1
|
Kellman LN, Neela PH, Srinivasan S, Siprashvili Z, Shanderson RL, Hong AW, Rao D, Porter DF, Reynolds DL, Meyers RM, Guo MG, Yang X, Zhao Y, Wozniak GG, Donohue LKH, Shenoy R, Ko LA, Nguyen DT, Mondal S, Garcia OS, Elcavage LE, Elfaki I, Abell NS, Tao S, Lopez CM, Montgomery SB, Khavari PA. Functional analysis of cancer-associated germline risk variants. Nat Genet 2025; 57:718-728. [PMID: 39962238 DOI: 10.1038/s41588-024-02070-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 12/20/2024] [Indexed: 03/15/2025]
Abstract
Single-nucleotide variants (SNVs) in regulatory DNA are linked to inherited cancer risk. Massively parallel reporter assays of 4,041 SNVs linked to 13 neoplasms comprising >90% of human malignancies were performed in pertinent primary human cell types and then integrated with matching chromatin accessibility, DNA looping and expression quantitative trait loci data to nominate 380 potentially regulatory SNVs and their putative target genes. The latter highlighted specific protein networks in lifetime cancer risk, including mitochondrial translation, DNA damage repair and Rho GTPase activity. A CRISPR knockout screen demonstrated that a subset of germline putative risk genes also enables the growth of established cancers. Editing one SNV, rs10411210 , showed that its risk allele increases rhophilin RHPN2 expression and stimulus-responsive RhoA activation, indicating that individual SNVs may upregulate cancer-linked pathways. These functional data are a resource for variant prioritization efforts and further interrogation of the mechanisms underlying inherited risk for cancer.
Collapse
Affiliation(s)
- Laura N Kellman
- Program in Epithelial Biology, Stanford University School of Medicine, Stanford, CA, USA
- Program in Cancer Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Poornima H Neela
- Program in Epithelial Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Suhas Srinivasan
- Program in Epithelial Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Zurab Siprashvili
- Program in Epithelial Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Ronald L Shanderson
- Program in Epithelial Biology, Stanford University School of Medicine, Stanford, CA, USA
- Program in Cancer Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Audrey W Hong
- Program in Epithelial Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Deepti Rao
- Program in Epithelial Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Douglas F Porter
- Program in Epithelial Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - David L Reynolds
- Program in Epithelial Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Robin M Meyers
- Program in Epithelial Biology, Stanford University School of Medicine, Stanford, CA, USA
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Margaret G Guo
- Program in Epithelial Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Xue Yang
- Program in Epithelial Biology, Stanford University School of Medicine, Stanford, CA, USA
- Program in Cancer Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Yang Zhao
- Program in Epithelial Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Glenn G Wozniak
- Program in Epithelial Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Laura K H Donohue
- Program in Epithelial Biology, Stanford University School of Medicine, Stanford, CA, USA
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Rajani Shenoy
- Program in Epithelial Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Lisa A Ko
- Program in Epithelial Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Duy T Nguyen
- Program in Epithelial Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Smarajit Mondal
- Program in Epithelial Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Omar S Garcia
- Program in Epithelial Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Lara E Elcavage
- Program in Epithelial Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Ibtihal Elfaki
- Program in Epithelial Biology, Stanford University School of Medicine, Stanford, CA, USA
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Nathan S Abell
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Shiying Tao
- Program in Epithelial Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Christopher M Lopez
- Program in Epithelial Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Stephen B Montgomery
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
- Department of Biomedical Data Science, Stanford University School of Medicine, Stanford, CA, USA
| | - Paul A Khavari
- Program in Epithelial Biology, Stanford University School of Medicine, Stanford, CA, USA.
- Program in Cancer Biology, Stanford University School of Medicine, Stanford, CA, USA.
- Veterans Affairs Palo Alto Healthcare System, Palo Alto, CA, USA.
| |
Collapse
|
2
|
Soltani S, Cheng B, Osunkoya AO, Robles FE. Deep UV Microscopy Identifies Prostatic Basal Cells: An Important Biomarker for Prostate Cancer Diagnostics. BME FRONTIERS 2022; 2022:9847962. [PMID: 37850167 PMCID: PMC10521648 DOI: 10.34133/2022/9847962] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 06/05/2022] [Indexed: 10/19/2023] Open
Abstract
Objective and Impact Statement. Identifying benign mimics of prostatic adenocarcinoma remains a significant diagnostic challenge. In this work, we developed an approach based on label-free, high-resolution molecular imaging with multispectral deep ultraviolet (UV) microscopy which identifies important prostate tissue components, including basal cells. This work has significant implications towards improving the pathologic assessment and diagnosis of prostate cancer. Introduction. One of the most important indicators of prostate cancer is the absence of basal cells in glands and ducts. However, identifying basal cells using hematoxylin and eosin (H&E) stains, which is the standard of care, can be difficult in a subset of cases. In such situations, pathologists often resort to immunohistochemical (IHC) stains for a definitive diagnosis. However, IHC is expensive and time-consuming and requires more tissue sections which may not be available. In addition, IHC is subject to false-negative or false-positive stains which can potentially lead to an incorrect diagnosis. Methods. We leverage the rich molecular information of label-free multispectral deep UV microscopy to uniquely identify basal cells, luminal cells, and inflammatory cells. The method applies an unsupervised geometrical representation of principal component analysis to separate the various components of prostate tissue leading to multiple image representations of the molecular information. Results. Our results show that this method accurately and efficiently identifies benign and malignant glands with high fidelity, free of any staining procedures, based on the presence or absence of basal cells. We further use the molecular information to directly generate a high-resolution virtual IHC stain that clearly identifies basal cells, even in cases where IHC stains fail. Conclusion. Our simple, low-cost, and label-free deep UV method has the potential to improve and facilitate prostate cancer diagnosis by enabling robust identification of basal cells and other important prostate tissue components.
Collapse
Affiliation(s)
- Soheil Soltani
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA
| | - Brian Cheng
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA
| | - Adeboye O. Osunkoya
- Departments of Pathology and Urology, Emory University School of Medicine, Atlanta, GA 30322, USA
- Winship Cancer Institute of Emory University, Atlanta, GA 30322, USA
| | - Francisco E. Robles
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA
- Departments of Pathology and Urology, Emory University School of Medicine, Atlanta, GA 30322, USA
- Winship Cancer Institute of Emory University, Atlanta, GA 30322, USA
| |
Collapse
|
3
|
Mori JO, White J, Elhussin I, Duduyemi BM, Karanam B, Yates C, Wang H. Molecular and pathological subtypes related to prostate cancer disparities and disease outcomes in African American and European American patients. Front Oncol 2022; 12:928357. [PMID: 36033462 PMCID: PMC9399459 DOI: 10.3389/fonc.2022.928357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 07/11/2022] [Indexed: 11/13/2022] Open
Abstract
Prostate cancer (PCa) disproportionately affects African American (AA) men, yet present biomarkers do not address the observed racial disparity. The objective of this study was to identify biomarkers with potential benefits to AA PCa patients. Differentially expressed genes (DEG) analysis coupled with gene set enrichment analysis (GSEA) and leading-edge genes analysis showed that the keratin family of genes, including KRT8, KRT15, KRT19, KRT34, and KRT80, constituted the single most prominent family of genes enriched in AA compared to European American (EA) PCa cell lines. In PCa patients (TCGA and MSKCC patient cohorts), KRT8, KRT15, and KRT19 expression were relatively higher in AA than in EA patients. The differences in the expression of KRT15 and KRT19, but not KRT8, were enhanced by Gleason score and ERG fusion status; in low Gleason (Gleason ≤ 6 [TCGA cohort] and Gleason ≤ 7 [MSKCC cohort]), the expression of KRT15 and KRT19 was significantly (p ≤ 0.05) higher in AA than in EA patients. Survival analysis revealed that high expression of KRT15 and KRT19 was associated with increased risk of biochemical recurrence in low Gleason category patients in the TCGA patient cohort. Interestingly, KRT15 and KRT19 expression were also associated with an increased risk of death in the metastatic prostate adenocarcinoma cohort, suggesting the potential to predict the risks of disease recurrence and death in the low Gleason category and advanced disease conditions respectively. Gene set enrichment analysis revealed known oncogenic gene signatures, including KRAS and ERBB2, to be enriched in patients expressing high KRT15 and KRT19. Furthermore, high KRT15 and KRT19 were linked to the basal and LumA PCa subtypes, which are associated with poor postoperative androgen deprivation therapy (ADT) response compared to the LumB subtype. Taken together, the present study identifies genes with high expression in AA than in EA PCa. The identified genes are linked to oncogenic gene signatures, including KRAS and ERBB2, and to basal and LumA PCa subtypes that are associated with poor postoperative ADT response. This study, therefore, reveals biomarkers with the potential to address biomarker bias in PCa risk stratification and/or prognosis.
Collapse
Affiliation(s)
- Joakin O. Mori
- Department of Biology and Center for Cancer Research, Tuskegee University, Tuskegee, AL, United States
- Department of Integrative Biosciences, Tuskegee University, Tuskegee, AL, United States
| | - Jason White
- Department of Biology and Center for Cancer Research, Tuskegee University, Tuskegee, AL, United States
| | - Isra Elhussin
- Department of Biology and Center for Cancer Research, Tuskegee University, Tuskegee, AL, United States
- Department of Integrative Biosciences, Tuskegee University, Tuskegee, AL, United States
| | - Babatunde M. Duduyemi
- College of Medicine and Allied Health Sciences, University of Sierra Leone Teaching Hospital, Freetown, Sierra Leone
| | - Balasubramanyam Karanam
- Department of Biology and Center for Cancer Research, Tuskegee University, Tuskegee, AL, United States
| | - Clayton Yates
- Department of Biology and Center for Cancer Research, Tuskegee University, Tuskegee, AL, United States
| | - Honghe Wang
- Department of Biology and Center for Cancer Research, Tuskegee University, Tuskegee, AL, United States
- *Correspondence: Honghe Wang,
| |
Collapse
|
4
|
Kannan A, Clouston D, Frydenberg M, Ilic D, Karim MN, Evans SM, Toivanen R, Risbridger GP, Taylor RA. Neuroendocrine cells in prostate cancer correlate with poor outcomes: a systematic review and meta-analysis. BJU Int 2021; 130:420-433. [PMID: 34784097 DOI: 10.1111/bju.15647] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 11/04/2021] [Accepted: 11/11/2021] [Indexed: 12/12/2022]
Abstract
OBJECTIVES To perform a systematic review and meta-analysis of the literature to understand the variation in the reporting of neuroendocrine staining and determine the influence of reporting neuroendocrine staining at diagnosis on patient outcomes. METHODS Medical databases were searched to identify studies in which adenocarcinoma specimens were stained with any of the following four neuroendocrine markers: chromogranin A (CgA), neuron-specific enolase (NSE), synaptophysin and CD56. The prevalence of neuroendocrine staining and correlation of the prevalence of neuroendocrine staining to patient outcomes were analysed using a random-effects model. All statistical tests were two-sided. RESULTS Sixty-two studies spanning 7616 patients were analysed. The pooled prevalence for the most common marker, CgA (41%), was similar to that of NSE (39%) and higher than that of synaptophysin (31%). The prevalence of CgA staining was significantly influenced by reporting criteria, where objective thresholds reduced the variation in prevalence to 26%. No correlation was found between CgA prevalence and tumour grade. Patients positive for CgA staining using objective criteria had more rapid biochemical progression (hazard ratio [HR] 1.98, 95% confidence interval [CI] 1.49 to 2.65) and poorer prostate cancer-specific survival (HR 7.03, 95% CI 2.55 to 19.39) compared to negative patients, even among those with low-risk cancers. CONCLUSION Discrepancies in the reported prevalence of neuroendocrine cells in adenocarcinoma are driven by the inconsistent scoring criteria. This study unequivocally demonstrates that when neuroendocrine cell staining is assessed with objective criteria it identifies patients with poor clinical outcomes. Future studies are needed to determine the exact quantifiable thresholds for use in reporting neuroendocrine cell staining to identify patients at higher risk of progression.
