1
|
Romańczyk M, Osmola M, Link A, Druet A, Hémont C, Martin J, Chapelle N, Matysiak-Budnik T. Non-Invasive Markers for the Detection of Gastric Precancerous Conditions. Cancers (Basel) 2024; 16:2254. [PMID: 38927959 PMCID: PMC11202181 DOI: 10.3390/cancers16122254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 06/11/2024] [Accepted: 06/12/2024] [Indexed: 06/28/2024] Open
Abstract
Gastric cancer (GC) is still one of the most prevalent cancers worldwide, with a high mortality rate, despite improvements in diagnostic and therapeutic strategies. To diminish the GC burden, a modification of the current diagnostic paradigm, and especially endoscopic diagnosis of symptomatic individuals, is necessary. In this review article, we present a broad review and the current knowledge status on serum biomarkers, including pepsinogens, gastrin, Gastropanel®, autoantibodies, and novel biomarkers, allowing us to estimate the risk of gastric precancerous conditions (GPC)-atrophic gastritis and gastric intestinal metaplasia. The aim of the article is to emphasize the role of non-invasive testing in GC prevention. This comprehensive review describes the pathophysiological background of investigated biomarkers, their status and performance based on available data, as well as their clinical applicability. We point out future perspectives of non-invasive testing and possible new biomarkers opportunities.
Collapse
Affiliation(s)
- Marcin Romańczyk
- Department of Gastroenterology, Academy of Silesia, 40-555 Katowice, Poland
- H-T. Medical Center, 43-100 Tychy, Poland
| | | | - Alexander Link
- Department of Gastroenterology, Hepatology and Infectious Diseases, Otto-von-Guericke University Magdeburg, Leipziger Str. 44, 39120 Magdeburg, Germany
| | - Amaury Druet
- IMAD, Hepato-Gastroenterology & Digestive Oncology, University Hospital of Nantes, F-44093 Nantes, France
| | - Caroline Hémont
- CHU de Nantes, Laboratoire d’Immunologie, Center for ImmunoMonitoring Nantes-Atlantique (CIMNA), F-44000 Nantes, France
| | - Jerome Martin
- CHU de Nantes, Laboratoire d’Immunologie, Center for ImmunoMonitoring Nantes-Atlantique (CIMNA), F-44000 Nantes, France
- University of Nantes, INSERM, Centre de Recherche Translationnel en Transplantation et Immunologie, UMR 1064, ITUN, F-44000 Nantes, France
| | - Nicolas Chapelle
- IMAD, Hepato-Gastroenterology & Digestive Oncology, University Hospital of Nantes, F-44093 Nantes, France
- University of Nantes, INSERM, Centre de Recherche Translationnel en Transplantation et Immunologie, UMR 1064, ITUN, F-44000 Nantes, France
| | - Tamara Matysiak-Budnik
- IMAD, Hepato-Gastroenterology & Digestive Oncology, University Hospital of Nantes, F-44093 Nantes, France
- University of Nantes, INSERM, Centre de Recherche Translationnel en Transplantation et Immunologie, UMR 1064, ITUN, F-44000 Nantes, France
| |
Collapse
|
2
|
Gauthier C, El Cheikh K, Basile I, Daurat M, Morère E, Garcia M, Maynadier M, Morère A, Gary-Bobo M. Cation-independent mannose 6-phosphate receptor: From roles and functions to targeted therapies. J Control Release 2024; 365:759-772. [PMID: 38086445 DOI: 10.1016/j.jconrel.2023.12.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 12/07/2023] [Accepted: 12/08/2023] [Indexed: 12/17/2023]
Abstract
The cation-independent mannose 6-phosphate receptor (CI-M6PR) is a ubiquitous transmembrane receptor whose main intracellular role is to direct enzymes carrying mannose 6-phosphate moieties to lysosomal compartments. Recently, the small membrane-bound portion of this receptor has appeared to be implicated in numerous pathophysiological processes. This review presents an overview of the main ligand partners and the roles of CI-M6PR in lysosomal storage diseases, neurology, immunology and cancer fields. Moreover, this membrane receptor has already been noted for its strong potential in therapeutic applications thanks to its cellular internalization activity and its ability to address pathogenic factors to lysosomes for degradation. A number of therapeutic delivery approaches using CI-M6PR, in particular with enzymes, antibodies or nanoparticles, are currently being proposed.
Collapse
Affiliation(s)
- Corentin Gauthier
- NanoMedSyn, Montpellier, France; IBMM, Univ Montpellier, CNRS, ENSCM, Montpellier, France
| | | | | | | | - Elodie Morère
- NanoMedSyn, Montpellier, France; IBMM, Univ Montpellier, CNRS, ENSCM, Montpellier, France
| | | | | | - Alain Morère
- IBMM, Univ Montpellier, CNRS, ENSCM, Montpellier, France
| | | |
Collapse
|
3
|
Sanikini H, Biessy C, Rinaldi S, Navionis AS, Gicquiau A, Keski-Rahkonen P, Kiss A, Weinstein SJ, Albanes D, Agudo A, Jenab M, Riboli E, Gunter MJ, Murphy G, Cross AJ. Circulating hormones and risk of gastric cancer by subsite in three cohort studies. Gastric Cancer 2023; 26:969-987. [PMID: 37455285 PMCID: PMC10640529 DOI: 10.1007/s10120-023-01414-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 06/20/2023] [Indexed: 07/18/2023]
Abstract
BACKGROUND Obesity has been positively associated with gastric cancer. Excess fat impacts hormones, which have been implicated in carcinogenesis. We investigated obesity-related hormones and cardia gastric cancer (CGC) and non-cardia gastric cancer (NCGC) risk. METHODS Nested case-control studies were conducted within the European Prospective Investigation into Cancer and Nutrition (EPIC) cohort (61 CGCs, and 172 NCGCs and matched controls) and the Alpha-Tocopherol, Beta-Carotene Cancer Prevention (ATBC) study (100 CGCs and 65 NCGCs and matched controls); serum hormones were measured. In UK-Biobank (n = 458,713), we included 137 CGCs and 92 NCGCs. Sex-specific analyses were conducted. For EPIC and ATBC, odds ratios (ORs), and for UK-Biobank hazard ratios (HRs), were estimated using conditional logistic regression and Cox regression, respectively. RESULTS Insulin-like growth-factor-1 was positively associated with CGC and NCGC in EPIC men (ORper 1-SD increase 1.94, 95% CI 1.03-3.63; ORper 1-SD increase 1.63, 95% CI 1.05-2.53, respectively), with similar findings for CGC in UK-Biobank women (HRper 1-SD increase 1.76, 95% CI 1.08-2.88). Leptin in EPIC men and C-peptide in EPIC women were positively associated with NCGC (ORT3 vs. T1 2.72, 95% CI 1.01-7.34 and ORper 1-SD increase 2.17, 95% CI 1.19-3.97, respectively). Sex hormone-binding globulin was positively associated with CGC in UK-Biobank men (HRper 1-SD increase 1.29, 95% CI 1.02-1.64). Conversely, ghrelin was inversely associated with NCGC among EPIC and ATBC men (ORper 1-SD increase 0.53, 95% CI 0.34-0.84; ORper 1-SD increase 0.22, 95% CI 0.10-0.50, respectively). In addition, dehydroepiandrosterone was inversely associated with CGC in EPIC and ATBC men combined. CONCLUSIONS Some obesity-related hormones influence CGC and NCGC risk.
Collapse
Affiliation(s)
- Harinakshi Sanikini
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, St. Mary's Campus, Norfolk Place, London, W2 1PG, UK.
| | - Carine Biessy
- Section of Nutrition and Metabolism, International Agency for Research on Cancer, Lyon, France
| | - Sabina Rinaldi
- Section of Nutrition and Metabolism, International Agency for Research on Cancer, Lyon, France
| | - Anne-Sophie Navionis
- Section of Nutrition and Metabolism, International Agency for Research on Cancer, Lyon, France
| | - Audrey Gicquiau
- Section of Nutrition and Metabolism, International Agency for Research on Cancer, Lyon, France
| | - Pekka Keski-Rahkonen
- Section of Nutrition and Metabolism, International Agency for Research on Cancer, Lyon, France
| | - Agneta Kiss
- Section of Nutrition and Metabolism, International Agency for Research on Cancer, Lyon, France
| | - Stephanie J Weinstein
- Metabolic Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | - Demetrius Albanes
- Metabolic Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | - Antonio Agudo
- Unit of Nutrition and Cancer, Catalan Institute of Oncology-ICO, L'Hospitalet de Llobregat, Spain
- Nutrition and Cancer Group, Epidemiology, Public Health, Cancer Prevention and Palliative Care Program, Bellvitge Biomedical Research Institute-IDIBELL, L'Hospitalet de Llobregat, Spain
| | - Mazda Jenab
- Section of Nutrition and Metabolism, International Agency for Research on Cancer, Lyon, France
| | - Elio Riboli
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, St. Mary's Campus, Norfolk Place, London, W2 1PG, UK
| | - Marc J Gunter
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, St. Mary's Campus, Norfolk Place, London, W2 1PG, UK
| | - Gwen Murphy
- Cancer Screening and Prevention Research Group, Department of Surgery and Cancer, Imperial College London, London, UK
| | - Amanda J Cross
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, St. Mary's Campus, Norfolk Place, London, W2 1PG, UK
- Cancer Screening and Prevention Research Group, Department of Surgery and Cancer, Imperial College London, London, UK
| |
Collapse
|
4
|
Rocamora F, Peralta AG, Shin S, Sorrentino J, Wu MYM, Toth EA, Fuerst TR, Lewis NE. Glycosylation shapes the efficacy and safety of diverse protein, gene and cell therapies. Biotechnol Adv 2023; 67:108206. [PMID: 37354999 PMCID: PMC11168894 DOI: 10.1016/j.biotechadv.2023.108206] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 05/26/2023] [Accepted: 06/20/2023] [Indexed: 06/26/2023]
Abstract
Over recent decades, therapeutic proteins have had widespread success in treating a myriad of diseases. Glycosylation, a near universal feature of this class of drugs, is a critical quality attribute that significantly influences the physical properties, safety profile and biological activity of therapeutic proteins. Optimizing protein glycosylation, therefore, offers an important avenue to developing more efficacious therapies. In this review, we discuss specific examples of how variations in glycan structure and glycoengineering impacts the stability, safety, and clinical efficacy of protein-based drugs that are already in the market as well as those that are still in preclinical development. We also highlight the impact of glycosylation on next generation biologics such as T cell-based cancer therapy and gene therapy.
