1
|
Gogola T, Pitkänen S, Huovinen M, Laitinen H, Küblbeck J. Association between phthalate exposure and metabolic dysfunction-associated steatotic liver disease (MASLD) - Systematic literature review. ENVIRONMENTAL RESEARCH 2025; 273:121186. [PMID: 39986424 DOI: 10.1016/j.envres.2025.121186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 02/18/2025] [Accepted: 02/19/2025] [Indexed: 02/24/2025]
Abstract
The prevalence of metabolic dysfunction-associated steatotic liver disease (MASLD) is rising globally. Recent studies have suggested connections between exposure to endocrine disrupting chemicals (EDCs) and the development of MASLD. Phthalates, which are commonly utilized as plasticizers, in building materials and consumer items, exhibit endocrine disrupting effects and have been shown to interfere with lipid metabolism in mechanistic studies. The objective of this systematic review was to examine the association between MASLD and exposure to phthalates in the adult human populations. We searched PubMed, Scopus and Web of Science for studies published from the inception of each database until December 12, 2024. The literature search yielded 10 cross-sectional studies, which were analyzed in detail. The key findings of this study indicate a potential correlation between the prevalence of MASLD and exposure to certain phthalates. Among the phthalates examined, the metabolites of bis(2-ethylhexyl) phthalate (DEHP) - namely MECPP, MEHHP, and MEOHP, demonstrated the strongest and most frequent associations with MASLD. All the current studies followed cross-sectional study designs, which limits the possibility to establish a causal relationship between MASLD and phthalate exposure. Therefore, longitudinal studies are needed to corroborate these findings and shed light on the involvement of phthalate exposure in MASLD.
Collapse
Affiliation(s)
- Tomasz Gogola
- School of Pharmacy, University of Eastern Finland, P.O. Box 1627, FI-70210, Kuopio, Finland
| | - Sini Pitkänen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, P.O. Box 1627, FI-70210, Kuopio, Finland.
| | - Marjo Huovinen
- School of Pharmacy, University of Eastern Finland, P.O. Box 1627, FI-70210, Kuopio, Finland
| | | | - Jenni Küblbeck
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, P.O. Box 1627, FI-70210, Kuopio, Finland
| |
Collapse
|
2
|
Yi-Fan K, Jian-Rong L. Research mechanism of DBP and DEHP in the development of PCOS based on network toxicology and molecular docking. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025:10.1007/s00210-025-04173-0. [PMID: 40274621 DOI: 10.1007/s00210-025-04173-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2025] [Accepted: 04/10/2025] [Indexed: 04/26/2025]
Abstract
Polycystic ovary syndrome (PCOS) constitutes a prevalent endocrine disorder among females, exhibiting a significant incidence rate. The etiology of PCOS predominantly attributes to environmental determinants. Phthalate esters, including dibutyl phthalate (DBP) and di(2-ethylhexyl) phthalate (DEHP), have been demonstrated to exert detrimental effects on reproductive function. However, the effects of these plasticizers on female reproductive health have not been clearly investigated. In the present investigation, we employed network toxicological methodologies to delineate the pivotal genes and associated pathways that are implicated in the pathogenesis of PCOS induced by DBP and DEHP. Molecular docking methodologies were employed to ascertain the interaction between the investigational compound and the designated target protein. The present study delineates pivotal targets, namely AKT1, SRC, PIK3R1, EGFR, ESR1, and STAT3, which are instrumental in the mediation of PCOS. The genes predominantly participate in the EGFR pathway, insulin signaling pathway, and oocyte damage, significantly compromising female ovarian functionality. This investigation underscores the integration of network toxicology, molecular docking, and cell experiment methodologies to elucidate the toxicological properties and underlying molecular mechanisms of plasticizers in the context of PCOS. This study provides a prospective therapeutic target to mitigate the harmful effects of plasticizers on female reproductive health.
Collapse
Affiliation(s)
- Kang Yi-Fan
- The Fifth Clinical Medical College of Shanxi Medical University, Shanxi Provincial People's Hospital , Taiyuan, 030001, China
| | - Liu Jian-Rong
- Shanxi Provincial People's Hospital, Taiyuan, 030001, China.
| |
Collapse
|
3
|
Ashaari S, Jamialahmadi T, Davies NM, Almahmeed W, Sahebkar A. Di (2-ethyl hexyl) phthalate and its metabolite-induced metabolic syndrome: a review of molecular mechanisms. Drug Chem Toxicol 2025; 48:325-343. [PMID: 39322993 DOI: 10.1080/01480545.2024.2405830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 09/06/2024] [Accepted: 09/13/2024] [Indexed: 09/27/2024]
Abstract
OBJECTIVES Metabolic disorders, as multifactorial disorders, are induced by genetic susceptibility and exposure to environmental chemicals. Di (2-ethyl hexyl) phthalate (DEHP), a ubiquitous plasticizer, is well known as an endocrine-disrupting chemical in living organisms. In recent decades, researchers have focused on the potential of DEHP and its main metabolite (Mono (2-ethylhexyl) phthalate) (MEHP) to induce metabolic disorders. In the present review, we aimed to summarize studies regarding DEHP and MEHP-induced Metabolic syndrome (MetS) as well as address the involved mechanisms. METHODS A search has been carried out in Google Scholar, PubMed, Scopus, and Web of Science databases using appropriate keywords including 'Metabolic syndrome' or 'Metabolic disorder' or 'Obesity' or 'Hyperglycemia' or 'Hyperlipidemia' or 'Hypertension' or 'Non-alcoholic fatty liver disease' and 'DEHP' or 'Di (2-ethyl hexyl) phthalate' or 'Bis(2-ethylhexyl) phthalate' or 'MEHP' or 'Mono (2-ethylhexyl) phthalate'. Studies were chosen based on inclusion and exclusion criteria. Inclusion criteria are in vitro, in vivo, epidemiological studies, and English-written studies. Exclusion criteria are lack of access to the full text of studies, editorial articles, review articles, and conference articles. RESULTS Animal studies indicate that DEHP and MEHP disrupt insulin hemostasis, increase glucose content, and induce hyperlipidemia and hypertension as well as obesity, which could lead to type 2 diabetes mellitus (T2DM) and cardiovascular disease (CVD). DEHP and its metabolite induce such effects directly through influence on nuclear receptors such as peroxisome proliferator-activated receptors (PPARs) or indirectly through reactive oxygen species (ROS) production. Both events led to the disruption of several molecular signaling pathways and subsequently metabolic syndrome (MetS). Furthermore, epidemiological studies showed that there was a correlation between DEHP metabolites levels and obesity, hyperglycemia, and hypertension. CONCLUSIONS According to studies, DEHP and its main metabolite have the potential to induce MetS by involving various molecular mechanisms. Epidemiological studies concerning the association of DEHP and MetS in humans are not sufficient. Therefore, more studies are needed in this regard.
Collapse
Affiliation(s)
- Sorour Ashaari
- Vice Chancellery for Research and Technology, Mazandaran University of Medical Sciences, Sari, Iran
| | - Tannaz Jamialahmadi
- Medical Toxicology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Neal M Davies
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Wael Almahmeed
- Heart and Vascular Institute, Cleveland Clinic Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Amirhossein Sahebkar
- Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
4
|
Bellingham M, Evans NP, Lea RG, Padmanabhan V, Sinclair KD. Reproductive and Metabolic Health Following Exposure to Environmental Chemicals: Mechanistic Insights from Mammalian Models. Annu Rev Anim Biosci 2025; 13:411-440. [PMID: 39531389 DOI: 10.1146/annurev-animal-111523-102259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
The decline in human reproductive and metabolic health over the past 50 years is associated with exposure to complex mixtures of anthropogenic environmental chemicals (ECs). Real-life EC exposure has varied over time and differs across geographical locations. Health-related issues include declining sperm quality, advanced puberty onset, premature ovarian insufficiency, cancer, obesity, and metabolic syndrome. Prospective animal studies with individual and limited EC mixtures support these observations and provide a means to investigate underlying physiological and molecular mechanisms. The greatest impacts of EC exposure are through programming of the developing embryo and/or fetus, with additional placental effects reported in eutherian mammals. Single-chemical effects and mechanistic studies, including transgenerational epigenetic inheritance, have been undertaken in rodents. Important translational models of human exposure are provided by companion animals, due to a shared environment, and sheep exposed to anthropogenic chemical mixtures present in pastures treated with sewage sludge (biosolids). Future animal research should prioritize EC mixtures that extend beyond a single developmental stage and/or generation. This would provide a more representative platform to investigate genetic and underlying mechanisms that explain sexually dimorphic and individual effects that could facilitate mitigation strategies.
Collapse
Affiliation(s)
- Michelle Bellingham
- School of Biodiversity, One Health and Veterinary Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom;
| | - Neil P Evans
- School of Biodiversity, One Health and Veterinary Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom;
| | - Richard G Lea
- University of Nottingham, Loughborough, United Kingdom
| | | | | |
Collapse
|
5
|
Anwar C, Chu YC, Tsai ML, Ho CT, Lai CS. Tetrahydrocurcumin alleviates di-(2-ethylhexyl) phthalate-induced adipose tissue dysfunction and testicular toxicity in adult mice: possible involvement of adiponectin-adipoR signaling in the testis. Food Funct 2025; 16:583-600. [PMID: 39704213 DOI: 10.1039/d4fo04271a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2024]
Abstract
Widespread exposure to endocrine disruptors is associated with metabolic dysfunction and reproductive toxicity. Tetrahydrocurcumin (THC) has attracted attention as it offers protection against obesity and metabolic disorders due to its potent antioxidative and diverse biological properties but its influence and underlying mechanism of action on adipose tissue function and DEHP-induced testicular injury remain unknown. Our results showed that THC (100 mg kg-1 day-1) administration for 27 weeks enlarged adipocytes while attenuating macrophage infiltration and IL-6 expression in the adipose tissue of male C57BL/6J mice exposed to 5 mg kg-1 day-1 of DEHP. Moreover, THC ameliorated DEHP-induced deregulation of adiponectin but not leptin. DEHP caused testicular histological damage, spermatogenesis impairment, apoptosis, inflammation, and AGE, which were improved by THC. THC treatment elevated Nrf2/HO-1 and decreased Glut1 in interstitial Leydig cells, which may contribute to its beneficial effects on the testis. Our results further demonstrated that THC also ameliorated circulating adiponectin and testicular adipoR1-AMPK signaling, partially accounting for the improvement of DEHP-caused testicular dysfunction. The finding of this study revealed that THC is a promising candidate for improving adipose and testicular dysfunction caused by DEHP.
Collapse
Affiliation(s)
- Choirul Anwar
- Institute of Aquatic Science and Technology, Collage of Hydrosphere Science, National Kaohsiung University of Science and Technology, No. 142, Haijhuan Rd., Nanzih Dist., Kaohsiung City 81157, Taiwan
| | - Yu-Chi Chu
- Department of Seafood Science, National Kaohsiung University of Science and Technology, No. 142, Haijhuan Rd., Nanzih Dist., Kaohsiung City 81157, Taiwan.
| | - Mei-Ling Tsai
- Department of Seafood Science, National Kaohsiung University of Science and Technology, No. 142, Haijhuan Rd., Nanzih Dist., Kaohsiung City 81157, Taiwan.
| | - Chi-Tang Ho
- Department of Food Science, Rutgers University, New Brunswick, NJ 08901, USA
| | - Ching-Shu Lai
- Department of Seafood Science, National Kaohsiung University of Science and Technology, No. 142, Haijhuan Rd., Nanzih Dist., Kaohsiung City 81157, Taiwan.
| |
Collapse
|
6
|
Singh LK, Pandey R, Siddiqi NJ, Sharma B. Molecular Mechanisms of Phthalate-Induced Hepatic Injury and Amelioration by Plant-Based Principles. TOXICS 2025; 13:32. [PMID: 39853030 PMCID: PMC11768991 DOI: 10.3390/toxics13010032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 12/24/2024] [Accepted: 12/26/2024] [Indexed: 01/26/2025]
Abstract
Phthalates are the emerging environmental toxicants derived from phthalic acid and its constituents, which are moderately present in plastics and many personal care products. Phthalate exposure occurs through various environmental factors, including air, water, and soil, with absorption facilitated via ingestion, inhalation, and dermal contact. Upon exposure, phthalates become bioavailable within the biological systems and undergo biotransformation and detoxification processes in the liver. The physicochemical properties of phthalates indicate their lipophilicity, environmental persistence, and bioaccumulation potential, influencing their absorption, distribution, and hepatic biotransformation. The prolonged exposure to phthalates adversely influences the biological redox system by altering the levels of the enzymatic and non-enzymatic antioxidants, molecular signaling pathways, and causing hepatic pathogenesis. The strategies to combat phthalate-induced toxicity include avoiding exposure to these compounds and using plant-based bioactive molecules such as polyphenols, which possess therapeutic potential as antioxidants, suppress inflammatory cascades, prevent oxidative damage, and stabilize cellular integrity. This review presents a comprehensive and updated account of the chemical, biochemical, immunological, and toxicological properties of phthalates, along with novel plant-based therapeutic strategies to mitigate the phthalate-induced adverse effects on living systems.
Collapse
Affiliation(s)
- Lalit Kumar Singh
- Department of Biochemistry, University of Allahabad, Prayagraj 211002, Uttar Pradesh, India;
| | - Rashmi Pandey
- Department of Biochemistry, Government Medical College, Haridwar 247667, Uttarakhand, India
| | - Nikhat Jamal Siddiqi
- Department of Internal Surgical Nursing, College of Nursing, King Saud University, Riyadh 11421, Saudi Arabia
| | - Bechan Sharma
- Department of Biochemistry, University of Allahabad, Prayagraj 211002, Uttar Pradesh, India;
| |
Collapse
|
7
|
Wang S, Xu K, Du W, Gao X, Ma P, Yang X, Chen M. Exposure to environmental doses of DEHP causes phenotypes of polycystic ovary syndrome. Toxicology 2024; 509:153952. [PMID: 39265699 DOI: 10.1016/j.tox.2024.153952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 08/26/2024] [Accepted: 09/09/2024] [Indexed: 09/14/2024]
Abstract
Globally, approximately 6-20 % of women who are of reproductive age suffer from polycystic ovary syndrome (PCOS), with environmental factors believed to be significant contributors. Di-2-ethylhexyl phthalate (DEHP) is known to be an endocrine disruptor, and is also suspected of being associated with the occurrence of PCOS, but in vivo studies to verify this association are lacking. In this study, female SD rats were exposed to DEHP at levels of 0.1, 1.0, and 10 mg/kg/d, which are comparable to daily human exposure, to explore its potential role in the development of PCOS. The findings indicated that DEHP exposure reduced ovarian and uterine coefficients, decreased accumulation of primordial follicles, increased the prevalence of atretic and cystic follicles and fibrosis in ovarian tissues, altered serum hormone levels, elevated blood glucose levels and insulin resistance, disrupted the endocrine system and resulted in significant oxidative damage in the ovarian tissues. These results imply that DEHP exposure may cause lesions resembling PCOS to develop. By analyzing the differential expression of the proteome, and using GO and KEGG enrichment analyses, we found they were mainly enriched in the metabolic pathway and in the PPAR signaling pathway. We confirmed that activation of the PPARγ signaling pathway caused by DEHP exposure, is related to the emergence of PCOS-like lesions. This research provides direct in vivo experimental evidence for the association between DEHP exposure and PCOS.
Collapse
Affiliation(s)
- Shuxin Wang
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, Hubei 430079, China
| | - Ke Xu
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, Hubei 430079, China
| | - Wanting Du
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, Hubei 430079, China
| | - Xiao Gao
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, Hubei 430079, China
| | - Ping Ma
- Key Laboratory of Environmental Related Diseases and One Health, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, China
| | - Xu Yang
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, Hubei 430079, China; Key Laboratory of Environmental Related Diseases and One Health, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, China
| | - Mingqing Chen
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, Hubei 430079, China.
| |
Collapse
|
8
|
Sarangi P, Sahoo PK, Pradhan LK, Bhoi S, Sahoo BS, Chauhan NR, Raut S, Das SK. Concerted monoamine oxidase activity following exposure to di-2-ethylhexyl phthalate is associated with aggressive neurobehavioral response and neurodegeneration in zebrafish brain. Comp Biochem Physiol C Toxicol Pharmacol 2024; 283:109970. [PMID: 38944366 DOI: 10.1016/j.cbpc.2024.109970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 06/14/2024] [Accepted: 06/22/2024] [Indexed: 07/01/2024]
Abstract
Di-2-ethylhexyl phthalate (DEHP) is the most commonly preferred synthetic organic chemical in plastics and its products for making them ductile, flexible and durable. As DEHP is not chemically bound to the macromolecular polymer of plastics, it can be easily leached out to accumulate in food and environment. Our recent report advocated that exposure to DEHP significantly transformed the innate bottom-dwelling and scototaxis behaviour of zebrafish. Our present study aimed to understand the possible role of DEHP exposure pertaining towards the development of aggressive behaviour and its association with amplified monoamine oxidase activity and neurodegeneration in the zebrafish brain. As heightened monoamine oxidase (MAO) is linked with genesis of aggressive behaviour, our observation also coincides with DEHP-persuaded aggressive neurobehavioral transformation in zebrafish. Our preliminary findings also showed that DEHP epitomized as a prime factor in transforming native explorative behaviour and genesis of aggressive behaviour through oxidative stress induction and changes in the neuromorphology in the periventricular grey zone (PGZ) of the zebrafish brain. With the finding demarcating towards heightened chromatin condensation in the PGZ of zebrafish brain, our further observation by immunohistochemistry showed a profound augmentation in apoptotic cell death marker cleaved caspase 3 (CC3) expression following exposure to DEHP. Our further observation by immunoblotting study also demarcated a temporal augmentation in CC3 and tyrosine hydroxylase expression in the zebrafish brain. Therefore, the gross findings of the present study delineate the idea that chronic exposure to DEHP is associated with MAO-instigated aggressive neurobehavioral transformation and neurodegeneration in the zebrafish brain.
