1
|
Valim AC, Costa AMD, Quitzan JG, Borges AS, Oliveira-Filho JP, Amorim RM, Andrade DGA. Urothelial carcinoma in a mule. J Equine Vet Sci 2024; 139:105127. [PMID: 38852925 DOI: 10.1016/j.jevs.2024.105127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 06/06/2024] [Accepted: 06/07/2024] [Indexed: 06/11/2024]
Abstract
Equine bladder neoplasms are rare. This report aimed to describe the clinical signs and treatment of urothelial carcinoma (UC) in a mule. Cystoscopy of a 20-year-old female mule with a one-week history of hematuria and anemia revealed vascular congestion in the mucosa and an intraluminal, pedunculated mass in the dorsal bladder region. Histopathological examination revealed UC. Initial therapy consisted of four weekly cystoscopic guided injections of fluorouracil. At the fourth chemotherapy session, a paler and more friable tumor mass was observed. Consequently, we opted to surgically remove it during cystoscopy. Following mass excision, patient comfort, gross appearance of urine, and the hematocrit returned to normal. Repeat cystoscopy examinations revealed no gross appearance of tumor recurrence 18 months after treatment. Bladder neoplasms clinically resemble urolithiasis and cystitis and should be considered a differential diagnosis in cases of anemia and hematuria.
Collapse
Affiliation(s)
- A C Valim
- Department of Veterinary Clinical Science, School of Veterinary Medicine and Animal Science, São Paulo State University (Unesp), Rua Prof. Dr. Walter Mauricio Correa, s/n, Botucatu, SP 18618-681, Brazil
| | - A M D Costa
- Department of Veterinary Clinical Science, School of Veterinary Medicine and Animal Science, São Paulo State University (Unesp), Rua Prof. Dr. Walter Mauricio Correa, s/n, Botucatu, SP 18618-681, Brazil
| | - J G Quitzan
- Department of Veterinary Surgery and Animal Reproduction, School of Veterinary Medicine and Animal Science, São Paulo State University (Unesp), Rua Prof. Dr. Walter Mauricio Correa, s/n, Botucatu, SP 18618-681, Brazil
| | - A S Borges
- Department of Veterinary Clinical Science, School of Veterinary Medicine and Animal Science, São Paulo State University (Unesp), Rua Prof. Dr. Walter Mauricio Correa, s/n, Botucatu, SP 18618-681, Brazil
| | - J P Oliveira-Filho
- Department of Veterinary Clinical Science, School of Veterinary Medicine and Animal Science, São Paulo State University (Unesp), Rua Prof. Dr. Walter Mauricio Correa, s/n, Botucatu, SP 18618-681, Brazil
| | - R M Amorim
- Department of Veterinary Clinical Science, School of Veterinary Medicine and Animal Science, São Paulo State University (Unesp), Rua Prof. Dr. Walter Mauricio Correa, s/n, Botucatu, SP 18618-681, Brazil
| | - D G A Andrade
- Department of Veterinary Clinical Science, School of Veterinary Medicine and Animal Science, São Paulo State University (Unesp), Rua Prof. Dr. Walter Mauricio Correa, s/n, Botucatu, SP 18618-681, Brazil.
| |
Collapse
|
2
|
Sivakumaar K, Griffin J, Schofield E, Catto JWF, Jubber I. Gene of the month: the uroplakins. J Clin Pathol 2024; 77:291-296. [PMID: 38418202 DOI: 10.1136/jcp-2024-209388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/02/2024] [Indexed: 03/01/2024]
Abstract
Uroplakins are a family of membrane-spanning proteins highly specific to the urothelium. There are four uroplakin proteins in humans. These are encoded by the following UPK genes: UPK1A, UPK1B, UPK2 and UPK3 Uroplakin proteins span the apical membrane of umbrella cells of the urothelium, where they associate into urothelial plaques. This provides a barrier function to prevent passage of urine across the urothelium in the renal pelvis, ureters, and bladder. Uroplakins are also involved in developmental processes such as nephrogenesis. The specific localisation of uroplakins within the urothelium means that they are often expressed in primary and metastatic urothelial cell carcinoma and may be used as an immunohistochemical marker of urothelial malignancy.
Collapse
Affiliation(s)
- Krithicck Sivakumaar
- Magdalene College, University of Cambridge, Cambridge, UK
- School of Medicine and Population Health, The University of Sheffield, Sheffield, UK
| | - Jon Griffin
- School of Medicine and Population Health, The University of Sheffield, Sheffield, UK
- Department of Histopathology, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK
| | - Ella Schofield
- School of Medicine and Population Health, The University of Sheffield, Sheffield, UK
- Department of Urology, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK
| | - James W F Catto
- School of Medicine and Population Health, The University of Sheffield, Sheffield, UK
- Department of Urology, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK
| | - Ibrahim Jubber
- School of Medicine and Population Health, The University of Sheffield, Sheffield, UK
- Department of Urology, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK
| |
Collapse
|
3
|
Abdulnour-Nakhoul SM, Kolls JK, Flemington EK, Ungerleider NA, Nakhoul HN, Song K, Nakhoul NL. Alterations in gene expression and microbiome composition upon calcium-sensing receptor deletion in the mouse esophagus. Am J Physiol Gastrointest Liver Physiol 2024; 326:G438-G459. [PMID: 38193195 PMCID: PMC11213479 DOI: 10.1152/ajpgi.00066.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 12/17/2023] [Accepted: 12/23/2023] [Indexed: 01/10/2024]
Abstract
The calcium-sensing receptor (CaSR), a G protein-coupled receptor, regulates Ca2+ concentration in plasma by regulating parathyroid hormone secretion. In other tissues, it is reported to play roles in cellular differentiation and migration and in secretion and absorption. We reported previously that CaSR can be conditionally deleted in the mouse esophagus. This conditional knockout (KO) (EsoCaSR-/-) model showed a significant reduction in the levels of adherens and tight junction proteins and had a marked buildup of bacteria on the luminal esophageal surface. To further examine the role of CaSR, we used RNA sequencing to determine gene expression profiles in esophageal epithelia of control and EsoCaSR-/-mice RNA Seq data indicated upregulation of gene sets involved in DNA replication and cell cycle in EsoCaSR-/-. This is accompanied by the downregulation of gene sets involved in the innate immune response and protein homeostasis including peptide elongation and protein trafficking. Ingenuity pathway analysis (IPA) demonstrated that these genes are mapped to important biological networks including calcium and Ras homologus A (RhoA) signaling pathways. To further explore the bacterial buildup in EsoCaSR-/- esophageal tissue, 16S sequencing of the mucosal-associated bacterial microbiome was performed. Three bacterial species, g_Rodentibacter, s_Rodentibacter_unclassified, and s_Lactobacillus_hilgardi were significantly increased in EsoCaSR-/-. Furthermore, metagenomic analysis of 16S sequences indicated that pathways related to oxidative phosphorylation and metabolism were downregulated in EsoCaSR-/- tissues. These data demonstrate that CaSR impacts major pathways of cell proliferation, differentiation, cell cycle, and innate immune response in esophageal epithelium. The disruption of these pathways causes inflammation and significant modifications of the microbiome.NEW & NOTEWORTHY Calcium-sensing receptor (CaSR) plays a significant role in maintaining the barrier function of esophageal epithelium. Using RNA sequencing, we show that conditional deletion of CaSR from mouse esophagus causes upregulation of genes involved in DNA replication and cell cycle and downregulation of genes involved in the innate immune response, protein translation, and cellular protein synthesis. Pathway analysis shows disruption of signaling pathways of calcium and actin cytoskeleton. These changes caused inflammation and esophageal dysbiosis.
Collapse
Affiliation(s)
- Solange M Abdulnour-Nakhoul
- Deming Department of Medicine, Tulane University School of Medicine, New Orleans, Louisiana, United States
- Department of Physiology, Tulane University School of Medicine, New Orleans, Louisiana, United States
| | - Jay K Kolls
- Deming Department of Medicine, Tulane University School of Medicine, New Orleans, Louisiana, United States
- Center for Translational Research in Infection and Inflammation, Tulane University School of Medicine, New Orleans, Louisiana, United States
| | - Erik K Flemington
- Department of Pathology, Tulane University, New Orleans, Louisiana, United States
| | - Nathan A Ungerleider
- Department of Pathology, Tulane University, New Orleans, Louisiana, United States
| | - Hani N Nakhoul
- Department of Pathology, Tulane University, New Orleans, Louisiana, United States
| | - Kejing Song
- Deming Department of Medicine, Tulane University School of Medicine, New Orleans, Louisiana, United States
- Center for Translational Research in Infection and Inflammation, Tulane University School of Medicine, New Orleans, Louisiana, United States
| | - Nazih L Nakhoul
- Deming Department of Medicine, Tulane University School of Medicine, New Orleans, Louisiana, United States
- Department of Physiology, Tulane University School of Medicine, New Orleans, Louisiana, United States
| |
Collapse
|
4
|
Liu Y, Ding L, Li C, Heng L, Chen J, Hou Y. UPK1B promoted the invasion and stem cell characteristics of non-small cell lung cancer cells by modulating c-myc/Sox4 axis. Tissue Cell 2023; 85:102250. [PMID: 37866150 DOI: 10.1016/j.tice.2023.102250] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 10/17/2023] [Accepted: 10/17/2023] [Indexed: 10/24/2023]
Abstract
Non-small cell lung cancer (NSCLC) is a malignant tumor with extremely high mortality. Uroplakin1B (UPK1B) promotes the occurrence and development of multiple types of cancer by enhancing the expression of c-myc and Sox4. However, whether UPK1B can modulate the development of NSCLC by regulating c-myc/Sox4 axis is unclear. In this study, UPK1B was overexpressed or knocked down in the non-small cell lung cancer cells (NSCLCs) were. Next, the proliferation and invasion of those cells were detected with the EdU staining and transwell assays. Sphere formation assays was performed to examine the stem cell characteristics of those cells. Then, we overexpressed the Sox4 in UPK1B knockdown cells and determined the proliferation and invasion of those cells. Our results showed that UPK1B promoted the proliferation, invasion and stem cell characteristics of NSCLCs. In addition, UPK1B enhanced the expression of c-myc, Sox4 and stem cell associated proteins in those cells. Overexpression of Sox4 rescued the proliferation and invasion of NSCLCs, which were suppressed by the UPK1B knockdown. In summary, our study suggested that UPK1B enhanced the invasiveness and stem cell characteristics of NSCLCs by activating c-myc/UPK1B axis.
Collapse
Affiliation(s)
- Yiyang Liu
- Department of Thoracic Surgery, Xuzhou Cancer Hospital, Xuzhou, Jiangsu 221005, China; Department of Thoracic Surgery, Xuzhou Third People's Hospital, Affiliated XuZhou Hospital, Medical School of JiangSu University, Xuzhou, Jiangsu 221005, China; Department of Thoracic Surgery, Xuzhou New Healthy Hospital, Xuzhou, Jiangsu 221005, China
| | - Li Ding
- Department of Anesthesiaology,The Affiliated Xuzhou Municipal Hospital of Xuzhou Medical University, Jiangsu 221116, China
| | - Chunwei Li
- Department of Anesthesiaology,The Affiliated Xuzhou Municipal Hospital of Xuzhou Medical University, Jiangsu 221116, China
| | - Lei Heng
- Department of Anesthesiaology, Xuzhou Cancer Hospital, Xuzhou, Jiangsu 221005, China; Department of Anesthesiaology, Xuzhou Third People's Hospital,Affiliated XuZhou Hospital, Medical School of JiangSu University, Xuzhou, Jiangsu 221005, China; Department of Anesthesiaology, Xuzhou New Healthy Hospital, Xuzhou, Jiangsu 221005, China
| | - Jianjun Chen
- Department of Psychological Clinic, Xuzhou Central Hospital, Xuzhou, Jiangsu 221000, China.
| | - Yulong Hou
- Department of Thoracic Surgery, Xuzhou Cancer Hospital, Xuzhou, Jiangsu 221005, China; Department of Thoracic Surgery, Xuzhou Third People's Hospital, Affiliated XuZhou Hospital, Medical School of JiangSu University, Xuzhou, Jiangsu 221005, China; Department of Thoracic Surgery, Xuzhou New Healthy Hospital, Xuzhou, Jiangsu 221005, China.
| |
Collapse
|
5
|
Guffroy M, Trela B, Kambara T, Stawski L, Chen H, Luus L, Montesinos MS, Olson L, He Y, Maisonave K, Carr T, Lu M, Ray AS, Hazelwood LA. Selective inhibition of integrin αvβ6 leads to rapid induction of urinary bladder tumors in cynomolgus macaques. Toxicol Sci 2023; 191:400-413. [PMID: 36515490 PMCID: PMC9936210 DOI: 10.1093/toxsci/kfac128] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Administration of a novel and selective small molecule integrin αvβ6 inhibitor, MORF-627, to young cynomolgus monkeys for 28 days resulted in the rapid induction of epithelial proliferative changes in the urinary bladder of 2 animals, in the absence of test agent genotoxicity. Microscopic findings included suburothelial infiltration by irregular nests and/or trabeculae of epithelial cells, variable cytologic atypia, and high mitotic rate, without invasion into the tunica muscularis. Morphologic features and patterns of tumor growth were consistent with a diagnosis of early-stage invasive urothelial carcinoma. Ki67 immunohistochemistry demonstrated diffusely increased epithelial proliferation in the urinary bladder of several monkeys, including those with tumors, and αvβ6 was expressed in some epithelial tissues, including urinary bladder, in monkeys and humans. Spontaneous urothelial carcinomas are extremely unusual in young healthy monkeys, suggesting a direct link of the finding to the test agent. Inhibition of integrin αvβ6 is intended to locally and selectively block transforming growth factor beta (TGF-β) signaling, which is implicated in epithelial proliferative disorders. Subsequent in vitro studies using a panel of integrin αvβ6 inhibitors in human bladder epithelial cells replicated the increased urothelial proliferation observed in monkeys and was reversed through exogenous application of TGF-β. Moreover, analysis of in vivo models of liver and lung fibrosis revealed evidence of epithelial hyperplasia and cell cycle dysregulation in mice treated with integrin αvβ6 or TGF-β receptor I inhibitors. The cumulative evidence suggests a direct link between integrin αvβ6 inhibition and decreased TGF-β signaling in the local bladder environment, with implications for epithelial proliferation and carcinogenesis.