Collapse
Affiliation(s)
- Frances Rocamora
- Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093, USA
| | - Angelo G Peralta
- Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093, USA
| | - Seunghyeon Shin
- Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093, USA
| | - James Sorrentino
- Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093, USA
| | - Mina Ying Min Wu
- Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093, USA; Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - Eric A Toth
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD 20850, USA
| | - Thomas R Fuerst
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD 20850, USA; Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, USA
| | - Nathan E Lewis
- Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093, USA; Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
5
|
Zhang J, Chen B, Li H, Wang Y, Liu X, Wong KY, Chan WN, Chan AK, Cheung AH, Leung KT, Dong Y, Pan Y, Ke H, Liang L, Zhou Z, Xiao J, Wong CC, Wu WK, Cheng AS, Ma BB, Yu J, Lo KW, Kang W. Cancer-associated fibroblasts potentiate colorectal cancer progression by crosstalk of the IGF2-IGF1R and Hippo-YAP1 signaling pathways. J Pathol 2023; 259:205-219. [PMID: 36373776 DOI: 10.1002/path.6033] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 10/28/2022] [Accepted: 11/10/2022] [Indexed: 11/16/2022]
Abstract
Colorectal cancer (CRC) is one of the most common cancers worldwide. The tumor microenvironment exerts crucial effects in driving CRC progression. Cancer-associated fibroblasts (CAFs) serve as one of the most important tumor microenvironment components promoting CRC progression. This study aimed to elucidate the novel molecular mechanisms of CAF-secreted insulin-like growth factor (IGF) 2 in colorectal carcinogenesis. Our results indicated that IGF2 was a prominent factor upregulated in CAFs compared with normal fibroblasts. CAF-derived conditioned media (CM) promoted tumor growth, migration, and invasion of HCT 116 and DLD-1 cells. IGF1R expression is significantly increased in CRC, serving as a potent receptor in response to IGF2 stimulation and predicting unfavorable outcomes for CRC patients. Apart from the PI3K-AKT pathway, RNA-seq analysis revealed that the YAP1-target signature serves as a prominent downstream effector to mediate the oncogenic signaling of IGF2-IGF1R. By single-cell RNA sequencing (scRNA-seq) and immunohistochemical validation, IGF2 was found to be predominantly secreted by CAFs, whereas IGF1R was expressed mainly by cancer cells. IGF2 triggers the nuclear accumulation of YAP1 and upregulates YAP1 target signatures; however, these effects were abolished by either IGF1R knockdown or inhibition with picropodophyllin (PPP), an IGF1R inhibitor. Using CRC organoid and in vivo studies, we found that cotargeting IGF1R and YAP1 with PPP and verteporfin (VP), a YAP1 inhibitor, enhanced antitumor effects compared with PPP treatment alone. In conclusion, this study revealed a novel molecular mechanism by which CAFs promote CRC progression. The findings highlight the translational potential of the IGF2-IGF1R-YAP1 axis as a prognostic biomarker and therapeutic target for CRC. © 2022 The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Jinglin Zhang
- Department of Anatomical and Cellular Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong SAR, PR China
| | - Bonan Chen
- Department of Anatomical and Cellular Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong SAR, PR China.,Institute of Digestive Disease, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Science, The Chinese University of Hong Kong, Hong Kong SAR, PR China.,State Key Laboratory of Translational Oncology, Sir Y.K. Pao Cancer Center, The Chinese University of Hong Kong, Hong Kong SAR, PR China
| | - Hui Li
- Department of Anatomical and Cellular Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong SAR, PR China.,Institute of Digestive Disease, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Science, The Chinese University of Hong Kong, Hong Kong SAR, PR China.,State Key Laboratory of Translational Oncology, Sir Y.K. Pao Cancer Center, The Chinese University of Hong Kong, Hong Kong SAR, PR China
| | - Yifei Wang
- Department of Anatomical and Cellular Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong SAR, PR China.,Institute of Digestive Disease, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Science, The Chinese University of Hong Kong, Hong Kong SAR, PR China.,State Key Laboratory of Translational Oncology, Sir Y.K. Pao Cancer Center, The Chinese University of Hong Kong, Hong Kong SAR, PR China
| | - Xiaoli Liu
- Department of Anatomical and Cellular Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong SAR, PR China.,Institute of Digestive Disease, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Science, The Chinese University of Hong Kong, Hong Kong SAR, PR China.,State Key Laboratory of Translational Oncology, Sir Y.K. Pao Cancer Center, The Chinese University of Hong Kong, Hong Kong SAR, PR China
| | - Kit Yee Wong
- Department of Anatomical and Cellular Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong SAR, PR China.,Institute of Digestive Disease, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Science, The Chinese University of Hong Kong, Hong Kong SAR, PR China.,State Key Laboratory of Translational Oncology, Sir Y.K. Pao Cancer Center, The Chinese University of Hong Kong, Hong Kong SAR, PR China
| | - Wai Nok Chan
- Department of Anatomical and Cellular Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong SAR, PR China.,Institute of Digestive Disease, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Science, The Chinese University of Hong Kong, Hong Kong SAR, PR China.,State Key Laboratory of Translational Oncology, Sir Y.K. Pao Cancer Center, The Chinese University of Hong Kong, Hong Kong SAR, PR China
| | - Aden Ky Chan
- Department of Anatomical and Cellular Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong SAR, PR China
| | - Alvin Hk Cheung
- Department of Anatomical and Cellular Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong SAR, PR China
| | - Kam Tong Leung
- Department of Pediatrics, The Chinese University of Hong Kong, Hong Kong SAR, PR China
| | - Yujuan Dong
- Institute of Digestive Disease, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Science, The Chinese University of Hong Kong, Hong Kong SAR, PR China
| | - Yi Pan
- Department of Pathology, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, PR China
| | - Huixing Ke
- Department of Respiratory and Critical Care Medicine, China National Center of Gerontology, Bejing Hospital, Beijing, PR China
| | - Li Liang
- Department of Pathology, Nanfang Hospital and Basic Medical College, Southern Medical University, Guangdong Province Key Laboratory of Molecular Tumor Pathology, Guangzhou, PR China
| | - Zhaocai Zhou
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai, PR China
| | - Jianyong Xiao
- Department of Biochemistry, School of Basic Medicine, Guangzhou University of Chinese Medicine, Guangzhou, PR China
| | - Chi Chun Wong
- Institute of Digestive Disease, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Science, The Chinese University of Hong Kong, Hong Kong SAR, PR China
| | - William Kk Wu
- Department of Anaesthesia and Intensive Care, The Chinese University of Hong Kong, Hong Kong SAR, PR China
| | - Alfred Sl Cheng
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR, PR China
| | - Brigette By Ma
- State Key Laboratory of Translational Oncology, Sir Y.K. Pao Cancer Center, The Chinese University of Hong Kong, Hong Kong SAR, PR China.,Department of Clinical Oncology, Hong Kong Cancer Institute, The Chinese University of Hong Kong, Hong Kong SAR, PR China
| | - Jun Yu
- Institute of Digestive Disease, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Science, The Chinese University of Hong Kong, Hong Kong SAR, PR China.,Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong SAR, PR China
| | - Kwok Wai Lo
- Department of Anatomical and Cellular Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong SAR, PR China.,State Key Laboratory of Translational Oncology, Sir Y.K. Pao Cancer Center, The Chinese University of Hong Kong, Hong Kong SAR, PR China
| | - Wei Kang
- Department of Anatomical and Cellular Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong SAR, PR China.,Institute of Digestive Disease, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Science, The Chinese University of Hong Kong, Hong Kong SAR, PR China.,State Key Laboratory of Translational Oncology, Sir Y.K. Pao Cancer Center, The Chinese University of Hong Kong, Hong Kong SAR, PR China
| | -
- Department of Anatomical and Cellular Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong SAR, PR China.,Institute of Digestive Disease, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Science, The Chinese University of Hong Kong, Hong Kong SAR, PR China.,State Key Laboratory of Translational Oncology, Sir Y.K. Pao Cancer Center, The Chinese University of Hong Kong, Hong Kong SAR, PR China
| |
Collapse
|
6
|
Ghafari F, Alizadeh AM, Agah S, Irani S, Mokhtare M. Insulin-like growth factor 1 serum levels in different stages of gastric cancer and their association with Helicobacter pylori status. Peptides 2022; 158:170892. [PMID: 36240982 DOI: 10.1016/j.peptides.2022.170892] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 10/08/2022] [Accepted: 10/08/2022] [Indexed: 11/05/2022]
Abstract
High serum insulin-like growth factor 1 (IGF-1) and positive Helicobacter pylori (H. pylori) may increase the risk of gastric cancer (GC). We aimed to investigate IGF-1 serum levels in different stages of GC patients and their association with H. pylori status. A total of 90 participants, including 60 GC patients and 30 noncancerous (NC) individuals, were included in the present study. IGF-1 serum levels and candidate proteins were assessed using enzyme-linked immunosorbent and immunohistochemistry techniques. Likewise, Giemsa staining was applied to detect H. pylori infection. The candidate genes' expression, including IGF-1R, PI3KCA, AKT1, mTOR1, KRAS, BRAF, and ERK1, was also evaluated by a real-time PCR assay. The results of advanced GC stages indicated a significantly high IHC score for IGF-1R and phosphorylated AKT, mTOR, and ERK proteins compared to the early stages. Moreover, IGF-1 serum levels and the expression of candidate genes were considerably increased in the advanced GC patients compared to the early stages and the positive H. pylori status compared to the negative H. pylori status (P < 0.05). As a result, high IGF-1 serum levels and positive H. pylori status may be correlated with gastric tumor progression, and the inhibition of IGF-1 and the eradication of H. pylori infection might be new therapeutic targets in GC patients.
Collapse
Affiliation(s)
- Fatemeh Ghafari
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Ali Mohammad Alizadeh
- Cancer Research Center, Cancer Institute, Tehran University of Medical Sciences, Tehran, Iran.
| | - Shahram Agah
- Colorectal Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Shiva Irani
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Marjan Mokhtare
- Colorectal Research Center, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
7
|
Saisana M, Griffin SM, May FEB. Insulin and the insulin receptor collaborate to promote human gastric cancer. Gastric Cancer 2022; 25:107-123. [PMID: 34554347 PMCID: PMC8732810 DOI: 10.1007/s10120-021-01236-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 08/12/2021] [Indexed: 02/07/2023]
Abstract
BACKGROUND Gastric adenocarcinoma is common and consequent mortality high. Presentation and mortality are increased in obese individuals, many of whom have elevated circulating insulin concentrations. High plasma insulin concentrations may promote, and increase mortality from, gastric adenocarcinoma. Tumour promotion activities of insulin and its receptor are untested in gastric cancer cells. METHODS Tumour gene amplification and expression were computed from sequencing and microarray data. Associations with patient survival were assessed. Insulin-dependent signal transduction, growth, apoptosis and anoikis were analysed in metastatic cells from gastric adenocarcinoma patients and in cell lines. Receptor involvement was tested by pharmacological inhibition and genetic knockdown. RNA was analysed by RT-PCR and proteins by western transfer and immunofluorescence. RESULTS INSR expression was higher in tumour than in normal gastric tissue. High tumour expression was associated with worse patient survival. Insulin receptor was detected readily in metastatic gastric adenocarcinoma cells and cell lines. Isoforms B and A were expressed. Pharmacological inhibition prevented cell growth and division, and induced caspase-dependent cell death. Rare tumour INS expression indicated tumours would be responsive to pancreatic or therapeutic insulins. Insulin stimulated gastric adenocarcinoma cell PI3-kinase/Akt signal transduction, proliferation, and survival. Insulin receptor knockdown inhibited proliferation and induced programmed cell death. Type I IGF receptor knockdown did not induce cell death. CONCLUSIONS The insulin and IGF signal transduction pathway is dominant in gastric adenocarcinoma. Gastric adenocarcinoma cell survival depends upon insulin receptor. That insulin has direct cancer-promoting effects on tumour cells has implications for clinical management of obese and diabetic cancer patients.
Collapse
Affiliation(s)
- Marina Saisana
- grid.1006.70000 0001 0462 7212Newcastle University Centre for Cancer, Translational and Clinical Research Institute, Faculty of Medical Sciences, University of Newcastle-upon-Tyne, Framlington Place, Newcastle-upon-Tyne, NE2 4HH UK
| | - S. Michael Griffin
- grid.1006.70000 0001 0462 7212Newcastle University Centre for Cancer, Translational and Clinical Research Institute, Faculty of Medical Sciences, University of Newcastle-upon-Tyne, Framlington Place, Newcastle-upon-Tyne, NE2 4HH UK ,grid.420004.20000 0004 0444 2244Department of Surgery, Newcastle-upon-Tyne Hospitals NHS Foundation Trust, Newcastle-upon-Tyne, NE1 4LP UK
| | - Felicity E. B. May
- grid.1006.70000 0001 0462 7212Newcastle University Centre for Cancer, Translational and Clinical Research Institute, Faculty of Medical Sciences, University of Newcastle-upon-Tyne, Framlington Place, Newcastle-upon-Tyne, NE2 4HH UK ,grid.1006.70000 0001 0462 7212Department of Pathology, Faculty of Medical Sciences, University of Newcastle-upon-Tyne, Framlington Place, Newcastle-upon-Tyne, NE2 4HH UK ,grid.420004.20000 0004 0444 2244Department of Oncology, Newcastle-upon-Tyne Hospitals NHS Foundation Trust, Newcastle-upon-Tyne, NE1 4LP UK
| |
Collapse
|
8
|
Sudhesh Dev S, Zainal Abidin SA, Farghadani R, Othman I, Naidu R. Receptor Tyrosine Kinases and Their Signaling Pathways as Therapeutic Targets of Curcumin in Cancer. Front Pharmacol 2021; 12:772510. [PMID: 34867402 PMCID: PMC8634471 DOI: 10.3389/fphar.2021.772510] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 11/01/2021] [Indexed: 12/20/2022] Open
Abstract
Receptor tyrosine kinases (RTKs) are transmembrane cell-surface proteins that act as signal transducers. They regulate essential cellular processes like proliferation, apoptosis, differentiation and metabolism. RTK alteration occurs in a broad spectrum of cancers, emphasising its crucial role in cancer progression and as a suitable therapeutic target. The use of small molecule RTK inhibitors however, has been crippled by the emergence of resistance, highlighting the need for a pleiotropic anti-cancer agent that can replace or be used in combination with existing pharmacological agents to enhance treatment efficacy. Curcumin is an attractive therapeutic agent mainly due to its potent anti-cancer effects, extensive range of targets and minimal toxicity. Out of the numerous documented targets of curcumin, RTKs appear to be one of the main nodes of curcumin-mediated inhibition. Many studies have found that curcumin influences RTK activation and their downstream signaling pathways resulting in increased apoptosis, decreased proliferation and decreased migration in cancer both in vitro and in vivo. This review focused on how curcumin exhibits anti-cancer effects through inhibition of RTKs and downstream signaling pathways like the MAPK, PI3K/Akt, JAK/STAT, and NF-κB pathways. Combination studies of curcumin and RTK inhibitors were also analysed with emphasis on their common molecular targets.
Collapse
Affiliation(s)
- Sareshma Sudhesh Dev
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, Malaysia
| | - Syafiq Asnawi Zainal Abidin
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, Malaysia
| | - Reyhaneh Farghadani
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, Malaysia
| | - Iekhsan Othman
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, Malaysia
| | - Rakesh Naidu
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, Malaysia
| |
Collapse
|
9
|
Wang L, Zhang M, Wang J, Zhang J. Diagnostic and therapeutic potencies of miR-18a-5p in mixed-type gastric adenocarcinoma. J Cell Biochem 2021; 122:1062-1071. [PMID: 33942935 PMCID: PMC8453821 DOI: 10.1002/jcb.29927] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 03/19/2021] [Accepted: 03/23/2021] [Indexed: 12/15/2022]
Abstract
Mixed-type gastric adenocarcinoma (by Lauren Classification) has poor clinical outcomes with few targeted treatment options. The primary objective of this study was to find the prognostic factors, accurate treatment approaches, and effective postoperative adjuvant therapy strategies for patients with mixed-type gastric adenocarcinoma (GA). A microRNA sequencing data set and the corresponding clinical parameters of patients with gastric cancer were obtained from The Cancer Genome Atlas. Differentially expressed microRNAs (DEMs) of diffuse- and intestinal-type GA were, respectively, determined. Kaplan-Meier and log-rank tests were subsequently carried out to evaluate the prognostic relevance of each DEM. To study the common factors between diffuse- and intestinal-type GA, a pathway enrichment analysis was performed on the target genes of identified DEMs using the PANTHER database. After data preprocessing, we analyzed a total of 230 samples from 210 patients with GA. Eighty-six DEMs in diffuse-type GA samples and 59 DEMs in intestinal-type GA samples were, respectively, identified (p 2.0). The Kaplan-Meier survival method further screened out six prognosis-related DEMs for diffuse-type GA and seven prognosis-related DEMs for intestinal-type GA (p < 0.05). MiR-18a-5p was found to be the only common prognosis-related DEM between diffuse- and intestinal-type GA. The common signaling pathways further revealed that target genes of miR-18a-5p are involved in mixed-type GA progression. This study suggests that miR-18a-5p acts as a potential target for treatment, and common signal pathways provide a rich basis to seek reliable and effective molecular targets for the diagnosis, clinical treatment, and postoperative adjuvant therapy strategy of mixed-type GA.