Collapse
Affiliation(s)
- Prerana Sarangi
- Neurobiology Laboratory, Centre for Biotechnology, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar 751003, India
| | - Pradyumna Kumar Sahoo
- Neurobiology Laboratory, Centre for Biotechnology, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar 751003, India
| | - Lilesh Kumar Pradhan
- Neurobiology Laboratory, Centre for Biotechnology, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar 751003, India; Centre of Excellence, Natural Products and Therapeutics Laboratory, Department of Biotechnology and Bioinformatics, Sambalpur University, Odisha 768019, India
| | - Suvam Bhoi
- Neurobiology Laboratory, Centre for Biotechnology, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar 751003, India
| | - Bhabani Sankar Sahoo
- Neurobiology Laboratory, Centre for Biotechnology, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar 751003, India; Institute of Life Sciences, NALCO Nagar, Chandrasekharpur, Bhubaneswar, Odisha 751023, India
| | - Nishant Ranjan Chauhan
- Department of Neurobiology, The University of Texas Medical Branch, 301 University Boulevard, Galveston, TX 77555, USA
| | - Sangeeta Raut
- Environmental Biotechnology Laboratory, Centre for Biotechnology, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar 751003, India
| | - Saroj Kumar Das
- Neurobiology Laboratory, Centre for Biotechnology, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar 751003, India; Department of Zoology, Kuntala Kumari Sabat Women's College, Balasore, Odisha 756003, India.
| |
Collapse
|
9
|
Prete R, Merola C, Garcia-Gonzalez N, Fanti F, Angelozzi G, Sergi M, Battista N, Perugini M, Corsetti A. Investigating the modulation of the endocannabinoid system by probiotic Lactiplantibacillus plantarum IMC513 in a zebrafish model of di-n-hexyl phthalate exposure. Sci Rep 2024; 14:19328. [PMID: 39164319 PMCID: PMC11336085 DOI: 10.1038/s41598-024-70053-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 08/12/2024] [Indexed: 08/22/2024] Open
Abstract
Environmental pollutants used as plasticizers in food packaging and in thousands of everyday products have become harmful for their impact on human health. Among them, phthalates, recognized as emerging endocrine disruptors (EDs) can induce toxic effects leading to different health disorders. Only few studies evaluated the effects of di-n-hexyl phthalate (DnHP) in in vivo models and no studies have been conducted to investigate the effect of DnHP on the endocannabinoid system (ECS), one of the majors signaling pathways involved in the microbiota-gut-brain axis. Due to the current relevance of probiotic bacteria as beneficial dietary interventions, the present study was aimed at evaluating the potential neuroprotective impact of daily administration of Lactiplantibacillus (Lpb.) plantarum IMC513 on zebrafish adults exposed to DnHP, with a focus on ECS modulation. Gene expression analysis revealed a promising protective role of probiotic through the restoration of ECS genes expression to the control level, in the brain of zebrafish daily exposed to DnHP. In addition, the levels of main endocannabinoids were also modulated. These findings confirm the potential ability of probiotics to interact at central level by modulating the ECS, suggesting the use of probiotics as innovative dietary strategy to counteract alterations by EDs exposure.
Collapse
Affiliation(s)
- Roberta Prete
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64100, Teramo, Italy
| | - Carmine Merola
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64100, Teramo, Italy
| | - Natalia Garcia-Gonzalez
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64100, Teramo, Italy
| | - Federico Fanti
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64100, Teramo, Italy
| | - Giovanni Angelozzi
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64100, Teramo, Italy
| | - Manuel Sergi
- Department of Chemistry, Sapienza University of Rome, 00185, Rome, Italy
| | - Natalia Battista
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64100, Teramo, Italy.
| | - Monia Perugini
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64100, Teramo, Italy
| | - Aldo Corsetti
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64100, Teramo, Italy
| |
Collapse
|
10
|
Boychenko S, Egorova VS, Brovin A, Egorov AD. White-to-Beige and Back: Adipocyte Conversion and Transcriptional Reprogramming. Pharmaceuticals (Basel) 2024; 17:790. [PMID: 38931457 PMCID: PMC11206576 DOI: 10.3390/ph17060790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 06/11/2024] [Accepted: 06/13/2024] [Indexed: 06/28/2024] Open
Abstract
Obesity has become a pandemic, as currently more than half a billion people worldwide are obese. The etiology of obesity is multifactorial, and combines a contribution of hereditary and behavioral factors, such as nutritional inadequacy, along with the influences of environment and reduced physical activity. Two types of adipose tissue widely known are white and brown. While white adipose tissue functions predominantly as a key energy storage, brown adipose tissue has a greater mass of mitochondria and expresses the uncoupling protein 1 (UCP1) gene, which allows thermogenesis and rapid catabolism. Even though white and brown adipocytes are of different origin, activation of the brown adipocyte differentiation program in white adipose tissue cells forces them to transdifferentiate into "beige" adipocytes, characterized by thermogenesis and intensive lipolysis. Nowadays, researchers in the field of small molecule medicinal chemistry and gene therapy are making efforts to develop new drugs that effectively overcome insulin resistance and counteract obesity. Here, we discuss various aspects of white-to-beige conversion, adipose tissue catabolic re-activation, and non-shivering thermogenesis.
Collapse
Affiliation(s)
- Stanislav Boychenko
- Gene Therapy Department, Center for Translational Medicine, Sirius University of Science and Technology, 354340 Sirius, Russia; (S.B.); (A.B.)
| | - Vera S. Egorova
- Biotechnology Department, Center for Translational Medicine, Sirius University of Science and Technology, 354340 Sirius, Russia
| | - Andrew Brovin
- Gene Therapy Department, Center for Translational Medicine, Sirius University of Science and Technology, 354340 Sirius, Russia; (S.B.); (A.B.)
| | - Alexander D. Egorov
- Gene Therapy Department, Center for Translational Medicine, Sirius University of Science and Technology, 354340 Sirius, Russia; (S.B.); (A.B.)
| |
Collapse
|
11
|
Ali S, Ziyad A, Pai KSR, Muraleedharan A, Gopan A, Upadhya R, Seetharam RN, Manokaran K. Influence of Ascorbic Acid on Di-(2-Ethylhexyl) Phthalate-induced Ovarian Gene Alterations in Pubertal Female Wistar Rats. J Pharmacol Pharmacother 2024; 15:190-199. [DOI: 10.1177/0976500x241245481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/14/2024] Open
Abstract
Background Di-(2-ethylhexyl) phthalate (DEHP), a plasticizer compound affecting female reproduction, leads to scenarios, such as polycystic ovarian syndrome (PCOS) and infertility through oxidative stress (OS) mechanisms. Ascorbic acid (AA) is one of the antioxidants in infertility issues. Objectives The present study investigates the ameliorative effect of AA on DEHP-induced ovarian toxicity in pubertal female Wistar rats. Materials and Methods Thirty female Wistar rats of four weeks of age were stratified into five groups. Group I was treated with corn oil (Vehicle), groups II and III with low and high dose DEHP, and groups IV and V with low and high dose DEHP+AA were administered for 30 days. Results Increased body weight gain was noted in DEHP groups. Estradiol hormone was considerably reduced, whereas progesterone levels were increased in both low- and high-dose DEHP-treated groups. DEHP+AA groups have shown significant ( p < 0.005) protection of these hormone levels as equal to the control group. The high-dose DEHP group shows an increased, ovarian estrogen receptor (ER) alpha, ER-beta, and progesterone receptor gene expression, and DEHP+AA groups have significantly ( p < 0.005) showed expression similar to the control. OS was noted with decreased superoxide dismutase and increased malondialdehyde expression in Group III (GR III) compared to control, whereas the DEHP+AA treated group significantly protected OS by restoring the expression levels. DEHP-treated groups show elevated levels of both Bcl-2 and BAX which is specific to apoptotic expression and restored by AA treatment ( p < 0.005). Conclusion Evidence suggests that AA may protect against DEHP-induced ovarian toxicity by decreasing OS levels, improving folliculogenesis, and restoring the hormonal with receptor level alterations.
Collapse
Affiliation(s)
- Shifana Ali
- Department of Medical Laboratory Technology, Manipal College of Health Professions, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Ahmed Ziyad
- Department of Medical Laboratory Technology, Manipal College of Health Professions, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Karkala Sreedhara Ranganath Pai
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Anju Muraleedharan
- Department of Medical Laboratory Technology, Manipal College of Health Professions, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Adhithya Gopan
- Department of Medical Laboratory Technology, Manipal College of Health Professions, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Raghavendra Upadhya
- Department of Biotherapeutics Research, Manipal Centre for Biotherapeutics Research, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Raviraja N Seetharam
- Department of Biotherapeutics Research, Manipal Centre for Biotherapeutics Research, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Kalaivani Manokaran
- Department of Medical Laboratory Technology, Manipal College of Health Professions, Manipal Academy of Higher Education, Manipal, Karnataka, India
| |
Collapse
|
12
|
Chen XY, Li YY, Lv L, Xiong YM, Qin ZF. The brominated flame retardant tetrabromobisphenol A-bis(2,3-dibromo-2-methylpropyl ether) as well as hexabromocyclododecane lead to lipid disorders in mice. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 341:122895. [PMID: 37949162 DOI: 10.1016/j.envpol.2023.122895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 10/10/2023] [Accepted: 11/05/2023] [Indexed: 11/12/2023]
Abstract
The brominated flame retardant tetrabromobisphenol A-bis(2,3-dibromo-2-methylpropyl ether) (TBBPA-DBMPE) is a recommended substitute for hexabromocyclododecane (HBCD), a banned persistent organic pollutant, yet its potential toxicities remains largely unexplored. Here, we investigated the effects of a long-term exposure to TBBPA-DBMPE at nominal doses of 50 and 1000 μg/kg/d on lipid homeostasis in CD-1 mice, in comparison with 50 μg/kg/d HBCD as a positive control. Male pups received chemical treatments through maternal administration via drinking water from postnatal day 0-21, followed by direct administration through drinking water after weaning. On the 23rd week after treatment, the oral lipid tolerance test revealed that low-dose TBBPA-DBMPE as well as HBCD affected lipid tolerance, although the fasting serum triglyceride (TG) levels were not altered. When chemical treatment was extended to the 32nd week, TBBPA-DBMPE-treated animals displayed adipocyte hypertrophy in both white adipose tissue (eWAT) and brown adipose tissue (BAT) and hepatic steatosis, which was largely consistent with the effects of HBCD. These findings indicate that like HBCD, TBBPA-DBMPE led to increased lipid load in mice. Interestingly, we also observed intestinal histological changes, coupled with increased expression of lipid absorption-related genes in both HBCD and TBBPA-DBMPE treatments, suggesting increased lipid absorption. This was supported by in vitro findings that both HBCD and TBBPA-DBMPE promoted lipid accumulation in IEC-6 cells under the stress of oleic acid for 6 h, implying that altered lipid absorption by the intestine may partly contributed to increased lipid load in mice. Overall, the effects of 50 μg/kg/d TBBPA-DBMPE in terms of some parameters were comparable with 50 μg/kg/d HBCD, suggesting that TBBPA-DBMPE may not be an ideal substitute of HBCD.
Collapse
Affiliation(s)
- Xuan-Yue Chen
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yuan-Yuan Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lin Lv
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yi-Ming Xiong
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhan-Fen Qin
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
13
|
Dalamaga M, Kounatidis D, Tsilingiris D, Vallianou NG, Karampela I, Psallida S, Papavassiliou AG. The Role of Endocrine Disruptors Bisphenols and Phthalates in Obesity: Current Evidence, Perspectives and Controversies. Int J Mol Sci 2024; 25:675. [PMID: 38203845 PMCID: PMC10779569 DOI: 10.3390/ijms25010675] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 12/31/2023] [Accepted: 01/03/2024] [Indexed: 01/12/2024] Open
Abstract
Excess body weight constitutes one of the major health challenges for societies and healthcare systems worldwide. Besides the type of diet, calorie intake and the lack of physical exercise, recent data have highlighted a possible association between endocrine-disrupting chemicals (EDCs), such as bisphenol A, phthalates and their analogs, and obesity. EDCs represent a heterogeneous group of chemicals that may influence the hormonal regulation of body mass and adipose tissue morphology. Based on the available data from mechanistic, animal and epidemiological studies including meta-analyses, the weight of evidence points towards the contribution of EDCs to the development of obesity, associated disorders and obesity-related adipose tissue dysfunction by (1) impacting adipogenesis; (2) modulating epigenetic pathways during development, enhancing susceptibility to obesity; (3) influencing neuroendocrine signals responsible for appetite and satiety; (4) promoting a proinflammatory milieu in adipose tissue and inducing a state of chronic subclinical inflammation; (5) dysregulating gut microbiome and immune homeostasis; and (6) inducing dysfunction in thermogenic adipose tissue. Critical periods of exposure to obesogenic EDCs are the prenatal, neonatal, pubertal and reproductive periods. Interestingly, EDCs even at low doses may promote epigenetic transgenerational inheritance of adult obesity in subsequent generations. The aim of this review is to summarize the available evidence on the role of obesogenic EDCs, specifically BPA and phthalate plasticizers, in the development of obesity, taking into account in vitro, animal and epidemiologic studies; discuss mechanisms linking EDCs to obesity; analyze the effects of EDCs on obesity in critical chronic periods of exposure; and present interesting perspectives, challenges and preventive measures in this research area.
Collapse
Affiliation(s)
- Maria Dalamaga
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Dimitrios Kounatidis
- Department of Internal Medicine, ‘Evangelismos’ General Hospital, 10676 Athens, Greece; (D.K.); (N.G.V.)
| | - Dimitrios Tsilingiris
- First Department of Internal Medicine, University Hospital of Alexandroupolis, Democritus University of Thrace, 68100 Alexandroupolis, Greece;
| | - Natalia G. Vallianou
- Department of Internal Medicine, ‘Evangelismos’ General Hospital, 10676 Athens, Greece; (D.K.); (N.G.V.)
| | - Irene Karampela
- Second Department of Critical Care, ‘Attikon’ General University Hospital, Medical School, National and Kapodistrian University of Athens, 12462 Athens, Greece;
| | - Sotiria Psallida
- Department of Microbiology, ‘KAT’ General Hospital of Attica, 14561 Athens, Greece;
| | - Athanasios G. Papavassiliou
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| |
Collapse
|
14
|
Perez-Diaz C, Uriz-Martínez M, Ortega-Rico C, Leno-Duran E, Barrios-Rodríguez R, Salcedo-Bellido I, Arrebola JP, Requena P. Phthalate exposure and risk of metabolic syndrome components: A systematic review. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 340:122714. [PMID: 37844863 DOI: 10.1016/j.envpol.2023.122714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 09/13/2023] [Accepted: 10/07/2023] [Indexed: 10/18/2023]
Abstract
Metabolic syndrome is a cluster of conditions that increase the risk of cardiovascular disease, i.e. obesity, insulin resistance, hypertriglyceridemia, low high-density lipoprotein cholesterol (HDL-c) levels and arterial hypertension. Phthalates are environmental chemicals which might influence the risk of the aforementioned disturbances, although the evidence is still controversial. The objective of this work was to synthesize the evidence on the association between human phthalate exposure and metabolic syndrome or any of its components. In this systematic review, the PRISMA guidelines were followed and the literature was search in PubMed, Web of Science and Scopus. Longitudinal and cross-sectional studies were included, the later only if a subclinical marker of disease was evaluated. The methodological quality was assessed with the Newcastle Ottawa Scale and a checklist for Analytical Cross-Sectional Studies developed in the Joanna Briggs Institute. A total of 58 articles were identified that showed high heterogenicity in the specific phthalates assessed, time-window of exposure and duration of follow-up. The quality of the studies was evaluated as high (n = 46, score >7 points) or medium (n = 12, score 4-6). The most frequently studied phthalates were DEHP-MEHP, MBzP and MEP. The evidence revealed a positive association between prenatal (in utero) exposure to most phthalates and markers of obesity in the offspring, but contradictory results when postnatal exposure and obesity were assessed. Moreover, postnatal phthalate exposure showed positive and very consistent associations with markers of diabetes and, to a lesser extent, with triglyceride levels. However, fewer evidence and contradictory results were found for HDL-c levels and markers of hypertension. The suggested mechanisms for these metabolic effects include transcription factor PPAR activation, antagonism of thyroid hormone function, antiandrogenic effects, oxidative stress and inflammation, and epigenetic changes. Nevertheless, as the inconsistency of some results could be related to differences in the study design, future research should aim to standardise the exposure assessment.