Collapse
Affiliation(s)
| | - Bruce Trela
- AbbVie, Inc, North Chicago, Illinois 60064, USA
| | | | - Lukasz Stawski
- Morphic Therapeutic, Inc, Waltham, Massachusetts 02451, USA
| | - Huidong Chen
- Morphic Therapeutic, Inc, Waltham, Massachusetts 02451, USA
| | - Lia Luus
- Morphic Therapeutic, Inc, Waltham, Massachusetts 02451, USA
| | | | | | - Yupeng He
- AbbVie, Inc, North Chicago, Illinois 60064, USA
| | | | - Tracy Carr
- AbbVie, Inc, North Chicago, Illinois 60064, USA
| | - Min Lu
- Morphic Therapeutic, Inc, Waltham, Massachusetts 02451, USA
| | - Adrian S Ray
- Morphic Therapeutic, Inc, Waltham, Massachusetts 02451, USA
| | | |
Collapse
|
6
|
Reiswich V, Könemann S, Lennartz M, Höflmayer D, Menz A, Chirico V, Hube-Magg C, Fraune C, Bernreuther C, Simon R, Clauditz TS, Sauter G, Hinsch A, Kind S, Jacobsen F, Steurer S, Minner S, Büscheck F, Burandt E, Marx AH, Lebok P, Krech T. Large-scale human tissue analysis identifies Uroplakin 1a as a putative diagnostic marker for urothelial cancer. Pathol Res Pract 2022; 237:154028. [PMID: 35872365 DOI: 10.1016/j.prp.2022.154028] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 07/12/2022] [Accepted: 07/16/2022] [Indexed: 11/27/2022]
Abstract
Uroplakin 1A (Upk1a) protein is relevant for stabilizing and strengthening urothelial cells and helps to prevent them from rupturing during bladder distension. Based on RNA expression data Upk1a is expressed in a limited number of normal tissues and tumors. To comprehensively evaluate the potential diagnostic and prognostic utility of Upk1a immunohistochemistry, a tissue microarray containing 6929 samples from 115 different tumor types and subtypes and 608 samples of 76 different normal tissue types was analyzed. Upk1a positivity was found in 34 (29.6 %) different tumor types including 9 (7.8 %) tumor types with at least one strongly positive case. The highest rates of Upk1a positivity were seen in various subtypes of urothelial neoplasms (42.6-98 %) including Brenner tumors of the ovary (64.9 %) followed by neoplasms of the thyroid (10.4-33.3 %). In urothelial tumors, Upk1a staining predominated at the cell membranes and staining intensity was often moderate to strong. In thyroidal neoplasms the staining was mostly purely cytoplasmic and of low to moderate intensity. Upk1a positivity was also seen in up to 15 % of cases in 25 additional tumor categories but the staining intensity was often cytoplasmic and the intensity was usually judged as weak and only rarely as moderate. Within non-invasive (pTa) tumors, the Upk1a positivity rate decreased from 94 % in pTa G2 (low grade) to 90.1 % in pTa G3 (p = 0.012) and was even lower in muscle-invasive carcinomas (41.5 %; p < 0.0001 vs pTaG3). Within muscle invasive carcinomas, Upk1a expression was unrelated to nodal metastasis (p > 0.05) and patient outcome (p > 0.05). In conclusion, Upk1a immunohistochemistry is a potentially useful and specific diagnostic marker for the distinction of urothelial carcinomas from other neoplasms. However, its sensitivity is less than 50 % in muscle-invasive cancers because Upk1a expression decreases during grade and stage progression.
Collapse
Affiliation(s)
- Viktor Reiswich
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Steffi Könemann
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Maximilian Lennartz
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Doris Höflmayer
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Anne Menz
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Viktoria Chirico
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Claudia Hube-Magg
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christoph Fraune
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christian Bernreuther
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ronald Simon
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| | - Till S Clauditz
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Guido Sauter
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Andrea Hinsch
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Simon Kind
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Frank Jacobsen
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Stefan Steurer
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Sarah Minner
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Franziska Büscheck
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Eike Burandt
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Andreas H Marx
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; Department of Pathology, Academic Hospital Fuerth, Fuerth, Germany
| | - Patrick Lebok
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; Institute of Pathology, Clinical Center Osnabrueck, Osnabrueck, Germany
| | - Till Krech
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; Institute of Pathology, Clinical Center Osnabrueck, Osnabrueck, Germany
| |
Collapse
|
7
|
The Golgi complex: An organelle that determines urothelial cell biology in health and disease. Histochem Cell Biol 2022; 158:229-240. [PMID: 35773494 PMCID: PMC9399047 DOI: 10.1007/s00418-022-02121-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/24/2022] [Indexed: 12/05/2022]
Abstract
The Golgi complex undergoes considerable structural remodeling during differentiation of urothelial cells in vivo and in vitro. It is known that in a healthy bladder the differentiation from the basal to the superficial cell layer leads to the formation of the tightest barrier in our body, i.e., the blood–urine barrier. In this process, urothelial cells start expressing tight junctional proteins, apical membrane lipids, surface glycans, and integral membrane proteins, the uroplakins (UPs). The latter are the most abundant membrane proteins in the apical plasma membrane of differentiated superficial urothelial cells (UCs) and, in addition to well-developed tight junctions, contribute to the permeability barrier by their structural organization and by hindering endocytosis from the apical plasma membrane. By studying the transport of UPs, we were able to demonstrate their differentiation-dependent effect on the Golgi architecture. Although fragmentation of the Golgi complex is known to be associated with mitosis and apoptosis, we found that the process of Golgi fragmentation is required for delivery of certain specific urothelial differentiation cargoes to the plasma membrane as well as for cell–cell communication. In this review, we will discuss the currently known contribution of the Golgi complex to the formation of the blood–urine barrier in normal UCs and how it may be involved in the loss of the blood–urine barrier in cancer. Some open questions related to the Golgi complex in the urothelium will be highlighted.
Collapse
|
8
|
Reiswich V, Akdeniz G, Lennartz M, Menz A, Chirico V, Hube-Magg C, Fraune C, Bernreuther C, Simon R, Clauditz TS, Sauter G, Uhlig R, Hinsch A, Kind S, Jacobsen F, Möller K, Steurer S, Minner S, Burandt E, Marx AH, Lebok P, Krech T, Dum D. Large-scale human tissue analysis identifies Uroplakin 1b as a putative diagnostic marker in surgical pathology. Hum Pathol 2022; 126:108-120. [PMID: 35550834 DOI: 10.1016/j.humpath.2022.05.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 05/03/2022] [Indexed: 11/28/2022]
Abstract
Uroplakin 1B (Upk1b) stabilizes epithelial cells lining the bladder lumen to prevent rupturing during bladder distension. Little is known about Upk1b expression in other normal and malignant tissues. To comprehensively evaluate the potential diagnostic and prognostic utility of Upk1b expression analysis, a tissue microarray containing 14,061 samples from 127 different tumor types and subtypes and 608 samples of 76 different normal tissue types was analyzed by immunohistochemistry. Upk1b immunostaining was found in 61 (48%) different tumor types including 50 (39%) with at least one moderately positive and 39 tumor types (31%) with at least one strongly positive tumor. Highest positivity rates were found in urothelial neoplasms (58-95%), Brenner tumors of the ovary (92%), epitheloid mesothelioma (87%), serous carcinoma of the ovary (58%) and the endometrium (53%) as well as in squamous cell carcinoma of the head and neck (18-37%), lung (39%) and esophagus (26%). In urothelial carcinoma, low Upk1b expression was linked to high grade and invasive tumor growth (p<0.0001 each) and nodal metastasis (p=0.0006). Our data suggest diagnostic applications of Upk1b immunohistochemistry in panels for the distinction of malignant mesothelioma from adenocarcinoma of the lung, urothelial carcinoma from prostatic adenocarcinoma in the bladder, or pancreatico-biliary and gastro-esophageal from colorectal adenocarcinoma.
Collapse
Affiliation(s)
- Viktor Reiswich
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Gonca Akdeniz
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Maximilian Lennartz
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Anne Menz
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Viktoria Chirico
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Claudia Hube-Magg
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christoph Fraune
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christian Bernreuther
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ronald Simon
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| | - Till S Clauditz
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Guido Sauter
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ria Uhlig
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Andrea Hinsch
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Simon Kind
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Frank Jacobsen
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Katharina Möller
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Stefan Steurer
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Sarah Minner
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Eike Burandt
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Andreas H Marx
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; Department of Pathology, Academic Hospital Fuerth, Fuerth Germany
| | - Patrick Lebok
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Till Krech
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; Institute of Pathology, Clinical Center Osnabrueck, Osnabrueck, Germany
| | - David Dum
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
9
|
Szymańska B, Matuszewski M, Dembowski J, Piwowar A. Initial Evaluation of Uroplakins UPIIIa and UPII in Selected Benign Urological Diseases. Biomolecules 2021; 11:1816. [PMID: 34944460 PMCID: PMC8698914 DOI: 10.3390/biom11121816] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 11/28/2021] [Accepted: 11/30/2021] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Uroplakins (UPs) are glycoproteins that play a specific role in the structure and function of the urothelium. Disorders which affect the normal expression of UPs are associated with the pathogenesis of infections and neoplasms of the urinary tract, primary vesicoureteral reflux, hydronephrosis and renal dysfunction. The appearance of uroplakins in the urine and/or plasma may be of potential importance in the detection of urinary tract dysfunction. The aim of the present study was to investigate uroplakin IIIa (UPIIIa) and uroplakin II (UPII) expression in patients with selected urological diseases. METHODS Plasma and urine from patients with benign prostatic hyperplasia (BPH), urethral stricture (US), urinary tract infection (UTI) and urolithiasis were compared to healthy people without urological disorders. UPs concentrations were measured by the immunoenzymatic method. RESULTS In patients with BPH and UTI, concentrations of UPIIIa in urine and plasma, as well as UPII in urine, were statistically significantly higher than in the control groups. In the US group, only the plasma UPIIIa concentration differed significantly from the control. CONCLUSION The conducted research shows that benign urological diseases may affect the state of the urothelium, as manifested by increased concentrations of both UPs in patients' urine and plasma, especially in BPH and UTI.
Collapse
Affiliation(s)
- Beata Szymańska
- Department of Toxicology, Faculty of Pharmacy, Wroclaw Medical University, 50-556 Wroclaw, Poland;
| | - Michał Matuszewski
- Department of Urology and Oncological Urology, Faculty of Medicine, Wroclaw Medical University, 50-556 Wroclaw, Poland; (M.M.); (J.D.)
| | - Janusz Dembowski
- Department of Urology and Oncological Urology, Faculty of Medicine, Wroclaw Medical University, 50-556 Wroclaw, Poland; (M.M.); (J.D.)
| | - Agnieszka Piwowar
- Department of Toxicology, Faculty of Pharmacy, Wroclaw Medical University, 50-556 Wroclaw, Poland;
| |
Collapse
|
10
|
Tsamouri MM, Steele TM, Mudryj M, Kent MS, Ghosh PM. Comparative Cancer Cell Signaling in Muscle-Invasive Urothelial Carcinoma of the Bladder in Dogs and Humans. Biomedicines 2021; 9:1472. [PMID: 34680588 PMCID: PMC8533305 DOI: 10.3390/biomedicines9101472] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 10/12/2021] [Accepted: 10/12/2021] [Indexed: 12/15/2022] Open
Abstract
Muscle-invasive urothelial carcinoma (MIUC) is the most common type of bladder malignancy in humans, but also in dogs that represent a naturally occurring model for this disease. Dogs are immunocompetent animals that share risk factors, pathophysiological features, clinical signs and response to chemotherapeutics with human cancer patients. This review summarizes the fundamental pathways for canine MIUC initiation, progression, and metastasis, emerging therapeutic targets and mechanisms of drug resistance, and proposes new opportunities for potential prognostic and diagnostic biomarkers and therapeutics. Identifying similarities and differences between cancer signaling in dogs and humans is of utmost importance for the efficient translation of in vitro research to successful clinical trials for both species.
Collapse
Affiliation(s)
- Maria Malvina Tsamouri
- Veterans Affairs-Northern California Health System, Mather, CA 95655, USA; (T.M.S.); (M.M.)
- Department of Urologic Surgery, School of Medicine, University of California Davis, Sacramento, CA 95718, USA
- Graduate Group in Integrative Pathobiology, University of California Davis, Davis, CA 95616, USA
| | - Thomas M. Steele
- Veterans Affairs-Northern California Health System, Mather, CA 95655, USA; (T.M.S.); (M.M.)
- Department of Urologic Surgery, School of Medicine, University of California Davis, Sacramento, CA 95718, USA
| | - Maria Mudryj
- Veterans Affairs-Northern California Health System, Mather, CA 95655, USA; (T.M.S.); (M.M.)
- Department of Medical Microbiology and Immunology, School of Medicine, University of California Davis, Davis, CA 95616, USA
| | - Michael S. Kent
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California Davis, Davis, CA 95616, USA;
| | - Paramita M. Ghosh
- Veterans Affairs-Northern California Health System, Mather, CA 95655, USA; (T.M.S.); (M.M.)
- Department of Urologic Surgery, School of Medicine, University of California Davis, Sacramento, CA 95718, USA
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California Davis, Sacramento, CA 95718, USA
| |
Collapse
|
11
|
Rubenwolf P, Eder F, Götz S, Promm M, Rösch WH. Persistent urothelial differentiation changes in the reconstructed exstrophic bladder: Congenital or acquired dysfunction of the epithelial barrier? J Pediatr Urol 2021; 17:632.e1-632.e7. [PMID: 34373207 DOI: 10.1016/j.jpurol.2021.07.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 06/26/2021] [Accepted: 07/17/2021] [Indexed: 11/30/2022]
Abstract
BACKGROUND We have previously characterised the urothelium from infants with classic bladder exstrophy (CBE) for the expression of urothelial differentiation-associated markers. We found abnormal expression patterns of uroplakin 3a, cytokeratin 13, cytokeratin 20 and claudin 4 in the majority of bladder biopsies taken at the time of primary bladder closure. Abnormal urothelial differentiation results in a compromised urothelial barrier with potential implications on bladder development and the success of reconstructive surgery. OBJECTIVE To investigate whether the urothelial differentiation changes observed in the unclosed exstrophic bladder persist after successful primary exstrophy repair. DESIGN, SETTING AND PARTICIPANTS From 2005 to 2018 bladder biopsies from 115 children with CBE obtained at the time of primary bladder closure (n = 67, median age: 8.1 weeks) and during secondary procedures aimed at achieving continence (n = 48, median age: 6.8 years) were prospectively collected. Following histological assessment immunohistochemistry was used to investigate the expression of uroplakin 3a, cytokeratin 13 and 20 and claudin 4, well-characterized markers associated with the terminally-differentiated, fully functional urothelial phenotype. The urothelium from 16 children with VUR and with non-refluxing disorders of the urinary tract served as controls. RESULTS Tissue specimen from 100 children were included in the analysis. Only 32% of bladder specimens from children having undergone successful primary bladder closure in early infancy displayed a fully differentiated urothelial phenotype with regular expression of all 4 markers. The remaining bladders revealed irregular or absent marker expression suggesting abnormal urothelial differentiation. 86% of the samples had inflammatory, proliferative or metaplastic histological changes. CONCLUSION Our results suggest persisting urothelial differentiation changes in two-thirds of exstrophic bladders following successful bladder closure in early infancy. Despite some limitations, the findings provide a platform for translational studies into the role of the urothelium for the developmental potential of the exstrophic bladder and the success of reconstructive surgery.
