1
|
Tarasiuk-Zawadzka A, Fichna J. Interaction between nutritional factors and the enteric nervous system in inflammatory bowel diseases. J Nutr Biochem 2025:109959. [PMID: 40354831 DOI: 10.1016/j.jnutbio.2025.109959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 01/30/2025] [Accepted: 05/09/2025] [Indexed: 05/14/2025]
Abstract
The enteric nervous system (ENS) is a highly conserved, yet complicated network of neurons and glial cells located throughout the gut wall that controls digestive processes and gastrointestinal (GI) homeostasis. The intestinal epithelium, the immune system, and the gut microbiota are just a few examples of the cellular networks that the ENS interacts with on a variety of levels to maintain GI function. The presence or absence of nutrients in the intestinal lumen may cause short- and/or long-term changes in neurotransmitter expression, excitability, and neuronal survival, which ultimately affect gut motility, secretion, and permeability. Hence, the ENS should be identified as a key factor in initiating coordinated responses to nutrients. In this review we summarize current knowledge on nutrient-dependent ENS activity and how ENS secondary to nutrition may affect likelihood of developing inflammatory bowel disease. Our findings highlight that nutrients interact with enteroendocrine cells in the gut, triggering hormone secretion that plays a crucial role in signaling food-related information to the brain and regulating metabolic processes such as feeding behavior, insulin secretion, and energy balance; however, the complex interactions between nutrients, the ENS, and the immune system require further research to understand their contributions to GI disorders and potential therapeutic applications in treating obesity and metabolic diseases. Lay Summary: The enteric nervous system (ENS) controls digestion and interacts with nutrients in the gut to regulate processes like gut movement and hormone release, affecting metabolism and overall gut health. This review highlights the need for further research on how nutrient-ENS interactions contribute to conditions like inflammatory bowel disease, obesity, and metabolic disorders.
Collapse
Affiliation(s)
| | - Jakub Fichna
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, Mazowiecka 5, 92-215 Lodz, Poland
| |
Collapse
|
2
|
Mendonça IP, Peixoto CA. The Double-Edged Sword: The Complex Function of Enteric Glial Cells in Neurodegenerative Diseases. J Neurochem 2025; 169:e70069. [PMID: 40265276 DOI: 10.1111/jnc.70069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 03/30/2025] [Accepted: 03/31/2025] [Indexed: 04/24/2025]
Abstract
Over the past two decades, a growing number of studies have been conducted on the role of bidirectional communication through the gut-brain axis in the development of neurodegenerative diseases. These studies were driven by the curious fact that all of these diseases present varying degrees of intestinal involvement included in their wide range of symptoms. A population of cells belonging to the ENS, called enteric glial cells (EGCs), appears to actively participate in this communication between the intestine and the brain, but acting in a dualistic manner, sometimes in reactive gliosis releasing inflammatory mediators, sometimes promoting homeostasis and resilience in the face of inflammatory injuries. To date, the intracellular mechanisms that define the transcriptional profile expressed in EGCs in each situation have not yet been elucidated. This review proposes a discussion on: (1) the complex role of distinct phenotypes of enteric glial cells involved in neurodegenerative diseases, such as Parkinson's disease (PD), Alzheimer's disease (AD), amyotrophic lateral sclerosis (ALS), Huntington's disease (HD) and multiple sclerosis (MS); and (2) innovative strategies such as IDO/TDO inhibitors, Brazil nuts, caffeic acid, polyphenols, among others, that act on EGCs and have the potential to treat neurodegenerative diseases.
Collapse
Affiliation(s)
- Ingrid Prata Mendonça
- Laboratory of Ultrastructure, Aggeu Magalhães Institute (IAM), Oswaldo Cruz Foundation (FIOCRUZ), Recife, Brazil
- Postgraduate Program in Biological Sciences (PPGCB), Federal University of Pernambuco (UFPE), Recife, Brazil
| | - Christina Alves Peixoto
- Laboratory of Ultrastructure, Aggeu Magalhães Institute (IAM), Oswaldo Cruz Foundation (FIOCRUZ), Recife, Brazil
- Postgraduate Program in Biological Sciences (PPGCB), Federal University of Pernambuco (UFPE), Recife, Brazil
| |
Collapse
|
3
|
Hörner M, Burkard N, Kelm M, Leist A, Selig T, Kollmann C, Meir M, Otto C, Germer C, Kretzschmar K, Flemming S, Schlegel N. Glial cell line derived neurotrophic factor (GDNF) induces mucosal healing via intestinal stem cell niche activation. Cell Prolif 2025; 58:e13758. [PMID: 39610047 PMCID: PMC11839185 DOI: 10.1111/cpr.13758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 09/09/2024] [Accepted: 09/14/2024] [Indexed: 11/30/2024] Open
Abstract
Mucosal healing is critical to maintain and restore intestinal homeostasis in inflammation. Previous data provide evidence that glial cell line-derived neurotrophic factor (GDNF) restores epithelial integrity by largely undefined mechanisms. Here, we assessed the role of GDNF for mucosal healing. In dextran sodium sulphate (DSS)-induced colitis in mice application of GDNF enhanced recovery as revealed by reduced disease activity index and histological inflammation scores. In biopsy-based wounding experiments GDNF application in mice improved healing of the intestinal mucosa. GDNF-induced epithelial recovery was also evident in wound assays from intestinal organoids and Caco2 cells. These observations were accompanied by an increased number of Ki67-positive cells in vivo after GDNF treatment, which were present along elongated proliferative areas within the crypts. In addition, the intestinal stem cell marker and R-spondin receptor LGR5 was significantly upregulated following GDNF treatment in all experimental models. The effects of GDNF on cell proliferation, LGR5 and Ki67 upregulation were blocked using the RET-specific inhibitor BLU-667. Downstream of RET-phosphorylation, activation of Src kinase was involved to mediate GDNF effects. GDNF promotes intestinal wound healing by promoting cell proliferation. This is mediated by RET-dependent activation of Src kinase with consecutive LGR5 upregulation, indicating activation of the stem cell niche.
Collapse
Affiliation(s)
- Marius Hörner
- Department of General, VisceralVascular and Pediatric Surgery University Hospital WuerzburgWuerzburgGermany
| | - Natalie Burkard
- Department of General, VisceralVascular and Pediatric Surgery University Hospital WuerzburgWuerzburgGermany
| | - Matthias Kelm
- Department of General, VisceralVascular and Pediatric Surgery University Hospital WuerzburgWuerzburgGermany
| | - Antonia Leist
- Department of General, VisceralVascular and Pediatric Surgery University Hospital WuerzburgWuerzburgGermany
| | - Thekla Selig
- Department of General, VisceralVascular and Pediatric Surgery University Hospital WuerzburgWuerzburgGermany
| | - Catherine Kollmann
- Department of General, VisceralVascular and Pediatric Surgery University Hospital WuerzburgWuerzburgGermany
| | - Michael Meir
- Department of General, VisceralVascular and Pediatric Surgery University Hospital WuerzburgWuerzburgGermany
| | - Christoph Otto
- Department of General, VisceralVascular and Pediatric Surgery University Hospital WuerzburgWuerzburgGermany
| | - Christoph‐Thomas Germer
- Department of General, VisceralVascular and Pediatric Surgery University Hospital WuerzburgWuerzburgGermany
| | - Kai Kretzschmar
- Mildred Scheel Early Career Centre for Cancer Research WuerzburgUniversity Hospital Wuerzburg, MSNZ/IZKFWuerzburgGermany
| | - Sven Flemming
- Department of General, VisceralVascular and Pediatric Surgery University Hospital WuerzburgWuerzburgGermany
| | - Nicolas Schlegel
- Department of General, VisceralVascular and Pediatric Surgery University Hospital WuerzburgWuerzburgGermany
| |
Collapse
|
4
|
Liang C, Wei S, Ji Y, Lin J, Jiao W, Li Z, Yan F, Jing X. The role of enteric nervous system and GDNF in depression: Conversation between the brain and the gut. Neurosci Biobehav Rev 2024; 167:105931. [PMID: 39447778 DOI: 10.1016/j.neubiorev.2024.105931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 10/14/2024] [Accepted: 10/20/2024] [Indexed: 10/26/2024]
Abstract
Depression is a debilitating mental disorder that causes a persistent feeling of sadness and loss of interest. Approximately 280 million individuals worldwide suffer from depression by 2023. Despite the heavy medical and social burden imposed by depression, pathophysiology remains incompletely understood. Emerging evidence indicates various bidirectional interplay enable communication between the gut and brain. These interplays provide a link between intestinal and central nervous system as well as feedback from cortical and sensory centers to enteric activities, which also influences physiology and behavior in depression. This review aims to overview the significant role of the enteric nervous system (ENS) in the pathophysiology of depression and gut-brain axis's contribution to depressive disorders. Additionally, we explore the alterations in enteric glia cells (EGCs) and glial cell line-derived neurotrophic factor (GDNF) in depression and their involvement in neuronal support, intestinal homeostasis maintains and immune response activation. Modulating ENS function, EGCs and GDNF level could serve as novel strategies for future antidepressant therapy.
Collapse
Affiliation(s)
- Chuoyi Liang
- School of Nursing, Jinan University, Guangzhou, China
| | - Sijia Wei
- School of Nursing, Jinan University, Guangzhou, China
| | - Yelin Ji
- School of Nursing, Jinan University, Guangzhou, China
| | - Jiayi Lin
- School of Nursing, Jinan University, Guangzhou, China
| | - Wenli Jiao
- School of Nursing, Jinan University, Guangzhou, China
| | - Zhiying Li
- School of Nursing, Jinan University, Guangzhou, China
| | - Fengxia Yan
- School of Nursing, Jinan University, Guangzhou, China.
| | - Xi Jing
- School of Nursing, Jinan University, Guangzhou, China; Guangdong-Hong Kong-Macau Great Bay Area Geoscience Joint Laboratory, School of Medicine, Jinan University, Guangzhou, China.
| |
Collapse
|
5
|
Vastrad B, Vastrad C. Screening and identification of key biomarkers associated with endometriosis using bioinformatics and next-generation sequencing data analysis. EGYPTIAN JOURNAL OF MEDICAL HUMAN GENETICS 2024; 25:116. [DOI: 10.1186/s43042-024-00572-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 08/23/2024] [Indexed: 01/04/2025] Open
Abstract
Abstract
Background
Endometriosis is a common cause of endometrial-type mucosa outside the uterine cavity with symptoms such as painful periods, chronic pelvic pain, pain with intercourse and infertility. However, the early diagnosis of endometriosis is still restricted. The purpose of this investigation is to identify and validate the key biomarkers of endometriosis.
Methods
Next-generation sequencing dataset GSE243039 was obtained from the Gene Expression Omnibus database, and differentially expressed genes (DEGs) between endometriosis and normal control samples were identified. After screening of DEGs, gene ontology (GO) and REACTOME pathway enrichment analyses were performed. Furthermore, a protein–protein interaction (PPI) network was constructed and modules were analyzed using the Human Integrated Protein–Protein Interaction rEference database and Cytoscape software, and hub genes were identified. Subsequently, a network between miRNAs and hub genes, and network between TFs and hub genes were constructed using the miRNet and NetworkAnalyst tool, and possible key miRNAs and TFs were predicted. Finally, receiver operating characteristic curve analysis was used to validate the hub genes.
Results
A total of 958 DEGs, including 479 upregulated genes and 479 downregulated genes, were screened between endometriosis and normal control samples. GO and REACTOME pathway enrichment analyses of the 958 DEGs showed that they were mainly involved in multicellular organismal process, developmental process, signaling by GPCR and muscle contraction. Further analysis of the PPI network and modules identified 10 hub genes, including vcam1, snca, prkcb, adrb2, foxq1, mdfi, actbl2, prkd1, dapk1 and actc1. Possible target miRNAs, including hsa-mir-3143 and hsa-mir-2110, and target TFs, including tcf3 (transcription factor 3) and clock (clock circadian regulator), were predicted by constructing a miRNA-hub gene regulatory network and TF-hub gene regulatory network.
Conclusions
This investigation used bioinformatics techniques to explore the potential and novel biomarkers. These biomarkers might provide new ideas and methods for the early diagnosis, treatment and monitoring of endometriosis.
Collapse
|
6
|
Jiang S, Pei L, Chen L, Sun J, Song Y. Mechanisms of Electroacupuncture in Alleviating Visceral Hypersensitivity in Post-Infectious Irritable Bowel Syndrome Mice: The Role of GDNF Signaling Pathway and Gut Microbiota. Microb Physiol 2024; 34:255-263. [PMID: 39396501 DOI: 10.1159/000541888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 10/07/2024] [Indexed: 10/15/2024]
Abstract
INTRODUCTION Post-infectious irritable bowel syndrome (PI-IBS) is a functional bowel disease that develops following an acute gastrointestinal infection. Electroacupuncture (EA) can regulate the gut microbiota and alleviate visceral hypersensitivity. Glial cell-derived neurotrophic factor (GDNF) is a potential factor in visceral hypersensitivity reactions. The aim of this study was to explore whether EA could alleviate visceral hypersensitivity in PI-IBS by regulating gut microbiota through GDNF signaling. METHODS 2,4,6-trinitrobenzene sulfonic acid was used to induce visceral hypersensitivity in PI-IBS mice. Intestinal visceral sensitivity was assessed by using the abdominal withdrawal reflex (colorectal distention). 16S ribosomal RNA sequencing profiles the gut microbiome community. RESULTS GDNF can exacerbate the imbalances of the gut microbiota and increase visceral hypersensitivity compared with the model group. Whereas EA treatment increases the richness and diversity of the gut microbiota, decreases differences among species and alleviates visceral sensitivity. CONCLUSION EA can alleviate visceral hypersensitivity in PI-IBS by regulating the gut microbiota via GDNF signaling, providing new insights for mechanistic research on EA in PI-IBS treatment.
Collapse
Affiliation(s)
- Shiyuan Jiang
- The First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, China,
- Department of Acupuncture and Rehabilitation, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China,
- Acupuncture and Massage College, Health and Rehabilitation College, Nanjing University of Chinese Medicine, Nanjing, China,
| | - Lixia Pei
- Department of Acupuncture and Rehabilitation, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Lu Chen
- Department of Acupuncture and Rehabilitation, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Jianhua Sun
- Department of Acupuncture and Rehabilitation, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Yafang Song
- Acupuncture and Massage College, Health and Rehabilitation College, Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
7
|
González-Fernández R, Martín-Ramírez R, Maeso MDC, Lázaro A, Ávila J, Martín-Vasallo P, Morales M. Changes in AmotL2 Expression in Cells of the Human Enteral Nervous System in Oxaliplatin-Induced Enteric Neuropathy. Biomedicines 2024; 12:1952. [PMID: 39335466 PMCID: PMC11429461 DOI: 10.3390/biomedicines12091952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 08/22/2024] [Indexed: 09/30/2024] Open
Abstract
Gastrointestinal (GI) toxicity is a common side effect in patients undergoing oxaliplatin (OxPt)-based chemotherapy for colorectal cancer (CRC). Frequently, this complication persists in the long term and could affect the efficacy of the treatment and the patient's life quality. This long-term GI toxicity is thought to be related to OxPt-induced enteral neuropathy. AmotL2 is a member of the Angiomotin family of proteins, which play a role in cell survival, neurite outgrowth, synaptic maturation, oxidative stress protection, and inflammation. In order to assess the role of AmotL2 in OxPt-induced enteral neuropathy, we studied the expression of AmotL2 in cells of the enteric nervous system (ENS) of untreated and OxPt-treated CRC patients and its relationship with inflammation, using immunofluorescence confocal microscopy. Our results in human samples show that the total number of neurons and glial cells decreased in OxPt-treated patients, and TNF-α and AmotL2 expression was increased and colocalized in both neurons and glia. AmotL2 differential expression between OxPt-treated and untreated CRC patients shows the involvement of this scaffold protein in the inflammatory component and toxicity by OxPt in the ENS.