Collapse
Affiliation(s)
- Celia Perez-Diaz
- Universidad de Granada. Department of Preventive Medicine and Public Health, Pharmacy School. Campus de Cartuja S/n, 18071, Granada, Spain; Instituto de Investigación Biosanitaria (ibs.GRANADA). Avda. de Madrid, 15. Pabellón de Consultas Externas 2, 2(a) Planta, 18012, Granada, Spain
| | - Maialen Uriz-Martínez
- Universidad de Granada. Department of Preventive Medicine and Public Health, Pharmacy School. Campus de Cartuja S/n, 18071, Granada, Spain
| | - Carmen Ortega-Rico
- Universidad de Granada. Department of Preventive Medicine and Public Health, Pharmacy School. Campus de Cartuja S/n, 18071, Granada, Spain
| | - Ester Leno-Duran
- Universidad de Granada. Department of Obstetrics and Gynaecology, Medicine School. Parque Tecnologico de La Salud, Av. de La Investigación, 11, 18016, Granada, Spain.
| | - Rocío Barrios-Rodríguez
- Universidad de Granada. Department of Preventive Medicine and Public Health, Pharmacy School. Campus de Cartuja S/n, 18071, Granada, Spain; Instituto de Investigación Biosanitaria (ibs.GRANADA). Avda. de Madrid, 15. Pabellón de Consultas Externas 2, 2(a) Planta, 18012, Granada, Spain; Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), Instituto de Salud Carlos III, C/ Monforte de Lemos 3-5, Pabellón 11. Planta 0, 28029 Madrid, Spain
| | - Inmaculada Salcedo-Bellido
- Universidad de Granada. Department of Preventive Medicine and Public Health, Pharmacy School. Campus de Cartuja S/n, 18071, Granada, Spain; Instituto de Investigación Biosanitaria (ibs.GRANADA). Avda. de Madrid, 15. Pabellón de Consultas Externas 2, 2(a) Planta, 18012, Granada, Spain; Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), Instituto de Salud Carlos III, C/ Monforte de Lemos 3-5, Pabellón 11. Planta 0, 28029 Madrid, Spain
| | - Juan Pedro Arrebola
- Universidad de Granada. Department of Preventive Medicine and Public Health, Pharmacy School. Campus de Cartuja S/n, 18071, Granada, Spain; Instituto de Investigación Biosanitaria (ibs.GRANADA). Avda. de Madrid, 15. Pabellón de Consultas Externas 2, 2(a) Planta, 18012, Granada, Spain; Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), Instituto de Salud Carlos III, C/ Monforte de Lemos 3-5, Pabellón 11. Planta 0, 28029 Madrid, Spain
| | - Pilar Requena
- Universidad de Granada. Department of Preventive Medicine and Public Health, Pharmacy School. Campus de Cartuja S/n, 18071, Granada, Spain; Instituto de Investigación Biosanitaria (ibs.GRANADA). Avda. de Madrid, 15. Pabellón de Consultas Externas 2, 2(a) Planta, 18012, Granada, Spain; Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), Instituto de Salud Carlos III, C/ Monforte de Lemos 3-5, Pabellón 11. Planta 0, 28029 Madrid, Spain
| |
Collapse
|
15
|
Proença C, Freitas M, Rocha S, Ferreira de Oliveira JMP, Carvalho F, Fernandes E. Unravelling the Influence of Endocrine-Disrupting Chemicals on Obesity Pathophysiology Pathways. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1460:883-918. [PMID: 39287876 DOI: 10.1007/978-3-031-63657-8_30] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
Obesity represents a global health concern, affecting individuals of all age groups across the world. The prevalence of excess weight and obesity has escalated to pandemic proportions, leading to a substantial increase in the incidence of various comorbidities, such as cardiovascular diseases, type 2 diabetes, and cancer. This chapter seeks to provide a comprehensive exploration of the pathways through which endocrine-disrupting chemicals can influence the pathophysiology of obesity. These mechanisms encompass aspects such as the regulation of food intake and appetite, intestinal fat absorption, lipid metabolism, and the modulation of inflammation. This knowledge may help to elucidate the role of exogenous molecules in both the aetiology and progression of obesity.
Collapse
Affiliation(s)
- Carina Proença
- LAQV, REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Marisa Freitas
- LAQV, REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Sílvia Rocha
- LAQV, REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - José Miguel P Ferreira de Oliveira
- LAQV, REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Félix Carvalho
- UCIBIO, REQUIMTE, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Eduarda Fernandes
- LAQV, REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal.
| |
Collapse
|
16
|
Liu Y, Huo WB, Deng JY, Tang QP, Wang JX, Liao YL, Gou D, Pei DS. Neurotoxicity and the potential molecular mechanisms of mono-2-ethylhexyl phthalic acid (MEHP) in zebrafish. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 265:115516. [PMID: 37757626 DOI: 10.1016/j.ecoenv.2023.115516] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 09/18/2023] [Accepted: 09/22/2023] [Indexed: 09/29/2023]
Abstract
Mono-2-ethylhexyl phthalic acid (MEHP) is the most toxic metabolite of plasticizer di-2-ethylhexyl phthalic acid (DEHP), and there is limited information available on the effects of MEHP on neurotoxicity. This study aims to examine the neurotoxicity of MEHP and preliminarily explore its potential molecular mechanisms. We found that MEHP impeded the growth of zebrafish embryos and the neurodevelopmental-related gene expression at environmentally relevant concentrations. MEHP exposure also induces oxidative stress response and brain cell apoptosis accompanied by a decrease in acetylcholinesterase (AChE) activity in zebrafish larvae. RNA-Seq and bioinformatics analysis showed that MEHP treatment altered the nervous system, neurogenic diseases, and visual perception pathways. The locomotor activity in dark-to-light cycles and phototaxis test confirmed the abnormal neural behavior of zebrafish larvae. Besides, the immune system has produced a large number of differentially expressed genes related to neural regulation. Inflammatory factor IL1β and IL-17 signaling pathways highly respond to MEHP, indicating that inflammation caused by immune system imbalance is a potential mechanism of MEHP-induced neurotoxicity. This study expands the understanding of the toxicity and molecular mechanisms of MEHP, providing a new perspective for in-depth neurotoxicity exploration of similar compounds.
Collapse
Affiliation(s)
- Yiyun Liu
- School of Public Health, Chongqing Medical University, Chongqing 400016, China
| | - Wen-Bo Huo
- School of Public Health, Chongqing Medical University, Chongqing 400016, China
| | - Jiao-Yun Deng
- School of Public Health, Chongqing Medical University, Chongqing 400016, China
| | - Qi-Ping Tang
- School of Public Health, Chongqing Medical University, Chongqing 400016, China
| | - Jin-Xia Wang
- School of Public Health, Chongqing Medical University, Chongqing 400016, China
| | - Yan-Ling Liao
- School of Public Health, Chongqing Medical University, Chongqing 400016, China
| | - Dongzhi Gou
- School of Public Health, Chongqing Medical University, Chongqing 400016, China
| | - De-Sheng Pei
- School of Public Health, Chongqing Medical University, Chongqing 400016, China.
| |
Collapse
|
17
|
Zhang Y, Feng H, Tian A, Zhang C, Song F, Zeng T, Zhao X. Long-term exposure to low-dose Di(2-ethylhexyl) phthalate aggravated high fat diet-induced obesity in female mice. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 253:114679. [PMID: 36841080 DOI: 10.1016/j.ecoenv.2023.114679] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 02/19/2023] [Accepted: 02/21/2023] [Indexed: 06/18/2023]
Abstract
The potential obesogenic roles of di(2-ethylhexyl) phthalate (DEHP) have attracted great attention. The current study aimed to evaluate the combined effects of chronic low-dose DEHP (0.05 mg/kg BW) and a high-fat diet (HFD) on obesity in female mice and explore the underlying mechanisms. We found that low-dose DEHP challenge for 29 weeks increased fat accumulation both in CD- and HFD-fed mice and significantly accelerated the weight gain without affecting food intake in HFD-fed mice. DEHP exposure reduced the energy metabolism, down-regulated the uncoupling protein 1 (UCP1) and total oxidative phosphorylation (OXPHOS) proteins expression in the brown adipose tissue, and up-regulated the PPARγ expression and its phosphorylation at Ser273 in white adipose tissue (WAT). Besides, the combination of DEHP and HFD drove the remodeling of gut microbiota of mice, characterized by the reduced richness and diversity and the elevated Firmicutes to Bacteroidetes (F/B) ratio. Short-chain fatty acids (SCFAs) analysis revealed that DEHP and HFD cotreatment led to a decrease in levels of acetic acid, butyric acid, and pentanoic acid. Interestingly, sodium butyrate (NaB) significantly inhibited the adipogenesis and lipid accumulation of NIH/3T3 mouse embryonic fibroblasts (PPARγ2 overexpression) and the PPARγ phosphorylation at Ser273 induced by DEHP or MEHP. These findings demonstrate that chronic low-dose DEHP challenge could prompt fat accumulation by increasing PPARγ phosphorylation at Ser273 and decreasing thermogenesis in BAT, which might be associated with the SCFAs reduction.
Collapse
Affiliation(s)
- Yifan Zhang
- Institute of Toxicology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Heping Feng
- Linyi Center for Disease Control & Prevention, Linyi 276000, China
| | - Ao Tian
- Institute of Toxicology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Cuili Zhang
- Institute of Toxicology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Fuyong Song
- Institute of Toxicology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Tao Zeng
- Institute of Toxicology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan 250012, China.
| | - Xiulan Zhao
- Institute of Toxicology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan 250012, China.
| |
Collapse
|
18
|
Peng MQ, Karvonen-Gutierrez CA, Herman WH, Mukherjee B, Park SK. Phthalate exposure is associated with more rapid body fat gain in midlife women: The Study of Women's Health Across the Nation (SWAN) Multi-Pollutant Study. ENVIRONMENTAL RESEARCH 2023; 216:114685. [PMID: 36341787 PMCID: PMC9870605 DOI: 10.1016/j.envres.2022.114685] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 10/03/2022] [Accepted: 10/25/2022] [Indexed: 06/16/2023]
Abstract
Obesity is a major threat to health, but the etiology of obesity is incompletely understood. Phthalates, synthetic chemicals ubiquitous in the environment, are suspected to have obesogenic effects, but the relationship of phthalates and obesity in humans remains uncertain. We examined whether phthalate exposure was associated with body fat gain in midlife women. We analyzed data from 1369 women in the Study of Women's Health Across the Nation Multi-Pollutant Study. Eleven phthalate metabolites measured in spot urine samples at baseline (1999/2000) were standardized with covariate-adjusted creatinine. Body weight (BW), fat mass (FM) from dual-energy X-ray absorptiometry (DXA), and body fat percentage (BF%) from DXA were measured near-annually until 2016/2017. For each metabolite, linear mixed effects models with time and log2(metabolite) interactions were examined, adjusting for demographic, lifestyle, and menopause-related factors. Analyses were conducted overall and stratified by baseline obesity status. As sensitivity analyses, all analyses were repeated using a second set of metabolites measured in 2002/2003. Higher levels of all metabolites except mono-carboxy-isononyl phthalate were associated with faster increases in BF%. Per doubling of metabolite concentrations, differences in five-year BF% change ranged from 0.03 percentage point (ppt) (95% confidence interval (CI): -0.03, 0.09) for mono-isobutyl phthalate to 0.09 ppt (95% CI: 0.02, 0.16) for mono(3-carboxypropyl) phthalate. Results were similar for FM change, but associations with BW change were mostly null. In stratified analyses by baseline obesity status, positive associations were strongest in women who were normal/underweight at baseline. When metabolites from 2002/2003 were used as exposures, most associations were attenuated and not statistically significant, but they remained positive for normal/underweight women. In conclusion, phthalate metabolites were associated with more rapid body fat gain in midlife women, but our results need confirmation given attenuation of estimates in the sensitivity analyses.
Collapse
Affiliation(s)
- Mia Q Peng
- Department of Epidemiology, University of Michigan School of Public Health, 1415 Washington Heights, Ann Arbor, MI, United States
| | - Carrie A Karvonen-Gutierrez
- Department of Epidemiology, University of Michigan School of Public Health, 1415 Washington Heights, Ann Arbor, MI, United States
| | - William H Herman
- Department of Epidemiology, University of Michigan School of Public Health, 1415 Washington Heights, Ann Arbor, MI, United States; Department of Internal Medicine, University of Michigan Medical School, 3110 Taubman Center, SPC 5368, 1500 East Medical Center Drive, Ann Arbor, MI, United States
| | - Bhramar Mukherjee
- Department of Epidemiology, University of Michigan School of Public Health, 1415 Washington Heights, Ann Arbor, MI, United States; Department of Biostatistics, University of Michigan School of Public Health, 1415 Washington Heights, Ann Arbor, MI, United States
| | - Sung Kyun Park
- Department of Epidemiology, University of Michigan School of Public Health, 1415 Washington Heights, Ann Arbor, MI, United States; Department of Environmental Health Sciences, University of Michigan School of Public Health, 1415 Washington Heights, Ann Arbor, MI, United States.
| |
Collapse
|
19
|
Zaitsu K, Asano T, Kawakami D, Chang J, Hisatsune K, Taniguchi M, Iguchi A. Metabolomics and Data-Driven Bioinformatics Revealed Key Maternal Metabolites Related to Fetal Lethality via Di(2-ethylhexyl)phthalate Exposure in Pregnant Mice. ACS OMEGA 2022; 7:23717-23726. [PMID: 35847272 PMCID: PMC9280929 DOI: 10.1021/acsomega.2c02338] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
We performed serum metabolome analysis of di(2-ethylhexyl)phthalate (DEHP)-exposed and control pregnant mice. Pregnant mice (n = 5) were fed a DEHP-containing diet (0.1% or 0.2% DEHP) or a normal diet (control) from gestational days 0-18. After maternal exposure to 0.2% DEHP there were no surviving fetuses, indicating its strong fetal lethality. There were no significant differences in the numbers of fetuses and placentas between the 0.1% DEHP and control groups, although fetal viability differed significantly between them, suggesting that maternal exposure to 0.1% DEHP could inhibit fetal growth. Metabolomics successfully detected 169 metabolites in serum. Principal component analysis (PCA) demonstrated that the three groups were clearly separated on PCA score plots. The biological interpretation of PC1 was fetal lethality, whereas PC2 meant metabolic alteration of pregnant mice via DEHP exposure without fetal lethality. In particular, the first component was significantly correlated with fetal viability, demonstrating that maternal metabolome changes via DEHP exposure were strongly related to fetal lethality. Levels of some amino acids were significantly increased in the DEHP-exposed groups, whereas those of some fatty acids, nicotinic acid, and 1,5-anhydroglucitol were significantly decreased in the DEHP groups. DEHP-induced increases in glycine levels could cause fetal neurological disorders, and decreases in nicotinic acid could inhibit fetal growth. In addition, a machine-learning Random forest could determine 16 potential biomarkers of DEHP exposure, and data-driven network analysis revealed that nicotinic acid was the most influential hub metabolite in the metabolic network. These findings will be useful for understanding the effects of DEHP on the maternal metabolome in pregnancy and their relationship to fetal lethality.