Collapse
Affiliation(s)
- Peter Rubenwolf
- Division of Pediatric Urology, University Medical Center Regensburg, Klinik St. Hedwig, Steinmetzstraße 1-3, Regensburg, 93049, Germany; Department of Urology, University Medical Center Frankfurt, Theodor-Stern-Kai 7, Frankfurt, 60590, Germany.
| | - Fabian Eder
- Institute for Pathology, Dechbettener Strasse 5, Regensburg, 93049, Germany.
| | - Stefanie Götz
- Department of Urology, University Medical Center Regensburg, Franz-Josef Strauß-Allee 11, Forschungsbau H4/Raum 82, Regensburg, 93053, Germany.
| | - Martin Promm
- Division of Pediatric Urology, University Medical Center Regensburg, Klinik St. Hedwig, Steinmetzstraße 1-3, Regensburg, 93049, Germany.
| | - Wolfgang H Rösch
- Division of Pediatric Urology, University Medical Center Regensburg, Klinik St. Hedwig, Steinmetzstraße 1-3, Regensburg, 93049, Germany.
| |
Collapse
|
12
|
Leivo MZ, Tacha DE, Hansel DE. Expression of uroplakin II and GATA-3 in bladder cancer mimickers: caveats in the use of a limited panel to determine cell of origin in bladder lesions. Hum Pathol 2021; 113:28-33. [PMID: 33887302 DOI: 10.1016/j.humpath.2021.04.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 04/06/2021] [Indexed: 12/29/2022]
Abstract
Antibodies targeting uroplakin II (UPII) are highly specific for urothelial cells and are frequently used to determine if a primary bladder lesion or a metastatic lesion originates from the urothelium. However, to date, no studies have tested the expression of UPII in histological mimickers of bladder cancer that are nonurothelial in origin. Given the potential risk of misdiagnosis, immunohistochemical markers are often used to better characterize these lesions. In the present study, we analyzed the immunohistochemical expression of UPII in a set of urothelial carcinoma mimickers that included conventional nephrogenic adenoma (n = 8), papillary nephrogenic adenoma (n = 6), endometriosis/endosalpingiosis (n = 5), inflammatory myofibroblastic tumor (n = 4), ectopic prostate tissue (n = 2), and malakoplakia (n = 2). We also examined the expression of GATA-3, another commonly used immunohistochemical marker in bladder cancer diagnosis, in the same lesions. Weak immunoreactivity for UPII was identified in 6 of 27 mimickers (22%), and GATA-3 was expressed in 16 of 27 mimickers (59%). Strong immunoreactivity for UPII appeared to be a specific marker for urothelial cell of origin, although weak staining was seen in a significant proportion of mimickers. GATA-3 immunostaining was present in a greater number and broader spectrum of mimickers; however, only one case of papillary nephrogenic adenoma showed dual positivity for UPII and GATA-3. These findings support the immunohistochemical panel-based approach in the diagnosis of bladder lesions, especially if nonurothelial bladder cancer mimickers are in the differential diagnosis. Additional larger studies would be of value to expand on these findings.
Collapse
Affiliation(s)
- Mariah Z Leivo
- Department of Pathology, University of California San Diego, La Jolla, CA, 92093, USA
| | | | - Donna E Hansel
- Department of Pathology, University of California San Diego, La Jolla, CA, 92093, USA; Department of Pathology, Oregon Health & Science University, Portland, OR, 97239, USA.
| |
Collapse
|
13
|
Mining The Cancer Genome Atlas gene expression data for lineage markers in distinguishing bladder urothelial carcinoma and prostate adenocarcinoma. Sci Rep 2021; 11:6765. [PMID: 33762601 PMCID: PMC7990953 DOI: 10.1038/s41598-021-85993-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 03/09/2021] [Indexed: 12/02/2022] Open
Abstract
Distinguishing bladder urothelial carcinomas from prostate adenocarcinomas for poorly differentiated carcinomas derived from the bladder neck entails the use of a panel of lineage markers to help make this distinction. Publicly available The Cancer Genome Atlas (TCGA) gene expression data provides an avenue to examine utilities of these markers. This study aimed to verify expressions of urothelial and prostate lineage markers in the respective carcinomas and to seek the relative importance of these markers in making this distinction. Gene expressions of these markers were downloaded from TCGA Pan-Cancer database for bladder and prostate carcinomas. Differential gene expressions of these markers were analyzed. Standard linear discriminant analyses were applied to establish the relative importance of these markers in lineage determination and to construct the model best in making the distinction. This study shows that all urothelial lineage genes except for the gene for uroplakin III were significantly expressed in bladder urothelial carcinomas (p < 0.001). In descending order of importance to distinguish from prostate adenocarcinomas, genes for uroplakin II, S100P, GATA3 and thrombomodulin had high discriminant loadings (> 0.3). All prostate lineage genes were significantly expressed in prostate adenocarcinomas(p < 0.001). In descending order of importance to distinguish from bladder urothelial carcinomas, genes for NKX3.1, prostate specific antigen (PSA), prostate-specific acid phosphatase, prostein, and prostate-specific membrane antigen had high discriminant loadings (> 0.3). Combination of gene expressions for uroplakin II, S100P, NKX3.1 and PSA approached 100% accuracy in tumor classification both in the training and validation sets. Mining gene expression data, a combination of four lineage markers helps distinguish between bladder urothelial carcinomas and prostate adenocarcinomas.
Collapse
|
14
|
Song Y, Wang H, Zou XJ, Zhang YX, Guo ZQ, Liu L, Wu DH, Zhang DY. Reciprocal regulation of HIF-1α and Uroplakin 1A promotes glycolysis and proliferation in Hepatocellular Carcinoma. J Cancer 2020; 11:6737-6747. [PMID: 33046996 PMCID: PMC7545691 DOI: 10.7150/jca.48132] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 09/09/2020] [Indexed: 12/24/2022] Open
Abstract
Uroplakin 1A (UPK1A) has recently been found dysregulation in many cancers. However, the functions of UPK1A and its underlying mechanisms in hepatocellular carcinoma (HCC) remain poorly understand. In the present study, we found that UPK1A was highly expressed in HCC tumor tissues compared with adjacent non-tumor tissues. Datasets from the Cancer Genome Atlas project (TCGA) and Gene expression Omnibus confirmed that UPK1A was highly expressed in HCC. High expression of UPK1A predicted poor overall survival (OS) in patients with HCC. Univariate and multivariate analysis showed that UPK1A was a significant and independent prognostic predictor for OS of patients with HCC. Functionally, silencing UPK1A suppressed HCC cell glycolysis and proliferation. Mechanistically, hypoxia-inducible factor 1α (HIF-1α) directly bound to the hypoxia response elements (HRE) of UPK1A promoter region, which led to the up-regulation of UPK1A under hypoxia. Furthermore, downregulation of UPK1A reduced key enzyme of glycolysis via regulating HIF-1α. Taken together, these data indicates the existence of a positive feedback loop between HIF-1α and UPK1A that modulates glycolysis and proliferation under hypoxia in HCC cells.
Collapse
Affiliation(s)
- Yang Song
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, GuangDong Province, 510515, China.,Hepatology Unit and Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, GuangDong Province, 510515, China
| | - Hui Wang
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, GuangDong Province, 510515, China
| | - Xue-Jing Zou
- Hepatology Unit and Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, GuangDong Province, 510515, China
| | - Ya-Xuan Zhang
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, GuangDong Province, 510515, China
| | - Ze-Qin Guo
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, GuangDong Province, 510515, China
| | - Li Liu
- Hepatology Unit and Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, GuangDong Province, 510515, China
| | - De-Hua Wu
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, GuangDong Province, 510515, China
| | - Dong-Yan Zhang
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, GuangDong Province, 510515, China
| |
Collapse
|
15
|
Wang YT, Shi T, Srivastava S, Kagan J, Liu T, Rodland KD. Proteomic Analysis of Exosomes for Discovery of Protein Biomarkers for Prostate and Bladder Cancer. Cancers (Basel) 2020; 12:cancers12092335. [PMID: 32825017 PMCID: PMC7564640 DOI: 10.3390/cancers12092335] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 08/11/2020] [Accepted: 08/16/2020] [Indexed: 12/15/2022] Open
Abstract
Extracellular vesicles (EVs) are released by nearly all cell types as part of normal cell physiology, transporting biological cargo, including nucleic acids and proteins, across the cell membrane. In pathological states such as cancer, EV-derived cargo may mirror the altered state of the cell of origin. Exosomes are the smaller, 50–150 nanometer-sized EVs released from fusion of multivesicular endosomes with the plasma membrane. Exosomes play important roles in cell-cell communication and participate in multiple cancer processes, including invasion and metastasis. Therefore, proteomic analysis of exosomes is a promising approach to discover potential cancer biomarkers, even though it is still at an early stage. Herein, we critically review the advances in exosome isolation methods and their compatibility with mass spectrometry (MS)-based proteomic analysis, as well as studies of exosomes in pathogenesis and progression of prostate and bladder cancer, two common urologic cancers whose incidence rates continue to rise annually. As urological tumors, both urine and blood samples are feasible for noninvasive or minimally invasive analysis. A better understanding of the biological cargo and functions of exosomes via high-throughput proteomics will help provide new insights into complex alterations in cancer and provide potential therapeutic targets and personalized treatment for patients.
Collapse
Affiliation(s)
- Yi-Ting Wang
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA; (Y.-T.W.); (T.S.)
| | - Tujin Shi
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA; (Y.-T.W.); (T.S.)
| | - Sudhir Srivastava
- Cancer Biomarkers Research Group, Division of Cancer Prevention, National Cancer Institute, Bethesda, MD 20892, USA; (S.S.); (J.K.)
| | - Jacob Kagan
- Cancer Biomarkers Research Group, Division of Cancer Prevention, National Cancer Institute, Bethesda, MD 20892, USA; (S.S.); (J.K.)
| | - Tao Liu
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA; (Y.-T.W.); (T.S.)
- Correspondence: (T.L.); (K.D.R.)
| | - Karin D. Rodland
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA; (Y.-T.W.); (T.S.)
- Department of Cell, Developmental, and Cancer Biology, Oregon Health and Science University, Portland, OR 97201, USA
- Correspondence: (T.L.); (K.D.R.)
| |
Collapse
|
16
|
Zhu Z, Xu J, Li L, Ye W, Chen B, Zeng J, Huang Z. Comprehensive analysis reveals CTHRC1, SERPINE1, VCAN and UPK1B as the novel prognostic markers in gastric cancer. Transl Cancer Res 2020; 9:4093-4110. [PMID: 35117779 PMCID: PMC8798080 DOI: 10.21037/tcr-20-211] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 06/05/2020] [Indexed: 12/31/2022]
Abstract
Background Gastric cancer (GC) is one of the most common malignant diseases worldwide, the incidence and mortality for GC is still high, thus it is urgently important to identify the effective and reliable biomarkers to evaluate GC and the underlying molecular events. Methods The study integrated four Gene Expression Omnibus (GEO) profile datasets and The Cancer Genome Atlas (TCGA) dataset to screen differentially expressed genes (DEGs), screened key genes by performing the Kaplan-Meier analysis, univariate and multivariate-cox analysis. Further analysis were performed to evaluate and validate the prognostic value of the key genes based on TCGA database and online websites. In addition, mechanism analysis of the key genes was performed thought biological processes and KEGG pathway analysis. Results In the study, 192 DEGs (92 up-regulated and 100 down-regulated) were identified from the GEO and TCGA datasets. Next, gene ontology (GO) for DEGs focused primarily on cell adhesion, extracellular region and extracellular matrix structural constituent. Then four significant key genes were screened by performed the Kaplan-Meier analysis, univariate and multivariate-cox analysis. By using Kaplan-Meier plotter and OncoLnc, the expression level was associated with a worse prognosis. In addition, the area under curve (AUC) for time-dependent receiver operating characteristic (ROC) indicated a moderate diagnostic value. Furthermore, the expression of collagen triple helix repeat containing 1 (CTHRC1), serpin family E member 1 (SERPINE1), Versican (VCAN) was associated with tumor size, Uroplakin 1B (UPK1B) expression was associated with distant metastasis. Finally, multiple biological processes and signaling pathway associated with key genes revealed the underlying mechanism in GC. Conclusions Taken together, CTHRC1, SERPINE1, VCAN, UPK1B were novel potential prognostic molecular markers for GC, which acted as oncogene to promote the development of GC.
Collapse
Affiliation(s)
- Zhipeng Zhu
- Department of Gastrointestinal Surgery, Xiamen Cancer Center, The First Affiliated Hospital of Xiamen University, Xiamen, China
| | - Jiuhua Xu
- Department of clinical medicine, Fujian Medical University, Fuzhou, China
| | - Lulu Li
- Department of Gastrointestinal Surgery, Xiamen Cancer Center, The First Affiliated Hospital of Xiamen University, Xiamen, China
| | - Weipeng Ye
- Department of clinical medicine, Fujian Medical University, Fuzhou, China
| | - Borong Chen
- Department of Gastrointestinal Surgery, Xiamen Cancer Center, The First Affiliated Hospital of Xiamen University, Xiamen, China
| | - Junjie Zeng
- Department of Gastrointestinal Surgery, Xiamen Cancer Center, The First Affiliated Hospital of Xiamen University, Xiamen, China
| | - Zhengjie Huang
- Department of Gastrointestinal Surgery, Xiamen Cancer Center, The First Affiliated Hospital of Xiamen University, Xiamen, China.,Department of clinical medicine, Fujian Medical University, Fuzhou, China
| |
Collapse
|
17
|
Dhondt B, Geeurickx E, Tulkens J, Van Deun J, Vergauwen G, Lippens L, Miinalainen I, Rappu P, Heino J, Ost P, Lumen N, De Wever O, Hendrix A. Unravelling the proteomic landscape of extracellular vesicles in prostate cancer by density-based fractionation of urine. J Extracell Vesicles 2020; 9:1736935. [PMID: 32284825 PMCID: PMC7144211 DOI: 10.1080/20013078.2020.1736935] [Citation(s) in RCA: 105] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 01/29/2020] [Accepted: 02/25/2020] [Indexed: 12/12/2022] Open
Abstract
Extracellular vesicles (EV) are increasingly being recognized as important vehicles of intercellular communication and promising diagnostic and prognostic biomarkers in cancer. Despite this enormous clinical potential, the plethora of methods to separate EV from biofluids, providing material of highly variable purity, and lacking knowledge regarding methodological repeatability pose a barrier to clinical translation. Urine is considered an ideal proximal fluid for the study of EV in urological cancers due to its direct contact with the urogenital system. We demonstrate that density-based fractionation of urine by bottom-up Optiprep density gradient centrifugation separates EV and soluble proteins with high specificity and repeatability. Mass spectrometry-based proteomic analysis of urinary EV (uEV) in men with benign and malignant prostate disease allowed us to significantly expand the known human uEV proteome with high specificity and identifies a unique biological profile in prostate cancer not uncovered by the analysis of soluble proteins. In addition, profiling the proteome of EV separated from prostate tumour conditioned medium and matched uEV confirms the specificity of the identified uEV proteome for prostate cancer. Finally, a comparative proteomic analysis with uEV from patients with bladder and renal cancer provided additional evidence of the selective enrichment of protein signatures in uEV reflecting their respective cancer tissues of origin. In conclusion, this study identifies hundreds of previously undetected proteins in uEV of prostate cancer patients and provides a powerful toolbox to map uEV content and contaminants ultimately allowing biomarker discovery in urological cancers.