Collapse
Affiliation(s)
- Li Wang
- Department of Thoracic SurgeryThe First Affiliated Hospital of Xi'an Jiaotong UniversityXi'anShaanxiChina
- Department of SurgeryThe Hospital of Chang'an UniversityXi'anShaanxiChina
| | - Mingxin Zhang
- Department of GastroenterologyThe First Affiliated Hospital of Xi'an Medical UniversityXi'anShaanxiChina
| | - Jiansheng Wang
- Department of Thoracic SurgeryThe First Affiliated Hospital of Xi'an Jiaotong UniversityXi'anShaanxiChina
| | - Jia Zhang
- Department of Thoracic SurgeryThe First Affiliated Hospital of Xi'an Jiaotong UniversityXi'anShaanxiChina
| |
Collapse
|
10
|
Chiu YF, Wu CC, Kuo MH, Miao CC, Zheng MY, Chen PY, Lin SC, Chang JL, Wang YH, Chou YT. Critical role of SOX2-IGF2 signaling in aggressiveness of bladder cancer. Sci Rep 2020; 10:8261. [PMID: 32427884 PMCID: PMC7237425 DOI: 10.1038/s41598-020-65006-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 04/27/2020] [Indexed: 02/07/2023] Open
Abstract
Signaling elicited by the stem cell factors SOX2, OCT4, KLF4, and MYC not only mediates reprogramming of differentiated cells to pluripotency but has also been correlated with tumor malignancy. In this study, we found SOX2 expression signifies poor recurrence-free survival and correlates with advanced pathological grade in bladder cancer. SOX2 silencing attenuated bladder cancer cell growth, while its expression promoted cancer cell survival and proliferation. Under low-serum stress, SOX2 expression promoted AKT phosphorylation and bladder cancer cells' spheroid-forming capability. Furthermore, pharmacological inhibition of AKT phosphorylation, using MK2206, inhibited the SOX2-mediated spheroid formation of bladder cancer cells. Gene expression profiling showed that SOX2 expression, in turn, induced IGF2 expression, while SOX2 silencing inhibited IGF2 expression. Moreover, knocking down IGF2 and IGF1R diminished bladder cancer cell growth. Lastly, pharmacological inhibition of IGF1R, using linsitinib, also inhibited the SOX2-mediated spheroid formation of bladder cancer cells under low-serum stress. Our findings indicate the SOX2-IGF2 signaling affects the aggressiveness of bladder cancer cell growth. This signaling could be a promising biomarker and therapeutic target for bladder cancer intervention.
Collapse
Affiliation(s)
- Yu-Fan Chiu
- Institute of Biotechnology, College of Life Science, National Tsing Hua University, Hsinchu, Taiwan
| | - Chia-Chang Wu
- Department of Urology, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
- Department of Urology, School of Medicine, College of Medicine, and TMU Research Center of Urology and Kidney (TMU-RCUK), Taipei Medical University, Taipei, Taiwan
| | - Ming-Han Kuo
- Institute of Biotechnology, College of Life Science, National Tsing Hua University, Hsinchu, Taiwan
| | - Chia-Cheng Miao
- Institute of Biotechnology, College of Life Science, National Tsing Hua University, Hsinchu, Taiwan
| | - Ming-Yi Zheng
- Institute of Biotechnology, College of Life Science, National Tsing Hua University, Hsinchu, Taiwan
| | - Pei-Yu Chen
- Institute of Biotechnology, College of Life Science, National Tsing Hua University, Hsinchu, Taiwan
| | - Sheng-Chieh Lin
- Institute of Biotechnology, College of Life Science, National Tsing Hua University, Hsinchu, Taiwan
- Graduate Institute of Integrated Medicine, China Medical University, Taichung, Taiwan
| | - Junn-Liang Chang
- Department of Pathology and Laboratory Medicine, Taoyuan Armed Forces General Hospital, Taoyuan, Taiwan
- Department of Biomedical Engineering, Ming Chuan University, Taoyuan, Taiwan
| | - Yuan-Hung Wang
- Department of Medical Research, Shuang Ho Hospital, New Taipei City, Taiwan.
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.
| | - Yu-Ting Chou
- Institute of Biotechnology, College of Life Science, National Tsing Hua University, Hsinchu, Taiwan.
| |
Collapse
|
11
|
Ravacci GR, Ishida R, Torrinhas RS, Sala P, Machado NM, Fonseca DC, André Baptista Canuto G, Pinto E, Nascimento V, Franco Maggi Tavares M, Sakai P, Faintuch J, Santo MA, Moura EGH, Neto RA, Logullo AF, Waitzberg DL. Potential premalignant status of gastric portion excluded after Roux en-Y gastric bypass in obese women: A pilot study. Sci Rep 2019; 9:5582. [PMID: 30944407 PMCID: PMC6447527 DOI: 10.1038/s41598-019-42082-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Accepted: 03/13/2019] [Indexed: 12/13/2022] Open
Abstract
We evaluated whether the excluded stomach (ES) after Roux-en-Y gastric bypass (RYGB) can represent a premalignant environment. Twenty obese women were prospectively submitted to double-balloon enteroscopy (DBE) with gastric juice and biopsy collection, before and 3 months after RYGB. We then evaluated morphological and molecular changes by combining endoscopic and histopathological analyses with an integrated untargeted metabolomics and transcriptomics multiplatform. Preoperatively, 16 women already presented with gastric histopathological alterations and an increased pH (≥4.0). These gastric abnormalities worsened after RYGB. A 90-fold increase in the concentration of bile acids was found in ES fluid, which also contained other metabolites commonly found in the intestinal environment, urine, and faeces. In addition, 135 genes were differentially expressed in ES tissue. Combined analysis of metabolic and gene expression data suggested that RYGB promoted activation of biological processes involved in local inflammation, bacteria overgrowth, and cell proliferation sustained by genes involved in carcinogenesis. Accumulated fluid in the ES appears to behave as a potential premalignant environment due to worsening inflammation and changing gene expression patterns that are favorable to the development of cancer. Considering that ES may remain for the rest of the patient’s life, long-term ES monitoring is therefore recommended for patients undergoing RYGB.
Collapse
Affiliation(s)
- Graziela Rosa Ravacci
- Departamento de Gastroenterologia, Laboratorio Metanutri (LIM35), Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, SP, Brazil.
| | - Robson Ishida
- Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | - Raquel Suzana Torrinhas
- Departamento de Gastroenterologia, Laboratorio Metanutri (LIM35), Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | - Priscila Sala
- Departamento de Gastroenterologia, Laboratorio Metanutri (LIM35), Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | - Natasha Mendonça Machado
- Departamento de Gastroenterologia, Laboratorio Metanutri (LIM35), Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | - Danielle Cristina Fonseca
- Departamento de Gastroenterologia, Laboratorio Metanutri (LIM35), Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | - Gisele André Baptista Canuto
- Departamento de Quimica Analitica, Instituto de Quimica, Universidade Federal da Bahia, Salvador, BA, Brazil.,Departamento de Quimica Fundamental, Instituto de Quimica, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | - Ernani Pinto
- Faculdade de Ciências Farmacêuticas, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | | | | | - Paulo Sakai
- Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | - Joel Faintuch
- Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | - Marco Aurelio Santo
- Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | | | | | | | - Dan Linetzky Waitzberg
- Departamento de Gastroenterologia, Laboratorio Metanutri (LIM35), Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| |
Collapse
|
12
|
Huang YK, Kang WM, Ma ZQ, Liu YQ, Zhou L, Yu JC. NUCKS1 promotes gastric cancer cell aggressiveness by upregulating IGF-1R and subsequently activating the PI3K/Akt/mTOR signaling pathway. Carcinogenesis 2018; 40:370-379. [PMID: 30371738 DOI: 10.1093/carcin/bgy142] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 10/17/2018] [Indexed: 01/13/2023] Open
Affiliation(s)
- Ya-Kai Huang
- Department of Gastric Surgery, Fudan University Shanghai Cancer Center, Shanghai Medical College, Fudan University, Shanghai, P.R. China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, P.R. China
| | - Wei-Ming Kang
- Department of General Surgery, Peking Union Medical College Hospital, Beijing, P.R. China
| | - Zhi-Qiang Ma
- Department of General Surgery, Peking Union Medical College Hospital, Beijing, P.R. China
| | - Yu-Qin Liu
- Cell Culture Centre, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P.R. China
| | - Li Zhou
- Department of General Surgery, Peking Union Medical College Hospital, Beijing, P.R. China
| | - Jian-Chun Yu
- Department of General Surgery, Peking Union Medical College Hospital, Beijing, P.R. China
| |
Collapse
|
13
|
Dalle Vedove E, Costabile G, Merkel OM. Mannose and Mannose-6-Phosphate Receptor-Targeted Drug Delivery Systems and Their Application in Cancer Therapy. Adv Healthc Mater 2018; 7:e1701398. [PMID: 29719138 PMCID: PMC6108418 DOI: 10.1002/adhm.201701398] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 02/16/2018] [Indexed: 12/21/2022]
Abstract
In order to overcome the main disadvantages of conventional cancer therapies, which prove to be inadequate because of their lack of selectivity, the development of targeted delivery systems is one of the main focuses in anticancer research. It is repeatedly shown that decorating the surface of nanocarriers with high-affinity targeting ligands, such as peptides or small molecules, is an effective way to selectively deliver therapeutics by enhancing their specific cellular uptake via the binding between a specific receptor and the nanosystems. Nowadays, the need of finding new potential biological targets with a high endocytic efficiency as well as a low tendency to mutate is urgent and, in this context, mannose and mannose-6-phosphate receptors appear promising to target anticancer drugs to cells where their expression is upregulated. Moreover, they open the path to encouraging applications in immune-based and gene therapies as well as in theragnostic purposes. In this work, the potential of mannose- and mannose-6-phosphate-targeted delivery systems in cancer therapy is discussed, emphasizing their broad application both in direct treatments against cancer cells with conventional chemotherapeutics or by gene therapy and also their encouraging capabilities in immunotherapy and diagnostics purposes.
Collapse
Affiliation(s)
- Elena Dalle Vedove
- Department of Pharmacy, Pharmaceutical Technology and Biopharmacy, Ludwig-Maximilians-University, 81337 Munich, Germany
| | - Gabriella Costabile
- Department of Pharmacy, Pharmaceutical Technology and Biopharmacy, Ludwig-Maximilians-University, 81337 Munich, Germany
| | - Olivia M Merkel
- Department of Pharmacy, Pharmaceutical Technology and Biopharmacy, Ludwig-Maximilians-University, 81337 Munich, Germany
| |
Collapse
|
14
|
Kumar AS, Rayala SK, Venkatraman G. Targeting IGF1R pathway in cancer with microRNAs: How close are we? RNA Biol 2018; 15:320-326. [PMID: 28613101 DOI: 10.1080/15476286.2017.1338240] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Cancer of the head and neck are the most common cancers in India and account for 30% of all cancers. At molecular level, it could be attributed to the overexpression of growth factors like IGF1-R, EGFR, VEGF-R and deregulation of cell cycle regulators and tumor suppressors. IGF1-R is an emerging target in head and neck cancer treatment, because of its reported role in tumor development, progression and metastasis. IGF1R targeted agents are in advanced stages of clinical development. Nevertheless, these agents suffer from several disadvantages including acquired resistance and toxic side effects. Hence there is a need for developing newer agents targeting not only the receptor but also its downstream signaling. miRNAs are considered as master regulators of gene expression of multiple genes and has been widely reported to be a promising therapeutic strategy. This review discusses the present status of research in both these arenas and emphasizes the role of miRNA as a promising agent for biologic therapy.
Collapse
Affiliation(s)
- Arathy S Kumar
- a Department of Biotechnology , Indian Institute of Technology, Madras (IIT M) , Chennai , India
| | - Suresh K Rayala
- a Department of Biotechnology , Indian Institute of Technology, Madras (IIT M) , Chennai , India
| | - Ganesh Venkatraman
- b Department of Human Genetics , College of Biomedical Sciences, Technology & Research, Sri Ramachandra University , Porur, Chennai , India
| |
Collapse
|
15
|
Kang MH, Jeong GS, Smoot DT, Ashktorab H, Hwang CM, Kim BS, Kim HS, Park YY. Verteporfin inhibits gastric cancer cell growth by suppressing adhesion molecule FAT1. Oncotarget 2017; 8:98887-98897. [PMID: 29228735 PMCID: PMC5716775 DOI: 10.18632/oncotarget.21946] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Accepted: 09/23/2017] [Indexed: 12/29/2022] Open
Abstract
Gastric cancer (GC) is a leading cause of death worldwide and in urgent need of targeted drug development. In the current, we investigated the ability of a repositioned drug verteporfin (VP), originally a treatment for macular degeneration, to inhibit GC cell growth. VP inhibited growth of various GC cell lines. Gene expression profiling of GC cell lines treated with VP revealed that migration-related genes and those with oncogenic potential were down-regulated. Of these genes, we found that FAT1, an adhesion molecule promoting cell invasion, was highly suppressed by VP. Silencing of FAT1 suppressed cell migration and invasion as VP did. FAT1 expression was up-regulated in tumors, and patients with high FAT1-expressing tumors had a worse prognosis. We propose that VP- targeting FAT1 to suppress metastatic potential is a promising therapeutic strategy against GC.
