1
|
García-Seoane R, Richards CL, Aboal JR, Fernández JÁ, Schmid MW, Boquete MT. A field study of the molecular response of brown macroalgae to heavy metal exposure: An (epi)genetic approach. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136304. [PMID: 39486334 DOI: 10.1016/j.jhazmat.2024.136304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 10/10/2024] [Accepted: 10/24/2024] [Indexed: 11/04/2024]
Abstract
Our understanding of the relative contribution of genetic and epigenetic mechanisms to organismal response to stress is largely biased towards specific taxonomic groups (e.g. seed plants) and environmental stresses (e.g. drought and salinity). In previous work, we found intraspecific differences in heavy metal (HM) uptake capacity in the brown macroalgae Fucus vesiculosus. The molecular mechanisms underlying these differences, however, remained unknown. Here, we evaluated the concentrations of HMs, and characterized the genetic (single nucleotide polymorphisms) and epigenetic (cytosine DNA methylation) variability in reciprocal transplants of F. vesiculosus between two polluted and two unpolluted sites on the NW Spanish coast after 90 days. Genetic and epigenetic differentiation did not explain the phenotypic differentiation observed, possibly due to the combined effect of multiple environmental factors acting on the algae in their natural habitats. Nonetheless, we provide further evidence of intraspecific genetic differentiation in F. vesiculosus at short spatial scales, as well as first evidence of population-specific epigenetic changes in brown macroalgae in response to changes in environmental conditions (i.e. transplantation ex situ). We propose that both genetic and, to some extent, epigenetic mechanisms might impinge upon the adaptive potential of this species to environmental change, but this needs to be further addressed.
Collapse
Affiliation(s)
- Rita García-Seoane
- Instituto Español de Oceanografía (IEO-CSIC), Centro Oceanográfico de A Coruña, A Coruña, Spain; CRETUS, Ecology Unit, Universidade de Santiago de Compostela, Spain.
| | | | - Jesús R Aboal
- CRETUS, Ecology Unit, Universidade de Santiago de Compostela, Spain
| | | | | | - M Teresa Boquete
- CRETUS, Ecology Unit, Universidade de Santiago de Compostela, Spain; Department of Integrative Biology, University of South Florida, Tampa, USA; Department of Evolutionary Ecology, Estación Biológica de Doñana, CSIC, Sevilla, Spain.
| |
Collapse
|
2
|
Mittra PK, Roy SK, Rahman MA, Naimuzzaman M, Kwon SJ, Yun SH, Cho K, Katsube-Tanaka T, Shiraiwa T, Woo SH. Proteome insights of citric acid-mediated cadmium toxicity tolerance in Brassica napus L. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:115461-115479. [PMID: 37882925 DOI: 10.1007/s11356-023-30442-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Accepted: 10/09/2023] [Indexed: 10/27/2023]
Abstract
Cadmium (Cd) is a toxic substance that is uptake by plants from soils, Cd easily transfers into the food chain. Considering global food security, eco-friendly, cost-effective, and metal detoxification strategies are highly demandable for sustainable food crop production. The purpose of this study was to investigate how citric acid (CA) alleviates or tolerates Cd toxicity in Brassica using a proteome approach. In this study, the global proteome level was significantly altered under Cd toxicity with or without CA supplementation in Brassica. A total of 4947 proteins were identified using the gel-free proteome approach. Out of these, 476 proteins showed differential abundance between the treatment groups, wherein 316 were upregulated and 160 were downregulated. The gene ontology analysis reveals that differentially abundant proteins were involved in different biological processes including energy and carbohydrate metabolism, CO2 assimilation and photosynthesis, signal transduction and protein metabolism, antioxidant defense, heavy metal detoxification, plant development, and cytoskeleton and cell wall structure in Brassica leaves. Interestingly, several candidate proteins such as superoxide dismutase (A0A078GZ68) L-ascorbate peroxidase 3 (A0A078HSG4), glutamine synthetase (A0A078HLB2), glutathione S-transferase DHAR1 (A0A078HPN8), glutamine synthetase (A0A078HLB2), cysteine synthase (A0A078GAD3), S-adenosylmethionine synthase 2 (A0A078JDL6), and thiosulfate/3-mercaptopyruvate sulfur transferase 2 (A0A078H905) were involved in antioxidant defense system and sulfur assimilation-involving Cd-detoxification process in Brassica. These findings provide new proteome insights into CA-mediated Cd-toxicity alleviation in Brassica, which might be useful to oilseed crop breeders for enhancing heavy metal tolerance in Brassica using the breeding program, with sustainable and smart Brassica production in a metal-toxic environment.
Collapse
Affiliation(s)
- Probir Kumar Mittra
- Department of Crop Science, Chungbuk National University, Cheong-Ju, 28644, Republic of Korea
| | - Swapan Kumar Roy
- College of Agricultural Sciences, IUBAT-International University of Business Agriculture and Technology, 4 Embankment Drive Road, Sector 10 Uttara Model Town, Dhaka, 1230, Bangladesh
| | - Md Atikur Rahman
- Grassland and Forage Division, Rural Development Administration, National Institute of Animal Science, Cheonan, 31000, Republic of Korea
| | - Mollah Naimuzzaman
- College of Agricultural Sciences, IUBAT-International University of Business Agriculture and Technology, 4 Embankment Drive Road, Sector 10 Uttara Model Town, Dhaka, 1230, Bangladesh
| | - Soo-Jeong Kwon
- Department of Crop Science, Chungbuk National University, Cheong-Ju, 28644, Republic of Korea
| | - Sung Ho Yun
- Bio-Chemical Analysis Team, Center for Research Equipment, Korea Basic Science Institute, Ochang, Cheong-Ju, 28119, Republic of Korea
| | - Kun Cho
- Bio-Chemical Analysis Team, Center for Research Equipment, Korea Basic Science Institute, Ochang, Cheong-Ju, 28119, Republic of Korea
| | - Tomoyuki Katsube-Tanaka
- Graduate School of Agriculture, Kyoto University, Kitashirakawa Oiwake-Cho, Sakyo-Ku, Kyoto, 606-8502, Japan
| | - Tatsuhiko Shiraiwa
- Graduate School of Agriculture, Kyoto University, Kitashirakawa Oiwake-Cho, Sakyo-Ku, Kyoto, 606-8502, Japan
| | - Sun-Hee Woo
- Department of Crop Science, Chungbuk National University, Cheong-Ju, 28644, Republic of Korea.
| |
Collapse
|
3
|
Nguyen HM, Ruocco M, Dattolo E, Cassetti FP, Calvo S, Tomasello A, Marín-Guirao L, Pernice M, Procaccini G. Signs of local adaptation by genetic selection and isolation promoted by extreme temperature and salinity in the Mediterranean seagrass Posidonia oceanica. Mol Ecol 2023; 32:4313-4328. [PMID: 37271924 DOI: 10.1111/mec.17032] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 05/10/2023] [Accepted: 05/17/2023] [Indexed: 06/06/2023]
Abstract
Adaptation to local conditions is known to occur in seagrasses; however, knowledge of the genetic basis underlying this phenomenon remains scarce. Here, we analysed Posidonia oceanica from six sites within and around the Stagnone di Marsala, a semi-enclosed coastal lagoon where salinity and temperature exceed the generally described tolerance thresholds of the species. Sea surface temperatures (SSTs) were measured and plant samples were collected for the assessment of morphology, flowering rate and for screening genome-wide polymorphisms using double digest restriction-site-associated DNA sequencing. Results demonstrated more extreme SSTs and salinity levels inside the lagoon than the outer lagoon regions. Morphological results showed significantly fewer and shorter leaves and reduced rhizome growth of P. oceanica from the inner lagoon and past flowering events were recorded only for a meadow farthest away from the lagoon. Using an array of 51,329 single nucleotide polymorphisms, we revealed a clear genetic structure among the study sites and confirmed the genetic isolation and high clonality of the innermost site. In all, 14 outlier loci were identified and annotated with several proteins including those relate to plant stress response, protein transport and regulators of plant-specific developmental events. Especially, five outlier loci showed maximum allele frequency at the innermost site, likely reflecting adaptation to the extreme temperature and salinity regimes, possibly due to the selection of more resistant genotypes and the progressive restriction of gene flow. Overall, this study helps us to disentangle the genetic basis of seagrass adaptation to local environmental conditions and may support future works on assisted evolution in seagrasses.
Collapse
Affiliation(s)
| | | | | | | | - Sebastiano Calvo
- Dipartimento di Scienze della Terra e del Mare, Università di Palermo, Palermo, Italy
| | - Agostino Tomasello
- Dipartimento di Scienze della Terra e del Mare, Università di Palermo, Palermo, Italy
| | - Lázaro Marín-Guirao
- Stazione Zoologica Anton Dohrn, Napoli, Italy
- Oceanographic Center of Murcia, Seagrass Ecology Group, Spanish Institute of Oceanography (IEO-CSIC), Murcia, Spain
| | - Mathieu Pernice
- Faculty of Science, Climate Change Cluster (C3), University of Technology Sydney, Ultimo, New South Wales, Australia
| | | |
Collapse
|
4
|
Kamalanathan M, Mapes S, Prouse A, Faulkner P, Klobusnik NH, Hillhouse J, Hala D, Quigg A. Core metabolism plasticity in phytoplankton: Response of Dunaliella tertiolecta to oil exposure. JOURNAL OF PHYCOLOGY 2022; 58:804-814. [PMID: 36056600 PMCID: PMC10087180 DOI: 10.1111/jpy.13286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 08/23/2022] [Indexed: 06/15/2023]
Abstract
Human alterations to the marine environment such as an oil spill can induce oxidative stress in phytoplankton. Exposure to oil has been shown to be lethal to most phytoplankton species, but some are able to survive and grow at unaffected or reduced growth rates, which appears to be independent of the class and phylum of the phytoplankton and their ability to consume components of oil heterotrophically. The goal of this article is to test the role of core metabolism plasticity in the oil-resisting ability of phytoplankton. Experiments were performed on the oil- resistant chlorophyte, Dunaliella tertiolecta, in control and water accommodated fractions of oil, with and without metabolic inhibitors targeting the core metabolic pathways. We observed that inhibiting pathways such as photosynthetic electron transport (PET) and pentose-phosphate pathway were lethal; however, inhibition of pathways such as mitochondrial electron transport and cyclic electron transport caused growth to be arrested. Pathways such as photorespiration and Kreb's cycle appear to play a critical role in the oil-tolerating ability of D. tertiolecta. Analysis of photo-physiology revealed reduced PET under inhibition of photorespiration but not Kreb's cycle. Further studies showed enhanced flux through Kreb's cycle suggesting increased energy production and photorespiration counteract oxidative stress. Lastly, reduced extracellular carbohydrate secretion under oil exposure indicated carbon and energy conservation, which together with enhanced flux through Kreb's cycle played a major role in the survival of D. tertiolecta under oil exposure by meeting the additional energy demands. Overall, we present data that suggest the role of phenotypic plasticity of multiple core metabolic pathways in accounting for the oxidative stress tolerating ability of certain phytoplankton species.
Collapse
Affiliation(s)
- Manoj Kamalanathan
- Department of Marine BiologyTexas A&M University at GalvestonGalvestonTexas77573USA
- Present address:
Bigelow Laboratory for Ocean SciencesEast BoothbayMaine04544USA
| | - Savannah Mapes
- Department of Marine BiologyTexas A&M University at GalvestonGalvestonTexas77573USA
- Present address:
Virginia Institute of Marine ScienceGloucester PointVirginia23062USA
| | - Alexandra Prouse
- Department of Marine BiologyTexas A&M University at GalvestonGalvestonTexas77573USA
| | - Patricia Faulkner
- Department of Marine BiologyTexas A&M University at GalvestonGalvestonTexas77573USA
| | | | - Jessica Hillhouse
- Department of Marine BiologyTexas A&M University at GalvestonGalvestonTexas77573USA
| | - David Hala
- Department of Marine BiologyTexas A&M University at GalvestonGalvestonTexas77573USA
| | - Antonietta Quigg
- Department of Marine BiologyTexas A&M University at GalvestonGalvestonTexas77573USA
- Department of OceanographyTexas A&M UniversityCollege StationTexas77845USA
| |
Collapse
|
5
|
Jean N, Perié L, Dumont E, Bertheau L, Balliau T, Caruana AMN, Amzil Z, Laabir M, Masseret E. Metal stresses modify soluble proteomes and toxin profiles in two Mediterranean strains of the distributed dinoflagellate Alexandrium pacificum. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 818:151680. [PMID: 34793790 DOI: 10.1016/j.scitotenv.2021.151680] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 10/25/2021] [Accepted: 11/10/2021] [Indexed: 06/13/2023]
Abstract
HABs involving Alexandrium pacificum have been reported in metal-contaminated ecosystems, suggesting that this distributed species adapts to and/or can tolerate the effects of metals. Modifications in soluble proteomes and PST contents were characterized in two Mediterranean A. pacificum strains exposed to mono- or polymetallic stresses (zinc, lead, copper, cadmium). These strains were isolated from two anthropized locations: Santa Giusta Lagoon (Italy, SG C10-3) and the Tarragona seaport (Spain, TAR C5-4F). In both strains, metals primarily downregulated key photosynthesis proteins. Metals also upregulated other proteins involved in photosynthesis (PCP in both strains), the oxidative stress response (HSP 60, proteasome and SOD in SG C10-3; HSP 70 in TAR C5-4F), energy metabolism (AdK in TAR C5-4F), neoglucogenesis/glycolysis (GAPDH and PEP synthase in SG C10-3) and protein modification (PP in TAR C5-4F). These proteins, possibly involved in adaptive proteomic responses, may explain the development of these A. pacificum strains in metal-contaminated ecosystems. The two strains showed different proteomic responses to metals, with SG C10-3 upregulating more proteins, particularly PCP. Among the PSTs, regardless of the metal and the strain studied, C2 and GTX4 predominated, followed by GTX5. Under the polymetallic cocktail, (i) total PSTs, C2 and GTX4 reached the highest levels in SG C10-3 only, and (ii) total PSTs, C2, GTX5 and neoSTX were higher in SG C10-3 than in TAR C5-4F, whereas in SG C10-3 under copper stress, total PSTs, GTX5, GTX1 and C1 were higher than in the controls, revealing variability in PST biosynthesis between the two strains. Total PSTs, C2, GTX4 and GTX1 showed significant positive correlations with PCP, indicating that PST production may be positively related to photosynthesis. Our results showed that the A. pacificum strains adapt their proteomic and physiological responses to metals, which may contribute to their ecological success in highly anthropized areas.
Collapse
Affiliation(s)
- Natacha Jean
- Université de Toulon, Aix Marseille Univ, CNRS, IRD, MIO, Toulon, France.
| | - Luce Perié
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, New York University, 30(th) St., New York, NY 10016, USA
| | - Estelle Dumont
- UMR_MD1, Aix-Marseille Univ, U-1261-INSERM, SSA, IRBA, MCT, Marseille, France
| | - Lucie Bertheau
- UMR PAM A 02.102 Procédés Alimentaires et Microbiologiques, Université de Bourgogne Franche-Comté, AgroSup Dijon, esplanade Erasme, 21 000 Dijon, France
| | - Thierry Balliau
- PAPPSO-GQE-Le Moulon, INRA, Université Paris-Sud, CNRS, AgroParisTech, Université Paris-Saclay, 91 190 Gif-sur-Yvette, France
| | - Amandine M N Caruana
- IFREMER, Phycotoxin Laboratory, rue de l'île d'Yeu, BP 21105, 44 311 Nantes, France
| | - Zouher Amzil
- IFREMER, Phycotoxin Laboratory, rue de l'île d'Yeu, BP 21105, 44 311 Nantes, France
| | - Mohamed Laabir
- Marbec, Univ Montpellier, IRD, Ifremer, CNRS, Montpellier, France
| | - Estelle Masseret
- Marbec, Univ Montpellier, IRD, Ifremer, CNRS, Montpellier, France
| |
Collapse
|
6
|
DuBois K, Pollard KN, Kauffman BJ, Williams SL, Stachowicz JJ. Local adaptation in a marine foundation species: Implications for resilience to future global change. GLOBAL CHANGE BIOLOGY 2022; 28:2596-2610. [PMID: 35007376 DOI: 10.1111/gcb.16080] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 12/31/2021] [Accepted: 01/03/2022] [Indexed: 06/14/2023]
Abstract
Environmental change is multidimensional, with local anthropogenic stressors and global climate change interacting to differentially impact populations throughout a species' geographic range. Within species, the spatial distribution of phenotypic variation and its causes (i.e., local adaptation or plasticity) will determine species' adaptive capacity to respond to a changing environment. However, comparatively less is known about the spatial scale of adaptive differentiation among populations and how patterns of local adaptation might drive vulnerability to global change stressors. To test whether fine-scale (2-12 km) mosaics of environmental stress can cause adaptive differentiation in a marine foundation species, eelgrass (Zostera marina), we conducted a three-way reciprocal transplant experiment spanning the length of Tomales Bay, CA. Our results revealed strong home-site advantage in growth and survival for all three populations. In subsequent common garden experiments and feeding assays, we showed that countergradients in temperature, light availability, and grazing pressure from an introduced herbivore contribute to differential performance among populations consistent with local adaptation. Our findings highlight how local-scale mosaics in environmental stressors can increase phenotypic variation among neighboring populations, potentially increasing species resilience to future global change. More specifically, we identified a range-center eelgrass population that is pre-adapted to extremely warm temperatures similar to those experienced by low-latitude range-edge populations of eelgrass, demonstrating how reservoirs of heat-tolerant phenotypes may already exist throughout a species range. Future work on predicting species resilience to global change should incorporate potential buffering effects of local-scale population differentiation and promote a phenotypic management approach to species conservation.