Collapse
Affiliation(s)
- Bert Dhondt
- Laboratory of Experimental Cancer Research, Department of Human Structure and Repair, Ghent University, Ghent, Belgium.,Cancer Research Institute Ghent, Ghent, Belgium.,Department of Urology, Ghent University Hospital, Ghent, Belgium
| | - Edward Geeurickx
- Laboratory of Experimental Cancer Research, Department of Human Structure and Repair, Ghent University, Ghent, Belgium.,Cancer Research Institute Ghent, Ghent, Belgium
| | - Joeri Tulkens
- Laboratory of Experimental Cancer Research, Department of Human Structure and Repair, Ghent University, Ghent, Belgium.,Cancer Research Institute Ghent, Ghent, Belgium
| | - Jan Van Deun
- Laboratory of Experimental Cancer Research, Department of Human Structure and Repair, Ghent University, Ghent, Belgium.,Cancer Research Institute Ghent, Ghent, Belgium
| | - Glenn Vergauwen
- Laboratory of Experimental Cancer Research, Department of Human Structure and Repair, Ghent University, Ghent, Belgium.,Cancer Research Institute Ghent, Ghent, Belgium.,Department of Gynaecology, Ghent University Hospital, Ghent, Belgium
| | - Lien Lippens
- Laboratory of Experimental Cancer Research, Department of Human Structure and Repair, Ghent University, Ghent, Belgium.,Cancer Research Institute Ghent, Ghent, Belgium
| | - Ilkka Miinalainen
- Biocenter Oulu, Department of Pathology, Oulu University Hospital, University of Oulu, Oulu, Finland
| | - Pekka Rappu
- Department of Biochemistry, University of Turku, Turku, Finland
| | - Jyrki Heino
- Department of Biochemistry, University of Turku, Turku, Finland
| | - Piet Ost
- Cancer Research Institute Ghent, Ghent, Belgium.,Department of Radiation Oncology, Ghent University Hospital, Ghent, Belgium
| | - Nicolaas Lumen
- Cancer Research Institute Ghent, Ghent, Belgium.,Department of Urology, Ghent University Hospital, Ghent, Belgium
| | - Olivier De Wever
- Laboratory of Experimental Cancer Research, Department of Human Structure and Repair, Ghent University, Ghent, Belgium.,Cancer Research Institute Ghent, Ghent, Belgium
| | - An Hendrix
- Laboratory of Experimental Cancer Research, Department of Human Structure and Repair, Ghent University, Ghent, Belgium.,Cancer Research Institute Ghent, Ghent, Belgium
| |
Collapse
|
18
|
Duclos GE, Teixeira VH, Autissier P, Gesthalter YB, Reinders-Luinge MA, Terrano R, Dumas YM, Liu G, Mazzilli SA, Brandsma CA, van den Berge M, Janes SM, Timens W, Lenburg ME, Spira A, Campbell JD, Beane J. Characterizing smoking-induced transcriptional heterogeneity in the human bronchial epithelium at single-cell resolution. SCIENCE ADVANCES 2019; 5:eaaw3413. [PMID: 31844660 PMCID: PMC6905872 DOI: 10.1126/sciadv.aaw3413] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 10/15/2019] [Indexed: 06/10/2023]
Abstract
The human bronchial epithelium is composed of multiple distinct cell types that cooperate to defend against environmental insults. While studies have shown that smoking alters bronchial epithelial function and morphology, its precise effects on specific cell types and overall tissue composition are unclear. We used single-cell RNA sequencing to profile bronchial epithelial cells from six never and six current smokers. Unsupervised analyses led to the characterization of a set of toxin metabolism genes that localized to smoker ciliated cells, tissue remodeling associated with a loss of club cells and extensive goblet cell hyperplasia, and a previously unidentified peri-goblet epithelial subpopulation in smokers who expressed a marker of bronchial premalignant lesions. Our data demonstrate that smoke exposure drives a complex landscape of cellular alterations that may prime the human bronchial epithelium for disease.
Collapse
Affiliation(s)
- Grant E. Duclos
- Department of Medicine, Boston University School of Medicine, Boston, MA, USA
| | - Vitor H. Teixeira
- Lungs for Living Research Centre, UCL Respiratory, University College London, London, UK
| | - Patrick Autissier
- Boston University Flow Cytometry Core Facility, Boston University School of Medicine, Boston, MA, USA
| | - Yaron B. Gesthalter
- Department of Medicine, University of California San Francisco School of Medicine, San Francisco, CA, USA
| | - Marjan A. Reinders-Luinge
- University of Groningen, University Medical Center Groningen, Department of Pathology and Medical Biology, Groningen, Netherlands
| | - Robert Terrano
- Department of Medicine, Boston University School of Medicine, Boston, MA, USA
| | - Yves M. Dumas
- Department of Medicine, Boston University School of Medicine, Boston, MA, USA
| | - Gang Liu
- Department of Medicine, Boston University School of Medicine, Boston, MA, USA
| | - Sarah A. Mazzilli
- Department of Medicine, Boston University School of Medicine, Boston, MA, USA
| | - Corry-Anke Brandsma
- University of Groningen, University Medical Center Groningen, Department of Pathology and Medical Biology, Groningen, Netherlands
| | - Maarten van den Berge
- University of Groningen, University Medical Center Groningen, Department of Pulmonary Diseases, Groningen, Netherlands
| | - Sam M. Janes
- Lungs for Living Research Centre, UCL Respiratory, University College London, London, UK
- Department of Thoracic Medicine, University College London Hospital, London, UK
| | - Wim Timens
- University of Groningen, University Medical Center Groningen, Department of Pathology and Medical Biology, Groningen, Netherlands
| | - Marc E. Lenburg
- Department of Medicine, Boston University School of Medicine, Boston, MA, USA
| | - Avrum Spira
- Department of Medicine, Boston University School of Medicine, Boston, MA, USA
- Johnson & Johnson Innovation, Cambridge, MA, USA
| | - Joshua D. Campbell
- Department of Medicine, Boston University School of Medicine, Boston, MA, USA
| | - Jennifer Beane
- Department of Medicine, Boston University School of Medicine, Boston, MA, USA
| |
Collapse
|
19
|
Babu Munipalli S, Yenugu S. Uroplakin expression in the male reproductive tract of rat. Gen Comp Endocrinol 2019; 281:153-163. [PMID: 31181195 DOI: 10.1016/j.ygcen.2019.06.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 05/29/2019] [Accepted: 06/06/2019] [Indexed: 02/08/2023]
Abstract
Uroplakins (UPKs) play an important role in the normal and pathophysiology of the urothelium. They protect the urothelium and play a crucial role during urothelial infections by Uropathogenic E. coli. However, their functions beyond this organ system remain unexplored. A wide variety of proteins secreted in the male reproductive tract tissues contribute to spermatogenesis, sperm maturation, fertilization and innate immunity. However, the presence of UPKs and their possible contribution to the male reproductive tract physiology is not yet reported. Hence, in this study, we characterized UPKs in the male reproductive tract of rats. To the best of our knowledge, for the first time, we report the expression of UPKs in the male reproductive system. Upk1a, Upk1b, Upk2 and Upk3b mRNA and their corresponding proteins were abundantly expressed in the caput, cauda, testis, seminal vesicles and the prostate. Their expression was not developmentally regulated. UPK protein expression was also localized on the spermatozoa, suggesting a role for these proteins in sperm function. To study the role of UPKs in innate immunity, Upk mRNA expression in response to endotoxin challenge was evaluated in vitro and in vivo. In the rat testicular and epididymal cell lines, Upk mRNA levels increased in response to lipopolysaccharide challenge. However, in the caput, cauda, testes, seminal vesicle and prostate obtained from LPS treated rats, Upk mRNA expression was significantly reduced. Results of this study indicate a role for UPKs in male reproductive physiology and innate immune responses.
Collapse
Affiliation(s)
| | - Suresh Yenugu
- Department of Animal Biology, University of Hyderabad, Hyderabad 500046, India.
| |
Collapse
|
20
|
El Shobaky A, Abbas M, Raouf R, Zakaria MM, Ali-El-Dein B. Effect of pathogenic bacteria on reliability of CK-19, CK-20 and UPII as bladder cancer genetic markers: A molecular biology study. ACTA ACUST UNITED AC 2019. [DOI: 10.1016/j.ejbas.2015.05.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Ahmed El Shobaky
- Botany Department, Faculty of Science, Mansoura University, Egypt
| | - Mohamed Abbas
- Botany Department, Faculty of Science, Mansoura University, Egypt
| | - Romaila Raouf
- Urology and Nephrology Center, Mansoura University, Egypt
| | | | | |
Collapse
|
21
|
Kuang YH, Lu Y, Yan KX, Liu PP, Chen WQ, Shen MX, He YJ, Wu LS, Qin QS, Zhou XC, Li J, Su J, zhiLv C, Zhu W, Chen X. Genetic polymorphism predicting Methotrexate efficacy in Chinese patients with psoriasis vulgaris. J Dermatol Sci 2019; 93:8-13. [DOI: 10.1016/j.jdermsci.2018.06.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2017] [Revised: 06/04/2018] [Accepted: 06/24/2018] [Indexed: 01/07/2023]
|
22
|
Liao Y, Chang HC, Liang FX, Chung PJ, Wei Y, Nguyen TP, Zhou G, Talebian S, Krey LC, Deng FM, Wong TW, Chicote JU, Grifo JA, Keefe DL, Shapiro E, Lepor H, Wu XR, DeSalle R, Garcia-España A, Kim SY, Sun TT. Uroplakins play conserved roles in egg fertilization and acquired additional urothelial functions during mammalian divergence. Mol Biol Cell 2018; 29:3128-3143. [PMID: 30303751 PMCID: PMC6340209 DOI: 10.1091/mbc.e18-08-0496] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Uroplakin (UP) tetraspanins and their associated proteins are major mammalian urothelial differentiation products that form unique two-dimensional crystals of 16-nm particles (“urothelial plaques”) covering the apical urothelial surface. Although uroplakins are highly expressed only in mammalian urothelium and are often referred to as being urothelium specific, they are also expressed in several mouse nonurothelial cell types in stomach, kidney, prostate, epididymis, testis/sperms, and ovary/oocytes. In oocytes, uroplakins colocalize with CD9 on cell-surface and multivesicular body-derived exosomes, and the cytoplasmic tail of UPIIIa undergoes a conserved fertilization-dependent, Fyn-mediated tyrosine phosphorylation that also occurs in Xenopus laevis eggs. Uroplakin knockout and antibody blocking reduce mouse eggs’ fertilization rate in in vitro fertilization assays, and UPII/IIIa double-knockout mice have a smaller litter size. Phylogenetic analyses showed that uroplakin sequences underwent significant mammal-specific changes. These results suggest that, by mediating signal transduction and modulating membrane stability that do not require two-dimensional-crystal formation, uroplakins can perform conserved and more ancestral fertilization functions in mouse and frog eggs. Uroplakins acquired the ability to form two-dimensional-crystalline plaques during mammalian divergence, enabling them to perform additional functions, including umbrella cell enlargement and the formation of permeability and mechanical barriers, to protect/modify the apical surface of the modern-day mammalian urothelium.
Collapse
Affiliation(s)
- Yi Liao
- Department of Cell Biology, New York University School of Medicine, New York, NY 10016
| | - Hung-Chi Chang
- Department of Obstetrics and Gynecology, New York University School of Medicine, New York, NY 10016.,Department of Obstetrics and Gynecology, National Taiwan University, Taipei 10617, Taiwan
| | - Feng-Xia Liang
- Department of Cell Biology, New York University School of Medicine, New York, NY 10016
| | | | - Yuan Wei
- Department of Cell Biology, New York University School of Medicine, New York, NY 10016
| | - Tuan-Phi Nguyen
- Department of Cell Biology, New York University School of Medicine, New York, NY 10016
| | - Ge Zhou
- Regeneron, Tarrytown, NY 10591
| | - Sheeva Talebian
- Department of Obstetrics and Gynecology, New York University School of Medicine, New York, NY 10016
| | - Lewis C Krey
- Department of Obstetrics and Gynecology, New York University School of Medicine, New York, NY 10016
| | - Fang-Ming Deng
- Department of Pathology, New York University School of Medicine, New York, NY 10016.,Department of Urology, New York University School of Medicine, New York, NY 10016
| | - Tak-Wah Wong
- Department of Dermatology, National Cheng Kung University, Tainan 701, Taiwan
| | - Javier U Chicote
- Unitat De Recerca, Hospital Joan XXIII, Institut de Investigacio Sanitaria Pere Virgili (IISPV), Universitat Rovira i Virgili, Tarragona 43007, Spain
| | - James A Grifo
- Department of Obstetrics and Gynecology, New York University School of Medicine, New York, NY 10016
| | - David L Keefe
- Department of Obstetrics and Gynecology, New York University School of Medicine, New York, NY 10016
| | - Ellen Shapiro
- Department of Urology, New York University School of Medicine, New York, NY 10016
| | - Herbert Lepor
- Department of Urology, New York University School of Medicine, New York, NY 10016.,Sackler Institute of Comparative Genomics, American Museum of Natural History, New York, NY 10024
| | - Xue-Ru Wu
- Department of Pathology, New York University School of Medicine, New York, NY 10016.,Department of Urology, New York University School of Medicine, New York, NY 10016.,Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY 10016
| | - Robert DeSalle
- Veterans Affairs New York Harbor Healthcare System, New York, NY 10010
| | - Antonio Garcia-España
- Unitat De Recerca, Hospital Joan XXIII, Institut de Investigacio Sanitaria Pere Virgili (IISPV), Universitat Rovira i Virgili, Tarragona 43007, Spain
| | - Sang Yong Kim
- Department of Pathology, New York University School of Medicine, New York, NY 10016
| | - Tung-Tien Sun
- Department of Cell Biology, New York University School of Medicine, New York, NY 10016.,Department of Urology, New York University School of Medicine, New York, NY 10016.,The Ronald O. Perelman Department of Dermatology, New York University School of Medicine, New York, NY 10016.,Sackler Institute of Comparative Genomics, American Museum of Natural History, New York, NY 10024
| |
Collapse
|
23
|
Hustler A, Eardley I, Hinley J, Pearson J, Wezel F, Radvanyi F, Baker SC, Southgate J. Differential transcription factor expression by human epithelial cells of buccal and urothelial derivation. Exp Cell Res 2018; 369:284-294. [PMID: 29842880 PMCID: PMC6092173 DOI: 10.1016/j.yexcr.2018.05.031] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Revised: 05/24/2018] [Accepted: 05/25/2018] [Indexed: 12/29/2022]
Abstract
Identification of transcription factors expressed by differentiated cells is informative not only of tissue-specific pathways, but to help identify master regulators for cellular reprogramming. If applied, such an approach could generate healthy autologous tissue-specific cells for clinical use where cells from the homologous tissue are unavailable due to disease. Normal human epithelial cells of buccal and urothelial derivation maintained in identical culture conditions that lacked significant instructive or permissive signaling cues were found to display inherent similarities and differences of phenotype. Investigation of transcription factors implicated in driving urothelial-type differentiation revealed buccal epithelial cells to have minimal or absent expression of PPARG, GATA3 and FOXA1 genes. Retroviral overexpression of protein coding sequences for GATA3 or PPARy1 in buccal epithelial cells resulted in nuclear immunolocalisation of the respective proteins, with both transductions also inducing expression of the urothelial differentiation-associated claudin 3 tight junction protein. PPARG1 overexpression alone entrained expression of nuclear FOXA1 and GATA3 proteins, providing objective evidence of its upstream positioning in a transcription factor network and identifying it as a candidate factor for urothelial-type transdifferentiation or reprogramming.
Collapse
Affiliation(s)
- Arianna Hustler
- Jack Birch Unit for Molecular Carcinogenesis, Department of Biology, University of York, York YO10 5DD, United Kingdom
| | - Ian Eardley
- Pyrah Department of Urology, St. James's University Hospital, Leeds LS9 7TF, United Kingdom
| | - Jennifer Hinley
- Jack Birch Unit for Molecular Carcinogenesis, Department of Biology, University of York, York YO10 5DD, United Kingdom
| | - Joanna Pearson
- Jack Birch Unit for Molecular Carcinogenesis, Department of Biology, University of York, York YO10 5DD, United Kingdom
| | - Felix Wezel
- Jack Birch Unit for Molecular Carcinogenesis, Department of Biology, University of York, York YO10 5DD, United Kingdom
| | - Francois Radvanyi
- Oncologie Moléculaire, Institut Curie, Centre de Recherche, 75248 Paris cedex 05, France
| | - Simon C Baker
- Jack Birch Unit for Molecular Carcinogenesis, Department of Biology, University of York, York YO10 5DD, United Kingdom
| | - Jennifer Southgate
- Jack Birch Unit for Molecular Carcinogenesis, Department of Biology, University of York, York YO10 5DD, United Kingdom.
| |
Collapse
|
24
|
Višnjar T, Chesi G, Iacobacci S, Polishchuk E, Resnik N, Robenek H, Kreft M, Romih R, Polishchuk R, Kreft ME. Uroplakin traffic through the Golgi apparatus induces its fragmentation: new insights from novel in vitro models. Sci Rep 2017; 7:12842. [PMID: 28993693 PMCID: PMC5634464 DOI: 10.1038/s41598-017-13103-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Accepted: 09/20/2017] [Indexed: 11/10/2022] Open
Abstract
Uroplakins (UPs) play an essential role in maintaining an effective urothelial permeability barrier at the level of superficial urothelial cell (UC) layer. Although the organization of UPs in the apical plasma membrane (PM) of UCs is well known, their transport in UCs is only partially understood. Here, we dissected trafficking of UPs and its differentiation-dependent impact on Golgi apparatus (GA) architecture. We demonstrated that individual subunits UPIb and UPIIIa are capable of trafficking from the endoplasmic reticulum to the GA in UCs. Moreover, UPIb, UPIIIa or UPIb/UPIIIa expressing UCs revealed fragmentation and peripheral redistribution of Golgi-units. Notably, expression of UPIb or UPIb/UPIIIa triggered similar GA fragmentation in MDCK and HeLa cells that do not express UPs endogenously. The colocalization analysis of UPIb/UPIIIa-EGFP and COPI, COPII or clathrin suggested that UPs follow constitutively the post-Golgi route to the apical PM. Depolymerisation of microtubules leads to complete blockade of the UPIb/UPIIIa-EGFP post-Golgi transport, while disassembly of actin filaments shows significantly reduced delivery of UPIb/UPIIIa-EGFP to the PM. Our findings show the significant effect of the UPs expression on the GA fragmentation, which enables secretory Golgi-outpost to be distributed as close as possible to the sites of cargo delivery at the PM.