Collapse
Affiliation(s)
- Myoung-Hee Kang
- Asan Institute for Life Sciences, Asan Medical Center, Seoul, Republic of Korea.,Department of Convergence Medicine, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Gi Seok Jeong
- Biomedical Engineering Research Center, Asan Institute for Life Sciences, Asan Medical Center, Seoul, Republic of Korea
| | - Duane T Smoot
- Department of Internal Medicine, Meharry Medical College, Nashville, TN, USA
| | - Hassan Ashktorab
- Department of Medicine and Cancer Center, Howard University, Washington, DC, USA
| | - Chang Mo Hwang
- Biomedical Engineering Research Center, Asan Institute for Life Sciences, Asan Medical Center, Seoul, Republic of Korea
| | - Byung Sik Kim
- Department of Gastric Surgery, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Republic of Korea
| | - Hee Sung Kim
- Department of Gastric Surgery, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Republic of Korea
| | - Yun-Yong Park
- Asan Institute for Life Sciences, Asan Medical Center, Seoul, Republic of Korea.,Department of Convergence Medicine, University of Ulsan College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
16
|
Minnelli C, Cianfruglia L, Laudadio E, Galeazzi R, Pisani M, Crucianelli E, Bizzaro D, Armeni T, Mobbili G. Selective induction of apoptosis in MCF7 cancer-cell by targeted liposomes functionalised with mannose-6-phosphate. J Drug Target 2017; 26:242-251. [PMID: 28795851 DOI: 10.1080/1061186x.2017.1365873] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Liposomes are versatile platforms to carry anticancer drugs in targeted drug delivery; they can be surface modified by different strategies and, when coupled with targeting ligands, are able to increase cellular internalisation and organelle-specific drug delivery. An interesting strategy of antitumoral therapy could involve the use of lysosomotropic ligand-targeted liposomes loaded with molecules, which can induce lysosomal membrane permeabilization (LMP), leakage of cathepsins into the cytoplasm and subsequent apoptosis. We have previously demonstrated the ability of liposomes functionalised with a mannose-6-phosphate to reach lysosomes; in this research we compare the behaviour of M6P-modified and non-functionalised liposomes in MCF7 tumour cell and in HDF normal cells. With this aim, we first demonstrated by Western blotting the overexpression of mannose-6-phosphate/insulin-like growth factor (M6P/IGF-II) receptor in MCF7. Then, we prepared calcein-loaded liposomes and we revealed the increased uptake of M6P-functionalised liposomes in MCF7 cells respect to HDF cells by flow cytometry analysis. Finally, we loaded functionalised and not functionalised liposomes with N-hexanoyl-d-erythro-sphingosine (C6Cer), able to initiate LMP-induced apoptosis; after having studied the stability of both vesicles in the presence of serum by Dynamic Light Scattering and Spectrophotometric turbidity measurements, we showed that ceramide-loaded M6P-liposomes significantly increased apoptosis in MCF7 with respect to HDF cells.
Collapse
Affiliation(s)
- Cristina Minnelli
- a Department of Life and Environmental Sciences , Università Politecnica delle Marche , Ancona , Italy
| | - Laura Cianfruglia
- b Department of Clinical Sciences, Section of Biochemistry, Biology and Physics , Università Politecnica delle Marche , Ancona , Italy
| | - Emiliano Laudadio
- a Department of Life and Environmental Sciences , Università Politecnica delle Marche , Ancona , Italy
| | - Roberta Galeazzi
- a Department of Life and Environmental Sciences , Università Politecnica delle Marche , Ancona , Italy
| | - Michela Pisani
- c Department of Materials, Environmental Sciences and Urban Planning , Università Politecnica delle Marche , Ancona , Italy
| | - Emanuela Crucianelli
- a Department of Life and Environmental Sciences , Università Politecnica delle Marche , Ancona , Italy
| | - Davide Bizzaro
- a Department of Life and Environmental Sciences , Università Politecnica delle Marche , Ancona , Italy
| | - Tatiana Armeni
- b Department of Clinical Sciences, Section of Biochemistry, Biology and Physics , Università Politecnica delle Marche , Ancona , Italy
| | - Giovanna Mobbili
- a Department of Life and Environmental Sciences , Università Politecnica delle Marche , Ancona , Italy
| |
Collapse
|
17
|
Zhang S, Yin WL, Zhang X, Zhang XY. MicroRNA-455 is downregulated in gastric cancer and inhibits cell proliferation, migration and invasion via targeting insulin-like growth factor 1 receptor. Mol Med Rep 2017; 16:3664-3672. [DOI: 10.3892/mmr.2017.6979] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2016] [Accepted: 04/27/2017] [Indexed: 11/05/2022] Open
|
18
|
Insulin-like growth factor (IGF) axis in cancerogenesis. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2016; 772:78-104. [PMID: 28528692 DOI: 10.1016/j.mrrev.2016.08.007] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Revised: 08/27/2016] [Accepted: 08/31/2016] [Indexed: 12/21/2022]
Abstract
Determination of the role of insulin-like growth factor (IGF) family components in carcinogenesis of several human tumors is based on numerous epidemiological and pre-clinical studies, experiments in vivo and in vitro and on attempts at application of drugs affecting the IGF axis. Investigative hypotheses in original studies were based on biological functions manifested by the entire family of IGF (ligands, receptors, linking proteins, adaptor molecules). In the context of carcinogenesis the most important functions of IGF family involve intensification of proliferation and inhibition of cell apoptosis and effect on cell transformation through synthesis of several regulatory proteins. IGF axis controls survival and influences on metastases of cells. Interactions of IGF axis components may be of a direct or indirect nature. The direct effects are linked to activation of PI3K/Akt signaling pathway, in which the initiating role is first of all played by IGF-1 and IGF-1R. Activity of this signaling pathway leads to an increased mitogenesis, cell cycle progression, and protection against different apoptotic stresses. Indirect effects of the axis depend on interactions between IGF and other molecules important for cancer etiology (e.g. sex hormones, products of suppressor genes, viruses, and other GFs) and the style of life (nutrition, physical activity). From the clinical point of view, components of IGF system are first of all considered as diagnostic serous and/or tissue biomarkers of a given cancer, prognostic factors and attractive target of modern anti-tumor therapies. Several mechanisms in which IGF system components act in the process of carcinogenesis need to be clarified, mainly due to multifactorial etiology of the neoplasms. Pin-pointing of the role played in carcinogenesis by any single signaling pathway remains particularly difficult. The aim of this review is to summarize the current data of several epidemiological studies, experiments in vitro and on animal models, to increase our understanding of the complex role of IGF family components in the most common human cancers.
Collapse
|
19
|
Saisana M, Griffin SM, May FE. Importance of the type I insulin-like growth factor receptor in HER2, FGFR2 and MET-unamplified gastric cancer with and without Ras pathway activation. Oncotarget 2016; 7:54445-54462. [PMID: 27437872 PMCID: PMC5342354 DOI: 10.18632/oncotarget.10642] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Accepted: 05/14/2016] [Indexed: 12/28/2022] Open
Abstract
Amplification of seven oncogenes: HER2, EGFR, FGFR1, FGFR2, MET, KRAS and IGF1R has been identified in gastric cancer. The first five are targeted therapeutically in patients with HER2-positivity, FGFR2- or MET-amplification but the majority of patients are triple-negative and require alternative strategies. Our aim was to evaluate the importance of the IGF1R tyrosine kinase in triple-negative gastric cancer with and without oncogenic KRAS, BRAF or PI3K3CA mutations. Cell lines and metastatic tumor cells isolated from patients expressed IGF1R, and insulin-like growth factor-1 (IGF-1) activated the PI3-kinase/Akt and Ras/Raf/MAP-kinase pathways. IGF-1 protected triple-negative cells from caspase-dependent apoptosis and anoikis. Protection was mediated via the PI3-kinase/Akt pathway. Remarkably, IGF-1-dependent cell survival was greater in patient samples. IGF-1 stimulated triple-negative gastric cancer cell growth was prevented by IGF1R knockdown and Ras/Raf/MAP-kinase pathway inhibition. The importance of the receptor in cell line and metastatic tumor cell growth in serum-containing medium was demonstrated by knockdown and pharmacological inhibition with figitumumab. The proportions of cells in S-phase and mitotic-phase, and Ras/Raf/MAP-kinase pathway activity, were reduced concomitantly. KRAS-addicted and BRAF-impaired gastric cancer cells were particularly susceptible. In conclusion, IGF1R and the IGF signal transduction pathway merit consideration as potential therapeutic targets in patients with triple-negative gastric cancer.
Collapse
Affiliation(s)
- Marina Saisana
- Northern Institute for Cancer Research, Newcastle upon Tyne Hospitals NHS Foundation Trust, The Medical School, University of Newcastle upon Tyne, Newcastle upon Tyne, UK
| | - S. Michael Griffin
- Northern Institute for Cancer Research, Newcastle upon Tyne Hospitals NHS Foundation Trust, The Medical School, University of Newcastle upon Tyne, Newcastle upon Tyne, UK
- Northern Oesophago-Gastric Cancer Unit, Newcastle upon Tyne Hospitals NHS Foundation Trust, The Medical School, University of Newcastle upon Tyne, Newcastle upon Tyne, UK
| | - Felicity E.B. May
- Northern Institute for Cancer Research, Newcastle upon Tyne Hospitals NHS Foundation Trust, The Medical School, University of Newcastle upon Tyne, Newcastle upon Tyne, UK
- Newcastle University Institute for Ageing, Department of Pathology, Newcastle upon Tyne Hospitals NHS Foundation Trust, The Medical School, University of Newcastle upon Tyne, Newcastle upon Tyne, UK
| |
Collapse
|
20
|
He L, Ye F, Qu L, Wang D, Cui M, Wei C, Xing Y, Lee P, Suo J, Zhang DY. Protein profiling of alpha-fetoprotein producing gastric adenocarcinoma. Oncotarget 2016; 7:28448-28459. [PMID: 27057629 PMCID: PMC5053738 DOI: 10.18632/oncotarget.8571] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Accepted: 02/28/2016] [Indexed: 12/14/2022] Open
Abstract
Alpha-fetoprotein (AFP) producing gastric adenocarcinoma is considered as a rare subtype of gastric adenocarcinoma. Compared with AFP non-producing gastric adenocarcinoma, our study and other previous studies showed that AFP producing gastric adenocarcinoma is more aggressive and prone to liver metastasis. Using the Protein Pathway Array, 11 of out of 286 proteins tested were found to be differentially expressed between AFP producing (n=32) and AFP non-producing (n=45) gastric adenocarcinoma tissues. In addition, the high level expression of XIAP and IGF-Irβ in gastric adenocarcinoma tissues was independent factors for poor prognosis in AFP producing gastric adenocarcinoma patients. A risk model based on the XIAP and IGF-Irβ expression levels can separate AFP producing gastric adenocarcinoma patients into 2 subgroups and each subgroup had a distinct set of signaling pathways involved. In conclusion, AFP producing gastric adenocarcinoma is a heterogeneous cancer with different clinical outcomes, biological behaviors and underlying molecular alterations.
Collapse
Affiliation(s)
- Liang He
- Department of Gastrointestinal Surgery, First Hospital of Jilin University, Changchun, China
| | - Fei Ye
- Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Linlin Qu
- Department of Clinical Laboratory, First Hospital of Jilin University, Changchun, China
| | - Daguang Wang
- Department of Gastrointestinal Surgery, First Hospital of Jilin University, Changchun, China
| | - Miao Cui
- Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Chengguo Wei
- Department of Nephrology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Yanpeng Xing
- Department of Gastrointestinal Surgery, First Hospital of Jilin University, Changchun, China
| | - Peng Lee
- Department of Pathology, New York University School of Medicine, New York, NY, USA
| | - Jian Suo
- Department of Gastrointestinal Surgery, First Hospital of Jilin University, Changchun, China
| | - David Y. Zhang
- Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
21
|
Numata K, Oshima T, Sakamaki K, Yoshihara K, Aoyama T, Hayashi T, Yamada T, Sato T, Cho H, Shiozawa M, Yoshikawa T, Rino Y, Kunisaki C, Akaike M, Imada T, Masuda M. Clinical significance of IGF1R gene expression in patients with Stage II/III gastric cancer who receive curative surgery and adjuvant chemotherapy with S-1. J Cancer Res Clin Oncol 2016; 142:415-22. [PMID: 26337161 DOI: 10.1007/s00432-015-2039-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2015] [Accepted: 08/24/2015] [Indexed: 12/14/2022]
Abstract
PURPOSE Curative resection and adjuvant chemotherapy is the standard treatment for Stage II/III gastric cancer, and S-1 is widely used for adjuvant chemotherapy. The type 1 insulin-like growth factor receptor (IGF1R) is involved in cell proliferation and prevention of apoptosis in many tumors. We evaluated the relative expression of the IGF1R gene to determine whether such expression correlates with outcomes in patients with Stage II/III gastric cancer. METHODS We measured the expression levels of the IGF1R gene in specimens of cancer and adjacent normal mucosa obtained from 134 patients with Stage II/III gastric cancer who received curative resection and adjuvant chemotherapy with S-1. We then evaluated whether the IGF1R gene expression levels correlate with clinicopathological characteristics and outcomes. RESULTS IGF1R mRNA expression levels tended to be higher in cancer tissue than in the normal adjacent mucosa (P = 0.078). Multivariate analysis showed that high IGF1R gene expression was a significant independent predictor of poor survival in Stage II/III gastric cancer after curative resection and adjuvant chemotherapy with S-1 (HR 3.681, P = 0.007). The overall survival rate was significantly lower in patients with high IGF1R gene expression than in those with low expression (P = 0.012). CONCLUSIONS IGF1R overexpression is considered a useful independent predictor of outcomes in Stage II/III gastric cancer after curative resection and adjuvant chemotherapy with S-1.