Collapse
Affiliation(s)
- Ashwini Kannan
- Department of Anatomy and Developmental Biology and Department of Physiology, Biomedicine Discovery Institute, Cancer Program, Monash University, Melbourne, Vic., Australia.,School of Public Health and Preventive Medicine, Monash University, Melbourne, Vic., Australia
| | | | - Mark Frydenberg
- Department of Anatomy and Developmental Biology and Department of Physiology, Biomedicine Discovery Institute, Cancer Program, Monash University, Melbourne, Vic., Australia.,Department of Surgery, Monash University, Melbourne, Vic., Australia.,Department of Urology, Cabrini Institute, Cabrini Health, Melbourne, Vic., Australia
| | - Dragan Ilic
- School of Public Health and Preventive Medicine, Monash University, Melbourne, Vic., Australia
| | - Md Nazmul Karim
- School of Public Health and Preventive Medicine, Monash University, Melbourne, Vic., Australia
| | - Sue M Evans
- School of Public Health and Preventive Medicine, Monash University, Melbourne, Vic., Australia.,Victorian Cancer Registry, Cancer Council Victorian, Melbourne, Vic., Australia
| | - Roxanne Toivanen
- Department of Anatomy and Developmental Biology and Department of Physiology, Biomedicine Discovery Institute, Cancer Program, Monash University, Melbourne, Vic., Australia.,Prostate Cancer Research Program, Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne, Vic., Australia.,Sir Peter MacCallum, Department of Oncology, University of Melbourne, Parkville, Vic., Australia
| | - Gail P Risbridger
- Department of Anatomy and Developmental Biology and Department of Physiology, Biomedicine Discovery Institute, Cancer Program, Monash University, Melbourne, Vic., Australia.,Prostate Cancer Research Program, Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne, Vic., Australia.,Sir Peter MacCallum, Department of Oncology, University of Melbourne, Parkville, Vic., Australia
| | - Renea A Taylor
- Department of Anatomy and Developmental Biology and Department of Physiology, Biomedicine Discovery Institute, Cancer Program, Monash University, Melbourne, Vic., Australia.,Prostate Cancer Research Program, Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne, Vic., Australia.,Sir Peter MacCallum, Department of Oncology, University of Melbourne, Parkville, Vic., Australia
| |
Collapse
|
5
|
Hu WY, Hu DP, Xie L, Nonn L, Lu R, Abern M, Shioda T, Prins GS. Keratin Profiling by Single-Cell RNA-Sequencing Identifies Human Prostate Stem Cell Lineage Hierarchy and Cancer Stem-Like Cells. Int J Mol Sci 2021; 22:ijms22158109. [PMID: 34360875 PMCID: PMC8346986 DOI: 10.3390/ijms22158109] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 07/23/2021] [Accepted: 07/26/2021] [Indexed: 01/10/2023] Open
Abstract
Single prostate stem cells can generate stem and progenitor cells to form prostaspheres in 3D culture. Using a prostasphere-based label retention assay, we recently identified keratin 13 (KRT13)-enriched prostate stem cells at single-cell resolution, distinguishing them from daughter progenitors. Herein, we characterized the epithelial cell lineage hierarchy in prostaspheres using single-cell RNA-seq analysis. Keratin profiling revealed three clusters of label-retaining prostate stem cells; cluster I represents quiescent stem cells (PSCA, CD36, SPINK1, and KRT13/23/80/78/4 enriched), while clusters II and III represent active stem and bipotent progenitor cells (KRT16/17/6 enriched). Gene set enrichment analysis revealed enrichment of stem and cancer-related pathways in cluster I. In non-label-retaining daughter progenitor cells, three clusters were identified; cluster IV represents basal progenitors (KRT5/14/6/16 enriched), while clusters V and VI represent early and late-stage luminal progenitors, respectively (KRT8/18/10 enriched). Furthermore, MetaCore analysis showed enrichment of the “cytoskeleton remodeling–keratin filaments” pathway in cancer stem-like cells from human prostate cancer specimens. Along with common keratins (KRT13/23/80/78/4) in normal stem cells, unique keratins (KRT10/19/6C/16) were enriched in cancer stem-like cells. Clarification of these keratin profiles in human prostate stem cell lineage hierarchy and cancer stem-like cells can facilitate the identification and therapeutic targeting of prostate cancer stem-like cells.
Collapse
Affiliation(s)
- Wen-Yang Hu
- Department of Urology, University of Illinois at Chicago, Chicago, IL 60612, USA; (D.-P.H.); (L.X.); (R.L.); (M.A.); (G.S.P.)
- Correspondence:
| | - Dan-Ping Hu
- Department of Urology, University of Illinois at Chicago, Chicago, IL 60612, USA; (D.-P.H.); (L.X.); (R.L.); (M.A.); (G.S.P.)
| | - Lishi Xie
- Department of Urology, University of Illinois at Chicago, Chicago, IL 60612, USA; (D.-P.H.); (L.X.); (R.L.); (M.A.); (G.S.P.)
| | - Larisa Nonn
- Department of Pathology, University of Illinois at Chicago, Chicago, IL 60612, USA;
| | - Ranli Lu
- Department of Urology, University of Illinois at Chicago, Chicago, IL 60612, USA; (D.-P.H.); (L.X.); (R.L.); (M.A.); (G.S.P.)
| | - Michael Abern
- Department of Urology, University of Illinois at Chicago, Chicago, IL 60612, USA; (D.-P.H.); (L.X.); (R.L.); (M.A.); (G.S.P.)
| | - Toshihiro Shioda
- Massachusetts General Hospital Center for Cancer Research and Harvard Medical School, Charlestown, MA 02129, USA;
| | - Gail S. Prins
- Department of Urology, University of Illinois at Chicago, Chicago, IL 60612, USA; (D.-P.H.); (L.X.); (R.L.); (M.A.); (G.S.P.)
- Department of Pathology, University of Illinois at Chicago, Chicago, IL 60612, USA;
| |
Collapse
|
6
|
Cellular and Molecular Progression of Prostate Cancer: Models for Basic and Preclinical Research. Cancers (Basel) 2020; 12:cancers12092651. [PMID: 32957478 PMCID: PMC7563251 DOI: 10.3390/cancers12092651] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 09/10/2020] [Accepted: 09/11/2020] [Indexed: 02/08/2023] Open
Abstract
Simple Summary The molecular progression of prostate cancer is complex and elusive. Biological research relies heavily on in vitro and in vivo models that can be used to examine gene functions and responses to the external agents in laboratory and preclinical settings. Over the years, several models have been developed and found to be very helpful in understanding the biology of prostate cancer. Here we describe these models in the context of available information on the cellular and molecular progression of prostate cancer to suggest their potential utility in basic and preclinical prostate cancer research. The information discussed herein should serve as a hands-on resource for scholars engaged in prostate cancer research or to those who are making a transition to explore the complex biology of prostate cancer. Abstract We have witnessed noteworthy progress in our understanding of prostate cancer over the past decades. This basic knowledge has been translated into efficient diagnostic and treatment approaches leading to the improvement in patient survival. However, the molecular pathogenesis of prostate cancer appears to be complex, and histological findings often do not provide an accurate assessment of disease aggressiveness and future course. Moreover, we also witness tremendous racial disparity in prostate cancer incidence and clinical outcomes necessitating a deeper understanding of molecular and mechanistic bases of prostate cancer. Biological research heavily relies on model systems that can be easily manipulated and tested under a controlled experimental environment. Over the years, several cancer cell lines have been developed representing diverse molecular subtypes of prostate cancer. In addition, several animal models have been developed to demonstrate the etiological molecular basis of the prostate cancer. In recent years, patient-derived xenograft and 3-D culture models have also been created and utilized in preclinical research. This review is an attempt to succinctly discuss existing information on the cellular and molecular progression of prostate cancer. We also discuss available model systems and their tested and potential utility in basic and preclinical prostate cancer research.
Collapse
|
7
|
Mantsiou A, Makridakis M, Fasoulakis K, Katafigiotis I, Constantinides CA, Zoidakis J, Roubelakis MG, Vlahou A, Lygirou V. Proteomics Analysis of Formalin Fixed Paraffin Embedded Tissues in the Investigation of Prostate Cancer. J Proteome Res 2019; 19:2631-2642. [PMID: 31682457 DOI: 10.1021/acs.jproteome.9b00587] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Prostate cancer (PCa) is one of the leading causes of death in men worldwide. The molecular features, associated with the onset and progression of the disease, are under vigorous investigation. Formalin-fixed paraffin-embedded (FFPE) tissues are valuable resources for large-scale studies; however, their application in proteomics is limited due to protein cross-linking. In this study, the adjustment of a protocol for the proteomic analysis of FFPE tissues was performed which was followed by a pilot application on FFPE PCa clinical samples to investigate whether the optimized protocol can provide biologically relevant data for the investigation of PCa. For the optimization, FFPE mouse tissues were processed using seven protein extraction protocols including combinations of homogenization methods (beads, sonication, boiling) and buffers (SDS based and urea-thiourea based). The proteome extraction efficacy was then evaluated based on protein identifications and reproducibility using SDS electrophoresis and high resolution LC-MS/MS analysis. Comparison between the FFPE and matched fresh frozen (FF) tissues, using an optimized protocol involving protein extraction with an SDS-based buffer following beads homogenization and boiling, showed a substantial overlap in protein identifications with a strong correlation in relative abundances (rs = 0.819, p < 0.001). Next, FFPE tissues (3 sections, 15 μm each per sample) from 10 patients with PCa corresponding to tumor (GS = 6 or GS ≥ 8) and adjacent benign regions were processed with the optimized protocol. Extracted proteins were analyzed by GeLC-MS/MS followed by statistical and bioinformatics analysis. Proteins significantly deregulated between PCa GS ≥ 8 and PCa GS = 6 represented extracellular matrix organization, gluconeogenesis, and phosphorylation pathways. Proteins deregulated between cancerous and adjacent benign tissues, reflected increased translation, peptide synthesis, and protein metabolism in the former, which is consistent with the literature. In conclusion, the results support the relevance of the proteomic findings in the context of PCa and the reliability of the optimized protocol for proteomics analysis of FFPE material.
Collapse
Affiliation(s)
- Anna Mantsiou
- Biomedical Research Foundation of the Academy of Athens, Biotechnology Division, 4 Soranou Ephessiou Street, Athens 11527, Greece
| | - Manousos Makridakis
- Biomedical Research Foundation of the Academy of Athens, Biotechnology Division, 4 Soranou Ephessiou Street, Athens 11527, Greece
| | - Konstantinos Fasoulakis
- Ippokrateio General Hospital of Athens, Department of Urology, 114 Vasilissis Sofias Avenue, Athens 11527, Greece
| | - Ioannis Katafigiotis
- National and Kapodistrian University of Athens, Medical School, 1st Urology Department, Laikon Hospital, 17 Agiou Thoma Street, Athens 11527, Greece
| | - Constantinos A Constantinides
- National and Kapodistrian University of Athens, Medical School, 1st Urology Department, Laikon Hospital, 17 Agiou Thoma Street, Athens 11527, Greece
| | - Jerome Zoidakis
- Biomedical Research Foundation of the Academy of Athens, Biotechnology Division, 4 Soranou Ephessiou Street, Athens 11527, Greece
| | - Maria G Roubelakis
- National and Kapodistrian University of Athens, Medical School, Laboratory of Biology, 75 Mikras Assias Street, Athens 11527, Greece
| | - Antonia Vlahou
- Biomedical Research Foundation of the Academy of Athens, Biotechnology Division, 4 Soranou Ephessiou Street, Athens 11527, Greece
| | - Vasiliki Lygirou
- Biomedical Research Foundation of the Academy of Athens, Biotechnology Division, 4 Soranou Ephessiou Street, Athens 11527, Greece
| |
Collapse
|
8
|
Cho S, Yang HC, Rhee WJ. Simultaneous multiplexed detection of exosomal microRNAs and surface proteins for prostate cancer diagnosis. Biosens Bioelectron 2019; 146:111749. [PMID: 31600625 DOI: 10.1016/j.bios.2019.111749] [Citation(s) in RCA: 105] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 08/23/2019] [Accepted: 09/30/2019] [Indexed: 12/21/2022]
Abstract
Since the tumor is extremely heterogeneous, a single biomarker cannot reflect the exact symptoms of the disease or its stage. Exosomes are biomarker reservoirs that provide disease information with a high accuracy, especially when specific markers, including microRNAs (miRNAs) and proteins, are combined. However, currently available exosomal miRNA and protein detection methods are time consuming, expensive, and laborious. Meanwhile, simultaneous detection of an exosomal miRNA and protein in a single reaction is even more challenging. Thus, development of an efficient method for detecting multiple miRNAs and proteins in a single exosomal reaction is highly needed. Herein, to increase the value of using exosomes over other circulating biomarkers for prostate cancer (PCa) liquid biopsy, a method for simultaneous multiplexed in situ detection of exosomal miRNAs and proteins was developed. Exosomal miRNAs and surface proteins were simultaneously detected in captured exosomes with a high specificity, using nano-sized molecular beacons and fluorescent dye-conjugated antibodies. The method allowed the quantitative analysis of various disease-specific miRNAs and surface proteins in PCa cell-derived exosomes in a single exosomal reaction. Overall, simultaneous multiplexed in situ detection of exosomal miRNAs and surface proteins can be developed as a simple, cost-effective, non-invasive liquid biopsy method for diagnosing PCa.
Collapse
Affiliation(s)
- Seongcheol Cho
- Department of Bioengineering and Nano-Bioengineering, Incheon National University, Incheon, 22012, Republic of Korea
| | - Hee Cheol Yang
- Department of Bioengineering and Nano-Bioengineering, Incheon National University, Incheon, 22012, Republic of Korea
| | - Won Jong Rhee
- Department of Bioengineering and Nano-Bioengineering, Incheon National University, Incheon, 22012, Republic of Korea; Division of Bioengineering, Incheon National University, Incheon, 22012, Republic of Korea.
| |
Collapse
|
9
|
Genetically engineered oncolytic Newcastle disease virus mediates cytolysis of prostate cancer stem like cells. J Biotechnol 2017; 260:91-97. [DOI: 10.1016/j.jbiotec.2017.09.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Revised: 09/13/2017] [Accepted: 09/17/2017] [Indexed: 01/31/2023]
|
10
|
Ceder JA, Aalders TW, Schalken JA. Label retention and stem cell marker expression in the developing and adult prostate identifies basal and luminal epithelial stem cell subpopulations. Stem Cell Res Ther 2017; 8:95. [PMID: 28446230 PMCID: PMC5406885 DOI: 10.1186/s13287-017-0544-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Revised: 03/06/2017] [Accepted: 03/25/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Prostate cancer is the second most frequent cancer among males worldwide, and most patients with metastatic disease eventually develop therapy-resistant disease. Recent research has suggested the existence of cancer stem-like cells, and that such cells are behind the therapy resistance and progression. METHODS Here, we have taken advantage of the relatively quiescent nature of stem cells to identify the slow-cycling label-retaining stem cell (LRC) populations of the prostate gland. Mice were pulsed with bromodeoxyuridine (BrdU) during prostate organogenesis, and the LRC populations were then identified and characterized in 5-day-old and in 6-month-old adult animals using immunohistochemistry and immunofluorescence. RESULTS Quantification of LRCs in the adult mouse prostate showed that epithelial LRCs were significantly more numerous in prostatic ducts (3.7 ± 0.47% SD) when compared to the proximal (1.4 ± 0.83%) and distal epithelium (0.48 ± 0.08%) of the secretory lobes. LRCs were identified in both the basal and epithelial cell layers of the prostate, and LRCs co-expressed several candidate stem cell markers in a developmental and duct/acini-specific manner, including Sca-1, TROP-2, CD133, CD44, c-kit, and the novel prostate progenitor marker cytokeratin-7. Importantly, a significant proportion of LRCs were localized in the luminal cell layer, the majority in ducts and the proximal prostate, that co-expressed high levels of androgen receptor in the adult prostate. CONCLUSIONS Our results suggest that there are separate basal and luminal stem cell populations in the prostate, and they open up the possibility that androgen receptor-expressing luminal stem-like cells could function as cancer-initiating and relapse-responsible cells in prostate cancer.
