1
|
Ishida K, Shimizu M, Wakasugi A, Matsui Y, Nakamura A, Kojima S. Development of a novel peptide inhibitor of subtilisin BPN'. FEBS Open Bio 2022; 12:2057-2064. [PMID: 36053920 PMCID: PMC9623506 DOI: 10.1002/2211-5463.13481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 08/22/2022] [Accepted: 08/31/2022] [Indexed: 01/25/2023] Open
Abstract
Proteinaceous protease inhibitors can strongly and specifically inhibit cognate proteases, but their use as pharmaceuticals is limited by their size. As such, the development of effective protease peptide inhibitors would be beneficial for biochemical studies and drug discovery. In this study, we applied a phage display system to select subtilisin BPN'-binding peptides and evaluated their inhibitory activities against subtilisin BPN'. A 12mer peptide with an intramolecular disulfide bond inhibited subtilisin BPN' (Ki value of 13.0 nm). Further mutational analyses of the peptide resulted in the development of a short peptide inhibitor against subtilisin BPN' that showed high inhibitory activity and binding affinity (Ki value of 0.30 nm). This activity was found to be derived from the conformational rigidity caused by the intramolecular disulfide bond and the small residue at the P1' site and from the interaction of the P4 and P6' residues with subtilisin BPN'.
Collapse
Affiliation(s)
- Kohki Ishida
- Department of Life Science, Graduate School of ScienceGakushuin UniversityTokyoJapan
| | - Makoto Shimizu
- Department of Chemistry, Graduate School of ScienceGakushuin UniversityTokyoJapan
| | - Ayumi Wakasugi
- Department of Chemistry, Faculty of ScienceGakushuin UniversityTokyoJapan
| | - Yuko Matsui
- Department of Life Science, Faculty of ScienceGakushuin UniversityTokyoJapan
| | - Akira Nakamura
- Department of Life Science, Faculty of ScienceGakushuin UniversityTokyoJapan
| | - Shuichi Kojima
- Department of Life Science, Graduate School of ScienceGakushuin UniversityTokyoJapan,Department of Chemistry, Graduate School of ScienceGakushuin UniversityTokyoJapan,Department of Chemistry, Faculty of ScienceGakushuin UniversityTokyoJapan,Department of Life Science, Faculty of ScienceGakushuin UniversityTokyoJapan
| |
Collapse
|
2
|
Rojas L, Cabrera-Muñoz A, Gil Pradas D, González JB, Alonso-Del-Rivero M, González-González Y. Arginine substitution by alanine at the P1 position increases the selectivity of CmPI-II, a non-classical Kazal inhibitor. Biochem Biophys Rep 2021; 26:101008. [PMID: 34027134 PMCID: PMC8131977 DOI: 10.1016/j.bbrep.2021.101008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 04/23/2021] [Accepted: 04/23/2021] [Indexed: 11/28/2022] Open
Abstract
CmPI-II is a Kazal-type tight-binding inhibitor isolated from the Caribbean snail Cenchritis muricatus. This inhibitor has an unusual specificity in the Kazal family, as it can inhibit subtilisin A (SUBTA), elastases and trypsin. An alanine in CmPI-II P1 site could avoid trypsin inhibition while improving/maintaining SUBTA and elastases inhibition. Thus, an alanine mutant of this position (rCmPI-II R12A) was obtained by site-directed mutagenesis. The gene cmpiR12A was expressed in P. pastoris KM71H yeast. The recombinant protein (rCmPI-II R12A) was purified by the combination of two ionic exchange chromatography (1:cationic, 2 anionic) followed by and size exclusion chromatography. The N-terminal sequence obtained as well as the experimental molecular weight allowed verifying the identity of the recombinant protein, while the correct folding was confirmed by CD experiments. rCmPI-II R12A shows a slightly increase in potency against SUBTA and elastases. The alanine substitution at P1 site on CmPI-II abolishes the trypsin inhibition, confirming the relevance of an arginine residue at P1 site in CmPI-II for trypsin inhibition and leading to a molecule with more potentialities in biomedicine.
Collapse
Affiliation(s)
- Laritza Rojas
- Centro de Estudio de Proteínas, Universidad de La Habana, Calle 25 # 455, Plaza de La Revolución, CP 10400, La Habana, Cuba
| | - Aymara Cabrera-Muñoz
- Centro de Estudio de Proteínas, Universidad de La Habana, Calle 25 # 455, Plaza de La Revolución, CP 10400, La Habana, Cuba
| | - Dayrom Gil Pradas
- Centro de Estudio de Proteínas, Universidad de La Habana, Calle 25 # 455, Plaza de La Revolución, CP 10400, La Habana, Cuba
| | - Jessica B González
- Centro de Estudio de Proteínas, Universidad de La Habana, Calle 25 # 455, Plaza de La Revolución, CP 10400, La Habana, Cuba
| | - Maday Alonso-Del-Rivero
- Centro de Estudio de Proteínas, Universidad de La Habana, Calle 25 # 455, Plaza de La Revolución, CP 10400, La Habana, Cuba
| | - Yamile González-González
- Centro de Estudio de Proteínas, Universidad de La Habana, Calle 25 # 455, Plaza de La Revolución, CP 10400, La Habana, Cuba
| |
Collapse
|
3
|
Boros E, Sebák F, Héja D, Szakács D, Zboray K, Schlosser G, Micsonai A, Kardos J, Bodor A, Pál G. Directed Evolution of Canonical Loops and Their Swapping between Unrelated Serine Proteinase Inhibitors Disprove the Interscaffolding Additivity Model. J Mol Biol 2019; 431:557-575. [PMID: 30543823 DOI: 10.1016/j.jmb.2018.12.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2018] [Revised: 11/26/2018] [Accepted: 12/06/2018] [Indexed: 11/26/2022]
Abstract
Reversible serine proteinase inhibitors comprise 18 unrelated families. Each family has a distinct representative structure but contains a surface loop that adopts the same, canonical conformation in the enzyme-inhibitor complex. The Laskowski mechanism universally applies for the action of all canonical inhibitors independent of their scaffold, but it has two nontrivial extrapolations. Intrascaffolding additivity states that all enzyme-contacting loop residues act independently of each other, while interscaffolding additivity claims that these residues act independently of the scaffold. These theories have great importance for engineering proteinase inhibitors but have not been comprehensively challenged. Therefore, we tested the interscaffolding additivity theory by hard-randomizing all enzyme-contacting canonical loop positions of a Kazal- and a Pacifastin-scaffold inhibitor, displaying the variants on M13 phage, and selecting the libraries on trypsin and chymotrypsin. Directed evolution delivered different patterns on both scaffolds against both enzymes, which contradicts interscaffolding additivity. To quantitatively assess the extent of non-additivity, we measured the affinities of the optimal binding loop variants and their binding loop-swapped versions. While optimal variants have picomolar affinities, swapping the evolved loops results in up to 200,000-fold affinity loss. To decipher the underlying causes, we characterized the stability, overall structure and dynamics of the inhibitors with differential scanning calorimetry, circular dichroism and NMR spectroscopy and molecular dynamic simulations. These studies revealed that the foreign loop destabilizes the lower-stability Pacifastin scaffold, while the higher-stability Kazal scaffold distorts the foreign loop. Our findings disprove interscaffolding additivity and show that loop and scaffold form one integrated unit that needs to be coevolved to provide high-affinity inhibition.