Collapse
Affiliation(s)
- Koji Numata
- Department of Surgery, Yokohama City University, 3-9 Fukuura, Kanazawa-ku, Yokohama, 236-0004, Japan
| | - Takashi Oshima
- Department of Surgery, Yokohama City University, 3-9 Fukuura, Kanazawa-ku, Yokohama, 236-0004, Japan.
| | - Kentaro Sakamaki
- Department of Biostatistics, Graduate School of Medicine, Yokohama City University, 3-9 Fukuura, Kanazawa-ku, Yokohama, 236-0004, Japan
| | - Kazue Yoshihara
- Department of Surgery, Yokohama City University, 3-9 Fukuura, Kanazawa-ku, Yokohama, 236-0004, Japan
| | - Toru Aoyama
- Department of Gastrointestinal Surgery, Kanagawa Cancer Center, 2-3-2 Nakao, Asahi-ku, Yokohama, 241-8515, Japan
| | - Tsutomu Hayashi
- Department of Gastroenterological Surgery, Yokohama City University Medical Center, 4-57 Urafune, Minami-ku, Yokohama, 232-0024, Japan
| | - Takanobu Yamada
- Department of Surgery, Yokohama City University, 3-9 Fukuura, Kanazawa-ku, Yokohama, 236-0004, Japan
| | - Tsutomu Sato
- Department of Gastrointestinal Surgery, Kanagawa Cancer Center, 2-3-2 Nakao, Asahi-ku, Yokohama, 241-8515, Japan
| | - Haruhiko Cho
- Department of Gastrointestinal Surgery, Kanagawa Cancer Center, 2-3-2 Nakao, Asahi-ku, Yokohama, 241-8515, Japan
| | - Manabu Shiozawa
- Department of Gastrointestinal Surgery, Kanagawa Cancer Center, 2-3-2 Nakao, Asahi-ku, Yokohama, 241-8515, Japan
| | - Takaki Yoshikawa
- Department of Gastrointestinal Surgery, Kanagawa Cancer Center, 2-3-2 Nakao, Asahi-ku, Yokohama, 241-8515, Japan
| | - Yasushi Rino
- Department of Surgery, Yokohama City University, 3-9 Fukuura, Kanazawa-ku, Yokohama, 236-0004, Japan
| | - Chikara Kunisaki
- Department of Gastroenterological Surgery, Yokohama City University Medical Center, 4-57 Urafune, Minami-ku, Yokohama, 232-0024, Japan
| | - Makoto Akaike
- Department of Gastrointestinal Surgery, Kanagawa Cancer Center, 2-3-2 Nakao, Asahi-ku, Yokohama, 241-8515, Japan
| | - Toshio Imada
- Department of Surgery, Yokohama City University, 3-9 Fukuura, Kanazawa-ku, Yokohama, 236-0004, Japan
| | - Munetaka Masuda
- Department of Surgery, Yokohama City University, 3-9 Fukuura, Kanazawa-ku, Yokohama, 236-0004, Japan
| |
Collapse
|
22
|
Šunderić M, Malenković V, Nedić O. Complexes between insulin-like growth factor binding proteins and alpha-2-macroglobulin in patients with tumor. Exp Mol Pathol 2015; 98:173-7. [DOI: 10.1016/j.yexmp.2015.03.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Accepted: 03/02/2015] [Indexed: 11/25/2022]
|
23
|
Murphy A, Kelly RJ. From molecular classification to targeted therapeutics: the changing face of systemic therapy in metastatic gastroesophageal cancer. Gastroenterol Res Pract 2015; 2015:896560. [PMID: 25784931 PMCID: PMC4346691 DOI: 10.1155/2015/896560] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Accepted: 01/15/2015] [Indexed: 01/14/2023] Open
Abstract
Histological classification of adenocarcinoma or squamous cell carcinoma for esophageal cancer or using the Lauren classification for intestinal and diffuse type gastric cancer has limited clinical utility in the management of advanced disease. Germline mutations in E-cadherin (CDH1) or mismatch repair genes (Lynch syndrome) were identified many years ago but given their rarity, the identification of these molecular alterations does not substantially impact treatment in the advanced setting. Recent molecular profiling studies of upper GI tumors have added to our knowledge of the underlying biology but have not led to an alternative classification system which can guide clinician's therapeutic decisions. Recently the Cancer Genome Atlas Research Network has proposed four subtypes of gastric cancer dividing tumors into those positive for Epstein-Barr virus, microsatellite unstable tumors, genomically stable tumors, and tumors with chromosomal instability. Unfortunately to date, many phase III clinical trials involving molecularly targeted agents have failed to meet their survival endpoints due to their use in unselected populations. Future clinical trials should utilize molecular profiling of individual tumors in order to determine the optimal use of targeted therapies in preselected patients.
Collapse
Affiliation(s)
- Adrian Murphy
- Upper Aerodigestive Malignancies Division, Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD 21231, USA
| | - Ronan J. Kelly
- Upper Aerodigestive Malignancies Division, Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD 21231, USA
- Gastroesophageal Cancer Therapeutics Program, Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Bunting Blaustein Cancer Research Building, 1650 Orleans Street, Room G93, Baltimore, MD 21231, USA
| |
Collapse
|
24
|
Li X, Xu L, Li H, Zhao L, Luo Y, Zhu Z, Liu Y, Qu X. Cetuximab-induced insulin-like growth factor receptor I activation mediates cetuximab resistance in gastric cancer cells. Mol Med Rep 2015; 11:4547-54. [PMID: 25625229 DOI: 10.3892/mmr.2015.3245] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Accepted: 09/12/2014] [Indexed: 11/06/2022] Open
Abstract
Epidermal growth factor receptor (EGFR) and insulin‑like growth factor receptor‑I (IGF‑IR) are frequently overexpressed in gastric cancer cells. However, these cells are resistant to the anti‑EGFR monoclonal antibody cetuximab. The aim of the present study was to determine whether cetuximab resistance in gastric cancer cells resulted from activation of the IGF‑IR signaling pathway by cetuximab. The results demonstrated that EGFR phosphorylation was markedly inhibited in gastric cancer cell lines (SGC7901 and MGC803) which possessed functional K‑ras and BRAF following treatment with cetuximab. However, cetuximab treatment did not diminish cell viability; by contrast, IGF‑IR activation was observed. Knockdown of IGF‑IR or the use of an IGF‑IR inhibitor were found to increase the sensitivity of gastric cancer cells to cetuximab. Furthermore, cetuximab induced phosphorylation of the non‑receptor tyrosine kinase c‑steroid receptor co‑activator (Src). Treatment of gastric cancer cells with a Src inhibitor was shown to significantly reduce cetuximab‑induced phosphorylation of IGF‑IR as well as Src, which resulted in enhanced sensitivity to cetuximab treatment. In conclusion, the results of the present study demonstrated that cetuximab‑induced IGF‑IR activation was involved in cetuximab resistance in gastric cancer cells and that Src was an important mediator for IGF‑IR activation.
Collapse
Affiliation(s)
- Xin Li
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Ling Xu
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Heming Li
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Lei Zhao
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Ying Luo
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Zhitu Zhu
- Department of Medical Oncology, The First Affiliated Hospital of Liaoning Medical University, Jinzhou, Liaoning 121001, P.R. China
| | - Yunpeng Liu
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Xiujuan Qu
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| |
Collapse
|
25
|
Balabanova S, Holmberg C, Steele I, Ebrahimi B, Rainbow L, Burdyga T, McCaig C, Tiszlavicz L, Lertkowit N, Giger OT, Oliver S, Prior I, Dimaline R, Simpson D, Beynon R, Hegyi P, Wang TC, Dockray GJ, Varro A. The neuroendocrine phenotype of gastric myofibroblasts and its loss with cancer progression. Carcinogenesis 2014; 35:1798-1806. [PMID: 24710625 PMCID: PMC4123646 DOI: 10.1093/carcin/bgu086] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2013] [Revised: 02/20/2014] [Accepted: 03/22/2014] [Indexed: 11/13/2022] Open
Abstract
Stromal cells influence cancer progression. Myofibroblasts are an important stromal cell type, which influence the tumour microenvironment by release of extracellular matrix (ECM) proteins, proteases, cytokines and chemokines. The mechanisms of secretion are poorly understood. Here, we describe the secretion of marker proteins in gastric cancer and control myofibroblasts in response to insulin-like growth factor (IGF) stimulation and, using functional genomic approaches, we identify proteins influencing the secretory response. IGF rapidly increased myofibroblast secretion of an ECM protein, TGFβig-h3. The secretory response was not blocked by inhibition of protein synthesis and was partially mediated by increased intracellular calcium (Ca(2+)). The capacity for evoked secretion was associated with the presence of dense-core secretory vesicles and was lost in cells from patients with advanced gastric cancer. In cells responding to IGF-II, the expression of neuroendocrine marker proteins, including secretogranin-II and proenkephalin, was identified by gene array and LC-MS/MS respectively, and verified experimentally. The expression of proenkephalin was decreased in cancers from patients with advanced disease. Inhibition of secretogranin-II expression decreased the secretory response to IGF, and its over-expression recovered the secretory response consistent with a role in secretory vesicle biogenesis. We conclude that normal and some gastric cancer myofibroblasts have a neuroendocrine-like phenotype characterized by Ca(2+)-dependent regulated secretion, dense-core secretory vesicles and expression of neuroendocrine marker proteins; loss of the phenotype is associated with advanced cancer. A failure to regulate myofibroblast protein secretion may contribute to cancer progression.
Collapse
Affiliation(s)
- Silvia Balabanova
- Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool, L69 3BX UK
| | - Chris Holmberg
- Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool, L69 3BX UK
| | - Islay Steele
- Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool, L69 3BX UK
| | - Bahram Ebrahimi
- Institute of Integrative Biology, University of Liverpool, Liverpool, L69 3BX UK
| | - Lucille Rainbow
- Institute of Integrative Biology, University of Liverpool, Liverpool, L69 3BX UK
| | - Ted Burdyga
- Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool, L69 3BX UK
| | - Cathy McCaig
- Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool, L69 3BX UK
| | | | - Nantaporn Lertkowit
- Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool, L69 3BX UK
| | - Olivier T Giger
- Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool, L69 3BX UK
| | - Simon Oliver
- Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool, L69 3BX UK
| | - Ian Prior
- Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool, L69 3BX UK
| | - Rod Dimaline
- Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool, L69 3BX UK
| | - Deborah Simpson
- Institute of Integrative Biology, University of Liverpool, Liverpool, L69 3BX UK
| | - Rob Beynon
- Institute of Integrative Biology, University of Liverpool, Liverpool, L69 3BX UK
| | - Peter Hegyi
- Department of Medicine, University of Szeged, Szeged, H-6701 Hungary
| | - Timothy C Wang
- Department of Medicine, Columbia University, New York, NY 10032-3802, USA and
| | - Graham J Dockray
- Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool, L69 3BX UK
| | - Andrea Varro
- Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool, L69 3BX UK, Department of Molecular and Clinical Cancer, Institute of Translational Medicine, University of Liverpool, Liverpool, L69 3BX UK
| |
Collapse
|
26
|
Tseng CH, Tseng FH. Diabetes and gastric cancer: the potential links. World J Gastroenterol 2014; 20:1701-1711. [PMID: 24587649 PMCID: PMC3930970 DOI: 10.3748/wjg.v20.i7.1701] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2013] [Revised: 11/18/2013] [Accepted: 12/05/2013] [Indexed: 02/06/2023] Open
Abstract
This article reviews the epidemiological evidence linking diabetes and gastric cancer and discusses some of the potential mechanisms, confounders and biases in the evaluation of such an association. Findings from four meta-analyses published from 2011 to 2013 suggest a positive link, which may be more remarkable in females and in the Asian populations. Putative mechanisms may involve shared risk factors, hyperglycemia, Helicobacter pylori (H. pylori) infection, high salt intake, medications and comorbidities. Diabetes may increase the risk of gastric cancer through shared risk factors including obesity, insulin resistance, hyperinsulinemia and smoking. Hyperglycemia, even before the clinical diagnosis of diabetes, may predict gastric cancer in some epidemiological studies, which is supported by in vitro, and in vivo studies. Patients with diabetes may also have a higher risk of gastric cancer through the higher infection rate, lower eradication rate and higher reinfection rate of H. pylori. High salt intake can act synergistically with H. pylori infection in the induction of gastric cancer. Whether a higher risk of gastric cancer in patients with diabetes may be ascribed to a higher intake of salt due to the loss of taste sensation awaits further investigation. The use of medications such as insulin, metformin, sulfonylureas, aspirin, statins and antibiotics may also influence the risk of gastric cancer, but most of them have not been extensively studied. Comorbidities may affect the development of gastric cancer through the use of medications and changes in lifestyle, dietary intake, and the metabolism of drugs. Finally, a potential detection bias related to gastrointestinal symptoms more commonly seen in patients with diabetes and with multiple comorbidities should be pointed out. Taking into account the inconsistent findings and the potential confounders and detection bias in previous epidemiological studies, it is expected that there are still more to be explored for the clarification of the association between diabetes and gastric cancer.
Collapse
|
27
|
Abstract
AIM: To systematically assess the association between diabetes mellitus and the risk of gastric cancer.
METHODS: We searched Medline (PubMed), EMBASE, the Cochrane Library and CBN databases from January 1990 to July 2013. We also searched the references of qualifying articles. Cohort studies comparing the risk of gastric cancer between diabetic patients and control subjects were included. Fifteen studies met our criteria, and the quality of these studies was assessed using the Newcastle-Ottawa Quality Assessment Scale. Meta-analysis was performed using the random-effects model (DerSimonian-Laird method).
RESULTS: The meta-analysis showed an increased gastric cancer risk in diabetic patients [relative risk (RR) = 1.15, 95%CI: 1.11-1.19].
CONCLUSION: Diabetes mellitus may increase the risk of gastric cancer.
Collapse
|
28
|
Abstract
Insulin-like growth factor 2 (IGF2) is a 7.5 kDa mitogenic peptide hormone expressed by liver and many other tissues. It is three times more abundant in serum than IGF1, but our understanding of its physiological and pathological roles has lagged behind that of IGF1. Expression of the IGF2 gene is strictly regulated. Over-expression occurs in many cancers and is associated with a poor prognosis. Elevated serum IGF2 is also associated with increased risk of developing various cancers including colorectal, breast, prostate and lung. There is established clinical utility for IGF2 measurement in the diagnosis of non-islet cell tumour hypoglycaemia, a condition characterised by a molar IGF2:IGF1 ratio >10. Recent advances in understanding of the pathophysiology of IGF2 in cancer have suggested much novel clinical utility for its measurement. Measurement of IGF2 in blood and genetic and epigenetic tests of the IGF2 gene may help assess cancer risk and prognosis. Further studies will determine whether these tests enter clinical practice. New therapeutic approaches are being developed to target IGF2 action. This review provides a clinical perspective on IGF2 and an update on recent research findings.
Collapse
Affiliation(s)
- Callum Livingstone
- Peptide Hormones Supraregional Assay Service (SAS), Clinical Biochemistry Department, Royal Surrey County Hospital NHS Trust, Guildford, Surrey GU2 7XX, UK Faculty of Health and Medical Sciences, University of Surrey, Guildford, Surrey GU2 5XH, UK
| |
Collapse
|
29
|
Du G, Liu M, Parvizi N, Zhao R. Ectopic expression of ghrelin affects gastric H+–K+-ATPase activity and expression of GHR/IGF-1 system in weaned mice. ACTA ACUST UNITED AC 2013; 186:12-7. [DOI: 10.1016/j.regpep.2013.06.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2012] [Revised: 03/10/2013] [Accepted: 06/19/2013] [Indexed: 10/26/2022]
|
30
|
Yoon JM, Son KY, Eom CS, Durrance D, Park SM. Pre-existing diabetes mellitus increases the risk of gastric cancer: A meta-analysis. World J Gastroenterol 2013; 19:936-45. [PMID: 23429469 PMCID: PMC3574893 DOI: 10.3748/wjg.v19.i6.936] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2012] [Revised: 10/22/2012] [Accepted: 10/30/2012] [Indexed: 02/06/2023] Open
Abstract
AIM: To systematically assess the association between diabetes and incidence of gastric cancer.