Collapse
Affiliation(s)
- Tanja Višnjar
- Institute of Cell Biology, Faculty of Medicine, University of Ljubljana, Vrazov trg 2, SI-1000, Ljubljana, Slovenia
| | - Giancarlo Chesi
- Telethon Institute of Genetics and Medicine (TIGEM), Via Campi Flegrei 34, 80078, Pozzuoli, (NA), Italy
| | - Simona Iacobacci
- Telethon Institute of Genetics and Medicine (TIGEM), Via Campi Flegrei 34, 80078, Pozzuoli, (NA), Italy
| | - Elena Polishchuk
- Telethon Institute of Genetics and Medicine (TIGEM), Via Campi Flegrei 34, 80078, Pozzuoli, (NA), Italy
| | - Nataša Resnik
- Institute of Cell Biology, Faculty of Medicine, University of Ljubljana, Vrazov trg 2, SI-1000, Ljubljana, Slovenia
| | - Horst Robenek
- Institute for experimental musculoskeletal medicine, University of Münster, Albert-Schweitzer-Campus 1, Domagkstrasse 3, 48149, Münster, Germany
| | - Marko Kreft
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Večna pot 111, Ljubljana, Slovenia & LN-MCP, Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana & Celica Biomedical Center, Ljubljana, Slovenia
| | - Rok Romih
- Institute of Cell Biology, Faculty of Medicine, University of Ljubljana, Vrazov trg 2, SI-1000, Ljubljana, Slovenia
| | - Roman Polishchuk
- Telethon Institute of Genetics and Medicine (TIGEM), Via Campi Flegrei 34, 80078, Pozzuoli, (NA), Italy.
| | - Mateja Erdani Kreft
- Institute of Cell Biology, Faculty of Medicine, University of Ljubljana, Vrazov trg 2, SI-1000, Ljubljana, Slovenia.
| |
Collapse
|
25
|
Kc R, Shukla SD, Walters EH, O'Toole RF. Temporal upregulation of host surface receptors provides a window of opportunity for bacterial adhesion and disease. MICROBIOLOGY-SGM 2017; 163:421-430. [PMID: 28113047 DOI: 10.1099/mic.0.000434] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Host surface receptors provide bacteria with a foothold from which to attach, colonize and, in some cases, invade tissue and elicit human disease. In this review, we discuss several key host receptors and cognate adhesins that function in bacterial pathogenesis. In particular, we examine the elevated expression of host surface receptors such as CEACAM-1, CEACAM-6, ICAM-1 and PAFR in response to specific stimuli. We explore how upregulated receptors, in turn, expose the host to a range of bacterial infections in the respiratory tract. It is apparent that exploitation of receptor induction for bacterial adherence is not unique to one body system, but is also observed in the central nervous, gastrointestinal and urogenital systems. Prokaryotic pathogens which utilize this mechanism for their infectivity include Streptococcus pneumoniae, Haemophilus influenzae, Neisseria meningitidis and Escherichia coli. A number of approaches have been used, in both in vitro and in vivo experimental models, to inhibit bacterial attachment to temporally expressed host receptors. Some of these novel strategies may advance future targeted interventions for the prevention and treatment of bacterial disease.
Collapse
Affiliation(s)
- Rajendra Kc
- School of Medicine, Faculty of Health, University of Tasmania, Hobart, TAS 7000, Australia
| | - Shakti D Shukla
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, The University of Newcastle, Newcastle, NSW 2308, Australia.,Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, New Lambton Heights, Newcastle, NSW 2305, Australia
| | - Eugene H Walters
- School of Medicine, Faculty of Health, University of Tasmania, Hobart, TAS 7000, Australia
| | - Ronan F O'Toole
- School of Medicine, Faculty of Health, University of Tasmania, Hobart, TAS 7000, Australia
| |
Collapse
|
26
|
Fishwick C, Higgins J, Percival-Alwyn L, Hustler A, Pearson J, Bastkowski S, Moxon S, Swarbreck D, Greenman CD, Southgate J. Heterarchy of transcription factors driving basal and luminal cell phenotypes in human urothelium. Cell Death Differ 2017; 24:809-818. [PMID: 28282036 PMCID: PMC5423105 DOI: 10.1038/cdd.2017.10] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2016] [Revised: 01/10/2017] [Accepted: 01/11/2017] [Indexed: 02/06/2023] Open
Abstract
Cell differentiation is affected by complex networks of transcription factors that co-ordinate re-organisation of the chromatin landscape. The hierarchies of these relationships can be difficult to dissect. During in vitro differentiation of normal human uro-epithelial cells, formaldehyde-assisted isolation of regulatory elements (FAIRE-seq) and RNA-seq was used to identify alterations in chromatin accessibility and gene expression changes following activation of the nuclear receptor peroxisome proliferator-activated receptor gamma (PPARγ) as a differentiation-initiating event. Regions of chromatin identified by FAIRE-seq, as having altered accessibility during differentiation, were found to be enriched with sequence-specific binding motifs for transcription factors predicted to be involved in driving basal and differentiated urothelial cell phenotypes, including forkhead box A1 (FOXA1), P63, GRHL2, CTCF and GATA-binding protein 3 (GATA3). In addition, co-occurrence of GATA3 motifs was observed within subsets of differentiation-specific peaks containing P63 or FOXA1. Changes in abundance of GRHL2, GATA3 and P63 were observed in immunoblots of chromatin-enriched extracts. Transient siRNA knockdown of P63 revealed that P63 favoured a basal-like phenotype by inhibiting differentiation and promoting expression of basal marker genes. GATA3 siRNA prevented differentiation-associated downregulation of P63 protein and transcript, and demonstrated positive feedback of GATA3 on PPARG transcript, but showed no effect on FOXA1 transcript or protein expression. This approach indicates that as a transcriptionally regulated programme, urothelial differentiation operates as a heterarchy, wherein GATA3 is able to co-operate with FOXA1 to drive expression of luminal marker genes, but that P63 has potential to transrepress expression of the same genes.
Collapse
Affiliation(s)
- Carl Fishwick
- Jack Birch Unit for Molecular Carcinogenesis, Department of Biology, University of York, York YO10 5DD, UK
| | - Janet Higgins
- Earlham Institute, Norwich Research Park, Norwich NR4 7UZ, UK
| | | | - Arianna Hustler
- Jack Birch Unit for Molecular Carcinogenesis, Department of Biology, University of York, York YO10 5DD, UK
| | - Joanna Pearson
- Jack Birch Unit for Molecular Carcinogenesis, Department of Biology, University of York, York YO10 5DD, UK
| | | | - Simon Moxon
- Earlham Institute, Norwich Research Park, Norwich NR4 7UZ, UK
| | - David Swarbreck
- Earlham Institute, Norwich Research Park, Norwich NR4 7UZ, UK
| | - Chris D Greenman
- School of Computing Sciences, University of East Anglia, Norwich NR4 7TJ, UK
| | - Jennifer Southgate
- Jack Birch Unit for Molecular Carcinogenesis, Department of Biology, University of York, York YO10 5DD, UK
| |
Collapse
|
27
|
Abstract
Genomic and transcriptional studies have identified discrete molecular subtypes of bladder cancer. These observations could be the starting point to identify new treatments. Several members of the forkhead box (FOX) superfamily of transcription factors have been found to be differentially expressed in the different bladder cancer subtypes. In addition, the FOXA protein family are key regulators of embryonic bladder development and patterning. Both experimental and clinical data support a role for FOXA1 and FOXA2 in urothelial carcinoma. FOXA1 is expressed in embryonic and adult urothelium and its expression is altered in urothelial carcinomas and across disparate molecular bladder cancer subtypes. FOXA2 is normally absent from the adult urothelium, but developmental studies identified FOXA2 as a marker of a transient urothelial progenitor cell population during bladder development. Studies also implicate FOXA2 in bladder cancer and several other FOX proteins might be involved in development and/or progression of this disease; for example, FOXA1 and FOXO3A have been associated with clinical patient outcomes. Future studies should investigate to what extent and by which mechanisms FOX proteins might be directly involved in bladder cancer pathogenesis and treatment responses.
Collapse
|
28
|
Shahabi A, Lewinger JP, Ren J, April C, Sherrod AE, Hacia JG, Daneshmand S, Gill I, Pinski JK, Fan JB, Stern MC. Novel Gene Expression Signature Predictive of Clinical Recurrence After Radical Prostatectomy in Early Stage Prostate Cancer Patients. Prostate 2016; 76:1239-56. [PMID: 27272349 PMCID: PMC9015679 DOI: 10.1002/pros.23211] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Accepted: 05/16/2016] [Indexed: 12/17/2022]
Abstract
BACKGROUND Current clinical tools have limited accuracy in differentiating patients with localized prostate cancer who are at risk of recurrence from patients with indolent disease. We aimed to identify a gene expression signature that jointly with clinical variables could improve upon the prediction of clinical recurrence after RP for patients with stage T2 PCa. METHODS The study population includes consented patients who underwent a radical retropubic prostatectomy (RP) and bilateral pelvic lymph node dissection at the University of Southern California in the PSA-era (1988-2008). We used a nested case-control study of 187 organ-confined patients (pT2N0M0): 154 with no recurrence ("controls") and 33 with clinical recurrence ("cases"). RNA was obtained from laser capture microdissected malignant glands representative of the overall Gleason score of each patient. Whole genome gene expression profiles (29,000 transcripts) were obtained using the Whole Genome DASL HT platform (Illumina, Inc). A gene expression signature of PCa clinical recurrence was identified using stability selection with elastic net regularized logistic regression. Three existing datasets generated with the Affymetrix Human Exon 1.0ST array were used for validation: Mayo Clinic (MC, n = 545), Memorial Sloan Kettering Cancer Center (SKCC, n = 150), and Erasmus Medical Center (EMC, n = 48). The areas under the ROC curve (AUCs) were obtained using repeated fivefold cross-validation. RESULTS A 28-gene expression signature was identified that jointly with key clinical variables (age, Gleason score, pre-operative PSA level, and operation year) was predictive of clinical recurrence (AUC of clinical variables only was 0.67, AUC of clinical variables, and 28-gene signature was 0.99). The AUC of this gene signature fitted in each of the external datasets jointly with clinical variables was 0.75 (0.72-0.77) (MC), 0.90 (0.86-0.94) (MSKCC), and 0.82 (0.74-0.91) (EMC), whereas the AUC for clinical variables only in each dataset was 0.72 (0.70-0.74), 0.86 (0.82-0.91), and 0.76 (0.67-0.85), respectively. CONCLUSIONS We report a novel gene-expression based classifier identified using agnostic approaches from whole genome expression profiles that can improve upon the accuracy of clinical indicators to stratify early stage localized patients at risk of clinical recurrence after RP. Prostate 76:1239-1256, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Ahva Shahabi
- Department of Preventive Medicine, Keck School of Medicine of USC, Norris Comprehensive Cancer Center, Los Angeles, California
| | - Juan Pablo Lewinger
- Department of Preventive Medicine, Keck School of Medicine of USC, Norris Comprehensive Cancer Center, Los Angeles, California
| | - Jie Ren
- Department of Preventive Medicine, Keck School of Medicine of USC, Norris Comprehensive Cancer Center, Los Angeles, California
| | | | - Andy E. Sherrod
- Department of Pathology, Norris Comprehensive Cancer Center, Keck School of Medicine of USC, Los Angeles, California
| | - Joseph G. Hacia
- Department of Biochemistry and Molecular Biology, Keck School of Medicine of USC, Los Angeles, California
| | - Siamak Daneshmand
- Department of Urology and USC Institute of Urology, Norris Comprehensive Cancer Center, Keck School of Medicine of USC, Los Angeles, California
| | - Inderbir Gill
- Department of Urology and USC Institute of Urology, Norris Comprehensive Cancer Center, Keck School of Medicine of USC, Los Angeles, California
| | - Jacek K. Pinski
- Department of Medicine, Norris Comprehensive Cancer Center, Keck School of Medicine of USC, Los Angeles, California
| | - Jian-Bing Fan
- Illumina, Inc., San Diego, California
- AnchorDx Corporation, Guangzhou, China
| | - Mariana C. Stern
- Department of Preventive Medicine, Keck School of Medicine of USC, Norris Comprehensive Cancer Center, Los Angeles, California
- Department of Urology and USC Institute of Urology, Norris Comprehensive Cancer Center, Keck School of Medicine of USC, Los Angeles, California
- Correspondence to: Dr. Mariana C. Stern, University of Southern California Keck School of Medicine, Norris Comprehensive Cancer Center, 1441 Eastlake Avenue, Room 5421A, Los Angeles, CA 90089.