Collapse
Affiliation(s)
- Jens Adam Ceder
- Department of Translational Medicine, Lund University, Skåne University Hospital, Jan Waldenströms gata 35, CRC 91:10, SE20502, Malmö, Sweden.
| | - Tilly Wilhelmina Aalders
- Department of Urology (Route 267), Radboud University Nijmegen Medical Centre, P.O. Box 9101, 6500 HB, Nijmegen, The Netherlands
| | - Jack Antonius Schalken
- Department of Urology (Route 267), Radboud University Nijmegen Medical Centre, P.O. Box 9101, 6500 HB, Nijmegen, The Netherlands
| |
Collapse
|
11
|
Bizzarro V, Belvedere R, Migliaro V, Romano E, Parente L, Petrella A. Hypoxia regulates ANXA1 expression to support prostate cancer cell invasion and aggressiveness. Cell Adh Migr 2016; 11:247-260. [PMID: 27834582 DOI: 10.1080/19336918.2016.1259056] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Annexin A1 (ANXA1) is a Ca2+-binding protein overexpressed in the invasive stages of prostate cancer (PCa) development; however, its role in this tumor metastatization is largely unknown. Moreover, hypoxic conditions in solid tumors have been related to poor prognosis in PCa patients. We have previously demonstrated that ANXA1 is implicated in the acquisition of chemo-resistant features in DU145 PCa cells conferring them a mesenchymal/metastatic phenotype. In this study, we have investigated the mechanisms by which ANXA1 regulates metastatic behavior in LNCaP, DU145 and PC3 cells exposed to hypoxia. ANXA1 was differentially expressed by PCa cell lines in normoxia whereas hypoxic stimuli resulted in a significant increase of protein expression. Additionally, in low oxygen conditions ANXA1 was extensively secreted out-side the cells where its binding to formyl peptide receptors (FPRs) induced cell invasion. Loss and gain of function experiments performed by using the RNA interfering siANXA1 and an ANXA1 over-expressing plasmid (MF-ANXA1), also confirmed the leading role of the protein in modulating LNCaP, DU145 and PC3 cell invasiveness. Finally, ANXA1 played a crucial role in the regulation of cytoskeletal dynamics underlying metastatization process, such as the loss of adhesion molecules and the occurrence of the epithelial to mesenchymal transition (EMT). ANXA1 expression increased inversely to epithelial markers such as E-cadherin and cytokeratins 8 and 18 (CKs) and proportionally to mesenchymal ones such as vimentin, ezrin and moesin. Our results indicated that ANXA1 may be a key mediator of hypoxia-related metastasis-associated processes in PCa.
Collapse
Affiliation(s)
- Valentina Bizzarro
- a Department of Pharmacy , University of Salerno , Fisciano (SA) , Italy
| | | | - Vincenzo Migliaro
- a Department of Pharmacy , University of Salerno , Fisciano (SA) , Italy
| | - Elena Romano
- a Department of Pharmacy , University of Salerno , Fisciano (SA) , Italy
| | - Luca Parente
- a Department of Pharmacy , University of Salerno , Fisciano (SA) , Italy
| | - Antonello Petrella
- a Department of Pharmacy , University of Salerno , Fisciano (SA) , Italy
| |
Collapse
|
12
|
Di Zazzo E, Galasso G, Giovannelli P, Di Donato M, Di Santi A, Cernera G, Rossi V, Abbondanza C, Moncharmont B, Sinisi AA, Castoria G, Migliaccio A. Prostate cancer stem cells: the role of androgen and estrogen receptors. Oncotarget 2016; 7:193-208. [PMID: 26506594 PMCID: PMC4807992 DOI: 10.18632/oncotarget.6220] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 09/30/2015] [Indexed: 12/22/2022] Open
Abstract
Prostate cancer is one of the most commonly diagnosed cancers in men, and androgen deprivation therapy still represents the primary treatment for prostate cancer patients. This approach, however, frequently fails and patients develop castration-resistant prostate cancer, which is almost untreatable. Cancer cells are characterized by a hierarchical organization, and stem/progenitor cells are endowed with tumor-initiating activity. Accumulating evidence indicates that prostate cancer stem cells lack the androgen receptor and are, indeed, resistant to androgen deprivation therapy. In contrast, these cells express classical (α and/or β) and novel (GPR30) estrogen receptors, which may represent new putative targets in prostate cancer treatment. In the present review, we discuss the still-debated mechanisms, both genomic and non-genomic, by which androgen and estradiol receptors (classical and novel) mediate the hormonal control of prostate cell stemness, transformation, and the continued growth of prostate cancer. Recent preclinical and clinical findings obtained using new androgen receptor antagonists, anti-estrogens, or compounds such as enhancers of androgen receptor degradation and peptides inhibiting non-genomic androgen functions are also presented. These new drugs will likely lead to significant advances in prostate cancer therapy.
Collapse
Affiliation(s)
- Erika Di Zazzo
- Department of Biochemistry, Biophysics and General Pathology, II University of Naples, Naples, Italy
| | - Giovanni Galasso
- Department of Biochemistry, Biophysics and General Pathology, II University of Naples, Naples, Italy
| | - Pia Giovannelli
- Department of Biochemistry, Biophysics and General Pathology, II University of Naples, Naples, Italy
| | - Marzia Di Donato
- Department of Biochemistry, Biophysics and General Pathology, II University of Naples, Naples, Italy
| | - Annalisa Di Santi
- Department of Biochemistry, Biophysics and General Pathology, II University of Naples, Naples, Italy
| | - Gustavo Cernera
- Department of Biochemistry, Biophysics and General Pathology, II University of Naples, Naples, Italy
| | - Valentina Rossi
- Department of Biochemistry, Biophysics and General Pathology, II University of Naples, Naples, Italy
| | - Ciro Abbondanza
- Department of Biochemistry, Biophysics and General Pathology, II University of Naples, Naples, Italy
| | | | - Antonio Agostino Sinisi
- Endocrinology Section, Department of Cardio-Thoracic and Respiratory Diseases, II University of Naples, Naples, Italy
| | - Gabriella Castoria
- Department of Biochemistry, Biophysics and General Pathology, II University of Naples, Naples, Italy
| | - Antimo Migliaccio
- Department of Biochemistry, Biophysics and General Pathology, II University of Naples, Naples, Italy
| |
Collapse
|
13
|
Grabowska M, Kędzierska K, Michałek K, Słuczanowska-Głąbowska S, Grabowski M, Piasecka M, Kram A, Rotter I, Rył A, Laszczyńska M. Effects of an immunosuppressive treatment on the rat prostate. Drug Des Devel Ther 2016; 10:2899-2915. [PMID: 27672312 PMCID: PMC5026216 DOI: 10.2147/dddt.s111695] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
The aim of this study was to determine the influence of different combinations of immunosuppressive drugs on the morphology, ultrastructure, and expression of proliferating cell nuclear antigen and cytoskeleton proteins in the rat dorsolateral prostate. The studies were conducted on 48 male Wistar rats. The animals were divided into eight groups: a control group and seven experimental groups. For 6 months, the animals in the experimental groups were administered a combination of drugs including rapamycin (Rapa), cyclosporin A, tacrolimus (Tac), mycophenolate mofetil, and prednisone (Pred), according to the standard three-drug regimens for immunosuppressive therapy used in clinical practice. An evaluation of the morphology and ultrastructure was conducted, and a quantitative evaluation of the expression of proliferating cell nuclear antigen and desmin- and cytokeratin-positive cells with weak, moderate, and strong expression was performed. The combination of Rapa, Tac, and Pred caused the smallest morphological and ultrastructural changes in the rat prostate cells. In the case of rats whose treatment was switched to Rapa monotherapy, a decreased percentage of proliferating cells of both the glandular epithelium and the stroma was found. Decreases in body weight and changes in the expression of cytokeratin and desmin were observed in all the experimental rats. The combination of Rapa, Tac, and Pred would seem to be the most beneficial for patients who do not suffer from prostate diseases. Our results justify the use of inhibitors of the mammalian target of Rapa in the treatment of patients with prostate cancer. The changes in the expression of cytoskeleton proteins may be the result of direct adverse effects of the immunosuppressive drugs, which are studied in this article, on the structure and organization of intermediate filament proteins.
Collapse
Affiliation(s)
- Marta Grabowska
- Department of Histology and Developmental Biology, Pomeranian Medical University
| | - Karolina Kędzierska
- Department of Nephrology, Transplantology and Internal Medicine, Pomeranian Medical University
| | - Katarzyna Michałek
- Department of Physiology, Cytobiology and Proteomics, West Pomeranian University of Technology
| | | | - Maciej Grabowski
- Department of Microbiology and Applied Biotechnology, West Pomeranian University of Technology
| | - Małgorzata Piasecka
- Department of Histology and Developmental Biology, Pomeranian Medical University
| | - Andrzej Kram
- Department of Pathology, West Pomeranian Oncology Center
| | - Iwona Rotter
- Department of Medical Rehabilitation, Pomeranian Medical University, Szczecin, Poland
| | - Aleksandra Rył
- Department of Histology and Developmental Biology, Pomeranian Medical University
| | - Maria Laszczyńska
- Department of Histology and Developmental Biology, Pomeranian Medical University
| |
Collapse
|
14
|
Bizzarro V, Belvedere R, Milone MR, Pucci B, Lombardi R, Bruzzese F, Popolo A, Parente L, Budillon A, Petrella A. Annexin A1 is involved in the acquisition and maintenance of a stem cell-like/aggressive phenotype in prostate cancer cells with acquired resistance to zoledronic acid. Oncotarget 2016; 6:25076-92. [PMID: 26312765 PMCID: PMC4694816 DOI: 10.18632/oncotarget.4725] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Accepted: 07/16/2015] [Indexed: 01/09/2023] Open
Abstract
In this study, we have characterized the role of annexin A1 (ANXA1) in the acquisition and maintenance of stem-like/aggressive features in prostate cancer (PCa) cells comparing zoledronic acid (ZA)-resistant DU145R80 with their parental DU145 cells. ANXA1 is over-expressed in DU145R80 cells and its down-regulation abolishes their resistance to ZA. Moreover, ANXA1 induces DU145 and DU145R80 invasiveness acting through formyl peptide receptors (FPRs). Also, ANXA1 knockdown is able to inhibit epithelial to mesenchymal transition (EMT) and to reduce focal adhesion kinase (FAK) and metalloproteases (MMP)-2/9 expression in PCa cells. DU145R80 show a cancer stem cell (CSC)-like signature with a high expression of CSC markers including CD44, CD133, NANOG, Snail, Oct4 and ALDH7A1 and CSC-related genes as STAT3. Interestingly, ANXA1 knockdown induces these cells to revert from a putative prostate CSC to a more differentiated phenotype resembling DU145 PCa cell signature. Similar results are obtained concerning some drug resistance-related genes such as ATP Binding Cassette G2 (ABCG2) and Lung Resistant Protein (LRP). Our study provides new insights on the role of ANXA1 protein in PCa onset and progression.
Collapse
Affiliation(s)
| | | | - Maria Rita Milone
- Centro Ricerche Oncologiche Mercogliano, Istituto Nazionale Tumori Fondazione G. Pascale - IRCCS, Naples, Italy
| | - Biagio Pucci
- Centro Ricerche Oncologiche Mercogliano, Istituto Nazionale Tumori Fondazione G. Pascale - IRCCS, Naples, Italy
| | - Rita Lombardi
- Centro Ricerche Oncologiche Mercogliano, Istituto Nazionale Tumori Fondazione G. Pascale - IRCCS, Naples, Italy
| | - Francesca Bruzzese
- Experimental Pharmacology Unit, Istituto Nazionale Tumori Fondazione G. Pascale - IRCCS, Naples, Italy
| | - Ada Popolo
- Department of Pharmacy, University of Salerno, Fisciano (SA), Italy
| | - Luca Parente
- Department of Pharmacy, University of Salerno, Fisciano (SA), Italy
| | - Alfredo Budillon
- Centro Ricerche Oncologiche Mercogliano, Istituto Nazionale Tumori Fondazione G. Pascale - IRCCS, Naples, Italy.,Experimental Pharmacology Unit, Istituto Nazionale Tumori Fondazione G. Pascale - IRCCS, Naples, Italy
| | | |
Collapse
|
15
|
Yang C, Fischer-Kešo R, Schlechter T, Ströbel P, Marx A, Hofmann I. Plakophilin 1-deficient cells upregulate SPOCK1: implications for prostate cancer progression. Tumour Biol 2015; 36:9567-77. [DOI: 10.1007/s13277-015-3628-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Accepted: 05/31/2015] [Indexed: 12/19/2022] Open
|
16
|
Ravenna L, Principessa L, Verdina A, Salvatori L, Russo MA, Petrangeli E. Distinct phenotypes of human prostate cancer cells associate with different adaptation to hypoxia and pro-inflammatory gene expression. PLoS One 2014; 9:e96250. [PMID: 24801981 PMCID: PMC4011733 DOI: 10.1371/journal.pone.0096250] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2013] [Accepted: 04/04/2014] [Indexed: 01/14/2023] Open
Abstract
Hypoxia and inflammation are strictly interconnected both concurring to prostate cancer progression. Numerous reports highlight the role of tumor cells in the synthesis of pro-inflammatory molecules and show that hypoxia can modulate a number of these genes contributing substantially to the increase of cancer aggressiveness. However, little is known about the importance of the tumor phenotype in this process. The present study explores how different features, including differentiation and aggressiveness, of prostate tumor cell lines impact on the hypoxic remodeling of pro-inflammatory gene expression and malignancy. We performed our studies on three cell lines with increasing metastatic potential: the well differentiated androgen-dependent LNCaP and the less differentiated and androgen-independent DU145 and PC3. We analyzed the effect that hypoxic treatment has on modulating pro-inflammatory gene expression and evaluated the role HIF isoforms and NF-kB play in sustaining this process. DU145 and PC3 cells evidenced a higher normoxic expression and a more complete hypoxic induction of pro-inflammatory molecules compared to the well differentiated LNCaP cell line. The role of HIF1α and NF-kB, the master regulators of hypoxia and inflammation respectively, in sustaining the hypoxic pro-inflammatory phenotype was different according to cell type. NF-kB was observed to play a main role in DU145 and PC3 cells in which treatment with the NF-kB inhibitor parthenolide was able to counteract both the hypoxic pro-inflammatory shift and HIF1α activation but not in LNCaP cells. Our data highlight that tumor prostate cell phenotype contributes at a different degree and with different mechanisms to the hypoxic pro-inflammatory gene expression related to tumor progression.
