1
|
Zhong Y, Yan J, Lei Y, Zhang R, Abudurexiti A, Qi S, Hou W, Ma X. Lactucin and lactucopicrin ameliorate obesity in high-fat diet fed mice by promoting white adipose tissue browning through the activation of the AMPK/SIRT1/PGC-1α pathway. J Nutr Biochem 2025; 139:109851. [PMID: 39909319 DOI: 10.1016/j.jnutbio.2025.109851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 01/21/2025] [Accepted: 01/29/2025] [Indexed: 02/07/2025]
Abstract
Lactucin and lactucopicrin are the characteristic lipid-lowering active components found in Cichorium glandulosum. However, their effects and underlying mechanisms in obesity remain unclear. In the present study, C57BL/6J mice were simultaneously subjected to a high-fat diet (HFD) and treated with drugs to investigate the impacts of lactucin and lactucopicrin on HFD-induced obese mice. The results demonstrated that in HFD obese mice, lactucin and lactucopicrin significantly decreased body weight and the weights of adipose tissues, improved serum metabolic parameters, and increased the content of irisin. Regarding the intermediate metabolites of intestinal flora, which are closely associated with white adipose tissue (WAT) browning, lactucin and lactucopicrin treatment led to a reduction in the levels of 12-α-OH/non-12-α-OH bile acids (BAs) and also tended to enhance the levels of short-chain fatty acids (SCFAs). qRT-PCR results indicated that lactucin and lactucopicrin treatment elevated the expression levels of genes related to beige fat markers, thermogenesis, mitochondrial biogenesis, and lipolysis in WAT, as well as those of thermogenesis and lipolysis genes in brown adipose tissue (BAT). Western blot analysis revealed that lactucin and lactucopicrin up-regulated the expression of uncoupling protein 1 (UCP1), the core protein in thermogenesis, in both WAT and BAT. Moreover, they also up-regulated the expression levels of AMP-activated kinase (AMPK), sirtuin 1 (SIRT1), and PPARγ coactivator 1-alpha (PGC-1α), which are key pathway proteins involved in WAT browning. Furthermore, 16S rRNA sequencing results showed that in HFD obese mice, lactucin and lactucopicrin improved the composition and function of the intestinal microbiota. In conclusion, lactucin and lactucopicrin may promote WAT browning by activating the AMPK/SIRT1/PGC-1α pathway, thereby ameliorating obesity in HFD mice.
Collapse
Affiliation(s)
- Yewei Zhong
- College of Pharmacy, Xinjiang Medical University, Urumqi 830011, China
| | - Junlin Yan
- College of Pharmacy, Xinjiang Medical University, Urumqi 830011, China
| | - Yi Lei
- College of Pharmacy, Xinjiang Medical University, Urumqi 830011, China
| | - Rui Zhang
- College of Pharmacy, Xinjiang Medical University, Urumqi 830011, China
| | | | - Shuwen Qi
- College of Pharmacy, Xinjiang Medical University, Urumqi 830011, China
| | - Wenhui Hou
- College of Pharmacy, Xinjiang Medical University, Urumqi 830011, China
| | - Xiaoli Ma
- College of Pharmacy, Xinjiang Medical University, Urumqi 830011, China.
| |
Collapse
|
2
|
Sati P, Dhyani P, Sharma E, Attri DC, Jantwal A, Devi R, Calina D, Sharifi-Rad J. Gut Microbiota Targeted Approach by Natural Products in Diabetes Management: An Overview. Curr Nutr Rep 2024; 13:166-185. [PMID: 38498287 DOI: 10.1007/s13668-024-00523-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/16/2024] [Indexed: 03/20/2024]
Abstract
PURPOSE OF REVIEW This review delves into the complex interplay between obesity-induced gut microbiota dysbiosis and the progression of type 2 diabetes mellitus (T2DM), highlighting the potential of natural products in mitigating these effects. By integrating recent epidemiological data, we aim to provide a nuanced understanding of how obesity exacerbates T2DM through gut flora alterations. RECENT FINDINGS Advances in research have underscored the significance of bioactive ingredients in natural foods, capable of restoring gut microbiota balance, thus offering a promising approach to manage diabetes in the context of obesity. These findings build upon the traditional use of medicinal plants in diabetes treatment, suggesting a deeper exploration of their mechanisms of action. This comprehensive manuscript underscores the critical role of targeting gut microbiota dysbiosis in obesity-related T2DM management and by bridging traditional knowledge with current scientific evidence; we highlighted the need for continued research into natural products as a complementary strategy for comprehensive diabetes care.
Collapse
Affiliation(s)
- Priyanka Sati
- Department of Biotechnology, Kumaun University, Bhimtal, Uttarakhand, India
| | - Praveen Dhyani
- Institute for Integrated Natural Sciences, University of Koblenz, Koblenz, Germany
| | - Eshita Sharma
- Department of Biochemistry and Molecular Biology, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Dharam Chand Attri
- Department of Botany, Central University of Jammu, Rahya-Suchani (Bagla), Jammu and Kashmir, India
| | - Arvind Jantwal
- Department of Pharmaceutical Sciences, Kumaun University, Bhimtal, Uttarakhand, India
| | - Rajni Devi
- Department of Microbiology, Punjab Agricultural University, Ludhiana-141004, Punjab, India
| | - Daniela Calina
- Department of Clinical Pharmacy, University of Medicine and Pharmacy of Craiova, 200349, Craiova, Romania.
| | | |
Collapse
|
3
|
Li X, Yao Z, Qi X, Cui J, Zhou Y, Tan Y, Huang X, Ye H. Naringin ameliorates obesity via stimulating adipose thermogenesis and browning, and modulating gut microbiota in diet-induced obese mice. Curr Res Food Sci 2024; 8:100683. [PMID: 38313225 PMCID: PMC10835601 DOI: 10.1016/j.crfs.2024.100683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 12/07/2023] [Accepted: 01/17/2024] [Indexed: 02/06/2024] Open
Abstract
Naringin, a natural flavanone primarily found in citrus fruits, has garnered increased attention due to its recognized antioxidative, anti-inflammatory, and cardioprotective attributes. However, the functions of naringin in regulating energy expenditure are poorly understood. In the present study, we observed that twelve weeks of naringin supplementation substantially reshaped the metabolic profile of high-fat diet (HFD)-fed mice, by inhibiting body weight gain, reducing liver weight, and altering body compositions. Notably, naringin exhibited a remarkable capacity to augment whole-body energy expenditure of the tested mice by enhancing the thermogenic activity of brown adipose tissue (BAT) and stimulating browning of inguinal white adipose tissue (iWAT). Furthermore, our results showed naringin supplementation modified gut microbiota composition, specifically increasing the abundance of Bifidobacterium and Lachnospiraceae_bacterium_28-4, while reducing the abundance of Lachnospiraceae_bacterium_DW59 and Dubosiella_newyorkensis. Subsequently, we also found naringin supplementation altered fecal metabolite profile, by significantly promoting the production of taurine, tyrosol, and thymol, which act as potent activators of thermoregulation. Interestingly, the metabolic effects of naringin were abolished upon gut microbiota depletion through antibiotic intervention, concurrently leading the disappearance of naringin-induced thermogenesis and protective actions on diet-induced obesity. This discovery revealed a novel food-driven cross-sectional communication between gut bacteria and adipose tissues. Collectively, our data indicate that naringin supplementation stimulates BAT thermogenesis, alters fat distribution, promotes the browning process, and consequently inhibits body weight gain; importantly these metabolic effects require the participation of gut bacteria.
Collapse
Affiliation(s)
- Xiaoping Li
- College of Culinary Science, Sichuan Tourism University, Chengdu, 610100, China
| | - Zhao Yao
- School of Health Industry, Sichuan Tourism University, Chengdu, 610100, China
| | - Xinyue Qi
- School of Chemistry, Chemical Engineering, and Biotechnology, Nanyang Technological University, Singapore, 637371
| | - JinLing Cui
- College of Culinary Science, Sichuan Tourism University, Chengdu, 610100, China
| | - Yuliang Zhou
- School of Chemistry, Chemical Engineering, and Biotechnology, Nanyang Technological University, Singapore, 637371
| | - Yihong Tan
- School of Chemistry, Chemical Engineering, and Biotechnology, Nanyang Technological University, Singapore, 637371
| | - Xiaojun Huang
- State Key Laboratory of Food Science and Resources, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, 235 Nanjing East Road, Nanchang, 330047, China
| | - Hui Ye
- School of Chemistry, Chemical Engineering, and Biotechnology, Nanyang Technological University, Singapore, 637371
| |
Collapse
|
4
|
Navarro-Masip È, Manocchio F, Colom-Pellicer M, Escoté X, Iglesias-Carres L, Calvo E, Bravo FI, Muguerza B, Desjardins Y, Aragonès G. Vitis vinifera L. Bioactive Components Modulate Adipose Tissue Metabolic Markers of Healthy Rats in a Photoperiod-Dependent Manner. Mol Nutr Food Res 2023; 67:e2300074. [PMID: 37421210 DOI: 10.1002/mnfr.202300074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 05/15/2023] [Indexed: 07/10/2023]
Abstract
SCOPE The beneficial health effects of (poly)phenol-rich foods such as red grapes mainly depend on both the type and concentration of (poly)phenols. Since fruit (poly)phenol content is influenced by growing conditions, the study examines the seasonal effects of red grapes (Vitis vinifera L.), grown under various cultivation conditions, on metabolic markers of adipose tissue in healthy rats. METHODS AND RESULTS For this purpose, Fischer 344 rats are exposed into three different light-dark cycles and daily supplemented with 100 mg kg-1 of either conventionally or organically grown red grapes for 10 weeks (n = 6). Seasonal consumption of organic grapes (OGs), which are richer in anthocyanins, increases energy expenditure (EE) of animals exposed to long photoperiod and enhances uncoupling protein 1 (UCP1) protein expression in brown adipose tissue of animals under standard photoperiod. Additionally, red grape consumption affects the gene expression profile of white adipose tissue (WAT), upregulating browning markers of subcutaneous WAT in 12 h light (L12) and 18 h light (L18) photoperiods, and downregulating adipogenic and lipolytic markers of visceral WAT in 6 h light (L6) and L12 photoperiods. CONCLUSIONS These results clearly show that bioactive compounds of grapes can modulate the metabolic markers of white and brown adipose tissues in a photoperiod and depot-dependent manner, partly affecting EE when consumed out of season.