Collapse
Affiliation(s)
- Kei Zaitsu
- Multimodal
Informatics and Wide-data Analytics Laboratory, Department of Computational
Systems Biology, Faculty of Biology-Oriented Science and Technology, Kindai University, 930 Nishi Mitani, Kinokawa, Wakayama 649-6493, Japan
- In
Vivo Real-time Omics Laboratory, Institute for Advanced Research, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
| | - Tomomi Asano
- Department
of Human Life and Environment, Kinjo Gakuin
University, 2-1723 Omori, Moriyama-ku, Nagoya 463-8521, Japan
| | - Daisuke Kawakami
- Shimadzu
Corporation, 1, Nishinokyo-Kuwabaracho
Nakagyo-ku, Kyoto, 604-8511, Japan
| | - Jiarui Chang
- In
Vivo Real-time Omics Laboratory, Institute for Advanced Research, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
| | - Kazuaki Hisatsune
- Forensic
Science Laboratory, Aichi Prefectural Police
Headquarters, 2-1-1,
Sannomaru, Naka-ku, Nagoya 460-8502, Japan
| | - Masaru Taniguchi
- Nagoya City
Public Health Research Institute, Shimoshidami, Moriyama-ku, Nagoya 463-8585, Japan
| | - Akira Iguchi
- Marine Geo-Environment
Research Group, Institute of Geology and Geoinformation, National Institute of Advanced Industrial Science
and Technology (AIST), AIST Tsukuba Central 7, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8567 Japan
| |
Collapse
|
20
|
Aggarwal H, Pathak P, Gupta SK, Kumar Y, Jagavelu K, Dikshit M. Serum and cecal metabolic profile of the insulin resistant and dyslipidemic p47 phox knockout mice. Free Radic Res 2022; 56:483-497. [PMID: 36251883 DOI: 10.1080/10715762.2022.2133705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Involvement of NOX-dependent oxidative stress in the pathophysiology of metabolic disorders as well as in the maintenance of metabolic homeostasis has been demonstrated previously. In the present study, the metabolic profile in p47phox-/- and WT mice fed on a chow diet was evaluated to assess the role of metabolites in glucose intolerance and dyslipidemia under altered oxidative stress conditions. p47phox-/- mice displayed glucose intolerance, dyslipidemia, hyperglycemia, insulin resistance (IR), hyperinsulinemia, and altered energy homeostasis without any significant change in gluconeogenesis. The expression of genes involved in lipid synthesis and uptake was enhanced in the liver, adipose tissue, and intestine tissues. Similarly, the expression of genes associated with lipid efflux in the liver and intestine was also enhanced. Enhanced gut permeability, inflammation, and shortening of the gut was evident in p47phox-/- mice. Circulating levels of pyrimidines, phosphatidylglycerol lipids, and 3-methyl-2-oxindole were augmented, while level of purine was reduced in the serum. Moreover, the cecal metabolome was also altered, as was evident with the increase in indole-3-acetamide, N-acetyl galactosamine, glycocholate, and a decrease in hippurate, indoxyl sulfate, and indigestible sugars (raffinose and melezitose). Treatment of p47phox-/- mice with pioglitazone, marginally improved glucose intolerance, and dyslipidemia, with an increase in PUFAs (linoleate, docosahexaenoic acid, and arachidonic acid). Overall, the results obtained in p47phox-/- mice indicate an association of IR and dyslipidemia with altered serum and cecal metabolites (both host and bacterial-derived), implying a critical role of NOX-derived ROS in metabolic homeostasis.
Collapse
Affiliation(s)
- Hobby Aggarwal
- Pharmacology Division, CSIR-Central Drug Research Institute, Lucknow, India.,Non-Communicable Diseases Division, Translational Health Science and Technology Institute, Faridabad, India
| | - Priya Pathak
- Pharmacology Division, CSIR-Central Drug Research Institute, Lucknow, India
| | - Sonu Kumar Gupta
- Non-Communicable Diseases Division, Translational Health Science and Technology Institute, Faridabad, India
| | - Yashwant Kumar
- Non-Communicable Diseases Division, Translational Health Science and Technology Institute, Faridabad, India
| | | | - Madhu Dikshit
- Pharmacology Division, CSIR-Central Drug Research Institute, Lucknow, India.,Translational Health Science and Technology Institute, Faridabad, India
| |
Collapse
|
21
|
Iram F, Batool S, Shameem S, Aslam I, Batool S, Shaheen M, Aziz R. Effect of aqueous garlic (Allium sativum) extract against di-(2-ethylhexyl) phthalate induced reproductive toxicity in male mice. Andrologia 2022; 54:e14480. [PMID: 35670728 DOI: 10.1111/and.14480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 04/15/2022] [Accepted: 04/22/2022] [Indexed: 11/30/2022] Open
Abstract
This study was designed to investigate testicular and male reproductive tract histopathologies and lipid profile against di-ethylhexyl phthalate (DEHP) exposure in mice and curative potentials of aqueous garlic (Allium sativum) extract. Four groups (n = 10) were named and treated as follow (a) control (C): (normal feed and drinking water + 0.2 ml corn oil); (b) aqueous garlic extract group (AGE): (500 mg/kg body weight of aqueous garlic extract); (c) DEHP group: (500 mg/kg body weight of DEHP, dissolved in corn oil; (d) AGE + DEHP group (500 mg/kg body weight garlic aqueous extract, and DEHP 500 mg/kg body weight dissolved in corn oil). The doses were given once daily through gavages for 28 days and on the 29th day, all the animals were euthanized through cervical dislocation and reproductive organs and blood samples were collected. The results showed that exposure to DEHP caused a significant effect on body weight, testicular weight, serum cholesterol, triglycerides, lipid profile, average cross-sectional area (ACSA) of the seminiferous tubule, ACSA of the lumen of seminiferous tubule, spermatogenic cells, Leydig's cells number, vas deferens diameter, lumen, muscular thickness, and epithelial cell height of vas deferens. This study revealed that exposure to DEHP can be injurious to male reproductive health and aqueous garlic extract can decrease the toxic effects of DEHP in male mice.
Collapse
Affiliation(s)
- Fatima Iram
- Department of Zoology, University of Sargodha, Sargodha, Pakistan
| | - Sajida Batool
- Department of Zoology, University of Sargodha, Sargodha, Pakistan
| | - Sitara Shameem
- Department of Zoology, University of Sargodha, Sargodha, Pakistan
| | - Iqra Aslam
- Department of Zoology, University of Sargodha, Sargodha, Pakistan
| | - Saira Batool
- Department of Zoology, University of Sargodha, Sargodha, Pakistan
| | - Marrium Shaheen
- Department of Zoology, University of Sargodha, Sargodha, Pakistan
| | - Riqza Aziz
- Department of Zoology, University of Sargodha, Sargodha, Pakistan
| |
Collapse
|
22
|
Wang WJ, Wang CS, Wang CK, Yang AM, Lin CY. Urine Di-(2-ethylhexyl) Phthalate Metabolites Are Independently Related to Body Fluid Status in Adults: Results from a U.S. Nationally Representative Survey. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19126964. [PMID: 35742214 PMCID: PMC9222572 DOI: 10.3390/ijerph19126964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 05/28/2022] [Accepted: 06/03/2022] [Indexed: 11/16/2022]
Abstract
Purpose: Di-(2-ethylhexyl) phthalate (DEHP) has been utilized in many daily products for decades. Previous studies have reported that DEHP exposure could induce renin–angiotensin–aldosterone system activation and increase epithelial sodium channel (ENaC) activity, which contributes to extracellular fluid (ECF) volume expansion. However, there is also no previous study to evaluate the association between DEHP exposure and body fluid status. Methods: We selected 1678 subjects (aged ≥18 years) from a National Health and Nutrition Examination Survey (NHANES) in 2003–2004 to determine the relationship between urine DEHP metabolites and body composition (body measures, bioelectrical impedance analysis (BIA)). Results: After weighing the sampling strategy in multiple linear regression analysis, we report that higher levels of DEHP metabolites are correlated with increases in body measures (body weight, body mass index (BMI), waist circumference), BIA parameters (estimated fat mass, percent body fat, ECF, and ECF/intracellular fluid (ICF) ratio) in multiple linear regression analysis. The relationship between DEHP metabolites and the ECF/ICF ratio was more evident in subjects of younger age (20–39 years old), women, non-Hispanic white ethnicity, and subjects who were not active smokers. Conclusion: In addition to being positively correlated with body measures and body fat, we found that urine DEHP metabolites were positively correlated with ECF and the ECF/ICF ratio in the US general adult population. The finding implies that DEHP exposures might increase ECF volume and the ECF/ICF ratio, which may have adverse health outcomes on the cardiovascular system. Further research is needed to clarify the causal relationship.
Collapse
Affiliation(s)
- Wei-Jie Wang
- Division of Nephrology, Department of Internal Medicine, Taoyuan General Hospital, Ministry of Health and Welfare, Taoyuan 330, Taiwan;
- Department of Biomedical Engineering, Chung Yuan Christian University, Taoyuan 300, Taiwan
| | - Chia-Sung Wang
- Department of Internal Medicine, En Chu Kong Hospital, New Taipei City 237, Taiwan; (C.-S.W.); (A.-M.Y.)
| | - Chi-Kang Wang
- Department of Environmental Engineering and Health, Yuanpei University of Medical Technology, Hsinchu 300, Taiwan;
| | - An-Ming Yang
- Department of Internal Medicine, En Chu Kong Hospital, New Taipei City 237, Taiwan; (C.-S.W.); (A.-M.Y.)
- Department of Nursing, Yuanpei University of Medical Technology, Hsinchu 300, Taiwan
| | - Chien-Yu Lin
- Department of Internal Medicine, En Chu Kong Hospital, New Taipei City 237, Taiwan; (C.-S.W.); (A.-M.Y.)
- Department of Nursing, Yuanpei University of Medical Technology, Hsinchu 300, Taiwan
- School of Medicine, Fu Jen Catholic University, New Taipei City 242, Taiwan
- Correspondence:
| |
Collapse
|
23
|
Heindel JJ, Howard S, Agay-Shay K, Arrebola JP, Audouze K, Babin PJ, Barouki R, Bansal A, Blanc E, Cave MC, Chatterjee S, Chevalier N, Choudhury M, Collier D, Connolly L, Coumoul X, Garruti G, Gilbertson M, Hoepner LA, Holloway AC, Howell G, Kassotis CD, Kay MK, Kim MJ, Lagadic-Gossmann D, Langouet S, Legrand A, Li Z, Le Mentec H, Lind L, Monica Lind P, Lustig RH, Martin-Chouly C, Munic Kos V, Podechard N, Roepke TA, Sargis RM, Starling A, Tomlinson CR, Touma C, Vondracek J, Vom Saal F, Blumberg B. Obesity II: Establishing causal links between chemical exposures and obesity. Biochem Pharmacol 2022; 199:115015. [PMID: 35395240 PMCID: PMC9124454 DOI: 10.1016/j.bcp.2022.115015] [Citation(s) in RCA: 92] [Impact Index Per Article: 30.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 03/12/2022] [Accepted: 03/15/2022] [Indexed: 02/06/2023]
Abstract
Obesity is a multifactorial disease with both genetic and environmental components. The prevailing view is that obesity results from an imbalance between energy intake and expenditure caused by overeating and insufficient exercise. We describe another environmental element that can alter the balance between energy intake and energy expenditure: obesogens. Obesogens are a subset of environmental chemicals that act as endocrine disruptors affecting metabolic endpoints. The obesogen hypothesis posits that exposure to endocrine disruptors and other chemicals can alter the development and function of the adipose tissue, liver, pancreas, gastrointestinal tract, and brain, thus changing the set point for control of metabolism. Obesogens can determine how much food is needed to maintain homeostasis and thereby increase the susceptibility to obesity. The most sensitive time for obesogen action is in utero and early childhood, in part via epigenetic programming that can be transmitted to future generations. This review explores the evidence supporting the obesogen hypothesis and highlights knowledge gaps that have prevented widespread acceptance as a contributor to the obesity pandemic. Critically, the obesogen hypothesis changes the narrative from curing obesity to preventing obesity.
Collapse
Affiliation(s)
- Jerrold J Heindel
- Healthy Environment and Endocrine Disruptor Strategies, Commonweal, Bolinas, CA 92924, USA.
| | - Sarah Howard
- Healthy Environment and Endocrine Disruptor Strategies, Commonweal, Bolinas, CA 92924, USA
| | - Keren Agay-Shay
- Health and Environment Research (HER) Lab, The Azrieli Faculty of Medicine, Bar Ilan University, Israel
| | - Juan P Arrebola
- Department of Preventive Medicine and Public Health University of Granada, Granada, Spain
| | - Karine Audouze
- Department of Systems Biology and Bioinformatics, University of Paris, INSERM, T3S, Paris France
| | - Patrick J Babin
- Department of Life and Health Sciences, University of Bordeaux, INSERM, Pessac France
| | - Robert Barouki
- Department of Biochemistry, University of Paris, INSERM, T3S, 75006 Paris, France
| | - Amita Bansal
- College of Health & Medicine, Australian National University, Canberra, Australia
| | - Etienne Blanc
- Department of Biochemistry, University of Paris, INSERM, T3S, 75006 Paris, France
| | - Matthew C Cave
- Division of Gastroenterology, Hepatology and Nutrition, University of Louisville, Louisville, KY 40402, USA
| | - Saurabh Chatterjee
- Environmental Health and Disease Laboratory, University of South Carolina, Columbia, SC 29208, USA
| | - Nicolas Chevalier
- Obstetrics and Gynecology, University of Cote d'Azur, Cote d'Azur, France
| | - Mahua Choudhury
- College of Pharmacy, Texas A&M University, College Station, TX 77843, USA
| | - David Collier
- Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA
| | - Lisa Connolly
- The Institute for Global Food Security, School of Biological Sciences, Queen's University, Belfast, Northern Ireland, UK
| | - Xavier Coumoul
- Department of Biochemistry, University of Paris, INSERM, T3S, 75006 Paris, France
| | - Gabriella Garruti
- Department of Endocrinology, University of Bari "Aldo Moro," Bari, Italy
| | - Michael Gilbertson
- Occupational and Environmental Health Research Group, University of Stirling, Stirling, Scotland
| | - Lori A Hoepner
- Department of Environmental and Occupational Health Sciences, School of Public Health, SUNY Downstate Health Sciences University, Brooklyn, NY 11203, USA
| | - Alison C Holloway
- McMaster University, Department of Obstetrics and Gynecology, Hamilton, Ontario, CA, USA
| | - George Howell
- Center for Environmental Health Sciences, Mississippi State University, Mississippi State, MS 39762, USA
| | - Christopher D Kassotis
- Institute of Environmental Health Sciences and Department of Pharmacology, Wayne State University, Detroit, MI 48202, USA
| | - Mathew K Kay
- College of Pharmacy, Texas A&M University, College Station, TX 77843, USA
| | - Min Ji Kim
- Sorbonne Paris Nord University, Bobigny, INSERM U1124 (T3S), Paris, France
| | | | - Sophie Langouet
- Univ Rennes, INSERM EHESP, IRSET UMR_5S 1085, 35000 Rennes, France
| | - Antoine Legrand
- Sorbonne Paris Nord University, Bobigny, INSERM U1124 (T3S), Paris, France
| | - Zhuorui Li
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA 92697, USA
| | - Helene Le Mentec
- Sorbonne Paris Nord University, Bobigny, INSERM U1124 (T3S), Paris, France
| | - Lars Lind
- Clinical Epidemiology, Department of Medical Sciences, Uppsala University Hospital, Uppsala University, Uppsala, Sweden
| | - P Monica Lind
- Occupational and Environmental Medicine, Department of Medical Sciences, Uppsala University Hospital, Uppsala University, Uppsala, Sweden
| | - Robert H Lustig
- Division of Endocrinology, Department of Pediatrics, University of California San Francisco, CA 94143, USA
| | | | - Vesna Munic Kos
- Department of Physiology and Pharmacology, Karolinska Institute, Solna, Sweden
| | - Normand Podechard
- Sorbonne Paris Nord University, Bobigny, INSERM U1124 (T3S), Paris, France
| | - Troy A Roepke
- Department of Animal Science, School of Environmental and Biological Science, Rutgers University, New Brunswick, NJ 08901, USA
| | - Robert M Sargis
- Division of Endocrinology, Diabetes and Metabolism, The University of Illinois at Chicago, Chicago, Il 60612, USA
| | - Anne Starling
- Department of Epidemiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Craig R Tomlinson
- Norris Cotton Cancer Center, Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756, USA
| | - Charbel Touma
- Sorbonne Paris Nord University, Bobigny, INSERM U1124 (T3S), Paris, France
| | - Jan Vondracek
- Department of Cytokinetics, Institute of Biophysics of the Czech Academy of Sciences, Brno, Czech Republic
| | - Frederick Vom Saal
- Division of Biological Sciences, The University of Missouri, Columbia, MO 65211, USA
| | - Bruce Blumberg
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA 92697, USA
| |
Collapse
|
24
|
Seo MY, Moon S, Kim SH, Park MJ. Associations of Phthalate Metabolites and Bisphenol A Levels with Obesity in Children: The Korean National Environmental Health Survey (KoNEHS) 2015 to 2017. Endocrinol Metab (Seoul) 2022; 37:249-260. [PMID: 35385971 PMCID: PMC9081310 DOI: 10.3803/enm.2021.1235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 02/22/2022] [Indexed: 12/04/2022] Open
Abstract
BACKGROUND Phthalates and bisphenol A (BPA) are synthetic chemicals widely used in daily life. This study investigated urinary phthalate and BPA levels in Korean children and their associations with obesity. METHODS A total of 2,351 children aged 3 to 17 years who participated in the Korean National Environmental Health Survey 2015 to 2017 were included. Urinary dilution was corrected using covariate-adjusted standardization (CAS). We examined the geometric mean (GM) concentrations of urinary phthalate metabolites, including di (2-ethylhexyl) phthalate (DEHP) metabolites (mono [2-ethyl-5-hydroxyhexyl] phthalate, mono [2-ethyl-5-oxohexyl] phthalate, and mono [2-ethyl-5-carboxypentyl] phthalate [MECPP]), mono-benzyl-phthalate (MBzP), mono (carboxyoctyl) phthalate (MCOP), mono (carboxy-isononyl) phthalate (MCNP), mono (3-carboxypropyl) phthalate, and mono-n-butyl-phthalate (MnBP), and BPA. We also analyzed the odds ratio (OR) for obesity according to the quartiles of each analyte. RESULTS The urinary GM levels of DEHP metabolites and MnBP were notably higher among Korean children than among American, Canadian, and German children. The CAS-applied GM concentrations of most analytes, except for MBzP, MCOP, and MCNP, were higher in children aged 3 to 5 years than in those aged 6 to 17 years. The OR for obesity in the highest quartile of MECPP was significantly higher than in the lowest quartile after adjusting for covariates. However, the other phthalate metabolites and BPA were not significantly associated with obesity. CONCLUSION The concentrations of urinary DEHP metabolites and MnBP were higher in Korean children than in children in Western countries. Urinary MECPP exposure, but not other phthalates or BPA, showed a positive association with obesity in Korean children. Further studies are required to elucidate the causal relationships.