Collapse
Affiliation(s)
- Linda Ravenna
- CNR, Institute of Molecular Biology and Pathology, Rome, Italy
- Department for the Development of Therapeutic Programs, CRS, Regina Elena Cancer Institute, Rome, Italy
- * E-mail:
| | - Lorenzo Principessa
- Department of Sensory Organs, “Sapienza” University of Rome, Rome, Italy
- Department of Experimental Medicine, “Sapienza” University of Rome, Rome, Italy
| | - Alessandra Verdina
- Department for the Development of Therapeutic Programs, CRS, Regina Elena Cancer Institute, Rome, Italy
| | - Luisa Salvatori
- CNR, Institute of Molecular Biology and Pathology, Rome, Italy
- Department for the Development of Therapeutic Programs, CRS, Regina Elena Cancer Institute, Rome, Italy
| | - Matteo Antonio Russo
- Department of Cellular and Molecular Pathology, IRCCS San Raffaele Pisana, Rome, Italy
| | - Elisa Petrangeli
- CNR, Institute of Molecular Biology and Pathology, Rome, Italy
- Department of Experimental Medicine, “Sapienza” University of Rome, Rome, Italy
- Department of Cellular and Molecular Pathology, IRCCS San Raffaele Pisana, Rome, Italy
| |
Collapse
|
17
|
Hoogland AM, Verhoef EI, Roobol MJ, Schröder FH, Wildhagen MF, van der Kwast TH, Jenster G, van Leenders GJLH. Validation of stem cell markers in clinical prostate cancer: α6-integrin is predictive for non-aggressive disease. Prostate 2014; 74:488-96. [PMID: 24375374 DOI: 10.1002/pros.22768] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2013] [Accepted: 12/02/2013] [Indexed: 11/11/2022]
Abstract
BACKGROUND Stem cells are postulated to mediate prostate cancer progression, and represent a small fraction of the entire tumor. Various proteins (α2-integrin, α6-integrin, CD117, CD133, EZH2, OCT3/4) are associated with a prostate cancer stem cell phenotype in cell lines and xenografts. Our objective was to investigate expression of stem cell markers in clinical prostate cancer in relation to outcome. METHODS We validated immunohistochemical expression of stem cell markers in 481 prostate cancer patients and correlated expression with clinicopathologic parameters. RESULTS Sporadic expression of α2-integrin was present in a fraction of tumor cells (<5%) in 94.7% of tumors and associated with PSA > 10 ng/ml (P = 0.04). α6-Integrin expression (<5%) occurred in 28.4% patients, while ≥5% α6-integrin expression was associated with PSA≤10 ng/ml (P = 0.01), Gleason score <7 (P < 0.01) and pT2-disease (P = 0.02). α6-integrin was predictive for biochemical recurrence (P < 0.01), local recurrence (P = 0.03) and disease specific death (P = 0.03). EZH2 expression was generally low with 2.6% of tumors showing ≥1% positive cells. EZH2 was associated with Gleason score ≥7 (P = 0.01) and biochemical recurrence (P = 0.01). We did not identify expression of CD117, CD133, and OCT3/4 in prostate cancer samples. CONCLUSIONS Expression of α2-integrin and EZH2 in a small fraction of prostate cancer cells is supportive for their role as stem cell marker. Although α6-integrin was not a unique stem cell marker, it was predictive for prostate cancer biochemical and local recurrence, and disease specific death. The validity of CD117, CD133, and OCT3/4 as prostate cancer stem cell marker is questionable since these proteins were not expressed in clinical prostate cancer.
Collapse
Affiliation(s)
- A Marije Hoogland
- Department of Pathology, Erasmus Medical Center, Rotterdam, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Ko HK, Akakura S, Peresie J, Goodrich DW, Foster BA, Gelman IH. A transgenic mouse model for early prostate metastasis to lymph nodes. Cancer Res 2014; 74:945-53. [PMID: 24492704 DOI: 10.1158/0008-5472.can-13-1157] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The emergence of recurrent, metastatic prostate cancer following the failure of androgen-deprivation therapy represents the lethal phenotype of this disease. However, little is known regarding the genes and pathways that regulate this metastatic process, and moreover, it is unclear whether metastasis is an early or late event. The individual genetic loss of the metastasis suppressor, SSeCKS/Gravin/AKAP12 or Rb, genes that are downregulated or deleted in human prostate cancer, results in prostatic hyperplasia. Here, we show that the combined loss of Akap12 and Rb results in prostatic intraepithelial neoplasia (PIN) that fails to progress to malignancy after 18 months. Strikingly, 83% of mice with PIN lesions exhibited metastases to draining lymph nodes, marked by relatively differentiated tumor cells expressing markers of basal (p63, cytokeratin 14) and luminal (cytokeratin 8 and androgen receptor) epithelial cells, although none expressed the basal marker, cytokeratin 5. The finding that PIN lesions contain increased numbers of p63/AR-positive, cytokeratin 5-negative basal cells compared with WT or Akap12-/- prostate lobes suggests that these transitional cells may be the source of the lymph node metastases. Taken together, these data suggest that in the context of Rb loss, Akap12 suppresses the oncogenic proliferation and early metastatic spread of basal-luminal prostate tumor cells.
Collapse
Affiliation(s)
- Hyun-Kyung Ko
- Authors' Affiliations: Departments of Cancer Genetics and Pharmacology and Therapeutics, Roswell Park Cancer Institute, Buffalo, New York
| | | | | | | | | | | |
Collapse
|
19
|
Pellacani D, Kestoras D, Droop AP, Frame FM, Berry PA, Lawrence MG, Stower MJ, Simms MS, Mann VM, Collins AT, Risbridger GP, Maitland NJ. DNA hypermethylation in prostate cancer is a consequence of aberrant epithelial differentiation and hyperproliferation. Cell Death Differ 2014; 21:761-73. [PMID: 24464224 DOI: 10.1038/cdd.2013.202] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Revised: 12/12/2013] [Accepted: 12/16/2013] [Indexed: 12/16/2022] Open
Abstract
Prostate cancer (CaP) is mostly composed of luminal-like differentiated cells, but contains a small subpopulation of basal cells (including stem-like cells), which can proliferate and differentiate into luminal-like cells. In cancers, CpG island hypermethylation has been associated with gene downregulation, but the causal relationship between the two phenomena is still debated. Here we clarify the origin and function of CpG island hypermethylation in CaP, in the context of a cancer cell hierarchy and epithelial differentiation, by analysis of separated basal and luminal cells from cancers. For a set of genes (including GSTP1) that are hypermethylated in CaP, gene downregulation is the result of cell differentiation and is not cancer specific. Hypermethylation is however seen in more differentiated cancer cells and is promoted by hyperproliferation. These genes are maintained as actively expressed and methylation-free in undifferentiated CaP cells, and their hypermethylation is not essential for either tumour development or expansion. We present evidence for the causes and the dynamics of CpG island hypermethylation in CaP, showing that, for a specific set of genes, promoter methylation is downstream of gene downregulation and is not a driver of gene repression, while gene repression is a result of tissue-specific differentiation.
Collapse
Affiliation(s)
- D Pellacani
- YCR Cancer Research Unit, Department of Biology, University of York, Wentworth Way, York, UK
| | - D Kestoras
- YCR Cancer Research Unit, Department of Biology, University of York, Wentworth Way, York, UK
| | - A P Droop
- YCR Cancer Research Unit, Department of Biology, University of York, Wentworth Way, York, UK
| | - F M Frame
- YCR Cancer Research Unit, Department of Biology, University of York, Wentworth Way, York, UK
| | - P A Berry
- YCR Cancer Research Unit, Department of Biology, University of York, Wentworth Way, York, UK
| | - M G Lawrence
- Prostate Research Group, Department of Anatomy and Developmental Biology, Monash University, Clayton, Victoria, Australia
| | - M J Stower
- York District Hospital, Wigginton Road, City Centre, York, UK
| | - M S Simms
- 1] Castle Hill Hospital, Castle Rd, Cottingham, East Yorkshire, UK [2] Hull York Medical School, University of Hull, Hull, UK
| | - V M Mann
- 1] Castle Hill Hospital, Castle Rd, Cottingham, East Yorkshire, UK [2] Hull York Medical School, University of Hull, Hull, UK
| | - A T Collins
- YCR Cancer Research Unit, Department of Biology, University of York, Wentworth Way, York, UK
| | - G P Risbridger
- Prostate Research Group, Department of Anatomy and Developmental Biology, Monash University, Clayton, Victoria, Australia
| | - N J Maitland
- YCR Cancer Research Unit, Department of Biology, University of York, Wentworth Way, York, UK
| |
Collapse
|
20
|
Prostate cancer originating in basal cells progresses to adenocarcinoma propagated by luminal-like cells. Proc Natl Acad Sci U S A 2013; 110:20111-6. [PMID: 24282295 DOI: 10.1073/pnas.1320565110] [Citation(s) in RCA: 127] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The relationship between the cells that initiate cancer and the cancer stem-like cells that propagate tumors has been poorly defined. In a human prostate tissue transformation model, basal cells expressing the oncogenes Myc and myristoylated AKT can initiate heterogeneous tumors. Tumors contain features of acinar-type adenocarcinoma with elevated eIF4E-driven protein translation and squamous cell carcinoma marked by activated beta-catenin. Lentiviral integration site analysis revealed that alternative histological phenotypes can be clonally derived from a common cell of origin. In advanced disease, adenocarcinoma can be propagated by self-renewing tumor cells with an androgen receptor-low immature luminal phenotype in the absence of basal-like cells. These data indicate that advanced prostate adenocarcinoma initiated in basal cells can be maintained by luminal-like tumor-propagating cells. Determining the cells that maintain human prostate adenocarcinoma and the signaling pathways characterizing these tumor-propagating cells is critical for developing effective therapeutic strategies against this population.
Collapse
|
21
|
Chang C, Lee SO, Yeh S, Chang TM. Androgen receptor (AR) differential roles in hormone-related tumors including prostate, bladder, kidney, lung, breast and liver. Oncogene 2013; 33:3225-34. [PMID: 23873027 DOI: 10.1038/onc.2013.274] [Citation(s) in RCA: 171] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2013] [Revised: 05/09/2013] [Accepted: 05/13/2013] [Indexed: 02/07/2023]
Abstract
The androgen receptor (AR) is expressed in many cell types and the androgen/AR signaling has been found to have important roles in modulating tumorigenesis and metastasis in several cancers including prostate, bladder, kidney, lung, breast and liver. However, whether AR has differential roles in the individual cells within these tumors that contain a variety of cell types remains unclear. Generation of AR knockout (ARKO) mouse models with deletion of AR in selective cells within tumors indeed have uncovered many unique AR roles in the individual cell types during cancer development and progression. This review will discuss the results obtained from various ARKO mice and different human cell lines with special attention to the cell type- and tissue-specific ARKO models. The understanding of various results showing the AR indeed has distinct and contrasting roles in each cell type within many hormone-related tumors (as stimulator in bladder, kidney and lung metastases vs as suppressor in prostate and liver metastases) may eventually help us to develop better therapeutic approaches by targeting the AR or its downstream signaling in individual cell types to better battle these hormone-related tumors in different stages.
Collapse
Affiliation(s)
- C Chang
- 1] George Whipple Lab for Cancer Research, Departments of Pathology, Urology, Radiation Oncology, and the Wilmot Cancer Center, University of Rochester Medical Center, Rochester, NY, USA [2] Sex Hormone Research Center, China Medical University/Hospital, Taichung, Taiwan
| | - S O Lee
- George Whipple Lab for Cancer Research, Departments of Pathology, Urology, Radiation Oncology, and the Wilmot Cancer Center, University of Rochester Medical Center, Rochester, NY, USA
| | - S Yeh
- George Whipple Lab for Cancer Research, Departments of Pathology, Urology, Radiation Oncology, and the Wilmot Cancer Center, University of Rochester Medical Center, Rochester, NY, USA
| | - T M Chang
- George Whipple Lab for Cancer Research, Departments of Pathology, Urology, Radiation Oncology, and the Wilmot Cancer Center, University of Rochester Medical Center, Rochester, NY, USA
| |
Collapse
|
22
|
Hassounah NB, Nagle R, Saboda K, Roe DJ, Dalkin BL, McDermott KM. Primary cilia are lost in preinvasive and invasive prostate cancer. PLoS One 2013; 8:e68521. [PMID: 23844214 PMCID: PMC3699526 DOI: 10.1371/journal.pone.0068521] [Citation(s) in RCA: 114] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Accepted: 05/30/2013] [Indexed: 12/11/2022] Open
Abstract
Prostate cancer is the second most commonly diagnosed cancer in men worldwide. Little is known about the role of primary cilia in preinvasive and invasive prostate cancer. However, reduced cilia expression has been observed in human cancers including pancreatic cancer, renal cell carcinoma, breast cancer, cholangiocarcinoma, and melanoma. The aim of this study was to characterize primary cilia expression in preinvasive and invasive human prostate cancer, and to investigate the correlation between primary cilia and the Wnt signaling pathway. Human prostate tissues representative of stages of prostate cancer formation (normal prostate, prostatic intraepithelial neoplasia (PIN), and invasive prostate cancer (including perineural invasion)) were stained for ciliary proteins. The frequency of primary cilia was determined. A decrease in the percentage of ciliated cells in PIN, invasive cancer and perineural invasion lesions was observed when compared to normal. Cilia lengths were also measured to indirectly test functionality. Cilia were shorter in PIN, cancer, and perineural invasion lesions, suggesting dysfunction. Primary cilia have been shown to suppress the Wnt pathway. Increased Wnt signaling has been implicated in prostate cancer. Therefore, we investigated a correlation between loss of primary cilia and increased Wnt signaling in normal prostate and in preinvasive and invasive prostate cancer. To investigate Wnt signaling in our cohort, serial tissue sections were stained for β-catenin as a measure of Wnt signaling. Nuclear β-catenin was analyzed and Wnt signaling was found to be higher in un-ciliated cells in the normal prostate, PIN, a subset of invasive cancers, and perineural invasion. Our results suggest that cilia normally function to suppress the Wnt signaling pathway in epithelial cells and that cilia loss may play a role in increased Wnt signaling in some prostate cancers. These results suggest that cilia are dysfunctional in human prostate cancer, and increase Wnt signaling occurs in a subset of cancers.