Collapse
Affiliation(s)
- Èlia Navarro-Masip
- Nutrigenomics Research Group, Department of Biochemistry and Biotechnology, Universitat Rovira i Virgili, Tarragona, 43007, Spain
| | - Francesca Manocchio
- Nutrigenomics Research Group, Department of Biochemistry and Biotechnology, Universitat Rovira i Virgili, Tarragona, 43007, Spain
| | - Marina Colom-Pellicer
- Nutrigenomics Research Group, Department of Biochemistry and Biotechnology, Universitat Rovira i Virgili, Tarragona, 43007, Spain
| | - Xavier Escoté
- Unitat de Nutrició i Salut, Centre Tecnològic de Catalunya, Eurecat, 43204, Reus, Spain
| | - Lisard Iglesias-Carres
- Nutrigenomics Research Group, Department of Biochemistry and Biotechnology, Universitat Rovira i Virgili, Tarragona, 43007, Spain
| | - Enrique Calvo
- Nutrigenomics Research Group, Department of Biochemistry and Biotechnology, Universitat Rovira i Virgili, Tarragona, 43007, Spain
- Institute of Health Pere Virgili (IISPV), Tarragona, 43007, Spain
- Center of Environmental, Food and Toxicological Technology (TecnATox), Universitat Rovira i Virgili, Tarragona, 43007, Spain
| | - Francisca I Bravo
- Nutrigenomics Research Group, Department of Biochemistry and Biotechnology, Universitat Rovira i Virgili, Tarragona, 43007, Spain
- Institute of Health Pere Virgili (IISPV), Tarragona, 43007, Spain
- Center of Environmental, Food and Toxicological Technology (TecnATox), Universitat Rovira i Virgili, Tarragona, 43007, Spain
| | - Begoña Muguerza
- Nutrigenomics Research Group, Department of Biochemistry and Biotechnology, Universitat Rovira i Virgili, Tarragona, 43007, Spain
- Institute of Health Pere Virgili (IISPV), Tarragona, 43007, Spain
- Center of Environmental, Food and Toxicological Technology (TecnATox), Universitat Rovira i Virgili, Tarragona, 43007, Spain
| | - Yves Desjardins
- Faculty of Agriculture and Food Sciences, Institute of Nutrition and Functional Foods (INAF), Laval University, Québec, QC, G1V 0A6, Canada
| | - Gerard Aragonès
- Nutrigenomics Research Group, Department of Biochemistry and Biotechnology, Universitat Rovira i Virgili, Tarragona, 43007, Spain
- Institute of Health Pere Virgili (IISPV), Tarragona, 43007, Spain
- Center of Environmental, Food and Toxicological Technology (TecnATox), Universitat Rovira i Virgili, Tarragona, 43007, Spain
| |
Collapse
|
5
|
Liang S, Li Z, Bao C, Liu B, Zhang H, Yuan Y, Yan H, Chen S, Zhang H, Shi W, Ren F, Li Y. Non-Cardiotoxic Tetradecanoic Acid-2,4-Dinitrophenol Ester Nanomicelles in Microneedles Exert Potent Anti-Obesity Effect by Regulating Adipocyte Browning and Lipogenesis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2301751. [PMID: 37259675 DOI: 10.1002/smll.202301751] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 05/16/2023] [Indexed: 06/02/2023]
Abstract
Sustained oral uncoupler 2,4-dinitrophenol (DNP) administration exerts prominent anti-obesity effects, but the adipose tissue off-target disadvantage leads to systemic adverse effects. A novel non-cardiotoxicity DNP delivery method using a biocompatible microneedles patch containing the amphiphilic tetradecanoic acid-DNP ester (TADNP) is described, which is synthesized via esterification on the phenolic hydroxyl of DNP. The TADNP is self-assembled as nanomicelles, which enhance the endocytosis rate of DNP by adipocytes and its permeation in isolated adipose tissues. The microenvironment of adipose tissues promotes the massive release of DNP and plasma and simulated gastrointestinal fluids. The microneedles-delivered TADNP nanomicelles (MN-TADNP) effectively deliver DNP in treated adipose tissues and reduce DNP content in off-target organs. Both oral and MN patch-delivered TADNP micelles effectively exert anti-obesity effects in a mouse model of high-fat diet-induced obesity; and noteworthily, MN-TADNP exhibit more satisfactory biosafety than oral administration. Here, a smart MN patch loaded with tetradecanoic acid-modified DNP is reported, which enhances its accumulation in adipose tissues and exerts an anti-obesity effect without causing any systemic toxicity.
Collapse
Affiliation(s)
- Shuang Liang
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, 100193, China
| | - Zekun Li
- Research Center of Food Colloids and Delivery of Functionality, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Cheng Bao
- School of Life Science, Ludong University, Yantai, 264000, China
| | - Bin Liu
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, 100193, China
| | - Huijuan Zhang
- Research Center of Food Colloids and Delivery of Functionality, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Yu Yuan
- Research Center of Food Colloids and Delivery of Functionality, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Huiling Yan
- Research Center of Food Colloids and Delivery of Functionality, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Shanan Chen
- Research Center of Food Colloids and Delivery of Functionality, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Hui Zhang
- Research Center of Food Colloids and Delivery of Functionality, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Wenbiao Shi
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, 100193, China
| | - Fazheng Ren
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, 100193, China
| | - Yuan Li
- Research Center of Food Colloids and Delivery of Functionality, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| |
Collapse
|
6
|
Herzl E, Schmitt EE, Shearrer G, Keith JF. The Effects of a Western Diet vs. a High-Fiber Unprocessed Diet on Health Outcomes in Mice Offspring. Nutrients 2023; 15:2858. [PMID: 37447184 DOI: 10.3390/nu15132858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 06/16/2023] [Accepted: 06/21/2023] [Indexed: 07/15/2023] Open
Abstract
Diet influences critical periods of growth, including gestation and early development. We hypothesized that a maternal/early life diet reflecting unprocessed dietary components would positively affect offspring metabolic and anthropometric parameters. Using 9 C57BL-6 dams, we simulated exposure to a Western diet, a high-fiber unprocessed diet (HFUD), or a control diet. The dams consumed their respective diets (Western [n = 3], HFUD [n = 3], and control [n = 3]) through 3 weeks of pregnancy and 3 weeks of weaning; their offspring consumed the diet of their mother for 4.5 weeks post weaning. Measurements included dual X-ray absorptiometry (DEXA) scans, feed consumption, body weight, blood glucose, and insulin and glycated hemoglobin (HbA1c) in the offspring. Statistical analyses included one-way ANOVA with Tukey's post hoc analysis. The offspring DEXA measures at 5 and 7.5 weeks post parturition revealed higher lean body mass development in the HFUD and control diet offspring compared to the Western diet offspring. An analysis indicated that blood glucose (p = 0.001) and HbA1c concentrations (p = 0.002) were lower among the HFUD offspring compared to the Western and control offspring. The results demonstrate that diet during gestation and early life consistent with traditional diet patterns may influence hyperglycemia and adiposity in offspring.
Collapse
Affiliation(s)
- Elizabeth Herzl
- Department of Family & Consumer Sciences, University of Wyoming, Laramie, WY 82071, USA
| | - Emily E Schmitt
- Division of Kinesiology & Health, University of Wyoming, Laramie, WY 82071, USA
- WWAMI Medical Education, University of Wyoming, Laramie, WY 82071, USA
| | - Grace Shearrer
- Department of Family & Consumer Sciences, University of Wyoming, Laramie, WY 82071, USA
- WWAMI Medical Education, University of Wyoming, Laramie, WY 82071, USA
| | - Jill F Keith
- Department of Family & Consumer Sciences, University of Wyoming, Laramie, WY 82071, USA
| |
Collapse
|
7
|
Devi K, Kumar V, Kumar V, Mahajan N, Kaur J, Sharma S, Kumar A, Khan R, Bishnoi M, Kondepudi KK. Modified cereal bran (MCB) from finger millet, kodo millet, and rice bran prevents high-fat diet-induced metabolic derangements. Food Funct 2023; 14:1459-1475. [PMID: 36648164 DOI: 10.1039/d2fo02095e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Cereal bran consumption improves gastrointestinal and metabolic health. Unprocessed cereal brans have a limited shelf-life and contain anti-nutrient phytochemicals. In the present study, lipids and antinutrients (flavonoids, tannin, and polyphenol) were removed from finger millet, kodo millet and rice bran using chemo-enzymatic processing. The thus-obtained modified cereal brans (MCBs) were evaluated for their potential in preventing high fat diet (HFD)-induced obesity. C57BL/6 mice were fed a HFD or a HFD supplemented with 10% w/w modified finger millet bran (mFMB), modified kodo millet bran (mKMB), modified rice bran (mRB), or a combination of the modified brans (1 : 1 : 1) for twelve weeks. The MCBs reduced HFD-induced body weight gain, improved glucose homeostasis, decreased the Firmicutes/Bacteroidetes ratio, and increased the short chain fatty acid (SCFA) levels in the cecum. Liver dyslipidemia, oxidative stress, inflammation, visceral white adipose tissue (vWAT) hypertrophy, and lipolysis were also prevented by the MCBs. Among the individual MCBs, mRB showed a greater effect in preventing HFD-induced increase in the inflammatory cytokines (IL-6, TNF-α, and LPS) than mFMB and mKMB. mFMB and mKMB supplementation more significantly restored the relative abundance of Akkermansia muciniphila and butyrate-producing genera such as Lachnospiraceae, Eubacterium, and Ruminococcus than mRB. Ex vivo gut permeability assay, immunohistochemistry of tight junction proteins, and gene expression analysis in the colon revealed that the combination of three brans was better in preventing HFD-induced leaky gut in comparison to the individual brans. Hierarchical clustering analysis showed that the combination group was clustered closest to the NPD group, suggesting an additive effect. Our study implies that a combination of mFMB, mKMB, and mRB could be used as a nutraceutical or functional food ingredient for preventing HFD-induced gut derangements and associated metabolic complications.