Collapse
Affiliation(s)
- Moon Young Seo
- Department of Pediatrics, Wonjin Green Hospital, Seoul, Korea
| | - Shinje Moon
- Department of Internal Medicine, Hallym University Kangnam Sacred Heart Hospital, Hallym University College of Medicine, Seoul, Korea
| | - Shin-Hye Kim
- Department of Pediatrics, Inje University Sanggye Paik Hospital, College of Medicine, Inje University, Seoul, Korea
- Shin-Hye Kim Department of Pediatrics, Inje University Sanggye Paik Hospital, College of Medicine, Inje University, 1342 Dongil-ro, Nowon-gu, Seoul 01757, Korea Tel: +82-2-950-8826, Fax: +82-2-950-1245, E-mail:
| | - Mi Jung Park
- Department of Pediatrics, Inje University Sanggye Paik Hospital, College of Medicine, Inje University, Seoul, Korea
- Corresponding authors: Mi Jung Park Department of Pediatrics, Inje University Sanggye Paik Hospital, College of Medicine, Inje University, 1342 Dongil-ro, Nowon-gu, Seoul 01757, Korea Tel: +82-2-950-8826, Fax: +82-2-950-1245, E-mail:
| |
Collapse
|
25
|
Zeng G, Zhang Q, Wang X, Wu KH. Low-level plasticizer exposure and all-cause and cardiovascular disease mortality in the general population. Environ Health 2022; 21:32. [PMID: 35264146 PMCID: PMC8905760 DOI: 10.1186/s12940-022-00841-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 02/22/2022] [Indexed: 05/03/2023]
Abstract
BACKGROUND Plasticizers, also called phthalates, are a group of chemicals widely used in daily life. A previous report showed no significant association between phthalate metabolite concentrations and mortality. We investigated the association of urinary phthalate levels and individual phthalate metabolite levels with all-cause and cardiovascular disease (CVD) mortality after standardizing the phthalate concentration. METHODS A total of 6,625 participants were recruited from a nationally representative sample of adults aged 40 years or older who were enrolled in the National Health and Nutrition Examination Survey (NHANES) between 2003 and 2014 and were followed up through December 31, 2015. Data were analyzed from January 2021 to June 2021. NHANES-linked updated National Death Index public access files were used to acquire information on mortality status and cause of death. The present study conducted extended follow-up of an earlier analysis. Cox proportional hazard models were performed to calculate the hazard ratios (HRs) and 95% confidence intervals (CIs) of covariate-adjusted creatinine standardization urinary phthalate concentrations with all-cause and CVD mortality after adjusting for demographics, lifestyle factors and comorbidity variables. RESULTS The mean ± standard deviation age of all participants in the final study was 59.9±12.6 years old, and 49.6% of the participants were male. The median follow-up time was 73 months (range 1-157 months). At the censoring date of December 31, 2015, 3,023 participants were identified as deceased (13.4%). A fully adjusted Cox model showed that a urinary di(2-ethylhexyl) phthalate (DEHP) concentration >= 83.4 ng/mL was associated with a slight increase in all-cause mortality (HR 1.27, 95% CI 1.03, 1.57, P for trend= 0.014) and CVD mortality (HR 2.19, 95% CI 1.35, 3.54, P for trend= 0.002). Similarly, urinary mono-2-ethyl-5-carboxypentyl phthalate (MECPP) levels >= 39.2 ng/mL were associated with increased CVD mortality (HR 2.33, 95% CI 1.45, 3.73, P for trend < 0.001). Restricted cubic spline analyses suggested linear associations of DEHP and MECPP levels with all-cause and CVD mortality. CONCLUSION In this large nationally representative sample of American adults, high urinary DEHP and MECPP were significantly associated with all-cause and CVD mortality after adjusting for demographics, lifestyle factors and comorbidity variables.
Collapse
Affiliation(s)
- Guowei Zeng
- Department of Cardiothoracic Surgery, Children's Hospital of Nanjing Medical University, 72 Guangzhou Road, Nanjing, 210008, China
| | - Qi Zhang
- Department of Cardiothoracic Surgery, Children's Hospital of Nanjing Medical University, 72 Guangzhou Road, Nanjing, 210008, China
| | - Xiaowei Wang
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Kai-Hong Wu
- Department of Cardiothoracic Surgery, Children's Hospital of Nanjing Medical University, 72 Guangzhou Road, Nanjing, 210008, China.
| |
Collapse
|
26
|
Su H, Yuan P, Lei H, Zhang L, Deng D, Zhang L, Chen X. Long-term chronic exposure to di-(2-ethylhexyl)-phthalate induces obesity via disruption of host lipid metabolism and gut microbiota in mice. CHEMOSPHERE 2022; 287:132414. [PMID: 34600010 DOI: 10.1016/j.chemosphere.2021.132414] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 09/21/2021] [Accepted: 09/28/2021] [Indexed: 05/15/2023]
Abstract
BACKGROUND Numerous epidemiological findings have shown that di-(2-ethylhexyl)-phthalate (DEHP), one of industrial plasticizers with endocrine-disrupting properties, positively contributes to high incidence of obesity. However, potential pathogenesis of dietary DEHP exposure-induced obesity remains largely unknown. METHODS Chronic DEHP exposure at different doses (0.05 and 5 mg/kg body weight) to mice had been continuously lasted for 14 weeks through the diet. A combination of targeted quantitative metabolomics (LC/GC-MS) with global 1H NMR-based metabolic profiling to explore the effects of dietary DEHP exposure with different doses on host lipid metabolism of mice. Metagenomics (16S rRNA gene sequencing) was also employed to examine the alterations of gut microbiota composition in the cecal contents of mice after dietary DEHP exposure. RESULTS Dietary exposure to DEHP at both doses induced weight gain and hepatic lipogenesis of mice by promoting the uptake of fatty acids and disrupting phospholipids and choline metabolism. Dietary DEHP exposure altered the gut microbiota community with disruption of intestinal morphology and reduction of Firmicutes to Bacteroidetes ratio in the cecal contents of mice. Furthermore, DEHP exposure activated gut microbiota fermentation process producing excess short chain fatty acids of mice. CONCLUSION These findings provide systematic evidence that long-term chronic DEHP exposure induces obesity through disruption of host lipid metabolism and gut microbiota in mice, which not only confirm the epidemiological results, but also expand our understanding of metabolic diseases caused by environmental pollutants exposure.
Collapse
Affiliation(s)
- Henghai Su
- Department of Pharmacy, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi, 530021, China
| | - Peihong Yuan
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Centre for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences (CAS), Wuhan, 430071, China
| | - Hehua Lei
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Centre for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences (CAS), Wuhan, 430071, China
| | - Li Zhang
- Department of Pharmacy, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi, 530021, China
| | - Dazhi Deng
- Department of Pharmacy, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi, 530021, China
| | - Limin Zhang
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Centre for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences (CAS), Wuhan, 430071, China.
| | - Xiaoyu Chen
- Department of Pharmacy, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi, 530021, China.
| |
Collapse
|
27
|
Zhao Y, Cui LG, Talukder M, Cui JG, Zhang H, Li JL. Lycopene prevents DEHP-induced testicular endoplasmic reticulum stress via regulating nuclear xenobiotic receptors and unfolded protein response in mice. Food Funct 2021; 12:12256-12264. [PMID: 34673871 DOI: 10.1039/d1fo02729h] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Lycopene (LYC) is a potent antioxidant synthesized by red vegetables or plants. Di-2-ethylhexyl phthalate (DEHP) is frequently detected in diverse agricultural environments and considered as a reproductive toxicant. The present research was designed to assess the potential mechanisms of DEHP-induced testicular toxicity and the treatment efficacy of LYC. In this study, after the oral administration of LYC at the dose of 5 mg per kg b.w. per day, mice were given 500 or 1000 mg per kg b.w. per day of DEHP. This research suggested that LYC prevented the DEHP-induced disorder at the levels of activity and content of CYP450 enzymes. LYC attenuated DEHP-caused enhancement in nuclear xenobiotic receptors (NXRs) and the phase I metabolizing enzymes (CYP1, CYP2, CYP3, etc.) levels. Furthermore, endoplasmic reticulum (ER) stress was induced by DEHP and triggered unfolded protein response (UPR). Interestingly, LYC could effectively ameliorate these "hit". The present study suggested that LYC prevents DEHP-induced ER stress in testis via regulating NXRs and UPRER.
Collapse
Affiliation(s)
- Yi Zhao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, P. R. China.
| | - Ling-Ge Cui
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, P. R. China.
| | - Milton Talukder
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, P. R. China.
- Department of Physiology and Pharmacology, Faculty of Animal Science and Veterinary Medicine, Patuakhali Science and Technology University, Bangladesh
| | - Jia-Gen Cui
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, P. R. China.
| | - Hao Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, P. R. China.
| | - Jin-Long Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, P. R. China.
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Northeast Agricultural University, Harbin, 150030, P. R. China
- Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Northeast Agricultural University, Harbin, 150030, P. R. China
| |
Collapse
|
28
|
Francis CE, Allee L, Nguyen H, Grindstaff RD, Miller CN, Rayalam S. Endocrine disrupting chemicals: Friend or foe to brown and beige adipose tissue? Toxicology 2021; 463:152972. [PMID: 34606950 DOI: 10.1016/j.tox.2021.152972] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 09/17/2021] [Accepted: 09/29/2021] [Indexed: 12/15/2022]
Abstract
The effects of Endocrine Disrupting Chemicals (EDCs) on the current obesity epidemic is a growing field of interest. Numerous EDCs have shown the potential to alter energy metabolism, which may increase the risk of obesity, in part, through direct actions on adipose tissue. While white adipose tissue has historically been the primary focus of this work, evidence of the EDC-induced disruption of brown and beige adipose tissues continues to build. Both brown and beige fat are thermogenic adipose depots rich in mitochondria that dispense heat when activated. Due to these properties, brown and beige fat are implicated in metabolic diseases such as obesity, diabetes, and cachexia. This review delves into the current literature of different EDCs, including bisphenols, dioxins, air pollutants, phthalates, and phytochemicals. The possible implications that these EDCs have on thermogenic adipose tissues are covered. This review also introduces the possibility of using brown and beige fat as a therapeutic target organ by taking advantage of some of the properties of EDCs. Collectively, we provide a comprehensive discussion of the evidence of EDC disruption in white, brown, and beige fat and highlight gaps worthy of further exploration.
Collapse
Affiliation(s)
| | - Logan Allee
- Department of Pharmaceutical Sciences, School of Pharmacy, Philadelphia College of Osteopathic Medicine, Georgia Campus, Suwanee, GA, USA
| | - Helen Nguyen
- Oak Ridge Institute for Science and Education, Center for Public Health and Environmental Assessment, U.S. Environmental Protection Agency, Research Triangle Park, NC, USA
| | - Rachel D Grindstaff
- Neuroendocrine Toxicology Brach, Public Health and Integrative Toxicology Division, Center for Public Health and Environmental Assessment, U.S. Environmental Protection Agency, Research Triangle Park, NC, USA
| | - Colette N Miller
- Cardiopulmonary Immunotoxicology Branch, Public Health and Integrative Toxicology Division, Center for Public Health and Environmental Assessment, U.S. Environmental Protection Agency, Research Triangle Park, NC, USA.
| | - Srujana Rayalam
- Department of Pharmaceutical Sciences, School of Pharmacy, Philadelphia College of Osteopathic Medicine, Georgia Campus, Suwanee, GA, USA.
| |
Collapse
|
29
|
Ding S, Qi W, Xu Q, Zhao T, Li X, Yin J, Zhang R, Huo C, Zhou L, Ye L. Relationships between di-(2-ethylhexyl) phthalate exposure and lipid metabolism in adolescents: Human data and experimental rat model analyses. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 286:117570. [PMID: 34438493 DOI: 10.1016/j.envpol.2021.117570] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 06/04/2021] [Accepted: 06/06/2021] [Indexed: 06/13/2023]
Abstract
In recent years, the incidence of lipid metabolism disorders in adolescents has gradually increased, and the effects of DEHP on lipid metabolism have received widespread attention. In this study, 463 adolescents aged 16-19 years were enrolled as subjects. This study analyzed the associations between the urinary levels of DEHP metabolites (MEHP, MEOHP, MEHHP, MECPP, MCMHP, and ∑DEHP) and BMI, WHR, WtHR, VAI, LAP, the plasma levels of lipids (TC, TG, HDL-C, and LDL-C), and the peripheral blood leukocyte mRNA levels of SREBP-2, SR-BI, LDLR, and NR1H3. Animal experiments were performed to confirm and expand findings. Wistar rats were administered DEHP at 0, 5, 50, and 500 mg/kg/d for 8 weeks. The serum and liver levels of TC, TG, HDL-C, and LDL-C, and the liver mRNA and protein levels of SREBP-2, SR-BI, LDLR, and NR1H3 were measured. The results showed that WHR, VAI, and LAP were significantly positively associated with the urinary levels of MECPP and ∑DEHP; the plasma HDL-C level was significantly negatively associated with the levels of MECPP, MCMHP and ∑DEHP; the peripheral blood leukocyte mRNA levels of SREBP-2, NR1H3, and LDLR were significantly positively correlated with the MCMHP level; and the SR-BI mRNA level was significantly positively correlated with the levels of MECPP and MCMHP in adolescents. Moreover, the results of animal experiments showed that DEHP exposure significantly increased the serum levels of TC, HDL-C, and LDL-C in 500 mg/kg/d group, as well as the liver levels of TC and HDL-C, up-regulated SREBP-2 mRNA and protein expression in 50 and 500 mg/kg/d groups. DEHP exposure significantly down-regulated SR-BI and NR1H3 protein expression in the liver of the 500 mg/kg/d group rats. Our findings indicate that DEHP exposure can affect lipid metabolism in adolescents by regulating the expression of lipid metabolism-related genes.
Collapse
Affiliation(s)
- Shuang Ding
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, Changchun, China; Changchun University of Chinese Medicine, Changchun, China
| | - Wen Qi
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, Changchun, China
| | - Qi Xu
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, Changchun, China
| | - Tianyang Zhao
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, Changchun, China
| | - Xu Li
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, Changchun, China
| | - Jianli Yin
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, Changchun, China
| | - Ruxuan Zhang
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, Changchun, China
| | - Chuanyi Huo
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, Changchun, China
| | - Liting Zhou
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, Changchun, China
| | - Lin Ye
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, Changchun, China.
| |
Collapse
|
30
|
Urinary Phthalate Levels Associated with the Risk of Nonalcoholic Fatty Liver Disease in Adults: The Korean National Environmental Health Survey (KoNEHS) 2012-2014. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18116035. [PMID: 34199698 PMCID: PMC8199983 DOI: 10.3390/ijerph18116035] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 05/06/2021] [Accepted: 05/06/2021] [Indexed: 12/22/2022]
Abstract
The prevalence of nonalcoholic fatty liver disease (NAFLD) is increasing worldwide. Recent experimental studies suggested that phthalates might induce NAFLD. Therefore, this study aimed to investigate the relationship between phthalates metabolites and NAFLD in the human population. This cross-sectional analysis was performed using data from the Korean National Environmental Health Survey II (2012-2014) among Korean adults (n = 5800). NAFLD was diagnosed using the hepatic steatosis index (HSI) in the absence of other causes of chronic liver diseases. Among the participants (mean age 46 years, 47.5% male), the prevalence of NAFLD was associated with urinary levels of mono(2-ethyl-5-hydroxyhexyl) phthalate (MEHHP), mono-(2-ethyl-5-oxohexyl) phthalate, mono-(2-ethyl-5-carboxypentyl) phthalate, mono-benzyl phthalate (MBzP), and mono-n-butyl phthalate (MnBP) compared to the reference group. In the multivariate model, the odds ratios (ORs), 95% confidence interval (CI) for NAFLD were 1.33 (1.00-1.78) and 1.39 (1.00-1.92) in the 3rd and 4th quartile of MEHHP, respectively. Based on the study findings, high levels of urinary phthalates are associated with the prevalence of NAFLD in Korean adults. Further investigation is required to elucidate the causal relationship.