Collapse
Affiliation(s)
- Nadia B. Hassounah
- The University of Arizona Cancer Center, University of Arizona, Tucson, Arizona, United States of America
| | - Ray Nagle
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, Arizona, United States of America
| | - Kathylynn Saboda
- The University of Arizona Cancer Center, University of Arizona, Tucson, Arizona, United States of America
| | - Denise J. Roe
- The University of Arizona Cancer Center, University of Arizona, Tucson, Arizona, United States of America
| | - Bruce L. Dalkin
- Department of Urology, University of Washington, Seattle, Washington, United States of America
| | - Kimberly M. McDermott
- The University of Arizona Cancer Center, University of Arizona, Tucson, Arizona, United States of America
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, Arizona, United States of America
- Bio5 Institute, University of Arizona, Tucson, Arizona, United States of America
- *
| |
Collapse
|
23
|
Xing C, Fu X, Sun X, Guo P, Li M, Dong JT. Different expression patterns and functions of acetylated and unacetylated Klf5 in the proliferation and differentiation of prostatic epithelial cells. PLoS One 2013; 8:e65538. [PMID: 23755247 PMCID: PMC3673967 DOI: 10.1371/journal.pone.0065538] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2013] [Accepted: 04/25/2013] [Indexed: 12/18/2022] Open
Abstract
KLF5 is a basic transcription factor that regulates multiple biological processes. While it was identified as a putative tumor suppressor in prostate cancer, likely due to its function as an effector of TGF-β in the inhibition of cell proliferation, KLF5 is unacetylated and promotes cell proliferation in the absence of TGF-β. In this study, we evaluated the expression and function of KLF5 in prostatic epithelial homeostasis and tumorigenesis using mouse prostates and human prostate epithelial cells in 3-D culture. Histological and molecular analyses demonstrated that unacetylated-Klf5 was expressed in basal or undifferentiated cells, whereas acetylated-Klf5 was expressed primarily in luminal and/or differentiated cells. Androgen depletion via castration increased both the level of Klf5 expression and the number of Klf5-positive cells in the remaining prostate. Functionally, knockdown of KLF5 in the human RWPE-1 prostate cell line decreased the number of spheres formed in 3-D culture. In addition, knockout of Klf5 in prostate epithelial cells, mediated by probasin promoter-driven Cre expression, did not cause neoplasia but promoted cell proliferation and induced hyperplasia when one Klf5 allele was knocked out. Knockout of both Klf5 alleles however, caused apoptosis rather than cell proliferation in the epithelium. In castrated mice, knockout of Klf5 resulted in more severe shrinkage of the prostate. These results suggest that KLF5 plays a role in the proliferation and differentiation of prostatic epithelial cells, yet loss of KLF5 alone is insufficient to induce malignant transformation in epithelial cells.
Collapse
Affiliation(s)
- Changsheng Xing
- Department of Genetics and Cell Biology, College of Life Sciences, Nankai University, Tianjin, China
- Department of Hematology and Medical Oncology, Emory Winship Cancer Institute, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Xiaoying Fu
- Department of Hematology and Medical Oncology, Emory Winship Cancer Institute, Emory University School of Medicine, Atlanta, Georgia, United States of America
- Department of Pathology, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xiaodong Sun
- Department of Hematology and Medical Oncology, Emory Winship Cancer Institute, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Peng Guo
- Department of Hematology and Medical Oncology, Emory Winship Cancer Institute, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Mei Li
- Department of Hematology and Medical Oncology, Emory Winship Cancer Institute, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Jin-Tang Dong
- Department of Genetics and Cell Biology, College of Life Sciences, Nankai University, Tianjin, China
- Department of Hematology and Medical Oncology, Emory Winship Cancer Institute, Emory University School of Medicine, Atlanta, Georgia, United States of America
- * E-mail:
| |
Collapse
|
24
|
Lu TL, Huang YF, You LR, Chao NC, Su FY, Chang JL, Chen CM. Conditionally ablated Pten in prostate basal cells promotes basal-to-luminal differentiation and causes invasive prostate cancer in mice. THE AMERICAN JOURNAL OF PATHOLOGY 2013; 182:975-91. [PMID: 23313138 DOI: 10.1016/j.ajpath.2012.11.025] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2012] [Revised: 10/27/2012] [Accepted: 11/07/2012] [Indexed: 12/22/2022]
Abstract
Prostate glands comprise two major epithelial cell types: luminal and basal. Luminal cells have long been considered the cellular origin of prostate cancer (CaP). However, recent evidence from a prostate regeneration assay suggests that prostate basal cells can also give rise to CaP. Here, we characterize Pten-deficient prostate lesions arising from keratin 5-expressing basal cells in a temporally controlled system in mice. Pten-deficient prostate lesions arising from basal cells exhibited luminal phenotypes with higher invasiveness, and the cell fate of Pten-deficient basal cells was traced to neoplastic luminal cells. After temporally ablating Pten in keratin 8-expressing luminal cells, luminal-derived Pten-deficient prostate tumors exhibited slower disease progression, compared with basal-derived tumors, within 13 weeks after Pten ablation. Cellular proliferation was significantly increased in basal-derived versus luminal-derived Pten-deficient prostate lesions. Increased tumor invasion into the smooth muscle layer and aberrantly regulated aggressive signatures (Smad4 and Spp1) were identified exclusively in basal-derived Pten-deficient lesions. Interestingly, p63-expressing cells, which represent basal stem and progenitor cells of basal-derived Pten-deficient prostate lesions, were significantly increased, relative to cells of the luminal-derived prostate lesion. Furthermore, castration did not suppress cellular proliferation of either basal-derived or luminal-derived Pten-deficient prostate tumors. Taken together, our data suggest that, although prostate malignancy can originate from both basal and luminal populations, these two populations differ in aggressive potential.
Collapse
Affiliation(s)
- Tsai-Ling Lu
- Department of Life Sciences and Institute of Genome Sciences, National Yang-Ming University, Taipei, Taiwan
| | | | | | | | | | | | | |
Collapse
|
25
|
Pellacani D, Oldridge EE, Collins AT, Maitland NJ. Prominin-1 (CD133) Expression in the Prostate and Prostate Cancer: A Marker for Quiescent Stem Cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013; 777:167-84. [PMID: 23161082 DOI: 10.1007/978-1-4614-5894-4_11] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The origin and phenotype of stem cells in human prostate cancer remains a subject of much conjecture. In this scenario, CD133 has been successfully used as a stem cell marker in both normal prostate and prostate cancer. However, cancer stem cells have been identified without the use of this marker, opening up the possibility of a CD133 negative cancer stem cell. In this chapter, we review the current literature regarding prostate cancer stem cells, with specific reference to the expression of CD133 as a stem cell marker to identify and purify stem cells in normal prostate epithelium and prostate cancer.
Collapse
Affiliation(s)
- Davide Pellacani
- YCR Cancer Research Unit, Department of Biology, University of York, Wentworth Way, YO10 5DD, York, UK
| | | | | | | |
Collapse
|
26
|
Abstract
Men with advanced prostate cancer are typically treated with hormonal therapy, which leads to tumour shrinkage. However, tumours relapse and develop into the lethal form of the disease, termed castration-resistant prostate cancer (CRPC). Two distinct, but not mutually exclusive, models have been proposed in the literature to describe the onset of CRPC: adaptation and selection. Although some studies indicate that tumour cells acquire new alterations that enable them to survive in the castrated state (adaptation), other research points to the outgrowth of rare, pre-existing cells capable of surviving hormonal therapy (selection). Targeting the cells that survive hormonal therapy--by either adaptation or selection--is necessary to prevent the development of CRPC. Current research is focused on not only understanding the cellular mechanisms of CRPC, but also defining critical pathways that can be targeted with combinatorial therapies in castration-resistant cancer cells.
Collapse
|
27
|
Oldridge EE, Pellacani D, Collins AT, Maitland NJ. Prostate cancer stem cells: are they androgen-responsive? Mol Cell Endocrinol 2012; 360:14-24. [PMID: 21802490 DOI: 10.1016/j.mce.2011.07.008] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2011] [Revised: 06/29/2011] [Accepted: 07/01/2011] [Indexed: 12/18/2022]
Abstract
The prostate gland is highly dependent on androgens for its development, growth and function. Consequently, the prostatic epithelium predominantly consists of androgen-dependent luminal cells, which express the androgen receptor at high levels. In contrast, androgens are not required for the survival of the androgen-responsive, but androgen-independent, basal compartment in which stem cells reside. Basal and luminal cells are linked in a hierarchical pathway, which most probably exists as a continuum with different stages of phenotypic change. Prostate cancer is also characterised by heterogeneity, which is reflected in its response to treatment. The putative androgen receptor negative cancer stem cell (CSC) is likely to form a resistant core after most androgen-based therapies, contributing to the evolution of castration-resistant disease. The development of CSC-targeted therapies is now of crucial importance and identifying the phenotypic differences between CSCs and both their progeny will be key in this process.
Collapse
Affiliation(s)
- Emma E Oldridge
- YCR Cancer Research Unit, Department of Biology, University of York, Wentworth Way, York, YO10 5DD, UK
| | | | | | | |
Collapse
|
28
|
Rane JK, Pellacani D, Maitland NJ. Advanced prostate cancer--a case for adjuvant differentiation therapy. Nat Rev Urol 2012; 9:595-602. [PMID: 22890299 DOI: 10.1038/nrurol.2012.157] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The development of novel therapies such as abiraterone acetate and sipuleucel-T has improved the outlook for patients with advanced-stage and castration-resistant prostate cancer. However, the beneficial effects of these drugs are only measured in months. Moreover, the National Institute for Health and Clinical Excellence in the UK had ruled that the use of abiraterone acetate was not cost-effective before cost revision by the manufacturers. The FDA statement asserting that the use of 5α-reductase inhibitors for prostate cancer chemoprevention could increase the risk of developing high-grade prostate cancer also indirectly questions the value of direct androgen response manipulation for long-term benefit. These reports illustrate the need for a fresh and comprehensive analysis of advanced prostate cancer pathology to promote the next generation of effective adjuvant therapies. One such avenue is that of differentiation therapy, which seeks to promote the differentiation of cancer stem cells into a phenotype more sensitive to anticancer therapy than their parents. Using differentiation therapy with current antiandrogen therapies should augment our armoury of treatment for the management of advanced prostate cancer.
Collapse
Affiliation(s)
- Jayant K Rane
- Yorkshire Cancer Research Unit, Department of Biology (Area 13), University of York, York YO10 5DD, UK
| | | | | |
Collapse
|
29
|
Guo C, Liu H, Zhang BH, Cadaneanu RM, Mayle AM, Garraway IP. Epcam, CD44, and CD49f distinguish sphere-forming human prostate basal cells from a subpopulation with predominant tubule initiation capability. PLoS One 2012; 7:e34219. [PMID: 22514625 PMCID: PMC3326009 DOI: 10.1371/journal.pone.0034219] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2011] [Accepted: 02/27/2012] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Human prostate basal cells expressing alpha-6 integrin (CD49f(Hi)) and/or CD44 form prostaspheres in vitro. This functional trait is often correlated with stem/progenitor (S/P) activity, including the ability to self-renew and induce differentiated tubules in vivo. Antigenic profiles that distinguish tubule-initiating prostate stem cells (SCs) from progenitor cells (PCs) and mature luminal cells (LCs) with less regenerative potential are unknown. METHODOLOGY/PRINCIPLE FINDINGS Prostasphere assays and RT-PCR analysis was performed following FACS separation of total benign prostate cells based upon combinations of Epcam, CD44, and/or CD49f expression. Epithelial cell fractions were isolated, including Epcam(+)CD44(+) and Epcam+CD44+CD49f(Hi) basal cells that formed abundant spheres. When non-sphere-forming Epcam(+)CD44(-) cells were fractionated based upon CD49f expression, a distinct subpopulation (Epcam(+)CD44(-)CD49f(Hi)) was identified that possessed a basal profile similar to Epcam(+)CD44(+)CD49f(Hi) sphere-forming cells (p63(+)AR(Lo)PSA(-)). Evaluation of tubule induction capability of fractionated cells was performed, in vivo, via a fully humanized prostate tissue regeneration assay. Non-sphere-forming Epcam(+)CD44(-) cells induced significantly more prostate tubular structures than Epcam(+)CD44(+) sphere-forming cells. Further fractionation based upon CD49f co-expression identified Epcam(+)CD44(-)CD49f(Hi) (non-sphere-forming) basal cells with significantly increased tubule induction activity compared to Epcam(+)CD44(-)CD49f(Lo) (true) luminal cells. CONCLUSIONS/SIGNIFICANCE Our data delineates antigenic profiles that functionally distinguish human prostate epithelial subpopulations, including putative SCs that display superior tubule initiation capability and induce differentiated ductal/acini structures, sphere-forming PCs with relatively decreased tubule initiation activity, and terminally differentiated LCs that lack both sphere-forming and tubule-initiation activity. The results clearly demonstrate that sphere-forming ability is not predictive of tubule-initiation activity. The subpopulations identified are of interest because they may play distinct roles as cells of origin in the development of prostatic diseases, including cancer.