Collapse
Affiliation(s)
- Kirti Devi
- Centre for Excellence in Functional Foods, Division of Food and Nutritional Biotechnology, National Agri-Food Biotechnology Institute (NABI), Knowledge City-Sector 81, SAS Nagar, Punjab 140306, India. .,Department of Biotechnology, Panjab University, Sector-25, Chandigarh 160014, India
| | - Vibhu Kumar
- Centre for Excellence in Functional Foods, Division of Food and Nutritional Biotechnology, National Agri-Food Biotechnology Institute (NABI), Knowledge City-Sector 81, SAS Nagar, Punjab 140306, India. .,University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh 160014, India
| | - Vijay Kumar
- Centre for Excellence in Functional Foods, Division of Food and Nutritional Biotechnology, National Agri-Food Biotechnology Institute (NABI), Knowledge City-Sector 81, SAS Nagar, Punjab 140306, India. .,Department of Biotechnology, Panjab University, Sector-25, Chandigarh 160014, India
| | - Neha Mahajan
- Centre for Excellence in Functional Foods, Division of Food and Nutritional Biotechnology, National Agri-Food Biotechnology Institute (NABI), Knowledge City-Sector 81, SAS Nagar, Punjab 140306, India. .,Regional Centre for Biotechnology, Faridabad-Gurgaon Expressway, Faridabad, Haryana 121001, India
| | - Jasleen Kaur
- Centre for Excellence in Functional Foods, Division of Food and Nutritional Biotechnology, National Agri-Food Biotechnology Institute (NABI), Knowledge City-Sector 81, SAS Nagar, Punjab 140306, India. .,University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh 160014, India
| | - Shikha Sharma
- Centre for Excellence in Functional Foods, Division of Food and Nutritional Biotechnology, National Agri-Food Biotechnology Institute (NABI), Knowledge City-Sector 81, SAS Nagar, Punjab 140306, India. .,Department of Biotechnology, Panjab University, Sector-25, Chandigarh 160014, India
| | - Ajay Kumar
- Institute of Nanoscience and Technology (INST), Knowledge city-Sector 81, SAS Nagar, Punjab 140306, India
| | - Rehan Khan
- Institute of Nanoscience and Technology (INST), Knowledge city-Sector 81, SAS Nagar, Punjab 140306, India
| | - Mahendra Bishnoi
- Centre for Excellence in Functional Foods, Division of Food and Nutritional Biotechnology, National Agri-Food Biotechnology Institute (NABI), Knowledge City-Sector 81, SAS Nagar, Punjab 140306, India. .,Department of Biotechnology, Panjab University, Sector-25, Chandigarh 160014, India.,Regional Centre for Biotechnology, Faridabad-Gurgaon Expressway, Faridabad, Haryana 121001, India
| | - Kanthi Kiran Kondepudi
- Centre for Excellence in Functional Foods, Division of Food and Nutritional Biotechnology, National Agri-Food Biotechnology Institute (NABI), Knowledge City-Sector 81, SAS Nagar, Punjab 140306, India. .,Department of Biotechnology, Panjab University, Sector-25, Chandigarh 160014, India.,Regional Centre for Biotechnology, Faridabad-Gurgaon Expressway, Faridabad, Haryana 121001, India
| |
Collapse
|
8
|
Hei W, You Z, An J, Zhao T, Li J, Zhang W, Li M, Yang Y, Gao P, Cao G, Guo X, Cai C, Li B. FNDC5 Promotes Adipogenic Differentiation of Primary Preadipocytes in Mashen Pigs. Genes (Basel) 2022; 14:genes14010090. [PMID: 36672836 PMCID: PMC9858987 DOI: 10.3390/genes14010090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 12/22/2022] [Accepted: 12/22/2022] [Indexed: 12/31/2022] Open
Abstract
Fibronectin type III domain-containing protein 5 (FNDC5) plays an important role in fat deposition, which can be cut to form Irisin to promote fat thermogenesis, resulting in a decrease in fat content. However, the mechanism of FNDC5 related to fat deposition in pigs is still unclear. In this research, we studied the expression of FNDC5 on different adiposes and its function in the adipogenic differentiation of primary preadipocytes in Mashen pigs. The expression pattern of FNDC5 was detected by qRT-PCR and Western blotting in Mashen pigs. FNDC5 overexpression and interference vectors were constructed and transfected into porcine primary preadipocytes by lentivirus. Then, the expression of key adipogenic genes was detected by qRT-PCR and the content of lipid droplets was detected by Oil Red O staining. The results showed that the expression of FNDC5 in abdominal fat was higher than that in back subcutaneous fat in Mashen pigs, whereas the expression in back subcutaneous fat of Mashen pigs was significantly higher than that of Large White pigs. In vitro, FNDC5 promoted the adipogenic differentiation of primary preadipocytes of Mashen pigs and upregulated the expression of genes related to adipogenesis, but did not activate the extracellular signal-regulated kinase (ERK) signaling pathway. This study can provide a theoretical basis for FNDC5 in adipogenic differentiation in pigs.
Collapse
Affiliation(s)
- Wei Hei
- College of Animal Science, Shanxi Agricultural University, Jinzhong 030801, China
| | - Ziwei You
- College of Animal Science, Shanxi Agricultural University, Jinzhong 030801, China
| | - Jiaqi An
- College of Animal Science, Shanxi Agricultural University, Jinzhong 030801, China
| | - Tianzhi Zhao
- College of Animal Science, Shanxi Agricultural University, Jinzhong 030801, China
| | - Jiao Li
- College of Animal Science, Shanxi Agricultural University, Jinzhong 030801, China
| | - Wanfeng Zhang
- College of Animal Science, Shanxi Agricultural University, Jinzhong 030801, China
| | - Meng Li
- College of Animal Science, Shanxi Agricultural University, Jinzhong 030801, China
| | - Yang Yang
- College of Animal Science, Shanxi Agricultural University, Jinzhong 030801, China
| | - Pengfei Gao
- College of Animal Science, Shanxi Agricultural University, Jinzhong 030801, China
| | - Guoqing Cao
- College of Animal Science, Shanxi Agricultural University, Jinzhong 030801, China
| | - Xiaohong Guo
- College of Animal Science, Shanxi Agricultural University, Jinzhong 030801, China
| | - Chunbo Cai
- College of Animal Science, Shanxi Agricultural University, Jinzhong 030801, China
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Correspondence: (C.C.); (B.L.)
| | - Bugao Li
- College of Animal Science, Shanxi Agricultural University, Jinzhong 030801, China
- Correspondence: (C.C.); (B.L.)
| |
Collapse
|
9
|
Boscaro V, Rivoira M, Sgorbini B, Bordano V, Dadone F, Gallicchio M, Pons A, Benetti E, Rosa AC. Evidence-Based Anti-Diabetic Properties of Plant from the Occitan Valleys of the Piedmont Alps. Pharmaceutics 2022; 14:2371. [PMID: 36365189 PMCID: PMC9693256 DOI: 10.3390/pharmaceutics14112371] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 10/20/2022] [Accepted: 10/28/2022] [Indexed: 10/29/2023] Open
Abstract
Data on urban and rural diabetes prevalence ratios show a significantly lower presence of diabetes in rural areas. Several bioactive compounds of plant origin are known to exert anti-diabetic properties. Interestingly, most of them naturally occur in different plants present in mountainous areas and are linked to traditions of herbal use. This review will aim to evaluate the last 10 years of evidence-based data on the potential anti-diabetic properties of 9 plants used in the Piedmont Alps (North-Western Italy) and identified through an ethnobotanical approach, based on the Occitan language minority of the Cuneo province (Sambucus nigra L., Achillea millefolium L., Cornus mas L., Vaccinium myrtillus L., Fragaria vesca L., Rosa canina L., Rubus idaeus L., Rubus fruticosus/ulmifolius L., Urtica dioica L.), where there is a long history of herbal remedies. The mechanism underlying the anti-hyperglycemic effects and the clinical evidence available are discussed. Overall, this review points to the possible use of these plants as preventive or add-on therapy in treating diabetes. However, studies of a single variety grown in the geographical area, with strict standardization and titration of all the active ingredients, are warranted before applying the WHO strategy 2014-2023.
Collapse
Affiliation(s)
- Valentina Boscaro
- Dipartimento di Scienza e Tecnologia del Farmaco, University of Turin, Via Pietro Giuria 9, 10125 Turin, Italy
| | - Matteo Rivoira
- Dipartimento di Studi Umanistici, University of Turin, Via Sant’Ottavio 20, 10124 Turin, Italy
- Atlante Linguistico Italiano (ALI), Via Sant’Ottavio 20, 10124 Turin, Italy
| | - Barbara Sgorbini
- Dipartimento di Scienza e Tecnologia del Farmaco, University of Turin, Via Pietro Giuria 9, 10125 Turin, Italy
| | - Valentina Bordano
- Dipartimento di Scienza e Tecnologia del Farmaco, University of Turin, Via Pietro Giuria 9, 10125 Turin, Italy
| | - Francesca Dadone
- Dipartimento di Scienza e Tecnologia del Farmaco, University of Turin, Via Pietro Giuria 9, 10125 Turin, Italy
| | - Margherita Gallicchio
- Dipartimento di Scienza e Tecnologia del Farmaco, University of Turin, Via Pietro Giuria 9, 10125 Turin, Italy
| | - Aline Pons
- Dipartimento di Studi Umanistici, University of Turin, Via Sant’Ottavio 20, 10124 Turin, Italy
| | - Elisa Benetti
- Dipartimento di Scienza e Tecnologia del Farmaco, University of Turin, Via Pietro Giuria 9, 10125 Turin, Italy
| | - Arianna Carolina Rosa
- Dipartimento di Scienza e Tecnologia del Farmaco, University of Turin, Via Pietro Giuria 9, 10125 Turin, Italy
| |
Collapse
|
10
|
Xie F, Zou T, Chen J, Liang P, Wang Z, You J. Polysaccharides from Enteromorpha prolifera improves insulin sensitivity and promotes adipose thermogenesis in diet-induced obese mice associated with activation of PGC-1α-FNDC5/irisin pathway. J Funct Foods 2022. [DOI: 10.1016/j.jff.2022.104994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
|
11
|
Natural bioactive constituents from herbs and nutraceuticals promote browning of white adipose tissue. Pharmacol Res 2022; 178:106175. [DOI: 10.1016/j.phrs.2022.106175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 03/05/2022] [Accepted: 03/08/2022] [Indexed: 11/21/2022]
|
12
|
Curcumin and Weight Loss: Does It Work? Int J Mol Sci 2022; 23:ijms23020639. [PMID: 35054828 PMCID: PMC8775659 DOI: 10.3390/ijms23020639] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 12/29/2021] [Accepted: 01/06/2022] [Indexed: 01/27/2023] Open
Abstract
Obesity is a global health problem needing urgent research. Synthetic anti-obesity drugs show side effects and variable effectiveness. Thus, there is a tendency to use natural compounds for the management of obesity. There is a considerable body of knowledge, supported by rigorous experimental data, that natural polyphenols, including curcumin, can be an effective and safer alternative for managing obesity. Curcumin is a is an important compound present in Curcuma longa L. rhizome. It is a lipophilic molecule that rapidly permeates cell membrane. Curcumin has been used as a pharmacological traditional medicinal agent in Ayurvedic medicine for ∼6000 years. This plant metabolite doubtless effectiveness has been reported through increasingly detailed in vitro, in vivo and clinical trials. Regarding its biological effects, multiple health-promoting, disease-preventing and even treatment attributes have been remarkably highlighted. This review documents the status of research on anti-obesity mechanisms and evaluates the effectiveness of curcumin for management of obesity. It summarizes different mechanisms of anti-obesity action, associated with the enzymes, energy expenditure, adipocyte differentiation, lipid metabolism, gut microbiota and anti-inflammatory potential of curcumin. However, there is still a need for systematic and targeted clinical studies before curcumin can be used as the mainstream therapy for managing obesity.