Collapse
|
31
|
Pournejati R, Gust R, Sagasser J, Kircher B, Jöhrer K, Ghanbari MM, Karbalaei-Heidari HR. In vitro evaluation of cytotoxic effects of di (2-ethylhexyl) phthalate (DEHP) produced by Bacillus velezensis strain RP137 isolated from Persian Gulf. Toxicol In Vitro 2021; 73:105148. [PMID: 33737048 DOI: 10.1016/j.tiv.2021.105148] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 03/08/2021] [Accepted: 03/11/2021] [Indexed: 11/29/2022]
Abstract
Phthalates are widely used in polymer science and have potential toxicity related to their chemical structures. However, lots of evidence indicate that phthalate derivatives are undoubtedly produced as secondary metabolites by organisms, including plants, animals, and microorganisms. In the present study, Bacillus velezensis strain RP137 was cultured under optimized conditions. Its biomass was extracted with ethyl acetate with one fraction showing cytotoxic properties. A pure compound was isolated from the active fraction using combined silica gel and LH20 size exclusion column chromatography. Structural evaluation including FT-IR, 1H NMR, 13C NMR, HR-MS and CHN analysis identified the purified compound as di(2-ethylhexyl)phthalate (DEHP) with the formula C24H38O4 and the molecular weight of 389.29 Da. The microorganism-derived (stereospecific) DEHP was strongly reduced the proliferation and induced cytotoxic effects on various eukaryotic cell lines in compare to the synthetic racemic mixture of the compound when assessed by MTT assay. Furthermore, crystal violet assay and morphological changes confirmed the cytotoxic effect of DEHP. Interestingly, non-malignant SV40-immortalized fibroblast cells were less affected by the purified DEHP. Further evaluation on the antibacterial activity of DEHP documented no effect toward Gram-positive (S. aureus) and Gram-negative (E. coli and P. aeruginosa) pathogens even at a high concentration of 100 μM. In conclusion, existence of DEHP as byproduct of microorganism's metabolism can seriously be considered as a warning to human health.
Collapse
Affiliation(s)
- Roya Pournejati
- Molecular Biotechnology Laboratory, Department of Biology, Faculty of Science, Shiraz University, P.O. Box: 71467-13565, Shiraz 71454, Iran; Department of Pharmaceutical Chemistry, Institute of Pharmacy, Center for Molecular Biosciences Innsbruck, University of Innsbruck, CCB - Centrum for Chemistry and Biomedicine, Innrain 80/82, 6020 Innsbruck, Austria
| | - Ronald Gust
- Department of Pharmaceutical Chemistry, Institute of Pharmacy, Center for Molecular Biosciences Innsbruck, University of Innsbruck, CCB - Centrum for Chemistry and Biomedicine, Innrain 80/82, 6020 Innsbruck, Austria.
| | - Jessica Sagasser
- Department of Pharmaceutical Chemistry, Institute of Pharmacy, Center for Molecular Biosciences Innsbruck, University of Innsbruck, CCB - Centrum for Chemistry and Biomedicine, Innrain 80/82, 6020 Innsbruck, Austria.
| | - Brigitte Kircher
- Immunobiology and Stem Cell Laboratory, Department of Internal Medicine V (Hematology and Oncology), Innsbruck Medical University, Anichstrasse 35, 6020 Innsbruck, Austria; Tyrolean Cancer Research Institute, Innrain 66, 6020 Innsbruck, Austria.
| | - Karin Jöhrer
- Tyrolean Cancer Research Institute, Innrain 66, 6020 Innsbruck, Austria.
| | | | - Hamid Reza Karbalaei-Heidari
- Molecular Biotechnology Laboratory, Department of Biology, Faculty of Science, Shiraz University, P.O. Box: 71467-13565, Shiraz 71454, Iran.
| |
Collapse
|
32
|
Yu Z, Shi Z, Zheng Z, Han J, Yang W, Lu R, Lin W, Zheng Y, Nie D, Chen G. DEHP induce cholesterol imbalance via disturbing bile acid metabolism by altering the composition of gut microbiota in rats. CHEMOSPHERE 2021; 263:127959. [PMID: 32814133 DOI: 10.1016/j.chemosphere.2020.127959] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 08/03/2020] [Accepted: 08/07/2020] [Indexed: 06/11/2023]
Abstract
Di(2-ethylhexyl) phthalate (DEHP) is one of the most widespread environmental contaminants worldwide because of its massive production, extensive use in common products, and liability to leach from products. This study investigated the mechanisms of DEHP mediated alteration of lipid metabolism. Rats were treated with 0.5 mg kg-1 d-1 of DEHP for 23 weeks. Results showed that the treatment induced cholesterol imbalance. Further fecal transplantation experiments corroborated the involvement of gut microbiota in DEHP-induced cholesterol imbalance. In addition, 16S rRNA gene sequencing analysis of cecal contents showed that DEHP disrupted the gut microbiota diversity in rats and increased the ratio of Firmicutes to Bacteroidetes. Further cecal metabolomic analyses, bile salt hydrolase enzyme activity, and gene expression examination revealed that chronic DEHP exposure generated a bile acid profile in the gut that is a more potent activator of farnesoid X receptor (FXR). The activation of FXR in the gut induced the expression of fibroblast growth factor 15, which subsequently suppressed cytochrome P450 family 7 subfamily A member 1 in the liver and bile acid synthesis. These results suggest that DEHP might induce cholesterol imbalance by regulating bile acid metabolism via the remodeling of the gut microbiota.
Collapse
Affiliation(s)
- Zhen Yu
- Fujian Provincial Key Laboratory of Medical Analysis, Fujian Academy of Medical Sciences, Fuzhou, 350001, China
| | - Zhenhua Shi
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
| | - Zeyu Zheng
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou, 350001, China
| | - Junyong Han
- Fujian Provincial Key Laboratory of Medical Analysis, Fujian Academy of Medical Sciences, Fuzhou, 350001, China
| | - Wencong Yang
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou, 350001, China
| | - Rongmei Lu
- Fujian Provincial Hospital, Fuzhou, 350001, China
| | - Wei Lin
- Fujian Provincial Hospital, Fuzhou, 350001, China
| | | | - Daoshun Nie
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou, 350001, China
| | - Gang Chen
- Fujian Provincial Key Laboratory of Medical Analysis, Fujian Academy of Medical Sciences, Fuzhou, 350001, China; Fujian Provincial Hospital, Fuzhou, 350001, China.
| |
Collapse
|
33
|
Sears CG, Braun JM. Phthalate Exposure, Adolescent Health, and the Need for Primary Prevention. Endocrinol Metab Clin North Am 2020; 49:759-770. [PMID: 33153678 DOI: 10.1016/j.ecl.2020.08.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Phthalates, a class of endocrine-disrupting chemicals, are used widely in many consumer products, and exposure can interfere with a range of hormonal functions during early life. These disruptions may alter development during late childhood and adolescence. This article discusses the potential effects of phthalate exposure on adiposity, puberty, and neurodevelopment during late childhood and adolescence. It also highlights studies of behavioral interventions to reduce phthalate exposures and the roles of health care professionals and policy makers in preventing phthalate exposure.
Collapse
Affiliation(s)
- Clara G Sears
- Department of Epidemiology, Brown University School of Public Health, Box G-S121-2, 121 South Main Street, Providence, RI 02912, USA.
| | - Joseph M Braun
- Department of Epidemiology, Brown University School of Public Health, Box G-S121-2, 121 South Main Street, Providence, RI 02912, USA. https://twitter.com/JosephMBraun1
| |
Collapse
|
34
|
Zhai LL, Zhao J, Bai YL, Wei W, Sun Q, Jia LH. Combined effects of obesity and di-(2-ethylhexyl) phthalate on testosterone levels and kisspeptin/GPR54 expression in hypothalamus and testes of male mice. J Chin Med Assoc 2020; 83:1020-1028. [PMID: 32732529 PMCID: PMC7647433 DOI: 10.1097/jcma.0000000000000402] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND This study evaluated whether obese male mice exposed to di-(2-ethylhexyl) phthalate (DEHP) showed synergistic effects on testosterone levels and the potential underlying mechanism. METHODS Forty-eight male mice were assigned to six groups for 12-week treatments as follows: normal, DEHP100, diet-induced obesity (DIO), DIO + DEHP30, DIO + DEHP100, and DIO + DEHP300. Serum hormone levels, including testosterone (T), luteinizing hormone (LH), and leptin, were detected by ELISA. The levels of Ob-R, kisspeptin, and GPR54 protein expression in hypothalamus and testicular tissues were measured by western blot. RESULTS There were significantly lower levels of serum T and LH, higher levels of serum leptin and Ob-R, and kisspeptin and GPR54 protein expression were reduced in hypothalamus and testicular tissues in the DIO and DEHP groups compared with controls. Moreover, serum T and leptin levels were more severe in the combined DIO and DEHP exposure group than in the single exposure groups. Serum LH levels and GPR54 expression in the testis were significantly decreased in DIO + DEHP300 mice compared with DIO mice (p < 0.05). CONCLUSION Obesity- and DEHP-only exposure had adverse effects on testosterone levels in mice, which may be due to high leptin levels and decreased Ob-R, kisspeptin, and GPR54 expression. Obesity combined with DEHP exposure had an additive adverse effect on testosterone levels in mice. One of the potential mechanisms is higher leptin levels and decreased GPR54 expression in the testes.
Collapse
Affiliation(s)
- Ling-Ling Zhai
- Department of Maternal and Child Health, School of Public Health, China Medical University, Liaoning, China
| | - Jian Zhao
- Department of Pharmacology, Shenyang Pharmaceutical University, Liaoning, China
| | - Ying-Long Bai
- Department of Maternal and Child Health, School of Public Health, China Medical University, Liaoning, China
| | - Wei Wei
- Department of Maternal and Child Health, School of Public Health, China Medical University, Liaoning, China
| | - Qi Sun
- Department of Maternal and Child Health, School of Public Health, China Medical University, Liaoning, China
| | - Li-Hong Jia
- Department of Maternal and Child Health, School of Public Health, China Medical University, Liaoning, China
- Address correspondence. Dr. Li-Hong Jia, Department of Maternal and Child Health, School of Public Health, China Medical University, 77, Puhe Road, Shenbei District, Shenyang, Liaoning, China. E-mail address: (L.-H. Jia)
| |
Collapse
|
35
|
Buerger AN, Dillon DT, Schmidt J, Yang T, Zubcevic J, Martyniuk CJ, Bisesi JH. Gastrointestinal dysbiosis following diethylhexyl phthalate exposure in zebrafish (Danio rerio): Altered microbial diversity, functionality, and network connectivity. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 265:114496. [PMID: 32806437 DOI: 10.1016/j.envpol.2020.114496] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 02/18/2020] [Accepted: 03/28/2020] [Indexed: 06/11/2023]
Abstract
Microbiome community structure is intimately involved in key biological functions in the gastrointestinal (GI) system including nutrient absorption and lipid metabolism. Recent evidence suggests that disruption of the GI microbiome is a contributing factor to metabolic disorders and obesity. Poor diet and chemical exposure have been independently shown to cause disruption of the GI microbiome community structure and function. We hypothesized that the addition a chemical exposure to overfeeding exacerbates adverse effects on the GI microbiome community structure and function. To test this hypothesis, adult zebrafish were fed a normal feeding regime (Control), an overfeeding regime (OF), or an overfeeding regime contaminated with diethylhexyl phthalate (OF + DEHP), a suspected obesogen-inducing chemical. After 60 days, fecal matter was collected for sequencing, identification, and quantification of the GI microbiome using the 16s rRNA hypervariable region. Analysis of beta diversity indicated distinct microbial profiles between treatments with the largest divergence between Control and OF + DEHP groups. Based upon functional predictions, OF + DEHP treatment altered carbohydrate metabolism, while both OF and OF + DEHP affected biosynthesis of fatty acids and lipid metabolism. Co-occurrence network analysis revealed decreases in cluster size and a fracturing of the microbial community network into unconnected components and a loss of keystone species in the OF + DEHP treatment when compared to Control and OF treatments. Data suggest that the addition of DEHP in the diet may exacerbate microbial dysbiosis, a consequence that may explain in part its role as an obesogenic chemical.
Collapse
Affiliation(s)
- Amanda N Buerger
- Department of Environmental and Global Health, University of Florida, Gainesville, FL, USA; Center for Environmental and Human Toxicology, University of Florida, Gainesville, FL, USA
| | - David T Dillon
- Center for Environmental and Human Toxicology, University of Florida, Gainesville, FL, USA; Department of Anthropology, University of Florida, Gainesville, FL, USA
| | - Jordan Schmidt
- Center for Environmental and Human Toxicology, University of Florida, Gainesville, FL, USA; Department of Physiological Sciences, University of Florida, Gainesville, FL, USA
| | - Tao Yang
- The Center for Hypertension and Precision Medicine, University of Toledo College of Medicine and Life Sciences, OH, USA; Physiological Genomics Laboratory, Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, OH, USA
| | - Jasenka Zubcevic
- Department of Physiological Sciences, University of Florida, Gainesville, FL, USA
| | - Christopher J Martyniuk
- Center for Environmental and Human Toxicology, University of Florida, Gainesville, FL, USA; Department of Physiological Sciences, University of Florida, Gainesville, FL, USA
| | - Joseph H Bisesi
- Department of Environmental and Global Health, University of Florida, Gainesville, FL, USA; Center for Environmental and Human Toxicology, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
36
|
Lin CY, Lee HL, Hwang YT, Wang C, Hsieh CJ, Wu C, Sung FC, Su TC. The association between urine di-(2-ethylhexyl) phthalate metabolites, global DNA methylation, and subclinical atherosclerosis in a young Taiwanese population. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 265:114912. [PMID: 32540595 DOI: 10.1016/j.envpol.2020.114912] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Revised: 05/04/2020] [Accepted: 05/29/2020] [Indexed: 06/11/2023]
Abstract
Di-(2-ethylhexyl) phthalate (DEHP) has been utilized in many products for years. DEHP exposure has been linked to cardiovascular diseases (CVD) and its risk factors. Recent evidence has found a crucial role for epigenetics, including DNA methylation, in CVD. Moreover, DEHP exposure has proved to alter DNA methylation in epidemiological studies. However, the interplay between DEHP exposure, global DNA methylation, and atherosclerosis has never been reported. In this current study, we enrolled 793 participants (12-30 years) from a Taiwanese population to investigate the association between concentrations of DEHP metabolites, 5mdC/dG (global DNA methylation marker) and the carotid intima-media thickness (CIMT). The results showed urine mono-2-ethylhexyl phthalate (MEHP) level was positively correlated with 5mdC/dG and CIMT, respectively. In logistic regression models, the odds ratios (OR) of thicker CIMT (greater than 75th percentile) with one unit increase in ln-MEHP level was higher when levels of 5mdC/dG were above 50%. In structural equation model, the result showed urine MEHP levels are directly associated with CIMT. Moreover, MEHP had an indirect association with CIMT through the 5mdC/dG after adjusting other confounding effects. In the current study, urine DEHP metabolite levels were positively correlated with 5mdC/dG, and CIMT. Our results showed DEHP had a direct and indirect association with CIMT through the 5mdC/dG. The finding implies that DNA methylation may mediate the association between DEHP exposures and subclinical atherosclerosis in this young population. Future effort is needed to elucidate the causal relationship between DEHP exposure, DNA methylation and CVD.