METHODS: We searched MedLine (PubMed), EMBASE, and the Cochrane Library without any limitations with respect to publication date or language, we also searched the references of qualifying articles. Case-control studies and cohort studies comparing the risk of gastric cancer between diabetic patients and control subjects were included. We excluded studies reporting only standardized incidence ratios without control groups and those that investigated only mortality but not incidence. Seventeen studies met our criteria, and the qualities of these studies were assessed using the Newcastle-Ottawa Quality Assessment Scale. We performed a meta-analysis of pre-existing diabetes and gastric cancer incidence using the DerSimonian-Laird method for random-effects. For subgroup analyses, we separated the studies by study type, region, sex and method to determine confounding factors and reliability. We also conducted subgroup analyses to examine the effects of smoking, Helicobacter pylori (H. pylori) infection, and cancer site. Publication bias was evaluated using Begg’s test.
RESULTS: A random-effects model meta-analysis showed an increased gastric cancer risk in diabetic patients [relative risk (RR) = 1.19; 95%CI: 1.08-1.31]. Subgroup analyses indicated that this result persisted in cohort studies (RR = 1.20; 95%CI: 1.08-1.34), in studies on populations of both Western (RR = 1.18; 95%CI: 1.03-1.36) and Eastern countries (RR = 1.19; 95%CI: 1.02-1.38), in a female subgroup (RR=1.24; 95%CI: 1.01-1.52), and in highly qualified studies (RR = 1.17; 95%CI: 1.05-1.31). Moreover, these results persisted when the analysis was confined to studies adjusted for well-known gastric cancer risk factors such as smoking (RR = 1.17; 95%CI: 1.01-1.34) and H. pylori infection (RR = 2.35; 95%CI: 1.24-4.46).
CONCLUSION: Pre-existing diabetes mellitus may increase the risk of gastric cancer by approximately 19%. This effect seems to be unrelated to geographical region.
Collapse
|
31
|
Liu P, Wang X, Hu CH, Hu TH. Bioinformatics analysis with graph-based clustering to detect gastric cancer-related pathways. GENETICS AND MOLECULAR RESEARCH 2012; 11:3497-504. [PMID: 23079843 DOI: 10.4238/2012.september.26.5] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Despite a dramatic reduction in incidence and mortality rates, gastric cancer still remains one of the most common malignant tumors worldwide, especially in China. We sought to identify a set of discriminating genes that could be used for characterization and prediction of response to gastric cancer. Using bioinformatics analysis, two gastric cancer datasets, GSE19826 and GSE2685, were merged to find novel target genes and domains to explain pathogenesis; we selected differentially expressed genes in these two datasets and analyzed their correlation in order to construct a network. This network was examined to find graph clusters and related significant pathways. We found that ALDH2 and CCNB1 were associated with gastric cancer. We also mined for the underlying molecular mechanisms involving these differently expressed genes. We found that ECM-receptor interaction, focal adhesion, and cell cycle were among the significantly associated pathways. We were able to detect genes and pathways that were not considered in previous research on gastric cancer, indicating that this approach could be an improvement on the investigative mechanisms for finding genetic associations with disease.
Collapse
Affiliation(s)
- P Liu
- Department of Oncology, Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | | | | | | |
Collapse
|
32
|
Zhao XM, Chen J, Yang L, Luo X, Xu LL, Liu DX, Zhai SL, Li P, Wang XR. Association between IRS-2 G1057D polymorphism and risk of gastric cancer. World J Gastrointest Oncol 2012; 4:9-15. [PMID: 22347534 PMCID: PMC3277875 DOI: 10.4251/wjgo.v4.i1.9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2011] [Revised: 12/13/2011] [Accepted: 12/20/2011] [Indexed: 02/05/2023] Open
Abstract
AIM: To investigate the relationship between insulin receptor substrate-2 (IRS-2) G1057D polymorphism and the risk of gastric cancer (GC) in a Chinese population.
METHODS: A case-control study with 197 GC patients and 156 age- and sex- matched control subjects was conducted. The genotypes of polymorphism were assessed by polymerase chain reaction-restriction fragment length polymorphism.
RESULTS: The genotype frequencies of IRS-2 G1057D polymorphism in cases were obviously different from those in the control group (P = 0.031). Compared with GG genotype carriers, the risk for GC was significantly higher (adjusted odds ratio = 2.32, 95% CI: 1.03-5.23, P = 0.042) in the individuals with the IRS-2 DD genotype. Furthermore, stratified analysis was performed based on age, sex, smoking status and residence, but no significant difference between the two groups was found. In addition, no significant association between genotypes and clinicopathological features was observed either.
CONCLUSION: This study demonstrates that IRS-2 G1057D is involved in susceptibility to GC, although further large-sample studies are still needed.
Collapse
Affiliation(s)
- Xiao-Mei Zhao
- Xiao-Mei Zhao, Xuan Luo, Lin-Lin Xu, Su-Lan Zhai, Ping Li, Xue-Rong Wang, Department of Pharmacology, Nanjing Medical University, Nanjing 210029, Jiangsu Province, China
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Huang HJ, Angelo LS, Rodon J, Sun M, Kuenkele KP, Parsons HA, Trent JC, Kurzrock R. R1507, an anti-insulin-like growth factor-1 receptor (IGF-1R) antibody, and EWS/FLI-1 siRNA in Ewing's sarcoma: convergence at the IGF/IGFR/Akt axis. PLoS One 2011; 6:e26060. [PMID: 22022506 PMCID: PMC3191161 DOI: 10.1371/journal.pone.0026060] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2011] [Accepted: 09/19/2011] [Indexed: 01/05/2023] Open
Abstract
A subset of patients with Ewing's sarcoma responds to anti-insulin-like growth factor-1 receptor (IGF-1R) antibodies. Mechanisms of sensitivity and resistance are unknown. We investigated whether an anti-IGF-1R antibody acts via a pathway that could also be suppressed by small interfering (si) RNA against the EWS/FLI-1 fusion protein, the hallmark of Ewing's sarcoma. The growth of two Ewing's sarcoma cell lines (TC-32 and TC-71) was inhibited by the fully human anti-IGF-1R antibody, R1507 (clonogenic and MTT assays). TC-32 and TC-71 cells express high levels of IGF-2, while RD-ES and A4573 Ewing's cell lines, which were less responsive to R1507 in our assays, express low or undetectable IGF-2, respectively. TC-71 cells also expressed high levels of IGF-1R, and R1507 decreased steady-state levels of this receptor by internalization/degradation, an effect which was associated with a decrease in p-IGF-1R, p-IRS-1, and p-Akt. EWS/FLI-1 siRNA also decreased p-Akt, due to its ability to increase IGF-BP3 levels and subsequently decrease IGF-1 and IGF-2 levels, thus inhibiting signaling through p-IGF-1R. This inhibition correlated with growth suppression and apoptosis. The attenuation of Akt activation was confirmed in TC-71 and HEK-293 (human embryonic kidney) cells by transfecting them with IGF-1R siRNA. We conclude that antibodies and siRNA to IGF-1R, as well as siRNA to EWS/FLI-1, act via intersecting IGF/IGF-1R signals that suppress a common point in this pathway, namely the phosphorylation of Akt.
Collapse
MESH Headings
- Antibodies, Monoclonal/pharmacology
- Antibodies, Monoclonal, Humanized
- Apoptosis/drug effects
- Cell Line, Tumor
- Cell Proliferation/drug effects
- Colony-Forming Units Assay
- Down-Regulation/drug effects
- HEK293 Cells
- Humans
- Insulin Receptor Substrate Proteins/metabolism
- Insulin-Like Growth Factor Binding Protein 3/metabolism
- Insulin-Like Growth Factor II/metabolism
- Oncogene Proteins, Fusion/metabolism
- Phosphorylation/drug effects
- Polymorphism, Genetic
- Protein Structure, Tertiary
- Proto-Oncogene Protein c-fli-1/metabolism
- Proto-Oncogene Proteins c-akt/metabolism
- RNA, Small Interfering/metabolism
- RNA-Binding Protein EWS/metabolism
- Receptor, IGF Type 1/antagonists & inhibitors
- Receptor, IGF Type 1/metabolism
- Receptor, IGF Type 2/chemistry
- Receptor, IGF Type 2/genetics
- Reproducibility of Results
- Sarcoma, Ewing/metabolism
- Signal Transduction/drug effects
- Somatomedins/metabolism
- Transfection
Collapse
Affiliation(s)
- Helen J. Huang
- Phase I Program, Department of Investigational Cancer Therapeutics, The University of Texas M.D. Anderson Cancer Center, Houston, Texas, United States of America
| | - Laura S. Angelo
- Phase I Program, Department of Investigational Cancer Therapeutics, The University of Texas M.D. Anderson Cancer Center, Houston, Texas, United States of America
| | - Jordi Rodon
- Phase I Program, Department of Investigational Cancer Therapeutics, The University of Texas M.D. Anderson Cancer Center, Houston, Texas, United States of America
- Servei d'Oncologia Medica, Vall d'Hebron Institute of Oncology, Hospital Universitari Vall d'Hebron, Barcelona, Spain
| | - Michael Sun
- Phase I Program, Department of Investigational Cancer Therapeutics, The University of Texas M.D. Anderson Cancer Center, Houston, Texas, United States of America
| | | | - Henrique A. Parsons
- Phase I Program, Department of Investigational Cancer Therapeutics, The University of Texas M.D. Anderson Cancer Center, Houston, Texas, United States of America
| | - Jonathan C. Trent
- Division of Cancer Medicine, Department of Sarcoma Medical Oncology, The University of Texas M.D. Anderson Cancer Center, Houston, Texas, United States of America
| | - Razelle Kurzrock
- Phase I Program, Department of Investigational Cancer Therapeutics, The University of Texas M.D. Anderson Cancer Center, Houston, Texas, United States of America
- * E-mail:
| |
Collapse
|
34
|
Subbiah V, Angelo LS, Kurzrock R. Insulin-like growth factor 1 receptor (IGF-1R) inhibitor: another arrow in the quiver - Will it hit the moving target? Expert Opin Investig Drugs 2011; 20:1471-7. [PMID: 21936711 DOI: 10.1517/13543784.2011.619978] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Insulin-like growth factor 1 receptor (IGF-1R) inhibitors have anti-tumor activity in various cancers. The development of IGF-1R inhibitors is a multi-dimensional and complex issue, involving many different drugs, and affecting several different points along the pathway. Matching patients with these agents based on molecular profiling/signatures will be essential for the proper development of this type of targeted agent.
Collapse
|
35
|
Li H, Adachi Y, Yamamoto H, Min Y, Ohashi H, Ii M, Arimura Y, Endo T, Lee CT, Carbone DP, Imai K, Shinomura Y. Insulin-like growth factor-I receptor blockade reduces tumor angiogenesis and enhances the effects of bevacizumab for a human gastric cancer cell line, MKN45. Cancer 2011; 117:3135-3147. [PMID: 21264842 DOI: 10.1002/cncr.25893] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2010] [Revised: 11/18/2010] [Accepted: 11/29/2010] [Indexed: 12/13/2022]
Abstract
BACKGROUND Insulin-like growth factor (IGF)-I receptor (IGF-IR) signaling is required for tumorigenicity and tumor progression of gastrointestinal cancers. The authors previously reported the success of therapy for gastrointestinal cancers using adenoviruses that expressed dominant-negative IGF-IR (IGF-IR/dn). In addition, it has been demonstrated that IGF-IR signaling affects vascular endothelial growth factor (VEGF) expression in some other types of tumors. The objective of the current study was to evaluate this interaction by studying the roles of IGF-IR in tumor angiogenesis and lymphangiogenesis and their implications for targeted therapy in gastric cancer. METHODS The impact of IGF signals on the expression of VEGF-A and VEGF-C in a human gastric cancer cell, MKN45, and vascular formation were assessed. The effects of IGF-IR/dn with or without bevacizumab on angiogenesis, lymphangiogenesis, and tumor suppression in mouse xenografts were assessed. RESULTS IGFs induced the expression of VEGF ligands and up-regulated in vitro vascular vessel formation. IGF-IR/dn reduced VEGF expression, reduced the activation of both protein kinase B (Akt) and mitogen-activated protein kinase (MAPK), and reduced vascular formation, indicating that IGF-IR/dn inhibited tumor growth in mice by inhibiting both angiogenesis and lymphangiogenesis. However, IGF-IR/dn did not affect either blood sugar or body weight in these mice. The combination of IGF-IR/dn and bevacizumab was highly effective against these xenograft tumors, and only this combination resulted in the complete regression of 43% of tumors, reduced the expression of VEGF, and induced apoptosis. CONCLUSIONS The current results indicated that IGF-IR is involved in angiogenesis and lymphangiogenesis through the modulation of VEGF ligand expression in the gastric cancer cell line MKN45. Targeting IGF-IR in combination with agents that block the VEGF pathway may have therapeutic utility for gastric cancer therapy.