Collapse
|
13
|
Tsai YC, Cheng PY, Chen JH, Lee YM, Yen MH. Raspberry ketone promotes FNDC5 protein expression via HO-1 upregulation in 3T3-L1 adipocytes. CHINESE J PHYSIOL 2022; 65:80-86. [DOI: 10.4103/cjp.cjp_95_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
14
|
Piña-Contreras N, Martínez-Moreno AG, Ramírez-Anaya JDP, Espinoza-Gallardo AC, Valdés EHM. Raspberry (Rubus idaeus L.), a Promising Alternative in the Treatment of Hyperglycemia and Dyslipidemias. J Med Food 2021; 25:121-129. [PMID: 34941428 DOI: 10.1089/jmf.2021.0046] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Raspberry production and consumption have increased in recent years due to its polyphenol content such as anthocyanins and ketones, bioactive compounds that have been studied to reduce blood glucose levels and stabilize the blood lipid profile. The objective of this study was to systematically recover and review scientific evidence regarding the consumption of raspberry or its bioactive compounds and the action mechanisms involved in the hypoglycemic and lipid-lowering effects they present. Original articles from in vitro and in vivo enzyme inhibition studies, animal models, and human clinical studies were compiled in PubMed, Web of Science, and Science Direct databases. Studies showed satisfactory results regarding blood glucose level reduction after consumption of frozen or lyophilized raspberry, infusion of raspberry leaves, seed oil, as well as compounds, extracted from the fruit by inhibiting enzymes such as α-glucosidase and dipeptidyl peptidase-4 (DPP-4) and other mechanisms that increase insulin production and insulin sensitivity. However, regarding the lipid-lowering effect, the results were heterogeneous, mainly in terms of stabilization in triglyceride levels. However, a reduction in cholesterol and low-density lipoprotein levels is reported, as well as an increase in high-density lipoproteins. According to the results, raspberry can be included in the nonpharmacological treatment of hyperglycemia and dyslipidemias; however, further research is considered necessary.
Collapse
Affiliation(s)
- Norma Piña-Contreras
- Behavioral Feeding and Nutrition Research Institute (IICAN), South University Center, University of Guadalajara, Ciudad Guzmán, Jalisco, Mexico
| | - Alma Gabriela Martínez-Moreno
- Behavioral Feeding and Nutrition Research Institute (IICAN), South University Center, University of Guadalajara, Ciudad Guzmán, Jalisco, Mexico
| | - Jessica Del Pilar Ramírez-Anaya
- Department of Computational Sciences and Technological Innovation, South University Center, University of Guadalajara, Guadalajara, Jalisco, Mexico
| | - Ana Cristina Espinoza-Gallardo
- Behavioral Feeding and Nutrition Research Institute (IICAN), South University Center, University of Guadalajara, Ciudad Guzmán, Jalisco, Mexico
| | - Elia Herminia Miramontes Valdés
- Behavioral Feeding and Nutrition Research Institute (IICAN), South University Center, University of Guadalajara, Ciudad Guzmán, Jalisco, Mexico
| |
Collapse
|
15
|
Wiśniewski O, Rajczewski A, Szumigała A, Gibas-Dorna M. Diet-Induced Adipocyte Browning. POL J FOOD NUTR SCI 2021. [DOI: 10.31883/pjfns/143164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
16
|
Effects of Dietary Red Raspberry Consumption on Pre-Diabetes and Type 2 Diabetes Mellitus Parameters. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18179364. [PMID: 34501954 PMCID: PMC8431376 DOI: 10.3390/ijerph18179364] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 08/30/2021] [Accepted: 09/01/2021] [Indexed: 11/17/2022]
Abstract
Type 2 diabetes mellitus (T2DM) is a chronic metabolic condition characterized by glucose clearance abnormalities and insufficient insulin response. Left uncontrolled, T2DM can result in serious complications and death. With no cure available currently and the prevalence of major risk factors such as pre-diabetes and the metabolic syndrome continuously increasing, there is an urgent need for effective treatments with limited or no side effects. Red raspberries (RR) contain various phytonutrients with potential for modulating insulin function, glucose, and lipid metabolism. The objective of this literature review was to investigate the potential metabolic benefits of dietary RR in individuals with T2DM and pre-diabetes. A search of major scientific databases was employed to identify peer-reviewed, in vivo, or human studies that utilized whole RR or its functional constituents as treatment. The studies examined provide evidence that RR may offer clinically beneficial effects for the prevention and management of chronic diseases through improvements in glucose handling and insulin sensitivity, adiposity, lipid profiles, ectopic lipid accumulation, inflammation, oxidative stress, and cardiac health. More human trials and in vivo studies are needed to confirm the benefits of dietary RR in T2DM and pre-diabetes and to explore the dose-dependent relationships, optimal duration, and treatment modality.
Collapse
|
17
|
Fibronectin type III domain-containing 5 in cardiovascular and metabolic diseases: a promising biomarker and therapeutic target. Acta Pharmacol Sin 2021; 42:1390-1400. [PMID: 33214697 PMCID: PMC8379181 DOI: 10.1038/s41401-020-00557-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 10/13/2020] [Indexed: 12/11/2022]
Abstract
Cardiovascular and metabolic diseases are the leading causes of death and disability worldwide and impose a tremendous socioeconomic burden on individuals as well as the healthcare system. Fibronectin type III domain-containing 5 (FNDC5) is a widely distributed transmembrane glycoprotein that can be proteolytically cleaved and secreted as irisin to regulate glycolipid metabolism and cardiovascular homeostasis. In this review, we present the current knowledge on the predictive and therapeutic role of FNDC5 in a variety of cardiovascular and metabolic diseases, such as hypertension, atherosclerosis, ischemic heart disease, arrhythmia, metabolic cardiomyopathy, cardiac remodeling, heart failure, diabetes mellitus, and obesity.
Collapse
|
18
|
Dietary Flavonoids and Insulin Signaling in Diabetes and Obesity. Cells 2021; 10:cells10061474. [PMID: 34208379 PMCID: PMC8231211 DOI: 10.3390/cells10061474] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 06/08/2021] [Accepted: 06/09/2021] [Indexed: 12/11/2022] Open
Abstract
Type 2 diabetes (T2D) and obesity are relevant worldwide chronic diseases. A common complication in both pathologies is the dysregulation of the insulin-signaling pathway that is crucial to maintain an accurate glucose homeostasis. Flavonoids are naturally occurring phenolic compounds abundant in fruits, vegetables and seeds. Rising evidence supports a role for the flavonoids against T2D and obesity, and at present, these compounds are considered as important potential chemopreventive agents. This review summarizes in vitro and in vivo studies providing data related to the effects of flavonoids and flavonoid-rich foods on the modulation of the insulin route during T2D and obesity. Notably, few human studies have evaluated the regulatory effect of these phenolic compounds at molecular level on the insulin pathway. In this context, it is also important to note that the mechanism of action for the flavonoids is not fully characterized and that a proper dosage to obtain a beneficial effect on health has not been defined yet. Further investigations will contribute to solve all these critical challenges and will enable the use of flavonoids to prevent, delay or support the treatment of T2D and obesity.
Collapse
|
19
|
Akhter S. Low to no cost remedies for the management of diabetes mellitus; global health concern. J Diabetes Metab Disord 2021; 20:951-962. [PMID: 34178869 DOI: 10.1007/s40200-021-00783-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 03/20/2021] [Indexed: 12/28/2022]
Abstract
Purpose Diabetes mellitus (DM) is a chronic non-communicable endocrine and metabolic disease that is thought to be the fastest emerging health challenge of the twenty-first century. Presently, 90% of diabetic population is handicapped with T2-DM, and the majority of pre-diabetes on the way to T2-DM progression. By keeping in view, a review article has been compiled to highlight the significance of value aided effective, low-cost, safe, and useful remedies that could easily be accessible to the global community in order to moderate the possibility of DM and related complications. Methods Literature search for this review was carried out using scientific databases including PubMed, EBSCO, Scopus, Web of science, and google scholar. Whilst, value aided articles were selected on the basis of their therapeutic potential, safety profile and outreach. Results Escalating research data validated that herbal remedies and physical activities significantly prevents hyperglycemia, hyperlipidemia, and other complications in people with T2-DM. Conclusion Globally, nearly half-billion individuals are living with diabetes. Therefore, it is urged to embrace herbal remedies and physical mediation in our daily routine in order to tackle such devastating disorder.
Collapse
Affiliation(s)
- Shireen Akhter
- Executive Development Center, Sukkur IBA University, Sukkur, Sindh 65200 Pakistan.,Biotech, Sukkur IBA University, Sukkur, Sindh 65200 Pakistan
| |
Collapse
|
20
|
Petito G, Cioffi F, Silvestri E, De Matteis R, Lattanzi D, de Lange P, Lombardi A, Moreno M, Goglia F, Lanni A, Senese R. 3,5-Diiodo-L-Thyronine (T2) Administration Affects Visceral Adipose Tissue Inflammatory State in Rats Receiving Long-Lasting High-Fat Diet. Front Endocrinol (Lausanne) 2021; 12:703170. [PMID: 34322094 PMCID: PMC8312549 DOI: 10.3389/fendo.2021.703170] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 06/28/2021] [Indexed: 01/03/2023] Open
Abstract
3,5-diiodo-thyronine (T2), an endogenous metabolite of thyroid hormones, exerts beneficial metabolic effects. When administered to overweight rats receiving a high fat diet (HFD), it significantly reduces body fat accumulation, which is a risk factor for the development of an inflammatory state and of related metabolic diseases. In the present study, we focused our attention on T2 actions aimed at improving the adverse effects of long-lasting HFD such as the adipocyte inflammatory response. For this purpose, three groups of rats were used throughout: i) receiving a standard diet for 14 weeks; ii) receiving a HFD for 14 weeks, and iii) receiving a HFD for 14 weeks with a simultaneous daily injection of T2 for the last 4 weeks. The results showed that T2 administration ameliorated the expression profiles of pro- and anti-inflammatory cytokines, reduced macrophage infiltration in white adipose tissue, influenced their polarization and reduced lymphocytes recruitment. Moreover, T2 improved the expression of hypoxia markers, all altered in HFD rats, and reduced angiogenesis by decreasing the pro-angiogenic miR126 expression. Additionally, T2 reduced the oxidative damage of DNA, known to be associated to the inflammatory status. This study demonstrates that T2 is able to counteract some adverse effects caused by a long-lasting HFD and to produce beneficial effects on inflammation. Irisin and SIRT1 pathway may represent a mechanism underlying the above described effects.