Collapse
Affiliation(s)
- Katherine DuBois
- Department of Evolution and Ecology, University of California, Davis, California, USA
- Bodega Marine Laboratory, University of California Davis, Bodega Bay, California, USA
| | - Kenzie N Pollard
- Department of Evolution and Ecology, University of California, Davis, California, USA
| | - Brian J Kauffman
- Bodega Marine Laboratory, University of California Davis, Bodega Bay, California, USA
| | - Susan L Williams
- Department of Evolution and Ecology, University of California, Davis, California, USA
- Bodega Marine Laboratory, University of California Davis, Bodega Bay, California, USA
| | - John J Stachowicz
- Department of Evolution and Ecology, University of California, Davis, California, USA
| |
Collapse
|
7
|
Badis Y, Scornet D, Harada M, Caillard C, Godfroy O, Raphalen M, Gachon CMM, Coelho SM, Motomura T, Nagasato C, Cock JM. Targeted CRISPR-Cas9-based gene knockouts in the model brown alga Ectocarpus. THE NEW PHYTOLOGIST 2021; 231:2077-2091. [PMID: 34076889 DOI: 10.1111/nph.17525] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 05/20/2021] [Indexed: 06/12/2023]
Abstract
Brown algae are an important group of multicellular eukaryotes, phylogenetically distinct from both the animal and land plant lineages. Ectocarpus has emerged as a model organism to study diverse aspects of brown algal biology, but this system currently lacks an effective reverse genetics methodology to analyse the functions of selected target genes. Here, we report that mutations at specific target sites are generated following the introduction of CRISPR-Cas9 ribonucleoproteins into Ectocarpus cells, using either biolistics or microinjection as the delivery method. Individuals with mutations affecting the ADENINE PHOSPHORIBOSYL TRANSFERASE (APT) gene were isolated following treatment with 2-fluoroadenine, and this selection system was used to isolate individuals in which mutations had been introduced simultaneously at APT and at a second gene. This double mutation approach could potentially be used to isolate mutants affecting any Ectocarpus gene, providing an effective reverse genetics tool for this model organism. The availability of this tool will significantly enhance the utility of Ectocarpus as a model organism for this ecologically and economically important group of marine organisms. Moreover, the methodology described here should be readily transferable to other brown algal species.
Collapse
Affiliation(s)
- Yacine Badis
- Roscoff Biological Station, Place Georges Teissier, Roscoff, 29680, France
- The Scottish Association for Marine Science, Scottish Marine Institute, Oban, Argyll,, PA37 1QA, UK
| | - Delphine Scornet
- Roscoff Biological Station, Place Georges Teissier, Roscoff, 29680, France
| | - Minori Harada
- Graduate School of Environmental Science, Hokkaido University, Sapporo, 060-0810, Japan
| | - Céline Caillard
- Roscoff Biological Station, Place Georges Teissier, Roscoff, 29680, France
| | - Olivier Godfroy
- Roscoff Biological Station, Place Georges Teissier, Roscoff, 29680, France
| | - Morgane Raphalen
- Roscoff Biological Station, Place Georges Teissier, Roscoff, 29680, France
| | - Claire M M Gachon
- The Scottish Association for Marine Science, Scottish Marine Institute, Oban, Argyll,, PA37 1QA, UK
- UMR 7245 Molécules de Communication et Adaptation des Micro-organismes, Muséum National d'Histoire Naturelle, CP 54, 57 rue Cuvier, Paris, 75005, France
| | - Susana M Coelho
- Roscoff Biological Station, Place Georges Teissier, Roscoff, 29680, France
- Department of Algal Development and Evolution, Max Planck Institute for Developmental Biology, Max-Planck-Ring 5, Tübingen, 72076, Germany
| | - Taizo Motomura
- Muroran Marine Station, Field Science Center for Northern Biosphere, Hokkaido University, Muroran, 051-0013, Japan
| | - Chikako Nagasato
- Muroran Marine Station, Field Science Center for Northern Biosphere, Hokkaido University, Muroran, 051-0013, Japan
| | - J Mark Cock
- Roscoff Biological Station, Place Georges Teissier, Roscoff, 29680, France
| |
Collapse
|
8
|
Proteome Changes Reveal the Protective Roles of Exogenous Citric Acid in Alleviating Cu Toxicity in Brassica napus L. Int J Mol Sci 2021; 22:ijms22115879. [PMID: 34070927 PMCID: PMC8198124 DOI: 10.3390/ijms22115879] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 05/25/2021] [Accepted: 05/26/2021] [Indexed: 01/27/2023] Open
Abstract
Citric acid (CA), as an organic chelator, plays a vital role in alleviating copper (Cu) stress-mediated oxidative damage, wherein a number of molecular mechanisms alter in plants. However, it remains largely unknown how CA regulates differentially abundant proteins (DAPs) in response to Cu stress in Brassica napus L. In the present study, we aimed to investigate the proteome changes in the leaves of B. L. seedlings in response to CA-mediated alleviation of Cu stress. Exposure of 21-day-old seedlings to Cu (25 and 50 μM) and CA (1.0 mM) for 7 days exhibited a dramatic inhibition of overall growth and considerable increase in the enzymatic activities (POD, SOD, CAT). Using a label-free proteome approach, a total of 6345 proteins were identified in differentially treated leaves, from which 426 proteins were differentially expressed among the treatment groups. Gene ontology (GO) and KEGG pathways analysis revealed that most of the differential abundance proteins were found to be involved in energy and carbohydrate metabolism, photosynthesis, protein metabolism, stress and defense, metal detoxification, and cell wall reorganization. Our results suggest that the downregulation of chlorophyll biosynthetic proteins involved in photosynthesis were consistent with reduced chlorophyll content. The increased abundance of proteins involved in stress and defense indicates that these DAPs might provide significant insights into the adaptation of Brassica seedlings to Cu stress. The abundances of key proteins were further verified by monitoring the mRNA expression level of the respective transcripts. Taken together, these findings provide a potential molecular mechanism towards Cu stress tolerance and open a new route in accelerating the phytoextraction of Cu through exogenous application of CA in B. napus.
Collapse
|
9
|
Oyarzo-Miranda C, Latorre N, Meynard A, Rivas J, Bulboa C, Contreras-Porcia L. Coastal pollution from the industrial park Quintero bay of central Chile: Effects on abundance, morphology, and development of the kelp Lessonia spicata (Phaeophyceae). PLoS One 2020; 15:e0240581. [PMID: 33057390 PMCID: PMC7561192 DOI: 10.1371/journal.pone.0240581] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 09/30/2020] [Indexed: 01/04/2023] Open
Abstract
The industrial park of Quintero Bay (QB) in the central coast of Chile was established in the 1960s, presents high levels of pollution due to the industrial activity, and it is known as one of the five Chilean "sacrifice zones". Lessonia spicata is the most important habitat-forming kelp species in the intertidal along the central and south shores of Chile, and currently there are no morphometric and population studies of L. spicata (or other seaweed species) nor studies about the effects of pollution on its development in QB and neighbouring sites. In this context, the aims of this study were (i) to register the abundance and morphological features of L. spicata populations from Ventanas, Horcón and Cachagua (sites with different pollution histories and located only up to 40 km from the QB); ii) to determine the heavy metals (HMs) concentration in seawater and marine sediments; and (iii) to evaluate in vitro the effects of exposure to seawater from the three sampling sites on spore release and early developmental stages, up to the juvenile sporophyte. Results showed that the chronically exposed Ventanas kelp population had the smallest adult individuals in comparison with the other sites. Ventanas and Horcón registered high HMs concentration in the seawater and marine sediments exceeding the international permissible limits (e.g in seawater Cu 20-859 μg L-1; sediments Cu > 50,000 μg kg-1). Unexpectedly in Cachagua, a site often considered unpolluted, high concentrations of Cu and As were also registered in the seawater (859 and 1,484 μg L-1, respectively) and of As in marine sediments (20,895 μg kg-1). Exposure of gametophytes to the seawater from Ventanas resulted in a developmental delay compared to the other treatments; however, low sporophyte production was determined in all treatments. Our results indicate that QB, more notably Ventanas, induce highly negative effects on individual development, and consequently on seaweed populations, which suggest a long-term negative impact on the community structure of these marine zones. Furthermore, the high concentrations of HMs reported here at Cachagua suggest a recent expansion of pollution along the central coast of Chile, evidencing effects on the marine ecosystem health even on sites far from the pollution source.
Collapse
Affiliation(s)
- Carolina Oyarzo-Miranda
- Departamento de Ecología y Biodiversidad, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
- Centro de Investigación Marina Quintay (CIMARQ), Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
- Center of Applied Ecology and Sustainability (CAPES), Santiago, Chile
| | - Nicolás Latorre
- Departamento de Ecología y Biodiversidad, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
- Centro de Investigación Marina Quintay (CIMARQ), Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
- Center of Applied Ecology and Sustainability (CAPES), Santiago, Chile
- Programa de Doctorado Medicina de la Conservación, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
| | - Andrés Meynard
- Departamento de Ecología y Biodiversidad, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
- Centro de Investigación Marina Quintay (CIMARQ), Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
- Center of Applied Ecology and Sustainability (CAPES), Santiago, Chile
| | - Jorge Rivas
- Departamento de Ecología y Biodiversidad, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
- Centro de Investigación Marina Quintay (CIMARQ), Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
| | - Cristian Bulboa
- Departamento de Ecología y Biodiversidad, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
- Centro de Investigación Marina Quintay (CIMARQ), Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
| | - Loretto Contreras-Porcia
- Departamento de Ecología y Biodiversidad, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
- Centro de Investigación Marina Quintay (CIMARQ), Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
- Center of Applied Ecology and Sustainability (CAPES), Santiago, Chile
| |
Collapse
|
10
|
Huang WL, Wu FL, Huang HY, Huang WT, Deng CL, Yang LT, Huang ZR, Chen LS. Excess Copper-Induced Alterations of Protein Profiles and Related Physiological Parameters in Citrus Leaves. PLANTS (BASEL, SWITZERLAND) 2020; 9:E291. [PMID: 32121140 PMCID: PMC7154894 DOI: 10.3390/plants9030291] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 02/23/2020] [Accepted: 02/24/2020] [Indexed: 01/31/2023]
Abstract
This present study examined excess copper (Cu) effects on seedling growth, leaf Cu concentration, gas exchange, and protein profiles identified by a two-dimensional electrophoresis (2-DE) based mass spectrometry (MS) approach after Citrus sinensis and Citrus grandis seedlings were treated for six months with 0.5 (control), 200, 300, or 400 μM CuCl2. Forty-one and 37 differentially abundant protein (DAP) spots were identified in Cu-treated C. grandis and C. sinensis leaves, respectively, including some novel DAPs that were not reported in leaves and/or roots. Most of these DAPs were identified only in C. grandis or C. sinensis leaves. More DAPs increased in abundances than DAPs decreased in abundances were observed in Cu-treated C. grandis leaves, but the opposite was true in Cu-treated C. sinensis leaves. Over 50% of DAPs were associated with photosynthesis, carbohydrate, and energy metabolism. Cu-toxicity-induced reduction in leaf CO2 assimilation might be caused by decreased abundances of proteins related to photosynthetic electron transport chain (PETC) and CO2 assimilation. Cu-effects on PETC were more pronounced in C. sinensis leaves than in C. grandis leaves. DAPs related to antioxidation and detoxification, protein folding and assembly (viz., chaperones and folding catalysts), and signal transduction might be involved in Citrus Cu-toxicity and Cu-tolerance.
Collapse
Affiliation(s)
- Wei-Lin Huang
- Institute of Plant Nutritional Physiology and Molecular Biology, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (W.-L.H.); (F.-L.W.); (H.-Y.H.); (W.-T.H.); (L.-T.Y.)
| | - Feng-Lin Wu
- Institute of Plant Nutritional Physiology and Molecular Biology, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (W.-L.H.); (F.-L.W.); (H.-Y.H.); (W.-T.H.); (L.-T.Y.)
| | - Hui-Yu Huang
- Institute of Plant Nutritional Physiology and Molecular Biology, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (W.-L.H.); (F.-L.W.); (H.-Y.H.); (W.-T.H.); (L.-T.Y.)
| | - Wei-Tao Huang
- Institute of Plant Nutritional Physiology and Molecular Biology, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (W.-L.H.); (F.-L.W.); (H.-Y.H.); (W.-T.H.); (L.-T.Y.)
| | - Chong-Ling Deng
- Guangxi Key Laboratory of Citrus Biology, Guangxi Academy of Specialty Crops, Guilin 541004, China; (C.-L.D.); (Z.-R.H.)
| | - Lin-Tong Yang
- Institute of Plant Nutritional Physiology and Molecular Biology, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (W.-L.H.); (F.-L.W.); (H.-Y.H.); (W.-T.H.); (L.-T.Y.)
| | - Zeng-Rong Huang
- Guangxi Key Laboratory of Citrus Biology, Guangxi Academy of Specialty Crops, Guilin 541004, China; (C.-L.D.); (Z.-R.H.)
| | - Li-Song Chen
- Institute of Plant Nutritional Physiology and Molecular Biology, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (W.-L.H.); (F.-L.W.); (H.-Y.H.); (W.-T.H.); (L.-T.Y.)
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- The Higher Education Key Laboratory of Fujian Province for Soil Ecosystem Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
11
|
Machado Monteiro CM, Li H, Bischof K, Bartsch I, Valentin KU, Corre E, Collén J, Harms L, Glöckner G, Heinrich S. Is geographical variation driving the transcriptomic responses to multiple stressors in the kelp Saccharina latissima? BMC PLANT BIOLOGY 2019; 19:513. [PMID: 31775614 PMCID: PMC6881991 DOI: 10.1186/s12870-019-2124-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 11/07/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND Kelps (Laminariales, Phaeophyceae) are brown macroalgae of utmost ecological, and increasingly economic, importance on temperate to polar rocky shores. Omics approaches in brown algae are still scarce and knowledge of their acclimation mechanisms to the changing conditions experienced in coastal environments can benefit from the application of RNA-sequencing. Despite evidence of ecotypic differentiation, transcriptomic responses from distinct geographical locations have, to our knowledge, never been studied in the sugar kelp Saccharina latissima so far. RESULTS In this study we investigated gene expression responses using RNA-sequencing of S. latissima from environments with contrasting temperature and salinity conditions - Roscoff, in temperate eastern Atlantic, and Spitsbergen in the Arctic. Juvenile sporophytes derived from uniparental stock cultures from both locations were pre-cultivated at 8 °C and SA 30. Sporophytes acclimated to 0 °C, 8 °C and 15 °C were exposed to a low salinity treatment (SA 20) for 24 h. Hyposalinity had a greater impact at the transcriptomic level than the temperature alone, and its effects were modulated by temperature. Namely, photosynthesis and pigment synthesis were extensively repressed by low salinity at low temperatures. Although some responses were shared among sporophytes from the different sites, marked differences were revealed by principal component analysis, differential expression and GO enrichment. The interaction between low temperature and low salinity drove the largest changes in gene expression in sporophytes from Roscoff while specimens from Spitsbergen required more metabolic adjustment at higher temperatures. Moreover, genes related to cell wall adjustment were differentially expressed between Spitsbergen and Roscoff control samples. CONCLUSIONS Our study reveals interactive effects of temperature and salinity on transcriptomic profiles in S. latissima. Moreover, our data suggest that under identical culture conditions sporophytes from different locations diverge in their transcriptomic responses. This is probably connected to variations in temperature and salinity in their respective environment of origin. The current transcriptomic results support the plastic response pattern in sugar kelp which is a species with several reported ecotypes. Our data provide the baseline for a better understanding of the underlying processes of physiological plasticity and may help in the future to identify strains adapted to specific environments and its genetic control.