Collapse
Affiliation(s)
- Hua Li
- First Department of Internal Medicine, Sapporo Medical University, Sapporo, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Hassan SE, Bekarev M, Kim MY, Lin J, Piperdi S, Gorlick R, Geller DS. Cell surface receptor expression patterns in osteosarcoma. Cancer 2011; 118:740-9. [PMID: 21751203 DOI: 10.1002/cncr.26339] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2011] [Revised: 05/16/2011] [Accepted: 05/18/2011] [Indexed: 01/17/2023]
Abstract
BACKGROUND Although the presence of numerous cell signaling receptors in osteosarcoma is known, their simultaneous characterization has not been performed to date. The current study sought to characterize and quantify the expression of cell surface receptors across a variety of osteosarcoma cell lines. METHODS Standard (n = 4) and patient-derived (n = 10) osteosarcoma cell lines were cultured and labeled with antibodies to epidermal growth factor receptor, human epidermal growth factor receptor (HER)-2, HER-3, HER-4, insulin-like growth factor 1 receptor (IGF-1R), IGF-2R, insulin receptor (IR), vascular endothelial growth factor receptor (VEGFR)-1, VEGFR-2, VEGFR-3, c-Met, fibroblast growth factor receptor (FGFR)-2, FGFR-3, and platelet-derived growth factor receptor (PDGFR)-β. Cell surface examination was performed using flow cytometry, and the geometric fluorescent mean for each receptor was calculated and compared against a positive control. RESULTS Significant overexpression of IGF-2R was shown in all cell lines, with an average geometric mean above the upper expression quartile. A variable expression pattern was seen for c-Met, PDGFR-β, IR, IGFR-1, HER-2, and VEGFR-3 with expression values for the remaining receptors mainly in the lower quartile. An apparent association between the expression of IGF-1R and HER-2 and between the expression of PDGFR-β and IR was demonstrated. CONCLUSION IGF-2R was consistently overexpressed on the cell surface across all tested osteosarcoma cell lines. Substantial, although variable, expression of c-Met, HER-2, IGF-1R, VEGFR-3, IR, and PDGFR-β was demonstrated as well, suggesting that these receptors may contribute to osteosarcoma aggressiveness and biological heterogeneity and may serve as potential targets within a subset of tumors. Associated receptor expression may provide new insight into common regulatory factors or pathways. Targeting either common factors or targeting multiple specific receptors may have therapeutic relevance.
Collapse
Affiliation(s)
- Sheref E Hassan
- Department of Orthopaedic Surgery, Montefiore Medical Center and The Children's Hospital at Montefiore, Bronx, New York 10467, USA
| | | | | | | | | | | | | |
Collapse
|
37
|
Zuo QS, Yan R, Feng DX, Zhao R, Chen C, Jiang YM, Cruz-Correa M, Casson AG, Kang XD, Han F, Chen T. Loss of imprinting and abnormal expression of the insulin-like growth factor 2 gene in gastric cancer. Mol Carcinog 2011; 50:390-6. [DOI: 10.1002/mc.20731] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2010] [Revised: 11/12/2010] [Accepted: 11/30/2010] [Indexed: 11/11/2022]
|
38
|
Adachi Y, Yamamoto H, Ohashi H, Endo T, Carbone DP, Imai K, Shinomura Y. A candidate targeting molecule of insulin-like growth factor-I receptor for gastrointestinal cancers. World J Gastroenterol 2010; 16:5779-5789. [PMID: 21154998 PMCID: PMC3001968 DOI: 10.3748/wjg.v16.i46.5779] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2010] [Revised: 08/17/2010] [Accepted: 08/24/2010] [Indexed: 02/06/2023] Open
Abstract
Advances in molecular research in cancer have brought new therapeutic strategies into clinical usage. One new group of targets is tyrosine kinase receptors, which can be treated by several strategies, including small molecule tyrosine kinase inhibitors (TKIs) and monoclonal antibodies (mAbs). Aberrant activation of growth factors/receptors and their signal pathways are required for malignant transformation and progression in gastrointestinal (GI) carcinomas. The concept of targeting specific carcinogenic receptors has been validated by successful clinical application of many new drugs. Type I insulin-like growth factor (IGF) receptor (IGF-IR) signaling potently stimulates tumor progression and cellular differentiation, and is a promising new molecular target in human malignancies. In this review, we focus on this promising therapeutic target, IGF-IR. The IGF/IGF-IR axis is an important modifier of tumor cell proliferation, survival, growth, and treatment sensitivity in many malignant diseases, including human GI cancers. Preclinical studies demonstrated that downregulation of IGF-IR signals reversed the neoplastic phenotype and sensitized cells to anticancer treatments. These results were mainly obtained through our strategy of adenoviruses expressing dominant negative IGF-IR (IGF-IR/dn) against gastrointestinal cancers, including esophagus, stomach, colon, and pancreas. We also summarize a variety of strategies to interrupt the IGFs/IGF-IR axis and their preclinical experiences. Several mAbs and TKIs targeting IGF-IR have entered clinical trials, and early results have suggested that these agents have generally acceptable safety profiles as single agents. We summarize the advantages and disadvantages of each strategy and discuss the merits/demerits of dual targeting of IGF-IR and other growth factor receptors, including Her2 and the insulin receptor, as well as other alternatives and possible drug combinations. Thus, IGF-IR might be a candidate for a molecular therapeutic target in human GI carcinomas.
Collapse
|
39
|
Prakash J, Beljaars L, Harapanahalli AK, Zeinstra-Smith M, de Jager-Krikken A, Hessing M, Steen H, Poelstra K. Tumor-targeted intracellular delivery of anticancer drugs through the mannose-6-phosphate/insulin-like growth factor II receptor. Int J Cancer 2010; 126:1966-1981. [PMID: 19795464 DOI: 10.1002/ijc.24914] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Tumor-targeting of anticancer drugs is an interesting approach for the treatment of cancer since chemotherapies possess several adverse effects. In the present study, we propose a novel strategy to deliver anticancer drugs to the tumor cells through the mannose-6-phosphate/insulin-like growth factor receptor (M6P/IGF-IIR) which are abundantly expressed in several human tumors. We developed a drug carrier against M6P/IGF-II receptor by modifying human serum albumin (HSA) with M6P moieties. M6P-HSA specifically bound and internalized into M6P/IGF-IIR-expressing B16 melanoma cells as demonstrated with radioactive studies and anti-HSA immunostaining. In vivo, M6P-HSA rapidly accumulated in subcutaneous tumors in tumor and stromal components after an intravenous injection. To demonstrate the application of M6P-HSA as a drug carrier, we coupled doxorubicin to it. Dox-HSA-M6P conjugate could release doxorubicin at lysosomal pH and showed M6P-specific binding and uptake in tumor cells. In vitro, a short exposure with Dox-HSA-M6P induced killing of tumor cells, which could be blocked by excess M6P-HSA. In vivo, Dox-HSA-M6P distributed to tumors and some other organs while free doxorubicin distributed to all organs but slightly to tumors. In B16 tumor-bearing mice, Dox-HSA-M6P significantly inhibited the tumor growth whereas an equimolar dose of free doxorubicin did not show any anti-tumor effect. In addition, targeted doxorubicin did not show any side-effects on liver and kidney function tests, body weight and blood cell counts. In conclusion, M6P-HSA is a suitable carrier for delivery of anticancer drugs to tumors through M6P/IGF-IIR. Improved antitumor effects of the targeted doxorubicin by M6P-HSA suggest that this novel approach may be applied to improve the therapeutic efficacy of anticancer drugs.
Collapse
Affiliation(s)
- Jai Prakash
- Department of Pharmacokinetics, Toxicology and Targeting, Groningen Research Institute for Pharmacy, University of Groningen, The Netherlands.,BiOrion Technologies BV, Groningen, The Netherlands
| | - Leonie Beljaars
- Department of Pharmacokinetics, Toxicology and Targeting, Groningen Research Institute for Pharmacy, University of Groningen, The Netherlands
| | - Akshay K Harapanahalli
- Department of Pharmacokinetics, Toxicology and Targeting, Groningen Research Institute for Pharmacy, University of Groningen, The Netherlands
| | - Mieke Zeinstra-Smith
- Department of Pharmacokinetics, Toxicology and Targeting, Groningen Research Institute for Pharmacy, University of Groningen, The Netherlands.,BiOrion Technologies BV, Groningen, The Netherlands
| | - Alie de Jager-Krikken
- Department of Pharmacokinetics, Toxicology and Targeting, Groningen Research Institute for Pharmacy, University of Groningen, The Netherlands
| | | | - Herman Steen
- BiOrion Technologies BV, Groningen, The Netherlands
| | - Klaas Poelstra
- Department of Pharmacokinetics, Toxicology and Targeting, Groningen Research Institute for Pharmacy, University of Groningen, The Netherlands.,BiOrion Technologies BV, Groningen, The Netherlands
| |
Collapse
|
40
|
Adachi Y, Li R, Yamamoto H, Min Y, Piao W, Wang Y, Imsumran A, Li H, Arimura Y, Lee CT, Imai K, Carbone DP, Shinomura Y. Insulin-like growth factor-I receptor blockade reduces the invasiveness of gastrointestinal cancers via blocking production of matrilysin. Carcinogenesis 2009; 30:1305-1313. [PMID: 19493905 DOI: 10.1093/carcin/bgp134] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Insulin-like growth factor-I receptor (IGF-IR) signaling is required for carcinogenicity and proliferation of gastrointestinal (GI) cancers. We have previously shown significant therapeutic activity for recombinant adenoviruses expressing dominant-negative insulin-like growth factor-I receptor (IGF-IR/dn), including suppression of tumor invasion. In this study, we sought to evaluate the mechanism of inhibition of invasion and the relationship between IGF-IR and matrix metalloproteinase (MMP) activity in GI carcinomas. We analyzed the role of IGF-IR on invasion in three GI cancer cell lines, colorectal adenocarcinoma, HT29; pancreatic adenocarcinoma, BxPC3 and gastric adenocarcinoma, MKN45, using a modified Boyden chamber method and subcutaneous xenografts in nude mice. The impact of IGF-IR signaling on the expression of MMPs and the effects of blockade of matrilysin or IGF-IR on invasiveness were assessed using recombinant adenoviruses, a tyrosine kinase inhibitor NVP-AEW541 and antisense matrilysin. Invasive subcutaneous tumors expressed several MMPs. IGF-IR/dn reduced the expression of these MMPs but especially matrilysin (MMP-7). Insulin-like growth factor (IGF) stimulated secretion of matrilysin and IGF-IR/dn blocked IGF-mediated matrilysin induction in three GI cancers. Both IGF-IR/dn and inhibition of matrilysin reduced in vitro invasion to the same degree. NVP-AEW541 also reduced cancer cell invasion both in vitro and in murine xenograft tumors via suppression of matrilysin. Thus, blockade of IGF-IR is involved in the suppression of cancer cell invasion through downregulation of matrilysin. Strategies of targeting IGF-IR may have significant therapeutic utility to prevent invasion and progression of human GI carcinomas.
Collapse
MESH Headings
- Adenocarcinoma/enzymology
- Adenocarcinoma/pathology
- Adenocarcinoma/prevention & control
- Animals
- Blotting, Western
- Female
- Fluorescent Antibody Technique
- Gastrointestinal Neoplasms/enzymology
- Gastrointestinal Neoplasms/pathology
- Gastrointestinal Neoplasms/prevention & control
- Genes, Dominant
- Humans
- Immunoenzyme Techniques
- Immunoprecipitation
- Infusions, Subcutaneous
- Matrix Metalloproteinase 7/genetics
- Matrix Metalloproteinase Inhibitors
- Mice
- Mice, Inbred BALB C
- Mice, Nude
- Neoplasm Invasiveness
- Pyrimidines/pharmacology
- Pyrroles/pharmacology
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Receptor, IGF Type 1/antagonists & inhibitors
- Receptor, IGF Type 1/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
- Signal Transduction
- Somatomedins/pharmacology
- Tumor Cells, Cultured
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Yasushi Adachi
- First Department of Internal Medicine, Sapporo Medical University, South-1, West-16, Chuo-ku, Sapporo 060-8543, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Leitzmann MF, Koebnick C, Freedman ND, Park Y, Ballard-Barbash R, Hollenbeck A, Schatzkin A, Abnet CC. Physical activity and esophageal and gastric carcinoma in a large prospective study. Am J Prev Med 2009; 36:112-9. [PMID: 19062237 PMCID: PMC2655147 DOI: 10.1016/j.amepre.2008.09.033] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2008] [Revised: 06/18/2008] [Accepted: 09/25/2008] [Indexed: 10/21/2022]
Abstract
BACKGROUND Few studies have investigated the relationship of physical activity to esophageal and gastric carcinoma according to histology and anatomic site. METHODS This study prospectively investigated the association between physical activity and esophageal and gastric carcinoma in a cohort of 487,732 U.S. men and women, followed from 1995-1996 to December 31, 2003. All analyses were performed in 2007-2008. RESULTS During 8 years of follow-up study, 523 cases of esophageal carcinoma (149 squamous cell and 374 adenocarcinoma) and 642 cases of gastric carcinoma (313 cardia and 329 noncardia) were documented. Physical activity was associated with reduced risk of esophageal and gastric adenocarcinomas but was unrelated to esophageal squamous cell carcinoma. The inverse association with physical activity was strongest for gastric noncardia adenocarcinoma (multivariate relative risk [RR] for highest versus lowest physical activity level=0.62, 95% CI=0.44, 0.87). Relationships were weaker but evident for gastric cardia adenocarcinoma (RR=0.83; 95% CI=0.58, 1.19) and esophageal adenocarcinoma (RR=0.75; 95% CI=0.53, 1.06). No significant relationship with physical activity was observed for esophageal squamous cell carcinoma (RR=1.05; 95% CI=0.64, 1.74). Exclusion of cases diagnosed during the first 2 follow-up years did not change those estimates, indicating that the findings are not due to decreased activity levels among participants with undiagnosed cancer at entry. CONCLUSIONS Physical activity may play a role in the prevention of upper gastrointestinal tract adenocarcinomas. No association was seen between physical activity and esophageal squamous cell carcinoma.
Collapse
Affiliation(s)
- Michael F Leitzmann
- Nutritional Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Department of Health and Human Services, Bethesda, Maryland, USA.