Collapse
Affiliation(s)
- Rebeca González-Fernández
- Laboratorio de Biología del Desarrollo, UD de Bioquímica y Biología Molecular, Universidad de La Laguna, Av. Astrofísico Sánchez s/n, 38206 San Cristóbal de La Laguna, Spain
- Instituto de Tecnologías Biomédicas, Universidad de La Laguna, C/Sta. María de la Soledad, Sección Medicina, 38071 San Cristóbal de La Laguna, Spain
| | - Rita Martín-Ramírez
- Laboratorio de Biología del Desarrollo, UD de Bioquímica y Biología Molecular, Universidad de La Laguna, Av. Astrofísico Sánchez s/n, 38206 San Cristóbal de La Laguna, Spain
- Instituto de Tecnologías Biomédicas, Universidad de La Laguna, C/Sta. María de la Soledad, Sección Medicina, 38071 San Cristóbal de La Laguna, Spain
| | - María-Del-Carmen Maeso
- Servicio de Patología, Hospital Universitario Nuestra Señora de la Candelaria, 38010 Santa Cruz de Tenerife, Spain
| | - Alberto Lázaro
- Laboratorio de Fisiopatología Renal, Departamento de Nefrología, Instituto de Investigación Sanitaria Gregorio Marañón, Hospital General Universitario Gregorio Marañón, 28007 Madrid, Spain
- Departamento de Fisiología, Facultad de Medicina, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Julio Ávila
- Laboratorio de Biología del Desarrollo, UD de Bioquímica y Biología Molecular, Universidad de La Laguna, Av. Astrofísico Sánchez s/n, 38206 San Cristóbal de La Laguna, Spain
- Instituto de Tecnologías Biomédicas, Universidad de La Laguna, C/Sta. María de la Soledad, Sección Medicina, 38071 San Cristóbal de La Laguna, Spain
| | - Pablo Martín-Vasallo
- Laboratorio de Biología del Desarrollo, UD de Bioquímica y Biología Molecular, Universidad de La Laguna, Av. Astrofísico Sánchez s/n, 38206 San Cristóbal de La Laguna, Spain
- Instituto de Tecnologías Biomédicas, Universidad de La Laguna, C/Sta. María de la Soledad, Sección Medicina, 38071 San Cristóbal de La Laguna, Spain
| | - Manuel Morales
- Servicio de Oncología Médica, Hospital Universitario Nuestra Señora de Candelaria, 38010 Santa Cruz de Tenerife, Spain
| |
Collapse
|
8
|
Xiaoling Q, Yurong G, Ke X, Yuxiang Q, Panpan A, Yinzhen D, Xue L, Tingting L, Chuanxi T. GDNF's Role in Mitigating Intestinal Reactive Gliosis and Inflammation to Improve Constipation and Depressive Behavior in Rats with Parkinson's disease. J Mol Neurosci 2024; 74:78. [PMID: 39158627 DOI: 10.1007/s12031-024-02254-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 08/06/2024] [Indexed: 08/20/2024]
Abstract
Constipation is a common symptom in patients with Parkinson's disease (PD) and is often associated with depression. Enteric glial cells (EGCs) are crucial for regulating intestinal inflammation and colon motility, and their activation can lead to the death of intestinal neurons. Glial cell line-derived neurotrophic factor (GDNF) has been recognized for its neuroprotective properties in various neurological disorders, including PD. This study explores the potential of GDNF in alleviating intestinal reactive gliosis and inflammation, thereby improving constipation and depressive behavior in a rat model of PD. A PD model was established via unilateral stereotaxic injection of 6-hydroxydopamine (6-OHDA). Five weeks post-injury, AAV5-GDNF (2 ~ 5 × 10^11) was intraperitoneally injected into experimental and control rats. Fecal moisture percentage (FMP) and colonic propulsion rate (CPPR) were used to evaluate colon motility. Colon-related inflammation and colonic epithelial morphology were assessed, and depressive behavior was analyzed one week before sampling. PD rats exhibited reduced colonic motility and GDNF expression, along with increased EGC reactivity and elevated levels of pro-inflammatory cytokines IL-1, IL-6, and TNF-α. Additionally, there was an up-regulation of CX43 and a decrease in PGP 9.5 expression. The intraperitoneal injection of AAV-GDNF significantly protected colonic neurons by inhibiting EGC activation and down-regulating CX43. This treatment also led to a notable reduction in depressive-like symptoms in PD rats with constipation. GDNF effectively reduces markers of reactive gliosis and inflammation, and promotes the survival of colonic neurons, and improves colonic motility in PD rats by regulating CX43 activity. Furthermore, GDNF treatment alleviates depressive behavior, suggesting that GDNF or its agonists could be promising therapeutic agents for managing gastrointestinal and neuropsychiatric symptoms associated with PD.
Collapse
Affiliation(s)
- Qin Xiaoling
- Department of Geriatrics, Shanghai 4th People's Hospital, Tongji University, No.1279 Sanmen Road, Shanghai, 200081, China.
| | - Guo Yurong
- Xuzhou Key Laboratory of Neurobiology, Department of Neurobiology and Anatomy, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - Xue Ke
- Xuzhou Key Laboratory of Neurobiology, Department of Neurobiology and Anatomy, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - Qiu Yuxiang
- Xuzhou Key Laboratory of Neurobiology, Department of Neurobiology and Anatomy, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - An Panpan
- Xuzhou Key Laboratory of Neurobiology, Department of Neurobiology and Anatomy, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - Du Yinzhen
- Xuzhou Key Laboratory of Neurobiology, Department of Neurobiology and Anatomy, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - Li Xue
- Xuzhou Key Laboratory of Neurobiology, Department of Neurobiology and Anatomy, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - Liu Tingting
- Department of Geriatrics, Shanghai 4th People's Hospital, Tongji University, No.1279 Sanmen Road, Shanghai, 200081, China
| | - Tang Chuanxi
- Xuzhou Key Laboratory of Neurobiology, Department of Neurobiology and Anatomy, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China.
| |
Collapse
|
9
|
D'Antongiovanni V, Pellegrini C, Antonioli L, Ippolito C, Segnani C, Benvenuti L, D'Amati A, Errede M, Virgintino D, Fornai M, Bernardini N. Enteric Glia and Brain Astroglia: Complex Communication in Health and Disease along the Gut-Brain Axis. Neuroscientist 2024; 30:493-510. [PMID: 37052336 DOI: 10.1177/10738584231163460] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/14/2023]
Abstract
Several studies have provided interesting evidence about the role of the bidirectional communication between the gut and brain in the onset and development of several pathologic conditions, including inflammatory bowel diseases (IBDs), neurodegenerative diseases, and related comorbidities. Indeed, patients with IBD can experience neurologic disorders, including depression and cognitive impairment, besides typical intestinal symptoms. In parallel, patients with neurodegenerative disease, such as Parkinson disease and Alzheimer disease, are often characterized by the occurrence of functional gastrointestinal disorders. In this context, enteric glial cells and brain astrocytes are emerging as pivotal players in the initiation/maintenance of neuroinflammatory responses, which appear to contribute to the alterations of intestinal and neurologic functions observed in patients with IBD and neurodegenerative disorders. The present review was conceived to provide a comprehensive and critical overview of the available knowledge on the morphologic, molecular, and functional changes occurring in the enteric glia and brain astroglia in IBDs and neurologic disorders. In addition, our intent is to identify whether such alterations could represent a common denominator involved in the onset of comorbidities associated with the aforementioned disorders. This might help to identify putative targets useful to develop novel pharmacologic approaches for the therapeutic management of such disturbances.
Collapse
Affiliation(s)
- Vanessa D'Antongiovanni
- Unit of Pharmacology and Pharmacovigilance, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Carolina Pellegrini
- Unit of Histology and Medical Embryology, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Luca Antonioli
- Unit of Pharmacology and Pharmacovigilance, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Chiara Ippolito
- Unit of Histology and Medical Embryology, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Cristina Segnani
- Unit of Histology and Medical Embryology, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Laura Benvenuti
- Unit of Pharmacology and Pharmacovigilance, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Antonio D'Amati
- Department of Basic Medical Sciences, Neuroscience, and Sensory Organs, University of Bari School of Medicine, Bari, Italy
| | - Mariella Errede
- Department of Basic Medical Sciences, Neuroscience, and Sensory Organs, University of Bari School of Medicine, Bari, Italy
| | - Daniela Virgintino
- Department of Basic Medical Sciences, Neuroscience, and Sensory Organs, University of Bari School of Medicine, Bari, Italy
| | - Matteo Fornai
- Unit of Pharmacology and Pharmacovigilance, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Nunzia Bernardini
- Unit of Histology and Medical Embryology, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| |
Collapse
|
10
|
Lu S, Xu Y, Zhang H, Liu Z, Xu J, Zheng B, Shi D, Qiu F. Glycyrol Relieves Ulcerative Colitis by Promoting the Fusion of ZO-1 with the Cell Membrane through the Enteric Glial Cells GDNF/RET Pathway. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:14653-14662. [PMID: 38860840 DOI: 10.1021/acs.jafc.4c00239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2024]
Abstract
The damage to the mechanical barrier of the intestinal mucosa is the initiating factor and the core link of the progression of ulcerative colitis (UC). Protecting the mechanical barrier of the intestinal mucosa is of great significance for improving the health status of UC patients. ZO-1 is a key scaffold protein of the mechanical barrier of the intestinal mucosa, and its fusion with the membrane of the intestinal epithelium is a necessary condition to maintain the integrity of the mechanical barrier of the intestinal mucosa. Enteric glial cells (EGCs) play an important role in the maintenance of intestinal homeostasis and have become a new target for regulating intestinal health in recent years. In this study, we found that glycyrol (GC), a representative coumarin compound isolated from Licorice (Glycyrrhiza uralensis Fisch, used for medicine and food), can alleviate UC by promoting the production of neurotrophic factor GDNF in mice EGCs. Specifically, we demonstrated that GC promotes the production of GDNF, then activates its receptor RET, promotes ZO-1 fusion with cell membranes, and protects the intestinal mucosal mechanical barrier. The results of this study can provide new ideas for the prevention and treatment of UC.
Collapse
Affiliation(s)
- Shangyun Lu
- Nutritional and Food Science Research Institute, Department of Nutrition and Food Hygiene, School of Public Health, Shanxi Medical University, Taiyuan 030001, China
- Key Laboratory of Coal Environmental Pathogenicity and Prevention, Ministry of Education, Taiyuan 030001, China
- Center for Ecological Public Health Security of Yellow River Basin, Shanxi Medical University, Taiyuan 030001, China
| | - Yang Xu
- Nutritional and Food Science Research Institute, Department of Nutrition and Food Hygiene, School of Public Health, Shanxi Medical University, Taiyuan 030001, China
| | - Huixia Zhang
- Nutritional and Food Science Research Institute, Department of Nutrition and Food Hygiene, School of Public Health, Shanxi Medical University, Taiyuan 030001, China
| | - Ziling Liu
- Nutritional and Food Science Research Institute, Department of Nutrition and Food Hygiene, School of Public Health, Shanxi Medical University, Taiyuan 030001, China
| | - Jiali Xu
- Nutritional and Food Science Research Institute, Department of Nutrition and Food Hygiene, School of Public Health, Shanxi Medical University, Taiyuan 030001, China
| | - Bowen Zheng
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou 310024, China
| | - Dongxing Shi
- Nutritional and Food Science Research Institute, Department of Nutrition and Food Hygiene, School of Public Health, Shanxi Medical University, Taiyuan 030001, China
- Key Laboratory of Coal Environmental Pathogenicity and Prevention, Ministry of Education, Taiyuan 030001, China
- Center for Ecological Public Health Security of Yellow River Basin, Shanxi Medical University, Taiyuan 030001, China
| | - Fubin Qiu
- Nutritional and Food Science Research Institute, Department of Nutrition and Food Hygiene, School of Public Health, Shanxi Medical University, Taiyuan 030001, China
- Key Laboratory of Coal Environmental Pathogenicity and Prevention, Ministry of Education, Taiyuan 030001, China
- Center for Ecological Public Health Security of Yellow River Basin, Shanxi Medical University, Taiyuan 030001, China
| |
Collapse
|
11
|
Li HY, Yan WX, Li J, Ye J, Wu ZG, Hou ZK, Chen B. Global research status and trends of enteric glia: a bibliometric analysis. Front Pharmacol 2024; 15:1403767. [PMID: 38855748 PMCID: PMC11157232 DOI: 10.3389/fphar.2024.1403767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 05/08/2024] [Indexed: 06/11/2024] Open
Abstract
Background Enteric glia are essential components of the enteric nervous system. Previously believed to have a passive structural function, mounting evidence now suggests that these cells are indispensable for maintaining gastrointestinal homeostasis and exert pivotal influences on both wellbeing and pathological conditions. This study aimed to investigate the global status, research hotspots, and future directions of enteric glia. Methods The literature on enteric glia research was acquired from the Web of Science Core Collection. VOSviewer software (v1.6.19) was employed to visually represent co-operation networks among countries, institutions, and authors. The co-occurrence analysis of keywords and co-citation analysis of references were conducted using CiteSpace (v6.1.R6). Simultaneously, cluster analysis and burst detection of keywords and references were performed. Results A total of 514 publications from 36 countries were reviewed. The United States was identified as the most influential country. The top-ranked institutions were University of Nantes and Michigan State University. Michel Neunlist was the most cited author. "Purinergic signaling" was the largest co-cited reference cluster, while "enteric glial cells (EGCs)" was the cluster with the highest number of co-occurring keywords. As the keyword with the highest burst strength, Crohns disease was a hot topic in the early research on enteric glia. The burst detection of keywords revealed that inflammation, intestinal motility, and gut microbiota may be the research frontiers. Conclusion This study provides a comprehensive bibliometric analysis of enteric glia research. EGCs have emerged as a crucial link between neurons and immune cells, attracting significant research attention in neurogastroenterology. Their fundamental and translational studies on inflammation, intestinal motility, and gut microbiota may promote the treatment of some gastrointestinal and parenteral disorders.
Collapse
Affiliation(s)
- Huai-Yu Li
- Department of Gastroenterology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Guangdong Clinical Research Academy of Chinese Medicine, Guangzhou, China
| | - Wei-Xin Yan
- Department of Gastroenterology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Guangdong Clinical Research Academy of Chinese Medicine, Guangzhou, China
| | - Jia Li
- The First Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jing Ye
- School of Clinical Medicine, Jiangxi University of Chinese Medicine, Nanchang, China
| | - Zhi-Guo Wu
- Clinical Medical College of Acupuncture, Moxibustion and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zheng-Kun Hou
- Department of Gastroenterology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Guangdong Clinical Research Academy of Chinese Medicine, Guangzhou, China
| | - Bin Chen
- Department of Gastroenterology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Guangdong Clinical Research Academy of Chinese Medicine, Guangzhou, China
| |
Collapse
|
12
|
Zhang XL, Sun Q, Quan ZS, Wu L, Liu ZM, Xia YQ, Wang QY, Zhang Y, Zhu JX. Dopamine regulates colonic glial cell-derived neurotrophic factor secretion through cholinergic dependent and independent pathways. Br J Pharmacol 2024; 181:413-428. [PMID: 37614042 DOI: 10.1111/bph.16226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 06/02/2023] [Accepted: 08/03/2023] [Indexed: 08/25/2023] Open
Abstract
BACKGROUND AND PURPOSE Glial cell-derived neurotrophic factor (GDNF) maintains gut homeostasis. Dopamine promotes GDNF release in astrocytes. We investigated the regulation by dopamine of colonic GDNF secretion. EXPERIMENTAL APPROACH D1 receptor knockout (D1 R-/- ) mice, adeno-associated viral 9-short hairpin RNA carrying D2 receptor (AAV9-shD2 R)-treated mice, 6-hydroxydopamine treated (6-OHDA) rats and primary enteric glial cells (EGCs) culture were used. Incubation fluid from colonic submucosal plexus and longitudinal muscle myenteric plexus were collected for GDNF and ACh measurements. KEY RESULTS D2 receptor-immunoreactivity (IR), but not D1 receptor-IR, was observed on EGCs. Both D1 receptor-IR and D2 receptor-IR were co-localized on cholinergic neurons. Low concentrations of dopamine induced colonic GDNF secretion in a concentration-dependent manner, which was mimicked by the D1 receptor agonist SKF38393, inhibited by TTX and atropine and eliminated in D1 R-/- mice. SKF38393-induced colonic ACh release was absent in D1 R-/- mice. High concentrations of dopamine suppressed colonic GDNF secretion, which was mimicked by the D2 receptor agonist quinpirole, and absent in AAV-shD2 R-treated mice. Quinpirole decreased GDNF secretion by reducing intracellular Ca2+ levels in primary cultured EGCs. Carbachol ( ACh analogue) promoted the release of GDNF. Quinpirole inhibited colonic ACh release, which was eliminated in the AAV9-shD2 R-treated mice. 6-OHDA treated rats with low ACh and high dopamine content showed decreased GDNF content and increased mucosal permeability in the colon. CONCLUSION AND IMPLICATIONS Low concentrations of dopamine promote colonic GDNF secretion via D1 receptors on cholinergic neurons, whereas high concentrations of dopamine inhibit GDNF secretion via D2 receptors on EGCs and/or cholinergic neurons.