Collapse
Affiliation(s)
- Eszter Boros
- Department of Biochemistry, ELTE Eötvös Loránd University, Pázmány Péter sétány 1/C, H-1117 Budapest, Hungary
| | - Fanni Sebák
- Laboratory of Structural Chemistry and Biology, Institute of Chemistry, ELTE Eötvös Loránd University, Pázmány Péter sétány 1/A, H-1117 Budapest, Hungary; Doctoral School of Pharmaceutical Sciences, Semmelweis University, Üllői út 26, H-1085 Budapest, Hungary
| | - Dávid Héja
- Department of Biochemistry, ELTE Eötvös Loránd University, Pázmány Péter sétány 1/C, H-1117 Budapest, Hungary
| | - Dávid Szakács
- Department of Biochemistry, ELTE Eötvös Loránd University, Pázmány Péter sétány 1/C, H-1117 Budapest, Hungary
| | - Katalin Zboray
- Department of Biochemistry, ELTE Eötvös Loránd University, Pázmány Péter sétány 1/C, H-1117 Budapest, Hungary
| | - Gitta Schlosser
- Department of Analytical Chemistry, Institute of Chemistry, ELTE Eötvös Loránd University, Pázmány Péter sétány 1/A, H-1117 Budapest, Hungary
| | - András Micsonai
- Department of Biochemistry, ELTE Eötvös Loránd University, Pázmány Péter sétány 1/C, H-1117 Budapest, Hungary
| | - József Kardos
- Department of Biochemistry, ELTE Eötvös Loránd University, Pázmány Péter sétány 1/C, H-1117 Budapest, Hungary
| | - Andrea Bodor
- Laboratory of Structural Chemistry and Biology, Institute of Chemistry, ELTE Eötvös Loránd University, Pázmány Péter sétány 1/A, H-1117 Budapest, Hungary
| | - Gábor Pál
- Department of Biochemistry, ELTE Eötvös Loránd University, Pázmány Péter sétány 1/C, H-1117 Budapest, Hungary.
| |
Collapse
|
4
|
Abstract
Modulation of neurotransmitter exocytosis by activated Gi/o coupled G-protein coupled receptors (GPCRs) is a universal regulatory mechanism used both to avoid overstimulation and to influence circuitry. One of the known modulation mechanisms is the interaction between Gβγ and the soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNAREs). There are 5 Gβ and 12 Gγ subunits, but specific Gβγs activated by a given GPCR and the specificity to effectors, such as SNARE, in vivo are not known. Although less studied, Gβγ binding to the exocytic fusion machinery (i.e. SNARE) provides a more direct regulatory mechanism for neurotransmitter release. Here, we review some recent insights in the architecture of the synaptic terminal, modulation of synaptic transmission, and implications of G protein modulation of synaptic transmission in diseases. Numerous presynaptic proteins are involved in the architecture of synaptic terminals, particularly the active zone, and their importance in the regulation of exocytosis is still not completely understood. Further understanding of the Gβγ-SNARE interaction and the architecture and mechanisms of exocytosis may lead to the discovery of novel therapeutic targets to help patients with various disorders such as hypertension, attention-deficit/hyperactivity disorder, post-traumatic stress disorder, and acute/chronic pain.
Collapse
Affiliation(s)
- Yun Young Yim
- Department of Pharmacology, Vanderbilt University, Nashville 37232-6600, TN, United States
| | - Zack Zurawski
- Department of Pharmacology, Vanderbilt University, Nashville 37232-6600, TN, United States
| | - Heidi Hamm
- Department of Pharmacology, Vanderbilt University, Nashville 37232-6600, TN, United States.
| |
Collapse
|
5
|
Yim YY, McDonald WH, Hyde K, Cruz-Rodríguez O, Tesmer JJG, Hamm HE. Quantitative Multiple-Reaction Monitoring Proteomic Analysis of Gβ and Gγ Subunits in C57Bl6/J Brain Synaptosomes. Biochemistry 2017; 56:5405-5416. [PMID: 28880079 DOI: 10.1021/acs.biochem.7b00433] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Gβγ dimers are one of the essential signaling units of activated G protein-coupled receptors (GPCRs). There are five Gβ and 12 Gγ subunits in humans; numerous studies have demonstrated that different Gβ and Gγ subunits selectively interact to form unique Gβγ dimers, which in turn may target specific receptors and effectors. Perturbation of Gβγ signaling can lead to impaired physiological responses. Moreover, previous targeted multiple-reaction monitoring (MRM) studies of Gβ and Gγ subunits have shown distinct regional and subcellular localization patterns in four brain regions. Nevertheless, no studies have quantified or compared their individual protein levels. In this study, we have developed a quantitative MRM method not only to quantify but also to compare the protein abundance of neuronal Gβ and Gγ subunits. In whole and fractionated crude synaptosomes, we were able to identify the most abundant neuronal Gβ and Gγ subunits and their subcellular localizations. For example, Gβ1 was mostly localized at the membrane while Gβ2 was evenly distributed throughout synaptosomal fractions. The protein expression levels and subcellular localizations of Gβ and Gγ subunits may affect the Gβγ dimerization and Gβγ-effector interactions. This study offers not only a new tool for quantifying and comparing Gβ and Gγ subunits but also new insights into the in vivo distribution of Gβ and Gγ subunits, and Gβγ dimer assembly in normal brain function.
Collapse
Affiliation(s)
- Yun Young Yim
- Department of Pharmacology, Vanderbilt University , Nashville, Tennessee 37232-6600, United States
| | - W Hayes McDonald
- Department of Biochemistry, Vanderbilt University , Nashville, Tennessee 37232-6600, United States
| | - Karren Hyde
- Department of Pharmacology, Vanderbilt University , Nashville, Tennessee 37232-6600, United States
| | | | | | - Heidi E Hamm
- Department of Pharmacology, Vanderbilt University , Nashville, Tennessee 37232-6600, United States
| |
Collapse
|
6
|
A two-step, one-pot enzymatic method for preparation of duck egg white protein hydrolysates with high antioxidant activity. Appl Biochem Biotechnol 2014; 172:1227-40. [PMID: 24150906 DOI: 10.1007/s12010-013-0578-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Accepted: 10/01/2013] [Indexed: 10/26/2022]
Abstract
Biocatalytic hydrolysis reactions were designed for preparation of bioactive hydrolysate of duck egg white protein (DEWP) employing two enzymes in one pot. Firstly, the fresh DEWP was thermal treated at 95 °C, for 40 min at pH 10, to effectively deactivate enzyme inhibitors thus facilitating the following two-step enzymatic hydrolysis. Compared with single-enzyme processes, the two-step enzymatic procedures showed much higher reaction efficiency. The first enzymatic step (in the presence of Alcalase or hydrolase SEEP) allowed to hydrolyze DEWP with degree of hydrolysis (DH) of 8.8-10% and soluble peptide yield (SEP) of 60.5-70.2% in a short period (4 h). The second enzymatic step (in the presence of Trypsin or Alcalase) gave a further degradation of DEWP with DH and SEP being more than 26.2% and 90.4%, respectively. The final hydrolysates exhibited high antioxidant activity in an evident DH dependent manner. The hydrolysates achieved by sequential addition of the proteinase SEEP and Alcalase at DH value 21% gave the highest antioxidant activity, which was mainly ascribed to the changes in the amino acid compositions that the contents of some key amino acids and total hydrophobic amino acids were significantly improved by the enzymatic hydrolysis.
Collapse
|
7
|
Qasim MA, Wang L, Qasim S, Lu S, Lu W, Wynn R, Yi ZP, Laskowski M. Additivity-based design of the strongest possible turkey ovomucoid third domain inhibitors for porcine pancreatic elastase (PPE) and Streptomyces griseus protease B (SGPB). FEBS Lett 2013; 587:3021-6. [PMID: 23892073 DOI: 10.1016/j.febslet.2013.07.029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2013] [Revised: 07/15/2013] [Accepted: 07/16/2013] [Indexed: 11/24/2022]
Abstract
We describe here successful designs of strong inhibitors for porcine pancreatic elastase (PPE) and Streptomyces griseus protease B (SGPB). For each enzyme two inhibitor variants were designed. In one, the reactive site residue (position 18) was retained and the best residues were substituted at contact positions 13, 14, and 15. In the other variant the best residues were substituted at all contact positions except the reactive site where a Gly was substituted. The four designed variants were: for PPE, T(13)E(14)Y(15)-OMTKY3 and T(13)E(14)Y(15)G(18)M(21)P(32)V(36)-OMTKY3, and for SGPB, S(13)D(14)Y(15)-OMTKY3 and S(13)D(14)Y(15)G(18)I(19)K(21)-OMTKY3. The free energies of association (ΔG(0)) of expressed variants have been measured with the proteases for which they were designed as well as with five other serine proteases and the results are discussed.
Collapse
Affiliation(s)
- Mohammad A Qasim
- Department of Chemistry, Purdue University, 1393 Brown Building, West Lafayette, IN 47907-1393, USA.