Collapse
Affiliation(s)
- Changyong Guo
- Department of Urology, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, California, United States of America
- Jonsson Comprehensive Cancer Center, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, California, United States of America
| | - Haibo Liu
- Department of Urology, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, California, United States of America
- Jonsson Comprehensive Cancer Center, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, California, United States of America
| | - Bao-Hui Zhang
- Department of Urology, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, California, United States of America
- Jonsson Comprehensive Cancer Center, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, California, United States of America
| | - Radu M. Cadaneanu
- Department of Urology, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, California, United States of America
- Jonsson Comprehensive Cancer Center, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, California, United States of America
| | - Aqila M. Mayle
- Department of Urology, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, California, United States of America
- Jonsson Comprehensive Cancer Center, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, California, United States of America
- Greater Los Angeles Veterans Affairs Medical Center, Los Angeles, California, United States of America
| | - Isla P. Garraway
- Department of Urology, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, California, United States of America
- Jonsson Comprehensive Cancer Center, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, California, United States of America
- Greater Los Angeles Veterans Affairs Medical Center, Los Angeles, California, United States of America
| |
Collapse
|
30
|
Shimojo H, Kobayashi M, Kamigaito T, Shimojo Y, Fukuda M, Nakayama J. Reduced glycosylation of α-dystroglycans on carcinoma cells contributes to formation of highly infiltrative histological patterns in prostate cancer. Prostate 2011; 71:1151-7. [PMID: 21656825 PMCID: PMC3174275 DOI: 10.1002/pros.21330] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2010] [Accepted: 12/01/2010] [Indexed: 12/21/2022]
Abstract
BACKGROUND α-Dystroglycan (DG) carries glycan chains that bind to laminin and thus function in homeostasis of not only skeletal muscle but also of various epithelial cells. Loss of glycosylation has been suggested to play important roles in tumor development, particularly in detachment and migration of carcinoma cells. We previously reported that glycosylation of α-DG, but not levels of α-DG core protein itself, is reduced in prostate carcinoma. In this study, we investigate the association between reduction of laminin-binding glycans on α-DG and the degree of tumor cell differentiation and/or infiltrative properties, as assessed by the Gleason grading system. METHODS Immunohistochemical analysis of 146 biopsy specimens of prostate adenocarcinoma with various Gleason scores was carried out employing IIH6 and 6C1 antibodies, which recognize laminin-binding glycans on α-DG and α-DG core proteins, respectively. Double immunofluorescence staining was performed to evaluate colocalization of α-DG and laminin, and to determine which types of epithelial cells express laminin-binding glycans on α-DG. RESULTS Reduction of α-DG glycosylation, rather than loss of α-DG core protein, was correlated with higher Gleason patterns. Reduction was most conspicuous at the interface between carcinoma cells and the basement membrane. In addition, in non-neoplastic prostate glands, laminin-binding glycans were expressed predominantly on the basolateral surface of basal cells. CONCLUSIONS Reduced expression of laminin-binding glycans on α-DG may contribute to formation of highly infiltrative behavior of prostate carcinoma cells. Substantial reduction of laminin-binding glycans in carcinoma tissue could be partly ascribed to disappearance of pre-existing basal cells.
Collapse
Affiliation(s)
- Hisashi Shimojo
- Department of Pathology, Shinshu University School of Medicine, Matsumoto, Japan
| | - Motohiro Kobayashi
- Department of Molecular Pathology, Shinshu University Graduate School of Medicine, Matsumoto, Japan
| | - Takayuki Kamigaito
- Department of Urology, Shinshu University School of Medicine, Matsumoto, Japan
| | - Yasuyo Shimojo
- Department of Laboratory Medicine, Shinshu University Hospital, Matsumoto, Japan
| | - Minoru Fukuda
- Glycobiology Unit, Cancer Research Center, Sanford-Burnham Medical Research Institute, La Jolla, California
| | - Jun Nakayama
- Department of Molecular Pathology, Shinshu University Graduate School of Medicine, Matsumoto, Japan
| |
Collapse
|
31
|
van Leenders GJLH, Boormans JL, Vissers CJ, Hoogland AM, Bressers AAJWM, Furusato B, Trapman J. Antibody EPR3864 is specific for ERG genomic fusions in prostate cancer: implications for pathological practice. Mod Pathol 2011; 24:1128-38. [PMID: 21499236 DOI: 10.1038/modpathol.2011.65] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Genomic rearrangements involving genes encoding erythroblast transformation-specific transcription factors are commonly present in prostate cancer. The TMPRSS2-ERG gene fusion that leads to ERG overexpression occurs in ~70% of prostate cancers. Implementation of fusion gene detection in pathological practice, however, has been hampered by the lack of reliable ERG antibodies. The objective of this study was first to compare ERG immunohistochemistry using the recently described antibody EPR3864 with ERG mRNA by quantitative PCR and, second, to investigate ERG immunohistochemistry in diagnostic prostate cancer needle biopsies. We analyzed 41 primary prostate adenocarcinomas obtained by radical prostatectomy and 83 consecutive prostate cancer needle biopsies. In the prostatectomy specimens, immunohistochemical ERG expression was highly concordant with the ERG mRNA overexpression (sensitivity 100% and specificity 85%). ERG overexpression was due to TMPRSS2-ERG gene fusion in all cases. ERG protein expression was identified in 51/83 adenocarcinomas (61%) on needle biopsies. ERG expression was more frequent in tumors infiltrating ≥2 needle biopsies (P<0.001) or occupying ≥50% of a single biopsy (P=0.018). Expression of ERG also occurred in 11/21 (52%) high-grade prostate intraepithelial neoplasia lesions. In 5/87 (6%) needle biopsies containing benign secretory glands, weak ERG staining was focally observed. In all of these cases, respective glands were adjacent to adenocarcinomas. In conclusion, immunohistochemistry for ERG strongly correlated with ERG mRNA overexpression and was specific for prostate cancer on needle biopsies. Therefore, ERG immunohistochemistry is an important adjunctive tool for pathophysiological studies on ERG gene fusions, and might support the pathological diagnosis of adenocarcinoma in a subset of prostate needle biopsies.
Collapse
Affiliation(s)
- Geert J L H van Leenders
- Department of Pathology, Josephine Nefkens Institute, Erasmus Medical Center, Rotterdam, The Netherlands.
| | | | | | | | | | | | | |
Collapse
|
32
|
GLI1 confers profound phenotypic changes upon LNCaP prostate cancer cells that include the acquisition of a hormone independent state. PLoS One 2011; 6:e20271. [PMID: 21633508 PMCID: PMC3102098 DOI: 10.1371/journal.pone.0020271] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2011] [Accepted: 04/18/2011] [Indexed: 01/02/2023] Open
Abstract
The GLI (GLI1/GLI2) transcription factors have been implicated in the development and progression of prostate cancer although our understanding of how they actually contribute to the biology of these common tumours is limited. We observed that GLI reporter activity was higher in normal (PNT-2) and tumourigenic (DU145 and PC-3) androgen-independent cells compared to androgen-dependent LNCaP prostate cancer cells and, accordingly, GLI mRNA levels were also elevated. Ectopic expression of GLI1 or the constitutively active ΔNGLI2 mutant induced a distinct cobblestone-like morphology in LNCaP cells that, regarding the former, correlated with increased GLI2 as well as expression of the basal/stem-like markers CD44, β1-integrin, ΔNp63 and BMI1, and decreased expression of the luminal marker AR (androgen receptor). LNCaP-GLI1 cells were viable in the presence of the AR inhibitor bicalutamide and gene expression profiling revealed that the transcriptome of LNCaP-GLI1 cells was significantly closer to DU145 and PC-3 cells than to control LNCaP-pBP (empty vector) cells, as well as identifying LCN2/NGAL as a highly induced transcript which is associated with hormone independence in breast and prostate cancer. Functionally, LNCaP-GLI1 cells displayed greater clonal growth and were more invasive than control cells but they did not form colonies in soft agar or prostaspheres in suspension suggesting that they do not possess inherent stem cell properties. Moreover, targeted suppression of GLI1 or GLI2 with siRNA did not reverse the transformed phenotype of LNCaP-GLI1 cells nor did double GLI1/GLI2 knockdowns activate AR expression in DU145 or PC-3 cells. As such, early targeting of the GLI oncoproteins may hinder progression to a hormone independent state but a more detailed understanding of the mechanisms that maintain this phenotype is required to determine if their inhibition will enhance the efficacy of anti-hormonal therapy through the induction of a luminal phenotype and increased dependency upon AR function.
Collapse
|
33
|
Mimeault M, Batra SK. Frequent gene products and molecular pathways altered in prostate cancer- and metastasis-initiating cells and their progenies and novel promising multitargeted therapies. Mol Med 2011; 17:949-64. [PMID: 21607288 DOI: 10.2119/molmed.2011.00115] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2011] [Accepted: 05/19/2011] [Indexed: 12/14/2022] Open
Abstract
Recent gene expression profiling analyses and gain- and loss-of-function studies performed with distinct prostate cancer (PC) cell models indicated that the alterations in specific gene products and molecular pathways often occur in PC stem/progenitor cells and their progenies during prostate carcinogenesis and metastases at distant sites, including bones. Particularly, the sustained activation of epidermal growth factor receptor (EGFR), hedgehog, Wnt/β-catenin, Notch, hyaluronan (HA)/CD44 and stromal cell-derived factor-1 (SDF-1)/CXC chemokine receptor 4 (CXCR4) during the epithelial-mesenchymal transition (EMT) process may provide critical functions for PC progression to locally invasive, metastatic and androgen-independent disease states and treatment resistance. Moreover, an enhanced glycolytic metabolism in PC stem/progenitor cells and their progenies concomitant with the changes in their local microenvironment, including the induction of tumor hypoxia and release of diverse soluble factors by tumor myofibroblasts, also may promote the tumor growth, angiogenesis and metastases. More particularly, these molecular transforming events may cooperate to upregulate Akt, nuclear factor (NF)-κB, hypoxia-inducible factors (HIFs) and stemness gene products such as Oct3/4, Sox2, Nanog and Bmi-1 in PC cells that contribute to their acquisition of high self-renewal, tumorigenic and invasive capacities and survival advantages during PC progression. Consequently, the molecular targeting of these deregulated gene products in the PC- and metastasis-initiating cells and their progenies represent new promising therapeutic strategies of great clinical interest for eradicating the total PC cell mass and improving current antihormonal treatments and docetaxel-based chemotherapies, thereby preventing disease relapse and the death of PC patients.
Collapse
Affiliation(s)
- Murielle Mimeault
- Department of Biochemistry and Molecular Biology, College of Medicine, Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | | |
Collapse
|
34
|
Martin P, Liu YN, Pierce R, Abou-Kheir W, Casey O, Seng V, Camacho D, Simpson RM, Kelly K. Prostate epithelial Pten/TP53 loss leads to transformation of multipotential progenitors and epithelial to mesenchymal transition. THE AMERICAN JOURNAL OF PATHOLOGY 2011; 179:422-35. [PMID: 21703421 DOI: 10.1016/j.ajpath.2011.03.035] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2010] [Revised: 02/17/2011] [Accepted: 03/15/2011] [Indexed: 02/08/2023]
Abstract
Loss of PTEN and loss of TP53 are common genetic aberrations occurring in prostate cancer. PTEN and TP53 contribute to the regulation of self-renewal and differentiation in prostate progenitors, presumptive tumor initiating cells for prostate cancer. Here we characterize the transformed phenotypes resulting from deletion of the Pten and TP53 tumor suppressors in prostate epithelium. Using the PB-Cre4(+)Pten(fl/fl)TP53(fl/fl) model of prostate cancer, we describe the histological and metastatic properties of primary tumors, transplanted primary tumor cells, and clonal cell lines established from tumors. Adenocarcinoma was the major primary tumor type that developed, which progressed to lethal sarcomatoid carcinoma at approximately 6 months of age. In addition, basal carcinomas and prostatic urothelial carcinomas were observed. We show that tumor heterogeneity resulted, at least in part, from the transformation of multipotential progenitors. CK8+ luminal epithelial cells were capable of undergoing epithelial to mesenchymal transition in vivo to sarcomatoid carcinomas containing osseous metaplasia. Metastasis rarely was observed from primary tumors, but metastasis to lung and lymph nodes occurred frequently from orthotopic tumors initiated from a biphenotypic clonal cell line. Androgen deprivation influenced the differentiated phenotypes of metastases. These data show that one functional consequence of Pten/TP53 loss in prostate epithelium is lineage plasticity of transformed cells.
Collapse
Affiliation(s)
- Philip Martin
- Cell and Cancer Biology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Chang HH, Chen BY, Wu CY, Tsao ZJ, Chen YY, Chang CP, Yang CR, Lin DPC. Hedgehog overexpression leads to the formation of prostate cancer stem cells with metastatic property irrespective of androgen receptor expression in the mouse model. J Biomed Sci 2011; 18:6. [PMID: 21241512 PMCID: PMC3025942 DOI: 10.1186/1423-0127-18-6] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2010] [Accepted: 01/18/2011] [Indexed: 11/30/2022] Open
Abstract
Background Hedgehog signalling has been implicated in prostate tumorigenesis in human subjects and mouse models, but its effects on transforming normal basal/stem cells toward malignant cancer stem cells remain poorly understood. Methods We produced pCX-shh-IG mice that overexpress Hedgehog protein persistently in adult prostates, allowing for elucidation of the mechanism during prostate cancer initiation and progression. Various markers were used to characterize and confirm the transformation of normal prostate basal/stem cells into malignant cancer stem cells under the influence of Hedgehog overexpression. Results The pCX-shh-IG mice developed prostatic intraepithelial neoplasia (PIN) that led to invasive and metastatic prostate cancers within 90 days. The prostate cancer was initiated through activation of P63+ basal/stem cells along with simultaneous activation of Hedgehog signalling members, suggesting that P63+/Patch1+ and P63+/Smo+ cells may serve as cancer-initiating cells and progress into malignant prostate cancer stem cells (PCSCs). In the hyperplastic lesions and tumors, the progeny of PCSCs differentiated into cells of basal-intermediate and intermediate-luminal characteristics, whereas rare ChgA+ neuroendocrine differentiation was seen. Furthermore, in the metastatic loci within lymph nodes, kidneys, and lungs, the P63+ PCSCs formed prostate-like glandular structures, characteristic of the primitive structures during early prostate development. Besides, androgen receptor (AR) expression was detected heterogeneously during tumor progression. The existence of P63+/AR-, CK14+/AR- and CD44+/AR- progeny indicates direct procurement of AR- malignant cancer trait. Conclusions These data support a cancer stem cell scenario in which Hedgehog signalling plays important roles in transforming normal prostate basal/stem cells into PCSCs and in the progression of PCSCs into metastatic tumor cells.