| |
Collapse
|
29
|
A combination of p40, GATA-3 and uroplakin II shows utility in the diagnosis and prognosis of muscle-invasive urothelial carcinoma. Pathology 2016; 48:543-9. [DOI: 10.1016/j.pathol.2016.05.008] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2016] [Revised: 05/23/2016] [Accepted: 05/24/2016] [Indexed: 11/18/2022]
|
30
|
Kim SY, Choi SA, Lee S, Lee JS, Hong CR, Lim BC, Kang HJ, Kim KJ, Park SH, Choi M, Chae JH. Atypical presentation of infantile-onset farber disease with novel ASAH1 mutations. Am J Med Genet A 2016; 170:3023-3027. [PMID: 27411168 DOI: 10.1002/ajmg.a.37846] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2016] [Accepted: 07/01/2016] [Indexed: 11/08/2022]
Abstract
Farber disease is a very rare autosomal recessive disease caused by mutation of ASAH1 that results in the accumulation of ceramide in various tissues. Clinical symptoms of classic Farber disease comprise painful joint deformity, hoarseness of voice, and subcutaneous nodules. Here, we describe a patient with Farber disease with atypical presentation of early onset hypotonia, sacral mass, congenital heart disease, and dysmorphic face since birth. Severe cognitive disability, failure to gain motor skills, failure to thrive, and joint contractures developed. Using whole-exome sequencing, we identified the compound heterozygote missense mutations of ASAH1 (p.R333C and p.G235R). Because of the diagnostic delay, she underwent sacral mass excision, which revealed enlarged lysosomes and zebra bodies. We report an atypical presentation of Farber disease with her pathology and associated genetic defect. This case expands the phenotypic spectrum of Farber disease to include novel mutations of ASAH1, which pose a diagnostic challenge. We also discuss the clinical utility of whole-exome sequencing for diagnosis of ultra-rare diseases. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Soo Yeon Kim
- Department of Pediatrics, Pediatric Clinical Neuroscience Center, Seoul National University Children's Hospital, Seoul National University College of Medicine, Seoul, Korea
| | - Sun Ah Choi
- Department of Pediatrics, Pediatric Clinical Neuroscience Center, Seoul National University Children's Hospital, Seoul National University College of Medicine, Seoul, Korea
| | - Sangmoon Lee
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea
| | - Jin Sook Lee
- Department of Pediatrics, Gachon University Gil Medical Center, Incheon, Korea
| | - Che Ry Hong
- Department of Pediatrics, Cancer Research Institute, Seoul National University College of Medicine, Seoul National University Children's Hospital, Seoul, Korea
| | - Byung Chan Lim
- Department of Pediatrics, Pediatric Clinical Neuroscience Center, Seoul National University Children's Hospital, Seoul National University College of Medicine, Seoul, Korea
| | - Hyoung Jin Kang
- Department of Pediatrics, Cancer Research Institute, Seoul National University College of Medicine, Seoul National University Children's Hospital, Seoul, Korea
| | - Ki Joong Kim
- Department of Pediatrics, Pediatric Clinical Neuroscience Center, Seoul National University Children's Hospital, Seoul National University College of Medicine, Seoul, Korea
| | - Sung-Hye Park
- Department of Pathology, Seoul National University, College of Medicine, Seoul, Korea
| | - Murim Choi
- Department of Pediatrics, Pediatric Clinical Neuroscience Center, Seoul National University Children's Hospital, Seoul National University College of Medicine, Seoul, Korea.,Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea
| | - Jong-Hee Chae
- Department of Pediatrics, Pediatric Clinical Neuroscience Center, Seoul National University Children's Hospital, Seoul National University College of Medicine, Seoul, Korea.
| |
Collapse
|
31
|
Larson NB, McDonnell S, French AJ, Fogarty Z, Cheville J, Middha S, Riska S, Baheti S, Nair AA, Wang L, Schaid DJ, Thibodeau SN. Comprehensively evaluating cis-regulatory variation in the human prostate transcriptome by using gene-level allele-specific expression. Am J Hum Genet 2015; 96:869-82. [PMID: 25983244 PMCID: PMC4457953 DOI: 10.1016/j.ajhg.2015.04.015] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2014] [Accepted: 04/17/2015] [Indexed: 12/17/2022] Open
Abstract
The identification of cis-acting regulatory variation in primary tissues has the potential to elucidate the genetic basis of complex traits and further our understanding of transcriptomic diversity across cell types. Expression quantitative trait locus (eQTL) association analysis using RNA sequencing (RNA-seq) data can improve upon the detection of cis-acting regulatory variation by leveraging allele-specific expression (ASE) patterns in association analysis. Here, we present a comprehensive evaluation of cis-acting eQTLs by analyzing RNA-seq gene-expression data and genome-wide high-density genotypes from 471 samples of normal primary prostate tissue. Using statistical models that integrate ASE information, we identified extensive cis-eQTLs across the prostate transcriptome and found that approximately 70% of expressed genes corresponded to a significant eQTL at a gene-level false-discovery rate of 0.05. Overall, cis-eQTLs were heavily concentrated near the transcription start and stop sites of affected genes, and effects were negatively correlated with distance. We identified multiple instances of cis-acting co-regulation by using phased genotype data and discovered 233 SNPs as the most strongly associated eQTLs for more than one gene. We also noted significant enrichment (25/50, p = 2E-5) of previously reported prostate cancer risk SNPs in prostate eQTLs. Our results illustrate the benefit of assessing ASE data in cis-eQTL analyses by showing better reproducibility of prior eQTL findings than of eQTL mapping based on total expression alone. Altogether, our analysis provides extensive functional context of thousands of SNPs in prostate tissue, and these results will be of critical value in guiding studies examining disease of the human prostate.
Collapse
Affiliation(s)
- Nicholas B Larson
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN 55905, USA.
| | - Shannon McDonnell
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN 55905, USA
| | - Amy J French
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN 55905, USA
| | - Zach Fogarty
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN 55905, USA
| | - John Cheville
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN 55905, USA
| | - Sumit Middha
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN 55905, USA
| | - Shaun Riska
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN 55905, USA
| | - Saurabh Baheti
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN 55905, USA
| | - Asha A Nair
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN 55905, USA
| | - Liang Wang
- Department of Pathology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Daniel J Schaid
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN 55905, USA
| | - Stephen N Thibodeau
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
32
|
Tadeu AMB, Lin S, Hou L, Chung L, Zhong M, Zhao H, Horsley V. Transcriptional profiling of ectoderm specification to keratinocyte fate in human embryonic stem cells. PLoS One 2015; 10:e0122493. [PMID: 25849374 PMCID: PMC4388500 DOI: 10.1371/journal.pone.0122493] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Accepted: 02/22/2015] [Indexed: 11/18/2022] Open
Abstract
In recent years, several studies have shed light into the processes that regulate epidermal specification and homeostasis. We previously showed that a broad-spectrum γ-secretase inhibitor DAPT promoted early keratinocyte specification in human embryonic stem cells triggered to undergo ectoderm specification. Here, we show that DAPT accelerates human embryonic stem cell differentiation and induces expression of the ectoderm protein AP2. Furthermore, we utilize RNA sequencing to identify several candidate regulators of ectoderm specification including those involved in epithelial and epidermal development in human embryonic stem cells. Genes associated with transcriptional regulation and growth factor activity are significantly enriched upon DAPT treatment during specification of human embryonic stem cells to the ectoderm lineage. The human ectoderm cell signature identified in this study contains several genes expressed in ectodermal and epithelial tissues. Importantly, these genes are also associated with skin disorders and ectodermal defects, providing a platform for understanding the biology of human epidermal keratinocyte development under diseased and homeostatic conditions.
Collapse
Affiliation(s)
- Ana Mafalda Baptista Tadeu
- Yale University, Department of Molecular, Cell and Developmental Biology, New Haven, CT, 06511, United States of America
| | - Samantha Lin
- Yale University, Department of Molecular, Cell and Developmental Biology, New Haven, CT, 06511, United States of America
| | - Lin Hou
- Yale University, Department of Biostatistics, Yale School of Public Health, New Haven, CT, 06520, United States of America
| | - Lisa Chung
- Yale University, Department of Biostatistics, Yale School of Public Health, New Haven, CT, 06520, United States of America
| | - Mei Zhong
- Yale University, Yale Stem Cell Center, Genomics Facility, New Haven, CT, 06520, United States of America
| | - Hongyu Zhao
- Yale University, Department of Biostatistics, Yale School of Public Health, New Haven, CT, 06520, United States of America
| | - Valerie Horsley
- Yale University, Department of Molecular, Cell and Developmental Biology, New Haven, CT, 06511, United States of America
- * E-mail:
| |
Collapse
|
33
|
Zhu H, Tang Y, Zhang X, Jiang X, Wang Y, Gan Y, Yang J. Downregulation of UPK1A suppresses proliferation and enhances apoptosis of bladder transitional cell carcinoma cells. Med Oncol 2015; 32:84. [PMID: 25701463 DOI: 10.1007/s12032-015-0541-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Accepted: 02/13/2015] [Indexed: 12/14/2022]
Abstract
Uroplakin 1A (UPK1A) is a specific marker of mammalian urothelium and one of major proteins contained in urothelial plaques. Many recent studies reported that UPK1A could be useful marker for diagnosis, detection and prognostic prediction of transitional cell carcinoma. However, relatively little is known about its exact roles in bladder transitional cell carcinoma (BTCC). We tried to explore the roles UPK1A plays in BTCC via the transfection of its antisense nucleotides (AS) into T24 cells to observe their changes of proliferation and apoptosis. After AS was successfully transfected into T24 cells, the percentages of proliferating T24 cells at 24 and 48 h after the treatment were 57.2 ± 6.8 and 44.7 ± 5.2%, significantly lower than that of control group, as shown by MTT (p < 0.05 and 0.01). At 24 h after transfection of AS, the percentage of apoptotic T24 cells was 26.87% measured by flow cytometry, significantly higher than that of control group (p < 0.01). Similarly, Hoechst 33258 staining showed that the percentage of apoptotic nuclei of T24 cells after 24 h treated by AS was 28.9%, significantly higher than that of control (p < 0.05). The most common and typical morphological changes of apoptosis, including shrink, pyknosis and karyorrhexis of T24 cells nuclei and DNA fragmentation were seen from Hoechst 33258 staining and DNA agarose gel electrophoresis. Taken together, inhibition of UPK1A can suppress proliferation and enhance apoptosis of BTCC T24 cells, suggesting it a potential target to treat this disease.
Collapse
Affiliation(s)
- Haiyan Zhu
- Department of Anesthesiology, The Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China
| | | | | | | | | | | | | |
Collapse
|
34
|
Utility of uroplakin II expression as a marker of urothelial carcinoma. Hum Pathol 2015; 46:58-64. [DOI: 10.1016/j.humpath.2014.09.007] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Revised: 09/09/2014] [Accepted: 09/12/2014] [Indexed: 11/22/2022]
|
35
|
Li W, Liang Y, Deavers MT, Kamat AM, Matin SF, Dinney CP, Czerniak B, Guo CC. Uroplakin II is a more sensitive immunohistochemical marker than uroplakin III in urothelial carcinoma and its variants. Am J Clin Pathol 2014; 142:864-71. [PMID: 25389341 DOI: 10.1309/ajcp1j0jpjbpsuxf] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
OBJECTIVES Uroplakin (UP) II and UPIII are highly specific immunohistochemical markers for urothelial differentiation. Here we studied the sensitivity of UPII and UPIII in conventional and variant urothelial carcinomas (UCs). METHODS Immunohistochemical staining for UPII and UPIII was performed on tissue microarray slides, including 105 conventional bladder UCs (BUCs), 90 upper urinary tract UCs (UUTUCs), and 47 micropapillary, 16 plasmacytoid, 22 small cell carcinoma, and 41 sarcomatoid UC variants. RESULTS UPII expression was significantly higher than UPIII expression in conventional BUC (44% vs 17%, P < .001) and UUTUC (67% vs 46%, P = .045). UPIII expression was significantly higher in UUTUC than in BUC (P < .001). In UC variants, UPII expression was significantly higher than UPIII expression in micropapillary (91% vs 25%, P < .001), plasmacytoid (63% vs 6%, P < .001), and sarcomatoid (29% vs 5%, P = .032) variants. Only rare cases of the small cell carcinoma variant had focal UPII and UPIII expression. Compared with conventional UC, the sarcomatoid variant had significantly lower UPII expression, whereas the micropapillary variant had significantly higher UPII expression (P < .001). CONCLUSIONS UPII demonstrates a significantly higher sensitivity than UPIII in conventional and variant UCs. Thus, UPII is a more valuable marker than UPIII in immunohistochemical analyses for confirming the urothelial origin of carcinomas.
Collapse
Affiliation(s)
- Wenping Li
- Department of Pathology, University of Texas MD Anderson Cancer Center, Houston
| | - Yu Liang
- Department of Pathology, University of Texas MD Anderson Cancer Center, Houston
| | - Michael T. Deavers
- Department of Pathology, University of Texas MD Anderson Cancer Center, Houston
| | - Ashish M. Kamat
- Department of Urology, University of Texas MD Anderson Cancer Center, Houston
| | - Surena F. Matin
- Department of Urology, University of Texas MD Anderson Cancer Center, Houston
| | - Colin P. Dinney
- Department of Urology, University of Texas MD Anderson Cancer Center, Houston
| | - Bogdan Czerniak
- Department of Pathology, University of Texas MD Anderson Cancer Center, Houston
| | - Charles C. Guo
- Department of Pathology, University of Texas MD Anderson Cancer Center, Houston
| |
Collapse
|
36
|
Kątnik-Prastowska I, Lis J, Matejuk A. Glycosylation of uroplakins. Implications for bladder physiopathology. Glycoconj J 2014; 31:623-36. [PMID: 25394961 PMCID: PMC4245495 DOI: 10.1007/s10719-014-9564-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2014] [Revised: 10/10/2014] [Accepted: 10/13/2014] [Indexed: 11/28/2022]
Abstract
Urothelium, a specialized epithelium, covers the urinary tract and act not only as a barrier separating its light from the surrounding tissues, but fulfills an important role in maintaining the homeostasis of the urothelial tract and well-being of the whole organism. Proper function of urothelium is dependent on the precise assemble of highly specialized glycoproteins called uroplakins, the end products and differentiation markers of the urothelial cells. Glycosylation changes in uroplakins correlate with and might reflect progressive stages of pathological conditions of the urothelium such as cancer, urinary tract infections, interstitial cystitis and others. In this review we focus on sugar components of uroplakins, their emerging role in urothelial biology and disease implications. The advances in our understanding of uroplakins changes in glycan moieties composition, structure, assembly and expression of their glycovariants could potentially lead to the development of targeted therapies and discoveries of novel urine and plasma markers for the benefit of patients with urinary tract diseases.
Collapse
Affiliation(s)
- Iwona Kątnik-Prastowska
- Department of Chemistry and Immunochemistry, Medical University of Wroclaw, Bujwida 44a, 50-345, Wroclaw, Poland
| | | | | |
Collapse
|
37
|
Hoang LL, Tacha DE, Qi W, Yu C, Bremer RE, Chu J, Haas TS, Cheng L. A newly developed uroplakin II antibody with increased sensitivity in urothelial carcinoma of the bladder. Arch Pathol Lab Med 2014; 138:943-9. [PMID: 24978921 DOI: 10.5858/arpa.2013-0221-oa] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
CONTEXT Uroplakin II is a 15-kDa protein component of the urothelial plaques that enhance the permeability barrier and strength of the urothelium. Studies have shown uroplakin II messenger RNA to be expressed in bladder cancer tissues and peripheral blood of patients with urothelial carcinoma. Little is known about the protein expression of uroplakin II in urothelial carcinoma, possibly because of the absence of a commercially available uroplakin II antibody. Pathologists have used the uroplakin III antibody (AU1) to identify tumors of urothelial origin; however, the use of AU1 is limited because of its poor sensitivity. OBJECTIVES To evaluate a newly developed mouse monoclonal uroplakin II antibody (BC21) in urothelial carcinoma and to compare it with previously developed mouse monoclonal uroplakin III (BC17 and AU1). DESIGN Uroplakin II and III antibodies were optimized for staining using a horseradish peroxidase-polymer detection system and were visualized with 3,3'-diaminobenzidine. RESULTS BC21, BC17, and AU1 demonstrated sensitivities in urothelial carcinoma of the bladder of 79% (44 of 56), 55% (31 of 56) (P = .002), and 34% (19 of 56) (P < .001), respectively. Subsequently, the increased staining sensitivity and intensity of BC21, compared with BC17, was validated in a larger study (134 of 174; 77% and 94 of 174; 54%, respectively) (P < .001). BC21 was found to be highly specific when evaluated in various normal and neoplastic tissues, including prostatic and renal carcinomas. CONCLUSIONS The mouse monoclonal uroplakin II antibody (BC21) demonstrated superior sensitivity and specificity in urothelial carcinoma, compared with uroplakin III (BC17 and AU1), suggesting its advantages in the differential diagnosis of urothelial carcinoma and in the detection of tumors of unknown origin.