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Derache C, Epinette C, Roussel A, Gabant G, Cadene M, Korkmaz B, Gauthier F, Kellenberger C. Crystal structure of greglin, a novel non-classical Kazal inhibitor, in complex with subtilisin. FEBS J 2012; 279:4466-78. [DOI: 10.1111/febs.12033] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2012] [Revised: 10/05/2012] [Accepted: 10/09/2012] [Indexed: 01/23/2023]
Affiliation(s)
- Chrystelle Derache
- Centre de Biophysique Moléculaire; UPR 4301 CNRS conventionnée avec l'Université d'Orléans; Orléans Cedex 2; France
| | - Christophe Epinette
- Pathologies Respiratoires; Protéolyse et Aérosolthérapie; INSERM U1100 Faculté de Médecine; Université François Rabelais; Tours; France
| | - Alain Roussel
- Architecture et Fonction des Macromolécules Biologiques; CNRS UMR7257 and Aix-Marseille Université; Marseille Cedex; France
| | - Guillaume Gabant
- Centre de Biophysique Moléculaire; UPR 4301 CNRS conventionnée avec l'Université d'Orléans; Orléans Cedex 2; France
| | - Martine Cadene
- Centre de Biophysique Moléculaire; UPR 4301 CNRS conventionnée avec l'Université d'Orléans; Orléans Cedex 2; France
| | - Brice Korkmaz
- Pathologies Respiratoires; Protéolyse et Aérosolthérapie; INSERM U1100 Faculté de Médecine; Université François Rabelais; Tours; France
| | - Francis Gauthier
- Pathologies Respiratoires; Protéolyse et Aérosolthérapie; INSERM U1100 Faculté de Médecine; Université François Rabelais; Tours; France
| | - Christine Kellenberger
- Architecture et Fonction des Macromolécules Biologiques; CNRS UMR7257 and Aix-Marseille Université; Marseille Cedex; France
| |
Collapse
|
9
|
The P(2)' residue is a key determinant of mesotrypsin specificity: engineering a high-affinity inhibitor with anticancer activity. Biochem J 2011; 440:95-105. [PMID: 21806544 PMCID: PMC3380622 DOI: 10.1042/bj20110788] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
PRSS3/mesotrypsin is an atypical isoform of trypsin, the up-regulation of which has been implicated in promoting tumour progression. Mesotrypsin inhibitors could potentially provide valuable research tools and novel therapeutics, but small-molecule trypsin inhibitors have low affinity and little selectivity, whereas protein trypsin inhibitors bind poorly and are rapidly degraded by mesotrypsin. In the present study, we use mutagenesis of a mesotrypsin substrate, APPI (amyloid precursor protein Kunitz protease inhibitor domain), and of a poor mesotrypsin inhibitor, BPTI (bovine pancreatic trypsin inhibitor), to dissect mesotrypsin specificity at the key P(2)' position. We find that bulky and charged residues strongly disfavour binding, whereas acidic residues facilitate catalysis. Crystal structures of mesotrypsin complexes with BPTI variants provide structural insights into mesotrypsin specificity and inhibition. Through optimization of the P(1) and P(2)' residues of BPTI, we generate a stable high-affinity mesotrypsin inhibitor with an equilibrium binding constant K(i) of 5.9 nM, a >2000-fold improvement in affinity over native BPTI. Using this engineered inhibitor, we demonstrate the efficacy of pharmacological inhibition of mesotrypsin in assays of breast cancer cell malignant growth and pancreatic cancer cell invasion. Although further improvements in inhibitor selectivity will be important before clinical potential can be realized, the results of the present study support the feasibility of engineering protein protease inhibitors of mesotrypsin and highlight their therapeutic potential.
Collapse
|
10
|
Klotman ME, Rapista A, Teleshova N, Micsenyi A, Jarvis GA, Lu W, Porter E, Chang TL. Neisseria gonorrhoeae-induced human defensins 5 and 6 increase HIV infectivity: role in enhanced transmission. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2008; 180:6176-85. [PMID: 18424739 PMCID: PMC3042429 DOI: 10.4049/jimmunol.180.9.6176] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Sexually transmitted infections (STIs) increase the likelihood of HIV transmission. Defensins are part of the innate mucosal immune response to STIs and therefore we investigated their role in HIV infection. We found that human defensins 5 and 6 (HD5 and HD6) promoted HIV infection, and this effect was primarily during viral entry. Enhancement was seen with primary viral isolates in primary CD4(+) T cells and the effect was more pronounced with R5 virus compared with X4 virus. HD5 and HD6 promoted HIV reporter viruses pseudotyped with vesicular stomatitis virus and murine leukemia virus envelopes, indicating that defensin-mediated enhancement was not dependent on CD4 and coreceptors. Enhancement of HIV by HD5 and HD6 was influenced by the structure of the peptides, as loss of the intramolecular cysteine bonds was associated with loss of the HIV-enhancing effect. Pro-HD5, the precursor and intracellular form of HD5, also exhibited HIV-enhancing effect. Using a cervicovaginal tissue culture system, we found that expression of HD5 and HD6 was induced in response to Neisseria gonorrhoeae (GC, for gonococcus) infection and that conditioned medium from GC-exposed cervicovaginal epithelial cells with elevated levels of HD5 also enhanced HIV infection. Introduction of small interfering RNAs for HD5 or HD6 abolished the HIV-enhancing effect mediated by GC. Thus, the induction of these defensins in the mucosa in the setting of GC infection could facilitate HIV infection. Furthermore, this study demonstrates the complexity of defensins as innate immune mediators in HIV transmission and warrants further investigation of the mechanism by which defensins modulate HIV infection.
Collapse
Affiliation(s)
- Mary E. Klotman
- Department of Medicine, Division of Infectious Diseases, Mount Sinai School of Medicine, New York, NY 10029
| | - Aprille Rapista
- Department of Medicine, Division of Infectious Diseases, Mount Sinai School of Medicine, New York, NY 10029
| | - Natalia Teleshova
- Department of Medicine, Division of Infectious Diseases, Mount Sinai School of Medicine, New York, NY 10029
| | - Amanda Micsenyi
- Department of Medicine, Division of Infectious Diseases, Mount Sinai School of Medicine, New York, NY 10029
| | - Gary A. Jarvis
- Veterans Affairs Medical Center and Department of Laboratory Medicine, University of California, San Francisco, CA 94121
| | - Wuyuan Lu
- Institute of Human Virology and Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD 21201
| | - Edith Porter
- Department of Biological Sciences, California State University, Los Angeles, CA 90032
| | - Theresa L. Chang
- Department of Medicine, Division of Infectious Diseases, Mount Sinai School of Medicine, New York, NY 10029
| |
Collapse
|
11
|
Lee TW, James MNG. 1.2A-resolution crystal structures reveal the second tetrahedral intermediates of streptogrisin B (SGPB). BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2007; 1784:319-34. [PMID: 18157955 DOI: 10.1016/j.bbapap.2007.11.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2007] [Revised: 11/13/2007] [Accepted: 11/15/2007] [Indexed: 11/29/2022]
Abstract
Streptogrisin B (SGPB) has served as one of the models for studying the catalytic activities of serine peptidases. Here we report its native crystal structures at pH 4.2 at a resolution of 1.18A, and at pH 7.3 at a resolution of 1.23A. Unexpectedly, outstanding electron density peaks occurred in the active site and the substrate-binding region of SGPB in the computed maps at both pHs. The densities at pH 4.2 were assigned as a tetrapeptide, Asp-Ala-Ile-Tyr, whereas those at pH 7.3 were assigned as a tyrosine molecule and a leucine molecule existing at equal occupancies in both of the SGPB molecules in the asymmetric unit. Refinement with relaxed geometric restraints resulted in molecular structures representing mixtures of the second tetrahedral intermediates and the enzyme-product complexes of SGPB existing in a pH-dependent equilibrium. Structural comparisons with the complexes of SGPB with turkey ovomucoid third domain (OMTKY3) and its variants have shown that, upon the formation of the tetrahedral intermediate, residues Glu192A to Gly193 of SGPB move towards the alpha-carboxylate O of residue P1 of the bound species, and adjustments in the side-chain conformational angles of His57 and Ser195 of SGPB favor the progression of the catalytic mechanism of SGPB.