Collapse
Affiliation(s)
- Cátia Marina Machado Monteiro
- Marine Botany, Faculty Biology/Chemistry, University of Bremen, Bremen, Germany
- Station Biologique de Roscoff, plateforme ABiMS, CNRS: FR2424, Sorbonne Université (UPMC), 29680 Roscoff, France
- Sorbonne Université, CNRS, Integrative Biology of Marine Models (LBI2M), Station Biologique de Roscoff, 29680 Roscoff, France
| | - Huiru Li
- Marine Botany, Faculty Biology/Chemistry, University of Bremen, Bremen, Germany
- Fisheries College, Ocean University of China, Qingdao, China
| | - Kai Bischof
- Marine Botany, Faculty Biology/Chemistry, University of Bremen, Bremen, Germany
| | - Inka Bartsch
- Alfred-Wegener-Institute, Helmholtz Centre for Marine and Polar Research, Bremerhaven, Germany
| | - Klaus Ulrich Valentin
- Alfred-Wegener-Institute, Helmholtz Centre for Marine and Polar Research, Bremerhaven, Germany
| | - Erwan Corre
- Station Biologique de Roscoff, plateforme ABiMS, CNRS: FR2424, Sorbonne Université (UPMC), 29680 Roscoff, France
| | - Jonas Collén
- Sorbonne Université, CNRS, Integrative Biology of Marine Models (LBI2M), Station Biologique de Roscoff, 29680 Roscoff, France
| | - Lars Harms
- Alfred-Wegener-Institute, Helmholtz Centre for Marine and Polar Research, Bremerhaven, Germany
| | - Gernot Glöckner
- Institute for Biochemistry I, Medical Faculty, University of Cologne, Cologne, Germany
| | - Sandra Heinrich
- Institute for Plant Science and Microbiology, University of Hamburg, Hamburg, Germany
| |
Collapse
|
12
|
Zhang Y, Wang X, Shan T, Pang S, Xu N. Transcriptome profiling of the meristem tissue of Saccharina japonica (Phaeophyceae, Laminariales) under severe stress of copper. Mar Genomics 2019; 47:100671. [PMID: 30910511 DOI: 10.1016/j.margen.2019.03.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2019] [Revised: 03/18/2019] [Accepted: 03/18/2019] [Indexed: 02/08/2023]
Abstract
Copper (Cu) is an essential metal involved in many physiological processes of living organisms. However, beyond a certain threshold, Cu can become highly toxic. For instance, in the summer sporeling production of the economic kelp Saccharina japonica, the excess Cu accidently released from the low-quality alloys of the refrigerating machine was deadly to the seedlings and led to the failure of hatchery operations. However, the molecular basis underlying high toxicity of Cu remains unclear. In this study, juvenile sporophytes were cultured in seawater containing different concentrations of Cu2+ (10, 100, and 200 μg L-1). Bleaching was observed in the meristem of individuals in the 100 and 200 μg L-1 treatment groups on the third day, indicating that Cu has caused severe harm at these concentrations. RNA-Seq was used to profile transcriptomic changes under different Cu2+ concentrations. Compared with the control, the number of differentially expressed genes (DEGs) was 11,350 (4944 up- and 6406 down-regulated) in the 200 μg L-1 treatment group and 2868 (1075 up- and 1793 down-regulated) in the 100 μg L-1 treatment group, whereas much fewer DEGs were detected in the 10 μg L-1 treatment group. Genes coding for glutathione-S-transferase and vanadium-dependent bromoperoxidase and iodoperoxidase were found to be remarkably regulated, especially in the 200 μg L-1 treatment group. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses showed that only down-regulated DEGs were enriched. There were 45 enriched GO terms and four enriched KEGG pathways common to the 100 and 200 μg L-1 treatment groups, which were associated with diverse essential biological processes such as photosynthesis, protein synthesis, redox activity, and metabolism and biosynthesis of functional biomolecules, among others. Suppression of these biological processes at the transcriptional level likely contributes to the observed high toxicity of Cu2+ in S. japonica.
Collapse
Affiliation(s)
- Yurong Zhang
- Key Laboratory of Marine Biotechnology of Zhejiang Province, School of Marine Sciences, Ningbo University, Ningbo 315211, China; Marine Fishery Institute of Zhejiang Province, Key Lab of Mariculture and Enhancement of Zhejiang province, 316100 Zhoushan, China
| | - Xuemei Wang
- CAS Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, 7 Nanhai Road, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tifeng Shan
- CAS Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, 7 Nanhai Road, Qingdao 266071, China.
| | - Shaojun Pang
- CAS Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, 7 Nanhai Road, Qingdao 266071, China.
| | - Nianjun Xu
- Key Laboratory of Marine Biotechnology of Zhejiang Province, School of Marine Sciences, Ningbo University, Ningbo 315211, China
| |
Collapse
|
13
|
Abstract
Atmospheric deposition brings both nutrients and toxic components to the surface ocean, resulting in important impacts on phytoplankton. Field and lab studies have been done on the iron (Fe) fertilization on marine phytoplankton. However, studies on other trace metals are limited. Both bioassay experiments and field observations have suggested that aerosols with high copper (Cu) concentrations can negatively affect the primary productivity and change phytoplankton community structure. Note that with increasing human activities and global environmental changes (e.g., ocean acidification, warming, deoxygenation, etc.), the input of aerosol Cu could exceed toxicity thresholds at certain times or in some sensitive oceanic regions. Here, we provide a comprehensive review on aerosol Cu and marine phytoplankton studies by summarizing (1) physiological effects and toxicity thresholds of Cu to various phytoplankton taxa, (2) interactions between Cu and other metals and major nutrients, and (3) global distribution of surface seawater Cu and atmospheric Cu. We suggest that studies on aerosols, seawater chemistry, and phytoplankton should be integrated for understanding the impacts of aerosol Cu on marine phytoplankton, and thereafter the air–sea interaction via biogeochemical processes.
Collapse
|
14
|
Morpho-Physiological and Proteomic Analyses of Eucalyptus camaldulensis as a Bioremediator in Copper-Polluted Soil in Saudi Arabia. PLANTS 2019; 8:plants8020043. [PMID: 30781434 PMCID: PMC6409862 DOI: 10.3390/plants8020043] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 02/08/2019] [Accepted: 02/11/2019] [Indexed: 11/24/2022]
Abstract
The present investigation aimed to assess the impact of copper (Cu) stress on the physiological and proteomic behavior of Eucalyptus camaldulensis.E. camaldulensis is likely a potential phytoremediator in areas vulnerable to Cu contamination, such as the industrial areas of Riyadh. To realize this objective, young seedlings of E. camaldulensis were potted in an open area with soil comprised of clay and sand. Different doses of Cu (30, 50, and 100 µM) were applied to the plants as CuSO4·5H2O for 6 weeks. Plant growth was monitored during the Cu exposure period, and morphological and physiological indicators were measured once a week to determine the growth rates. A proteomics study was also conducted to find out the influence of Cu stress on proteins. Our results showed that growth was negatively affected by Cu treatment, particularly at the highest concentrations. Moreover, using a proteomic analysis showed 26 targets involved in protein expression. Elevated levels of Cu increased the expression of 11 proteins and decreased the expression of 15 proteins. Changes were detected in proteins involved in photosynthesis, translation, transcription, metabolism, and antioxidant enzymes. Our findings provided insights into the molecular mechanisms related to Cu stress, in addition to its influence on the morphological and physiological attributes of E. camaldulensis seedlings. This investigation aimed to characterize the mechanism behind the impact of Cu stress on the plant.
Collapse
|
15
|
Guillot L, Delage L, Viari A, Vandenbrouck Y, Com E, Ritter A, Lavigne R, Marie D, Peterlongo P, Potin P, Pineau C. Peptimapper: proteogenomics workflow for the expert annotation of eukaryotic genomes. BMC Genomics 2019; 20:56. [PMID: 30654742 PMCID: PMC6337836 DOI: 10.1186/s12864-019-5431-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Accepted: 01/03/2019] [Indexed: 01/02/2023] Open
Abstract
Background Accurate structural annotation of genomes is still a challenge, despite the progress made over the past decade. The prediction of gene structure remains difficult, especially for eukaryotic species, and is often erroneous and incomplete. We used a proteogenomics strategy, taking advantage of the combination of proteomics datasets and bioinformatics tools, to identify novel protein coding-genes and splice isoforms, assign correct start sites, and validate predicted exons and genes. Results Our proteogenomics workflow, Peptimapper, was applied to the genome annotation of Ectocarpus sp., a key reference genome for both the brown algal lineage and stramenopiles. We generated proteomics data from various life cycle stages of Ectocarpus sp. strains and sub-cellular fractions using a shotgun approach. First, we directly generated peptide sequence tags (PSTs) from the proteomics data. Second, we mapped PSTs onto the translated genomic sequence. Closely located hits (i.e., PSTs locations on the genome) were then clustered to detect potential coding regions based on parameters optimized for the organism. Third, we evaluated each cluster and compared it to gene predictions from existing conventional genome annotation approaches. Finally, we integrated cluster locations into GFF files to use a genome viewer. We identified two potential novel genes, a ribosomal protein L22 and an aryl sulfotransferase and corrected the gene structure of a dihydrolipoamide acetyltransferase. We experimentally validated the results by RT-PCR and using transcriptomics data. Conclusions Peptimapper is a complementary tool for the expert annotation of genomes. It is suitable for any organism and is distributed through a Docker image available on two public bioinformatics docker repositories: Docker Hub and BioShaDock. This workflow is also accessible through the Galaxy framework and for use by non-computer scientists at https://galaxy.protim.eu. Data are available via ProteomeXchange under identifier PXD010618. Electronic supplementary material The online version of this article (10.1186/s12864-019-5431-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Laetitia Guillot
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35042, Rennes cedex, France.,Protim, Univ Rennes, F-35042, Rennes cedex, France
| | - Ludovic Delage
- Sorbonne Université, UPMC, CNRS, UMR 8227, Integrative Biology of Marine Models, Biological Station, CS 90074, F-29688, Roscoff, France
| | - Alain Viari
- INRIA Grenoble-Rhône-Alpes, F-38330, Montbonnot-Saint-Martin, France
| | - Yves Vandenbrouck
- University Grenoble Alpes, CEA, Inserm, BIG-BGE, 38000, Grenoble, France
| | - Emmanuelle Com
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35042, Rennes cedex, France.,Protim, Univ Rennes, F-35042, Rennes cedex, France
| | - Andrés Ritter
- Sorbonne Université, UPMC, CNRS, UMR 8227, Integrative Biology of Marine Models, Biological Station, CS 90074, F-29688, Roscoff, France.,Present address: Sorbonne Université, CNRS, Institut de Biologie Paris-Seine, Laboratory of Computational and Quantitative Biology, F-75005, Paris, France
| | - Régis Lavigne
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35042, Rennes cedex, France.,Protim, Univ Rennes, F-35042, Rennes cedex, France
| | - Dominique Marie
- Sorbonne Université, UPMC, CNRS, UMR 8227, Integrative Biology of Marine Models, Biological Station, CS 90074, F-29688, Roscoff, France
| | | | - Philippe Potin
- Sorbonne Université, UPMC, CNRS, UMR 8227, Integrative Biology of Marine Models, Biological Station, CS 90074, F-29688, Roscoff, France
| | - Charles Pineau
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35042, Rennes cedex, France. .,Protim, Univ Rennes, F-35042, Rennes cedex, France.
| |
Collapse
|
16
|
Khan S, Mao Y, Gao D, Riaz S, Niaz Z, Tang L, Khan S, Wang D. Identification of proteins responding to pathogen-infection in the red alga Pyropia yezoensis using iTRAQ quantitative proteomics. BMC Genomics 2018; 19:842. [PMID: 30482156 PMCID: PMC6260746 DOI: 10.1186/s12864-018-5229-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 11/07/2018] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Pyropia yezoensis is an important marine crop which, due to its high protein content, is widely used as a seafood in China. Unfortunately, red rot disease, caused by Pythium porphyrae, seriously damages P. yezoensis farms every year in China, Japan, and Korea. Proteomic methods are often used to study the interactions between hosts and pathogens. Therefore, an iTRAQ-based proteomic analysis was used to identify pathogen-responsive proteins following the artificial infection of P. yezoensis with P. porphyrae spores. RESULTS A total of 762 differentially expressed proteins were identified, of which 378 were up-regulated and 384 were down-regulated following infection. A large amount of these proteins were involved in disease stress, carbohydrate metabolism, cell signaling, chaperone activity, photosynthesis, and energy metabolism, as annotated in the KEGG database. Overall, the data showed that P. yezoensis resists infection by inhibiting photosynthesis, and energy and carbohydrate metabolism pathways, as supported by changes in the expression levels of related proteins. The expression data are available via ProteomeXchange with the identifier PXD009363. CONCLUSIONS The current data provide an overall summary of the red algae responses to pathogen infection. This study improves our understanding of infection resistance in P. yezoensis, and may help in increasing the breeding of P. porphyrae-infection tolerant macroalgae.
Collapse
Affiliation(s)
- Sohrab Khan
- Key Laboratory of Marine Genetics and Breeding (Ocean University of China), Ministry of Education, Qingdao, 266003 China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237 China
| | - Yunxiang Mao
- Key Laboratory of Marine Genetics and Breeding (Ocean University of China), Ministry of Education, Qingdao, 266003 China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237 China
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003 China
| | - Dong Gao
- Key Laboratory of Marine Genetics and Breeding (Ocean University of China), Ministry of Education, Qingdao, 266003 China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237 China
| | - Sadaf Riaz
- Key Laboratory of Marine Genetics and Breeding (Ocean University of China), Ministry of Education, Qingdao, 266003 China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237 China
| | - Zeeshan Niaz
- Key Laboratory of Marine Genetics and Breeding (Ocean University of China), Ministry of Education, Qingdao, 266003 China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237 China
| | - Lei Tang
- Key Laboratory of Marine Genetics and Breeding (Ocean University of China), Ministry of Education, Qingdao, 266003 China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237 China
| | - Sohaib Khan
- Key Laboratory of Marine Genetics and Breeding (Ocean University of China), Ministry of Education, Qingdao, 266003 China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237 China
| | - Dongmei Wang
- Key Laboratory of Marine Genetics and Breeding (Ocean University of China), Ministry of Education, Qingdao, 266003 China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237 China
| |
Collapse
|
17
|
García-Seoane R, Aboal JR, Boquete MT, Fernández JA. Biomonitoring coastal environments with transplanted macroalgae: A methodological review. MARINE POLLUTION BULLETIN 2018; 135:988-999. [PMID: 30301124 DOI: 10.1016/j.marpolbul.2018.08.027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 08/10/2018] [Accepted: 08/12/2018] [Indexed: 06/08/2023]
Abstract
The use of macroalgae transplants is a recent technique used in pollution biomonitoring studies in marine ecosystems. Only 60 articles published between 1978 and 2017 reported the use of this environmental tool for the active biomonitoring of inorganic pollutants and nutrients worldwide. In this review paper, we evaluated studies on this topic in relation to the development of methodological aspects of the technique and the degree of standardization of the protocols used. On the basis of findings of this review, we conclude that the technique is not yet standardized and that uniformisation of protocols is required to enable comparison of the results of different studies. We propose a new protocol for applying the technique, in which each suggestion has been carefully and rigorously compared with the relevant findings reported in the available literature.