Collapse
Affiliation(s)
- Laura L Hoang
- From the Department of Research and Development, Biocare Medical, LLC, Concord, California (Drs Hoang, Tacha, Qi, Yu, and Bremer and Mr Chu); the Department of Pathology, Mercy Hospital and Trauma Center, Mercy Health System, Janesville, Wisconsin (Dr Haas); and the Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis (Dr Cheng)
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Animal model of naturally occurring bladder cancer: characterization of four new canine transitional cell carcinoma cell lines. BMC Cancer 2014; 14:465. [PMID: 24964787 PMCID: PMC4082678 DOI: 10.1186/1471-2407-14-465] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Accepted: 06/11/2014] [Indexed: 12/22/2022] Open
Abstract
Background Development and further characterization of animal models for human cancers is important for the improvement of cancer detection and therapy. Canine bladder cancer closely resembles human bladder cancer in many aspects. In this study, we isolated and characterized four primary transitional cell carcinoma (K9TCC) cell lines to be used for future in vitro validation of novel therapeutic agents for bladder cancer. Methods Four K9TCC cell lines were established from naturally-occurring canine bladder cancers obtained from four dogs. Cell proliferation rates of K9TCC cells in vitro were characterized by doubling time. The expression profile of cell-cycle proteins, cytokeratin, E-cadherin, COX-2, PDGFR, VEGFR, and EGFR were evaluated by immunocytochemistry (ICC) and Western blotting (WB) analysis and compared with established human bladder TCC cell lines, T24 and UMUC-3. All tested K9TCC cell lines were assessed for tumorigenic behavior using athymic mice in vivo. Results Four established K9TCC cell lines: K9TCC#1Lillie, K9TCC#2Dakota, K9TCC#4Molly, and K9TCC#5Lilly were confirmed to have an epithelial-cell origin by morphology analysis, cytokeratin, and E-cadherin expressions. The tested K9TCC cells expressed UPIa (a specific marker of the urothelial cells), COX-2, PDGFR, and EGFR; however they lacked the expression of VEGFR. All tested K9TCC cell lines confirmed a tumorigenic behavior in athymic mice with 100% tumor incidence. Conclusions The established K9TCC cell lines (K9TCC#1Lillie, K9TCC#2Dakota, K9TCC#4Molly, and K9TCC#5Lilly) can be further utilized to assist in development of new target-specific imaging and therapeutic agents for canine and human bladder cancer.
Collapse
|
39
|
Baker SC, Shabir S, Southgate J. Biomimetic urothelial tissue models for the in vitro evaluation of barrier physiology and bladder drug efficacy. Mol Pharm 2014; 11:1964-70. [PMID: 24697150 DOI: 10.1021/mp500065m] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The bladder is an important tissue in which to evaluate xenobiotic drug interactions and toxicities due to the concentration of parent drug and hepatic/enteric-derived metabolites in the urine as a result of renal excretion. Breaching of the barrier provided by the bladder epithelial lining (the urothelium) can expose the underlying tissues to urine and cause harmful effects (e.g., cystitis or cancer). Human urothelium is most commonly represented in vitro as immortalized or established cancer-derived cell lines, but the compromised ability of such cells to undergo differentiation and barrier formation means that nonimmortalized, normal human urothelial (NHU) cells provide a more relevant cell culture system. The impressive capacity for urothelial self-renewal in vivo can be harnessed in vitro to generate experimentally-useful quantities of NHU cells, which can subsequently be differentiated to form a functional or "biomimetic" urothelium. When seeded onto permeable membranes, these barrier-forming human urothelial tissue models enable the modeling of serum and luminal (intravesical) exposure to drugs and metabolites, thus supporting efficacy/toxicity assessments. Biomimetic human urothelial constructs provide a potential step along the preclinical trail and may support the extrapolation from rodent in vivo data to determine human relevance. Early evidence is beginning to demonstrate that human urothelium in vitro can provide information that supersedes conventional rodent studies, but further validation is needed to support widespread adoption.
Collapse
Affiliation(s)
- Simon C Baker
- Jack Birch Unit of Molecular Carcinogenesis, Department of Biology, University of York , Heslington, York YO10 5DD, U.K
| | | | | |
Collapse
|
40
|
Bhusari S, Malarkey DE, Hong HH, Wang Y, Masinde T, Nolan M, Hooth MJ, Lea IA, Vasconcelos D, Sills RC, Hoenerhoff MJ. Mutation Spectra of Kras and Tp53 in Urethral and Lung Neoplasms in B6C3F1 Mice Treated with 3,3′,4,4′-Tetrachloroazobenzene. Toxicol Pathol 2013; 42:555-64. [DOI: 10.1177/0192623313491169] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
3,3′,4,4′-tetrachloroazobenzene (TCAB) is a contaminant formed during manufacture of various herbicide compounds. A recent National Toxicology Program study showed B6C3F1 mice exposed to TCAB developed a treatment-related increase in lung carcinomas in the high-dose group, and urethral carcinomas, an extremely rare lesion in rodents, in all dose groups. As the potential for environmental exposure to TCAB is widespread, and the mechanisms of urethral carcinogenesis are unknown, TCAB-induced urethral and pulmonary tumors were evaluated for alterations in critical human cancer genes, Kras and Tp53. Uroplakin III, CK20, and CK7 immunohistochemistry was performed to confirm the urothelial origin of urethral tumors. TCAB-induced urethral carcinomas harbored transforming point mutations in K-ras (38%) and Tp53 (63%), and 71% displayed nuclear TP53 expression, consistent with formation of mutant protein. Transition mutations accounted for 88% of Tp53 mutations in urethral carcinomas, suggesting that TCAB or its metabolites target guanine or cytosine bases and that these mutations are involved in urethral carcinogenesis. Pulmonary carcinomas in TCAB-exposed animals harbored similar rates of Tp53 (55%) and Kras (36%) mutations as urethral carcinomas, suggesting that TCAB may induce mutations at multiple sites by a common mechanism. In conclusion, TCAB is carcinogenic at multiple sites in male and female B6C3F1 mice through mechanisms involving Tp53 and Kras mutation.
Collapse
Affiliation(s)
- Sachin Bhusari
- Cellular and Molecular Pathology Branch, National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, USA
| | - David E. Malarkey
- Cellular and Molecular Pathology Branch, National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, USA
| | - Hue-Hua Hong
- Cellular and Molecular Pathology Branch, National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, USA
| | - Yu Wang
- Cellular and Molecular Pathology Branch, National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, USA
| | - Tiwanda Masinde
- Cellular and Molecular Pathology Branch, National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, USA
| | - Michael Nolan
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, Colorado, USA
| | - Michelle J. Hooth
- Toxicology Branch, National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, USA
| | - Isabel A. Lea
- Integrated Laboratory Systems, Inc., Research Triangle Park, North Carolina, USA
| | - Daphne Vasconcelos
- Battelle Memorial Institute, Toxicology Battelle Columbus, Columbus, Ohio, USA
| | - Robert C. Sills
- Cellular and Molecular Pathology Branch, National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, USA
| | - Mark J. Hoenerhoff
- Cellular and Molecular Pathology Branch, National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, USA
| |
Collapse
|
41
|
Kogure M, Takawa M, Cho HS, Toyokawa G, Hayashi K, Tsunoda T, Kobayashi T, Daigo Y, Sugiyama M, Atomi Y, Nakamura Y, Hamamoto R. Deregulation of the histone demethylase JMJD2A is involved in human carcinogenesis through regulation of the G(1)/S transition. Cancer Lett 2013; 336:76-84. [PMID: 23603248 DOI: 10.1016/j.canlet.2013.04.009] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2013] [Revised: 04/08/2013] [Accepted: 04/10/2013] [Indexed: 01/11/2023]
Abstract
Although a number of JmjC-containing histone demethylases have been identified and biochemically characterized, pathological roles of their dysfunction in human disease such as cancer have not been well elucidated. Here, we report the Jumonji domain containing 2A (JMJD2A) is integral to proliferation of cancer cells. Quantitative real-time PCR analysis revealed higher expression of JMJD2A in clinical bladder cancer tissues than in corresponding non-neoplastic tissues (P<0.0001). Immunohistochemical analysis also showed positive staining for JMJD2A in 288 out of 403 lung cancer cases, whereas no staining was observed in lung normal tissues. Suppression of JMJD2A expression in lung and bladder cancer cells overexpressing this gene, using specific siRNAs, inhibited incorporation of BrdU and resulted in significant suppression of cell growth. Furthermore, JMJD2A appears to directly transactivate the expression of some tumor associated proteins including ADAM12 through the regulation of histone H3K9 methylation. As expression levels of JMJD2A are low in normal tissues, it may be feasible to develop specific inhibitors targeting the enzyme as anti-tumor agents which should have a minimal risk of adverse reaction.
Collapse
Affiliation(s)
- Masaharu Kogure
- Laboratory of Genome Technology, Human Genome Center, Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Tokyo 108-8639, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Kang D, Cho HS, Toyokawa G, Kogure M, Yamane Y, Iwai Y, Hayami S, Tsunoda T, Field HI, Matsuda K, Neal DE, Ponder BAJ, Maehara Y, Nakamura Y, Hamamoto R. The histone methyltransferase Wolf-Hirschhorn syndrome candidate 1-like 1 (WHSC1L1) is involved in human carcinogenesis. Genes Chromosomes Cancer 2013; 52:126-39. [PMID: 23011637 DOI: 10.1002/gcc.22012] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2012] [Accepted: 08/20/2012] [Indexed: 01/11/2023] Open
Abstract
Histone lysine methylation plays a fundamental role in chromatin organization. Although a set of histone methyltransferases have been identified and biochemically characterized, the pathological roles of their dysfunction in human cancers are still not well understood. In this study, we demonstrate important roles of WHSC1L1 in human carcinogenesis. Expression levels of WHSC1L1 transcript were significantly elevated in various human cancers including bladder carcinoma. Immunohistochemical analysis of bladder, lung, and liver cancers confirmed overexpression of WHSC1L1. WHSC1L1-specific small interfering RNAs significantly knocked down its expression and resulted in suppression of proliferation of bladder and lung cancer cell lines. WHSC1L1 knockdown induced cell cycle arrest at the G(2)/M phase followed by multinucleation of cancer cells. Expression profile analysis using Affymetrix GeneChip(®) showed that WHSC1L1 affected the expression of a number of genes including CCNG1 and NEK7, which are known to play crucial roles in the cell cycle progression at mitosis. As WHSC1L1 expression is significantly low in various normal tissues including vital organs, WHSC1L1 could be a good candidate molecule for development of novel treatment for various types of cancer.
Collapse
Affiliation(s)
- Daechun Kang
- Laboratory of Molecular Medicine, Human Genome Center, Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo 108-8639, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Fleming JM, Shabir S, Varley CL, Kirkwood LA, White A, Holder J, Trejdosiewicz LK, Southgate J. Differentiation-associated reprogramming of the transforming growth factor β receptor pathway establishes the circuitry for epithelial autocrine/paracrine repair. PLoS One 2012; 7:e51404. [PMID: 23284691 PMCID: PMC3526617 DOI: 10.1371/journal.pone.0051404] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2012] [Accepted: 11/02/2012] [Indexed: 01/07/2023] Open
Abstract
Transforming growth factor (TGF) β has diverse and sometimes paradoxical effects on cell proliferation and differentiation, presumably reflecting a fundamental but incompletely-understood role in regulating tissue homeostasis. It is generally considered that downstream activity is modulated at the ligand:receptor axis, but microarray analysis of proliferative versus differentiating normal human bladder epithelial cell cultures identified unexpected transcriptional changes in key components of the canonical TGFβ R/activin signalling pathway associated with cytodifferentiation. Changes included upregulation of the transcriptional modulator SMAD3 and downregulation of inhibitory modulators SMURF2 and SMAD7. Functional analysis of the signalling pathway revealed that non-differentiated normal human urothelial cells responded in paracrine mode to TGFβ by growth inhibition, and that exogenous TGFβ inhibited rather than promoted differentiation. By contrast, in differentiated cell cultures, SMAD3 was activated upon scratch-wounding and was involved in promoting tissue repair. Exogenous TGFβ enhanced the repair and resulted in hyperplastic scarring, indicating a feedback loop implicit in an autocrine pathway. Thus, the machinery for autocrine activation of the SMAD3-mediated TGFβR pathway is established during urothelial differentiation, but signalling occurs only in response to a trigger, such as wounding. Our study demonstrates that the circuitry of the TGFβR pathway is defined transcriptionally within a tissue-specific differentiation programme. The findings provide evidence for re-evaluating the role of TGFβR signalling in epithelial homeostasis as an autocrine-regulated pathway that suppresses differentiation and promotes tissue repair. This provides a new paradigm to help unravel the apparently diverse and paradoxical effect of TGFβ signalling on cell proliferation and differentiation.
Collapse
Affiliation(s)
- Jonathan M Fleming
- Jack Birch Unit for Molecular Carcinogenesis, Department of Biology, University of York, York, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Ray D, Nelson TA, Fu CL, Patel S, Gong DN, Odegaard JI, Hsieh MH. Transcriptional profiling of the bladder in urogenital schistosomiasis reveals pathways of inflammatory fibrosis and urothelial compromise. PLoS Negl Trop Dis 2012; 6:e1912. [PMID: 23209855 PMCID: PMC3510078 DOI: 10.1371/journal.pntd.0001912] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2012] [Accepted: 10/03/2012] [Indexed: 11/19/2022] Open
Abstract
Urogenital schistosomiasis, chronic infection by Schistosoma haematobium, affects 112 million people worldwide. S. haematobium worm oviposition in the bladder wall leads to granulomatous inflammation, fibrosis, and egg expulsion into the urine. Despite the global impact of urogenital schistosomiasis, basic understanding of the associated pathologic mechanisms has been incomplete due to the lack of suitable animal models. We leveraged our recently developed mouse model of urogenital schistosomiasis to perform the first-ever profiling of the early molecular events that occur in the bladder in response to the introduction of S. haematobium eggs. Microarray analysis of bladders revealed rapid, differential transcription of large numbers of genes, peaking three weeks post-egg administration. Many differentially transcribed genes were related to the canonical Type 2 anti-schistosomal immune response, as reflected by the development of egg-based bladder granulomata. Numerous collagen and metalloproteinase genes were differentially transcribed over time, revealing complex remodeling and fibrosis of the bladder that was confirmed by Masson's Trichrome staining. Multiple genes implicated in carcinogenesis pathways, including vascular endothelial growth factor-, oncogene-, and mammary tumor-related genes, were differentially transcribed in egg-injected bladders. Surprisingly, junctional adhesion molecule, claudin and uroplakin genes, key components for maintaining the urothelial barrier, were globally suppressed after bladder exposure to eggs. This occurred in the setting of urothelial hyperplasia and egg shedding in urine. Thus, S. haematobium egg expulsion is associated with intricate modulation of the urothelial barrier on the cellular and molecular level. Taken together, our findings have important implications for understanding host-parasite interactions and carcinogenesis in urogenital schistosomiasis, and may provide clues for novel therapeutic strategies.