Collapse
Affiliation(s)
- Han-Hsin Chang
- School of Optometry, Chung Shan Medical University, Taichung 402, Taiwan
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Abou-Kheir WG, Hynes PG, Martin PL, Pierce R, Kelly K. Characterizing the contribution of stem/progenitor cells to tumorigenesis in the Pten-/-TP53-/- prostate cancer model. Stem Cells 2010; 28:2129-40. [PMID: 20936707 PMCID: PMC7454246 DOI: 10.1002/stem.538] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Loss of PTEN is one of the most common mutations in prostate cancer, and loss of wild-type TP53 is associated with prostate cancer progression and castrate resistance. Modeling prostate cancer in the mouse has shown that while Pten deletion in prostate epithelial cells leads to adenocarcinoma, combined loss of Pten and TP53 results in rapidly developing disease with greater tumor burden and early death. TP53 contributes significantly to the regulation of stem cell self-renewal, and we hypothesized that loss of Pten/TP53 would result in measurable changes in prostate cancer stem/progenitor cell properties. Clonogenic assays that isolate progenitor function in primary prostate epithelial cells were used to measure self-renewal, differentiation, and tumorigenic potential. Pten/TP53 null as compared with wild-type protospheres showed increased self-renewal activity and modified lineage commitment. Orthotopic transplantation of Pten/TP53 null cells derived from protospheres produced invasive Prostatic Intraepithelial Neoplasia (PIN)/adenocarcinoma, recapitulating the pathology seen in primary tumors. Pten/TP53 null progenitors relative to wild type also demonstrated increased dependence on the AKT/mammalian target of rapamycin complex 1 (mTORC1) and androgen receptor (AR) pathways for clonogenic and tumorigenic growth. These data demonstrate roles for Pten/TP53 in prostate epithelial stem/progenitor cell function, and moreover, as seen in patients with castrate-resistant prostate cancer, suggest for the involvement of an AR-dependent axis in the clonogenic expansion of prostate cancer stem cells.
Collapse
Affiliation(s)
- Wassim G Abou-Kheir
- Cell and Cancer Biology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | |
Collapse
|
37
|
Lennerz JKM, Kim SH, Oates EL, Huh WJ, Doherty JM, Tian X, Bredemeyer AJ, Goldenring JR, Lauwers GY, Shin YK, Mills JC. The transcription factor MIST1 is a novel human gastric chief cell marker whose expression is lost in metaplasia, dysplasia, and carcinoma. THE AMERICAN JOURNAL OF PATHOLOGY 2010; 177:1514-33. [PMID: 20709804 PMCID: PMC2928982 DOI: 10.2353/ajpath.2010.100328] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Accepted: 05/25/2010] [Indexed: 01/10/2023]
Abstract
The lack of reliable molecular markers for normal differentiated epithelial cells limits understanding of human gastric carcinogenesis. Recognized precursor lesions for gastric adenocarcinoma are intestinal metaplasia and spasmolytic polypeptide expressing metaplasia (SPEM), defined here by ectopic CDX2 and TFF2 expression, respectively. In mice, expression of the bHLH transcription factor MIST1, normally restricted to mature chief cells, is down-regulated as chief cells undergo experimentally induced metaplasia. Here, we show MIST1 expression is also a specific marker of human chief cells. SPEM, with and without MIST1, is present in human lesions and, akin to murine data, likely represents transitional (TFF2(+)/MIST1(+) = "hybrid"-SPEM) and established (TFF2(+)/MIST1(-) = SPEM) stages. Co-visualization of MIST1 and CDX2 shows similar progressive loss of MIST1 with a transitional, CDX2(+)/MIST1(-) hybrid-intestinal metaplasia stage. Interinstitutional analysis and comparison of findings in tissue microarrays, resection specimens, and biopsies (n > 400 samples), comprising the entire spectrum of recognized stages of gastric carcinogenesis, confirm MIST1 expression is restricted to the chief cell compartment in normal oxyntic mucosa, rare in established metaplastic lesions, and lost in intraepithelial neoplasia/dysplasia and carcinoma of various types with the exception of rare chief cell carcinoma ( approximately 1%). Our findings implicate MIST1 as a reliable marker of mature, healthy chief cells, and we provide the first evidence that metaplasia in humans arises at least in part from the chief cell lineage.
Collapse
Affiliation(s)
- Jochen K M Lennerz
- Department of Pathology and Immunology, Washington University School of Medicine, Louis, MO 63110, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Differential androgen receptor signals in different cells explain why androgen-deprivation therapy of prostate cancer fails. Oncogene 2010; 29:3593-604. [PMID: 20440270 DOI: 10.1038/onc.2010.121] [Citation(s) in RCA: 106] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Prostate cancer is one of the major causes of cancer-related death in the western world. Androgen-deprivation therapy (ADT) for the suppression of androgens binding to the androgen receptor (AR) has been the norm of prostate cancer treatment. Despite early success to suppress prostate tumor growth, ADT eventually fails leading to recurrent tumor growth in a hormone-refractory manner, even though AR remains to function in hormone-refractory prostate cancer. Interestingly, some prostate cancer survivors who received androgen replacement therapy had improved quality of life without adverse effect on their cancer progression. These contrasting clinical data suggest that differential androgen/AR signals in individual cells of prostate tumors can exist in the same or different patients, and may be used to explain why ADT of prostate cancer fails. Such a hypothesis is supported by the results obtained from transgenic mice with selective knockout of AR in prostatic stromal vs epithelial cells and orthotopic transplants of various human prostate cancer cell lines with AR over-expression or knockout. These studies concluded that AR functions as a stimulator for prostate cancer proliferation and metastasis in stromal cells, as a survival factor of prostatic cancer epithelial luminal cells, and as a suppressor for prostate cancer basal intermediate cell growth and metastasis. These dual yet opposite functions of the stromal and epithelial AR may challenge the current ADT to battle prostate cancer and should be taken into consideration when developing new AR-targeting therapies in selective prostate cancer cells.
Collapse
|
39
|
Li Y, Cozzi PJ, Russell PJ. Promising tumor-associated antigens for future prostate cancer therapy. Med Res Rev 2010; 30:67-101. [PMID: 19536865 DOI: 10.1002/med.20165] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Prostate cancer (CaP) is one of the most prevalent malignant diseases among men in Western countries. There is currently no cure for metastatic castrate-resistant CaP, and median survival for these patients is about 18 months; the high mortality rate seen is associated with widespread metastases. Progression of CaP from primary to metastatic disease is associated with several molecular and genetic changes that can affect the expression of specific tumor-associated antigens (TAAs) or receptors on the cell surface. Targeting TAAs is emerging as an area of promise for controlling late-stage and recurrent CaP. Several reviews have summarized the progress made in targeting signaling pathways for CaP but will not be discussed here. We describe some important CaP TAAs. These include prostate stem-cell antigen, prostate-specific membrane antigen, MUC1, epidermal growth factor receptor, platelet-derived growth factor and its receptor, urokinase plasminogen activator and its receptor, and extracellular matrix metalloproteinase inducer. We summarize recent advancements in our understanding of their role in CaP metastasis, as well as potential therapeutic options for targeting CaP TAAs. We also discuss the origin, identification, and characterization of prostate cancer stem cells (CSCs) and the potential benefits of targeting prostate CSCs to overcome chemoresistance and CaP recurrence.
Collapse
Affiliation(s)
- Yong Li
- Cancer Care Centre, St. George Hospital, Sydney, NSW, Australia.
| | | | | |
Collapse
|
40
|
Garraway IP, Sun W, Tran CP, Perner S, Zhang B, Goldstein AS, Hahm SA, Haider M, Head CS, Reiter RE, Rubin MA, Witte ON. Human prostate sphere-forming cells represent a subset of basal epithelial cells capable of glandular regeneration in vivo. Prostate 2010; 70:491-501. [PMID: 19938015 PMCID: PMC2885946 DOI: 10.1002/pros.21083] [Citation(s) in RCA: 117] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
BACKGROUND Prostate stem/progenitor cells function in glandular development and maintenance. They may be targets for tumor initiation, so characterization of these cells may have therapeutic implications. Cells from dissociated tissues that form spheres in vitro often represent stem/progenitor cells. A subset of human prostate cells that form prostaspheres were evaluated for self-renewal and tissue regeneration capability in the present study. METHODS Prostaspheres were generated from 59 prostatectomy specimens. Lineage marker expression and TMPRSS-ERG status was determined via immunohistochemistry and fluorescence in situ hybridization (FISH). Subpopulations of prostate epithelial cells were isolated by cell sorting and interrogated for sphere-forming activity. Tissue regeneration potential was assessed by combining sphere-forming cells with rat urogenital sinus mesenchyme (rUGSM) subcutaneously in immunocompromised mice. RESULTS Prostate tissue specimens were heterogeneous, containing both benign and malignant (Gleason 3-5) glands. TMPRSS-ERG fusion was found in approximately 70% of cancers examined. Prostaspheres developed from single cells at a variable rate (0.5-4%) and could be serially passaged. A basal phenotype (CD44+CD49f+CK5+p63+CK8-AR-PSA-) was observed among sphere-forming cells. Subpopulations of prostate cells expressing tumor-associated calcium signal transducer 2 (Trop2), CD44, and CD49f preferentially formed spheres. In vivo implantation of sphere-forming cells and rUGSM regenerated tubular structures containing discreet basal and luminal layers. The TMPRSS-ERG fusion was absent in prostaspheres derived from fusion-positive tumor tissue, suggesting a survival/growth advantage of benign prostate epithelial cells. CONCLUSION Human prostate sphere-forming cells self-renew, have tissue regeneration capability, and represent a subpopulation of basal cells.
Collapse
Affiliation(s)
- Isla P Garraway
- Department of Urology, David Geffen School of Medicine at UCLA, Los Angeles, California, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Mimeault M, Johansson SL, Henichart JP, Depreux P, Batra SK. Cytotoxic effects induced by docetaxel, gefitinib, and cyclopamine on side population and nonside population cell fractions from human invasive prostate cancer cells. Mol Cancer Ther 2010; 9:617-30. [PMID: 20179163 PMCID: PMC3228252 DOI: 10.1158/1535-7163.mct-09-1013] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The present study has been undertaken to establish the therapeutic benefit of cotargeting epidermal growth factor receptor (EGFR) and sonic hedgehog pathways by using gefitinib and cyclopamine, respectively, for improving the efficacy of the current chemotherapeutic drug docetaxel to counteract the prostate cancer progression from locally invasive to metastatic and recurrent disease stages. The data from immuofluorescence analyses revealed that EGFR/Tyr(1173)-pEGFR, sonic hedgehog ligand, smoothened coreceptor, and GLI-1 were colocalized with the CD133(+) stem cell-like marker in a small subpopulation of prostate cancer cells. These signaling molecules were also present in the bulk tumor mass of CD133(-) prostate cancer cells with a luminal phenotype detected in patient's adenocarcinoma tissues. Importantly, the results revealed that the CD133(+)/CD44(high)/AR(-/low) side population (SP) cell fraction endowed with a high self-renewal potential isolated from tumorigenic and invasive WPE1-NB26 cells by the Hoechst dye technique was insensitive to the current chemotherapeutic drug, docetaxel. In contrast, the docetaxel treatment induced significant antiproliferative and apoptotic effects on the CD133(-)/CD44(low)/AR(+) non-SP cell fraction isolated from the WPE1-NB26 cell line. Of therapeutic interest, the results have also indicated that combined docetaxel, gefitinib, and cyclopamine induced greater antiproliferative and apoptotic effects on SP and non-SP cell fractions isolated from WPE1-NB26 cells than individual drugs or two-drug combinations. Altogether, these observations suggest that EGFR and sonic hedgehog cascades may represent the potential therapeutic targets of great clinical interest to eradicate the total prostate cancer cell mass and improve the current docetaxel-based therapies against locally advanced and invasive prostate cancers, and thereby prevent metastases and disease relapse.