Collapse
Affiliation(s)
- Xiao-Li Zhang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Qi Sun
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Zhu-Sheng Quan
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Liang Wu
- Endoscopy Center, Senior Department of Hepatology, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Zi-Ming Liu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Yan-Qi Xia
- Grade 2020 Clinical Medicine, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Qian-Yi Wang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Yue Zhang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Jin-Xia Zhu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| |
Collapse
|
13
|
Mao X, Shen J. Potential roles of enteric glial cells in Crohn's disease: A critical review. Cell Prolif 2024; 57:e13536. [PMID: 37551711 PMCID: PMC10771111 DOI: 10.1111/cpr.13536] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 07/23/2023] [Accepted: 07/26/2023] [Indexed: 08/09/2023] Open
Abstract
Enteric glial cells in the enteric nervous system are critical for the regulation of gastrointestinal homeostasis. Increasing evidence suggests two-way communication between enteric glial cells and both enteric neurons and immune cells. These interactions may be important in the pathogenesis of Crohn's disease (CD), a chronic relapsing disease characterized by a dysregulated immune response. Structural abnormalities in glial cells have been identified in CD. Furthermore, classical inflammatory pathways associated with CD (e.g., the nuclear factor kappa-B pathway) function in enteric glial cells. However, the specific mechanisms by which enteric glial cells contribute to CD have not been summarized in detail. In this review, we describe the possible roles of enteric glial cells in the pathogenesis of CD, including the roles of glia-immune interactions, neuronal modulation, neural plasticity, and barrier integrity. Additionally, the implications for the development of therapeutic strategies for CD based on enteric glial cell-mediated pathogenic processes are discussed.
Collapse
Affiliation(s)
- Xinyi Mao
- Division of Gastroenterology and HepatologyBaoshan Branch, Renji Hospital, School of Medicine, Shanghai Jiao Tong UniversityShanghaiChina
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and HepatologyMinistry of Health, Inflammatory Bowel Disease Research Center, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive DiseaseShanghaiChina
| | - Jun Shen
- Division of Gastroenterology and HepatologyBaoshan Branch, Renji Hospital, School of Medicine, Shanghai Jiao Tong UniversityShanghaiChina
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and HepatologyMinistry of Health, Inflammatory Bowel Disease Research Center, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive DiseaseShanghaiChina
| |
Collapse
|
14
|
Gencpinar P, Bal Yuksel E, Basarir G, Kanik A, Arslan FD, Olgac Dundar N, Karakoyun I. The Role of Breast Milk Neurotrophin Levels in Infantile Colic Pathogenesis: A Cross-Sectional Case-Control Study. Breastfeed Med 2023; 18:908-912. [PMID: 38100441 DOI: 10.1089/bfm.2023.0125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2023]
Abstract
Objective: Immaturity of the digestive tract and enteric nervous system is a widely accepted theory for infantile colic (IC) etiopathogenesis. The study aimed to show whether neurotrophins that are necessary for normal functioning and development of the gastrointestinal system have a role in the pathogenesis of IC. Materials and Methods: The IC group (n = 75) comprising the mothers of infants with IC and the control group (n = 75) were included to this cross-sectional case-control study. Brain-derived neurotrophic factor (BDNF), glial cell-derived neurotrophic factor (GDNF), ciliary neurotrophic factor (CNTF), and nerve growth factor (NGF) levels of breast milk samples were evaluated by immunosorbent analysis method. Results: The mean age of infants with IC was 7.3 ± 2.8 weeks, while the mean age of the control group was 8.1 ± 2.9 weeks (p = 0.110). No significant difference was found between the breast milk BDNF, GDNF, CNTF, and NGF levels of two groups (p = 0.941, p = 0.510, p = 0.533, p = 0.839, respectively). Conclusions: This is the first report comparing the neurotrophin levels of the breast milk samples taken from the mothers of infants with and without IC. The study demonstrated that breast milk neurotrophin levels of the mothers did not differ significantly between the infants with and without IC.
Collapse
Affiliation(s)
- Pinar Gencpinar
- Department of Pediatric Neurology, Tepecik Training and Research Hospital, Izmir Katip Celebi University, Izmir, Turkey
| | - Esra Bal Yuksel
- Department of Pediatrics, Tepecik Training and Research Hospital, University of Health Sciences, Izmir, Turkey
| | - Gunce Basarir
- Department of Pediatric Neurology, Tepecik Training and Research Hospital, University of Health Sciences, Izmir, Turkey
| | - Ali Kanik
- Department of Pediatrics, Tepecik Training and Research Hospital, Izmir Katip Celebi University, Izmir, Turkey
| | - Fatma Demet Arslan
- Department of Medical Biochemistry, Tepecik Training and Research Hospital, University of Health Sciences, Izmir, Turkey
| | - Nihal Olgac Dundar
- Department of Pediatric Neurology, Tepecik Training and Research Hospital, Izmir Katip Celebi University, Izmir, Turkey
| | - Inanc Karakoyun
- Department of Medical Biochemistry, Tepecik Training and Research Hospital, University of Health Sciences, Izmir, Turkey
| |
Collapse
|
15
|
Iwasaki T, Akeda K, Kawaguchi K, Yamada J, Hasegawa T, Takegami N, Fujiwara T, Sudo A. Expression of Glial-Cell-Line-Derived Neurotrophic Factor Family Ligands in Human Intervertebral Discs. Int J Mol Sci 2023; 24:15874. [PMID: 37958856 PMCID: PMC10649213 DOI: 10.3390/ijms242115874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/25/2023] [Accepted: 10/31/2023] [Indexed: 11/15/2023] Open
Abstract
Glial-cell-line-derived neurotrophic factor (GDNF) family ligands (GFLs) contribute to the sensitization of primary afferents and are involved in the pathogenesis of inflammatory pain. The purpose of this preliminary study was to examine the expression of other GFLs (neurturin (NRTN), artemin (ARTN), persephin (PSPN)) and receptors in human IVD cells and tissues exhibiting early and advanced stages of degeneration. Human IVD cells were cultured as a monolayer after isolation from the nucleus pulposus (NP) and anulus fibrosus (AF) tissues. The mRNA expression of NRTN, ARTN, PSPN, and their receptors (GFRA2-GFRA4) was quantified using real-time PCR. Protein expression was evaluated using immunohistochemistry and Western blotting. The expression of NRTN, ARTN, PSPN, and their co-receptors (GFRA2-GFRA4) was identified in human IVD cells at both mRNA and protein levels. A trend was noted wherein the mRNA expression of ARTN, PSPN, and GFRA2 was upregulated by IL-1β treatment in a dose-dependent manner. The percentages of immunopositive cells in the advanced degenerate stage of ARTN, PSPN, and GFRA2 were significantly higher than those in the early degenerate stage. Their expression was enhanced in advanced tissue degeneration, which suggests that GFLs (ARTN and PSPN) may be involved in the pathogenesis of discogenic pain.
Collapse
Affiliation(s)
| | - Koji Akeda
- Department of Orthopedic Surgery, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu City 514-8507, Mie, Japan; (T.I.); (K.K.); (J.Y.); (T.H.); (N.T.); (T.F.); (A.S.)
| | | | | | | | | | | | | |
Collapse
|
16
|
van Baarle L, Stakenborg M, Matteoli G. Enteric neuro-immune interactions in intestinal health and disease. Semin Immunol 2023; 70:101819. [PMID: 37632991 DOI: 10.1016/j.smim.2023.101819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 07/19/2023] [Accepted: 08/11/2023] [Indexed: 08/28/2023]
Abstract
The enteric nervous system is an autonomous neuronal circuit that regulates many processes far beyond the peristalsis in the gastro-intestinal tract. This circuit, consisting of enteric neurons and enteric glial cells, can engage in many intercellular interactions shaping the homeostatic microenvironment in the gut. Perhaps the most well documented interactions taking place, are the intestinal neuro-immune interactions which are essential for the fine-tuning of oral tolerance. In the context of intestinal disease, compelling evidence demonstrates both protective and detrimental roles for this bidirectional neuro-immune signaling. This review discusses the different immune cell types that are recognized to engage in neuronal crosstalk during intestinal health and disease. Highlighting the molecular pathways involved in the neuro-immune interactions might inspire novel strategies to target intestinal disease.
Collapse
Affiliation(s)
- Lies van Baarle
- Department of Chronic Diseases and Metabolism (CHROMETA), Translational Research Center for Gastrointestinal Disorders (TARGID), KU Leuven, Herestraat 49, O&N1 box 701, 3000 Leuven, Belgium
| | - Michelle Stakenborg
- Department of Chronic Diseases and Metabolism (CHROMETA), Translational Research Center for Gastrointestinal Disorders (TARGID), KU Leuven, Herestraat 49, O&N1 box 701, 3000 Leuven, Belgium
| | - Gianluca Matteoli
- Department of Chronic Diseases and Metabolism (CHROMETA), Translational Research Center for Gastrointestinal Disorders (TARGID), KU Leuven, Herestraat 49, O&N1 box 701, 3000 Leuven, Belgium.
| |
Collapse
|
17
|
Wang J, Gu S, Qin B. Eosinophil and mast cell-derived exosomes promote integrity of intestinal mucosa via the NEAT1/miR-211-5p/glial cell line-derived neurotrophic factor axis in duodenum. ENVIRONMENTAL TOXICOLOGY 2023; 38:2595-2607. [PMID: 37466184 DOI: 10.1002/tox.23895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 05/31/2023] [Accepted: 07/01/2023] [Indexed: 07/20/2023]
Abstract
BACKGROUND Exosomes are applied as biomarkers in several diseases according to their disease-specific profiles. However, the exosomes effects in functional dyspepsia (FD) are still fragmentary. Here we examined the role of Eosinophil and mast cell derived-exosomes in FD progression. METHODS Fifty FD subjects and age- and sex-matched healthy controls were included in this retrospective cohort study. Duodenal mucosa and gastric juice were collected to analyze molecular difference. Eosinophil and mast cell were evaluated by immunofluorescence and microarray was subjected to examine the expression levels of NEAT1, miR-211-5p, and glial cell line-derived neurotrophic factor (GDNF), which were subsequently were tested by quantitative reverse transcription PCR (RT-qPCR) validation cohorts. CCK-8 assays, and wound healing assays were used to evaluate integrity of intestinal mucosal barrier in vitro. Rats' weights and gastric emptying rates were used as evaluation of FD severity in vivo. RESULTS Eosinophil and mast cell were enriched and secreted more exosomes in duodenal mucosa of FD patients. We identified differential lncRNAs that were consistently and significantly up regulated in FD cases. Of these, NEAT1 was further validated by RT-qPCR and had closely relationship with GDNF. MiR-211-5p level was found to be reduced in FD and negatively related with NEAT1 and GDNF. Furthermore, NEAT1and GDNF relived FD while miR-211-5p made symptoms worse. The NEAT1/miR-211-5p/GDNF axis had a good predictive ability for FD. CONCLUSIONS The NEAT1/miR-211-5p/GDNF could be a potential FD biomarker.
Collapse
Affiliation(s)
- Jue Wang
- Department of Gastroenterology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Sai Gu
- Department of Gastroenterology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Bo Qin
- Department of Infectious Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
18
|
Lefèvre MA, Soret R, Pilon N. Harnessing the Power of Enteric Glial Cells' Plasticity and Multipotency for Advancing Regenerative Medicine. Int J Mol Sci 2023; 24:12475. [PMID: 37569849 PMCID: PMC10419543 DOI: 10.3390/ijms241512475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/31/2023] [Accepted: 08/03/2023] [Indexed: 08/13/2023] Open
Abstract
The enteric nervous system (ENS), known as the intrinsic nervous system of the gastrointestinal tract, is composed of a diverse array of neuronal and glial cell subtypes. Fascinating questions surrounding the generation of cellular diversity in the ENS have captivated ENS biologists for a considerable time, particularly with recent advancements in cell type-specific transcriptomics at both population and single-cell levels. However, the current focus of research in this field is predominantly restricted to the study of enteric neuron subtypes, while the investigation of enteric glia subtypes significantly lags behind. Despite this, enteric glial cells (EGCs) are increasingly recognized as equally important regulators of numerous bowel functions. Moreover, a subset of postnatal EGCs exhibits remarkable plasticity and multipotency, distinguishing them as critical entities in the context of advancing regenerative medicine. In this review, we aim to provide an updated overview of the current knowledge on this subject, while also identifying key questions that necessitate future exploration.
Collapse
Affiliation(s)
- Marie A. Lefèvre
- Département des Sciences Biologiques, Université du Québec à Montréal (UQAM), Montreal, QC H3C 3P8, Canada;
- Centre D’excellence en Recherche Sur Les Maladies Orphelines—Fondation Courtois (CERMO-FC), Université du Québec à Montréal, Montreal, QC H2X 3Y7, Canada
| | - Rodolphe Soret
- Département des Sciences Biologiques, Université du Québec à Montréal (UQAM), Montreal, QC H3C 3P8, Canada;
- Centre D’excellence en Recherche Sur Les Maladies Orphelines—Fondation Courtois (CERMO-FC), Université du Québec à Montréal, Montreal, QC H2X 3Y7, Canada
| | - Nicolas Pilon
- Département des Sciences Biologiques, Université du Québec à Montréal (UQAM), Montreal, QC H3C 3P8, Canada;
- Centre D’excellence en Recherche Sur Les Maladies Orphelines—Fondation Courtois (CERMO-FC), Université du Québec à Montréal, Montreal, QC H2X 3Y7, Canada
- Département de Pédiatrie, Université de Montréal, Montreal, QC H3T 1C5, Canada
| |
Collapse
|
19
|
Zhang LM, Xin Y, Song RX, Zheng WC, Hu JS, Wang JX, Wu ZY, Zhang DX. CORM-3 alleviates the intestinal injury in a rodent model of hemorrhage shock and resuscitation: roles of GFAP-positive glia. J Mol Histol 2023; 54:271-282. [PMID: 37335421 DOI: 10.1007/s10735-023-10133-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 06/11/2023] [Indexed: 06/21/2023]
Abstract
Hemorrhagic shock and resuscitation (HSR) can induce severe intestinal damages, thereby leading to sepsis and long-term complications including dysbacteriosis and pulmonary injury. The NOD-like receptor protein 3 (NLRP3) inflammasome facilitates inflammation-associated cell recruitment in the gastrointestinal tract, and participates in many inflammatory bowel diseases. Previous studies have shown that exogenous carbon monoxide (CO) exerts neuroprotective effects against pyroptosis after HSR. We aimed to investigate whether carbon monoxide-releasing molecules-3 (CORM-3), an exogenous CO compound, could attenuate HSR-induced intestinal injury and the potential underlying mechanism.Rats were subjected to a HSR model by bleeding and re-infusion. Following resuscitation, 4 mg/kg of CORM-3 was administered intravenously into femoral vein. At 24 h and 7 d after HSR modeling, the pathological changes in intestinal tissues were evaluated by H&E staining. The intestinal pyroptosis, glial fibrillary acidic protein (GFAP)-positive glial pyroptosis, DAO (diamine oxidase) content, intestine tight junction proteins including zonula occludens-1 (ZO-1) and claudin-1 were further detected by immunofluorescence, western blot and chemical assays at 7 d after HSR. CORM-3 administration led to significantly mitigated HSR-induced intestinal injury, aggravation of intestinal pyroptosis indicated by cleaved caspase-1, IL-1β and IL-18, upregulation of GFAP-positive glial pyroptosis, decreased intensity of ZO-1 and claudin-1 in the jejunum, and increased of DAO in the serum. Nigericin, an agonist of NLRP3, significantly reversed the protective effects of CORM-3. CORM-3 alleviates the intestinal barrier dysfunction in a rodent model of HSR, and the potential mechanism may be associated with inhibition of NLRP3-associated pyroptosis. CORM-3 administration could be a promising therapeutic strategy for intestinal injury after hemorrhagic shock.