Collapse
Affiliation(s)
- Ting-Wai Lee
- Group in Protein Structure and Function, Department of Biochemistry, University of Alberta, Room 4-29, Medical Sciences Building, Edmonton, Alberta T6G 2H7, Canada
| | | |
Collapse
|
12
|
González Y, Pons T, Gil J, Besada V, Alonso-del-Rivero M, Tanaka AS, Araujo MS, Chávez MA. Characterization and comparative 3D modeling of CmPI-II, a novel ‘non-classical’ Kazal-type inhibitor from the marine snail Cenchritis muricatus (Mollusca). Biol Chem 2007; 388:1183-94. [DOI: 10.1515/bc.2007.129] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
13
|
Saro D, Klosi E, Paredes A, Spaller MR. Thermodynamic analysis of a hydrophobic binding site: probing the PDZ domain with nonproteinogenic peptide ligands. Org Lett 2005; 6:3429-32. [PMID: 15387515 DOI: 10.1021/ol049181q] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
[structure: see text] Isothermal titration calorimetry (ITC) is used to study the thermodynamic consequences of systematically modifying the hydrophobic character of a single residue in a series of protein-binding ligands. By substituting standard and nonproteinogenic aliphatic amino acids for the C-terminal valine of the hexapeptide KKETEV, binding to the third PDZ domain (PDZ3) of the PSD-95 protein is characterized by distinct changes in the Gibbs free energy (DeltaG), enthalpy (DeltaH), and entropy (TDeltaS) parameters. One notable observation is that peptide binding affinity can be improved with a nonstandard residue.
Collapse
Affiliation(s)
- Dorina Saro
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, USA
| | | | | | | |
Collapse
|
14
|
Setola V, Dukat M, Glennon RA, Roth BL. Molecular determinants for the interaction of the valvulopathic anorexigen norfenfluramine with the 5-HT2B receptor. Mol Pharmacol 2005; 68:20-33. [PMID: 15831837 DOI: 10.1124/mol.104.009266] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
S-(+)-Norfenfluramine (SNF)-an active metabolite of the now-banned anorexigen fenfluramine-has been implicated in the drug's appetite-suppressing actions and its life-threatening cardiovascular side effects. SNF reduces appetite through serotonin 5-HT(2C) receptor activation; it causes cardiopulmonary side effects through 5-HT(2B) receptor activation. Thus, we attempted to identify molecular determinants of SNF binding to 5-HT(2B) receptors distinct from those underlying SNF-5-HT(2C/2A) receptor interactions. Mutagenesis implicated Val2.53 in SNF binding to 5-HT(2B) receptors. Ligand docking simulations suggested both Val2.53 gamma-methyl groups form stabilizing van der Waals' (vdW) interactions with the alpha-methyl group of SNF. A V2.53L mutation induced a 17-fold decrease in affinity; molecular dynamics (MD) simulations suggested that this decrease resulted from the loss of one 2.53-alpha-methyl group vdW interaction. Supporting this, 1) the binding of norfenfluramine (NF) analogs lacking an S-(+) alpha-methyl group (RNF and alpha-desmethyl-NF) was less sensitive to the V2.53L mutation, and 2) a V2.53A mutation decreased SNF affinity 190-fold, but decreased RNF and alpha-desmethyl-NF affinities only 16- and 45-fold, respectively. We next addressed whether the alpha-methyl group of SNF contributes to 5-HT(2C/2A) receptor affinity. Removal of the alpha-methyl group (RNF and alpha-desmethyl-NF), which reduced 5-HT(2B) receptor binding 3-fold, did not affect 5-HT(2C/2A) receptor binding. An alpha-ethyl substituent (alpha-ethyl-NF), which decreased 5-HT(2B) receptor affinity 46-fold, reduced 5-HT(2C) and 5-HT(2A) receptor binding by 14- and 5-fold, respectively. Finally, we determined that residue 2.53 affects SNF potency and efficacy at 5-HT(2B) receptors but not at 5-HT(2C) and 5-HT(2A) receptors. In conclusion, vdW interactions between residue 2.53 and the alpha-methyl group of SNF contribute to the ligand's 5-HT(2) receptor subtype-selective pharmacology.
Collapse
Affiliation(s)
- Vincent Setola
- Department of Biochemistry, Case Western Reserve University School of Medicine, Cleveland, OH 44106-4935, USA
| | | | | | | |
Collapse
|
15
|
Zhang C, Liu S, Zhu Q, Zhou Y. A knowledge-based energy function for protein-ligand, protein-protein, and protein-DNA complexes. J Med Chem 2005; 48:2325-35. [PMID: 15801826 DOI: 10.1021/jm049314d] [Citation(s) in RCA: 214] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We developed a knowledge-based statistical energy function for protein-ligand, protein-protein, and protein-DNA complexes by using 19 atom types and a distance-scale finite ideal-gas reference (DFIRE) state. The correlation coefficients between experimentally measured protein-ligand binding affinities and those predicted by the DFIRE energy function are around 0.63 for one training set and two testing sets. The energy function also makes highly accurate predictions of binding affinities of protein-protein and protein-DNA complexes. Correlation coefficients between theoretical and experimental results are 0.73 for 82 protein-protein (peptide) complexes and 0.83 for 45 protein-DNA complexes, despite the fact that the structures of protein-protein (peptide) and protein-DNA complexes were not used in training the energy function. The results of the DFIRE energy function on protein-ligand complexes are compared to the published results of 12 other scoring functions generated from either physical-based, knowledge-based, or empirical methods. They include AutoDock, X-Score, DrugScore, four scoring functions in Cerius 2 (LigScore, PLP, PMF, and LUDI), four scoring functions in SYBYL (F-Score, G-Score, D-Score, and ChemScore), and BLEEP. While the DFIRE energy function is only moderately successful in ranking native or near native conformations, it yields the strongest correlation between theoretical and experimental binding affinities of the testing sets and between rmsd values and energy scores of docking decoys in a benchmark of 100 protein-ligand complexes. The parameters and the program of the all-atom DFIRE energy function are freely available for academic users at http://theory.med.buffalo.edu.
Collapse
Affiliation(s)
- Chi Zhang
- Howard Hughes Medical Institute Center for Single Molecule Biophysics, Department of Physiology & Biophysics, State University of New York at Buffalo, 124 Sherman Hall, Buffalo, New York 14214, USA
| | | | | | | |
Collapse
|
16
|
Singh N, Jabeen T, Sharma S, Roy I, Gupta MN, Bilgrami S, Somvanshi RK, Dey S, Perbandt M, Betzel C, Srinivasan A, Singh TP. Detection of native peptides as potent inhibitors of enzymes. FEBS J 2004; 272:562-72. [PMID: 15654893 DOI: 10.1111/j.1742-4658.2004.04499.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Chymotrypsin is a prominent member of the family of serine proteases. The present studies demonstrate the presence of a native fragment containing 14 residues from Ile16 to Trp29 in alpha-chymotrypsin that binds to chymotrypsin at the active site with an exceptionally high affinity of 2.7 +/- 0.3 x 10(-11) M and thus works as a highly potent competitive inhibitor. The commercially available alpha-chymotrypsin was processed through a three phase partitioning system (TPP). The treated enzyme showed considerably enhanced activity. The 14 residue fragment was produced by autodigestion of a TPP-treated alpha-chymotrypsin during a long crystallization process that lasted more than four months. The treated enzyme was purified and kept for crystallization using vapour the diffusion method at 295 K. Twenty milligrams of lyophilized protein were dissolved in 1 mL of 25 mM sodium acetate buffer, pH 4.8. It was equilibrated against the same buffer containing 1.2 M ammonium sulfate. The rectangular crystals of small dimensions of 0.24 x 0.15 x 0.10 mm(3) were obtained. The X-ray intensity data were collected at 2.2 angstroms resolution and the structure was refined to an R-factor of 0.192. An extra electron density was observed at the binding site of alpha-chymotrypsin, which was readily interpreted as a 14 residue fragment of alpha-chymotrypsin corresponding to Ile-Val-Asn-Gly-Glu-Glu-Ala-Val-Pro-Gly-Ser-Trp-Pro-Trp(16-29). The electron density for the eight residues of the C-terminus, i.e. Ala22-Trp29, which were completely buried in the binding cleft of the enzyme, was of excellent quality and all the side chains of these eight residues were clearly modeled into it. However, the remaining six residues from the N-terminus, Ile16-Glu21 were poorly defined although the backbone density was good. There was a continuous electron density at 3.0 sigma between the active site Ser195 Ogamma and the carbonyl carbon atom of Trp29 of the fragment. The final refined coordinates showed a distance of 1.35 angstroms between Ser195 Ogamma and Trp29 C indicating the presence of a covalent linkage between the enzyme and the native fragment. This meant that the enzyme formed an acyl intermediate with the autodigested fragment Ile16-Trp29. In addition to the O-C covalent bond, there were several hydrogen bonds and hydrophobic interactions between the enzyme and the native fragment. The fragment showed a high complementarity with the binding site of alpha-chymotrypsin and the buried part of the fragment matched excellently with the corresponding buried part of Turkey ovomucoid inhibitor of alpha-chymotrypsin.