Collapse
Affiliation(s)
- Murielle Mimeault
- Department of Biochemistry and Molecular Biology, Rue du Professeur Laguesse, Lille, France
- University of Nebraska Medical Center, Omaha, NE 68198-5870, U.S.A
| | - Sonny L. Johansson
- Department of Pathology and Microbiology, Rue du Professeur Laguesse, Lille, France
- University of Nebraska Medical Center, Omaha, NE 68198-5870, U.S.A
| | - Jean-Pierre Henichart
- Institut de Chimie Pharmaceutique Albert Lespagnol, Rue du Professeur Laguesse, Lille, France
| | - Patrick Depreux
- Institut de Chimie Pharmaceutique Albert Lespagnol, Rue du Professeur Laguesse, Lille, France
| | - Surinder K. Batra
- Department of Biochemistry and Molecular Biology, Rue du Professeur Laguesse, Lille, France
- Department of Pathology and Microbiology, Rue du Professeur Laguesse, Lille, France
- University of Nebraska Medical Center, Omaha, NE 68198-5870, U.S.A
| |
Collapse
|
42
|
Mimeault M, Batra SK. Novel therapies against aggressive and recurrent epithelial cancers by molecular targeting tumor- and metastasis-initiating cells and their progenies. Anticancer Agents Med Chem 2010; 10:137-51. [PMID: 20184544 PMCID: PMC2997522 DOI: 10.2174/187152010790909353] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2010] [Accepted: 01/03/2010] [Indexed: 02/08/2023]
Abstract
A growing body of experimental evidence has revealed that the highly tumorigenic cancer stem/progenitor cells endowed with stem cell-like properties might be responsible for initiation and progression of numerous aggressive epithelial cancers into locally invasive, metastatic and incurable disease states. The malignant transformation of tissue-resident adult stem/progenitor cells or their progenies into tumorigenic and migrating cancer stem/progenitor cells and their resistance to current cancer therapies have been associated with their high expression levels of specific oncogenic products and drug resistance-associated molecules. In this regard, we describe the tumorigenic cascades that are frequently activated in cancer stem/progenitor cells versus their differentiated progenies during the early and late stages of the epithelial cancer progression. The emphasis is on the growth factor signaling pathways involved in the malignant behavior of prostate and pancreatic cancer stem/progenitor cells and their progenies. Of clinical interest, the potential molecular therapeutic targets to eradicate the tumor- and metastasis-initiating cells and their progenies and develop new effective combination therapies against locally advanced and metastatic epithelial cancers are also described.
Collapse
Affiliation(s)
- Murielle Mimeault
- Department of Biochemistry and Molecular Biology and Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA
| | - Surinder K. Batra
- Department of Biochemistry and Molecular Biology and Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA
| |
Collapse
|
43
|
Swift SL, Burns JE, Maitland NJ. Altered expression of neurotensin receptors is associated with the differentiation state of prostate cancer. Cancer Res 2010; 70:347-56. [PMID: 20048080 DOI: 10.1158/0008-5472.can-09-1252] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In prostate cancer, traditional treatments such as androgen response manipulation often provide only temporary resolution of disease, with emergence of a more aggressive, androgen-independent tumor following initial therapy. To treat recurrent disease, cell surface proteins that are specifically overexpressed on malignant cells may be useful for generating targeted therapeutics. Recent evidence suggests that neurotensin receptors (NTR) are recruited in advanced prostate cancer as an alternative growth pathway in the absence of androgens. In this study, we assessed the potential use of these receptors as targets by analyzing NTR expression patterns in human prostate cell lines and primary prostate tumor cell cultures derived from patient samples. In primary tumor cell cultures, NTR1 was upregulated in cells with a basal phenotype (cytokeratin 1/5/10/14+), whereas NTR2 and NTR3 were upregulated in cells with luminal phenotype (cytokeratin 18+). Similar patterns of NTR expression occurred in benign prostate tissue sections, implicating differentiation state as a basis for the differences observed in tumor cell lines. Our findings support the use of NTRs as tools for therapeutic targeting in prostate cancers composed of both poorly differentiated and/or well-differentiated cells.
Collapse
Affiliation(s)
- Stephanie L Swift
- YCR Cancer Research Unit, Department of Biology, University of York, Heslington, United Kingdom
| | | | | |
Collapse
|
44
|
Landriscina M, Bagalà C, Piscazzi A, Schinzari G, Quirino M, Fabiano A, Bianchetti S, Cassano A, Sica G, Barone C. Nevirapine restores androgen signaling in hormone-refractory human prostate carcinoma cells both in vitro and in vivo. Prostate 2009; 69:744-54. [PMID: 19152342 DOI: 10.1002/pros.20923] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
BACKGROUND Prostate carcinomas are androgen-dependent neoplasms which progress toward a hormone-independent phenotype during hormone-deprivation therapy. We evaluated nevirapine, a reverse transcriptase inhibitor, as a new treatment in hormone-refractory prostate carcinoma cells with the aim of restoring the androgen-dependency of tumor cells, the rationale being that endogenous reverse transcriptase is up-regulated in transformed cells and reverse transcriptase inhibitors exert a differentiating activity in human tumors. METHODS AND RESULTS Nevirapine induced extensive reprogramming of gene expression in vitro with up-regulation of genes that might be silenced during prostate tumor progression (i.e., K18, PSA and androgen receptor) and down-regulation of genes involved in the progression toward an androgen-independent phenotype (i.e., K5, EGFR1, EGF and VEGF-A). Furthermore, nevirapine down-regulated the growth of prostate carcinoma xenografts in athymic mice and induced a differentiated phenotype in vivo with increased K18 expression. Interestingly, the drug restored androgen signaling by enhancing the ability of tumor cells to respond to dihydrotestosterone stimulation and to the antiproliferative activity of the androgen receptor blocker bicalutamide. Finally, nevirapine pretreatment increased the susceptibility of tumor cells to docetaxel, by enhancing their ability to undergo apoptosis. CONCLUSIONS These data suggest that nevirapine may be clinically tested in human hormone-refractory prostate carcinoma to restore the susceptibility to androgen deprivation therapy or to docetaxel.
Collapse
Affiliation(s)
- Matteo Landriscina
- Clinical Oncology Unit, Department of Medical Sciences, University of Foggia, Viale Pinto, Foggia, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
WNT signaling regulates self-renewal and differentiation of prostate cancer cells with stem cell characteristics. Cell Res 2009; 19:683-97. [DOI: 10.1038/cr.2009.43] [Citation(s) in RCA: 219] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
|
46
|
Zhang X, Fournier MV, Ware JL, Bissell MJ, Jacoub A, Zehner ZE. Inhibition of vimentin or beta1 integrin reverts morphology of prostate tumor cells grown in laminin-rich extracellular matrix gels and reduces tumor growth in vivo. Mol Cancer Ther 2009; 8:499-508. [PMID: 19276168 PMCID: PMC2703491 DOI: 10.1158/1535-7163.mct-08-0544] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Prostate epithelial cells grown embedded in laminin-rich extracellular matrix (lrECM) undergo morphologic changes that closely resemble their architecture in vivo. In this study, growth characteristics of three human prostate epithelial sublines derived from the same cellular lineage, but displaying different tumorigenic and metastatic properties in vivo, were assessed in three-dimensional lrECM gels. M12, a highly tumorigenic and metastatic subline, was derived from the immortalized, prostate epithelial P69 cell line by selection in athymic, nude mice and found to contain a deletion of 19p-q13.1. The stable reintroduction of an intact human chromosome 19 into M12 resulted in a poorly tumorigenic subline, designated F6. When embedded in lrECM gels, the parental, nontumorigenic P69 line produced acini with clearly defined lumena. Immunostaining with antibodies to beta-catenin, E-cadherin, or alpha6 and beta1 integrins showed polarization typical of glandular epithelium. In contrast, the metastatic M12 subline produced highly disorganized cells with no evidence of polarization. The F6 subline reverted to acini-like structures exhibiting basal polarity marked with integrins. Reducing either vimentin levels via small interfering RNA interference or the expression of alpha6 and beta1integrins by the addition of blocking antibodies, reorganized the M12 subline into forming polarized acini. The loss of vimentin significantly reduced M12-Vim tumor growth when assessed by s.c. injection in athymic mice. Thus, tumorigenicity in vivo correlated with disorganized growth in three-dimensional lrECM gels. These studies suggest that the levels of vimentin and beta1 integrin play a key role in the homeostasis of the normal acinus in prostate and that their dysregulation may lead to tumorigenesis.
Collapse
Affiliation(s)
- Xueping Zhang
- Department of Biochemistry and Molecular Biology, Massey Cancer Center, Virginia Commonwealth University-Medical Campus, Richmond VA 23298
| | - Marcia V. Fournier
- Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720
| | - Joy L. Ware
- Department of Pathology, Massey Cancer Center, Virginia Commonwealth University-Medical Campus, Richmond VA 23298
| | - Mina J. Bissell
- Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720
| | - Adly Jacoub
- Department of Radiation Oncology, Massey Cancer Center, Virginia Commonwealth University-Medical Campus, Richmond VA 23298
| | - Zendra E. Zehner
- Department of Biochemistry and Molecular Biology, Massey Cancer Center, Virginia Commonwealth University-Medical Campus, Richmond VA 23298
| |
Collapse
|
47
|
Maitland NJ, Collins AT. Inflammation as the primary aetiological agent of human prostate cancer: a stem cell connection? J Cell Biochem 2009; 105:931-9. [PMID: 18655194 DOI: 10.1002/jcb.21843] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Inflammation has been implicated for some time as a potential aetiological agent in human prostate cancer. Viral and bacterial infections or even chemical carcinogens such as those found in cooked meat have been proposed as the inflammatory stimuli, but the mechanism of cancer induction is unknown. Recent information about gene expression patterns in normal and malignant epithelial stem cells from human prostate provides a new hypothesis for inflammation-induced carcinogenesis. The hypothesis states that in the stem cells located in the basal cell compartment of the prostate, activated prostate epithelial stem cells acquire a survival advantage, by expressing one of more of the same cytokines such as IL6. The establishment of one or more autocrine signalling loops results in an expansion of these cells in the absence of inflammation, as a potential first stage in the development of the tumour.
Collapse
Affiliation(s)
- Norman J Maitland
- YCR Cancer Research Unit, Deparment of Biology, University of York, York YO10 5YW, United Kingdom.
| | | |
Collapse
|
48
|
Yu SQ, Lai KP, Xia SJ, Chang HC, Chang C, Yeh S. The diverse and contrasting effects of using human prostate cancer cell lines to study androgen receptor roles in prostate cancer. Asian J Androl 2009; 11:39-48. [PMID: 19098932 PMCID: PMC3735204 DOI: 10.1038/aja.2008.44] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2008] [Accepted: 11/09/2008] [Indexed: 02/06/2023] Open
Abstract
The androgen receptor (AR) plays an important role in the development and progression of prostate cancer (PCa). Androgen deprivation therapy is initially effective in blocking tumor growth, but it eventually leads to the hormone-refractory state. The detailed mechanisms of the conversion from androgen dependence to androgen independence remain unclear. Several PCa cell lines were established to study the role of AR in PCa, but the results were often inconsistent or contrasting in different cell lines, or in the same cell line grown under different conditions. The cellular and molecular alteration of epithelial cells and their microenvironments are complicated, and it is difficult to use a single cell line to address this important issue and also to study the pathophysiological effects of AR. In this paper, we summarize the different effects of AR on multiple cell lines and show the disadvantages of using a single human PCa cell line to study AR effects on PCa. We also discuss the advantages of widely used epithelium-stroma co-culture systems, xenograft mouse models, and genetically engineered PCa mouse models. The combination of in vitro cell line studies and in vivo mouse models might lead to more credible results and better strategies for the study of AR roles in PCa.
Collapse
Affiliation(s)
- Sheng-Qiang Yu
- Department of Urology,The First People's Hospital of Shanghai Jiao Tong University, Shanghai 200080, China
- George Whipple Laboratory for Cancer Research, Departments of Pathology and Urology, The Cancer Center, University of Rochester, Rochester, NY 14642, USA
| | - Kuo-Pao Lai
- George Whipple Laboratory for Cancer Research, Departments of Pathology and Urology, The Cancer Center, University of Rochester, Rochester, NY 14642, USA
| | - Shu-Jie Xia
- Department of Urology,The First People's Hospital of Shanghai Jiao Tong University, Shanghai 200080, China
| | - Hong-Chiang Chang
- Department of Urology, National Taiwan University/Hospital, Taipei 100, Taiwan, China
| | - Chawnshang Chang
- George Whipple Laboratory for Cancer Research, Departments of Pathology and Urology, The Cancer Center, University of Rochester, Rochester, NY 14642, USA
| | - Shuyuan Yeh
- George Whipple Laboratory for Cancer Research, Departments of Pathology and Urology, The Cancer Center, University of Rochester, Rochester, NY 14642, USA
| |
Collapse
|
49
|
Zou X, Zou L, He Y, Bünger C. Molecular treatment strategies and surgical reconstruction for metastatic bone diseases. Cancer Treat Rev 2008; 34:527-38. [DOI: 10.1016/j.ctrv.2008.03.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2007] [Revised: 03/19/2008] [Accepted: 03/24/2008] [Indexed: 01/06/2023]
|
50
|
Targeting the stromal androgen receptor in primary prostate tumors at earlier stages. Proc Natl Acad Sci U S A 2008; 105:12188-93. [PMID: 18723670 DOI: 10.1073/pnas.0804701105] [Citation(s) in RCA: 118] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
To differentiate roles of androgen receptor (AR) in prostate stromal and epithelial cells, we have generated inducible-(ind)ARKO-TRAMP and prostate epithelial-specific ARKO TRAMP (pes-ARKO-TRAMP) mouse models, in which the AR was knocked down in both prostate epithelium and stroma or was knocked out in the prostate epithelium, respectively. We found that loss of AR in both mouse models resulted in poorly differentiated primary tumors with expanded intermediate cell populations. Interestingly, knockdown of both epithelial and stromal AR in ind-ARKO-TRAMP mice at earlier stages resulted in smaller primary prostate tumors with lower proliferation rates, and knockout of AR in pes-ARKO-TRAMP mice resulted in larger primary prostate tumors with higher proliferation rates. The differential proliferation rates, yet with similarly expanded intermediate cell populations, indicated that the prostate stromal AR might play a more dominant role than the epithelial AR to promote primary tumor proliferation at an early stage of tumor. Tissue recombination of human prostate stromal cell lines (WPMY1-v or WPMY1-ARsi) with human prostate cancer epithelial cell lines (PC3-v or PC3-AR9) further demonstrated that the AR might function as a suppressor in epithelial cells and a proliferator in stromal cells in the primary prostate tumors. The dual roles of the AR in prostate epithelium and stroma may require us to reevaluate the target and timing of androgen-deprivation therapy for prostate cancer patients and may suggest a need to develop new drugs to selectively target stromal AR in the primary prostate tumors at earlier stages.
Collapse
|