Collapse
Affiliation(s)
- Li-Min Zhang
- Department of Anesthesiology, Hebei Province Cangzhou Hospital of Integrated Traditional and Western Medicine (Cangzhou No.2 Hospital), Cangzhou, China.
| | - Yue Xin
- Department of Anesthesiology, Hebei Province Cangzhou Hospital of Integrated Traditional and Western Medicine (Cangzhou No.2 Hospital), Cangzhou, China
| | - Rong-Xin Song
- Department of Anesthesiology, Cangzhou Central Hospital, Hebei Medical University, Shijiazhuang, China
| | - Wei-Chao Zheng
- Department of Anesthesiology, Hebei Province Cangzhou Hospital of Integrated Traditional and Western Medicine (Cangzhou No.2 Hospital), Cangzhou, China
| | - Jin-Shu Hu
- Department of Clinical Laboratory, Cangzhou Central Hospital, Cangzhou, China
| | - Jie-Xia Wang
- Department of Anesthesiology, Cangzhou Central Hospital, Shijiazhuang, China
| | - Zhi-You Wu
- Department of Neurosurgery, Cangzhou Central Hospital, Hebei Medical University, Shijiazhuang, China
| | - Dong-Xue Zhang
- Department of Gerontology, Cangzhou Central Hospital, Cangzhou, China
| |
Collapse
|
20
|
Teramoto H, Hirashima N, Tanaka M. Calcineurin B1 Deficiency Reduces Proliferation, Increases Apoptosis, and Alters Secretion in Enteric Glial Cells of Mouse Small Intestine in Culture. Cells 2023; 12:1867. [PMID: 37508531 PMCID: PMC10378349 DOI: 10.3390/cells12141867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 06/30/2023] [Accepted: 07/15/2023] [Indexed: 07/30/2023] Open
Abstract
To investigate the roles of calcineurin (CN) in glial cells, we previously generated conditional knockout (CKO) mice lacking CNB1 in glial cells. Because these CKO mice showed dysfunction and inflammation of the small intestine in addition to growth impairment and postweaning death, we have focused on enteric glial cells (EGCs) in the small intestine. In this study, we examined the effects of CNB1 deficiency on the proliferation and survival of EGCs and the expression and secretion of EGC-derived substances in culture to reveal the mechanisms of how CNB1 deficiency leads to dysfunction and inflammation of the small intestine. In primary myenteric cultures of the small intestine, EGCs from the CKO mice showed reduced proliferation and increased apoptosis compared with EGCs from control mice. In purified EGC cultures from the CKO mice, Western blot analysis showed increased expression of S100B, iNOS, GFAP, and GDNF, and increased phosphorylation of NF-κB p65. In the supernatants of purified EGC cultures from the CKO mice, ELISA showed reduced secretion of TGF-β1. In contrast, GDNF secretion was not altered in purified EGC cultures from the CKO mice. Furthermore, treatment with an S100B inhibitor partially rescued the CKO mice from growth impairment and postweaning death in vivo. In conclusion, CNB1 deficiency leads to reduced proliferation and increased apoptosis of EGCs and abnormal expression and secretion of EGC-derived substances, which may contribute to dysfunction and inflammation of the small intestine.
Collapse
Affiliation(s)
- Hikaru Teramoto
- Department of Cellular Biophysics, Graduate School of Pharmaceutical Sciences, Nagoya City University, Tanabe-dori, Mizuho-ku, Nagoya 467-8603, Japan
| | - Naohide Hirashima
- Department of Cellular Biophysics, Graduate School of Pharmaceutical Sciences, Nagoya City University, Tanabe-dori, Mizuho-ku, Nagoya 467-8603, Japan
| | - Masahiko Tanaka
- Department of Cellular Biophysics, Graduate School of Pharmaceutical Sciences, Nagoya City University, Tanabe-dori, Mizuho-ku, Nagoya 467-8603, Japan
| |
Collapse
|
21
|
Wang Z, Qu YJ, Cui M. Modulation of stem cell fate in intestinal homeostasis, injury and repair. World J Stem Cells 2023; 15:354-368. [PMID: 37342221 PMCID: PMC10277971 DOI: 10.4252/wjsc.v15.i5.354] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 03/31/2023] [Accepted: 04/24/2023] [Indexed: 05/26/2023] Open
Abstract
The mammalian intestinal epithelium constitutes the largest barrier against the external environment and makes flexible responses to various types of stimuli. Epithelial cells are fast-renewed to counteract constant damage and disrupted barrier function to maintain their integrity. The homeostatic repair and regeneration of the intestinal epithelium are governed by the Lgr5+ intestinal stem cells (ISCs) located at the base of crypts, which fuel rapid renewal and give rise to the different epithelial cell types. Protracted biological and physicochemical stress may challenge epithelial integrity and the function of ISCs. The field of ISCs is thus of interest for complete mucosal healing, given its relevance to diseases of intestinal injury and inflammation such as inflammatory bowel diseases. Here, we review the current understanding of the signals and mechanisms that control homeostasis and regeneration of the intestinal epithelium. We focus on recent insights into the intrinsic and extrinsic elements involved in the process of intestinal homeostasis, injury, and repair, which fine-tune the balance between self-renewal and cell fate specification in ISCs. Deciphering the regulatory machinery that modulates stem cell fate would aid in the development of novel therapeutics that facilitate mucosal healing and restore epithelial barrier function.
Collapse
Affiliation(s)
- Zhe Wang
- Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei Province, China
| | - Yan-Ji Qu
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei Province, China
| | - Min Cui
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei Province, China
| |
Collapse
|
22
|
Prochera A, Rao M. Mini-Review: Enteric glial regulation of the gastrointestinal epithelium. Neurosci Lett 2023; 805:137215. [PMID: 37001854 PMCID: PMC10125724 DOI: 10.1016/j.neulet.2023.137215] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/11/2023] [Accepted: 03/27/2023] [Indexed: 03/31/2023]
Abstract
Many enteric glia are located along nerve fibers in the gut mucosa where they form close associations with the epithelium lining the gastrointestinal tract. The gut epithelium is essential for absorbing nutrients, regulating fluid flux, forming a physical barrier to prevent the entry of pathogens and toxins into the host, and participating in immune responses. Disruptions to this epithelium are linked to numerous diseases, highlighting its central importance in maintaining health. Accumulating evidence indicates that glia regulate gut epithelial homeostasis. Observations from glial-epithelial co-cultures in vitro and mouse genetic models in vivo suggest that enteric glia influence several important features of the gut epithelium including barrier integrity, ion transport, and capacity for self-renewal. Here we review the evidence for enteric glial regulation of the intestinal epithelium, with a focus on these three features of its biology.
Collapse
Affiliation(s)
- Aleksandra Prochera
- Department of Pediatrics, Boston Children's Hospital and Harvard Medical School, 300 Longwood Ave, Boston, MA 02115, USA; Program in Immunology, Harvard Medical School, Boston, MA, USA
| | - Meenakshi Rao
- Department of Pediatrics, Boston Children's Hospital and Harvard Medical School, 300 Longwood Ave, Boston, MA 02115, USA.
| |
Collapse
|
23
|
Treatment with the Olive Secoiridoid Oleacein Protects against the Intestinal Alterations Associated with EAE. Int J Mol Sci 2023; 24:ijms24054977. [PMID: 36902407 PMCID: PMC10003427 DOI: 10.3390/ijms24054977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 02/24/2023] [Accepted: 02/27/2023] [Indexed: 03/08/2023] Open
Abstract
Multiple sclerosis (MS) is a CNS inflammatory demyelinating disease. Recent investigations highlight the gut-brain axis as a communication network with crucial implications in neurological diseases. Thus, disrupted intestinal integrity allows the translocation of luminal molecules into systemic circulation, promoting systemic/brain immune-inflammatory responses. In both, MS and its preclinical model, the experimental autoimmune encephalomyelitis (EAE) gastrointestinal symptoms including "leaky gut" have been reported. Oleacein (OLE), a phenolic compound from extra virgin olive oil or olive leaves, harbors a wide range of therapeutic properties. Previously, we showed OLE effectiveness preventing motor defects and inflammatory damage of CNS tissues on EAE mice. The current studies examine its potential protective effects on intestinal barrier dysfunction using MOG35-55-induced EAE in C57BL/6 mice. OLE decreased EAE-induced inflammation and oxidative stress in the intestine, preventing tissue injury and permeability alterations. OLE protected from EAE-induced superoxide anion and accumulation of protein and lipid oxidation products in colon, also enhancing its antioxidant capacity. These effects were accompanied by reduced colonic IL-1β and TNFα levels in OLE-treated EAE mice, whereas the immunoregulatory cytokines IL-25 and IL-33 remained unchanged. Moreover, OLE protected the mucin-containing goblet cells in colon and the serum levels of iFABP and sCD14, markers that reflect loss of intestinal epithelial barrier integrity and low-grade systemic inflammation, were significantly reduced. These effects on intestinal permeability did not draw significant differences on the abundance and diversity of gut microbiota. However, OLE induced an EAE-independent raise in the abundance of Akkermansiaceae family. Consistently, using Caco-2 cells as an in vitro model, we confirmed that OLE protected against intestinal barrier dysfunction induced by harmful mediators present in both EAE and MS. This study proves that the protective effect of OLE in EAE also involves normalizing the gut alterations associated to the disease.
Collapse
|
24
|
Overexpression of microRNA-211 in Functional Dyspepsia via Downregulation of the Glial Cell Line-Derived Neurotrophic Factor (GDNF) by Increasing Phosphorylation of p38 MAPK Pathway. Can J Gastroenterol Hepatol 2022; 2022:9394381. [PMID: 36569394 PMCID: PMC9771656 DOI: 10.1155/2022/9394381] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 11/09/2022] [Accepted: 11/11/2022] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Overexpression of miRNA-211 suppresses the differentiation of bone marrow stem cells into intestinal ganglion cells via downregulation of GDNF, a regulator of intestine barrier function. The study aimed to investigate the interaction between miR-211 and GDNF on intestinal epithelial cells. METHODS The expression levels of miR-211 and GDNF in duodenal biopsy specimens from FD patients and healthy controls were compared. Enteric glia cell (EGCs) cell line transfected with miR-211 mimics and inhibitors were used to clarify the expression levels of GDNF were analyzed by qRT-PCR and ELISA. Intestine epithelial cell (IECs) cell line cultured in medium from ECGs in different transfection conditions were used in wound healing assay, cell proliferation assay, and western blotting for evaluation of p38 MAPK phosphorylation level. RESULTS MiR-211 expression was significantly upregulated in the duodenal tissue of patients with FD compared to healthy subjects, whereas GDNF expression was significantly downregulated (both p < 0.05). Transfection with miR-211 mimics significantly decreased GDNF mRNA expression and protein secretion (p < 0.001). An inhibited intestinal epithelial cell wound healing (p < 0.05) and increased expression levels of phosphorylated p38 MAPK (p < 0.05) were found in IECs cultured with medium from EGCs transfected with miR-211 mimics. CONCLUSIONS MiR-211 may downregulates GDNF mRNA and protein expression via activation of the pp38 MAPK signaling pathway. Targeting miR-211 or the MAPK pathway may be a potential intervention for FD.
Collapse
|
25
|
Yang YH, Qian W, Hou XH, Dai CB. Bifidobacterium bifidum and Bacteroides fragilis Induced Differential Immune Regulation of Enteric Glial Cells Subjected to Exogenous Inflammatory Stimulation. Inflammation 2022; 45:2388-2405. [PMID: 35776290 DOI: 10.1007/s10753-022-01700-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 06/01/2022] [Accepted: 06/06/2022] [Indexed: 11/25/2022]
Abstract
Enteric glial cells (EGCs) are involved in intestinal inflammation. In this study, we will investigate how Bifidobacterium bifidum (B.b.) and Bacteroides fragilis (B.f.) influence EGC regulation. After pretreatment with lipopolysaccharide (LPS) and interferon-γ (IFN-γ), the expressions of major histocompatibility complex class II (MHC-II), CD80, CD86, glial cell line-derived neurotrophic factor (GDNF), toll-like receptor 2 (TLR-2), and tumor necrosis factor-α (TNF-α) in EGCs were detected using polymerase chain reaction and western blot after co-culture with the supernatants of B.b. or B.f. (multiplicity of infection, 40:1 or 80:1). Finally, EGCs were co-cultured with naive CD4+ T cells, and the expressions of interleukin (IL)-2, IL-4, IL-10, and IL-17 in supernatant were measured using enzyme-linked immunosorbent assay (ELISA). The mRNA expressions of MHC-II and CD86 in EGCs were increased after combined stimulation with LPS and IFN-γ. The expressions of MHC-II, GDNF, TLR-2, and TNF-α were all significantly upregulated in stimulated EGCs. The B.b. supernatant downregulated the expressions of MHC-II, GDNF, TLR-2, and TNF-α in stimulated EGCs, whereas the B.f. supernatant upregulated TLR-2 expression and downregulated MHC-II expression. The expressions of IL-4, IL-2, and IL-17 after co-culture of naive CD4+ T cells and stimulated EGCs were significantly increased. The supernatant of B.b. or B.f. downregulated the expressions of these cytokines. The low-concentration B.b. supernatant upregulated IL-10 expression. Conclusions B.b. and B.f. may influence intestinal inflammation by regulating MHC-II, GDNF, TLR-2, and TNF-α expression in EGCs and IL-4, IL-2, IL-17, and IL-10 secretion.
Collapse
Affiliation(s)
- Yan-Hua Yang
- Division of Gastroenterology, Affiliated RenHe Hospital of Three Gorges University, Yichang, 443001, China
- Division of Gastroenterology, Central Hospital of Enshi Autonomous Prefecture, Hubei Province, Enshi, 445000, China
| | - Wei Qian
- Division of Gastroenterology, Union Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Xiao-Hua Hou
- Division of Gastroenterology, Union Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Chi-Bing Dai
- Division of Gastroenterology, Affiliated RenHe Hospital of Three Gorges University, Yichang, 443001, China.
| |
Collapse
|
26
|
Wang XM, Lv LX, Qin YS, Zhang YZ, Yang N, Wu S, Xia XW, Yang H, Xu H, Liu Y, Ding WJ. Ji-Chuan decoction ameliorates slow transit constipation via regulation of intestinal glial cell apoptosis. World J Gastroenterol 2022; 28:5007-5022. [PMID: 36160643 PMCID: PMC9494937 DOI: 10.3748/wjg.v28.i34.5007] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 07/19/2022] [Accepted: 08/21/2022] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Slow transit constipation (STC) is a common intestinal disease with increasing incidence. STC results from various factors, such as the enteric nervous system and metabolic changes. As a classical formula of traditional Chinese medicine, Ji-Chuan decoction (JCD) has been extensively and effectively used in STC treatment, yet its pharmacological mechanism remains unclear.
AIM To explore the integrated regulatory pattern of JCD against STC through hyphenated techniques from metabolism, network pharmacology and molecular methods.
METHODS STC model mice were generated by intragastric administration of compound diphenoxylate (10 mg/kg/d) for 14 d. The STC mice in the low dose of JCD (3.04 g/kg), middle dose of JCD (6.08 g/kg) and high dose of JCD (12.16 g/kg) groups were orally administered JCD solution once a day for 2 wk. The acetylcholine (ACH) level was examined by enzyme-linked immunosorbent assay. The pathological features of colon tissue were observed by hematoxylin and eosin staining. The differentially expressed metabolites and metabolic pathways were tested by nontargeted metabolomics. The main targets and core ingredients of JCD were identified by network pharmacology, and the expression of AKT was confirmed by immunohistochemistry. Finally, the pathways involved in JCD treatment were predicted using a combination of differentially expressed metabolites and targets, and intestinal glial cell apoptosis was demonstrated by immunofluorescence.
RESULTS JCD significantly promoted intestinal motility, increased the levels of the excitatory neurotransmitter ACH and reduced intestinal inflammation in STC mice. Untargeted metabolomics results showed that JCD significantly restored metabolic dysfunction and significantly affected taurine and hypotaurine metabolism. Network pharmacology and molecular experiments showed that JCD regulates AKT protein expression, and the core component is quercetin. Combined analysis demonstrated that apoptosis may be an important mechanism by which JCD relieves constipation. Further experiments showed that JCD reduced enteric glial cell (EGC) apoptosis.
CONCLUSION This work demonstrated that reducing EGC apoptosis may be the critical mechanism by which JCD treats STC. These findings call for further molecular research to facilitate the clinical application of JCD.