Collapse
Affiliation(s)
- Nagendra Singh
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi 110 029, India
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Wu Z, Alexandratos J, Ericksen B, Lubkowski J, Gallo RC, Lu W. Total chemical synthesis of N-myristoylated HIV-1 matrix protein p17: structural and mechanistic implications of p17 myristoylation. Proc Natl Acad Sci U S A 2004; 101:11587-92. [PMID: 15280532 PMCID: PMC511025 DOI: 10.1073/pnas.0404649101] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The HIV-1 matrix protein p17, excised proteolytically from the N terminus of the Gag polyprotein, forms a protective shell attached to the inner surface of the plasma membrane of the virus. During the late stages of the HIV-1 replication cycle, the N-terminally myristoylated p17 domain targets the Gag polyprotein to the host-cell membrane for particle assembly. In the early stages of HIV-1 replication, however, some p17 molecules dissociate from the viral membrane to direct the preintegration complex to the host-cell nucleus. These two opposing targeting functions of p17 require that the protein be capable of reversible membrane interaction. It is postulated that a significant structural change in p17 triggered by proteolytic cleavage of the Gag polyprotein sequesters the N-terminal myristoyl group, resulting in a weaker membrane binding by the matrix protein than the Gag precursor. To test this "myristoyl switch" hypothesis, we obtained highly purified synthetic HIV-1 p17 of 131 amino acid residues and its N-myristoylated form in large quantity. Both forms of p17 were characterized by circular dichroism spectroscopy, protein chemical denaturation, and analytical centrifugal sedimentation. Our results indicate that although N-myristoylation causes no spectroscopically discernible conformational change in p17, it stabilizes the protein by 1 kcal/mol and promotes protein trimerization in solution. These findings support the premise that the myristoyl switch in p17 is triggered not by a structural change associated with proteolysis, but rather by the destabilization of oligomeric structures of membrane-bound p17 in the absence of downstream Gag subdomains.
Collapse
Affiliation(s)
- Zhibin Wu
- Institute of Human Virology, University of Maryland Biotechnology Institute, and School of Medicine, University of Maryland, 725 West Lombard Street, Baltimore, MD 21201, USA
| | | | | | | | | | | |
Collapse
|
18
|
Liu S, Zhang C, Zhou H, Zhou Y. A physical reference state unifies the structure-derived potential of mean force for protein folding and binding. Proteins 2004; 56:93-101. [PMID: 15162489 DOI: 10.1002/prot.20019] [Citation(s) in RCA: 161] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Extracting knowledge-based statistical potential from known structures of proteins is proved to be a simple, effective method to obtain an approximate free-energy function. However, the different compositions of amino acid residues at the core, the surface, and the binding interface of proteins prohibited the establishment of a unified statistical potential for folding and binding despite the fact that the physical basis of the interaction (water-mediated interaction between amino acids) is the same. Recently, a physical state of ideal gas, rather than a statistically averaged state, has been used as the reference state for extracting the net interaction energy between amino acid residues of monomeric proteins. Here, we find that this monomer-based potential is more accurate than an existing all-atom knowledge-based potential trained with interfacial structures of dimers in distinguishing native complex structures from docking decoys (100% success rate vs. 52% in 21 dimer/trimer decoy sets). It is also more accurate than a recently developed semiphysical empirical free-energy functional enhanced by an orientation-dependent hydrogen-bonding potential in distinguishing native state from Rosetta docking decoys (94% success rate vs. 74% in 31 antibody-antigen and other complexes based on Z score). In addition, the monomer potential achieved a 93% success rate in distinguishing true dimeric interfaces from artificial crystal interfaces. More importantly, without additional parameters, the potential provides an accurate prediction of binding free energy of protein-peptide and protein-protein complexes (a correlation coefficient of 0.87 and a root-mean-square deviation of 1.76 kcal/mol with 69 experimental data points). This work marks a significant step toward a unified knowledge-based potential that quantitatively captures the common physical principle underlying folding and binding. A Web server for academic users, established for the prediction of binding free energy and the energy evaluation of the protein-protein complexes, may be found at http://theory.med.buffalo.edu.
Collapse
Affiliation(s)
- Song Liu
- Howard Hughes Medical Institute Center for Single Molecule Biophysics, Department of Physiology and Biophysics, State University of New York at Buffalo, Buffalo, New York 14214, USA
| | | | | | | |
Collapse
|
19
|
Wu Z, Hoover DM, Yang D, Boulègue C, Santamaria F, Oppenheim JJ, Lubkowski J, Lu W. Engineering disulfide bridges to dissect antimicrobial and chemotactic activities of human beta-defensin 3. Proc Natl Acad Sci U S A 2003; 100:8880-5. [PMID: 12840147 PMCID: PMC166407 DOI: 10.1073/pnas.1533186100] [Citation(s) in RCA: 340] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2003] [Indexed: 11/18/2022] Open
Abstract
Human defensins form a family of small, cationic, and Cys-rich antimicrobial proteins that play important roles in innate immunity against invading microbes. They also function as effective immune modulators in adaptive immunity by selectively chemoattracting T lymphocytes and immature dendritic cells. On the basis of sequence homology and the connectivity of six conserved Cys residues, human defensins are classified into alpha and beta families. Structures of several beta-defensins have recently been characterized, confirming the disulfide connectivity conserved within the family, i.e., Cys1-Cys5, Cys2-Cys4, and Cys3-Cys6. We found that human beta-defensin 3 (hBD3), a recently described member of the growing beta family, did not fold preferentially into a native conformation in vitro under various oxidative conditions. Using the orthogonal protection of Cys1-Cys5 and of Cys1-Cys6, we chemically synthesized six topological analogs of hBD3 with predefined disulfide connectivities, including the (presumably) native beta pairing. Unexpectedly, all differently folded hBD3 species exhibited similar antimicrobial activity against Escherichia coli, whereas a wide range of chemotactic activities was observed with these analogs for monocytes and cells transfected by the chemokine receptor CCR6. Furthermore, whereas substitution of all Cys residues by alpha-aminobutyric acid completely abolished the chemotactic activity of hBD3, the bactericidal activity remained unaffected in the absence of any disulfide bridge. Our findings demonstrate that disulfide bonding in hBD3, although required for binding and activation of receptors for chemotaxis, is fully dispensable for its antimicrobial function, thus shedding light on the mechanisms of action for human beta-defensins and the design of novel peptide antibiotics.
Collapse
Affiliation(s)
- Zhibin Wu
- Institute of Human Virology, University of Maryland Biotechnology Institute, Baltimore, MD 21201, USA
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Hilpert K, Wessner H, Schneider-Mergener J, Welfle K, Misselwitz R, Welfle H, Hocke AC, Hippenstiel S, Höhne W. Design and characterization of a hybrid miniprotein that specifically inhibits porcine pancreatic elastase. J Biol Chem 2003; 278:24986-93. [PMID: 12700244 DOI: 10.1074/jbc.m212152200] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Studying protease/peptide inhibitor interactions is a useful tool for understanding molecular recognition in general and is particularly relevant for the rational design of inhibitors with therapeutic potential. An inhibitory peptide (PMTLEYR) derived from the third domain of turkey ovomucoid inhibitor and optimized for specific porcine pancreatic elastase inhibition was introduced into an inhibitor scaffold to increase the proteolytic stability of the peptide. The trypsin-specific squash inhibitor EETI II from Ecballium elaterium was chosen as the scaffold. The resulting hybrid inhibitor HEI-TOE I (hybrid inhibitor from E. elaterium and the optimized binding loop of the third domain of turkey ovomucoid inhibitor) shows a specificity and affinity to porcine pancreatic elastase similar to the free inhibitory peptide but with significantly higher proteolytic stability. Isothermal titration calorimetry revealed that elastase binding of HEI-TOE I occurs with a small unfavorable positive enthalpy contribution, a large favorable positive entropy change, and a large negative heat capacity change. In addition, the inhibitory peptide and the hybrid inhibitor HEI-TOE I protected endothelial cells against degradation following treatment with porcine pancreatic elastase.