Collapse
Affiliation(s)
- Giuseppe Petito
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania “L. Vanvitelli”, Caserta, Italy
| | - Federica Cioffi
- Department of Sciences and Technologies, University of Sannio, Benevento, Italy
- *Correspondence: Rosalba Senese, ; Federica Cioffi,
| | - Elena Silvestri
- Department of Sciences and Technologies, University of Sannio, Benevento, Italy
| | - Rita De Matteis
- Department of Biomolecular Sciences, Urbino University, Urbino, Italy
| | - Davide Lattanzi
- Department of Biomolecular Sciences, Urbino University, Urbino, Italy
| | - Pieter de Lange
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania “L. Vanvitelli”, Caserta, Italy
| | - Assunta Lombardi
- Department of Biology, University of Naples Federico II, Naples, Italy
| | - Maria Moreno
- Department of Sciences and Technologies, University of Sannio, Benevento, Italy
| | - Fernando Goglia
- Department of Sciences and Technologies, University of Sannio, Benevento, Italy
| | - Antonia Lanni
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania “L. Vanvitelli”, Caserta, Italy
| | - Rosalba Senese
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania “L. Vanvitelli”, Caserta, Italy
- *Correspondence: Rosalba Senese, ; Federica Cioffi,
| |
Collapse
|
21
|
The "irisin system": From biological roles to pharmacological and nutraceutical perspectives. Life Sci 2020; 267:118954. [PMID: 33359670 DOI: 10.1016/j.lfs.2020.118954] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 11/30/2020] [Accepted: 12/16/2020] [Indexed: 02/08/2023]
Abstract
The scientific interest in irisin, a myokine discovered in 2012, has grown exponentially in recent years. Irisin, which is mainly produced in skeletal muscle, influences the browning process of adipose tissue and lipid and energy metabolism. Recent discoveries highlight that the potential of this hormone may have been underestimated. In the first part of this review, reports on irisin structure and molecules involved in its metabolic pathway are shown. Furthermore, data related to unclear aspects are also reported: distribution, different gene expression of its precursors in different tissues, physiological levels of circulating irisin, and pharmacokinetic and pharmacodynamic profile. The second part of this work focuses on exogenous stimuli and pharmacological agents which regulate the metabolic pathway of irisin and its serum concentration. In addition to physical exercise and exposure to low temperatures, which were early recognized as exogenous stimuli able to promote the production of this myokine, preclinical and clinical evidence demonstrates the ability of natural and synthetic molecules to interfere with this metabolic pathway. Current experimental data on irisin cannot dissolve all doubts related to this interesting molecule, but they certainly underline its potential for therapeutic purposes. Thus, identification of new pharmacological tools able to act on the irisin pathway is a challenging issue for biomedical research.
Collapse
|
22
|
Rodriguez Lanzi C, Perdicaro DJ, Gambarte Tudela J, Muscia V, Fontana AR, Oteiza PI, Vazquez Prieto MA. Grape pomace extract supplementation activates FNDC5/irisin in muscle and promotes white adipose browning in rats fed a high-fat diet. Food Funct 2020; 11:1537-1546. [PMID: 31998896 DOI: 10.1039/c9fo02463h] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Irisin is a myokine regulated by peroxisome proliferator-activated receptor gamma co-activator-1α (PGC-1α) in the exercising skeletal muscle and released into the bloodstream after cleavage of FNDC5. Circulating irisin can up-regulate UCP-1 expression in white adipose tissue (WAT) promoting the formation of brown-like adipocytes. The aim of this study was to evaluate if supplementation with a grape pomace extract (GPE) could activate the FNDC5/irisin pathway via PGC-1α in rats fed a high fat diet (HFD). For this purpose we characterized the activation of: i. the FNDC5/irisin pathway and AMPK in skeletal muscle and ii. proteins involved in the formation of brown-like cells in epididymal WAT (eWAT). Consumption of the GPE activated the FNDC5/irisin pathway, increased AMPK phosphorylation in skeletal muscle and enhanced irisin plasma levels. In eWAT, the GPE increased the level of proteins involved in WAT browning, i.e. PGC-1α, PPARγ, PRDM16 and UCP-1. The GPE also prevented HFD-induced adipocyte hypertrophy and systemic insulin resistance. Consistently, in L6 myotubes, (-)-epicatechin (EC), a flavonoid abundant in the GPE, prevented palmitate-mediated downregulation of FNDC5/irisin protein expression and secretion, in part via PGC-1α activation. Consumption of the GPE, a winemaking residue rich in bioactive compounds, could be a beneficial strategy to counteract the adverse effects of Western style diets through the promotion of WAT browning.
Collapse
Affiliation(s)
- Cecilia Rodriguez Lanzi
- Laboratorio de Nutrición y Fisiopatología de la Obesidad, Instituto de Medicina y Biología Experimental de Cuyo (IMBECU)-CONICET, Mendoza, Argentina.
| | | | | | | | | | | | | |
Collapse
|
23
|
Kong H, Yu L, Gu Z, Li C, Ban X, Cheng L, Hong Y, Li Z. Novel Short-Clustered Maltodextrin as a Dietary Starch Substitute Attenuates Metabolic Dysregulation and Restructures Gut Microbiota in db/ db Mice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:12400-12412. [PMID: 33084325 DOI: 10.1021/acs.jafc.0c05798] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Molecular structure of starch in daily diet is closely associated with diabetes management. By enzymatically reassembling α-1,4 and α-1,6 glycosidic bonds in starch molecules, we have synthesized an innovative short-clustered maltodextrin (SCMD) which slowly releases glucose during digestion. Here, we investigated the potential benefits of the SCMD-containing diet using diabetic db/db mice. As compared to a diet with normal starch, this dietary style greatly attenuated hyperglycemia and repaired symptoms associated with diabetes. Additionally, in comparison with acarbose (an α-glucosidase inhibitor) administration, the SCMD-containing diet more effectively accelerated brown adipose activation and improved energy metabolism of db/db mice. Furthermore, the SCMD-containing diet was a more suitable approach to improving the intestinal microflora than acarbose administration, especially the proliferation of Mucispirillum, Akkermansia, and Bifidobacterium. These results reveal a novel strategy for diabetes management based on enzymatically rebuilding starch molecules in the daily diet.
Collapse
Affiliation(s)
- Haocun Kong
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Luxi Yu
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Zhengbiao Gu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Collaborative Innovation Center for Food Safety and Quality Control, Jiangnan University, Wuxi 214122, China
| | - Caiming Li
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Collaborative Innovation Center for Food Safety and Quality Control, Jiangnan University, Wuxi 214122, China
| | - Xiaofeng Ban
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Li Cheng
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Collaborative Innovation Center for Food Safety and Quality Control, Jiangnan University, Wuxi 214122, China
| | - Yan Hong
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Collaborative Innovation Center for Food Safety and Quality Control, Jiangnan University, Wuxi 214122, China
| | - Zhaofeng Li
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Collaborative Innovation Center for Food Safety and Quality Control, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
24
|
Sandoval V, Sanz-Lamora H, Arias G, Marrero PF, Haro D, Relat J. Metabolic Impact of Flavonoids Consumption in Obesity: From Central to Peripheral. Nutrients 2020; 12:E2393. [PMID: 32785059 PMCID: PMC7469047 DOI: 10.3390/nu12082393] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 08/01/2020] [Accepted: 08/05/2020] [Indexed: 02/07/2023] Open
Abstract
The prevention and treatment of obesity is primary based on the follow-up of a healthy lifestyle, which includes a healthy diet with an important presence of bioactive compounds such as polyphenols. For many years, the health benefits of polyphenols have been attributed to their anti-oxidant capacity as free radical scavengers. More recently it has been described that polyphenols activate other cell-signaling pathways that are not related to ROS production but rather involved in metabolic regulation. In this review, we have summarized the current knowledge in this field by focusing on the metabolic effects of flavonoids. Flavonoids are widely distributed in the plant kingdom where they are used for growing and defensing. They are structurally characterized by two benzene rings and a heterocyclic pyrone ring and based on the oxidation and saturation status of the heterocyclic ring flavonoids are grouped in seven different subclasses. The present work is focused on describing the molecular mechanisms underlying the metabolic impact of flavonoids in obesity and obesity-related diseases. We described the effects of each group of flavonoids in liver, white and brown adipose tissue and central nervous system and the metabolic and signaling pathways involved on them.
Collapse
Affiliation(s)
- Viviana Sandoval
- Department of Nutrition, Food Sciences and Gastronomy, School of Pharmacy and Food Sciences, Food Torribera Campus, University of Barcelona, E-08921 Santa Coloma de Gramenet, Spain; (V.S.); (H.S.-L.); (G.A.); (P.F.M.)
| | - Hèctor Sanz-Lamora
- Department of Nutrition, Food Sciences and Gastronomy, School of Pharmacy and Food Sciences, Food Torribera Campus, University of Barcelona, E-08921 Santa Coloma de Gramenet, Spain; (V.S.); (H.S.-L.); (G.A.); (P.F.M.)
- Institute of Nutrition and Food Safety of the University of Barcelona (INSA-UB), E-08921 Santa Coloma de Gramenet, Spain
| | - Giselle Arias
- Department of Nutrition, Food Sciences and Gastronomy, School of Pharmacy and Food Sciences, Food Torribera Campus, University of Barcelona, E-08921 Santa Coloma de Gramenet, Spain; (V.S.); (H.S.-L.); (G.A.); (P.F.M.)
| | - Pedro F. Marrero
- Department of Nutrition, Food Sciences and Gastronomy, School of Pharmacy and Food Sciences, Food Torribera Campus, University of Barcelona, E-08921 Santa Coloma de Gramenet, Spain; (V.S.); (H.S.-L.); (G.A.); (P.F.M.)
- Institute of Biomedicine of the University of Barcelona (IBUB), E-08028 Barcelona, Spain
- CIBER Physiopathology of Obesity and Nutrition (CIBER-OBN), Instituto de Salud Carlos III, E-28029 Madrid, Spain
| | - Diego Haro
- Department of Nutrition, Food Sciences and Gastronomy, School of Pharmacy and Food Sciences, Food Torribera Campus, University of Barcelona, E-08921 Santa Coloma de Gramenet, Spain; (V.S.); (H.S.-L.); (G.A.); (P.F.M.)
- Institute of Biomedicine of the University of Barcelona (IBUB), E-08028 Barcelona, Spain
- CIBER Physiopathology of Obesity and Nutrition (CIBER-OBN), Instituto de Salud Carlos III, E-28029 Madrid, Spain
| | - Joana Relat
- Department of Nutrition, Food Sciences and Gastronomy, School of Pharmacy and Food Sciences, Food Torribera Campus, University of Barcelona, E-08921 Santa Coloma de Gramenet, Spain; (V.S.); (H.S.-L.); (G.A.); (P.F.M.)