Collapse
Affiliation(s)
- Xiu-Min Wang
- Department of Fundamental Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 610072, Sichuan Province, China
- Department of Proctology, Chengdu First People’s Hospital, Chengdu 610041, Sichuan Province, China
| | - Li-Xia Lv
- Department of Endocrinology and Metabolism, Chengdu First People’s Hospital, Chengdu 610041, Sichuan Province, China
| | - Yue-Si Qin
- Department of Dermatology, Chengdu First People’s Hospital, Chengdu 610041, Sichuan Province, China
| | - Yu-Zhu Zhang
- Department of Fundamental Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 610072, Sichuan Province, China
| | - Ni Yang
- Department of Fundamental Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 610072, Sichuan Province, China
| | - Shu Wu
- Department of Fundamental Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 610072, Sichuan Province, China
| | - Xiu-Wen Xia
- Department of Fundamental Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 610072, Sichuan Province, China
| | - Hong Yang
- Department of Fundamental Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 610072, Sichuan Province, China
| | - Hong Xu
- Department of Proctology, Chengdu First People’s Hospital, Chengdu 610041, Sichuan Province, China
| | - Ying Liu
- Department of Preventive Medicine, Shantou University Medical College, Shantou 515063, Guangdong Province, China
| | - Wei-Jun Ding
- Department of Fundamental Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 610072, Sichuan Province, China
| |
Collapse
|
27
|
Proteomic analyses do not reveal subclinical inflammation in fatigued patients with clinically quiescent inflammatory bowel disease. Sci Rep 2022; 12:14581. [PMID: 36028644 PMCID: PMC9418325 DOI: 10.1038/s41598-022-17504-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 07/26/2022] [Indexed: 11/08/2022] Open
Abstract
Fatigue is a common and clinically challenging symptom in patients with inflammatory bowel diseases (IBD), occurring in ~ 50% of patients with quiescent disease. In this study, we aimed to investigate whether fatigue in patients with clinically quiescent IBD is reflected by circulating inflammatory proteins, which might reflect ongoing subclinical inflammation. Ninety-two (92) different inflammation-related proteins were measured in plasma of 350 patients with clinically quiescent IBD. Quiescent IBD was defined as clinical (Harvey-Bradshaw Index < 5 or Simple Clinical Colitis Activity Index < 2.5) and biochemical remission (C-reactive protein < 5 mg/L and absence of anemia) at time of fatigue assessment. Leukemia inhibitory factor receptor (LIF-R) concentrations were inversely associated with severe fatigue, also after adjustment for confounding factors (nominal P < 0.05). Although solely LIF-R showed weak ability to discriminate between mild and severe fatigue (area under the curve [AUC] = 0.61, 95%CI: 0.53–0.69, P < 0.05), a combined set of the top seven (7) fatigue-associated proteins (all P < 0.10) was observed to have reasonable discriminative performance (AUC = 0.82 [95%CI: 0.74–0.91], P < 0.01). Fatigue in patients with IBD is not clearly reflected by distinct protein signatures, suggesting there is no subclinical inflammation defined by the studied inflammatory proteins. Future studies are warranted to investigate other proteomic markers that may reflect fatigue in clinically quiescent IBD.
Collapse
|
28
|
Circular RNA-VPS13A attenuates diabetes-induced enteric glia damage by targeting miR-182/GDNF Axis. Acta Biochim Biophys Sin (Shanghai) 2022; 54:999-1007. [PMID: 35880571 PMCID: PMC9828216 DOI: 10.3724/abbs.2022073] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Gastrointestinal (GI) complications of diabetes mellitus (DM) significantly impact on patients' quality of life. Enteric glial cells (EGC) are the key cell type of enteric nervous system (ENS), which contributes to the destruction of gut homeostasis in DM. Circular RNAs (circRNAs) are a novel type of RNAs abundant in the eukaryotic transcriptome, which form covalently closed continuous loops. In this study, the contribution of circRNAs to EGC damage in DM is investigated. Transcriptome sequencing analysis and functional study show that circVPS13A is significantly down-regulated in hyperglycemia-treated EGC, and circVPS13A overexpression attenuates EGC damage in both in vitro and in vivo DM models. In vitro mechanistic study using dual-luciferase reporter assay, affinity-isolation assay, fluorescence in situ hybridization (FISH) and immunostaining analysis identify that circVPS13A exerts its protective effect by sponging miR-182 and then up-regulates glial cell line-derived neurotrophic factor (GDNF) expression. In addition, in vivo study confirms that the circVPS13A-miR-182-GDNF network regulation can attenuate hyperglycemia-induced EGC damage of duodenum in streptozotocine (STZ)-induced DM mice. The findings of this study may provide novel insights into the protective role of circVPS13A in DM-associated EGC damage and clues for the development of new therapeutic approaches for the prevention of GI complications of DM.
Collapse
|
29
|
Thomasi BBDM, Valdetaro L, Ricciardi MCG, Hayashide L, Fernandes ACMN, Mussauer A, da Silva ML, da Cunha Faria-Melibeu A, Ribeiro MGL, de Mattos Coelho-Aguiar J, Campello-Costa P, Moura-Neto V, Tavares-Gomes AL. Enteric glial cell reactivity in colonic layers and mucosal modulation in a mouse model of Parkinson’s disease induced by 6-hydroxydopamine. Brain Res Bull 2022; 187:111-121. [DOI: 10.1016/j.brainresbull.2022.06.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 05/20/2022] [Accepted: 06/25/2022] [Indexed: 11/02/2022]
|
30
|
Brochard C, Bouguen G, Olivier R, Durand T, Henno S, Peyronnet B, Pagenault M, Lefèvre C, Boudry G, Croyal M, Fautrel A, Esvan M, Ropert A, Dariel A, Siproudhis L, Neunlist M. Altered epithelial barrier functions in the colon of patients with spina bifida. Sci Rep 2022; 12:7196. [PMID: 35505001 PMCID: PMC9065040 DOI: 10.1038/s41598-022-11289-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 04/12/2022] [Indexed: 11/09/2022] Open
Abstract
Our objectives were to better characterize the colorectal function of patients with Spina Bifida (SB). Patients with SB and healthy volunteers (HVs) completed prospectively a standardized questionnaire, clinical evaluation, rectal barostat, colonoscopy with biopsies and faecal collection. The data from 36 adults with SB (age: 38.8 [34.1-47.2]) were compared with those of 16 HVs (age: 39.0 [31.0-46.5]). Compared to HVs, rectal compliance was lower in patients with SB (p = 0.01), whereas rectal tone was higher (p = 0.0015). Ex vivo paracellular permeability was increased in patients with SB (p = 0.0008) and inversely correlated with rectal compliance (r = - 0.563, p = 0.002). The expression of key tight junction proteins and inflammatory markers was comparable between SB and HVs, except for an increase in Claudin-1 immunoreactivity (p = 0.04) in SB compared to HVs. TGFβ1 and GDNF mRNAs were expressed at higher levels in patients with SB (p = 0.02 and p = 0.008). The levels of acetate, propionate and butyrate in faecal samples were reduced (p = 0.04, p = 0.01, and p = 0.02, respectively). Our findings provide evidence that anorectal and epithelial functions are altered in patients with SB. The alterations in these key functions might represent new therapeutic targets, in particular using microbiota-derived approaches.Clinical Trials: NCT02440984 and NCT03054415.
Collapse
Affiliation(s)
- Charlène Brochard
- Service d'Explorations Fonctionnelles Digestives, CHRU Pontchaillou, Université de Rennes 1, 2 rue Henri le Guillou, 35033, Rennes Cedex, France.
- The Enteric Nervous System in Gut and Brain Disorders INSERM, TENS, Université de Nantes, Nantes, France.
- Inserm, CIC 1414 (Centre d'Investigation Clinique de Rennes), CHU Rennes, 35000, Rennes, France.
- Centre Référence Maladies Rares Spina Bifida, CHRU Pontchaillou, Rennes, France.
| | - Guillaume Bouguen
- Inserm, CIC 1414 (Centre d'Investigation Clinique de Rennes), CHU Rennes, 35000, Rennes, France
- Service des Maladies de l'Appareil Digestif, CHRU Pontchaillou, Université de Rennes 1, Rennes, France
- Institut Numecan, INSERM, INRAE, Univ Rennes, Rennes, France
| | - Raphael Olivier
- The Enteric Nervous System in Gut and Brain Disorders INSERM, TENS, Université de Nantes, Nantes, France
| | - Tony Durand
- The Enteric Nervous System in Gut and Brain Disorders INSERM, TENS, Université de Nantes, Nantes, France
| | - Sébastien Henno
- Service d'Anatomopathologie, CHRU Pontchaillou, Rennes, France
| | - Benoît Peyronnet
- Inserm, CIC 1414 (Centre d'Investigation Clinique de Rennes), CHU Rennes, 35000, Rennes, France
- Centre Référence Maladies Rares Spina Bifida, CHRU Pontchaillou, Rennes, France
- Service d'Urologie, CHRU Pontchaillou, Rennes, France
| | - Mael Pagenault
- Service des Maladies de l'Appareil Digestif, CHRU Pontchaillou, Université de Rennes 1, Rennes, France
| | - Chloé Lefèvre
- The Enteric Nervous System in Gut and Brain Disorders INSERM, TENS, Université de Nantes, Nantes, France
| | - Gaëlle Boudry
- Institut Numecan, INSERM, INRAE, Univ Rennes, Rennes, France
| | - Mikael Croyal
- Université de Nantes, CHU Nantes, INSERM, CNRS, SFR Santé, Inserm UMS 016, CNRS UMS 3556, 44000, Nantes, France
- CRNH-Ouest Mass Spectrometry Core Facility, 44000, Nantes, France
| | - Alain Fautrel
- Plateforme H2P2, Université de Rennes, Rennes, France
| | - Maxime Esvan
- Inserm, CIC 1414 (Centre d'Investigation Clinique de Rennes), CHU Rennes, 35000, Rennes, France
| | - Alain Ropert
- Service d'Explorations Fonctionnelles Digestives, CHRU Pontchaillou, Université de Rennes 1, 2 rue Henri le Guillou, 35033, Rennes Cedex, France
| | - Anne Dariel
- Service de Chirurgie Pédiatrique, CHU Marseille, Marseille, France
| | - Laurent Siproudhis
- Inserm, CIC 1414 (Centre d'Investigation Clinique de Rennes), CHU Rennes, 35000, Rennes, France
- Centre Référence Maladies Rares Spina Bifida, CHRU Pontchaillou, Rennes, France
- Service des Maladies de l'Appareil Digestif, CHRU Pontchaillou, Université de Rennes 1, Rennes, France
| | - Michel Neunlist
- The Enteric Nervous System in Gut and Brain Disorders INSERM, TENS, Université de Nantes, Nantes, France
| |
Collapse
|
31
|
Liu C, Yang J. Enteric Glial Cells in Immunological Disorders of the Gut. Front Cell Neurosci 2022; 16:895871. [PMID: 35573829 PMCID: PMC9095930 DOI: 10.3389/fncel.2022.895871] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 04/07/2022] [Indexed: 11/13/2022] Open
Abstract
Enteric glial cells (EGCs) are one of the major cell types of neural crest lineage distributed in the gastrointestinal tract. EGCs represent an integral part of the enteric nervous system (ENS) and significantly outnumber ENS neurons. Studies have suggested that EGCs would exert essential roles in supporting the survival and functions of the ENS neurons. Notably, recent evidence has begun to reveal that EGCs could possess multiple immune functions and thereby may participate in the immune homeostasis of the gut. In this review article, we will summarize the current evidence supporting the potential involvement of EGCs in several important immunological disorders, including inflammatory bowel disease, celiac disease, and autoimmune enteropathy. Further, we highlight critical questions on the immunological aspects of EGCs that warrant future research attention.
Collapse
Affiliation(s)
- Chang Liu
- Center for Life Sciences, Peking University, Beijing, China
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
- College of Life Sciences, Wuhan University, Wuhan, China
| | - Jing Yang
- Center for Life Sciences, Peking University, Beijing, China
- State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University, Beijing, China
- IDG/McGovern Institute for Brain Research, Peking University, Beijing, China
- Chinese Institute for Brain Research, Beijing, China
- Institute of Molecular Physiology, Shenzhen Bay Laboratory, Shenzhen, China
- *Correspondence: Jing Yang
| |
Collapse
|
32
|
Craig CF, Filippone RT, Stavely R, Bornstein JC, Apostolopoulos V, Nurgali K. Neuroinflammation as an etiological trigger for depression comorbid with inflammatory bowel disease. J Neuroinflammation 2022; 19:4. [PMID: 34983592 PMCID: PMC8729103 DOI: 10.1186/s12974-021-02354-1] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 12/14/2021] [Indexed: 02/06/2023] Open
Abstract
Patients with inflammatory bowel disease (IBD) suffer from depression at higher rates than the general population. An etiological trigger of depressive symptoms is theorised to be inflammation within the central nervous system. It is believed that heightened intestinal inflammation and dysfunction of the enteric nervous system (ENS) contribute to impaired intestinal permeability, which facilitates the translocation of intestinal enterotoxins into the blood circulation. Consequently, these may compromise the immunological and physiological functioning of distant non-intestinal tissues such as the brain. In vivo models of colitis provide evidence of increased blood–brain barrier permeability and enhanced central nervous system (CNS) immune activity triggered by intestinal enterotoxins and blood-borne inflammatory mediators. Understanding the immunological, physiological, and structural changes associated with IBD and neuroinflammation may aid in the development of more tailored and suitable pharmaceutical treatment for IBD-associated depression.
Collapse
Affiliation(s)
- Colin F Craig
- Institute for Heath and Sport, Victoria University, Western Centre for Health, Research and Education, Sunshine Hospital, Melbourne, VIC, Australia
| | - Rhiannon T Filippone
- Institute for Heath and Sport, Victoria University, Western Centre for Health, Research and Education, Sunshine Hospital, Melbourne, VIC, Australia
| | - Rhian Stavely
- Institute for Heath and Sport, Victoria University, Western Centre for Health, Research and Education, Sunshine Hospital, Melbourne, VIC, Australia.,Department of Pediatric Surgery, Pediatric Surgery Research Laboratories, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA
| | - Joel C Bornstein
- Department of Anatomy and Physiology, The University of Melbourne, Melbourne, Australia
| | - Vasso Apostolopoulos
- Institute for Heath and Sport, Victoria University, Western Centre for Health, Research and Education, Sunshine Hospital, Melbourne, VIC, Australia.,Immunology Program, Australian Institute of Musculoskeletal Science (AIMSS), Melbourne, VIC, Australia
| | - Kulmira Nurgali
- Institute for Heath and Sport, Victoria University, Western Centre for Health, Research and Education, Sunshine Hospital, Melbourne, VIC, Australia. .,Department of Medicine Western Health, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Melbourne, VIC, Australia. .,Regenerative Medicine and Stem Cells Program, Australian Institute of Musculoskeletal Science (AIMSS), Melbourne, VIC, Australia. .,Institute for Health and Sport, Victoria University, Level 4 Research Labs, Western Centre for Health Research and Education, Sunshine Hospital, 176 Furlong Road, St Albans, VIC, 3021, Australia.
| |
Collapse
|
33
|
Angelika D, Etika R, Fitriah M, Kusumawardani NN, Vita AD, Irawan R, Liem KD, Ugrasena IDG. Association between glial fibrillary acidic protein, glial-derived neurotrophic factor, and fatty acid-binding protein-2 at birth in the incidence of necrotizing enterocolitis in preterm infants. Front Pediatr 2022; 10:1010013. [PMID: 36340713 PMCID: PMC9630751 DOI: 10.3389/fped.2022.1010013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 09/30/2022] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND This study aimed to analyze the relationship between glial fibrillary acidic protein (GFAP), glial-derived neurotrophic factor (GDNF), and fatty acid-binding protein-2 (FABP-2) in preterm infants on the incidence of NEC. METHODS Preterm infants with a birth weight <1,500 g and gestational age <34 weeks were included in this study. Biomarker examination was performed using the umbilical vein blood at birth (first sample). Biomarker examination was repeated if the infant developed symptoms of NEC using peripheral vein blood (second sample). Infants were observed for 14 days. If NEC did not exist, a biomarker examination was performed at 14 days. RESULTS This study included 30 preterm infants, nine infants experienced NEC. The values of GFAP, GDNF, and FABP-2 (median and range) in the group with NEC were higher than those in the group without NEC in both the first samples {GFAP [1.40 (0.20-6.50) vs. 0.30 (0.10-1.30) P = 0.014], GDNF [2.84 (1.05-14.11) vs. 1.56 (1.07-3.48) P = 0.050], and FABP-2 [621.70 (278.40-2,207.00) vs. 294.20 (211.40-597.50) P = 0.002]} and second samples {GFAP [2.40 (0.30-3.10) vs. 0.30 (0.10-0.60) P = 0.003], GDNF [2.99 (0.56-10.30) vs. 1.46 (0.85-2.24) P = 0.019], and FABP-2 [646.8 (179.20-1,571.00) vs. 314.90 (184.70-521.60) P = 0.040]}. In infants with NEC, the median values of GFAP [2.40 (0.30-3.10) vs. 1.40 (0.20-6.50) P = 0.767], GDNF [2.99 (0.56-10.30) vs. 2.84 (1.05-14.11) P = 0.859], and FABP-2 [646.80 (179.20-1,571.00) vs. 621.70 (278.40-2,207.00) P = 0.953] in the second sample were higher than those in the first sample. Logistic regression demonstrated that GFAP at birth (Odds Ratio [OR] = 15.629, 95% Confidence Interval [CI] = 1.697-143.906, P = 0.015) and FABP-2 levels at birth (OR = 1.008, 95% CI = 1.001-1.015, P = 0.033) were significantly associated with an increased risk of NEC. CONCLUSION Increased GFAP, GDNF, and FABP-2 at birth are associated with NEC occurrence within two weeks of birth. These findings suggest that early-onset NEC is associated with intestinal injury that occurs during the perinatal or even prenatal period.