Collapse
Affiliation(s)
- Kai Hilpert
- Humboldt University of Berlin, Medical Faculty Charité, Department of Biochemistry, Monbijoustrasse 2, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Pál G, Santamaria F, Kossiakoff AA, Lu W. The first semi-synthetic serine protease made by native chemical ligation. Protein Expr Purif 2003; 29:185-92. [PMID: 12767808 DOI: 10.1016/s1046-5928(03)00022-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Selective incorporation of non-natural amino acid residues into proteins is a powerful approach to delineate structure-function relationships. Although many methodologies are available for chemistry-based protein engineering, more facile methods are needed to make this approach suitable for routine laboratory practice. Here, we describe a new strategy and provide a proof of concept for engineering semi-synthetic proteins. We chose a serine protease Streptomyces griseus trypsin (SGT) for this study to show that it is possible to efficiently couple a synthetic peptide containing a catalytically critical residue to a recombinant fragment containing the other active site residues. The 223-residue hybrid SGT molecule was prepared by fusing a chemically synthesized N-terminal peptide to a large C-terminal fragment of recombinant origin using native chemical ligation. This C-terminal polypeptide was produced from full-length SGT by cyanogen bromide cleavage at a genetically engineered Met57 position. This semi-synthetic hybrid trypsin is fully active, showing kinetics identical to the wild-type enzyme. Thus, we believe that it is an ideal model enzyme for studying the catalytic mechanisms of serine proteases by providing a straightforward approach to incorporate non-natural amino acids in the N-terminal region of the protein. In particular, this strategy will allow for replacement of the catalytic His57 residue and the buried N-terminus, which is thought to help align the active site, with synthetic analogs. Our approach relies on readily available recombinant proteins and small synthetic peptides, thus having general applications in chemical engineering of large proteins where the N-terminal region is the focal interest.
Collapse
Affiliation(s)
- Gábor Pál
- Department of Biochemistry and Molecular Biology, University of Chicago, 920 East 58th Street, Chicago, IL 60637, USA
| | | | | | | |
Collapse
|
22
|
Shan J, Baguinon M, Zheng L, Krishnamoorthi R. Expression, refolding, and activation of the catalytic domain of human blood coagulation factor XII. Protein Expr Purif 2003; 27:143-9. [PMID: 12509996 DOI: 10.1016/s1046-5928(02)00608-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Human blood coagulation factor XII (FXII; 80 kDa) contains a C-terminal serine protease zymogen domain, which becomes activated upon contacting a negative surface. Activated FXII (alphaFXIIa) brings about reciprocal activation of FXII and kallikrein that by further hydrolysis produces the free catalytic domain (betaFXIIa; 28 kDa). Increased levels of alphaFXIIa are associated with coronary heart disease, sepsis, and diabetes. Biophysical investigation of the structural basis of activation, substrate specificity, and regulation of FXII requires an efficient bacterial system for producing the wild-type and mutant recombinant proteins. Here, the cDNA of the zymogen domain of FXII (betaFXII) was cloned into the pET-28a(+) vector and the plasmid was transformed into Escherichia coli strain BL21 (DE3) and overexpressed. The multi-disulfide, recombinant protein, His(6)-betaFXII (rbetaFXII), expressed as an inclusion body, was purified by means of a Ni(2+)-charged resin. The matrix-bound rbetaFXII was subjected to refolding with the glutathione redox system and activated by the in vivo activator, kallikrein. The active form, rbetaFXIIa, obtained in milligram quantities, exhibited similar structural and comparable functional properties relative to human betaFXIIa, as indicated by circular dichroism spectroscopy and kinetics of substrate hydrolysis. Thermodynamics of enzyme:inhibitor complex formation, including the expected 1:1 stoichiometry, was determined for rbetaFXIIa by isothermal calorimetric titration with a specific recombinant protein inhibitor, Cucurbita maxima trypsin inhibitor-V (rCMTI-V; 7kDa).
Collapse
Affiliation(s)
- Jixiu Shan
- Department of Biochemistry, Kansas State University, Manhattan, KS 66506, USA
| | | | | | | |
Collapse
|
23
|
Zhou H, Zhou Y. Stability scale and atomic solvation parameters extracted from 1023 mutation experiments. Proteins 2002; 49:483-92. [PMID: 12402358 DOI: 10.1002/prot.10241] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The stability scale of 20 amino acid residues is derived from a database of 1023 mutation experiments on 35 proteins. The resulting scale of hydrophobic residues has an excellent correlation with the octanol-to-water transfer free energy corrected with an additional Flory-Huggins molar-volume term (correlation coefficient r = 0.95, slope = 1.05, and a near zero intercept). Thus, hydrophobic contribution to folding stability is characterized remarkably well by transfer experiments. However, no corresponding correlation is found for hydrophilic residues. Both the hydrophilic portion and the entire scale, however, correlate strongly with average burial accessible surface (r = 0.76 and 0.97, respectively). Such a strong correlation leads to a near uniform value of the atomic solvation parameters for atoms C, S, O/N, O(-0.5), and N(+0.5,1). All are in the range of 12-28 cal x mol(-1) A(-2), close to the original estimate of hydrophobic contribution of 25-30 cal x mol(-1) A(-2) to folding stability. Without any adjustable parameters, the new stability scale and new atomic solvation parameters yielded an accurate prediction of protein-protein binding free energy for a separate database of 21 protein-protein complexes (r = 0.80 and slope = 1.06, and r = 0.83 and slope = 0.93, respectively).
Collapse
Affiliation(s)
- Hongyi Zhou
- Howard Hughes Medical Institute Center for Single Molecule Biophysics, Department of Physiology & Biophysics, State University of New York at Buffalo, Buffalo, New York 14214, USA
| | | |
Collapse
|
24
|
Jiang L, Gao Y, Mao F, Liu Z, Lai L. Potential of mean force for protein-protein interaction studies. Proteins 2002; 46:190-6. [PMID: 11807947 DOI: 10.1002/prot.10031] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Calculating protein-protein interaction energies is crucial for understanding protein-protein associations. On the basis of the methodology of mean-field potential, we have developed an empirical approach to estimate binding free energy for protein-protein interactions. This knowledge-based approach has been used to derive distance-dependent free energies of protein complexes from a nonredundant training set in the Protein Data Bank (PDB), with a careful treatment of homology. We calculate atom pair potentials for 16 pair interactions, which can reflect the importance of hydrophobic interactions and specific hydrogen-bonding interactions. The derived potentials for hydrogen-bonding interactions show a valley of favorable interactions at a distance of approximately 3 A, corresponding to that of an established hydrogen bond. For the test set of 28 protein complexes, the calculated energies have a correlation coefficient of 0.75 compared with experimental binding free energies. The performance of the method in ranking the binding energies of different protein-protein complexes shows that the energy estimation can be applied to value binding free energies for protein-protein associations.
Collapse
Affiliation(s)
- Lin Jiang
- Institute of Physical Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | | | | | | | | |
Collapse
|
25
|
Banta S, Swanson BA, Wu S, Jarnagin A, Anderson S. Alteration of the specificity of the cofactor-binding pocket of Corynebacterium 2,5-diketo-D-gluconic acid reductase A. Protein Eng Des Sel 2002; 15:131-40. [PMID: 11917149 DOI: 10.1093/protein/15.2.131] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The NADPH-dependent 2,5-diketo-D-gluconic acid (2,5-DKG) reductase enzyme is a required component in some novel biosynthetic vitamin C production processes. This enzyme catalyzes the conversion of 2,5-DKG to 2-keto-L-gulonic acid, which is an immediate precursor to L-ascorbic acid. Forty unique site-directed mutations were made at five residues in the cofactor-binding pocket of 2,5-DKG reductase A in an attempt to improve its ability to use NADH as a cofactor. NADH is more stable, less expensive and more prevalent in the cell than is NADPH. To the best of our knowledge, this is the first focused attempt to alter the cofactor specificity of a member of the aldo-keto reductase superfamily by engineering improved activity with NADH into the enzyme. Activity of the mutants with NADH or NADPH was assayed using activity-stained native polyacrylamide gels. Eight of the mutants at three different sites were identified as having improved activity with NADH. These mutants were purified and subjected to a kinetic characterization with NADH as a cofactor. The best mutant obtained, R238H, produced an almost 7-fold improvement in catalysis with NADH compared with the wild-type enzyme. Surprisingly, most of this catalytic improvement appeared to be due to an improvement in the apparent kcat for the reaction rather than a large improvement in the affinity of the enzyme for NADH.