- Institute of Nutrition and Food Safety of the University of Barcelona (INSA-UB), E-08921 Santa Coloma de Gramenet, Spain
- CIBER Physiopathology of Obesity and Nutrition (CIBER-OBN), Instituto de Salud Carlos III, E-28029 Madrid, Spain
| |
Collapse
|
25
|
Iniguez AB, Zhu MJ. Hop bioactive compounds in prevention of nutrition-related noncommunicable diseases. Crit Rev Food Sci Nutr 2020; 61:1900-1913. [PMID: 32462886 DOI: 10.1080/10408398.2020.1767537] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Nutrition-related noncommunicable diseases (NR-NCDs) such as cardiovascular disease and type 2 diabetes both negatively impact the quality of life of many individuals and generate a substantial burden on society, demonstrating a need for intervention. Phytochemicals are investigated as a potential approach for combating NR-NCDs, and those found in hops have gained increased attention in recent decades. Hops, the strobile of the plant Humulus lupulus, are grown primarily for the brewing industry as they confer taste and increased shelf-life. The bitter acids represent the main compounds of interest for improving beer quality. Additionally, bitter acids as well as the prenylated chalcone xanthohumol, exhibit a wide range of health beneficial properties. This review summarizes those beneficial effects of bitter acids and xanthohumol on NR-NCDs, including inflammatory and immune diseases, obesity and metabolic disorders, as well as cancer prevention.
Collapse
Affiliation(s)
| | - Mei-Jun Zhu
- School of Food Science, Washington State University, Pullman, Washington, USA
| |
Collapse
|
26
|
Zhang D, Li B, Li B, Tang Y. Regulation of left atrial fibrosis induced by mitral regurgitation by SIRT1. Sci Rep 2020; 10:7278. [PMID: 32350389 PMCID: PMC7190846 DOI: 10.1038/s41598-020-64308-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 04/10/2020] [Indexed: 11/09/2022] Open
Abstract
SIRT1 (silent information regulator 1) is a histone deacetylase. It can sense the energy level in cells and delay cell senescence, leading to resistance to external stress and improving metabolism. Mitral regurgitation (MR) is a common disease in cardiac surgery. However, there are no previous studies on SIRT1 and left atrial fibrosis caused by MR. In this study, we aimed to explore the regulatory effect of SIRT1 on left atrial fibrosis induced by MR. We used Guizhou miniature pigs to establish an MR model and a sham operation model after anaesthesia induction and respiratory intubation, and these model animals were followed for 30 months after the surgery. The differential distribution and expression of SIRT1 and collagen I in the left atrium was determined by immunofluorescence and Western blotting. Furthermore, we treated NIH3T3 fibroblasts (CFs) with resveratrol and Angiotensin II (Ang II) to analyse the specific mechanism involved in the development of myocardial fibrosis. The results showed that the MR model was successfully constructed. There were 8 pigs in the MR group and 6 pigs in the control group. In both the animal experiments and the cell experiments, the expression of collagen I in the MR group was increased significantly compared to that in the control group, while the expression of SIRT1 was decreased.
Collapse
Affiliation(s)
- Dong Zhang
- Beijing Jishuitan Hospital, Department of Thoracic Surgery, Beijing, China
| | - Bo Li
- The Seventh Affiliated Hospital, Sun Yat-sen University, Department of Cardiac Surgery, Shenzhen, China
| | - Bin Li
- Animal Experimental Centre, Beijing Key Laboratory of Preclinical Research and Evaluation for Cardiovascular Implant Materials, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Centre for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yue Tang
- Animal Experimental Centre, Beijing Key Laboratory of Preclinical Research and Evaluation for Cardiovascular Implant Materials, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Centre for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| |
Collapse
|
27
|
Liu S, Chang X, Yu J, Xu W. Cerasus humilis Cherry Polyphenol Reduces High-Fat Diet-Induced Obesity in C57BL/6 Mice by Mitigating Fat Deposition, Inflammation, and Oxidation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:4424-4436. [PMID: 32227855 DOI: 10.1021/acs.jafc.0c01617] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
This study aimed to determine the anti-obesity effects and mechanisms of Cerasus humilis polyphenol (CHP) in C57BL/6 obese mice and 3T3-L1 cells. High-performance liquid chromatography-electrospray ionization-tandem mass spectrometry was used for the qualitative and quantitative identification of CHP components. The obese mice, induced by feeding high-fat diet (HFD), were treated with CHP (250 mg/kg/day) by gavage for 12 weeks. Orlistat was gavaged at 15.6 mg/kg bw/day, as a positive control group. The analysis revealed that the main components of CHP were procyanidin B2, cyanidin-3-glucoside, and pelargonidin-3-glucoside. CHP dietary supplementation significantly reduced body weight and improved blood lipid measurements in HFD-fed mice (p < 0.01). Moreover, it inhibited mRNA expression of miR-122, Srebp-1c, and Cpt1a (p < 0.01) and reduced hepatic lipid deposition, as seen by hematoxylin and eosin staining. CHP downregulated the protein expression of PPARγ and C/EBPα in HFD-induced obese mice and inhibited adipocyte differentiation (p < 0.01). Compared with the HFD group, CHP supplementation had an obvious anti-inflammatory effect (decreased protein expression, such as TNF-α, IL-6, and MCP1), reducing leptin levels and TNF-α secretion in serum and cells (p < 0.01). CHP significantly inhibited the expression of miR-27a/b (53.3 and 29.9%, p < 0.01) in mice retroperitoneal white adipocytes, enhancing the expression of the target gene Prdm16 and significantly upregulating Sirt1 (105.5%, p < 0.01) compared with the HFD group. Moreover, CHP supplementation effectively improved oxidative stress (ROS, T-AOC, SOD, CAT, and GSH-Px) induced by HFD in obese mice (p < 0.01). Thus, CHP mitigates adipocyte differentiation, browning of white adipocytes, and reduction of inflammation and antioxidant activity to reduce obesity. Consequently, these results provide novel insights into the anti-obesity roles of CHP in HFD-induced obesity.
Collapse
Affiliation(s)
- Suwen Liu
- College of Food Science & Technology, Hebei Normal University of Science and Technology, Qinhuangdao, Hebei 066004, China
| | - Xuedong Chang
- College of Food Science & Technology, Hebei Normal University of Science and Technology, Qinhuangdao, Hebei 066004, China
- Hebei Yanshan Special Industrial Technology Research Institute, Qinhuangdao, Hebei 066004, China
| | - Jincheng Yu
- College of Food Science & Technology, Hebei Normal University of Science and Technology, Qinhuangdao, Hebei 066004, China
| | - Weifeng Xu
- College of Food Science & Technology, Hebei Normal University of Science and Technology, Qinhuangdao, Hebei 066004, China
| |
Collapse
|
28
|
Hu J, Wang Z, Tan BK, Christian M. Dietary polyphenols turn fat “brown”: A narrative review of the possible mechanisms. Trends Food Sci Technol 2020. [DOI: 10.1016/j.tifs.2020.01.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
29
|
Raspberry supplementation reduces lipid accumulation and improves insulin sensitivity in skeletal muscle of mice fed a high-fat diet. J Funct Foods 2019. [DOI: 10.1016/j.jff.2019.103572] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
|
30
|
Ballard CR, Galvão TF, Cazarin CB, Maróstica MR. Effects of Polyphenol-Rich Fruit Extracts on Diet-Induced Obesity in Rodents: Systematic Review and Meta-Analysis. Curr Pharm Des 2019; 25:3484-3497. [DOI: 10.2174/1381612824666191010170100] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 10/01/2019] [Indexed: 12/20/2022]
Abstract
Background::Obesity is a complex condition of high prevalence and cost to the public health system. Recent research has demonstrated the potential of natural products, such as polyphenol-rich fruit extracts, for use in the treatment of obesity. The goal of this systematic review and meta-analysis is to determine the metabolic effects of polyphenol-rich fruit extracts on diet-induced obesity (DIO) in rodents.Methods:We searched MEDLINE, EMBASE, and Web of Science databases to identify preclinical studies that assessed polyphenol-rich fruit extracts compared to placebo on DIO in rodents in December 2018. Two researchers selected the studies, extracted the data, and assessed the quality of studies. Meta-analyses of standardized mean difference (SMD) of outcomes were calculated in Stata 11, and causes of heterogeneity were assessed by meta-regression.Results:We included 14 studies in the systematic review and 13 studies with 21 matched groups in the metaanalysis. Polyphenol-rich fruit extracts reduced the total body weight gain (SMD = -1.48; confidence interval: - 1.95, -1.01), energy intake (SMD = -0.42; -0.67, -0.17), visceral adipose tissue (SMD = -0.96; -1.25, -0.66), triglycerides (SMD = -1.00; -1.39, -0.62), cholesterol (SMD = -1.18, -1.66, -0.69), LDL- c (SMD = -1.15; -1.65, - 0.65), fasting glucose (SMD = -1.05; -1.65, -0.46), and fasting insulin (SMD = -1.40; -1.80, -1.00) when compared to vehicle.Conclusion:Polyphenol-rich fruit extract had positive effects on weight gain, dyslipidaemia, insulin resistance at different doses, and fruit source in male mice.
Collapse
Affiliation(s)
- Cíntia R. Ballard
- Department of Food and Nutrition, School of Food Engineering, University of Campinas, Campinas, Brazil
| | - Tais F. Galvão
- School of Pharmaceutical Sciences, University of Campinas, Campinas, Brazil
| | - Cinthia B.B. Cazarin
- Department of Food and Nutrition, School of Food Engineering, University of Campinas, Campinas, Brazil
| | - Mário R. Maróstica
- Department of Food and Nutrition, School of Food Engineering, University of Campinas, Campinas, Brazil
| |
Collapse
|
31
|
Raspberry (Rubus idaeus L.) fruit extract decreases oxidation markers, improves lipid metabolism and reduces adipose tissue inflammation in hypertrophied 3T3-L1 adipocytes. J Funct Foods 2019. [DOI: 10.1016/j.jff.2019.103568] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
|
32
|
Liu S, Sui Q, Zhao Y, Chang X. Lonicera caerulea Berry Polyphenols Activate SIRT1, Enhancing Inhibition of Raw264.7 Macrophage Foam Cell Formation and Promoting Cholesterol Efflux. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:7157-7166. [PMID: 31146527 DOI: 10.1021/acs.jafc.9b02045] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Lonicera caerulea berry polyphenols (LCBP) are known to reduce cholesterol accumulation. Currently, it is unknown whether LCBP can activate Sirtuin 1 (SIRT1) to regulate the formation of RAW264.7 macrophage foam cells. In this study, the effect of LCBP on lipid accumulation in macrophages was evaluated. Fluorescently labeled ox-LDL and 25-NBD cholesterol were used to detect the ox-LDL uptake and cholesterol outflow rate from macrophages. Gene silencing was performed using siRNA to detect changes in the expression of the ATP-binding cassette transporter A1 (ABCA1), sterol regulatory element-binding protein 2 (SREBP2), and SIRT1 proteins using Western blotting, and changes in the expression of miR-33 were detected by real-time polymerase chain reaction. The results showed that treatment with 80 μg/mL LCBP significantly inhibited the accumulation of lipids in RAW264.7 macrophages induced by ox-LDL and reduced intracellular cholesterol levels by activating SIRT1 to enhance the expression of ABCA1, a cholesterol efflux gene, but not independent effect. Of the three key LCBP components investigated, chlorogenic acid was found to activate SIRT1 and regulate the expression of the cholesterol-related factors ABCA1, SREBP2, and miR-33; cyanidin-3-glucoside and catechins were effective to a lesser extent. Our results suggest a novel hypolipidemic mechanism of LCBP.