Collapse
Affiliation(s)
- Dina Angelika
- Doctoral Program of Medical Science, Faculty of Medicine Universitas Airlangga, Surabaya, Indonesia
| | - Risa Etika
- Department of Child Health, Faculty of Medicine Universitas Airlangga, Surabaya, Indonesia
| | - Munawaroh Fitriah
- Department of Clinical Pathology, Faculty of Medicine Universitas Airlangga, Surabaya, Indonesia
| | | | - Angelica Diana Vita
- Medical Program, Faculty of Medicine Universitas Airlangga, Surabaya, Indonesia
| | - Roedi Irawan
- Department of Child Health, Faculty of Medicine Universitas Airlangga, Surabaya, Indonesia
| | - Kian Djien Liem
- Department of Neonatology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - I Dewa Gede Ugrasena
- Department of Child Health, Faculty of Medicine Universitas Airlangga, Surabaya, Indonesia
| |
Collapse
|
34
|
Chen H, Han T, Gao L, Zhang D. The Involvement of Glial Cell-Derived Neurotrophic Factor in Inflammatory Bowel Disease. J Interferon Cytokine Res 2021; 42:1-7. [PMID: 34846920 DOI: 10.1089/jir.2021.0116] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Inflammatory bowel diseases (IBD) are chronic inflammatory gastrointestinal diseases characterized by dysregulation of the intestinal epithelial barrier (IEB) and intermittent relapses. Recent data show that the glial cell line-derived neurotrophic factor (GDNF) promotes IEB function and wound healing. Apart from protective effects of GDNF on enteric nervous system and IEB, an immunomodulatory role has been assumed. However, it is inconsistent whether GDNF levels are increased or decreased in the inflamed colon of patients with IBD. Furthermore, GDNF is 1 of 3 protein markers associated with relapse in a prospective cohort study in IBD patients with clinically and endoscopically quiescent disease. Additionally, not only enteric glial cells (EGCs), but also intestinal smooth muscle cells and enterocytes synthesize GDNF in significant amounts; in addition, its receptors are expressed in intestinal neurons, EGCs, immune cells and epithelial cells, which points to a potential auto- or paracrine signaling loop between some of these cells. Whether GDNF is involved in IBD-associated fibrosis and colitis-associated colorectal cancer remains to be confirmed. In this review we aim to summarize and discuss the current knowledge on the effects of GDNF and its potential role in the contribution to the pathogenesis of IBD.
Collapse
Affiliation(s)
- HuiLing Chen
- Department of Hematology and Lanzhou University Second Hospital, Gansu, P.R. China
| | - TiYun Han
- Department of Gastroenterology, Lanzhou University Second Hospital, Gansu, P.R. China
| | - LiPing Gao
- Department of Gastroenterology, Lanzhou University Second Hospital, Gansu, P.R. China
| | - DeKui Zhang
- Department of Gastroenterology, Lanzhou University Second Hospital, Gansu, P.R. China
| |
Collapse
|
35
|
Mechanistic Insight from Preclinical Models of Parkinson's Disease Could Help Redirect Clinical Trial Efforts in GDNF Therapy. Int J Mol Sci 2021; 22:ijms222111702. [PMID: 34769132 PMCID: PMC8583859 DOI: 10.3390/ijms222111702] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 10/23/2021] [Accepted: 10/25/2021] [Indexed: 11/16/2022] Open
Abstract
Parkinson’s disease (PD) is characterized by four pathognomonic hallmarks: (1) motor and non-motor deficits; (2) neuroinflammation and oxidative stress; (3) pathological aggregates of the α-synuclein (α-syn) protein; (4) neurodegeneration of the nigrostriatal system. Recent evidence sustains that the aggregation of pathological α-syn occurs in the early stages of the disease, becoming the first trigger of neuroinflammation and subsequent neurodegeneration. Thus, a therapeutic line aims at striking back α-synucleinopathy and neuroinflammation to impede neurodegeneration. Another therapeutic line is restoring the compromised dopaminergic system using neurotrophic factors, particularly the glial cell-derived neurotrophic factor (GDNF). Preclinical studies with GDNF have provided encouraging results but often lack evaluation of anti-α-syn and anti-inflammatory effects. In contrast, clinical trials have yielded imprecise results and have reported the emergence of severe side effects. Here, we analyze the discrepancy between preclinical and clinical outcomes, review the mechanisms of the aggregation of pathological α-syn, including neuroinflammation, and evaluate the neurorestorative properties of GDNF, emphasizing its anti-α-syn and anti-inflammatory effects in preclinical and clinical trials.
Collapse
|
36
|
Reale O, Bodi D, Huguet A, Fessard V. Role of enteric glial cells in the toxicity of phycotoxins: Investigation with a tri-culture intestinal cell model. Toxicol Lett 2021; 351:89-98. [PMID: 34461197 DOI: 10.1016/j.toxlet.2021.08.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 08/21/2021] [Accepted: 08/25/2021] [Indexed: 02/07/2023]
Abstract
Lipophilic phycotoxins are secondary metabolites produced by phytoplankton. They can accumulate in edible filtering-shellfish and cause human intoxications, particularly gastrointestinal symptoms. Up to now, the in vitro intestinal effects of these toxins have been mainly investigated on simple monolayers of intestinal cells such as the enterocyte-like Caco-2 cell line. Recently, the combination of Caco-2 cells with mucus secreting HT29-MTX cell line has been also used to mimic the complexity of the human intestinal epithelium. Besides, enteric glial cells (EGC) from the enteric nervous system identified in the gut mucosa have been largely shown to be involved in gut functions. Therefore, using a novel model integrating Caco-2 and HT29-MTX cells co-cultured on inserts with EGC seeded in the basolateral compartment, we examined the toxicological effects of two phycotoxins, pectenotoxin-2 (PTX2) and okadaic acid (OA). Cell viability, morphology, barrier integrity, inflammation, barrier crossing, and the response of some specific glial markers were evaluated using a broad set of methodologies. The toxicity of PTX2 was depicted by a slight decrease of viability and integrity as well as a slight increase of inflammation of the Caco-2/HT29-MTX co-cultures. PTX2 induced some modifications of EGC morphology. OA induced IL-8 release and decreased viability and integrity of Caco-2/HT29-MTX cell monolayers. EGC viability was slightly affected by OA. The presence of EGC reinforced barrier integrity and reduced the inflammatory response of the epithelial barrier following OA exposure. The release of GDNF and BDNF gliomediators by EGC could be implicated in the protection observed.
Collapse
Affiliation(s)
- Océane Reale
- Toxicology of Contaminants Unit, French Agency for Food, Environmental and Occupational Health & Safety (Anses), Fougères Laboratory, 10B Rue Claude Bourgelat, 35306, Fougères Cedex, France
| | - Dorina Bodi
- Unit Contaminants, German Federal Institute for Risk Assessment, Department Safety in the Food Chain, Max-Dohrn-Str. 8-10, 10589, Berlin, Germany
| | - Antoine Huguet
- Toxicology of Contaminants Unit, French Agency for Food, Environmental and Occupational Health & Safety (Anses), Fougères Laboratory, 10B Rue Claude Bourgelat, 35306, Fougères Cedex, France
| | - Valérie Fessard
- Toxicology of Contaminants Unit, French Agency for Food, Environmental and Occupational Health & Safety (Anses), Fougères Laboratory, 10B Rue Claude Bourgelat, 35306, Fougères Cedex, France.
| |
Collapse
|
37
|
Glial cell line-derived neurotrophic factor ameliorates dextran sulfate sodium-induced colitis in mice via a macrophage-mediated pathway. Int Immunopharmacol 2021; 100:108143. [PMID: 34543979 DOI: 10.1016/j.intimp.2021.108143] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 08/19/2021] [Accepted: 09/05/2021] [Indexed: 02/08/2023]
Abstract
Glial cell line-derived neurotrophic factor (GDNF) has been reported to protect mice from intestinal inflammation, but its anti-inflammatory mechanisms are poorly understood. Here we found that there was a downregulation in intestinal expression of GDNF accompanied by an increase of M1 macrophages in dextran sulfate sodium (DSS)-induced colitis in mice. GDNF treatment could facilitate the macrophages polarization towards the M2-like phenotype in DSS-treated mice and LPS-stimulated RAW264.7 cells, and reduce pro-inflammatory cytokines and increase anti-inflammatory cytokines. Mechanistically, the activation of PI3K/AKT pathway might contribute to the regulation of GDNF on macrophage phenotypes and inflammatory response. Moreover, the administration of GDNF significantly ameliorated colitis in DSS-treated mice, but this benefit of GDNF was diminished by macrophage depletion. Therefore, we propose a new mechanism whereby GDNF suppresses DSS-induced colitis in mice via a macrophage-mediated pathway.
Collapse
|
38
|
Nutraceuticals and Enteric Glial Cells. Molecules 2021; 26:molecules26123762. [PMID: 34205534 PMCID: PMC8234579 DOI: 10.3390/molecules26123762] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 06/11/2021] [Accepted: 06/15/2021] [Indexed: 12/21/2022] Open
Abstract
Until recently, glia were considered to be a structural support for neurons, however further investigations showed that glial cells are equally as important as neurons. Among many different types of glia, enteric glial cells (EGCs) found in the gastrointestinal tract, have been significantly underestimated, but proved to play an essential role in neuroprotection, immune system modulation and many other functions. They are also said to be remarkably altered in different physiopathological conditions. A nutraceutical is defined as any food substance or part of a food that provides medical or health benefits, including prevention and treatment of the disease. Following the description of these interesting peripheral glial cells and highlighting their role in physiological and pathological changes, this article reviews all the studies on the effects of nutraceuticals as modulators of their functions. Currently there are only a few studies available concerning the effects of nutraceuticals on EGCs. Most of them evaluated molecules with antioxidant properties in systemic conditions, whereas only a few studies have been performed using models of gastrointestinal disorders. Despite the scarcity of studies on the topic, all agree that nutraceuticals have the potential to be an interesting alternative in the prevention and/or treatment of enteric gliopathies (of systemic or local etiology) and their associated gastrointestinal conditions.
Collapse
|
39
|
Cui DJ, Yang XL, Okuda S, Ling YW, Zhang ZX, Liu Q, Yuan WQ, Yan F. Gallincin ameliorates colitis-associated inflammation and barrier function in mice based on network pharmacology prediction. J Int Med Res 2021; 48:300060520951023. [PMID: 33322986 PMCID: PMC7745594 DOI: 10.1177/0300060520951023] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Objective To explore potential mechanisms and effects of gallincin on a mouse model of colitis induced by dextran sulfate sodium (DSS). Methods Network pharmacology analysis was used to predict the molecular mechanism of action of gallincin for treatment of colitis. Gallincin was administered orally to mice with DSS-induced colitis. Expression of tumor necrosis factor α (TNF-α), D-lactate, and interleukin-1β (IL-1β) and myeloperoxidase activity were assessed with real-time quantitative PCR and an enzyme-linked immunoassay, respectively. Expression of occludin, zonula occludens 1 (ZO-1), and phosphorylated extracellular signal-regulated protein kinase1/2 (p-ERK1/2) was analyzed with immunohistochemical staining and/or western blot assays. Results Using a network pharmacology approach, 12 mapping targets between gallincin and colitis were obtained, including ERK/mitogen-activated protein kinase. Further investigations in an experimental colitis mouse model showed that gallincin significantly ameliorated experimental colitis, reduced D-lactate levels, and remarkably increased occludin and ZO-1 expression, possibly in part by decreasing IL-1β, TNF-α, and p-ERK1/2 levels and inhibiting leukocyte penetration. Conclusions Gallincin regulated colonic barrier function and reduced colitis-associated inflammation, suggesting it is a promising drug for the treatment of ulcerative colitis.
Collapse
Affiliation(s)
- De-Jun Cui
- Department of Gastroenterology, Guizhou Provincial People's Hospital, Guiyang, China.,Guizhou Medical University, Guiyang, China.,Division of Bioinformatics, Niigata University Graduate School of Medical and Dental Sciences, Japan
| | | | - Shujiro Okuda
- Division of Bioinformatics, Niigata University Graduate School of Medical and Dental Sciences, Japan
| | - Yi-Wei Ling
- Division of Bioinformatics, Niigata University Graduate School of Medical and Dental Sciences, Japan
| | - Zhu-Xue Zhang
- Pathology, Guizhou Provincial People's Hospital, Guiyang, China
| | - Qi Liu
- Guizhou Medical University, Guiyang, China
| | - Wen-Qiang Yuan
- Department of Gastroenterology, Guizhou Provincial People's Hospital, Guiyang, China.,Guizhou Medical University, Guiyang, China
| | - Fang Yan
- Department of Gastroenterology, Guizhou Provincial People's Hospital, Guiyang, China.,Guizhou Medical University, Guiyang, China
| |
Collapse
|
40
|
Sun L, Li X, Guan H, Chen S, Fan X, Zhou C, Yang H, Xiao W. A Novel Role of A 2AR in the Maintenance of Intestinal Barrier Function of Enteric Glia from Hypoxia-Induced Injury by Combining with mGluR5. Front Pharmacol 2021; 12:633403. [PMID: 34093180 PMCID: PMC8173626 DOI: 10.3389/fphar.2021.633403] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 03/25/2021] [Indexed: 12/20/2022] Open
Abstract
During acute intestinal ischemia reperfusion (IR) injury, the intestinal epithelial barrier (IEB) function is often disrupted. Enteric glial cells (EGCs) play an important role in maintaining the integrity of IEB functions. However, how EGCs regulate IEB function under IR stimulation is unknown. The present study reveals that the adenosine A2A receptor (A2AR) is important for mediating the barrier-modulating roles of EGCs. A2AR knockout (KO) experiments revealed more serious intestinal injury in A2AR KO mice than in WT mice after IR stimulation. Moreover, A2AR expression was significantly increased in WT mice when challenged by IR. To further investigate the role of A2AR in IEB, we established an in vitro EGC-Caco-2 co-culture system. Hypoxia stimulation was used to mimic the process of in vivo IR. Treating EGCs with the CGS21680 A2AR agonist attenuated hypoxia-induced intestinal epithelium damage through up-regulating ZO-1 and occludin expression in cocultured Caco-2 monolayers. Furthermore, we showed that A2AR and metabotropic glutamate receptor 5 (mGluR5) combine to activate the PKCα-dependent pathway in conditions of hypoxia. This study shows, for the first time, that hypoxia induces A2AR-mGluR5 interaction in EGCs to protect IEB function via the PKCα pathway.
Collapse
Affiliation(s)
- Lihua Sun
- Department of General Surgery, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Xiang Li
- Department of General Surgery, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Haidi Guan
- Department of General Surgery, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Shuaishuai Chen
- Department of General Surgery, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Xin Fan
- Department of General Surgery, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Chao Zhou
- Department of General Surgery, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Hua Yang
- Department of General Surgery, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Weidong Xiao
- Department of General Surgery, Xinqiao Hospital, Army Medical University, Chongqing, China
| |
Collapse
|
41
|
Holland AM, Bon-Frauches AC, Keszthelyi D, Melotte V, Boesmans W. The enteric nervous system in gastrointestinal disease etiology. Cell Mol Life Sci 2021; 78:4713-4733. [PMID: 33770200 PMCID: PMC8195951 DOI: 10.1007/s00018-021-03812-y] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 02/20/2021] [Accepted: 03/10/2021] [Indexed: 02/06/2023]
Abstract
A highly conserved but convoluted network of neurons and glial cells, the enteric nervous system (ENS), is positioned along the wall of the gut to coordinate digestive processes and gastrointestinal homeostasis. Because ENS components are in charge of the autonomous regulation of gut function, it is inevitable that their dysfunction is central to the pathophysiology and symptom generation of gastrointestinal disease. While for neurodevelopmental disorders such as Hirschsprung, ENS pathogenesis appears to be clear-cut, the role for impaired ENS activity in the etiology of other gastrointestinal disorders is less established and is often deemed secondary to other insults like intestinal inflammation. However, mounting experimental evidence in recent years indicates that gastrointestinal homeostasis hinges on multifaceted connections between the ENS, and other cellular networks such as the intestinal epithelium, the immune system, and the intestinal microbiome. Derangement of these interactions could underlie gastrointestinal disease onset and elicit variable degrees of abnormal gut function, pinpointing, perhaps unexpectedly, the ENS as a diligent participant in idiopathic but also in inflammatory and cancerous diseases of the gut. In this review, we discuss the latest evidence on the role of the ENS in the pathogenesis of enteric neuropathies, disorders of gut-brain interaction, inflammatory bowel diseases, and colorectal cancer.