Collapse
Affiliation(s)
- Scott Banta
- Department of Chemical and Biochemical Engineering, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | | | | | | | | |
Collapse
|
26
|
Dmochowski IJ, Winkler JR, Gray HB. Enantiomeric discrimination of Ru-substrates by cytochrome P450cam. J Inorg Biochem 2000; 81:221-8. [PMID: 11051567 DOI: 10.1016/s0162-0134(00)00111-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Molecules with photosensitizers attached to substrates (Wilker et al., Angew. Chem. Int. Ed. 38 (1999) 90-92) or cofactors (Hamachi et al., J. Am. Chem. Soc. 121 (1999) 5500-5506) can rapidly deliver redox equivalents to buried active sites. The structure of cytochrome P450cam (P450) co-crystallized with a prototypal sensitizer-substrate, [Ru-C9-Ad]Cl2, has been determined (Dmochowski et al., Proc. Natl. Acad. Sci. USA 96 (1999) 12987-12990); and, in separate UV-vis absorption and time-resolved luminescence experiments, the binding of the lambda and delta enantiomers of Ru-C9-Ad to P450 has been measured. The results, KD(delta/lambda) approximately 2, indicate that the bipyridyl ligands of the lambda isomer interact more favorably with hydrophobic residues at the entrance to the substrate channel. We conclude that enantiospecific interactions may be exploited in the design of enzyme-metallosubstrate conjugates.
Collapse
Affiliation(s)
- I J Dmochowski
- Beckman Institute, California Institute of Technology, Pasadena 91125, USA
| | | | | |
Collapse
|
27
|
Koepke J, Ermler U, Warkentin E, Wenzl G, Flecker P. Crystal structure of cancer chemopreventive Bowman-Birk inhibitor in ternary complex with bovine trypsin at 2.3 A resolution. Structural basis of Janus-faced serine protease inhibitor specificity. J Mol Biol 2000; 298:477-91. [PMID: 10772864 DOI: 10.1006/jmbi.2000.3677] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Understanding molecular recognition on a structural basis is an objective with broad academic and applied significance. In the complexes of serine proteases and their proteinaceous inhibitors, recognition is governed mainly by residue P1 in accord with primary serine protease specificity. The bifunctional soybean Bowman-Birk inhibitor (sBBI) should, therefore, interact at LysI16 (subdomain 1) with trypsin and at LeuI43 (subdomain 2) with chymotrypsin. In contrast with this prediction, a 2:1 assembly with trypsin was observed in solution and in the crystal structure of sBBI in complex with trypsin, determined at 2.3 A resolution by molecular replacement. Strikingly, P1LeuI43 of sBBI was fully embedded into the S(1) pocket of trypsin in contrast to primary specificity. The triple-stranded beta-hairpin unique to the BBI-family and the surface loops surrounding the active site of the enzyme formed a protein-protein-interface far extended beyond the primary contact region. Polar residues, hydrophilic bridges and weak hydrophobic contacts were predominant in subdomain 1, interacting specifically with trypsin. However, close hydrophobic contacts across the interface were characteristic of subdomain 2 reacting with both trypsin and chymotrypsin. A Met27Ile replacement shifted the ratio with trypsin to the predicted 1:1 ratio. Thus, the buried salt-bridge responsible for trypsin specificity was stabilised in a polar, and destabilized in a hydrophobic, environment. This may be used for adjusting the specificity of protease inhibitors for applications such as insecticides and cancer chemopreventive agents.
Collapse
Affiliation(s)
- J Koepke
- Max Planck Institut für Biophysik, Frankfurt am Main, Germany
| | | | | | | | | |
Collapse
|
28
|
Laskowski M, Qasim MA. What can the structures of enzyme-inhibitor complexes tell us about the structures of enzyme substrate complexes? BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1477:324-37. [PMID: 10708867 DOI: 10.1016/s0167-4838(99)00284-8] [Citation(s) in RCA: 257] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Proteinases perform many beneficial functions that are essential to life, but they are also dangerous and must be controlled. Here we focus on one of the control mechanisms: the ubiquitous presence of protein proteinase inhibitors. We deal only with a subset of these: the standard mechanism, canonical protein inhibitors of serine proteinases. Each of the inhibitory domains of such inhibitors has one reactive site peptide bond, which serves all the cognate enzymes as a substrate. The reactive site peptide bond is in a combining loop which has an identical conformation in all inhibitors and in all enzyme-inhibitor complexes. There are at least 18 families of such inhibitors. They all share the conformation of the combining loops but each has its own global three-dimensional structure. Many three-dimensional structures of enzyme-inhibitor complexes were determined. They are frequently used to predict the conformation of substrates in very short-lived enzyme-substrate transition state complexes. Turkey ovomucoid third domain and eglin c have a Leu residue at P(1). In complexes with chymotrypsin, these P(1) Leu residues assume the same conformation. The relative free energies of binding of P(1) Leu (relative to either P(1) Gly or P(1) Ala) are within experimental error, the same for complexes of turkey ovomucoid third domain, eglin c, P(1) Leu variant of bovine pancreatic trypsin inhibitor and of a substrate with chymotrypsin. Therefore, the P(1) Leu conformation in transition state complexes is predictable. In contrast, the conformation of P(1) Lys(+) is strikingly different in the complexes of Lys(18) turkey ovomucoid third domain and of bovine pancreatic trypsin inhibitor with chymotrypsin. The relative free energies of binding are also quite different. Yet, the relative free energies of binding are nearly identical for Lys(+) in turkey ovomucoid third domain and in a substrate, thus allowing us to know the structure of the latter. Similar reasoning is applied to a few other systems.
Collapse
Affiliation(s)
- M Laskowski
- Department of Chemistry, Purdue University, 1393 Brown Building, West Lafayette, IN 47907, USA.
| | | |
Collapse
|
29
|
Bateman KS, Anderson S, Lu W, Qasim MA, Laskowski M, James MN. Deleterious effects of beta-branched residues in the S1 specificity pocket of Streptomyces griseus proteinase B (SGPB): crystal structures of the turkey ovomucoid third domain variants Ile18I, Val18I, Thr18I, and Ser18I in complex with SGPB. Protein Sci 2000; 9:83-94. [PMID: 10739250 PMCID: PMC2144452 DOI: 10.1110/ps.9.1.83] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Turkey ovomucoid third domain (OMTKY3) is a canonical inhibitor of serine proteinases. Upon complex formation, the inhibitors fully exposed P1 residue becomes fully buried in the preformed cavity of the enzyme. All 20 P1 variants of OMTKY3 have been obtained by recombinant DNA technology and their equilibrium association constants have been measured with six serine proteinases. To rationalize the trends observed in this data set, high resolution crystal structures have been determined for OMTKY3 P1 variants in complex with the bacterial serine proteinase, Streptomyces griseus proteinase B (SGPB). Four high resolution complex structures are being reported in this paper; the three beta-branched variants, Ile18I, Val18I, and Thr18I, determined to 2.1, 1.6, and 1.7 A resolution, respectively, and the structure of the Ser18I variant complex, determined to 1.9 A resolution. Models of the Cys18I, Hse18I, and Ape18I variant complexes are also discussed. The beta-branched side chains are not complementary to the shape of the S1 binding pocket in SGPB, in contrast to that of the wild-type gamma-branched P1 residue for OMTKY3, Leu18I. Chi1 angles of approximately 40 degrees are imposed on the side chains of Ile18I, Val18I, and Thr18I within the S1 pocket. Dihedral angles of +60 degrees, -60 degrees, or 180 degrees are more commonly observed but 40 degrees is not unfavorable for the beta-branched side chains. Thr18I Ogamma1 also forms a hydrogen bond with Ser195 Ogamma in this orientation. The Ser18I side chain adopts two alternate conformations within the S1 pocket of SGPB, suggesting that the side chain is not stable in either conformation.