Collapse
Affiliation(s)
- Chien-Yu Lin
- Department of Internal Medicine, En Chu Kong Hospital, New Taipei City, 237, Taiwan; School of Medicine, Fu Jen Catholic University, New Taipei City, 242, Taiwan; Department of Environmental Engineering and Health, Yuanpei University of Medical Technology, Hsinchu, 300, Taiwan
| | - Hui-Ling Lee
- Department of Chemistry, Fu Jen Catholic University, New Taipei City, 242, Taiwan
| | - Yi-Ting Hwang
- Department of Statistics, National Taipei University, New Taipei City, 237, Taiwan
| | - Chikang Wang
- Department of Environmental Engineering and Health, Yuanpei University of Medical Technology, Hsinchu, 300, Taiwan
| | - Chia-Jung Hsieh
- Department of Public Health, Tzu Chi University, Hualian County, 970, Taiwan
| | - Charlene Wu
- Global Health Program, College of Public Health, National Taiwan University, Taipei, Taiwan
| | - Fung-Chang Sung
- Department of Health Services Administration, College of Public Health, China Medical University, Taichung, 404, Taiwan
| | - Ta-Chen Su
- Department of Environmental and Occupational Medicine, National Taiwan University Hospital, Taipei, 100, Taiwan; Department of Internal Medicine and Cardiovascular Center, National Taiwan University Hospital, Taipei, 100, Taiwan; Institute of Environmental and Occupational Health Sciences, College of Public Health, National Taiwan University, Taipei, 100, Taiwan.
| |
Collapse
|
37
|
Fu G, Dai J, Li Z, Chen F, Liu L, Yi L, Teng Z, Quan C, Zhang L, Zhou T, Donkersley P, Song S, Shi Y. The role of STAT3/p53 and PI3K-Akt-mTOR signaling pathway on DEHP-induced reproductive toxicity in pubertal male rat. Toxicol Appl Pharmacol 2020; 404:115151. [DOI: 10.1016/j.taap.2020.115151] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 07/14/2020] [Accepted: 07/17/2020] [Indexed: 12/12/2022]
|
38
|
Li YL, Lv J, Du ZP, Feng S, Sheng J, Jin ZX, Liu KY, Gao H, Li XD, Cao HJ, Yang LS, Xu DX, Tao FB, Wang QN. The levels of phthalate exposure and associations with obesity in an elderly population in China. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 201:110749. [PMID: 32505048 DOI: 10.1016/j.ecoenv.2020.110749] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Revised: 05/05/2020] [Accepted: 05/07/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Few epidemiological studies on the correlation between phthalate exposure and elderly obesity in China are available. The purpose of the present study is to assess phthalate exposure levels and explore the connections between exposure to phthalates and obesity using a sample of Chinese community-dwelling elderly individuals. METHODS Data were acquired from the baseline survey of the Cohort of Health of Elderly and Controllable Factors of Environment, which was established in Lu'an, Anhui province, China, from June to September in 2016. Urine samples were obtained to analyze the concentrations of seven phthalate metabolites, utilizing a high-performance liquid chromatography-tandem mass spectrometry method. General obesity was determined based on body mass index, and abdominal obesity based on waist circumference. Binary logistic regression models were utilized to analyze the associations of creatinine-corrected phthalate metabolite concentrations (categorized into quartiles) with general and abdominal obesity in elderly people. Moreover, a stratified analysis was performed to explore the difference between genders. RESULTS Of 942 elderly individuals, 52.9% were defined as generally obese and 75.5% as abdominally obese. The detection rates of seven phthalate metabolites ranged from 90.07% to 99.80%. The highest median concentration was 44.08 μg/l (for MBP), and the lowest was 0.55 μg/l (for MEHP). The level of exposure to LMW(low-molecular-weight) PAEs is higher than that to HMW(high-molecular-weight) PAEs. After adjustment for confounding variables, we found a significant association between urinary MEOHP (mono-2-ethyl-5-oxohexyl phthalate), MEHP (mono-2-ethylhexyl phthalate), MBP (mono-n-butyl phthalate), MEP (mono-ethyl phthalate), and MMP (mono-methyl phthalate) levels and general obesity. MBP levels were also correlated with abdominal obesity. When stratified by gender, higher urinary levels of MEOHP, MBP, MEP, and MMP were associated with general obesity in males, whereas MBP and MMP levels were eminently correlated with general obesity in females. Higher urinary MBP levels were associated with increased abdominal obesity rates in males, but not in females. CONCLUSIONS In conclusion, higher phthalate metabolite concentrations were correlated with obesity in the elderly. Moreover, a gender difference was observed in these associations.
Collapse
Affiliation(s)
- Yan-Ling Li
- School of Public Health, Anhui Medical University, Hefei, 230022, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Hefei, 230022, China
| | - Jia Lv
- School of Public Health, Anhui Medical University, Hefei, 230022, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Hefei, 230022, China
| | - Zhi-Ping Du
- School of Public Health, Anhui Medical University, Hefei, 230022, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Hefei, 230022, China
| | - Shun Feng
- School of Public Health, Anhui Medical University, Hefei, 230022, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Hefei, 230022, China
| | - Jie Sheng
- School of Public Health, Anhui Medical University, Hefei, 230022, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Hefei, 230022, China
| | - Zhong-Xiu Jin
- School of Public Health, Anhui Medical University, Hefei, 230022, China
| | - Kai-Yong Liu
- School of Public Health, Anhui Medical University, Hefei, 230022, China
| | - Hui Gao
- Department of Pediatrics, First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Xiu-de Li
- Lu'an Center of Disease Control and Prevention, Lu'an, 237008, China
| | - Hong-Juan Cao
- Lu'an Center of Disease Control and Prevention, Lu'an, 237008, China
| | - Lin-Sheng Yang
- School of Public Health, Anhui Medical University, Hefei, 230022, China
| | - De-Xiang Xu
- School of Public Health, Anhui Medical University, Hefei, 230022, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Hefei, 230022, China
| | - Fang-Biao Tao
- School of Public Health, Anhui Medical University, Hefei, 230022, China; Department of Maternal, Child and Adolescent Health Care, School of Public Health, Anhui Medical University, Hefei, 230032, China; MOE Key Laboratory of Population Health Across Life Cycle, Hefei, 230032, China
| | - Qu-Nan Wang
- School of Public Health, Anhui Medical University, Hefei, 230022, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Hefei, 230022, China; Department of Maternal, Child and Adolescent Health Care, School of Public Health, Anhui Medical University, Hefei, 230032, China; MOE Key Laboratory of Population Health Across Life Cycle, Hefei, 230032, China.
| |
Collapse
|
39
|
Agin A, Blanc F, Bousiges O, Villette C, Philippi N, Demuynck C, Martin-Hunyadi C, Cretin B, Lang S, Zumsteg J, Namer IJ, Heintz D. Environmental exposure to phthalates and dementia with Lewy bodies: contribution of metabolomics. J Neurol Neurosurg Psychiatry 2020; 91:968-974. [PMID: 32636213 DOI: 10.1136/jnnp-2020-322815] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 04/21/2020] [Accepted: 05/29/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND In neurodegenerative diseases, alongside genetic factors, the possible intervention of environmental factors in the pathogenesis is increasingly being considered. In particular, recent evidence suggests the intervention of a pesticide-like xenobiotic in the initiation of disease with Lewy bodies (DLB). OBJECTIVES To test for the presence of pesticides or other xenobiotics in the cerebrospinal fluid (CSF) of patients with DLB. METHODS A total of 45 patients were included in this study: 16 patients with DLB at the prodromal stage, 8 patients with DLB at the demented stage, 8 patients with Alzheimer's disease (AD) at the prodromal stage and 13 patients with AD at the demented stage. CSF was obtained by lumbar puncture and analysed by liquid chromatography-mass spectrometry. RESULTS Among the compounds detected in greater abundance in the CSF of patients with DLB compared with patients with AD, only one had a xenobiotic profile potentially related to the pathophysiology of DLB. After normalisation and scaling, bis(2-ethylhexyl) phthalate was more abundant in the CSF of patients with DLB (whole cohort: 2.7-fold abundant in DLB, p=0.031; patients with dementia: 3.8-fold abundant in DLB, p=0.001). CONCLUSIONS This study is the first reported presence of a phthalate in the CSF of patients with DLB. This molecule, which is widely distributed in the environment and enters the body orally, nasally and transdermally, was first introduced in the 1920s as a plasticizer. Thereafter, the first cases of DLB were described in the 1960s and 1970s. These observations suggest that phthalates may be involved in the pathophysiology of DLB.
Collapse
Affiliation(s)
- Arnaud Agin
- ICube laboratory, UMR 7357, team IMIS and platform IRIS, University of Strasbourg, CNRS, FMTS (Fédération de Médicine Translationnelle de Strasbourg, Strasbourg, France .,Nuclear Medicine and Molecular Imaging Department, ICANS (Institut de Cancérologie Strasbourg Europe), Strasbourg, France
| | - Frédéric Blanc
- ICube laboratory, UMR 7357, team IMIS and platform IRIS, University of Strasbourg, CNRS, FMTS (Fédération de Médicine Translationnelle de Strasbourg, Strasbourg, France.,Geriatrics Department, CM2R (Memory Resource and Research Centre), Day Hospital & Neurology Service, Neuropsychology Unit, University Hospital of Strasbourg, Strasbourg, France
| | - Olivier Bousiges
- Laboratory of Biochemistry and Molecular Biology, University Hospital of Strasbourg, Strasbourg, France
| | - Claire Villette
- Institut de Biologie Moléculaire des Plantes, Plant Imaging and Mass Spectrometry (PIMS), CNRS, University of Strasbourg, Strasbourg, France
| | - Nathalie Philippi
- ICube laboratory, UMR 7357, team IMIS and platform IRIS, University of Strasbourg, CNRS, FMTS (Fédération de Médicine Translationnelle de Strasbourg, Strasbourg, France.,Geriatrics Department, CM2R (Memory Resource and Research Centre), Day Hospital & Neurology Service, Neuropsychology Unit, University Hospital of Strasbourg, Strasbourg, France
| | - Catherine Demuynck
- Geriatrics Department, CM2R (Memory Resource and Research Centre), Day Hospital & Neurology Service, Neuropsychology Unit, University Hospital of Strasbourg, Strasbourg, France
| | - Catherine Martin-Hunyadi
- Geriatrics Department, CM2R (Memory Resource and Research Centre), Day Hospital & Neurology Service, Neuropsychology Unit, University Hospital of Strasbourg, Strasbourg, France
| | - Benjamin Cretin
- ICube laboratory, UMR 7357, team IMIS and platform IRIS, University of Strasbourg, CNRS, FMTS (Fédération de Médicine Translationnelle de Strasbourg, Strasbourg, France.,Geriatrics Department, CM2R (Memory Resource and Research Centre), Day Hospital & Neurology Service, Neuropsychology Unit, University Hospital of Strasbourg, Strasbourg, France
| | - Sabine Lang
- Institut de Biologie Moléculaire des Plantes, Plant Imaging and Mass Spectrometry (PIMS), CNRS, University of Strasbourg, Strasbourg, France
| | - Julie Zumsteg
- Institut de Biologie Moléculaire des Plantes, Plant Imaging and Mass Spectrometry (PIMS), CNRS, University of Strasbourg, Strasbourg, France
| | - Izzie Jacques Namer
- ICube laboratory, UMR 7357, team IMIS and platform IRIS, University of Strasbourg, CNRS, FMTS (Fédération de Médicine Translationnelle de Strasbourg, Strasbourg, France.,Nuclear Medicine and Molecular Imaging Department, ICANS (Institut de Cancérologie Strasbourg Europe), Strasbourg, France
| | - Dimitri Heintz
- Institut de Biologie Moléculaire des Plantes, Plant Imaging and Mass Spectrometry (PIMS), CNRS, University of Strasbourg, Strasbourg, France
| |
Collapse
|
40
|
Fan Y, Qin Y, Chen M, Li X, Wang R, Huang Z, Xu Q, Yu M, Zhang Y, Han X, Du G, Xia Y, Wang X, Lu C. Prenatal low-dose DEHP exposure induces metabolic adaptation and obesity: Role of hepatic thiamine metabolism. JOURNAL OF HAZARDOUS MATERIALS 2020; 385:121534. [PMID: 31706747 PMCID: PMC7220048 DOI: 10.1016/j.jhazmat.2019.121534] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 10/10/2019] [Accepted: 10/23/2019] [Indexed: 05/04/2023]
Abstract
Di-(2-ethylhexyl)-phthalate (DEHP) is a ubiquitous environmental pollutant and is widely used in industrial plastics. However, the long-term health implications of prenatal exposure to DEHP remains unclear. We set out to determine whether prenatal DEHP exposure can induce metabolic syndrome in offspring and investigate the underlying mechanisms. A mouse model of prenatal DEHP exposure (0.2, 2, and 20 mg/kg/day) was established to evaluate the long-term metabolic disturbance in offspring. The mice were profiled for the hepatic metabolome, transcriptome and gut microbiota to determine the underlying mechanisms. Thiamine supplementation (50 mg/kg/day) was administered to offspring to investigate the role of thiamine in ameliorating metabolic syndrome. Prenatal exposure to low-dose DEHP (0.2 mg/kg/day) resulted in metabolic syndrome, including abnormal adipogenesis, energy expenditure and glucose metabolism, along with dysbiosis of the gut microbiome, in male offspring. Notably, hepatic thiamine metabolism was disrupted in these offspring due to the dysregulation of thiamine transport enzymes, which caused abnormal glucose metabolism. Prenatal low-dose DEHP exposure caused life-long metabolic consequences in a sex-dependent manner, and these consequences were be attenuated by thiamine supplementation in offspring. Our findings suggest low-dose DEHP exposure during early life stages is a potential risk factor for later obesity and metabolic syndrome.
Collapse
Affiliation(s)
- Yun Fan
- State Key Laboratory of Reproductive Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Yufeng Qin
- Epigenetics & Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, 27709, USA
| | - Minjian Chen
- State Key Laboratory of Reproductive Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Xiuzhu Li
- State Key Laboratory of Reproductive Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Ruohan Wang
- The First Clinical Medical College of Nanjing Medical University, Nanjing 211166, China
| | - Zhenyao Huang
- State Key Laboratory of Reproductive Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Qiaoqiao Xu
- State Key Laboratory of Reproductive Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Mingming Yu
- State Key Laboratory of Reproductive Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Yan Zhang
- Kangda College of Nanjing Medical University, Lianyungang 222002, China
| | - Xiumei Han
- State Key Laboratory of Reproductive Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Guizhen Du
- State Key Laboratory of Reproductive Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Yankai Xia
- State Key Laboratory of Reproductive Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Xinru Wang
- State Key Laboratory of Reproductive Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China.
| | - Chuncheng Lu
- State Key Laboratory of Reproductive Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China.
| |
Collapse
|
41
|
Ernst J, Grabiec U, Falk K, Dehghani F, Schaedlich K. The endocrine disruptor DEHP and the ECS: analysis of a possible crosstalk. Endocr Connect 2020; 9:101-110. [PMID: 31910153 PMCID: PMC6993259 DOI: 10.1530/ec-19-0548] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 01/06/2020] [Indexed: 11/09/2022]
Abstract
Studies of the last decade associated the environmental contamination by di-(2-ethylhexyl)-phthalate (DEHP) with obesity and endocrine malfunction. DEHP was found to interact with several receptors - among them are receptors of the endocannabinoid system (ECS) with high expression levels in adipose tissue. Furthermore, the correlation for BMI and body fat to the serum endocannabinoid level raises the question if the obesogenic and endocrine-disrupting DEHP effects are mediated via the ECS. We therefore characterized the ECS in a human cell model of adipogenesis using the SGBS preadipocytes to subsequently investigate if DEHP exposure affects the intrinsic ECS. The receptors of the ECS and the endocannabinoid-metabolizing enzymes were upregulated during normal adipogenesis, accompanied by an increasing secretion of the adipokines adiponectin and leptin. DEHP affected the secretion of both adipokines but not the ECS, suggesting DEHP to alter the endocrine function of adipocytes without the involvement of the intrinsic ECS.
Collapse
Affiliation(s)
- Jana Ernst
- Department of Anatomy and Cell Biology, Faculty of Medicine, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
- Correspondence should be addressed to J Ernst:
| | - Urszula Grabiec
- Department of Anatomy and Cell Biology, Faculty of Medicine, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Kathrin Falk
- Department of Anatomy and Cell Biology, Faculty of Medicine, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Faramarz Dehghani
- Department of Anatomy and Cell Biology, Faculty of Medicine, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Kristina Schaedlich
- Department of Anatomy and Cell Biology, Faculty of Medicine, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| |
Collapse
|
42
|
Zhang Y, Zhou L, Zhang Z, Xu Q, Han X, Zhao Y, Song X, Zhao T, Ye L. Effects of di (2-ethylhexyl) phthalate and high-fat diet on lipid metabolism in rats by JAK2/STAT5. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:3837-3848. [PMID: 31732953 DOI: 10.1007/s11356-019-06599-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 09/24/2019] [Indexed: 06/10/2023]
Abstract
Exposure to di (2-ethylhexyl) phthalate (DEHP) induces lipid metabolism disorder and high-fat diet (HD) may have joint effects with DEHP. We aim to clarify the role of JAK2/STAT5 pathway in the process and reveal the effects of HD on the toxicity of DEHP. Wistar rats (160 animals) were fed with HD or normal diet (ND) respectively and exposed to DEHP 0, 5, 50, and 500 mg/kg/day for 8 weeks. Lipid levels, as well as the morphology of liver and adipose, mRNA levels, and protein levels of JAK2, STAT5A, STAT5B, FAS, ap2, and PDK4 were detected. The results showed that DEHP exposure leads to increased weight gain. The JAK2/STAT5 pathway was activated in adipose after DEHP exposure and promoted the expression of FAS, ap2, and PDK4 in ND rats. While in the liver, JAK2 was inhibited, and lipid synthesis and accumulation were increased. However, rats exposed to DEHP in combination with HD showed a complete disorder of lipid metabolism. Therefore, we conclude that DEHP affects lipid metabolism through regulating the JAK2/STAT5 pathway and promotes adipogenesis and lipid accumulation. High-fat diet may have a joint effect with DEHP on lipid metabolism disorder.