Collapse
Affiliation(s)
- R García-Seoane
- Ecology Unit, Dept. Functional Biology, Universidade de Santiago de Compostela, Fac. Biología, Lope Gómez de Marzoa s/n, Santiago de Compostela 15702, A Coruña, Spain.
| | - J R Aboal
- Ecology Unit, Dept. Functional Biology, Universidade de Santiago de Compostela, Fac. Biología, Lope Gómez de Marzoa s/n, Santiago de Compostela 15702, A Coruña, Spain
| | - M T Boquete
- Estación Biológica de Doñana, CSIC, Avenida Américo Vespucio 25, Isla de la Cartuja, Sevilla 41092, Spain; Department of Integrative Biology, University of South Florida, 4202 E Fowler Ave, Tampa, FL 33620, USA
| | - J A Fernández
- Ecology Unit, Dept. Functional Biology, Universidade de Santiago de Compostela, Fac. Biología, Lope Gómez de Marzoa s/n, Santiago de Compostela 15702, A Coruña, Spain
| |
Collapse
|
18
|
Küpper FC, Miller EP, Andrews SJ, Hughes C, Carpenter LJ, Meyer-Klaucke W, Toyama C, Muramatsu Y, Feiters MC, Carrano CJ. Emission of volatile halogenated compounds, speciation and localization of bromine and iodine in the brown algal genome model Ectocarpus siliculosus. J Biol Inorg Chem 2018; 23:1119-1128. [PMID: 29523971 DOI: 10.1007/s00775-018-1539-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 01/28/2018] [Indexed: 11/25/2022]
Abstract
This study explores key features of bromine and iodine metabolism in the filamentous brown alga and genomics model Ectocarpus siliculosus. Both elements are accumulated in Ectocarpus, albeit at much lower concentration factors (2-3 orders of magnitude for iodine, and < 1 order of magnitude for bromine) than e.g. in the kelp Laminaria digitata. Iodide competitively reduces the accumulation of bromide. Both iodide and bromide are accumulated in the cell wall (apoplast) of Ectocarpus, with minor amounts of bromine also detectable in the cytosol. Ectocarpus emits a range of volatile halogenated compounds, the most prominent of which by far is methyl iodide. Interestingly, biosynthesis of this compound cannot be accounted for by vanadium haloperoxidase since the latter have not been found to catalyze direct halogenation of an unactivated methyl group or hydrocarbon so a methyl halide transferase-type production mechanism is proposed.
Collapse
Affiliation(s)
- Frithjof C Küpper
- Oceanlab, University of Aberdeen, Main Street, Newburgh, AB41 6AA, Scotland, UK.
- Dunstaffnage Marine Laboratory, Scottish Association for Marine Science, Oban, Argyll, PA37 1QA, Scotland, UK.
| | - Eric P Miller
- Department of Chemistry and Biochemistry, San Diego State University, San Diego, CA, 92182-1030, USA
| | - Stephen J Andrews
- Wolfson Atmospheric Chemistry Laboratories, Department of Chemistry, University of York, York, YO10 5DD, UK
| | - Claire Hughes
- Environment Department, University of York, York, YO10 5NG, UK
| | - Lucy J Carpenter
- Wolfson Atmospheric Chemistry Laboratories, Department of Chemistry, University of York, York, YO10 5DD, UK
| | - Wolfram Meyer-Klaucke
- Department of Chemistry - Inorganic Chemistry, Faculty of Science, University of Paderborn, Warburger Strasse 100, 33098, Paderborn, Germany
| | - Chiaki Toyama
- Geological Survey of Japan, The National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, 305-8567, Japan
| | - Yasuyuki Muramatsu
- Department of Chemistry, Faculty of Science, Gakushuin University, Toshima-Ku, Tokyo, 171-8588, Japan
| | - Martin C Feiters
- Department of Organic Chemistry, Institute for Molecules and Materials, Radboud University Nijmegen, Heyendaalseweg 135, 6525 AJ, Nijmegen, The Netherlands
| | - Carl J Carrano
- Department of Chemistry and Biochemistry, San Diego State University, San Diego, CA, 92182-1030, USA
| |
Collapse
|
19
|
Lian J, Wijffels RH, Smidt H, Sipkema D. The effect of the algal microbiome on industrial production of microalgae. Microb Biotechnol 2018; 11:806-818. [PMID: 29978601 PMCID: PMC6116740 DOI: 10.1111/1751-7915.13296] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 06/10/2018] [Accepted: 06/11/2018] [Indexed: 12/22/2022] Open
Abstract
Microbes are ubiquitously distributed, and they are also present in algae production systems. The algal microbiome is a pivotal part of the alga holobiont and has a key role in modulating algal populations in nature. However, there is a lack of knowledge on the role of bacteria in artificial systems ranging from laboratory flasks to industrial ponds. Coexisting microorganisms, and predominantly bacteria, are often regarded as contaminants in algal research, but recent studies manifested that many algal symbionts not only promote algal growth but also offer advantages in downstream processing. Because of the high expectations for microalgae in a bio‐based economy, better understanding of benefits and risks of algal–microbial associations is important for the algae industry. Reducing production cost may be through applying specific bacteria to enhance algae growth at large scale as well as through preventing the growth of a broad spectrum of algal pathogens. In this review, we highlight the latest studies of algae–microbial interactions and their underlying mechanisms, discuss advantages of large‐scale algal–bacterial cocultivation and extend such knowledge to a broad range of biotechnological applications.
Collapse
Affiliation(s)
- Jie Lian
- Laboratory of Microbiology, Wageningen University & Research, Stippeneng 4, 6708 WE, Wageningen, The Netherlands
| | - Rene H Wijffels
- Bioprocess Engineering Group, AlgaePARC, Wageningen University & Research, PO Box 16, 6700 AA, Wageningen, The Netherlands.,Faculty of Biosciences and Aquaculture, Nord University, N-8049, Bodø, Norway
| | - Hauke Smidt
- Laboratory of Microbiology, Wageningen University & Research, Stippeneng 4, 6708 WE, Wageningen, The Netherlands
| | - Detmer Sipkema
- Laboratory of Microbiology, Wageningen University & Research, Stippeneng 4, 6708 WE, Wageningen, The Netherlands
| |
Collapse
|
20
|
Punitha T, Phang SM, Juan JC, Beardall J. Environmental Control of Vanadium Haloperoxidases and Halocarbon Emissions in Macroalgae. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2018; 20:282-303. [PMID: 29691674 DOI: 10.1007/s10126-018-9820-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Accepted: 12/04/2017] [Indexed: 06/08/2023]
Abstract
Vanadium-dependent haloperoxidases (V-HPO), able to catalyze the reaction of halide ions (Cl-, Br-, I-) with hydrogen peroxide, have a great influence on the production of halocarbons, which in turn are involved in atmospheric ozone destruction and global warming. The production of these haloperoxidases in macroalgae is influenced by changes in the surrounding environment. The first reported vanadium bromoperoxidase was discovered 40 years ago in the brown alga Ascophyllum nodosum. Since that discovery, more studies have been conducted on the structure and mechanism of the enzyme, mainly focused on three types of V-HPO, the chloro- and bromoperoxidases and, more recently, the iodoperoxidase. Since aspects of environmental regulation of haloperoxidases are less well known, the present paper will focus on reviewing the factors which influence the production of these enzymes in macroalgae, particularly their interactions with reactive oxygen species (ROS).
Collapse
Affiliation(s)
- Thillai Punitha
- Institute of Ocean and Earth Sciences, University of Malaya, 50603, Kuala Lumpur, Malaysia
- Institute of Graduate Studies, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Siew-Moi Phang
- Institute of Ocean and Earth Sciences, University of Malaya, 50603, Kuala Lumpur, Malaysia.
- Institute of Biological Sciences, University of Malaya, 50603, Kuala Lumpur, Malaysia.
| | - Joon Ching Juan
- Nanotechnology and Catalysis Research Centre (NANOCAT), University of Malaya, Level 3, IPS Building, Kuala Lumpur, Malaysia.
- School of Science, Monash University Malaysia Campus, Bandar Sunway, 46150, Subang Jaya, Malaysia.
| | - John Beardall
- School of Biological Sciences, Monash University, Clayton, VIC, 3800, Australia
| |
Collapse
|
21
|
Gonçalves S, Kahlert M, Almeida SFP, Figueira E. Assessing Cu impacts on freshwater diatoms: biochemical and metabolomic responses of Tabellaria flocculosa (Roth) Kützing. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 625:1234-1246. [PMID: 29996420 DOI: 10.1016/j.scitotenv.2017.12.320] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 12/26/2017] [Accepted: 12/27/2017] [Indexed: 06/08/2023]
Abstract
Metals are a recognised threat to aquatic organisms but the impact of metals such as copper (Cu) on benthic freshwater diatoms is poorly understood, even if diatoms are commonly used as water quality indicators. Our study aimed to elucidate the cellular targets of Cu toxicity and the mechanisms cells resort to counteract toxicity and to increase tolerance to Cu. A concerted approach analysing the biochemical, physiological and metabolome alterations in diatom cells was conducted by exposing the freshwater diatom Tabellaria flocculosa to 0, 0.3, 6 and 10μgCu/L. Cu was already toxic to T. flocculosa at concentrations common in environments and which are not usually considered to be contaminated (0.3μgCu/L). Under Cu impact, the metabolome of T. flocculosa changed significantly, especially at high concentrations (6 and 10μgCu/L). Cu toxicity was counteracted by increasing extracellular immobilization (EPS, frustulins), antioxidant (SOD, CAT) and detoxifying (GSTs) enzymes activity and low molecular weight antioxidants (GSH). These mechanisms were fuelled by higher energy production (increased ETS activity). At the highest Cu concentration (10μg/L), these processes were specially enhanced in an attempt to restrain the oxidative stress generated by high intracellular Cu concentrations. However, these mechanisms were not able to fully protect cells, and damage in membranes and proteins increased. Moreover, the decrease of hydroxylamine and unsaturated fatty acids and the increase of saturated fatty acids, 2-palmitoylglycerol, glycerol and diterpenoid compounds should be tested as new specific markers of Cu toxicity in future studies. This information can support the prediction of diatom behaviour in different Cu contamination levels, including highly impacted environments, such as mining scenarios, and may assist in environmental risk assessment policies and restoration programs.
Collapse
Affiliation(s)
- Sara Gonçalves
- Department of Biology, University of Aveiro, Aveiro, Portugal; Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Maria Kahlert
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Salomé F P Almeida
- Department of Biology and GeoBioTec - GeoBioSciences, GeoTechnologies and GeoEngineering Research Centre, University of Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal
| | - Etelvina Figueira
- Department of Biology & CESAM, University of Aveiro, Aveiro, Portugal.
| |
Collapse
|
22
|
González A, Sáez CA, Moenne A. Copper-induced activation of TRPs and VDCCs triggers a calcium signature response regulating gene expression in Ectocarpus siliculosus. PeerJ 2018; 6:e4556. [PMID: 29682409 PMCID: PMC5907779 DOI: 10.7717/peerj.4556] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 03/09/2018] [Indexed: 02/06/2023] Open
Abstract
In certain multicellular photoautotrophs, such as plants and green macroalgae, it has been demonstrated that calcium signaling importantly mediates tolerance to copper excess. However, there is no information in brown macroalgae, which are phylogenetically distant from green algae and plants. We have previously shown that chronic copper levels (2.5 μM) activate transient receptor potential (TRP) channels in the model brown macroalga Ectocarpus siliculosus, allowing extracellular calcium entry at 13, 29, 39 and 51 min. Here, we showed that intracellular calcium increases also occurred at 3 and 5 h of exposure; these increases were inhibited by antagonists of voltage-dependent calcium channels (VDCCs); a chelating agent of extracellular calcium; an antagonist of endoplasmic reticulum (ER) ATPase; and antagonists of cADPR-, NAADP- and IP3-dependent calcium channels. Thus, copper activates VDCCs allowing extracellular calcium entry and intracellular calcium release from the ER via cADPR-, IP3- and NAADP-dependent channels. Furthermore, the level of transcripts encoding a phytochelatin synthase (PS) and a metallothionein (MT) were analyzed in the alga exposed to 2.5 μM copper from 3 to 24 h. The level of ps and mt transcripts increased until 24 h and these increases were inhibited by antagonists of calmodulins (CaMs), calcineurin B-like proteins (CBLs) and calcium-dependent protein kinases (CDPKs). Finally, activation of VDCC was inhibited by a mixture of TRP antagonists and by inhibitors of protein kinases. Thus, copper-mediated activation of TRPs triggers VDCCs via protein kinases, allowing extracellular calcium entry and intracellular calcium release from ER that, in turn, activate CaMs, CBLs and CDPKs increasing expression of PS and MT encoding genes in E. siliculosus.
Collapse
Affiliation(s)
- Alberto González
- Laboratory of Marine Biotechnology, Faculty of Chemistry and Biology, Universidad de Santiago de Chile, Santiago, Región Metropolitana, Chile
| | - Claudio A Sáez
- Laboratory of Costal Environmental Research, Center of Advanced Studies, Universidad de Playa Ancha, Viña del Mar, Valparaíso, Chile
| | - Alejandra Moenne
- Laboratory of Marine Biotechnology, Faculty of Chemistry and Biology, Universidad de Santiago de Chile, Santiago, Región Metropolitana, Chile
| |
Collapse
|
23
|
Leung PTY, Yi AX, Ip JCH, Mak SST, Leung KMY. Photosynthetic and transcriptional responses of the marine diatom Thalassiosira pseudonana to the combined effect of temperature stress and copper exposure. MARINE POLLUTION BULLETIN 2017; 124:938-945. [PMID: 28365019 DOI: 10.1016/j.marpolbul.2017.03.038] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Revised: 03/16/2017] [Accepted: 03/18/2017] [Indexed: 06/07/2023]
Abstract
A 96-h exposure experiment was conducted to elucidate the toxicity responses of the marine diatom Thalassiosira pseudonana upon exposure to different temperatures and copper (Cu) concentrations. Three Cu treatments (seawater control; 200μg/L Cu, EC50 for the yield at 25°C; and 1000μg/L Cu, EC50 for growth inhibition at 25°C) were conducted against four temperatures (10°C, 15°C, 25°C and 30°C). Growth rate and photosynthetic responses showed a significant interacting thermal-chemical effect with strong synergistic responses observed at 30°C treatments. Expression of heat shock protein (hsp) was positively modulated by increasing temperatures. Hsp 90, hsp90-2 and sit1 (related to silica shell formation) were highly expressed at 30°C under 1000μg/L Cu, while the genes encoding light harvesting proteins (3HfcpA and 3HfcpB) and silaffin precursor sil3 were significantly up-regulated at 15°C under 200μg/L Cu. Our results indicated an increase Cu toxicity to T. pseudonana under high temperature and Cu dose.
Collapse
Affiliation(s)
- Priscilla T Y Leung
- The Swire Institute of Marine Science and School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China; State Key Laboratory in Marine Pollution, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China.
| | - Andy Xianliang Yi
- The Swire Institute of Marine Science and School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Jack C H Ip
- The Swire Institute of Marine Science and School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Sarah S T Mak
- The Swire Institute of Marine Science and School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China; Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Denmark
| | - Kenneth M Y Leung
- The Swire Institute of Marine Science and School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China; State Key Laboratory in Marine Pollution, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China.
| |
Collapse
|
24
|
Proteome characterization of copper stress responses in the roots of sorghum. Biometals 2017; 30:765-785. [PMID: 28936772 DOI: 10.1007/s10534-017-0045-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Accepted: 08/18/2017] [Indexed: 10/18/2022]
Abstract
Copper (Cu) is a important micronutrient for plants, but it is extremely toxic to plants at high concentration and can inactivate and disturb protein structures. To explore the Cu stress-induced tolerance mechanism, the present study was conducted on the roots of sorghum seedlings exposed to 50 and 100 µM CuSO4 for 5 days. Accumulation of Cu increased in roots when the seedlings were treated with the highest concentration of Cu2+ ions (100 μM). Elevated Cu concentration provoked notable reduction of Fe, Zn, Ca, and Mn uptake in the roots of sorghum seedlings. In the proteome analysis, high-throughput two-dimensional polyacrylamide gel electrophoresis combined with MALDI-TOF-TOF MS was performed to explore the molecular responses of Cu-induced sorghum seedling roots. In two-dimensional silver-stained gels, 422 protein spots were identified in the 2-D gel whereas twenty-one protein spots (≥1.5-fold) were used to analyze mass spectrometry from Cu-induced sorghum roots. Among the 21 differentially expressed proteins, 10 proteins were increased, while 11 proteins were decreased due to the intake of Cu ions by roots of sorghum. Abundance of most of the identified proteins from the roots that function in stress response and metabolism was remarkably enhanced, while proteins involved in transcription and regulation were severely reduced. Taken together, these results imply insights into a potential molecular mechanism towards Cu stress in C4 plant, sorghum.