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Codina M, García de la serrana D, Sánchez-Gurmaches J, Montserrat N, Chistyakova O, Navarro I, Gutiérrez J. Metabolic and mitogenic effects of IGF-II in rainbow trout (Oncorhynchus mykiss) myocytes in culture and the role of IGF-II in the PI3K/Akt and MAPK signalling pathways. Gen Comp Endocrinol 2008; 157:116-24. [PMID: 18504044 DOI: 10.1016/j.ygcen.2008.04.009] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2007] [Revised: 04/07/2008] [Accepted: 04/09/2008] [Indexed: 01/28/2023]
Abstract
Primary cultures of rainbow trout skeletal muscle cells were used to examine the role of insulin-like growth factor II (IGF-II) in fish muscle metabolism and growth, and to compare its main signal transduction pathways with those of IGF-I. IGF-II stimulated 2-deoxy-d-glucose (2-DG) uptake in trout myocytes at concentrations of between 5 and 100 nM, with similar maximal effects and temporal pattern to IGF-I (100 nM). The results of incubation with inhibitors (Wortmannin and CKB) indicated that IGF-II stimulates glucose uptake through the same mechanisms as IGF-I. In addition, IGF-II stimulated myoblast DNA synthesis (measured by thymidine incorporation) at relatively low concentrations (0.1-10 nM), with the maximum increase at 1 nM (167+/-17% with respect to control values). The cells were immunoreactive against ERK 1/2 MAPK and Akt/PKB, components of the two main signal transduction pathways for the IGF-I receptor. IGF-II stimulated the phosphorylation of the protein MAPK, especially at the proliferation stage (increases of up to 125.7+/-16.9% and 125.3+/-3.3% with respect to control in IGF-II- and IGF-I-treated cells, respectively). In contrast, the effects of both IGFs on the activation of the PI3K/Akt pathway were stronger in fully differentiated myocytes and in early-formed fibres (up to 359+/-18.5% in IGF-II-treated cells with respect to control). These results indicate that IGF-II has both mitogenic and metabolic effects in trout muscle cells, which are equivalent to those found in response to IGF-I. Both IGFs exert these effects though the same signalling pathways (MAPK and PI3K/Akt).
Collapse
Affiliation(s)
- Marta Codina
- Departament de Fisiologia, Facultat de Biologia, Universitat de Barcelona, España. Av. Diagonal 645, E-08028 Barcelona, Spain
| | | | | | | | | | | | | |
Collapse
|
43
|
|
44
|
Li ZQ, Yu WP, Xie XD, Li PQ, Guo TK, Zhang WH, An LZ, Wang XL. Association of gastric cancer with tyrosine hydroxylase gene polymorphism in a northwestern Chinese population. Clin Exp Med 2007; 7:98-101. [DOI: 10.1007/s10238-007-0135-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2006] [Accepted: 07/13/2007] [Indexed: 01/11/2023]
|
45
|
Pavelić J, Radaković B, Pavelić K. Insulin-like growth factor 2 and its receptors (IGF 1R and IGF 2R/mannose 6-phosphate) in endometrial adenocarcinoma. Gynecol Oncol 2007; 105:727-35. [PMID: 17399767 DOI: 10.1016/j.ygyno.2007.02.012] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2006] [Revised: 01/30/2007] [Accepted: 02/06/2007] [Indexed: 10/23/2022]
Abstract
OBJECTIVE To investigate the consequences of IGF proteins dysfunction in development of endometrial adenocarcinomas. METHODS The expression of IGF 2 and IGF 1R was correlated with the expression of IGF 2R and apoptosis rate in 59 human endometrial adenocarcinomas, 10 endometrial hyperplasias and 7 normal tissues. The presence of mutations in the IGF 2R gene was followed in 46 adenocarcinomas. We also examined the effect of IGF 1 receptor blockage on cancer cell proliferation. In groups of either IGF 2-positive or IGF 2-negative tumors (stages III and IV) the expression of IGF 1 and IGF 1R was correlated with cell proliferation index and telomerase activity. RESULTS The expression of IGF 2 and IGF 1R was much higher in malignant tissue of stages III and IV than in tumors of stages I and II and normal or hyperplastic endometrium. This correlated with a decreased apoptosis rate and IGF 2R expression. Eight adenocarcinomas expressed biallelic mutation of the IGF 2R gene. The specific inhibition of IGF 1R and IGF 2 decreased tumor cell proliferation in IGF 2/IGF 1R-positive tumors. Furthermore, the positive correlation between increased expression of IGF 1 and IGF 1R proteins and increased telomerase activity and cell proliferation index was found in both IGF 2-negative and IGF 2-positive tumors. CONCLUSION Our data suggest that IGF 1, IGF 2 and their receptors are involved in the progression of endometrial adenocarcinomas. As cancer cell proliferation can be abrogated by blocking mRNA or protein products of these genes, tumors with extensive involvement of the IGF 2 pathway would be candidates for the therapeutics strategies aimed at interference with this pathway.
Collapse
Affiliation(s)
- Jasminka Pavelić
- Division of Molecular Medicine, Laboratory of Molecular Oncology, Rudjer Bosković Institute, Bijenicka 54, HR-10002 Zagreb, Croatia.
| | | | | |
Collapse
|
46
|
Adachi Y, Yamamoto H, Imsumran A, Oka T, Oki M, Nosho K, Min Y, Shinomura Y, Lee C, Carbone DP, Imai K. INSULIN‐LIKE GROWTH FACTOR‐I RECEPTOR AS A CANDIDATE FOR A NOVEL MOLECULAR TARGET IN GASTROINTESTINAL CANCERS. Dig Endosc 2006; 18:245-251. [DOI: 10.1111/j.1443-1661.2006.00657.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/08/2023]
Abstract
Abnormal activation of growth factor receptors and their signal pathways are required for neoplastic transformation and tumor progression. The concept of targeting specific tumorigenic receptors has been validated by successful clinical application of multiple new drugs, such as those acting against HER2/neu, epidermal growth factor receptor 1, and c‐Kit. In this review, we focus on the next promising therapeutic molecular target of insulin‐like growth factor (IGF)‐I receptor (IGF‐Ir). The IGF/IGF‐Ir system is an important modifier of cancer cell proliferation, survival, growth, and treatment sensitivity in a number of neoplastic diseases, including human gastrointestinal carcinomas. Preclinical studies demonstrated that downregulation of IGF‐Ir signals reversed the neoplastic phenotype and sensitized cells to antitumor treatments. We summarize a variety of ways to disrupt IGF‐Ir function. Then, we introduce our strategy of adenoviruses expressing dominant negative of IGF‐Ir (IGF‐Ir/dn) against gastrointestinal cancers, including stomach, colon, and pancreas. IGF‐Ir/dn suppresses tumorigenicity both in vitro and in vivo and increases stressor‐induced apoptosis. IGF‐Ir/dn expression upregulates chemotherapy‐induced apoptosis and these combination therapies with chemotherapy are very effective against tumors in mice. Some drugs blocking IGF‐Ir function are now entering clinical trial, thus IGF‐Ir might be a candidate for a therapeutic target in several gastrointestinal malignancies.
Collapse
|
47
|
Dutta N, Gupta A, Mazumder DNG, Banerjee S. Down-regulation of locus-specific human lymphocyte antigen class I expression in Epstein-Barr virus-associated gastric cancer: implication for viral-induced immune evasion. Cancer 2006; 106:1685-93. [PMID: 16541432 DOI: 10.1002/cncr.21784] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
BACKGROUND To understand whether the association between Epstein-Barr Virus (EBV) and gastric cancer (GC) has any role in loss of surface expression of human lymphocyte antigen (HLA) class I, the authors analyzed locus-specific transcriptional expression of HLA-A, HLA-B, HLA-C, and HLA-E along with other HLA-associated molecules (beta2-microglobulin [beta2M], cellular latent membrane protein [LMP], and transporter associated with antigen presentation [TAP]) in EBV-associated, primary GC (EBVaGC) and EBV-negative GC (EBVnGC) tissues. METHODS Approximately 20 EBVaGC tissues and 40 EBVnGC tissues and their corresponding normal tissues were used in the study. The presence of EBV in GC was established by EBV-encoded small RNA in situ hybridization analysis and BamHI W polymerase chain reaction (PCR) analysis. Transcriptional expression of viral LMP2A and several HLA class I genes were analyzed by reverse transcriptase (RT)-PCR. Surface expression levels of HLA class I proteins in cancer samples along with their normal counterparts also were quantified by flow cytometry. RESULTS The RT-PCR data suggested selective down-regulation of the HLA-A/HLA-B locus along with over-expression of HLA-E transcripts in EBVaGC (P < .05). This was confirmed further by the flow-cytometric studies using antibodies to HLA-ABC and HLA-E. Among the accessory molecules, LMP7 transcript was down-regulated in a number of EBVaGC tissues compared with EBVnGC. CONCLUSIONS The current results suggested that the establishment of EBV latent infection in gastric tissues allows malignant cells to avoid the immune surveillance of both cytotoxic T-lymphocytes and natural killer cells by regulating the differential expression of HLA class I molecules.
Collapse
Affiliation(s)
- Nirmal Dutta
- Biophysics Division, Saha Institute of Nuclear Physics, Kolkata, India
| | | | | | | |
Collapse
|
48
|
Berkowitz DB, Maiti G, Charette BD, Dreis CD, MacDonald RG. Mono- and bivalent ligands bearing mannose 6-phosphate (M6P) surrogates: targeting the M6P/insulin-like growth factor II receptor. Org Lett 2006; 6:4921-4. [PMID: 15606100 DOI: 10.1021/ol0479444] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
[reaction: see text] Mannose 6-phosphate mimics locked into the alpha-configuration and bearing hydrolase-resistant phosphate surrogates were synthesized and evaluated for binding affinity to the mannose 6-phosphate/insulin-like growth factor II receptor (M6P/IGF2R). Affinity increases as the phosphate surrogate is varied in the order malonyl ether < malonate < phosphonate. An alkene cross-metathesis approach to sought-after bivalent M6P-bearing ligands is also described. These compounds were designed to map onto biantennary sectors of high-mannose-type oligosaccharides carried by glycoprotein M6P/IGF2R ligands.
Collapse
Affiliation(s)
- David B Berkowitz
- Department of Chemistry, University of Nebraska, Lincoln, Nebraska 68588-0304, USA.
| | | | | | | | | |
Collapse
|
49
|
McCaig C, Duval C, Hemers E, Steele I, Pritchard DM, Przemeck S, Dimaline R, Ahmed S, Bodger K, Kerrigan DD, Wang TC, Dockray GJ, Varro A. The role of matrix metalloproteinase-7 in redefining the gastric microenvironment in response to Helicobacter pylori. Gastroenterology 2006; 130:1754-63. [PMID: 16697739 DOI: 10.1053/j.gastro.2006.02.031] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2005] [Accepted: 01/25/2006] [Indexed: 12/16/2022]
Abstract
BACKGROUND & AIMS Interactions between epithelial and stromal cells are important determinants of mucosal organization, but the signaling mechanisms are understood incompletely. Matrix metalloproteinase (MMP)-7 is produced uniquely in epithelia, may act on growth factors and matrix proteins, and in the stomach is increased with Helicobacter pylori infection. We have studied the role of MMP-7 in signaling between epithelial cells and a key stromal cell type, the myofibroblast. METHODS Immunohistochemistry and Western blotting were applied to gastric corpus biopsy specimens; primary cultures of human gastric glands and myofibroblasts were used to study the role of MMP-7 in regulating proliferation and migration of the latter, and MMP-7 substrates were identified by proteomic methods. RESULTS Increased abundance of the myofibroblast marker alpha-smooth muscle actin was identified in H. pylori-positive biopsy specimens. Media from H pylori-infected gastric epithelial cultures stimulated proliferation and migration of primary human gastric myofibroblasts and antisense oligonucleotide treatment indicated a role for MMP-7. Proteomic methods identified insulin-like growth factor binding protein (IGFBP)-5 as a substrate for MMP-7 in medium from gastric myofibroblasts. Knockdown of IGFBP-5 by small interfering RNA or immunoneutralization of IGF-II, abolished myofibroblast responses to MMP-7. Proliferation of gastric epithelial cells also was stimulated by MMP-7-treated myofibroblasts via IGF-II. CONCLUSIONS MMP-7 acts as an epithelial-derived signal increasing the bioavailability of IGF-II released from myofibroblasts. Because IGF-II acts on both stromal and epithelial cells, the findings suggest that increased MMP-7 expression contributes to redefining the niche occupied by dividing cells and leading to hyperproliferation in H pylori infection.
Collapse
Affiliation(s)
- Catherine McCaig
- Physiological Laboratory, School of Biomedical Sciences, University of Liverpool, Liverpool, United Kingdom
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Karube K, Nabeshima K, Ishiguro M, Harada M, Iwasaki H. cDNA microarray analysis of cancer associated gene expression profiles in malignant peripheral nerve sheath tumours. J Clin Pathol 2006; 59:160-5. [PMID: 16443732 PMCID: PMC1860323 DOI: 10.1136/jcp.2004.023598] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
BACKGROUND Malignant peripheral nerve sheath tumour (MPNST) is a highly aggressive malignancy that arises within peripheral nerves, and is associated with poor prognosis. Little is known about the underlying biology of MPNST, especially the mechanisms involved in cell proliferation, invasion, or escape from apoptosis. AIMS To identify genes differentially expressed in MPNST compared with benign tumours, such as neurofibromas and schwannomas, by means of cDNA microarray analysis. METHODS Six MPNST cases and five benign cases (three schwannomas and two neurofibromas) were analysed. RESULTS Six genes (keratin 18, survivin, tenascin C, adenosine deaminase, collagen type VIa3, and collagen type VIIa1) were significantly upregulated in MPNST, whereas one gene, insulin-like growth factor binding protein 6, was downregulated in MPNST. Survivin and tenascin C expression was validated by reverse transcription polymerase chain reaction. Immunohistochemistry confirmed upregulation of survivin in MPNST at the protein level in six of eight cases compared with benign tumours. Tenascin C was also expressed at the invasive front and tumorous stroma in all MPNST cases. MPNST cells expressed tenascin C in four of nine cases. CONCLUSIONS Survivin and tenascin C may be associated with the malignant potential of MPNST and could be considered as potential therapeutic targets.
Collapse
Affiliation(s)
- K Karube
- Department of Pathology, School of Medicine, Fukuoka University, Nanakuma 7-45-1, Jonan-ku, Fukuoka 814-0180, Japan.
| | | | | | | | | |
Collapse
|