Collapse
Affiliation(s)
- Suwen Liu
- College of Food Science & Technology , Hebei Normal University of Science and Technology , Qinhuangdao , Hebei 066004 , China
| | - Qianqian Sui
- College of Food Science & Technology , Hebei Normal University of Science and Technology , Qinhuangdao , Hebei 066004 , China
| | - Yanxue Zhao
- College of Food Science & Technology , Hebei Normal University of Science and Technology , Qinhuangdao , Hebei 066004 , China
| | - Xuedong Chang
- College of Food Science & Technology , Hebei Normal University of Science and Technology , Qinhuangdao , Hebei 066004 , China
- Hebei Yanshan Special Industrial Technology Research Institute , Qinhuangdao , Hebei 066004 , China
| |
Collapse
|
33
|
Kshatriya D, Li X, Giunta GM, Yuan B, Zhao D, Simon JE, Wu Q, Bello NT. Phenolic-enriched raspberry fruit extract (Rubus idaeus) resulted in lower weight gain, increased ambulatory activity, and elevated hepatic lipoprotein lipase and heme oxygenase-1 expression in male mice fed a high-fat diet. Nutr Res 2019; 68:19-33. [PMID: 31252376 DOI: 10.1016/j.nutres.2019.05.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 05/06/2019] [Accepted: 05/17/2019] [Indexed: 12/15/2022]
Abstract
Red raspberries (Rubus idaeus) contain numerous phenolic compounds with purported health benefits. Raspberry ketone (4-(4-hydroxyphenyl)-2-butanone) is a primary raspberry flavor phenolic found in raspberries and is designated as a synthetic flavoring agent by the Food and Drug Administration. Synthetic raspberry ketone has been demonstrated to result in weight loss in rodents. We tested whether phenolic-enriched raspberry extracts, compared with raspberry ketone, would be more resilient to the metabolic alterations caused by an obesogenic diet. Male C57BL/6J mice (8 weeks old) received a daily oral dose of vehicle (VEH; 50% propylene glycol, 40% water, and 10% dimethyl sulfoxide), raspberry extract low (REL; 0.2 g/kg), raspberry extract high (REH; 2 g/kg), or raspberry ketone (RK; 0.2 g/kg). Coincident with daily dosing, mice were placed on a high-fat diet (45% fat). After 4 weeks, REH and RK reduced body weight gain (approximately 5%-9%) and white adipose mass (approximately 20%) compared with VEH. Hepatic gene expression of heme oxygenase-1 and lipoprotein lipase was upregulated in REH compared with VEH. Indirect calorimetry indicated that respiratory exchange ratio (CO2 production to O2 consumption) was lower, suggesting increased fat oxidation with all treatments. REH treatment increased total ambulatory behavior. Energy expenditure/lean mass was higher in REH compared with REL treatment. There were no treatment differences in cumulative intake, meal patterns, or hypothalamic feed-related gene expression. Our results suggest that raspberry ketone and a phenolic-enriched raspberry extract both have the capacity to prevent weight gain but differ in the preventative mechanisms for excess fat accumulation following high-fat diet exposure.
Collapse
Affiliation(s)
- Dushyant Kshatriya
- Department of Animal Sciences, School of Environmental and Biological Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ, 08901, USA; Nutritional Sciences Graduate Program, School of Environmental and Biological Sciences, Rutgers, The State University of New Jersey New Brunswick, NJ, 08901, USA
| | - Xinyi Li
- Department of Animal Sciences, School of Environmental and Biological Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ, 08901, USA; Nutritional Sciences Graduate Program, School of Environmental and Biological Sciences, Rutgers, The State University of New Jersey New Brunswick, NJ, 08901, USA
| | - Gina M Giunta
- Department of Animal Sciences, School of Environmental and Biological Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ, 08901, USA
| | - Bo Yuan
- New Use Agriculture and Natural Plant Products Program, Department of Plant Biology, School of Environmental and Biological Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ, 08901, USA
| | - Danyue Zhao
- New Use Agriculture and Natural Plant Products Program, Department of Plant Biology, School of Environmental and Biological Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ, 08901, USA
| | - James E Simon
- New Use Agriculture and Natural Plant Products Program, Department of Plant Biology, School of Environmental and Biological Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ, 08901, USA
| | - Qingli Wu
- New Use Agriculture and Natural Plant Products Program, Department of Plant Biology, School of Environmental and Biological Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ, 08901, USA
| | - Nicholas T Bello
- Department of Animal Sciences, School of Environmental and Biological Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ, 08901, USA; Nutritional Sciences Graduate Program, School of Environmental and Biological Sciences, Rutgers, The State University of New Jersey New Brunswick, NJ, 08901, USA.
| |
Collapse
|
34
|
Burton-Freeman B, Brzeziński M, Park E, Sandhu A, Xiao D, Edirisinghe I. A Selective Role of Dietary Anthocyanins and Flavan-3-ols in Reducing the Risk of Type 2 Diabetes Mellitus: A Review of Recent Evidence. Nutrients 2019; 11:E841. [PMID: 31013914 PMCID: PMC6520947 DOI: 10.3390/nu11040841] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Revised: 03/29/2019] [Accepted: 04/10/2019] [Indexed: 12/12/2022] Open
Abstract
Type 2 diabetes mellitus (T2DM) is the most common form of DM and its prevalence is increasing worldwide. Because it is a progressive disease, prevention, early detection and disease course modification are possible. Diet plays a critical role in reducing T2DM risk. Therapeutic dietary approaches routinely recommend diets high in plant foods (i.e., vegetables, fruits, whole-grains). In addition to essential micronutrients and fiber, plant-based diets contain a wide-variety of polyphenols, specifically flavonoid compounds. Evidence suggests that flavonoids may confer specific benefits for T2DM risk reduction through pathways influencing glucose absorption and insulin sensitivity and/or secretion. The present review assesses the relationship between dietary flavonoids and diabetes risk reduction reviewing current epidemiology and clinical research. Collectively, the research indicates that certain flavonoids, explicitly anthocyanins and flavan-3-ols and foods rich in these compounds, may have an important role in dietary algorithms aimed to address diabetes risk factors and the development of T2DM.
Collapse
Affiliation(s)
- Britt Burton-Freeman
- Department of Food Science and Nutrition, Center for Nutrition Research, Institute for Food Safety and Health, Illinois Institute of Technology, Chicago, IL 60616, USA.
| | - Michał Brzeziński
- Department of Food Science and Nutrition, Center for Nutrition Research, Institute for Food Safety and Health, Illinois Institute of Technology, Chicago, IL 60616, USA.
- Department of Public Health and Social Medicine, Medical University of Gdansk, 80-210 Gdansk, Poland.
| | - Eunyoung Park
- Department of Food Science and Nutrition, Center for Nutrition Research, Institute for Food Safety and Health, Illinois Institute of Technology, Chicago, IL 60616, USA.
| | - Amandeep Sandhu
- Department of Food Science and Nutrition, Center for Nutrition Research, Institute for Food Safety and Health, Illinois Institute of Technology, Chicago, IL 60616, USA.
| | - Di Xiao
- Department of Food Science and Nutrition, Center for Nutrition Research, Institute for Food Safety and Health, Illinois Institute of Technology, Chicago, IL 60616, USA.
| | - Indika Edirisinghe
- Department of Food Science and Nutrition, Center for Nutrition Research, Institute for Food Safety and Health, Illinois Institute of Technology, Chicago, IL 60616, USA.
| |
Collapse
|
35
|
Peng J, Jia Y, Hu T, Du J, Wang Y, Cheng B, Li K. GC-(4→8)-GCG, A Proanthocyanidin Dimer from Camellia ptilophylla, Modulates Obesity and Adipose Tissue Inflammation in High-Fat Diet Induced Obese Mice. Mol Nutr Food Res 2019; 63:e1900082. [PMID: 30893514 DOI: 10.1002/mnfr.201900082] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 02/25/2019] [Indexed: 12/22/2022]
Abstract
SCOPE Excessive fat accumulation in adipose tissue leads to obesity and related chronic inflammation. This study aims to examine the effects of gallocatechin -(4→8)-gallocatechin-3-O-gallate (GC-(4→8)-GCG), a main proanthocyanidin dimer from Camellia ptilophylla (Cocoa tea), on adipocyte- and adipose-related inflammation in vivo and in vitro. METHODS AND RESULTS C57BL/6 mice are fed a high-fat diet (HFD) and GC-(4→8)-GCG (40 or 80 mg kg-1 d-1 ) for 8 weeks. The metabolic profiles, adipose tissue hypertrophy, macrophage infiltration, and inflammatory cytokine production are investigated. Additionally, 3T3-L1 preadipocytes are utilized to investigate the effect of GC-(4→8)-GCG on preadipocyte differentiation and the tumor necrosis factor (TNF)-α-stimulated inflammatory response in vitro. GC-(4→8)-GCG supplementation decreases HFD-induced epididymal white adipose tissue (eWAT) hypertrophy, suppresses proinflammatory cytokine production and macrophage infiltration in eWAT, and improves insulin sensitivity in HFD-induced obese mice. In vitro, GC-(4→8)-GCG shows a strong anti-adipogenic potential in 3T3-L1 preadipocyte by inhibiting the expression of key adipogenic transcription factors and decreasing the production of proinflammatory cytokines by inhibiting the activation of the nuclear factor (NF)-κB, Janus tyrosine kinase/signal transducer and activator of transcription (JAK/STAT3) and mitogen-activated protein kinase (MAPK) signaling pathways. CONCLUSION GC-(4→8)-GCG can modulate obesity and improve obesity-related insulin resistance by inhibiting preadipocyte differentiation and the related proinflammatory responses.