Collapse
|
25
|
Jean N, Dumont E, Herzi F, Balliau T, Laabir M, Masseret E, Mounier S. Modifications of the soluble proteome of a mediterranean strain of the invasive neurotoxic dinoflagellate Alexandrium catenella under metal stress conditions. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2017; 188:80-91. [PMID: 28472730 DOI: 10.1016/j.aquatox.2017.04.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2016] [Revised: 04/06/2017] [Accepted: 04/15/2017] [Indexed: 06/07/2023]
Abstract
The soluble proteome of the mediterranean strain ACT03 of the invasive neurotoxic dinoflagellate Alexandrium catenella exposed to lead or zinc at 6, 12 or 18μM (total concentrations), or under control conditions, was characterized by two-dimensional gel electrophoresis (2-DE). Zinc reduced (P<0.05) the total number of protein spots (-41%, -52% and -60%, at 6, 12 or 18μM, respectively). Besides, most of the proteins constituting the soluble proteome were down-regulated in response to lead or zinc stresses. These proteins were involved mainly in photosynthesis (20-37% for lead; 36-50% for zinc) (ribulose-1,5-bisphosphate carboxylase/oxygenase: RUBISCO; ferredoxin-NADP+ reductase: FNR; peridinin-chlorophyll a-protein: PCP), and in the oxidative stress response (29-34% for lead; 17-36% for zinc) (superoxide dismutase: SOD; proteasome α/β subunits). These negative effects could be partly compensated by the up-regulation of specific proteins such as ATP-synthase β subunit (+16.3 fold after exposure to lead at 12μM). Indeed, an increase in the abundance of ATP-synthase could enrich the ATP pool and provide more energy available for the cells to survive under metal stress, and make the ATP-synthase transport of metal cations out of the cells more efficient. Finally, this study shows that exposure to lead or zinc have a harmful effect on the soluble proteome of A. catenella ACT03, but also suggests the existence of an adaptative proteomic response to metal stresses, which could contribute to maintaining the development of this dinoflagellate in trace metal-contaminated ecosystems.
Collapse
Affiliation(s)
- Natacha Jean
- Université de Toulon, PROTEE, EA 3819, 83957 La Garde, France.
| | - Estelle Dumont
- Université de Toulon, PROTEE, EA 3819, 83957 La Garde, France.
| | - Faouzi Herzi
- Université de Toulon, PROTEE, EA 3819, 83957 La Garde, France.
| | - Thierry Balliau
- PAPPSO-GQE-Le Moulon, INRA, Univ. Paris-Sud, CNRS, AgroParisTech, Université Paris-Saclay, 91190, Gif-sur-Yvette, France.
| | - Mohamed Laabir
- MARBEC UMR 9190 IRD-Ifremer-CNRS-Université de Montpellier, Place Eugène Bataillon, Case 093, 34095 Montpellier Cedex 5, France.
| | - Estelle Masseret
- MARBEC UMR 9190 IRD-Ifremer-CNRS-Université de Montpellier, Place Eugène Bataillon, Case 093, 34095 Montpellier Cedex 5, France.
| | | |
Collapse
|
26
|
Teng L, Fan X, Xu D, Zhang X, Mock T, Ye N. Identification of Genes under Positive Selection Reveals Differences in Evolutionary Adaptation between Brown-Algal Species. FRONTIERS IN PLANT SCIENCE 2017; 8:1429. [PMID: 28861104 PMCID: PMC5559719 DOI: 10.3389/fpls.2017.01429] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Accepted: 08/03/2017] [Indexed: 05/07/2023]
Abstract
Brown algae are an important taxonomic group in coastal ecosystems. The model brown algal species Ectocarpus siliculosus and Saccharina japonica are closely related lineages. Despite their close phylogenetic relationship, they vary greatly in morphology and physiology. To obtain further insights into the evolutionary forces driving divergence in brown algae, we analyzed 3,909 orthologs from both species to identify Genes Under Positive Selection (GUPS). About 12% of the orthologs in each species were considered to be under positive selection. Many GUPS are involved in membrane transport, regulation of homeostasis, and sexual reproduction in the small sporophyte of E. siliculosus, which is known to have a complex life cycle and to occupy a wide range of habitats. Genes involved in photosynthesis and cell division dominated the group of GUPS in the large kelp of S. japonica, which might explain why this alga has evolved the ability to grow very rapidly and to form some of the largest sporophytes. A significant number of molecular chaperones (e.g., heat-shock proteins) involved in stress responses were identified to be under positive selection in both species, potentially indicating their important roles for macroalgae to cope with the relatively variable environment of coastal ecosystems. Moreover, analysis of previously published microarray data of E. siliculosus showed that many GUPS in E. siliculosus were responsive to stress conditions, such as oxidative and hyposaline stress, whereas our RNA-seq data of S. japonica showed that GUPS in this species were most highly expressed in large sporophytes, which supports the suggestion that selection largely acts on different sets of genes in both marcoalgal species, potentially reflecting their adaptation to different ecological niches.
Collapse
Affiliation(s)
- Linhong Teng
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery SciencesQingdao, China
| | - Xiao Fan
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery SciencesQingdao, China
| | - Dong Xu
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery SciencesQingdao, China
| | - Xiaowen Zhang
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery SciencesQingdao, China
| | - Thomas Mock
- School of Environmental Sciences, University of East Anglia, Norwich Research ParkNorwich, United Kingdom
| | - Naihao Ye
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery SciencesQingdao, China
- Function Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and TechnologyQingdao, China
- *Correspondence: Naihao Ye
| |
Collapse
|
27
|
Hego E, Vilain S, Barré A, Claverol S, Dupuy JW, Lalanne C, Bonneu M, Plomion C, Mench M. Copper stress-induced changes in leaf soluble proteome of Cu-sensitive and tolerantAgrostis capillarisL. populations. Proteomics 2016; 16:1386-97. [DOI: 10.1002/pmic.201500083] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2015] [Revised: 12/31/2015] [Accepted: 02/16/2016] [Indexed: 11/06/2022]
Affiliation(s)
- Elena Hego
- UMR1202 BIOGECO; University of Bordeaux; Pessac Cedex France
- UMR1202 BIOGECO; INRA; Cestas cedex France
| | | | - Aurélien Barré
- Centre de Génomique Fonctionnelle; Centre de Bioinformatique de Bordeaux; Univ. Bordeaux; Bordeaux France
| | - Stéphane Claverol
- Centre de Génomique Fonctionnelle; Plateforme Protéome; Univ. Bordeaux; Bordeaux France
| | - Jean-William Dupuy
- Centre de Génomique Fonctionnelle; Plateforme Protéome; Univ. Bordeaux; Bordeaux France
| | - Céline Lalanne
- UMR1202 BIOGECO; University of Bordeaux; Pessac Cedex France
- UMR1202 BIOGECO; INRA; Cestas cedex France
| | - Marc Bonneu
- Bordeaux INP; Centre de Génomique Fonctionnelle; Plateforme Protéome; Univ. Bordeaux; France
| | - Christophe Plomion
- UMR1202 BIOGECO; University of Bordeaux; Pessac Cedex France
- UMR1202 BIOGECO; INRA; Cestas cedex France
| | - Michel Mench
- UMR1202 BIOGECO; University of Bordeaux; Pessac Cedex France
- UMR1202 BIOGECO; INRA; Cestas cedex France
| |
Collapse
|
28
|
Roy SK, Kwon SJ, Cho SW, Kamal AHM, Kim SW, Sarker K, Oh MW, Lee MS, Chung KY, Xin Z, Woo SH. Leaf proteome characterization in the context of physiological and morphological changes in response to copper stress in sorghum. Biometals 2016; 29:495-513. [PMID: 27067443 DOI: 10.1007/s10534-016-9932-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Accepted: 04/03/2016] [Indexed: 02/03/2023]
Abstract
Copper (Cu) is an essential micronutrient required for normal growth and development of plants; however, at elevated concentrations in soil, copper is also generally considered to be one of the most toxic metals to plant cells due to its inhibitory effects against many physiological and biochemical processes. In spite of its potential physiological and economical significance, molecular mechanisms under Cu stress has so far been grossly overlooked in sorghum. To explore the molecular alterations that occur in response to copper stress, the present study was performed in ten-day-old Cu-exposed leaves of sorghum seedlings. The growth characteristics were markedly inhibited, and ionic alterations were prominently observed in the leaves when the seedlings were exposed to different concentrations (0, 100, and 150 µM) of CuSO4. Using two-dimensional gels with silver staining, 643 differentially expressed protein spots (≥1.5-fold) were identified as either significantly increased or reduced in abundance. Of these spots, a total of 24 protein spots (≥1.5-fold) from Cu-exposed sorghum leaves were successfully analyzed by MALDI-TOF-TOF mass spectrometry. Of the 24 differentially expressed proteins from Cu-exposed sorghum leaves, 13 proteins were up-regulated, and 11 proteins were down-regulated. The abundance of most identified protein species, which function in carbohydrate metabolism, stress defense and protein translation, was significantly enhanced, while that of another protein species involved in energy metabolism, photosynthesis and growth and development were severely reduced. The resulting differences in protein expression patterns together with related morpho-physiological processes suggested that these results could help to elucidate plant adaptation to Cu stress and provide insights into the molecular mechanisms of Cu responses in C4 plants.
Collapse
Affiliation(s)
- Swapan Kumar Roy
- Department of Crop Science, Chungbuk National University, 410 Seongbong-ro, Heungdeok-gu, Cheongju, Chungbuk, 361-763, Korea
| | - Soo Jeong Kwon
- Department of Crop Science, Chungbuk National University, 410 Seongbong-ro, Heungdeok-gu, Cheongju, Chungbuk, 361-763, Korea
| | - Seong-Woo Cho
- Division of Crop Breeding Research, National Institute of Crop Science, Rural Development Administration, Wanju-Gun, Korea
| | - Abu Hena Mostafa Kamal
- Department of Chemistry and Biochemistry, University of Texas at Arlington, Arlington, TX, USA
| | - Sang-Woo Kim
- Department of Crop Science, Chungbuk National University, 410 Seongbong-ro, Heungdeok-gu, Cheongju, Chungbuk, 361-763, Korea
| | - Kabita Sarker
- Department of Crop Science, Chungbuk National University, 410 Seongbong-ro, Heungdeok-gu, Cheongju, Chungbuk, 361-763, Korea
| | - Myeong-Won Oh
- National Agrobiodiversity Center, National Academy of Agricultural Science, Rural Development Administration, Jeonju, Korea
| | - Moon-Soon Lee
- Department of Industrial Plant Science & Technology, Chungbuk National University, Cheong-ju, Korea
| | - Keun-Yook Chung
- Department of Environmental & Biological Chemistry, Chungbuk National University, Cheong-ju, Republic of Korea
| | - Zhanguo Xin
- Plant Stress and Germplasm Development Unit, USDA-ARS, 3810 4th Street, Lubbock, TX, USA
| | - Sun-Hee Woo
- Department of Crop Science, Chungbuk National University, 410 Seongbong-ro, Heungdeok-gu, Cheongju, Chungbuk, 361-763, Korea.
| |
Collapse
|
29
|
Guajardo E, Correa JA, Contreras-Porcia L. Role of abscisic acid (ABA) in activating antioxidant tolerance responses to desiccation stress in intertidal seaweed species. PLANTA 2016; 243:767-81. [PMID: 26687373 DOI: 10.1007/s00425-015-2438-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Accepted: 11/23/2015] [Indexed: 05/10/2023]
Abstract
The hormone ABA regulates the oxidative stress state under desiccation in seaweed species; an environmental condition generated during daily tidal changes. Desiccation is one of the most important factors that determine the distribution pattern of intertidal seaweeds. Among most tolerant seaweed is Pyropia orbicularis, which colonizes upper intertidal zones along the Chilean coast. P. orbicularis employs diverse mechanisms of desiccation tolerance (DT) (among others, e.g., antioxidant activation, photoinhibition, and osmo-compatible solute overproduction) such as those used by resurrection plants and bryophytes. In these organisms, the hormone abscisic acid (ABA) plays an important role in regulating responses to water deficit, including gene expression and the activity of antioxidant enzymes. The present study determined the effect of ABA on the activation of antioxidant responses during desiccation in P. orbicularis and in the sensitive species Mazzaella laminarioides and Lessonia spicata. Changes in endogenous free and conjugated ABA, water content during the hydration-desiccation cycle, enzymatic antioxidant activities [ascorbate peroxidase (AP), catalase (CAT) and peroxiredoxine (PRX)], and levels of lipid peroxidation and cell viability were evaluated. The results showed that P. orbicularis had free ABA levels 4-7 times higher than sensitive species, which was overproduced during water deficit. Using two ABA inhibitors (sodium tungstate and ancymidol), ABA was found to regulate the activation of the antioxidant enzymes activities during desiccation. In individuals exposed to exogenous ABA the enzyme activity increased, concomitant with low lipid peroxidation and high cell viability. These results demonstrate the participation of ABA in the regulation of DT in seaweeds, and suggest that regulatory mechanisms with ABA signaling could be of great importance for the adaptation of these organisms to dehydration.
Collapse
Affiliation(s)
- Eduardo Guajardo
- Departamento de Ecología y Biodiversidad, Facultad de Ecología y Recursos Naturales, Universidad Andres Bello, República 440, Santiago, Chile
| | - Juan A Correa
- Departamento de Ecología, and Center of Applied Ecology and Sustainability (CAPES), Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
- UMI 3614, Evolutionary Biology and Ecology of Algae, Station Biologique de Roscoff, Roscoff, France
| | - Loretto Contreras-Porcia
- Departamento de Ecología y Biodiversidad, Facultad de Ecología y Recursos Naturales, Universidad Andres Bello, República 440, Santiago, Chile.
- Center of Applied Ecology and Sustainability (CAPES), Pontificia Universidad Católica de Chile, Santiago, Chile.
| |
Collapse
|
30
|
Singh S, Parihar P, Singh R, Singh VP, Prasad SM. Heavy Metal Tolerance in Plants: Role of Transcriptomics, Proteomics, Metabolomics, and Ionomics. FRONTIERS IN PLANT SCIENCE 2016; 6:1143. [PMID: 26904030 PMCID: PMC4744854 DOI: 10.3389/fpls.2015.01143] [Citation(s) in RCA: 468] [Impact Index Per Article: 52.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Accepted: 12/02/2015] [Indexed: 05/18/2023]
Abstract
Heavy metal contamination of soil and water causing toxicity/stress has become one important constraint to crop productivity and quality. This situation has further worsened by the increasing population growth and inherent food demand. It has been reported in several studies that counterbalancing toxicity due to heavy metal requires complex mechanisms at molecular, biochemical, physiological, cellular, tissue, and whole plant level, which might manifest in terms of improved crop productivity. Recent advances in various disciplines of biological sciences such as metabolomics, transcriptomics, proteomics, etc., have assisted in the characterization of metabolites, transcription factors, and stress-inducible proteins involved in heavy metal tolerance, which in turn can be utilized for generating heavy metal-tolerant crops. This review summarizes various tolerance strategies of plants under heavy metal toxicity covering the role of metabolites (metabolomics), trace elements (ionomics), transcription factors (transcriptomics), various stress-inducible proteins (proteomics) as well as the role of plant hormones. We also provide a glance of some strategies adopted by metal-accumulating plants, also known as "metallophytes."