Collapse
Affiliation(s)
- Debalina Ray
- Department of Urology, Stanford University School of Medicine, Stanford, California, United States of America
- Department of Pathology, University of California San Francisco, San Francisco, California, United States of America
| | - Tyrrell A. Nelson
- Department of Urology, Stanford University School of Medicine, Stanford, California, United States of America
- Department of Pathology, University of California San Francisco, San Francisco, California, United States of America
| | - Chi-Ling Fu
- Department of Urology, Stanford University School of Medicine, Stanford, California, United States of America
| | - Shailja Patel
- Department of Urology, Stanford University School of Medicine, Stanford, California, United States of America
| | - Diana N. Gong
- Department of Urology, Stanford University School of Medicine, Stanford, California, United States of America
| | - Justin I. Odegaard
- Department of Pathology, Stanford University School of Medicine, Stanford, California, United States of America
| | - Michael H. Hsieh
- Department of Urology, Stanford University School of Medicine, Stanford, California, United States of America
| |
Collapse
|
45
|
Cho HS, Toyokawa G, Daigo Y, Hayami S, Masuda K, Ikawa N, Yamane Y, Maejima K, Tsunoda T, Field HI, Kelly JD, Neal DE, Ponder BAJ, Maehara Y, Nakamura Y, Hamamoto R. The JmjC domain-containing histone demethylase KDM3A is a positive regulator of the G1/S transition in cancer cells via transcriptional regulation of the HOXA1 gene. Int J Cancer 2012; 131:E179-89. [PMID: 22020899 DOI: 10.1002/ijc.26501] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2011] [Accepted: 09/28/2011] [Indexed: 11/08/2022]
Abstract
A number of histone demethylases have been identified and biochemically characterized, yet their biological functions largely remain uncharacterized, particularly in the context of human diseases such as cancer. In this study, we describe important roles for the histone demethylase KDM3A, also known as JMJD1A, in human carcinogenesis. Expression levels of KDM3A were significantly elevated in human bladder carcinomas compared with nonneoplastic bladder tissues (p < 0.0001), when assessed by real-time PCR. We confirmed that some other cancers including lung cancer also overexpressed KDM3A, using cDNA microarray analysis. Treatment of cancer cell lines with small interfering RNA targeting KDM3A significantly knocked down its expression and resulted in the suppression of proliferation. Importantly, we found that KDM3A activates transcription of the HOXA1 gene through demethylating histone H3 at lysine 9 di-methylation by binding to its promoter region. Indeed, expression levels of KDM3A and HOXA1 in several types of cancer cell lines and bladder cancer samples were statistically correlated. We observed the down-regulation of HOXA1 as well as CCND1 after treatment with KDM3A siRNA, indicating G(1) arrest of cancer cells. Together, our results suggest that elevated expression of KDM3A plays a critical role in the growth of cancer cells, and further studies may reveal a cancer therapeutic potential in KDM3A inhibition.
Collapse
Affiliation(s)
- Hyun-Soo Cho
- Laboratory of Molecular Medicine, Human Genome Center, Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Takawa M, Cho HS, Hayami S, Toyokawa G, Kogure M, Yamane Y, Iwai Y, Maejima K, Ueda K, Masuda A, Dohmae N, Field HI, Tsunoda T, Kobayashi T, Akasu T, Sugiyama M, Ohnuma SI, Atomi Y, Ponder BAJ, Nakamura Y, Hamamoto R. Histone lysine methyltransferase SETD8 promotes carcinogenesis by deregulating PCNA expression. Cancer Res 2012; 72:3217-27. [PMID: 22556262 DOI: 10.1158/0008-5472.can-11-3701] [Citation(s) in RCA: 156] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Although the physiologic significance of lysine methylation of histones is well known, whether lysine methylation plays a role in the regulation of nonhistone proteins has not yet been examined. The histone lysine methyltransferase SETD8 is overexpressed in various types of cancer and seems to play a crucial role in S-phase progression. Here, we show that SETD8 regulates the function of proliferating cell nuclear antigen (PCNA) protein through lysine methylation. We found that SETD8 methylated PCNA on lysine 248, and either depletion of SETD8 or substitution of lysine 248 destabilized PCNA expression. Mechanistically, lysine methylation significantly enhanced the interaction between PCNA and the flap endonuclease FEN1. Loss of PCNA methylation retarded the maturation of Okazaki fragments, slowed DNA replication, and induced DNA damage, and cells expressing a methylation-inactive PCNA mutant were more susceptible to DNA damage. An increase of methylated PCNA was found in cancer cells, and the expression levels of SETD8 and PCNA were correlated in cancer tissue samples. Together, our findings reveal a function for lysine methylation on a nonhistone protein and suggest that aberrant lysine methylation of PCNA may play a role in human carcinogenesis.
Collapse
Affiliation(s)
- Masashi Takawa
- Laboratory of Molecular Medicine, Human Genome Center, Institute of Medical Science, The University of Tokyo, and National Cancer Center Hospital, Chuo-ku, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Ho JR, Chapeaublanc E, Kirkwood L, Nicolle R, Benhamou S, Lebret T, Allory Y, Southgate J, Radvanyi F, Goud B. Deregulation of Rab and Rab effector genes in bladder cancer. PLoS One 2012; 7:e39469. [PMID: 22724020 PMCID: PMC3378553 DOI: 10.1371/journal.pone.0039469] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2012] [Accepted: 05/21/2012] [Indexed: 01/19/2023] Open
Abstract
Growing evidence indicates that Rab GTPases, key regulators of intracellular transport in eukaryotic cells, play an important role in cancer. We analysed the deregulation at the transcriptional level of the genes encoding Rab proteins and Rab-interacting proteins in bladder cancer pathogenesis, distinguishing between the two main progression pathways so far identified in bladder cancer: the Ta pathway characterized by a high frequency of FGFR3 mutation and the carcinoma in situ pathway where no or infrequent FGFR3 mutations have been identified. A systematic literature search identified 61 genes encoding Rab proteins and 223 genes encoding Rab-interacting proteins. Transcriptomic data were obtained for normal urothelium samples and for two independent bladder cancer data sets corresponding to 152 and 75 tumors. Gene deregulation was analysed with the SAM (significant analysis of microarray) test or the binomial test. Overall, 30 genes were down-regulated, and 13 were up-regulated in the tumor samples. Five of these deregulated genes (LEPRE1, MICAL2, RAB23, STXBP1, SYTL1) were specifically deregulated in FGFR3-non-mutated muscle-invasive tumors. No gene encoding a Rab or Rab-interacting protein was found to be specifically deregulated in FGFR3-mutated tumors. Cluster analysis showed that the RAB27 gene cluster (comprising the genes encoding RAB27 and its interacting partners) was deregulated and that this deregulation was associated with both pathways of bladder cancer pathogenesis. Finally, we found that the expression of KIF20A and ZWINT was associated with that of proliferation markers and that the expression of MLPH, MYO5B, RAB11A, RAB11FIP1, RAB20 and SYTL2 was associated with that of urothelial cell differentiation markers. This systematic analysis of Rab and Rab effector gene deregulation in bladder cancer, taking relevant tumor subgroups into account, provides insight into the possible roles of Rab proteins and their effectors in bladder cancer pathogenesis. This approach is applicable to other group of genes and types of cancer.
Collapse
Affiliation(s)
- Joel R. Ho
- Institut Curie, Centre de Recherche, Paris, France
- CNRS, UMR 144, Paris, France
| | - Elodie Chapeaublanc
- Institut Curie, Centre de Recherche, Paris, France
- CNRS, UMR 144, Paris, France
| | - Lisa Kirkwood
- Jack Birch Unit of Molecular Carcinogenesis, Department of Biology, University of York, York, United Kingdom
| | - Remy Nicolle
- Institut Curie, Centre de Recherche, Paris, France
- CNRS, UMR 144, Paris, France
- Université d'Evry, iSSB, Evry, France
| | - Simone Benhamou
- CNRS, UMR 8200, Institut de Cancérologie Gustave Roussy, Villejuif, France
- INSERM, U946, Paris, France
| | | | - Yves Allory
- AP-HP, Groupe Hospitalier Henri Mondor, Plateforme de Ressources Biologiques, Département de Pathologie, Créteil, France
- INSERM, Unité 955, Créteil, France
| | - Jennifer Southgate
- Jack Birch Unit of Molecular Carcinogenesis, Department of Biology, University of York, York, United Kingdom
| | - François Radvanyi
- Institut Curie, Centre de Recherche, Paris, France
- CNRS, UMR 144, Paris, France
| | - Bruno Goud
- Institut Curie, Centre de Recherche, Paris, France
- CNRS, UMR 144, Paris, France
- * E-mail:
| |
Collapse
|
48
|
Cho HS, Hayami S, Toyokawa G, Maejima K, Yamane Y, Suzuki T, Dohmae N, Kogure M, Kang D, Neal DE, Ponder BAJ, Yamaue H, Nakamura Y, Hamamoto R. RB1 methylation by SMYD2 enhances cell cycle progression through an increase of RB1 phosphorylation. Neoplasia 2012; 14:476-86. [PMID: 22787429 PMCID: PMC3394190 DOI: 10.1593/neo.12656] [Citation(s) in RCA: 161] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2012] [Revised: 05/05/2012] [Accepted: 05/07/2012] [Indexed: 12/13/2022]
Abstract
It is well known that RB functions are regulated by posttranslational modifications such as phosphorylation and acetylation, but the significance of lysine methylation on RB has not been fully elucidated. Our expression analysis of SMYD2 by quantitative real-time polymerase chain reaction showed that expression levels of SMYD2 are significantly elevated in human bladder carcinomas compared with nonneoplastic bladder tissues (P < .0001), and its expression levels in tumor tissues were much higher than those of any other normal tissues. SMYD2 knockdown resulted in the suppression of cancer cell growth, and cell cycle analysis indicated that SMYD2 might play a crucial role in the G(1)/S transition. According to an in vitro methyltransferase assay, we found that SMYD2 methylates RB1 protein, and liquid chromatography-tandem mass spectrometry analysis revealed lysine 810 of RB1 to be methylated by SMYD2. Importantly, this methylation enhanced Ser 807/811 phosphorylation of RB1 both in vitro and in vivo. Furthermore, we demonstrated that methylated RB1 accelerates E2F transcriptional activity and promotes cell cycle progression. SMYD2 is an important oncoprotein in various types of cancer, and SMYD2-dependent RB1 methylation at lysine 810 promotes cell cycle progression of cancer cells. Further study may explore SMYD2-dependent RB1 methylation as a potential therapeutic target in human cancer.
Collapse
Affiliation(s)
- Hyun-Soo Cho
- Laboratory of Molecular Medicine, Human Genome Center, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Shinya Hayami
- Laboratory of Molecular Medicine, Human Genome Center, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- Second Department of Surgery, School of Medicine, Wakayama Medical University, Wakayama, Japan
| | - Gouji Toyokawa
- Laboratory of Molecular Medicine, Human Genome Center, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Kazuhiro Maejima
- Laboratory of Molecular Medicine, Human Genome Center, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Yuka Yamane
- Laboratory of Molecular Medicine, Human Genome Center, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | | | - Naoshi Dohmae
- Biomolecular Characterization Team, RIKEN, Saitama, Japan
| | - Masaharu Kogure
- Laboratory of Molecular Medicine, Human Genome Center, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Daechun Kang
- Laboratory of Molecular Medicine, Human Genome Center, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - David E Neal
- Department of Oncology, Cancer Research UK Cambridge Research Institute, University of Cambridge, Cambridge, UK
| | - Bruce AJ Ponder
- Department of Oncology, Cancer Research UK Cambridge Research Institute, University of Cambridge, Cambridge, UK
| | - Hiroki Yamaue
- Second Department of Surgery, School of Medicine, Wakayama Medical University, Wakayama, Japan
| | - Yusuke Nakamura
- Laboratory of Molecular Medicine, Human Genome Center, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Ryuji Hamamoto
- Laboratory of Molecular Medicine, Human Genome Center, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- Department of Oncology, Cancer Research UK Cambridge Research Institute, University of Cambridge, Cambridge, UK
| |
Collapse
|
49
|
DeGraff DJ, Clark PE, Cates JM, Yamashita H, Robinson VL, Yu X, Smolkin ME, Chang SS, Cookson MS, Herrick MK, Shariat SF, Steinberg GD, Frierson HF, Wu XR, Theodorescu D, Matusik RJ. Loss of the urothelial differentiation marker FOXA1 is associated with high grade, late stage bladder cancer and increased tumor proliferation. PLoS One 2012; 7:e36669. [PMID: 22590586 PMCID: PMC3349679 DOI: 10.1371/journal.pone.0036669] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2011] [Accepted: 04/09/2012] [Indexed: 12/31/2022] Open
Abstract
Approximately 50% of patients with muscle-invasive bladder cancer (MIBC) develop metastatic disease, which is almost invariably lethal. However, our understanding of pathways that drive aggressive behavior of MIBC is incomplete. Members of the FOXA subfamily of transcription factors are implicated in normal urogenital development and urologic malignancies. FOXA proteins are implicated in normal urothelial differentiation, but their role in bladder cancer is unknown. We examined FOXA expression in commonly used in vitro models of bladder cancer and in human bladder cancer specimens, and used a novel in vivo tissue recombination system to determine the functional significance of FOXA1 expression in bladder cancer. Logistic regression analysis showed decreased FOXA1 expression is associated with increasing tumor stage (p<0.001), and loss of FOXA1 is associated with high histologic grade (p<0.001). Also, we found that bladder urothelium that has undergone keratinizing squamous metaplasia, a precursor to the development of squamous cell carcinoma (SCC) exhibited loss of FOXA1 expression. Furthermore, 81% of cases of SCC of the bladder were negative for FOXA1 staining compared to only 40% of urothelial cell carcinomas. In addition, we showed that a subpopulation of FOXA1 negative urothelial tumor cells are highly proliferative. Knockdown of FOXA1 in RT4 bladder cancer cells resulted in increased expression of UPK1B, UPK2, UPK3A, and UPK3B, decreased E-cadherin expression and significantly increased cell proliferation, while overexpression of FOXA1 in T24 cells increased E-cadherin expression and significantly decreased cell growth and invasion. In vivo recombination of bladder cancer cells engineered to exhibit reduced FOXA1 expression with embryonic rat bladder mesenchyme and subsequent renal capsule engraftment resulted in enhanced tumor proliferation. These findings provide the first evidence linking loss of FOXA1 expression with histological subtypes of MIBC and urothelial cell proliferation, and suggest an important role for FOXA1 in the malignant phenotype of MIBC.
Collapse
Affiliation(s)
- David J DeGraff
- Department of Urologic Surgery, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Rubenwolf PC, Eder F, Ebert AK, Hofstaedter F, Roesch WH. Expression and potential clinical significance of urothelial cytodifferentiation markers in the exstrophic bladder. J Urol 2012; 187:1806-11. [PMID: 22425052 DOI: 10.1016/j.juro.2011.12.094] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2011] [Indexed: 11/27/2022]
Abstract
PURPOSE We characterize the urothelium from patients with classic bladder exstrophy-epispadias complex for the expression of proteins associated with urothelial differentiation, and discuss a potential impact of urothelial phenotype on the structural and functional properties of the bladder template following bladder closure. MATERIALS AND METHODS From 2005 to 2010 bladder biopsies from 32 infants with bladder exstrophy-epispadias complex obtained at primary bladder closure were collected. After histological assessment immunochemistry was used to investigate the expression of uroplakin IIIa, cytokeratin differentiation restricted antigens CK13 and CK20, and tight junction protein claudin 4. RESULTS Overall tissue morphology showed gross alterations with inflammatory, proliferative and metaplastic changes in most specimens. Sections of intact epithelium were present in 78% of biopsies. With respect to urothelial phenotype, CK13 was expressed in all specimens, whereas UPIIIa and CK20 were absent in 76% of the tissues examined. Of the biopsies 52% revealed an irregular expression pattern of tight junction protein Cl-4. CONCLUSIONS This is the first study to our knowledge to characterize the urothelium from infants with bladder exstrophy-epispadias complex for the expression of urothelial differentiation associated antigens. Our findings suggest urothelial differentiation changes in a majority of exstrophic bladders, at least at primary bladder closure. Although the underlying etiology remains to be established, abnormal urothelial differentiation may result in a dysfunctional urothelial barrier with implications for the structural and functional properties of the bladder template. Despite the study limitations, our preliminary findings provide a platform for further investigation of the significance of the urothelium for the exstrophic bladder.
Collapse
Affiliation(s)
- Peter C Rubenwolf
- Department of Pediatric Urology, University Medical Center Regensburg, Regensburg, Germany.
| | | | | | | | | |
Collapse
|