitive to changes in selenium supply include red blood cells, kidney and muscle. The meta-analysis identified that for animal species selenium-enriched foods were more effective than selenomethionine at increasing GPx activity.
Collapse
Affiliation(s)
- Emma N Bermingham
- Food Nutrition & Health, Food & Bio-based Products, AgResearch Grasslands, Private Bag 11008, Tennent Drive, Palmerston North 4442, New Zealand.
| | - John E Hesketh
- Institute for Cell & Molecular Biosciences, University of Newcastle upon Tyne, Newcastle NE2 4HH, UK.
| | - Bruce R Sinclair
- Food Nutrition & Health, Food & Bio-based Products, AgResearch Grasslands, Private Bag 11008, Tennent Drive, Palmerston North 4442, New Zealand.
| | - John P Koolaard
- Bioinformatics & Statistics AgResearch Grasslands, Private Bag 11008, Tennent Drive, Palmerston North 4442, New Zealand.
| | - Nicole C Roy
- Food Nutrition & Health, Food & Bio-based Products, AgResearch Grasslands, Private Bag 11008, Tennent Drive, Palmerston North 4442, New Zealand.
| |
Collapse
|