Collapse
Affiliation(s)
- Samiksha Singh
- Ranjan Plant Physiology and Biochemistry Laboratory, Department of Botany, University of AllahabadAllahabad, India
| | - Parul Parihar
- Ranjan Plant Physiology and Biochemistry Laboratory, Department of Botany, University of AllahabadAllahabad, India
| | - Rachana Singh
- Ranjan Plant Physiology and Biochemistry Laboratory, Department of Botany, University of AllahabadAllahabad, India
| | - Vijay P. Singh
- Department of Botany, Government Ramanuj Pratap Singhdev Post Graduate College, Sarguja UniversityBaikunthpur, India
| | - Sheo M. Prasad
- Ranjan Plant Physiology and Biochemistry Laboratory, Department of Botany, University of AllahabadAllahabad, India
| |
Collapse
|
31
|
Strittmatter M, Grenville-Briggs LJ, Breithut L, Van West P, Gachon CMM, Küpper FC. Infection of the brown alga Ectocarpus siliculosus by the oomycete Eurychasma dicksonii induces oxidative stress and halogen metabolism. PLANT, CELL & ENVIRONMENT 2016; 39:259-71. [PMID: 25764246 PMCID: PMC4949667 DOI: 10.1111/pce.12533] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Revised: 11/03/2014] [Accepted: 02/07/2015] [Indexed: 05/24/2023]
Abstract
Pathogens are increasingly being recognized as key evolutionary and ecological drivers in marine ecosystems. Defence mechanisms of seaweeds, however, have mostly been investigated by mimicking infection using elicitors. We have established an experimental pathosystem between the genome brown model seaweed Ectocarpus siliculosus and the oomycete Eurychasma dicksonii as a powerful new tool to investigate algal responses to infection. Using proteomics, we identified 21 algal proteins differentially accumulated in response to Eu. dicksonii infection. These include classical algal stress response proteins such as a manganese superoxide dismutase, heat shock proteins 70 and a vanadium bromoperoxidase. Transcriptional profiling by qPCR confirmed the induction of the latter during infection. The accumulation of hydrogen peroxide was observed at different infection stages via histochemical staining. Inhibitor studies confirmed that the main source of hydrogen peroxide is superoxide converted by superoxide dismutase. Our data give an unprecedented global overview of brown algal responses to pathogen infection, and highlight the importance of oxidative stress and halogen metabolism in these interactions. This suggests overlapping defence pathways with herbivores and abiotic stresses. We also identify previously unreported actors, in particular a Rad23 and a plastid-lipid-associated protein, providing novel insights into the infection and defence processes in brown algae.
Collapse
Affiliation(s)
- Martina Strittmatter
- The Scottish Association for Marine Science, Scottish Marine Institute, Oban, Argyll, Scotland, PA37 1QA, UK
- Aberdeen Oomycete Laboratory, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen, Scotland, AB25 2ZD, UK
| | - Laura J Grenville-Briggs
- Aberdeen Oomycete Laboratory, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen, Scotland, AB25 2ZD, UK
- Department of Plant Protection Biology, Swedish University of Agricultural Sciences, Alnarp, 230 53, Sweden
| | - Lisa Breithut
- Fachbereich Biologie, Universität Konstanz, Konstanz, D-78457, Germany
| | - Pieter Van West
- Aberdeen Oomycete Laboratory, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen, Scotland, AB25 2ZD, UK
| | - Claire M M Gachon
- The Scottish Association for Marine Science, Scottish Marine Institute, Oban, Argyll, Scotland, PA37 1QA, UK
| | - Frithjof C Küpper
- The Scottish Association for Marine Science, Scottish Marine Institute, Oban, Argyll, Scotland, PA37 1QA, UK
- Oceanlab, University of Aberdeen, Main Street, Newburgh, Scotland, AB41 6AA, UK
| |
Collapse
|
32
|
Dittami SM, Duboscq-Bidot L, Perennou M, Gobet A, Corre E, Boyen C, Tonon T. Host-microbe interactions as a driver of acclimation to salinity gradients in brown algal cultures. THE ISME JOURNAL 2016; 10:51-63. [PMID: 26114888 PMCID: PMC4681850 DOI: 10.1038/ismej.2015.104] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Revised: 05/05/2015] [Accepted: 05/19/2015] [Indexed: 01/16/2023]
Abstract
Like most eukaryotes, brown algae live in association with bacterial communities that frequently have beneficial effects on their development. Ectocarpus is a genus of small filamentous brown algae, which comprises a strain that has recently colonized freshwater, a rare transition in this lineage. We generated an inventory of bacteria in Ectocarpus cultures and examined the effect they have on acclimation to an environmental change, that is, the transition from seawater to freshwater medium. Our results demonstrate that Ectocarpus depends on bacteria for this transition: cultures that have been deprived of their associated microbiome do not survive a transfer to freshwater, but restoring their microflora also restores the capacity to acclimate to this change. Furthermore, the transition between the two culture media strongly affects the bacterial community composition. Examining a range of other closely related algal strains, we observed that the presence of two bacterial operational taxonomic units correlated significantly with an increase in low salinity tolerance of the algal culture. Despite differences in the community composition, no indications were found for functional differences in the bacterial metagenomes predicted to be associated with algae in the salinities tested, suggesting functional redundancy in the associated bacterial community. Our study provides an example of how microbial communities may impact the acclimation and physiological response of algae to different environments, and thus possibly act as facilitators of speciation. It paves the way for functional examinations of the underlying host-microbe interactions, both in controlled laboratory and natural conditions.
Collapse
Affiliation(s)
- Simon M Dittami
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, CS 90074, Roscoff, France
| | - Laëtitia Duboscq-Bidot
- Institut de Recherche Thérapeutique de l'Université de Nantes, UMR 1087, Plateforme Génomique, Nantes, France
| | - Morgan Perennou
- Plateforme de Séquençage-Génotypage, FR 2424 CNRS UPMC, Station Biologique, CS 90074, Roscoff, France
| | - Angélique Gobet
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, CS 90074, Roscoff, France
| | - Erwan Corre
- ABiMS platform, FR 2424 CNRS UPMC, Station Biologique, Roscoff, France
| | - Catherine Boyen
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, CS 90074, Roscoff, France
| | - Thierry Tonon
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, CS 90074, Roscoff, France
| |
Collapse
|
33
|
Anjum NA, Adam V, Kizek R, Duarte AC, Pereira E, Iqbal M, Lukatkin AS, Ahmad I. Nanoscale copper in the soil-plant system - toxicity and underlying potential mechanisms. ENVIRONMENTAL RESEARCH 2015; 138:306-25. [PMID: 25749126 DOI: 10.1016/j.envres.2015.02.019] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Revised: 01/15/2015] [Accepted: 02/16/2015] [Indexed: 05/14/2023]
Abstract
Nanoscale copper particles (nano-Cu) are used in many antimicrobial formulations and products for their antimicrobial activity. They may enter deliberately and/or accidentally into terrestrial environments including soils. Being the major 'eco-receptors' of nanoscale particles in the terrestrial ecosystem, soil-microbiota and plants (the soil-plant system) have been used as a model to dissect the potential impact of these particles on the environmental and human health. In the soil-plant system, the plant can be an indirect non-target organism of the soil-associated nano-Cu that may in turn affect plant-based products and their consumers. By all accounts, information pertaining to nano-Cu toxicity and the underlying potential mechanisms in the soil-plant system remains scanty, deficient and little discussed. Therefore, based on some recent reports from (bio)chemical, molecular and genetic studies of nano-Cu versus soil-plant system, this article: (i) overviews the status, chemistry and toxicity of nano-Cu in soil and plants, (ii) discusses critically the poorly understood potential mechanisms of nano-Cu toxicity and tolerance both in soil-microbiota and plants, and (iii) proposes future research directions. It appears from studies hitherto made that the uncontrolled generation and inefficient metabolism of reactive oxygen species through different reactions are the major factors underpinning the overall nano-Cu consequences in both the systems. However, it is not clear whether the nano-Cu or the ion released from it is the cause of the toxicity. We advocate to intensify the multi-approach studies focused at a complete characterization of the nano-Cu, its toxicity (during life cycles of the least-explored soil-microbiota and plants), and behavior in an environmentally relevant terrestrial exposure setting. Such studies may help to obtain a deeper insight into nano-Cu actions and address adequately the nano-Cu-associated safety concerns in the 'soil-plant system'.
Collapse
Affiliation(s)
- Naser A Anjum
- CESAM-Centre for Environmental and Marine Studies & Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal.
| | - Vojtech Adam
- Department of Chemistry and Biochemistry, Faculty of Agronomy, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic; Central European Institute of Technology, Brno University of Technology, Technicka 3058/10, CZ-616 00 Brno, Czech Republic
| | - Rene Kizek
- Central European Institute of Technology, Brno University of Technology, Technicka 3058/10, CZ-616 00 Brno, Czech Republic
| | - Armando C Duarte
- CESAM-Centre for Environmental and Marine Studies & Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Eduarda Pereira
- CESAM-Centre for Environmental and Marine Studies & Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Muhammad Iqbal
- Department of Botany, Faculty of Science, Hamdard University, New Delhi 110062, India
| | - Alexander S Lukatkin
- Department of Botany, Plant Physiology and Ecology, N.P. Ogarev Mordovia State University, Bolshevistskaja Str., 68. Saransk 430005, Russia
| | - Iqbal Ahmad
- CESAM-Centre for Environmental and Marine Studies & Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal; CESAM-Centre for Environmental and Marine Studies & Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal.
| |
Collapse
|
34
|
Matsuda R, Ozgur R, Higashi Y, Takechi K, Takano H, Takio S. Preferential expression of a bromoperoxidase in sporophytes of a red alga, Pyropia yezoensis. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2015; 17:199-210. [PMID: 25407492 DOI: 10.1007/s10126-014-9608-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2014] [Accepted: 10/21/2014] [Indexed: 06/04/2023]
Abstract
A 2,158 bp cDNA (PyBPO1) encoding a bromoperoxidase (BPO) of 625 amino acids was isolated from Pyropia yezoensis. Phylogenetic analysis using amino acid sequences of BPOs suggested that P. yezoensis and cyanobacteria were grouped in the same clade and separated from brown algae. Genomic Southern blot analysis suggested that PyBPO1 existed as a single copy per haploid genome. RT-PCR revealed that PyBPO1 was actively expressed in filamentous sporophytes but repressed in leafy gametophytes under normal growth conditions. High expression levels of PyBPO1 in sporophytes were observed when sporophytes were grown under gametophyte conditions, suggesting that preferential expression of PyBPO1 occurs during the sporophyte phase. BPO activity of cell-free extracts from sporophytes and gametophytes was examined by activity staining on native PAGE gel using o-dianisidine. One activity band was detected in sporophyte sample, but not in gametophyte sample. In addition, we found that bromide and iodide were effective substrate, but chloride was not. BPO activity was observed-likely in chloroplasts-when sporophyte cells were incubated with o-dianisidine and hydrogen peroxide. Cellular BPO staining showed the same halogen preference identified by in-gel BPO staining. Based on GS-MS analysis, bromoform was detected in medium containing sporophytes. Bromoform was not detected under dark culture conditions but was detected in the culture exposed to low light intensity (5 μmol m(-2) s(-1)) and increased under a moderate light intensity (30 μmol m(-2) s(-1)).
Collapse
Affiliation(s)
- Ryuya Matsuda
- Graduate School of Science and Technology, Kumamoto University, Kurokami, Kumamoto, 860-8555, Japan
| | | | | | | | | | | |
Collapse
|
35
|
Sáez CA, González A, Contreras RA, Moody AJ, Moenne A, Brown MT. A novel field transplantation technique reveals intra-specific metal-induced oxidative responses in strains of Ectocarpus siliculosus with different pollution histories. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2015; 199:130-8. [PMID: 25645062 DOI: 10.1016/j.envpol.2015.01.026] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Revised: 01/11/2015] [Accepted: 01/15/2015] [Indexed: 06/04/2023]
Abstract
A novel field transplantation technique, in which seaweed material is incorporated into dialysis tubing, was used to investigate intra-specific responses to metals in the model brown alga Ectocarpus siliculosus. Metal accumulation in the two strains was similar, with higher concentrations in material deployed to the metal-contaminated site (Ventanas, Chile) than the pristine site (Quintay, Chile). However, the oxidative responses differed. At Ventanas, strain Es147 (from low-polluted site) underwent oxidative damage whereas Es524 (from highly polluted site) was not affected. Concentrations of reduced ascorbate (ASC) and reduced glutathione (GSH) were significantly higher in Es524. Activities of the antioxidant enzymes superoxide dismutase (SOD), ascorbate peroxidase (APX), catalase (CAT), and glutathione reductase (GR) all increased in Es524, whereas only SOD increased in Es147. For the first time, employing a field transplantation technique, we provide unambiguous evidence of inter-population variation of metal-tolerance in brown algae and establish that antioxidant defences are, in part, responsible.
Collapse
Affiliation(s)
- Claudio A Sáez
- School of Marine Science & Engineering, Faculty of Science and Environment, Plymouth University, Drake Circus, PL4 8AA, Plymouth, United Kingdom; Departamento de Medio Ambiente, Facultad de Ingeniería, Universidad de Playa Ancha, Casilla 34-V, Valparaíso, Chile; Centro de Estudios Avanzados, Universidad de Playa Ancha, Traslaviña #450, Viña del Mar, Chile
| | - Alberto González
- Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Casilla 40 Correo 33, Santiago, Chile
| | - Rodrigo A Contreras
- Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Casilla 40 Correo 33, Santiago, Chile
| | - A John Moody
- School of Biological Sciences, Faculty of Science and Environment, Plymouth University, Drake Circus, PL4 8AA, Plymouth, United Kingdom
| | - Alejandra Moenne
- Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Casilla 40 Correo 33, Santiago, Chile
| | - Murray T Brown
- School of Marine Science & Engineering, Faculty of Science and Environment, Plymouth University, Drake Circus, PL4 8AA, Plymouth, United Kingdom.
| |
Collapse
|
36
|
Sáez CA, Roncarati F, Moenne A, Moody AJ, Brown MT. Copper-induced intra-specific oxidative damage and antioxidant responses in strains of the brown alga Ectocarpus siliculosus with different pollution histories. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2015; 159:81-9. [PMID: 25521566 DOI: 10.1016/j.aquatox.2014.11.019] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Revised: 11/18/2014] [Accepted: 11/22/2014] [Indexed: 06/04/2023]
Abstract
Inter- and intra-specific variation in metal resistance has been observed in the ecologically and economically important marine brown macroalgae (Phaeophyceae), but the mechanisms of cellular tolerance are not well elucidated. To investigate inter-population responses of brown seaweeds to copper (Cu) pollution, the extent of oxidative damage and antioxidant responses were compared in three strains of the filamentous brown seaweed Ectocarpus siliculosus, the model organism for the algal class Phaeophyceae that diverged from other major eukaryotic groups over a billion year ago. Strains isolated from locations with different pollution histories (i.e. LIA, from a pristine site in Scotland; REP and Es524 from Cu-contaminated sites in England and Chile, respectively) were exposed to total dissolved Cu concentrations (CuT) of up to 2.4 μM (equivalent to 128 nM Cu(2+)) for 10 d. LIA exhibited oxidative stress, with increases in hydrogen peroxide (H2O2) and lipid peroxidation (measured as TBARS levels), and decreased concentrations of photosynthetic pigments. Es524 presented no apparent oxidative damage whereas in REP, TBARS increased, revealing some level of oxidative damage. Adjustments to activities of enzymes and antioxidant compounds concentrations in Es524 and REP were strain and treatment dependent. Mitigation of oxidative stress in Es524 was by increased activities of superoxide dismutases (SOD) at low CuT, and catalase (CAT) and ascorbate peroxidase (APX) at all CuT, accompanied by higher levels of antioxidants (ascorbate, glutathione, phenolics) at higher CuT. In REP, only APX activity increased, as did the antioxidants. For the first time evidence is presented for distinctive oxidative stress defences under excess Cu in two populations of a species of brown seaweed from environments contaminated by Cu.