Collapse
Affiliation(s)
- Amy Marie Holland
- Department of Pathology, GROW-School for Oncology and Developmental Biology, Maastricht University Medical Center, Maastricht, The Netherlands
- Biomedical Research Institute (BIOMED), Hasselt University, Diepenbeek, Belgium
| | - Ana Carina Bon-Frauches
- Department of Pathology, GROW-School for Oncology and Developmental Biology, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Daniel Keszthelyi
- Department of Internal Medicine, Division of Gastroenterology-Hepatology, NUTRIM-School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Veerle Melotte
- Department of Pathology, GROW-School for Oncology and Developmental Biology, Maastricht University Medical Center, Maastricht, The Netherlands
- Department of Clinical Genetics, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Werend Boesmans
- Department of Pathology, GROW-School for Oncology and Developmental Biology, Maastricht University Medical Center, Maastricht, The Netherlands.
- Biomedical Research Institute (BIOMED), Hasselt University, Diepenbeek, Belgium.
| |
Collapse
|
42
|
Pawolski V, Schmidt MHH. Neuron-Glia Interaction in the Developing and Adult Enteric Nervous System. Cells 2020; 10:E47. [PMID: 33396231 PMCID: PMC7823798 DOI: 10.3390/cells10010047] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 12/17/2020] [Accepted: 12/29/2020] [Indexed: 12/31/2022] Open
Abstract
The enteric nervous system (ENS) constitutes the largest part of the peripheral nervous system. In recent years, ENS development and its neurogenetic capacity in homeostasis and allostasishave gained increasing attention. Developmentally, the neural precursors of the ENS are mainly derived from vagal and sacral neural crest cell portions. Furthermore, Schwann cell precursors, as well as endodermal pancreatic progenitors, participate in ENS formation. Neural precursorsenherite three subpopulations: a bipotent neuron-glia, a neuronal-fated and a glial-fated subpopulation. Typically, enteric neural precursors migrate along the entire bowel to the anal end, chemoattracted by glial cell-derived neurotrophic factor (GDNF) and endothelin 3 (EDN3) molecules. During migration, a fraction undergoes differentiation into neurons and glial cells. Differentiation is regulated by bone morphogenetic proteins (BMP), Hedgehog and Notch signalling. The fully formed adult ENS may react to injury and damage with neurogenesis and gliogenesis. Nevertheless, the origin of differentiating cells is currently under debate. Putative candidates are an embryonic-like enteric neural progenitor population, Schwann cell precursors and transdifferentiating glial cells. These cells can be isolated and propagated in culture as adult ENS progenitors and may be used for cell transplantation therapies for treating enteric aganglionosis in Chagas and Hirschsprung's diseases.
Collapse
Affiliation(s)
| | - Mirko H. H. Schmidt
- Institute of Anatomy, Medical Faculty Carl Gustav Carus, Technische Universität Dresden School of Medicine, 01307 Dresden, Germany;
| |
Collapse
|
43
|
Yuan R, Bhattacharya N, Kenkel JA, Shen J, DiMaio MA, Bagchi S, Prestwood TR, Habtezion A, Engleman EG. Enteric Glia Play a Critical Role in Promoting the Development of Colorectal Cancer. Front Oncol 2020; 10:595892. [PMID: 33282743 PMCID: PMC7691584 DOI: 10.3389/fonc.2020.595892] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 10/16/2020] [Indexed: 12/15/2022] Open
Abstract
Enteric glia are a distinct population of peripheral glial cells in the enteric nervous system that regulate intestinal homeostasis, epithelial barrier integrity, and gut defense. Given these unique attributes, we investigated the impact of enteric glia depletion on tumor development in azoxymethane/dextran sodium sulfate (AOM/DSS)-treated mice, a classical model of colorectal cancer (CRC). Depleting GFAP+ enteric glia resulted in a profoundly reduced tumor burden in AOM/DSS mice and additionally reduced adenomas in the ApcMin /+ mouse model of familial adenomatous polyposis, suggesting a tumor-promoting role for these cells at an early premalignant stage. This was confirmed in further studies of AOM/DSS mice, as enteric glia depletion did not affect the properties of established malignant tumors but did result in a marked reduction in the development of precancerous dysplastic lesions. Surprisingly, the protective effect of enteric glia depletion was not dependent on modulation of anti-tumor immunity or intestinal inflammation. These findings reveal that GFAP+ enteric glia play a critical pro-tumorigenic role during early CRC development and identify these cells as a potential target for CRC prevention.
Collapse
Affiliation(s)
- Robert Yuan
- Department of Pathology, Stanford University School of Medicine (Blood Center), Palo Alto, CA, United States
| | - Nupur Bhattacharya
- Department of Pathology, Stanford University School of Medicine (Blood Center), Palo Alto, CA, United States
| | - Justin A Kenkel
- Department of Pathology, Stanford University School of Medicine (Blood Center), Palo Alto, CA, United States
| | - Jeanne Shen
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, United States
| | - Michael A DiMaio
- Department of Pathology, Marin Medical Laboratories, Novato, CA, United States
| | - Sreya Bagchi
- Department of Pathology, Stanford University School of Medicine (Blood Center), Palo Alto, CA, United States
| | - Tyler R Prestwood
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, United States
| | - Aida Habtezion
- Division of Gastroenterology and Hepatology, School of Medicine, Stanford University, Stanford, CA, United States
| | - Edgar G Engleman
- Department of Pathology, Stanford University School of Medicine (Blood Center), Palo Alto, CA, United States
| |
Collapse
|
44
|
Soret R, Schneider S, Bernas G, Christophers B, Souchkova O, Charrier B, Righini-Grunder F, Aspirot A, Landry M, Kembel SW, Faure C, Heuckeroth RO, Pilon N. Glial Cell-Derived Neurotrophic Factor Induces Enteric Neurogenesis and Improves Colon Structure and Function in Mouse Models of Hirschsprung Disease. Gastroenterology 2020; 159:1824-1838.e17. [PMID: 32687927 DOI: 10.1053/j.gastro.2020.07.018] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 06/25/2020] [Accepted: 07/10/2020] [Indexed: 12/21/2022]
Abstract
BACKGROUND & AIMS Hirschsprung disease (HSCR) is a life-threatening birth defect in which the distal colon is devoid of enteric neural ganglia. HSCR is treated by surgical removal of aganglionic bowel, but many children continue to have severe problems after surgery. We studied whether administration of glial cell derived neurotrophic factor (GDNF) induces enteric nervous system regeneration in mouse models of HSCR. METHODS We performed studies with four mouse models of HSCR: Holstein (HolTg/Tg, a model for trisomy 21-associated HSCR), TashT (TashTTg/Tg, a model for male-biased HSCR), Piebald-lethal (Ednrbs-l//s-l, a model for EDNRB mutation-associated HSCR), and Ret9/- (with aganglionosis induced by mycophenolate). Mice were given rectal enemas containing GDNF or saline (control) from postnatal days 4 through 8. We measured survival times of mice, and colon tissues were analyzed by histology, immunofluorescence, and immunoblots. Neural ganglia regeneration and structure, bowel motility, epithelial permeability, muscle thickness, and neutrophil infiltration were studied in colon tissues and in mice. Stool samples were collected, and microbiomes were analyzed by 16S rRNA gene sequencing. Time-lapse imaging and genetic cell-lineage tracing were used to identify a source of GDNF-targeted neural progenitors. Human aganglionic colon explants from children with HSCR were cultured with GDNF and evaluated for neurogenesis. RESULTS GDNF significantly prolonged mean survival times of HolTg/Tg mice, Ednrbs-l//s-l mice, and male TashTTg/Tg mice, compared with control mice, but not Ret9/- mice (which had mycophenolate toxicity). Mice given GDNF developed neurons and glia in distal bowel tissues that were aganglionic in control mice, had a significant increase in colon motility, and had significant decreases in epithelial permeability, muscle thickness, and neutrophil density. We observed dysbiosis in fecal samples from HolTg/Tg mice compared with feces from wild-type mice; fecal microbiomes of mice given GDNF were similar to those of wild-type mice except for Bacteroides. Exogenous luminal GDNF penetrated aganglionic colon epithelium of HolTg/Tg mice, inducing production of endogenous GDNF, and new enteric neurons and glia appeared to arise from Schwann cells within extrinsic nerves. GDNF application to cultured explants of human aganglionic bowel induced proliferation of Schwann cells and formation of new neurons. CONCLUSIONS GDNF prolonged survival, induced enteric neurogenesis, and improved colon structure and function in 3 mouse models of HSCR. Application of GDNF to cultured explants of aganglionic bowel from children with HSCR induced proliferation of Schwann cells and formation of new neurons. GDNF might be developed for treatment of HSCR.
Collapse
Affiliation(s)
- Rodolphe Soret
- Département des Sciences Biologiques, Université du Québec à Montréal (UQAM), Montréal, Québec, Canada; Centre d'excellence en recherche sur les maladies orphelines-Fondation Courtois (CERMO-FC), Université du Québec à Montréal, Montréal, Québec, Canada
| | - Sabine Schneider
- Department of Pediatrics, the University of Pennsylvania Perelman School of Medicine and The Children's Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania
| | - Guillaume Bernas
- Département des Sciences Biologiques, Université du Québec à Montréal (UQAM), Montréal, Québec, Canada
| | - Briana Christophers
- Department of Pediatrics, the University of Pennsylvania Perelman School of Medicine and The Children's Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania
| | - Ouliana Souchkova
- Département des Sciences Biologiques, Université du Québec à Montréal (UQAM), Montréal, Québec, Canada; Centre d'excellence en recherche sur les maladies orphelines-Fondation Courtois (CERMO-FC), Université du Québec à Montréal, Montréal, Québec, Canada
| | - Baptiste Charrier
- Département des Sciences Biologiques, Université du Québec à Montréal (UQAM), Montréal, Québec, Canada; Centre d'excellence en recherche sur les maladies orphelines-Fondation Courtois (CERMO-FC), Université du Québec à Montréal, Montréal, Québec, Canada
| | - Franziska Righini-Grunder
- Division de gastroentérologie, hépatologie et nutrition pédiatrique, Centre Hospitalier Universitaire Sainte-Justine, Montréal, Québec, Canada
| | - Ann Aspirot
- Division de chirurgie pédiatrique, Centre hospitalier universitaire Sainte-Justine, Montréal, Québec, Canada; Département de pédiatrie, Université de Montréal, Montréal, Québec, Canada
| | - Mathieu Landry
- Département des Sciences Biologiques, Université du Québec à Montréal (UQAM), Montréal, Québec, Canada
| | - Steven W Kembel
- Département des Sciences Biologiques, Université du Québec à Montréal (UQAM), Montréal, Québec, Canada; Centre d'excellence en recherche sur les maladies orphelines-Fondation Courtois (CERMO-FC), Université du Québec à Montréal, Montréal, Québec, Canada
| | - Christophe Faure
- Centre d'excellence en recherche sur les maladies orphelines-Fondation Courtois (CERMO-FC), Université du Québec à Montréal, Montréal, Québec, Canada; Division de gastroentérologie, hépatologie et nutrition pédiatrique, Centre Hospitalier Universitaire Sainte-Justine, Montréal, Québec, Canada; Département de pédiatrie, Université de Montréal, Montréal, Québec, Canada
| | - Robert O Heuckeroth
- Department of Pediatrics, the University of Pennsylvania Perelman School of Medicine and The Children's Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania
| | - Nicolas Pilon
- Département des Sciences Biologiques, Université du Québec à Montréal (UQAM), Montréal, Québec, Canada; Centre d'excellence en recherche sur les maladies orphelines-Fondation Courtois (CERMO-FC), Université du Québec à Montréal, Montréal, Québec, Canada; Département de pédiatrie, Université de Montréal, Montréal, Québec, Canada.
| |
Collapse
|
45
|
Lin L, Feng B, Zhou R, Liu Y, Li L, Wang K, Yu Y, Liu C, Long X, Gu X, Li B, Wang X, Yang X, Cong Y, Zuo X, Li Y. Acute stress disrupts intestinal homeostasis via GDNF-RET. Cell Prolif 2020; 53:e12889. [PMID: 32808420 PMCID: PMC7574880 DOI: 10.1111/cpr.12889] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 07/11/2020] [Accepted: 07/26/2020] [Indexed: 12/15/2022] Open
Abstract
OBJECTIVES Enterochromaffin (EC) cells have been associated with functional gastrointestinal disorders such as IBS. Recently, we found that glial cell-derived neurotrophic factor (GDNF)-rearranged during transfection (RET) localized in EC cells in human colonic epithelia. Here, we examine the role of GDNF-RET in the pathophysiology of diarrhoea-predominant irritable bowel syndrome (IBS-D). MATERIALS AND METHODS GDNF was assessed by ELISA and immunohistochemistry in biopsies from IBS-D patients and healthy controls. Stress was induced by using a wrap-restraint stress (WRS) procedure to serve as an acute stress-induced IBS model. The function of GDNF-RET axis to intestinal stem cell (ISC) homeostasis, and EC cell numbers were assessed in vivo and in vitro. RESULTS GDNF-RET was expressed in EC cells in human colon. GDNF was significantly increased in IBS-D patients. WRS mice showed increased GDNF-RET levels in colon. WRS induced visceral hypersensitivity by expanding of ISC and differentiation of EC cell via GDNF-RET. Furthermore, GDNF-treated mice recapitulated the phenotype of WRS mice. In vitro, GDNF treatment amplified Wnt signal and increased serotonin levels in colonic organoids in a dose-dependent manner. CONCLUSIONS We identified GDNF-RET was presented in colonic epithelium of patients with IBS-D. GDNF-RET played important roles in regulating ISC and EC cell differentiation. Our findings, thus, provide RET inhibitor as new therapeutic targets for treatment of patients with IBS-D.