Collapse
Affiliation(s)
- Jinming Peng
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yan Jia
- Beijing Key Lab of Plant Resource Research and Development, School of Science, Beijing Technology and Business University, Beijing, 100048, China
| | - Tianyong Hu
- Shenzhen Key Laboratory of ENT, Longgang ENT Hospital and Institute of ENT, Shenzhen, 518172, China
| | - Jing Du
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yue Wang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Baohui Cheng
- Shenzhen Key Laboratory of ENT, Longgang ENT Hospital and Institute of ENT, Shenzhen, 518172, China
| | - Kaikai Li
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China.,Key Laboratory of Environment Correlative Food Science (Huazhong Agricultural University), Ministry of Education, Wuhan, 430070, China
| |
Collapse
|
36
|
Xiao D, Zhu L, Edirisinghe I, Fareed J, Brailovsky Y, Burton-Freeman B. Attenuation of Postmeal Metabolic Indices with Red Raspberries in Individuals at Risk for Diabetes: A Randomized Controlled Trial. Obesity (Silver Spring) 2019; 27:542-550. [PMID: 30767409 DOI: 10.1002/oby.22406] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Accepted: 11/29/2018] [Indexed: 01/08/2023]
Abstract
OBJECTIVE This study investigated the effect of red raspberry intake on meal-induced postprandial metabolic responses in individuals who have overweight or obesity with prediabetes and insulin resistance (PreDM-IR), and in metabolically healthy individuals (Reference). METHODS Thirty-two adults (PreDM-IR, n = 21; Reference, n = 11) were randomized to a controlled, three-arm, single-blinded, crossover trial. Participants were provided 0 g of frozen red raspberries (Control), 125 g of frozen red raspberries (RR-125) (~1 cup), or 250 g of frozen red raspberries (RR-250) (~2 cups), with a challenge breakfast meal (high carbohydrate/moderate fat) on three separate days. Multiple blood samples were collected up to 8 hours post breakfast with a final blood sample at 24 hours. A snack was provided at 6 hours. RESULTS Breakfast containing RR-125 and RR-250 significantly reduced 2-hour insulin area under the curve, and RR-250 reduced peak insulin, peak glucose, and 2-hour glucose AUC compared with Control in the PreDM-IR group (P < 0.05). Postprandial triglycerides were significantly lower after RR-125 versus RR-250 (P = 0.01) but not different from Control (P > 0.05). No significant meal-related differences were observed for oxidative stress or inflammatory biomarkers. CONCLUSIONS Our findings suggest that red raspberries aid in postmeal glycemic control in individuals with PreDM-IR, reducing glycemic burden with less insulin, which may be related to improved tissue insulin sensitivity.
Collapse
Affiliation(s)
- Di Xiao
- Center for Nutrition Research, Institution for Food Safety and Health, Illinois Institute of Technology, Chicago, Illinois, USA
| | - Lanjun Zhu
- Center for Nutrition Research, Institution for Food Safety and Health, Illinois Institute of Technology, Chicago, Illinois, USA
| | - Indika Edirisinghe
- Center for Nutrition Research, Institution for Food Safety and Health, Illinois Institute of Technology, Chicago, Illinois, USA
| | - Jawed Fareed
- Department of Pharmacology, Loyola University Medical Center, Maywood, Illinois, USA
| | - Yevgeniy Brailovsky
- Department of Medicine, Loyola University Medical Center, Maywood, Illinois, USA
| | - Britt Burton-Freeman
- Center for Nutrition Research, Institution for Food Safety and Health, Illinois Institute of Technology, Chicago, Illinois, USA
- Department of Nutrition, University of California, Davis, California, USA
| |
Collapse
|
37
|
Mechanisms underlying the metabolic beneficial effect of curcumin intervention: Beyond anti-inflammation and anti-oxidative stress. ACTA ACUST UNITED AC 2019. [DOI: 10.1016/j.obmed.2018.11.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
38
|
Zhao Z, Yao M, Wei L, Ge S. Obesity caused by a high-fat diet regulates the Sirt1/PGC-1α/FNDC5/BDNF pathway to exacerbate isoflurane-induced postoperative cognitive dysfunction in older mice. Nutr Neurosci 2019; 23:971-982. [PMID: 30794116 DOI: 10.1080/1028415x.2019.1581460] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Objectives: To investigate the effects of obesity caused by high-fat diet (HFD) on postoperative cognitive dysfunction (POCD) and expression of the Sirt1/PGC-1α/FNDC5/BDNF pathway in the hippocampus of older mice. Methods: Fifty-six 15-month-old male C57BL/6 mice were randomly divided into eight groups - ad libitum control (ALC), ad libitum surgery (ALS), ad libitum surgery with PBS (ALS + PBS), ad libitum surgery with resveratrol (ALS + Res), HFD control (HFC), HFD surgery (HFS), HFD surgery with PBS (HFS + PBS), HFD surgery with resveratrol (HFS + Res). Surgery group mice were exposed to isoflurane before tibial fracture internal fixation. Open field tests and fear conditioning were performed to test motor ability and memory. The levels of expression of Sirt1, PGC-1α, FNDC5, and BDNF were detected using western blot and immunofluorescence. Results: The results of the open field tests indicated there were no between-group differences in motor ability and anxiety. The results of the fear conditioning indicated that the memory of the HFC group and HFS group mice were significantly worse compared with the ALC group and ALS group mice, respectively. There were parallel decreases in expression of the Sirt1/PGC-1α/FNDC5/BDNF pathway in the hippocampi of the HFC and HFS group mice. Resveratrol treatment attenuated the memory loss by increasing hippocampal Sirt1 expression. Expression of the PGC-1α/FNDC5/ BDNF pathway in the CA1 area of the hippocampus was upregulated after resveratrol treatment. Conclusion: An HFD exacerbates POCD in older mice. This change was related to HFD inhibition of expression of the Sirt1/PGC-1α/FNDC5/BDNF pathway in the hippocampus. Resveratrol pretreatment reversed the memory loss via upregulation of this pathway.
Collapse
Affiliation(s)
- Zhimeng Zhao
- Department of Anesthesia, Zhongshan Hospital, Fudan University, Shanghai, People's Republic of China
| | - Minmin Yao
- Department of Anesthesia, Zhongshan Hospital, Fudan University, Shanghai, People's Republic of China
| | - Lan Wei
- Department of Anesthesia, Zhongshan Hospital, Fudan University, Shanghai, People's Republic of China
| | - Shengjin Ge
- Department of Anesthesia, Zhongshan Hospital, Fudan University, Shanghai, People's Republic of China
| |
Collapse
|
39
|
Srivastava S, Veech RL. Brown and Brite: The Fat Soldiers in the Anti-obesity Fight. Front Physiol 2019; 10:38. [PMID: 30761017 PMCID: PMC6363669 DOI: 10.3389/fphys.2019.00038] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Accepted: 01/14/2019] [Indexed: 12/16/2022] Open
Abstract
Brown adipose tissue (BAT) is proposed to maintain thermal homeostasis through dissipation of chemical energy as heat by the uncoupling proteins (UCPs) present in their mitochondria. The recent demonstration of the presence of BAT in humans has invigorated research in this area. The research has provided many new insights into the biology and functioning of this tissue and the biological implications of its altered activities. Another finding of interest is browning of white adipose tissue (WAT) resulting in what is known as beige/brite cells, which have increased mitochondrial proteins and UCPs. In general, it has been observed that the activation of BAT is associated with various physiological improvements such as a reduction in blood glucose levels increased resting energy expenditure and reduced weight. Given the similar physiological functions of BAT and beige/ brite cells and the higher mass of WAT compared to BAT, it is likely that increasing the brite/beige cells in WATs may also lead to greater metabolic benefits. However, development of treatments targeting brown fat or WAT browning would require not only a substantial understanding of the biology of these tissues but also the effect of altering their activity levels on whole body metabolism and physiology. In this review, we present evidence from recent literature on the substrates utilized by BAT, regulation of BAT activity and browning by circulating molecules. We also present dietary and pharmacological activators of brown and beige/brite adipose tissue and the effect of physical exercise on BAT activity and browning.
Collapse
Affiliation(s)
- Shireesh Srivastava
- Systems Biology for Biofuels Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi, India
| | - Richard L Veech
- Laboratory of Metabolic Control, National Institute on Alcohol Abuse and Alcoholism (NIAAA), National Institutes of Health (NIH), Bethesda, MD, United States
| |
Collapse
|
40
|
Zhao L, Zou T, Gomez NA, Wang B, Zhu MJ, Du M. Raspberry alleviates obesity-induced inflammation and insulin resistance in skeletal muscle through activation of AMP-activated protein kinase (AMPK) α1. Nutr Diabetes 2018; 8:39. [PMID: 29961765 PMCID: PMC6026595 DOI: 10.1038/s41387-018-0049-6] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 05/23/2018] [Indexed: 12/21/2022] Open
Abstract
OBJECTIVE Through dynamic means, etiological factors, including chronic inflammation and insulin resistance have the potential to perpetuate metabolic incidences such as type 2 diabetes and obesity. Abatement of such syndromes can be achieved by complex mechanisms initiated through bioactive compounds such as polyphenols derived from fruits. Using a whole-fruit approach, the effects of dietary red raspberry, which is rich in polyphenols, on inflammatory responses and insulin resistance in the skeletal muscles of Mus musculus were studied along with the potential role of AMP-activated protein kinase (AMPK) to act as a key mediator. SUBJECTS Wild-type (WT) mice and mice deficient in the catalytic subunit (α1) of AMPK (AMPKα1-/-) were fed with a high-fat diet (HFD) or HFD supplemented with raspberry (5% dry weight) for 10 weeks. Factors involved in inflammatory responses, insulin signaling transduction, and mitochondrial biogenesis were evaluated. RESULTS Dietary raspberry reduced ectopic lipid storage, alleviated inflammation responses, improved whole-body insulin sensitivity, and promoted mitochondrial biogenesis in the skeletal muscle of WT mice, but not AMPKα1-/- mice. CONCLUSIONS AMPKα1 is an important mediator for the beneficial effects of raspberry through alleviating inflammatory responses and sensitizing insulin signaling in skeletal muscle of HFD-fed mice.
Collapse
Affiliation(s)
- Liang Zhao
- Department of Animal Sciences, Nutrigenomics and Growth Biology laboratory, Washington State University, Pullman, WA, 99164, USA
| | - Tiande Zou
- Department of Animal Sciences, Nutrigenomics and Growth Biology laboratory, Washington State University, Pullman, WA, 99164, USA
- Jiangxi Province Key Laboratory of Animal Nutrition, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, 330045, China
| | - Noe Alberto Gomez
- Department of Animal Sciences, Nutrigenomics and Growth Biology laboratory, Washington State University, Pullman, WA, 99164, USA
| | - Bo Wang
- Department of Animal Sciences, Nutrigenomics and Growth Biology laboratory, Washington State University, Pullman, WA, 99164, USA
| | - Mei-Jun Zhu
- School of Food Sciences, Washington State University, Pullman, WA, 99164, USA
| | - Min Du
- Department of Animal Sciences, Nutrigenomics and Growth Biology laboratory, Washington State University, Pullman, WA, 99164, USA.
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing, 100194, China.
| |
Collapse
|