Collapse
Affiliation(s)
- Claudio A Sáez
- School of Marine Science and Engineering, Faculty of Science and Environment, Plymouth University, Drake Circus, PL4 8AA Plymouth, United Kingdom; Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Casilla 40 Correo 33, Santiago, Chile
| | - Francesca Roncarati
- School of Marine Science and Engineering, Faculty of Science and Environment, Plymouth University, Drake Circus, PL4 8AA Plymouth, United Kingdom
| | - Alejandra Moenne
- Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Casilla 40 Correo 33, Santiago, Chile
| | - A John Moody
- School of Biological Sciences, Faculty of Science and Environment, Plymouth University, Drake Circus, PL4 8AA Plymouth, United Kingdom
| | - Murray T Brown
- School of Marine Science and Engineering, Faculty of Science and Environment, Plymouth University, Drake Circus, PL4 8AA Plymouth, United Kingdom.
| |
Collapse
|
37
|
Roncarati F, Sáez CA, Greco M, Gledhill M, Bitonti MB, Brown MT. Response differences between Ectocarpus siliculosus populations to copper stress involve cellular exclusion and induction of the phytochelatin biosynthetic pathway. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2015; 159:167-75. [PMID: 25546007 DOI: 10.1016/j.aquatox.2014.12.009] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Revised: 12/09/2014] [Accepted: 12/10/2014] [Indexed: 06/04/2023]
Abstract
Some populations of brown seaweed species inhabit metal-polluted environments and can develop tolerance to metal stress, but the mechanisms by which this is accomplished are still to be elucidated. To address this, the responses of two strains of the model brown alga Ectocarpus siliculosus isolated from sites with different histories of metal contamination exposed to total copper (CuT) concentrations ranging between 0 and 2.4 μM for 10 days were investigated. The synthesis of the metal-chelator phytochelatin (PCs) and relative levels of transcripts encoding the enzymes γ-glutamylcysteine synthetase (γ-GCS), glutathione synthase (GS) and phytochelatin synthase (PCS) that participate in the PC biosynthetic pathway were measured, along with the effects on growth, and adsorption and uptake of Cu. Growth of strain LIA, from a pristine site in Scotland, was inhibited to a greater extent, and at lower concentrations, than that of Es524, isolated from a Cu-contaminated site in Chile. Concentrations of intra-cellular Cu were higher and the exchangeable fraction was lower in LIA than Es524, especially at the highest exposure levels. Total glutathione concentrations increased in both strains with Cu exposure, whereas total PCs levels were higher in Es524 than LIA; PC2 and PC3 were detected in Es524 but PC2 only was found in LIA. The greater production and levels of polymerisation of PCs in Es524 can be explained by the up-regulation of genes encoding for key enzymes involved in the synthesis of PCs. In Es524 there was an increase in the transcripts of γ-GCS, GS and PCS, particularly under high Cu exposure, whereas in LIA4 transcripts of γ-GCS1 increased only slightly, γ-GCS2 and GS decreased and PCS did not change. The consequences of higher intra-cellular concentrations of Cu, lower production of PCs, and lower expression of enzymes involved in GSH-PCs synthesis may be contributing to an induced oxidative stress condition in LIA, which explains, at least in part, the observed sensitivity of LIA to Cu. Therefore, responses to Cu exposure in E. siliculosus relate to the contamination histories of the locations from where the strains were isolated and differences in Cu exclusion and PCs production are in part responsible for the development of intra-specific resistance.
Collapse
Affiliation(s)
- Francesca Roncarati
- School of Marine Science and Engineering, Faculty of Science and Environment, Plymouth University, Drake Circus, Plymouth PL4 8AA, UK
| | - Claudio A Sáez
- School of Marine Science and Engineering, Faculty of Science and Environment, Plymouth University, Drake Circus, Plymouth PL4 8AA, UK; Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, casilla 40 correo 33, Santiago, Chile; Departamento de Medio Ambiente, Facultad de Ingeniería, Universidad de Playa Ancha, Casilla 34-V, Valparaíso, Chile
| | - Maria Greco
- Laboratory of Plant Cyto-Physiology, University of Calabria, Arcavata di Rende, Cosenza 87036, Italy
| | - Martha Gledhill
- Helmholtz Centre for Ocean Research, GEOMAR, Wischhofstrasse 1-3, Build. 12, D-24148 Kiel, Germany
| | - Maria B Bitonti
- Laboratory of Plant Cyto-Physiology, University of Calabria, Arcavata di Rende, Cosenza 87036, Italy
| | - Murray T Brown
- School of Marine Science and Engineering, Faculty of Science and Environment, Plymouth University, Drake Circus, Plymouth PL4 8AA, UK.
| |
Collapse
|
38
|
Zou HX, Pang QY, Zhang AQ, Lin LD, Li N, Yan XF. Excess copper induced proteomic changes in the marine brown algae Sargassum fusiforme. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2015; 111:271-80. [PMID: 25450944 DOI: 10.1016/j.ecoenv.2014.10.028] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Revised: 10/15/2014] [Accepted: 10/20/2014] [Indexed: 06/04/2023]
Abstract
Copper (Cu) is an essential micronutrient for algal growth and development; however, it is also generally considered to be one of the most toxic metals when present at higher levels. Seaweeds are often exposed to low concentrations of metals, including Cu, for long time periods. In cases of ocean outfall, they may even be abruptly exposed to high levels of metals. The physiological processes that are active under Cu stress are largely unknown. In this study, the brown macroalga Sargassum fusiforme was cultured in fresh seawater at final Cu concentrations of 0, 4, 8, 24 and 47 μM. The Cu(2+) concentration and chlorophyll autofluorescence were measured to establish the toxic effects of Cu on this economically important seaweed. The accumulation of Cu by S. fusiforme was also dependent upon the external Cu concentration. Algal growth displayed a general decline with increasing media Cu concentrations, indicating that S. fusiforme was able to tolerate Cu stress at low concentrations, while it was negatively impacted at high concentrations. The term "acute stress" was employed to indicate exposure to high Cu concentrations for 1 day in this study. On the other hand, "chronic stress" was defined as exposure to lower sub-lethal Cu concentrations for 7 days. Proteins were extracted from control and Cu-treated S. fusiforme samples and separated by two-dimensional gel electrophoresis. Distinct patterns of protein expression in the acute and chronic stress conditions were observed. Proteins related to energy metabolism and photosynthesis were reduced significantly, whereas those related to carbohydrate metabolism, protein destination, RNA degradation and signaling regulation were induced in S. fusiforme in response to acute copper stress. Energy metabolism-related proteins were significantly induced by chronic Cu stress. Proteins from other functional groups, such as those related to membranes and transport, were present in minor quantities. These results suggest that S. fusiforme is sensitive to excess Cu, regardless of the presence of acute or chronic stress. We discuss the possible function of these identified proteins, taking into consideration the information available from other plant models.
Collapse
Affiliation(s)
- Hui-Xi Zou
- Zhejiang Provincial Key Lab for Subtropical Water Environment and Marine Biological Resources Protection, College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, People's Republic of China
| | - Qiu-Ying Pang
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration in Oil Field, Northeast Forest University, Harbin 150040, People's Republic of China
| | - Ai-Qin Zhang
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration in Oil Field, Northeast Forest University, Harbin 150040, People's Republic of China
| | - Li-Dong Lin
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration in Oil Field, Northeast Forest University, Harbin 150040, People's Republic of China
| | - Nan Li
- Zhejiang Provincial Key Lab for Subtropical Water Environment and Marine Biological Resources Protection, College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, People's Republic of China
| | - Xiu-Feng Yan
- Zhejiang Provincial Key Lab for Subtropical Water Environment and Marine Biological Resources Protection, College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, People's Republic of China.
| |
Collapse
|
39
|
Yi AX, Leung PTY, Leung KMY. Photosynthetic and molecular responses of the marine diatom Thalassiosira pseudonana to triphenyltin exposure. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2014; 154:48-57. [PMID: 24858899 DOI: 10.1016/j.aquatox.2014.05.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Revised: 05/03/2014] [Accepted: 05/05/2014] [Indexed: 06/03/2023]
Abstract
This study aimed to investigate the responses of the marine diatom Thalassiosira pseudonana upon waterborne exposure to triphenyltin chloride (TPTCl) through determining their photosynthetic response, growth performance, and expressions of genes and proteins. Based on the growth inhibition test, the 96-h IC50 (i.e., median inhibition concentration) was found to be 1.09 μg/L (95% confidence interval (CI): 0.89-1.34 μg/L). According to photosynthetic parameters, the 96-h EC50s (i.e., median effect concentrations) were estimated at 1.54 μg/L (95% CI: 1.40-1.69 μg/L) and 1.51 μg/L (95% CI: 1.44-1.58 μg/L) for the maximum quantum yield of photosystem II (PSII) photochemistry (ΦPo) and the effective quantum yield of photochemical energy conversion in PSII (Φ2), respectively. Non-photochemical quenching in the algae was increased at low concentrations of TPTCl (0.5-1.0 μg/L) but it decreased gradually when the TPTCl concentration further increased from 1.0 to 2.5 μg/L. Results of gene expressions showed that lipid metabolism related genes were not influenced by TPTCl at 0.5 or 1.0 μg/L, while silica shell formation genes were down-regulated at 0.5 μg/L. Photosynthesis related genes were up-regulated at 0.5 μg/L TPTCl but were down-regulated at 1.0 μg/L TPTCl. Proteomics analysis revealed that relatively less proteins could be detected after exposure to 1.0 μg/L TPTCl (only about 50-60 spots) compared with that observed in the 0.5μg/L TPTCl treatment and two control groups (each with about 290-300 protein spots). At 0.5 μg/L TPTCl, five proteins were differentially expressed when compared with the seawater control and solvent control, and most of these proteins are involved in defence function to protect the biological systems from reactive oxygen species that generated by TPTCl. These proteins include oxygen-evolving enhancer protein 1 precursor, fucoxanthin chlorophyll a/c protein - LI818 clade, and mitochondrial manganese superoxide dismutase, which can function to maintain the capacity of PSII and stabilize the photosynthesis efficiency as reflected by the unchanged ΦPo and Φ2 values at 0.5 μg/L TPTCl. In contrast, the excess toxicity that caused by TPTCl at the high concentration (1.0 μg/L TPTCl) might directly damage the proteins, inhibit their expression, and/or cause the suppression of metabolism as indicated by the down-regulation of most studied proteins and genes, which could ultimately inhibit the photosynthesis and growth of the algae. Overall, this study comprehensively elucidated the toxicity effects of TPT on T. pseudonana, and partially revealed the molecular toxic mechanisms and corresponding defence responses in this model algal species.
Collapse
Affiliation(s)
- Andy Xianliang Yi
- The Swire Institute of Marine Science and School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong, PR China
| | - Priscilla T Y Leung
- The Swire Institute of Marine Science and School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong, PR China
| | - Kenneth M Y Leung
- The Swire Institute of Marine Science and School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong, PR China.
| |
Collapse
|
40
|
Zou HX, Pang QY, Lin LD, Zhang AQ, Li N, Lin YQ, Li LM, Wu QQ, Yan XF. Behavior of the edible seaweed Sargassum fusiforme to copper pollution: short-term acclimation and long-term adaptation. PLoS One 2014; 9:e101960. [PMID: 25025229 PMCID: PMC4098904 DOI: 10.1371/journal.pone.0101960] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Accepted: 06/12/2014] [Indexed: 12/31/2022] Open
Abstract
Aquatic agriculture in heavy-metal-polluted coastal areas faces major problems due to heavy metal transfer into aquatic organisms, leading to various unexpected changes in nutrition and primary and/or secondary metabolism. In the present study, the dual role of heavy metal copper (Cu) played in the metabolism of photosynthetic organism, the edible seaweed Sargassum fusiforme, was evaluated by characterization of biochemical and metabolic responses using both 1H NMR and GC-MS techniques under acute (47 µM, 1 day) and chronic stress (8 µM, 7 days). Consequently, photosynthesis may be seriously inhibited by acute Cu exposure, resulting in decreasing levels of carbohydrates, e.g., mannitol, the main products of photosynthesis. Ascorbate may play important roles in the antioxidant system, whose content was much more seriously decreased under acute than that under chronic Cu stress. Overall, these results showed differential toxicological responses on metabolite profiles of S. fusiforme subjected to acute and chronic Cu exposures that allowed assessment of impact of Cu on marine organisms.
Collapse
Affiliation(s)
- Hui-Xi Zou
- Zhejiang Provincial Key Lab for Subtropical Water Environment and Marine Biological Resources Protection, College of Life and Environmental Science, Wenzhou University, Wenzhou, People's Republic of China
| | - Qiu-Ying Pang
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration in Oil Field, Northeast Forest University, Harbin, People's Republic of China
| | - Li-Dong Lin
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration in Oil Field, Northeast Forest University, Harbin, People's Republic of China
| | - Ai-Qin Zhang
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration in Oil Field, Northeast Forest University, Harbin, People's Republic of China
| | - Nan Li
- Zhejiang Provincial Key Lab for Subtropical Water Environment and Marine Biological Resources Protection, College of Life and Environmental Science, Wenzhou University, Wenzhou, People's Republic of China
| | - Yan-Qing Lin
- Zhejiang Provincial Key Lab for Subtropical Water Environment and Marine Biological Resources Protection, College of Life and Environmental Science, Wenzhou University, Wenzhou, People's Republic of China
| | - Lu-Min Li
- Zhejiang Provincial Key Lab for Subtropical Water Environment and Marine Biological Resources Protection, College of Life and Environmental Science, Wenzhou University, Wenzhou, People's Republic of China
| | - Qin-Qin Wu
- Zhejiang Provincial Key Lab for Subtropical Water Environment and Marine Biological Resources Protection, College of Life and Environmental Science, Wenzhou University, Wenzhou, People's Republic of China
| | - Xiu-Feng Yan
- Zhejiang Provincial Key Lab for Subtropical Water Environment and Marine Biological Resources Protection, College of Life and Environmental Science, Wenzhou University, Wenzhou, People's Republic of China
| |
Collapse
|
41
|
Hego E, Bes CM, Bedon F, Palagi PM, Chaumeil P, Barré A, Claverol S, Dupuy JW, Bonneu M, Lalanne C, Plomion C, Mench M. Differential accumulation of soluble proteins in roots of metallicolous and nonmetallicolous populations of Agrostis capillaris
L. exposed to Cu. Proteomics 2014; 14:1746-58. [DOI: 10.1002/pmic.201300168] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2013] [Revised: 03/25/2014] [Accepted: 05/15/2014] [Indexed: 12/23/2022]
Affiliation(s)
- Elena Hego
- UMR1202 BIOGECO; University of Bordeaux; Talence France
- INRA; UMR1202 BIOGECO; Cestas France
| | - Clémence M. Bes
- UMR1202 BIOGECO; University of Bordeaux; Talence France
- INRA; UMR1202 BIOGECO; Cestas France
| | - Frank Bedon
- UMR1202 BIOGECO; University of Bordeaux; Talence France
- INRA; UMR1202 BIOGECO; Cestas France
| | | | - Philippe Chaumeil
- UMR1202 BIOGECO; University of Bordeaux; Talence France
- INRA; UMR1202 BIOGECO; Cestas France
| | - Aurélien Barré
- Centre de Bioinformatique de Bordeaux; Centre de Génomique Fonctionnelle; University of Bordeaux; Bordeaux France
| | - Stéphane Claverol
- Centre de Génomique Fonctionnelle, Plateforme Protéome; University of Bordeaux; Bordeaux France
| | - Jean-William Dupuy
- Centre de Génomique Fonctionnelle, Plateforme Protéome; University of Bordeaux; Bordeaux France
| | - Marc Bonneu
- Centre de Génomique Fonctionnelle, Plateforme Protéome; University of Bordeaux; Bordeaux France
| | - Céline Lalanne
- UMR1202 BIOGECO; University of Bordeaux; Talence France
- INRA; UMR1202 BIOGECO; Cestas France
| | - Christophe Plomion
- UMR1202 BIOGECO; University of Bordeaux; Talence France
- INRA; UMR1202 BIOGECO; Cestas France
| | - Michel Mench
- UMR1202 BIOGECO; University of Bordeaux; Talence France
- INRA; UMR1202 BIOGECO; Cestas France
| |
Collapse
|
42
|
Ritter A, Dittami SM, Goulitquer S, Correa JA, Boyen C, Potin P, Tonon T. Transcriptomic and metabolomic analysis of copper stress acclimation in Ectocarpus siliculosus highlights signaling and tolerance mechanisms in brown algae. BMC PLANT BIOLOGY 2014; 14:116. [PMID: 24885189 PMCID: PMC4108028 DOI: 10.1186/1471-2229-14-116] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Accepted: 04/22/2014] [Indexed: 05/23/2023]
Abstract
BACKGROUND Brown algae are sessile macro-organisms of great ecological relevance in coastal ecosystems. They evolved independently from land plants and other multicellular lineages, and therefore hold several original ontogenic and metabolic features. Most brown algae grow along the coastal zone where they face frequent environmental changes, including exposure to toxic levels of heavy metals such as copper (Cu). RESULTS We carried out large-scale transcriptomic and metabolomic analyses to decipher the short-term acclimation of the brown algal model E. siliculosus to Cu stress, and compared these data to results known for other abiotic stressors. This comparison demonstrates that Cu induces oxidative stress in E. siliculosus as illustrated by the transcriptomic overlap between Cu and H2O2 treatments. The common response to Cu and H2O2 consisted in the activation of the oxylipin and the repression of inositol signaling pathways, together with the regulation of genes coding for several transcription-associated proteins. Concomitantly, Cu stress specifically activated a set of genes coding for orthologs of ABC transporters, a P1B-type ATPase, ROS detoxification systems such as a vanadium-dependent bromoperoxidase, and induced an increase of free fatty acid contents. Finally we observed, as a common abiotic stress mechanism, the activation of autophagic processes on one hand and the repression of genes involved in nitrogen assimilation on the other hand. CONCLUSIONS Comparisons with data from green plants indicate that some processes involved in Cu and oxidative stress response are conserved across these two distant lineages. At the same time the high number of yet uncharacterized brown alga-specific genes induced in response to copper stress underlines the potential to discover new components and molecular interactions unique to these organisms. Of particular interest for future research is the potential cross-talk between reactive oxygen species (ROS)-, myo-inositol-, and oxylipin signaling.