Collapse
Affiliation(s)
- Lin Lin
- Department of GastroenterologyQilu HospitalCheeloo College of MedicineShandong UniversityJinanChina
- Laboratory of Translational GastroenterologyQilu HospitalCheeloo College of MedicineShandong UniversityJinanChina
| | - Bingcheng Feng
- Department of GastroenterologyQilu HospitalCheeloo College of MedicineShandong UniversityJinanChina
- Laboratory of Translational GastroenterologyQilu HospitalCheeloo College of MedicineShandong UniversityJinanChina
| | - Ruchen Zhou
- Department of GastroenterologyQilu HospitalCheeloo College of MedicineShandong UniversityJinanChina
- Laboratory of Translational GastroenterologyQilu HospitalCheeloo College of MedicineShandong UniversityJinanChina
| | - Yi Liu
- Department of GastroenterologyQilu HospitalCheeloo College of MedicineShandong UniversityJinanChina
- Department of GastroenterologyThe Affiliated Hospital of Qingdao UniversityQingdaoChina
| | - Lixiang Li
- Department of GastroenterologyQilu HospitalCheeloo College of MedicineShandong UniversityJinanChina
- Laboratory of Translational GastroenterologyQilu HospitalCheeloo College of MedicineShandong UniversityJinanChina
| | - Kairuo Wang
- Department of GastroenterologyQilu HospitalCheeloo College of MedicineShandong UniversityJinanChina
- Laboratory of Translational GastroenterologyQilu HospitalCheeloo College of MedicineShandong UniversityJinanChina
| | - Yanbo Yu
- Department of GastroenterologyQilu HospitalCheeloo College of MedicineShandong UniversityJinanChina
- Laboratory of Translational GastroenterologyQilu HospitalCheeloo College of MedicineShandong UniversityJinanChina
| | - Chao Liu
- Department of GastroenterologyQilu HospitalCheeloo College of MedicineShandong UniversityJinanChina
- Laboratory of Translational GastroenterologyQilu HospitalCheeloo College of MedicineShandong UniversityJinanChina
| | - Xin Long
- Department of GastroenterologyQilu HospitalCheeloo College of MedicineShandong UniversityJinanChina
- Laboratory of Translational GastroenterologyQilu HospitalCheeloo College of MedicineShandong UniversityJinanChina
| | - Xiang Gu
- Department of GastroenterologyQilu HospitalCheeloo College of MedicineShandong UniversityJinanChina
- Laboratory of Translational GastroenterologyQilu HospitalCheeloo College of MedicineShandong UniversityJinanChina
| | - Bing Li
- Department of GastroenterologyQilu HospitalCheeloo College of MedicineShandong UniversityJinanChina
- Laboratory of Translational GastroenterologyQilu HospitalCheeloo College of MedicineShandong UniversityJinanChina
| | - Xiaojie Wang
- Department of dermatologyPeking University People’s HospitalBeijingChina
| | - Xiaoyun Yang
- Department of GastroenterologyQilu HospitalCheeloo College of MedicineShandong UniversityJinanChina
- Laboratory of Translational GastroenterologyQilu HospitalCheeloo College of MedicineShandong UniversityJinanChina
| | - Yingzi Cong
- Department of Microbiology and ImmunologyUniversity of Texas Medical BranchGalvestonTexasUSA
| | - Xiuli Zuo
- Department of GastroenterologyQilu HospitalCheeloo College of MedicineShandong UniversityJinanChina
- Laboratory of Translational GastroenterologyQilu HospitalCheeloo College of MedicineShandong UniversityJinanChina
| | - Yanqing Li
- Department of GastroenterologyQilu HospitalCheeloo College of MedicineShandong UniversityJinanChina
- Laboratory of Translational GastroenterologyQilu HospitalCheeloo College of MedicineShandong UniversityJinanChina
| |
Collapse
|
46
|
Park D, Choi EK, Cho TH, Joo SS, Kim YB. Human Neural Stem Cells Encoding ChAT Gene Restore Cognitive Function via Acetylcholine Synthesis, Aβ Elimination, and Neuroregeneration in APPswe/PS1dE9 Mice. Int J Mol Sci 2020; 21:3958. [PMID: 32486466 PMCID: PMC7313059 DOI: 10.3390/ijms21113958] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Revised: 05/29/2020] [Accepted: 05/29/2020] [Indexed: 02/06/2023] Open
Abstract
In Alzheimer disease (AD) patients, degeneration of the cholinergic system utilizing acetylcholine for memory acquisition is observed. Since AD therapy using acetylcholinesterase (AChE) inhibitors are only palliative for memory deficits without slowing or reversing disease progress, there is a need for effective therapies, and stem cell-based therapeutic approaches targeting AD should fulfill this requirement. We established a human neural stem cell (NSC) line encoding choline acetyltransferase (ChAT) gene, an acetylcholine-synthesizing enzyme. APPswe/PS1dE9 AD model mice transplanted with the F3.ChAT NSCs exhibited improved cognitive function and physical activity. Transplanted F3.ChAT NSCs in the AD mice differentiated into neurons and astrocytes, produced ChAT protein, increased the ACh level, and improved the learning and memory function. F3.ChAT cell transplantation reduced Aβ deposits by recovering microglial function; i.e., the down-regulation of β-secretase and inflammatory cytokines and up-regulation of Aβ-degrading enzyme neprilysin. F3.ChAT cells restored growth factors (GFs) and neurotrophic factors (NFs), and they induced the proliferation of NSCs in the host brain. These findings indicate that NSCs overexpressing ChAT can ameliorate complex cognitive and physical deficits of AD animals by releasing ACh, reducing Aβ deposit, and promoting neuroregeneration by the production of GFs/NFs. It is suggested that NSCs overexpressing ChAT could be a candidate for cell therapy in advanced AD therapy.
Collapse
Affiliation(s)
- Dongsun Park
- Department of Biology Education, Korea National University of Education, Cheongju, Chungbuk 29173, Korea;
| | - Ehn-Kyoung Choi
- Central Research Institute, Designed Cells Co., Ltd., Cheongju, Chungbuk 28576, Korea;
| | - Tai-Hyoung Cho
- Department of Neurosurgery, Korea University College of Medicine, Korea University Anam Hospital, Seoul 02841, Korea;
| | - Seong Soo Joo
- Department of Marine Molecular Biotechnology, Gangneung-Wonju National University, Gangneung, Gangwon 25457, Korea;
| | - Yun-Bae Kim
- Central Research Institute, Designed Cells Co., Ltd., Cheongju, Chungbuk 28576, Korea;
- College of Veterinary Medicine and Veterinary Medical Center, Chungbuk National University, Cheongju, Chungbuk 28644, Korea
| |
Collapse
|
47
|
Xie Q, Chen X, Meng ZM, Huang XL, Zhang Q, Zhou JQ, Zhang L, He FQ, Zou YP, Gan HT. Glial-derived neurotrophic factor regulates enteric mast cells and ameliorates dextran sulfate sodium-induced experimental colitis. Int Immunopharmacol 2020; 85:106638. [PMID: 32470881 DOI: 10.1016/j.intimp.2020.106638] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 05/11/2020] [Accepted: 05/22/2020] [Indexed: 02/08/2023]
Abstract
BACKGROUND & AIMS Although interactions between enteric glial cells (EGCs) and enteric mast cells have been demonstrated to play an important role in the pathogenesis of inflammatory bowel disease (IBD), the exact mechanisms by which EGCs regulate enteric mast cells are still unknown. The aims of this study were to investigate whether glial-derived neurotrophic factor (GDNF), which has been confirmed to be produced mostly by EGCs, might regulate enteric mast cells and ameliorate dextran sulfate sodium (DSS)-induced experimental colitis. METHODS Recombinant adenoviral vectors encoding GDNF (Ad-GDNF) were administered intracolonically in experimental colitis induced by DSS. The disease activity index and histological score were measured. The expression of tumour necrosis factor-α (TNF-α), interleukin-6 and myeloperoxidase (MPO) activity were measured by ELISA assay. The expression of trypsin and β-hexosaminidase were evaluated. GDNF specific receptor (GFR-α1/RET) was detected. The calcium reflux was tested by microplate reader. The expression p-JNK was analyzed by western blot assay. RESULTS GDNF resulted in a significant inhibition of the activation of enteric mast cells by down-regulating JNK signal pathway, lessening intracellular calcium influx, and then reducing the degranulation as well as the expression of pro-inflammatory cytokines via combing with its receptor (GFR-α1/RET) in mast cells, and these inhibitory effects were abrogated by treatment with neutralizing antibody against GDNF. Moreover, the administration of GDNF led to an amelioration of experimental colitis. CONCLUSIONS GDNF are able to regulate enteric mast cells and ameliorate experimental colitis. GDNF might be an important mediator of the cross-talk between EGCs and enteric mast cells, and GDNF might be a useful therapeutic drug for IBD.
Collapse
Affiliation(s)
- Qin Xie
- Department of Geriatric Medicine and Gastroenterology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 611731, China; Chinese Academy of Sciences Sichuan Translational Medical Research Hospital, Chengdu 610072, China
| | - Xi Chen
- Department of Gastroenterology and the Center of Inflammatory Bowel Disease, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Zhang Min Meng
- Department of Geriatrics and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Xiao Li Huang
- Department of Geriatrics and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Qiao Zhang
- Department of Geriatrics and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Jin Qiu Zhou
- Department of Geriatrics and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Li Zhang
- Department of Geriatric Medicine and Gastroenterology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Fu Qian He
- Department of Geriatrics and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Yu Pei Zou
- Department of Geriatrics and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Hua Tian Gan
- Department of Geriatrics and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China; Department of Gastroenterology and the Center of Inflammatory Bowel Disease, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China.
| |
Collapse
|
48
|
D’Antongiovanni V, Benvenuti L, Fornai M, Pellegrini C, van den Wijngaard R, Cerantola S, Giron MC, Caputi V, Colucci R, Haskó G, Németh ZH, Blandizzi C, Antonioli L. Glial A 2B Adenosine Receptors Modulate Abnormal Tachykininergic Responses and Prevent Enteric Inflammation Associated with High Fat Diet-Induced Obesity. Cells 2020; 9:cells9051245. [PMID: 32443525 PMCID: PMC7290602 DOI: 10.3390/cells9051245] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 05/14/2020] [Accepted: 05/15/2020] [Indexed: 12/16/2022] Open
Abstract
The role played by adenosine A2B receptors (A2BRs) in the regulation of enteric glial cell (EGC) functions remains unclear. This study was aimed at investigating the involvement of A2BRs in the control of EGC functions in a model of obesity. C57BL/6 mice were fed with standard diet (SD) or high fat diet (HFD) for eight weeks. Colonic tachykininergic contractions were recorded in the presence of BAY60-6583 (A2BRs agonist), MRS1754 (A2BRs antagonist), and the gliotoxin fluorocitrate. Immunofluorescence distribution of HuC/D, S100β, and A2BRs was assessed in whole mount preparations of colonic myenteric plexus. To mimic HFD, EGCs were incubated in vitro with palmitate (PA) and lipopolysaccharide (LPS), in the absence or in the presence of A2BR ligands. Toll-like receptor 4 (TLR4) expression was assessed by Western blot analysis. Interleukin-1β (IL-1β), substance P (SP), and glial cell derived neurotrophic factor (GDNF) release were determined by enzyme-linked immunosorbent assay (ELISA) assays. MRS1754 enhanced electrically evoked tachykininergic contractions of colonic preparations from HFD mice. BAY60-6583 decreased the evoked tachykininergic contractions, with higher efficacy in HFD mice. Such effects were blunted upon incubation with fluorocitrate. In in vitro experiments on EGCs, PA and LPS increased TLR4 expression as well as IL-1β, GDNF, and SP release. Incubation with BAY60-6583 reduced TLR4 expression as well as IL-1β, GDNF, and SP release. Such effects were blunted by MRS1754. The present results suggest that A2BRs, expressed on EGCs, participate in the modulation of enteric inflammation and altered tachykininergic responses associated with obesity, thus representing a potential therapeutic target.
Collapse
Affiliation(s)
- Vanessa D’Antongiovanni
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy; (V.D.); (L.B.); (M.F.); (L.A.)
| | - Laura Benvenuti
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy; (V.D.); (L.B.); (M.F.); (L.A.)
| | - Matteo Fornai
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy; (V.D.); (L.B.); (M.F.); (L.A.)
| | | | - Renè van den Wijngaard
- Tytgat Institute for Liver and Intestinal Research, Department of Gastroenterology and Hepatology, Academic Medical Center, 1105 Amsterdam, The Netherlands;
| | - Silvia Cerantola
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, 35131 Padova, Italy; (S.C.); (M.C.G.); (R.C.)
| | - Maria Cecilia Giron
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, 35131 Padova, Italy; (S.C.); (M.C.G.); (R.C.)
| | - Valentina Caputi
- APC Microbiome Ireland, University College Cork, T12 YN60 Cork, Ireland;
| | - Rocchina Colucci
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, 35131 Padova, Italy; (S.C.); (M.C.G.); (R.C.)
| | - Gyorgy Haskó
- Department of Anesthesiology, Columbia University, New York, NY 10032, USA;
- Correspondence: (G.H.); (C.B.)
| | - Zoltán H. Németh
- Department of Anesthesiology, Columbia University, New York, NY 10032, USA;
- Department of Surgery, Morristown Medical Center, Morristown, NJ 07960, USA
| | - Corrado Blandizzi
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy; (V.D.); (L.B.); (M.F.); (L.A.)
- Correspondence: (G.H.); (C.B.)
| | - Luca Antonioli
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy; (V.D.); (L.B.); (M.F.); (L.A.)
| |
Collapse
|
49
|
Qing J, Liu X, Wu Q, Zhou M, Zhang Y, Mazhar M, Huang X, Wang L, He F. Hippo/YAP Pathway Plays a Critical Role in Effect of GDNF Against Aβ-Induced Inflammation in Microglial Cells. DNA Cell Biol 2020; 39:1064-1071. [PMID: 32255663 DOI: 10.1089/dna.2019.5308] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Neuroinflammation is a critical mechanism responsible for the progression of Alzheimer's disease (AD). Recent studies reveal that Hippo/Yes-associated protein (YAP) signaling pathway is highly associated with a series of inflammation-related disorders. Glial cell line-derived neurotrophic factor (GDNF), with its neurotrophic and anti-apoptotic functions for nervous system, has been demonstrated to decrease the expression of proinflammatory mediators. Here we investigated whether Hippo/YAP signaling may affect amyloid-β (Aβ)-induced proinflammatory cytokine production in microglial cells and explored its relationship with the anti-inflammation function of GDNF. The results showed that Aβ induced a decrease in the expression of YAP in microglia cells. YAP agonist XMU-MP-1 or its overexpression in microglial cells caused decreased expression of proinflammatory cytokines, whereas YAP antagonist Verteporfin or knockdown of YAP had the opposite effect. Treatment with GDNF resulted in upregulation of YAP expression and reduced the production of proinflammatory cytokines. Meanwhile YAP knockdown weakened the function of GDNF in microglial cells. In conclusion, Hippo/YAP pathway plays a critical role in effect of GDNF against Aβ-induced inflammatory response in microglia. Targeting GDNF or Hippo/YAP signaling may be promising therapeutic approach for the treatment of AD.
Collapse
Affiliation(s)
- Jie Qing
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, China.,Research Center of Integrated Traditional Chinese and Western Medicine, Affiliated Traditional Medicine Hospital, Southwest Medical University, Luzhou, China
| | - Xiaoheng Liu
- Research Center of Integrated Traditional Chinese and Western Medicine, Affiliated Traditional Medicine Hospital, Southwest Medical University, Luzhou, China
| | - Quan Wu
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Mengjie Zhou
- Research Center of Integrated Traditional Chinese and Western Medicine, Affiliated Traditional Medicine Hospital, Southwest Medical University, Luzhou, China
| | - Yuwei Zhang
- Research Center of Integrated Traditional Chinese and Western Medicine, Affiliated Traditional Medicine Hospital, Southwest Medical University, Luzhou, China
| | - Maryam Mazhar
- Research Center of Integrated Traditional Chinese and Western Medicine, Affiliated Traditional Medicine Hospital, Southwest Medical University, Luzhou, China
| | - Xiaoli Huang
- The Center of Gerontology and Geriatrics and National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, China
| | - Li Wang
- Research Center of Integrated Traditional Chinese and Western Medicine, Affiliated Traditional Medicine Hospital, Southwest Medical University, Luzhou, China
| | - Fuqian He
- The Center of Gerontology and Geriatrics and National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, China
| |
Collapse
|
50
|
Morel L, Domingues O, Zimmer J, Michel T. Revisiting the Role of Neurotrophic Factors in Inflammation. Cells 2020; 9:cells9040865. [PMID: 32252363 PMCID: PMC7226825 DOI: 10.3390/cells9040865] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 03/31/2020] [Accepted: 03/31/2020] [Indexed: 12/13/2022] Open
Abstract
The neurotrophic factors are well known for their implication in the growth and the survival of the central, sensory, enteric and parasympathetic nervous systems. Due to these properties, neurturin (NRTN) and Glial cell-derived neurotrophic factor (GDNF), which belong to the GDNF family ligands (GFLs), have been assessed in clinical trials as a treatment for neurodegenerative diseases like Parkinson’s disease. In addition, studies in favor of a functional role for GFLs outside the nervous system are accumulating. Thus, GFLs are present in several peripheral tissues, including digestive, respiratory, hematopoietic and urogenital systems, heart, blood, muscles and skin. More precisely, recent data have highlighted that different types of immune and epithelial cells (macrophages, T cells, such as, for example, mucosal-associated invariant T (MAIT) cells, innate lymphoid cells (ILC) 3, dendritic cells, mast cells, monocytes, bronchial epithelial cells, keratinocytes) have the capacity to release GFLs and express their receptors, leading to the participation in the repair of epithelial barrier damage after inflammation. Some of these mechanisms pass on to ILCs to produce cytokines (such as IL-22) that can impact gut microbiota. In addition, there are indications that NRTN could be used in the treatment of inflammatory airway diseases and it prevents the development of hyperglycemia in the diabetic rat model. On the other hand, it is suspected that the dysregulation of GFLs produces oncogenic effects. This review proposes the discussion of the biological understanding and the potential new opportunities of the GFLs, in the perspective of developing new treatments within a broad range of human diseases.
Collapse
|