Collapse
Affiliation(s)
- Yuezhu Zhang
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, 1163 Xin Min Street, Changchun, 130021, China
| | - Liting Zhou
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, 1163 Xin Min Street, Changchun, 130021, China
| | - Zhaoming Zhang
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, 1163 Xin Min Street, Changchun, 130021, China
| | - Qi Xu
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, 1163 Xin Min Street, Changchun, 130021, China
| | - Xu Han
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, 1163 Xin Min Street, Changchun, 130021, China
| | - Yaming Zhao
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, 1163 Xin Min Street, Changchun, 130021, China
| | - Xinyue Song
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, 1163 Xin Min Street, Changchun, 130021, China
| | - Tianyang Zhao
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, 1163 Xin Min Street, Changchun, 130021, China
| | - Lin Ye
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, 1163 Xin Min Street, Changchun, 130021, China.
| |
Collapse
|
43
|
|
44
|
Heggeseth BC, Holland N, Eskenazi B, Kogut K, Harley KG. Heterogeneity in childhood body mass trajectories in relation to prenatal phthalate exposure. ENVIRONMENTAL RESEARCH 2019; 175:22-33. [PMID: 31102947 PMCID: PMC6613931 DOI: 10.1016/j.envres.2019.04.036] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 04/13/2019] [Accepted: 04/30/2019] [Indexed: 05/04/2023]
Abstract
Phthalates, compounds commonly used in plastics and personal care products, have been associated with childhood obesity in cross-sectional and some longitudinal studies. Using advanced statistical methods, we characterized the heterogeneity in body mass development patterns over childhood (ages 2-14 years) and explored associations with maternal prenatal urinary concentrations of phthalates among 335 children in the Center for the Health Assessment of Mothers and Children of Salinas (CHAMACOS) cohort study. Height and weight were measured every one to two years in this cohort, which had a high prevalence of obesity and overweight. Building upon a previous analysis that showed a positive association between prenatal phthalate exposure and body mass index (BMI) in CHAMACOS children, we used three advanced statistical methods: generalized additive models, growth mixture models, and functional principal component analysis with tree-based methods to identify patterns of childhood BMI development and allow for non-linear relationships with the environmental exposures. Our results highlight the heterogeneity in childhood BMI development patterns and suggest a sex-specific non-linear association between prenatal monoethyl phthalate urinary concentrations and BMI level in children, confirmed across a variety of statistical methods. There is also evidence to suggest positive associations between DEHP metabolites and BMI stabilization during puberty for girls.
Collapse
Affiliation(s)
- Brianna C Heggeseth
- Department of Mathematics and Statistics, Williams College, Williamstown, MA, 01267, USA; Department of Mathematics, Statistics, and Computer Science, Macalester College, Saint Paul, MN, 55105, USA.
| | - Nina Holland
- Environmental Health Sciences Division, School of Public Health, University of California, Berkeley, Berkeley, CA, 94720, USA; Center for Environmental Research and Children's Health, School of Public Health, University of California, Berkeley, Berkeley, CA, 94720, USA
| | - Brenda Eskenazi
- Center for Environmental Research and Children's Health, School of Public Health, University of California, Berkeley, Berkeley, CA, 94720, USA
| | - Katherine Kogut
- Center for Environmental Research and Children's Health, School of Public Health, University of California, Berkeley, Berkeley, CA, 94720, USA
| | - Kim G Harley
- Center for Environmental Research and Children's Health, School of Public Health, University of California, Berkeley, Berkeley, CA, 94720, USA
| |
Collapse
|
45
|
Ahn S, An S, Lee M, Lee E, Pyo JJ, Kim JH, Ki MW, Jin SH, Ha J, Noh M. A long-wave UVA filter avobenzone induces obesogenic phenotypes in normal human epidermal keratinocytes and mesenchymal stem cells. Arch Toxicol 2019; 93:1903-1915. [DOI: 10.1007/s00204-019-02462-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 04/18/2019] [Indexed: 12/31/2022]
|
46
|
Zhou L, Chen H, Xu Q, Han X, Zhao Y, Song X, Zhao T, Ye L. The effect of di-2-ethylhexyl phthalate on inflammation and lipid metabolic disorder in rats. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 170:391-398. [PMID: 30550969 DOI: 10.1016/j.ecoenv.2018.12.009] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 11/27/2018] [Accepted: 12/04/2018] [Indexed: 06/09/2023]
Abstract
BACKGROUND Plasticizer di-2-ethylhexyl phthalate (DEHP) can induce lipid metabolic disorder. There was a chronic low level inflammatory response in adipose tissue of patients with lipid metabolic disorder. But the effect of inflammation on lipid metabolic disorder induced by DEHP is unclear. The present study was undertaken to explore the effect of di-2-ethylhexyl phthalate on inflammation and lipid metabolic disorder in rats. METHODS Eighty healthy 21-day-old Wistar rats were randomly divided into 4 groups and administered DEHP by gavage at 0, 5, 50, and 500 mg/kg/ d for 8 weeks. Morphological changes of adipose tissue, the levels of IL-1β, TNF-α, LEP, and ADP in rat serum and adipose tissue, the serum TC, TG, HDL-C and LDL-C, the mRNA and protein expression levels of lipid metabolism-related gene CEBP/β and inflammation-related gene CD68 were measured. RESULTS After exposure to DEHP, the weight of rats in the high dose group was significantly higher than that in the control group (p < 0.05). And the number of adipose tissue cells in the medium-dose and high-dose DEHP groups increased, with much more macrophage infiltrated. The levels of LDL-C, HDL-C, TC in serum and LEP in adipose tissue of rats exposed to 500 mg/kg DEHP were significantly higher than those in the control group (p < 0.05); while the level of ADP in adipose tissue in rats exposed to DEHP was significantly lower (p < 0.05). The levels of IL-1β and TNF-α in surum and adipose tissue of rats exposed to DEHP were significantly higher than those in the control group (p < 0.05). The mRNA and protein expression levels of CEBP/β and CD68 in adipose tissue of rats exposed to DEHP were significantly higher than those in the control group. The TC, LEP and ADP Levels of rats were significantly different among different subgroup of IL-1β and TNF-α, and in high level subgroup, the TC, LEP and ADP Levels were increased. The levels of TC and LEP was increased in high level subgroup of CD68. CONCLUSION DEHP induced more macrophage infiltrated in adipose tissue of rats, promoted the secretion of IL-1β, TNF-α and the formation of inflammation, and disturbed the normal lipid metabolism and lead to lipid metabolic disorders. What is more, the levels of inflammation were associated with the lipid levels.
Collapse
Affiliation(s)
- Liting Zhou
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, 1163 Xin Min Street, Changchun 130021, China
| | - Huaiji Chen
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, 1163 Xin Min Street, Changchun 130021, China
| | - Qi Xu
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, 1163 Xin Min Street, Changchun 130021, China
| | - Xu Han
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, 1163 Xin Min Street, Changchun 130021, China
| | - Yaming Zhao
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, 1163 Xin Min Street, Changchun 130021, China
| | - Xinyue Song
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, 1163 Xin Min Street, Changchun 130021, China
| | - Tianyang Zhao
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, 1163 Xin Min Street, Changchun 130021, China
| | - Lin Ye
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, 1163 Xin Min Street, Changchun 130021, China
| |
Collapse
|
47
|
Chen MY, Liu HP, Cheng J, Chiang SY, Liao WP, Lin WY. Transgenerational impact of DEHP on body weight of Drosophila. CHEMOSPHERE 2019; 221:493-499. [PMID: 30660905 DOI: 10.1016/j.chemosphere.2018.12.193] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 12/26/2018] [Accepted: 12/28/2018] [Indexed: 06/09/2023]
Abstract
Bis(2-ethylhexyl) phthalate (DEHP) is the most typical plasticizer and an environmental endocrine disruptor (EDC). DEHP is known to influence offspring fertility, growth, and obesity. However, the role of the DEHP as a transgenerational obesogen is still controversial. In this study, we used fruit flies (Drosophila melanogaster) to investigate where the exposure period, doses, and exposed parental sex are critical to change the body weight of the offspring. We found long-term but not short-term, and high-dose but low-dose exposure resulted in significant change. Moreover, we found DEHP treatment on the father or mother Drosophila resulted in increased or decreased body weight of the offspring respectively. Our results demonstrated the heterogeneity of transgenerational impact of DEHP and highlighted the involvement of parental endocrine system in its role as an obesogen.
Collapse
Affiliation(s)
- Mei-Ying Chen
- Department of Environmental Engineering, National Chung Hsing University, Taichung, 402, Taiwan
| | - Hsin-Ping Liu
- Graduate Institute of Acupuncture Science, College of Chinese Medicine, China Medical University, Taichung, 40402, Taiwan; Department of Bioinformatics and Medical Engineering, Asia University, Taichung, 41354, Taiwan
| | - Jack Cheng
- Graduate Institute of Integrated Medicine, College of Chinese Medicine, China Medical University, Taichung, 40402, Taiwan; Department of Medical Research, China Medical University Hospital, Taichung, 40447, Taiwan
| | - Su-Yin Chiang
- School of Chinese Medicine, College of Chinese Medicine, China Medical University, Taichung, 40402, Taiwan
| | - Wing-Ping Liao
- Department of Environmental Engineering, National Chung Hsing University, Taichung, 402, Taiwan.
| | - Wei-Yong Lin
- Graduate Institute of Integrated Medicine, College of Chinese Medicine, China Medical University, Taichung, 40402, Taiwan; Department of Medical Research, China Medical University Hospital, Taichung, 40447, Taiwan; Brain Diseases Research Center, China Medical University, Taichung, 40402, Taiwan.
| |
Collapse
|
48
|
Wang C, Yue S, Hao Z, Ren G, Lu D, Zhang Q, Zhao M. Pubertal exposure to the endocrine disruptor mono-2-ethylhexyl ester at body burden level caused cholesterol imbalance in mice. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 244:657-666. [PMID: 30384071 DOI: 10.1016/j.envpol.2018.08.091] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 08/26/2018] [Accepted: 08/27/2018] [Indexed: 06/08/2023]
Abstract
Metabolic disturbance is the prerequisite to developing metabolic disease. An increasing number of reports have shown that exposure to environmental endocrine-disrupting chemicals (EDCs) can cause metabolic syndrome and may be related to metabolic disease. However, the potential mechanism of EDC-related lipid metabolism disruption in the endocrine organs (especially gut microbiome) during pubertal exposure remains elusive at the body burden level. We observed that male mice fed with 0.05 mg/kg b.w. MEHP under a high-fat diet caused enhancement in the fat mass, total cholesterol, high- and low-density lipoprotein cholesterol. MEHP intake induced a significant shift in microbiota composition, including the relative abundance of Firmicutes and reduction of Verrucomicrobia. Statistical analysis showed a positive correlation between several bacterial taxa and cholesterol body burden. Also, MEHP intake induced adipocyte hypertrophy and cholesterol overloading, which sense cholesterol synthesis genes such as Srebp2 and Hmgcr. That caused adipocyte dysfunction. Finally, cholesterol deposition and transportation was imbalance in the mice liver. Conclusively, by targeting the endocrine organs, EDCs would increase the risk of cholesterol burden even at a low concentration when coupled with a high-fat diet during pubertal period in male mice.
Collapse
Affiliation(s)
- Cui Wang
- College of Life Science, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Siqing Yue
- College of Environment, Zhejiang University of Technology, Hangzhou, 310032, China
| | - Zhengliang Hao
- College of Life Science, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Guangyan Ren
- College of Life Science, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Dezhao Lu
- College of Life Science, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Quan Zhang
- College of Environment, Zhejiang University of Technology, Hangzhou, 310032, China
| | - Meirong Zhao
- College of Environment, Zhejiang University of Technology, Hangzhou, 310032, China.
| |
Collapse
|
49
|
Kim SH, On JW, Pyo H, Ko KS, Won JC, Yang J, Park MJ. Percentage fractions of urinary di(2-ethylhexyl) phthalate metabolites: Association with obesity and insulin resistance in Korean girls. PLoS One 2018; 13:e0208081. [PMID: 30481198 PMCID: PMC6258563 DOI: 10.1371/journal.pone.0208081] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 11/12/2018] [Indexed: 02/04/2023] Open
Abstract
OBJECTIVE We assessed the associations of percentage fractions of urinary di(2-ethylhexyl) phthalate (DEHP) metabolites with obesity and insulin resistance in Korean girls. METHODS In total, 137 girls, aged 6 to 13 years (65 overweight cases and 72 controls), were recruited. Anthropometric indices and the homeostatic model assessment of insulin resistance (HOMA-IR) index were determined. Four major urinary DEHP metabolites were analyzed in spot urine samples by gas chromatography-tandem mass spectrometry, including mono(2-ethylhexyl) phthalate, mono(2-ethyl-5-hydroxyhexyl) phthalate (MEHHP), mono(2-ethyl-5-oxohexyl) phthalate (MEOHP), and mono(2-ethyl-5-carboxypentyl) phthalate. RESULTS There were no significant differences in the urinary concentrations of the DEHP metabolites between the overweight and control groups. The percentage fraction of MEHHP (MEHHP%) among all DEHP metabolites was significantly higher in the overweight prepubertal girls than in the controls (P = 0.035). MEHHP% was positively associated with the body mass index percentile, waist circumference, body fat percentage, and HOMA-IR index in the prepubertal girls. After adjusting for covariates, the prepubertal girls in a higher MEHHP% quartile were found to have a higher odds ratio for central obesity than those in a lower quartile (odds ratios: 5.05 for quartile 3; 7.30 for quartile 4). The relative rate of MEHHP oxidation to MEOHP was negatively associated with the body mass index percentile and waist circumference in the prepubertal girls. However, no such association was observed in the pubertal girls. CONCLUSIONS MEHHP% was positively associated with obesity and insulin resistance in prepubertal girls. Further studies are necessary to elucidate the causal links between altered phthalate metabolism and increased susceptibility to insulin resistance in children.
Collapse
Affiliation(s)
- Shin-Hye Kim
- Department of Pediatrics, Inje University Sanggye Paik Hospital, Inje University College of Medicine, Seoul, Republic of Korea
| | - Ji-won On
- Molecular Recognition Research Center, Korea Institute of Science and Technology, Seoul, Republic of Korea
- Department of Chemistry, Korea University, Seoul, Republic of Korea
| | - Heesoo Pyo
- Department of Chemistry, Korea University, Seoul, Republic of Korea
| | - Kyung Soo Ko
- Department of Internal Medicine, Inje University Sanggye Paik Hospital, Inje University College of Medicine, Seoul, Republic of Korea
| | - Jong Chul Won
- Department of Internal Medicine, Inje University Sanggye Paik Hospital, Inje University College of Medicine, Seoul, Republic of Korea
| | - Jiyeon Yang
- Institute for Environmental Research, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Mi Jung Park
- Department of Pediatrics, Inje University Sanggye Paik Hospital, Inje University College of Medicine, Seoul, Republic of Korea
- * E-mail:
| |
Collapse
|
50
|
Veiga-Lopez A, Pu Y, Gingrich J, Padmanabhan V. Obesogenic Endocrine Disrupting Chemicals: Identifying Knowledge Gaps. Trends Endocrinol Metab 2018; 29:607-625. [PMID: 30017741 PMCID: PMC6098722 DOI: 10.1016/j.tem.2018.06.003] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 06/11/2018] [Accepted: 06/14/2018] [Indexed: 02/07/2023]
Abstract
Endocrine disrupting chemicals (EDCs) are compounds that are part of everyday consumer products and industrial manufacturing processes. EDCs can interfere with the endocrine system, including the adipose tissue. Accumulating evidence from epidemiological, animal, and in vitro studies demonstrates that EDCs can alter body weight, adipose tissue expansion, circulating lipid profile, and adipogenesis, with some resulting in transgenerational effects. These outcomes appear to be mediated through multiple mechanisms, from nuclear receptor binding to epigenetic modifications. A better understanding of the signaling pathways via which these EDCs contribute to an obesogenic phenotype, the interaction amongst complex mixtures of obesogenic EDCs, and the risks they pose relative to the obesity epidemic are still needed for risk assessment and development of prevention strategies.
Collapse
Affiliation(s)
- Almudena Veiga-Lopez
- Department of Animal Science, College of Agriculture and Natural Resources, Michigan State University, East Lansing, MI 48824, USA.
| | - Yong Pu
- Department of Animal Science, College of Agriculture and Natural Resources, Michigan State University, East Lansing, MI 48824, USA
| | - Jeremy Gingrich
- Department of Animal Science, College of Agriculture and Natural Resources, Michigan State University, East Lansing, MI 48824, USA; Department of Pharmacology and Toxicology, College of Natural Sciences, Michigan State University, East Lansing, MI 48824, USA
| | - Vasantha Padmanabhan
- Department of Pediatrics, University of Michigan, Ann Arbor, MI 48109, USA; Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, MI 48109, USA; Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI 48109, USA; Department of Environmental Health Sciences, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|