Collapse
Affiliation(s)
- Andrés Ritter
- UPMC Univ Paris 06, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, Sorbonne Universités, CS 90074, F-29688 Roscoff cedex, France
- CNRS, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, CS 90074, F-29688 Roscoff cedex, France
- Departamento de Ecología, Center of Applied Ecology & Sustainability, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
- Present addresses: Department of Plant Systems Biology, VIB and Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, Ghent B-9052, Belgium
| | - Simon M Dittami
- UPMC Univ Paris 06, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, Sorbonne Universités, CS 90074, F-29688 Roscoff cedex, France
- CNRS, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, CS 90074, F-29688 Roscoff cedex, France
| | - Sophie Goulitquer
- Plate-forme MetaboMER, CNRS & UPMC, FR2424, Station Biologique, 29680 Roscoff, France
| | - Juan A Correa
- Departamento de Ecología, Center of Applied Ecology & Sustainability, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Catherine Boyen
- UPMC Univ Paris 06, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, Sorbonne Universités, CS 90074, F-29688 Roscoff cedex, France
- CNRS, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, CS 90074, F-29688 Roscoff cedex, France
| | - Philippe Potin
- UPMC Univ Paris 06, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, Sorbonne Universités, CS 90074, F-29688 Roscoff cedex, France
- CNRS, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, CS 90074, F-29688 Roscoff cedex, France
| | - Thierry Tonon
- UPMC Univ Paris 06, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, Sorbonne Universités, CS 90074, F-29688 Roscoff cedex, France
- CNRS, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, CS 90074, F-29688 Roscoff cedex, France
| |
Collapse
|
43
|
Smith CL, Stauber JL, Wilson MR, Jolley DF. The use of immobilised metal affinity chromatography (IMAC) to compare expression of copper-binding proteins in control and copper-exposed marine microalgae. Anal Bioanal Chem 2013; 406:305-15. [DOI: 10.1007/s00216-013-7452-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2013] [Revised: 10/14/2013] [Accepted: 10/17/2013] [Indexed: 11/30/2022]
|
44
|
Wang C, Wang CY, Zhao XQ, Chen RF, Lan P, Shen RF. Proteomic analysis of a high aluminum tolerant yeast Rhodotorula taiwanensis RS1 in response to aluminum stress. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2013; 1834:1969-75. [DOI: 10.1016/j.bbapap.2013.06.014] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2013] [Revised: 06/17/2013] [Accepted: 06/20/2013] [Indexed: 11/25/2022]
|
45
|
Shaw AK, Hossain Z. Impact of nano-CuO stress on rice (Oryza sativa L.) seedlings. CHEMOSPHERE 2013; 93:906-15. [PMID: 23791109 DOI: 10.1016/j.chemosphere.2013.05.044] [Citation(s) in RCA: 177] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2013] [Revised: 05/16/2013] [Accepted: 05/19/2013] [Indexed: 05/18/2023]
Abstract
Indiscriminate release of metal oxide nanoparticles (NPs) into the environment due to anthropogenic activities has become a serious threat to the ecological system including plants. The present study assesses the toxicity of nano-CuO on rice (Oryza sativa cv. Swarna) seedlings. Three different levels of stress (0.5 mM, 1.0 mM and 1.5 mM suspensions of copper II oxide, <50 nm particle size) were imposed and seedling growth performance was studied along control at 7 and 14 d of experiment. Modulation of ascorbate-glutathione cycle, membrane damage, in vivo ROS detection, foliar H₂O₂ and proline accumulation under nano-CuO stress were investigated in detail to get an overview of nano-stress response of rice. Seed germination percentage was significantly reduced under stress. Higher uptake of Evans blue by nano-CuO stressed roots over control indicates loss of root cells viability. Presence of dark blue and deep brown spots on leaves evident after histochemical staining with NBT and DAB respectively indicate severe oxidative burst under nano-copper stress. APX activity was found to be significantly increased in 1.0 and 1.5 mM CuO treatments. Nevertheless, elevated APX activity might be insufficient to scavenge all H₂O₂ produced in excess under nano-CuO stress. That may be the reason why stressed leaves accumulated significantly higher H₂O₂ instead of having enhanced APX activity. In addition, increased GR activity coupled with isolated increase in GSH/GSSG ratio does not seem to prevent cells from oxidative damages, as evident from higher MDA level in leaves of nano-CuO stressed seedlings over control. Enhanced proline accumulation also does not give much protection against nano-CuO stress. Decline in carotenoids level might be another determining factor of meager performance of rice seedlings in combating nano-CuO stress induced oxidative damages.
Collapse
Affiliation(s)
- Arun Kumar Shaw
- Plant Stress Biology Lab, Department of Botany, West Bengal State University, Kolkata 700 126, West Bengal, India
| | | |
Collapse
|
46
|
Farnham G, Strittmatter M, Coelho S, Cock JM, Brownlee C. Gene silencing in Fucus embryos: developmental consequences of RNAi-mediated cytoskeletal disruption. JOURNAL OF PHYCOLOGY 2013; 49:819-29. [PMID: 27007308 DOI: 10.1111/jpy.12096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2012] [Accepted: 06/02/2013] [Indexed: 05/10/2023]
Abstract
Brown algae (Phaeophyceae) are an important algal class that play a range of key ecological roles. They are often important components of rocky shore communities. A number of members of the Fucales and Ectocarpales have provided models for the study of multicellular evolution, reproductive biology and polarized development. Indeed the fucoid algae exhibit the unusual feature of inducible embryo polarization, allowing many classical studies of polarity induction. The potential of further studies of brown algae in these important areas has been increasingly hindered by the absence of tools for manipulation of gene expression that would facilitate further mechanistic analysis and gene function studies at a molecular level. The aim of this study was to establish a method that would allow the analysis of gene function through RNAi-mediated gene knockdown. We show that injection of double-stranded RNA (dsRNA) corresponding to an α-tubulin gene into Fucus serratus Linnaeus zygotes induces the loss of a large proportion of the microtubule cytoskeleton, leading to growth arrest and disruption of cell division. Injection of dsRNA targeting β-actin led to reduced rhizoid growth, enlarged cells and the failure to develop apical hair cells. The silencing effect on actin expression was maintained for 3 months. These results indicate that the Fucus embryo possesses a functional RNA interference system that can be exploited to investigate gene function during embryogenesis.
Collapse
Affiliation(s)
- Garry Farnham
- Marine Biological Association, The Laboratory, Citadel Hill, Plymouth, PL1 2PB, UK
| | - Martina Strittmatter
- The Marine Plants and Biomolecules Laboratory, CNRS, UMR 7139, UPMC University Paris 06, UMR 7139, Station Biologique de Roscoff, Place Georges Teissier, BP74, Roscoff Cedex, 29682, France
| | - Susana Coelho
- The Marine Plants and Biomolecules Laboratory, CNRS, UMR 7139, UPMC University Paris 06, UMR 7139, Station Biologique de Roscoff, Place Georges Teissier, BP74, Roscoff Cedex, 29682, France
| | - Jeremy Mark Cock
- The Marine Plants and Biomolecules Laboratory, CNRS, UMR 7139, UPMC University Paris 06, UMR 7139, Station Biologique de Roscoff, Place Georges Teissier, BP74, Roscoff Cedex, 29682, France
| | - Colin Brownlee
- Marine Biological Association, The Laboratory, Citadel Hill, Plymouth, PL1 2PB, UK
- School of Ocean and Earth Sciences, University of Southampton, National Oceanography Centre, Southampton, SO14 3ZH, UK
| |
Collapse
|
47
|
Nagai K, Morimoto K, Ikegami H, Kimura H, Yotsukura N. Investigation of proteomic profiles of lamina of Ecklonia kurome (Laminariales): homology-based cross-species protein identification and analysis of the post-translational processing of vanadium-dependent bromoperoxidases using MALDI-TOF/TOF. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2013; 15:487-98. [PMID: 23547002 DOI: 10.1007/s10126-013-9498-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2012] [Accepted: 03/13/2013] [Indexed: 06/02/2023]
Abstract
Proteomic profiles of the lamina of Ecklonia kurome Okamura, one of the Japanese dominant laminarialean kelps, were investigated by two-dimensional electrophoresis (2-DE) and MALDI-TOF/TOF. Due to the absence of E. kurome DNA or protein databases, homology-based cross-species protein identification was performed using a combination of three database-searching algorithms, Mascot peptide mass fingerprinting, Mascot MS/MS ion search, and mass spectrometry-based BLAST. Proteins were extracted from the lamina by an ethanol/phenol method and subjected to 2-DE (pI 4-7, 10 % polyacrylamide gel). More than 700 spots were detected in the 2-DE gel with CBB, and 93 spots (24 proteins) were successfully identified by MALDI-TOF/TOF and the cross-species database searching. The identified proteins mainly consisted of cytoplasmic carbohydrate metabolic enzymes, chloroplast proteins involved in photosynthesis, and haloperoxidases. Interestingly, vanadium-dependent bromoperoxidases (vBPO), which is thought to be involved in halogen uptake, synthesis of halogenated products, and detoxification of reactive oxygen species, were separated into at least 23 different spots. By comparing mass spectra, amino acid sequences predicted from tandem mass spectra and haloperoxidase activities of the vBPOs, we found that (1) at least two types of vBPOs were expressed in the lamina of E. kurome and (2) two pro-vBPOs might be activated by specific cleavage at N- and C-terminal regions.
Collapse
Affiliation(s)
- Kouhei Nagai
- Department of Genetic Engineering, Faculity of Biology-Oriented Science and Technology, Kinki University, Kinokawa, Wakayama 649-6493, Japan
| | | | | | | | | |
Collapse
|
48
|
Ndimba BK, Ndimba RJ, Johnson TS, Waditee-Sirisattha R, Baba M, Sirisattha S, Shiraiwa Y, Agrawal GK, Rakwal R. Biofuels as a sustainable energy source: an update of the applications of proteomics in bioenergy crops and algae. J Proteomics 2013; 93:234-44. [PMID: 23792822 DOI: 10.1016/j.jprot.2013.05.041] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2013] [Revised: 04/28/2013] [Accepted: 05/30/2013] [Indexed: 11/29/2022]
Abstract
Sustainable energy is the need of the 21st century, not because of the numerous environmental and political reasons but because it is necessary to human civilization's energy future. Sustainable energy is loosely grouped into renewable energy, energy conservation, and sustainable transport disciplines. In this review, we deal with the renewable energy aspect focusing on the biomass from bioenergy crops to microalgae to produce biofuels to the utilization of high-throughput omics technologies, in particular proteomics in advancing our understanding and increasing biofuel production. We look at biofuel production by plant- and algal-based sources, and the role proteomics has played therein. This article is part of a Special Issue entitled: Translational Plant Proteomics.
Collapse
Affiliation(s)
- Bongani Kaiser Ndimba
- Proteomics Research and Services Unit, Biotechnology Platform, Agricultural Research Council, Infruitec-Nietvoorbij Campus, Stellenbosch, South Africa; Proteomics Research Group, Department of Biotechnology, University of the Western Cape, Bellville 7535, South Africa
| | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Abstract
Brown algae are an extremely interesting, but surprisingly poorly explored, group of organisms. They are one of only five eukaryotic lineages to have independently evolved complex multicellularity, which they express through a wide variety of morphologies ranging from uniseriate branched filaments to complex parenchymatous thalli with multiple cell types. Despite their very distinct evolutionary history, brown algae and land plants share a striking amount of developmental features. This has led to an interest in several aspects of brown algal development, including embryogenesis, polarity, cell cycle, asymmetric cell division and a putative role for plant hormone signalling. This review describes how investigations using brown algal models have helped to increase our understanding of the processes controlling early embryo development, in particular polarization, axis formation and asymmetric cell division. Additionally, the diversity of life cycles in the brown lineage and the emergence of Ectocarpus as a powerful model organism, are affording interesting insights on the molecular mechanisms underlying haploid-diploid life cycles. The use of these and other emerging brown algal models will undoubtedly add to our knowledge on the mechanisms that regulate development in multicellular photosynthetic organisms.
Collapse
Affiliation(s)
- Kenny A Bogaert
- Phycology Research Group, Department of Biology, Center for Molecular Phylogenetics and Evolution, Ghent University, Ghent, Belgium
| | | | | | | |
Collapse
|
50
|
Slattery M, Ankisetty S, Corrales J, Marsh-Hunkin KE, Gochfeld DJ, Willett KL, Rimoldi JM. Marine proteomics: a critical assessment of an emerging technology. JOURNAL OF NATURAL PRODUCTS 2012; 75:1833-1877. [PMID: 23009278 DOI: 10.1021/np300366a] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
The application of proteomics to marine sciences has increased in recent years because the proteome represents the interface between genotypic and phenotypic variability and, thus, corresponds to the broadest possible biomarker for eco-physiological responses and adaptations. Likewise, proteomics can provide important functional information regarding biosynthetic pathways, as well as insights into mechanism of action, of novel marine natural products. The goal of this review is to (1) explore the application of proteomics methodologies to marine systems, (2) assess the technical approaches that have been used, and (3) evaluate the pros and cons of this proteomic research, with the intent of providing a critical analysis of its future roles in marine sciences. To date, proteomics techniques have been utilized to investigate marine microbe, plant, invertebrate, and vertebrate physiology, developmental biology, seafood safety, susceptibility to disease, and responses to environmental change. However, marine proteomics studies often suffer from poor experimental design, sample processing/optimization difficulties, and data analysis/interpretation issues. Moreover, a major limitation is the lack of available annotated genomes and proteomes for most marine organisms, including several "model species". Even with these challenges in mind, there is no doubt that marine proteomics is a rapidly expanding and powerful integrative molecular research tool from which our knowledge of the marine environment, and the natural products from this resource, will be significantly expanded.
Collapse
Affiliation(s)
- Marc Slattery
- Department of Pharmacognosy, School of Pharmacy, The University of Mississippi, University, Mississippi 38677, USA.
| | | | | | | | | | | | | |
Collapse
|