Collapse
Affiliation(s)
- K S Bateman
- Medical Research Council of Canada Group in Protein Structure and Function, Department of Biochemistry, University of Alberta, Edmonton
| | | | | | | | | | | |
Collapse
|
30
|
McBride JD, Freeman HN, Leatherbarrow RJ. Selection of human elastase inhibitors from a conformationally constrained combinatorial peptide library. EUROPEAN JOURNAL OF BIOCHEMISTRY 1999; 266:403-12. [PMID: 10561580 DOI: 10.1046/j.1432-1327.1999.00867.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
A resin-bound cyclic peptide library was constructed based on the sequence of the reactive-site loop of Bowman-Birk inhibitor, a proteinase inhibitor protein. The constrained loop sequence, which incorporates the minimal proteinase-binding motif, was retained throughout the library, but selected residues known to be important for inhibitor specificity were randomised. The approach was used to create a 'one bead, one peptide' library with 8000 variants resulting from randomization at three target locations in the sequence (P4, P1 and P2'). This library allows us to examine the degree to which variations in this proteinase-binding motif can redirect activity, as well as providing information about the binding specificity of a proteinase target. Screening this library for binding to human leucocyte elastase identified sequences with a strong consensus, and on resynthesis all were found to act as inhibitors, with Ki values as low as 65 nM. Human leucocyte elastase is known to have a substrate preference for small alkyl chains at the P1 locus, with valine being preferred. However, alanine and not the expected valine was found in 21 out of 23 identified sequences. The remaining two sequences had threonine at P1, a finding that would be hard to predict based on substrate specificity alone. Further analysis of resynthesized peptides demonstrated that valine substitution results in an analogue that is hydrolysed far more rapidly than ones having library-selected P1 residues. Testing of the human leucocyte elastase-selected sequences as inhibitors of porcine pancreatic elastase demonstrates a significant difference in the specificity of the P4 locus between these two proteinases.
Collapse
Affiliation(s)
- J D McBride
- Department of Chemistry, Imperial College of Science, Technology, and Medicine, London, UK
| | | | | |
Collapse
|
31
|
Sleigh SH, Seavers PR, Wilkinson AJ, Ladbury JE, Tame JR. Crystallographic and calorimetric analysis of peptide binding to OppA protein. J Mol Biol 1999; 291:393-415. [PMID: 10438628 DOI: 10.1006/jmbi.1999.2929] [Citation(s) in RCA: 105] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Isothermal titration calorimetry has been used to study the binding of 20 different peptides to the peptide binding protein OppA, and the crystal structures of the ligand complexes have been refined. This periplasmic binding protein, part of the oligopeptide permease system of Gram negative bacteria, has evolved to bind and enclose small peptides of widely varying sequences. The peptides used in this study have the sequence Lys-X-Lys, where X is any of the 20 commonly occurring amino acids. The various side-chains found at position 2 on the ligand fit into a hydrated pocket. The majority of side-chains are restrained to particular conformations within the pocket. Water molecules act as flexible adapters, matching the hydrogen-bonding requirements of the protein and ligand and shielding charges on the buried ligand. This use of water by OppA to broaden the repertoire of its binding site is not unique, but contrasts sharply with other proteins which use water to help bind ligands highly selectively. Predicting the thermodynamics of binding from the structure of the complexes is highly complicated by the influence of water on the system.
Collapse
Affiliation(s)
- S H Sleigh
- Structural Biology Centre Department of Chemistry, University of York, York, YO10 5DD, UK
| | | | | | | | | |
Collapse
|
32
|
|
33
|
Abstract
A fast and reliable evaluation of the binding energy from a single conformation of a molecular complex is an important practical task. Knowledge-based scoring schemes may not be sufficiently general and transferable, while molecular dynamics or Monte Carlo calculations with explicit solvent are too computationally expensive for many applications. Recently, several empirical schemes using finite difference Poisson-Boltzmann electrostatics to predict energies for particular types of complexes were proposed. Here, an improved empirical binding energy function has been derived and validated on three different types of complexes: protein-small ligand, protein-peptide and protein-protein. The function uses the boundary element algorithm to evaluate the electrostatic solvation energy. We show that a single set of parameters can predict the relative binding energies of the heterogeneous validation set of complexes with 2.5 kcal/mol accuracy. We also demonstrate that global optimization of the ligand and of the flexible side-chains of the receptor improves the accuracy of the evaluation.
Collapse
Affiliation(s)
- M Schapira
- Skirball Institute of Biomolecular Medicine, Structural Biology, New York University Medical Center, 540 First Avenue, New York, NY 10016, USA
| | | | | |
Collapse
|
34
|
Wade H, Scanlan TS. Remote Binding Energy in Antibody Catalysis: Studies of a Catalytically Unoptimized Specificity Pocket. J Am Chem Soc 1999. [DOI: 10.1021/ja983017e] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Herschel Wade
- Contribution from The Departments of Pharmaceutical Chemistry and Cellular and Molecular Pharmacology, University of California, San Francisco, California 94143-0446
| | - Thomas S. Scanlan
- Contribution from The Departments of Pharmaceutical Chemistry and Cellular and Molecular Pharmacology, University of California, San Francisco, California 94143-0446
| |
Collapse
|
35
|
Abstract
The non-covalent assembly of proteins that fold separately is central to many biological processes, and differs from the permanent macromolecular assembly of protein subunits in oligomeric proteins. We performed an analysis of the atomic structure of the recognition sites seen in 75 protein-protein complexes of known three-dimensional structure: 24 protease-inhibitor, 19 antibody-antigen and 32 other complexes, including nine enzyme-inhibitor and 11 that are involved in signal transduction.The size of the recognition site is related to the conformational changes that occur upon association. Of the 75 complexes, 52 have "standard-size" interfaces in which the total area buried by the components in the recognition site is 1600 (+/-400) A2. In these complexes, association involves only small changes of conformation. Twenty complexes have "large" interfaces burying 2000 to 4660 A2, and large conformational changes are seen to occur in those cases where we can compare the structure of complexed and free components. The average interface has approximately the same non-polar character as the protein surface as a whole, and carries somewhat fewer charged groups. However, some interfaces are significantly more polar and others more non-polar than the average. Of the atoms that lose accessibility upon association, half make contacts across the interface and one-third become fully inaccessible to the solvent. In the latter case, the Voronoi volume was calculated and compared with that of atoms buried inside proteins. The ratio of the two volumes was 1.01 (+/-0.03) in all but 11 complexes, which shows that atoms buried at protein-protein interfaces are close-packed like the protein interior. This conclusion could be extended to the majority of interface atoms by including solvent positions determined in high-resolution X-ray structures in the calculation of Voronoi volumes. Thus, water molecules contribute to the close-packing of atoms that insure complementarity between the two protein surfaces, as well as providing polar interactions between the two proteins.
Collapse
Affiliation(s)
- L Lo Conte
- MRC Laboratory of Molecular Biology, Hills Road, Cambridge, CB1 1JX, England
| | | | | |
Collapse
|
36
|
Fujinaga M, Huang K, Bateman KS, James MN. Computational analysis of the binding of P1 variants of domain 3 of turkey ovomucoid inhibitor to Streptomyces griseus protease B. J Mol Biol 1998; 284:1683-94. [PMID: 9878379 DOI: 10.1006/jmbi.1998.2277] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Binding constants for complexes of variants of the ovomucoid inhibitor domain 3 from turkey (OMTKY3) and Streptomyces griseus protease B (SGPB) have been computed. On the basis of the crystallographically determined structures of the complexes, continuum electrostatic calculations have been carried out to evaluate the electrostatic contribution to the binding energy. The hydrophobic component was computed based on the change in the solvent accessible surface area on complex formation. These two terms were combined linearly and the parameters for the protein dielectric, atomic solvation parameter and a constant term were derived using a multivariate fit to the observed binding energies. The resulting fit shows a high correlation with a multiple coefficient of determination of 0.79. This indicates that 79% of the variation in the observed binding energies is explained by the electrostatic and hydrophobic terms. The analysis results in a protein dielectric of 8.2 and an atomic solvation parameter of 30 cal/mol A2. As a test, these parameters were used to calculate the binding energies of complexes of chymotrypsin and of leukocyte elastase OMTKY3, as well as three other variants of OMTKY3 bound to SGPB. As these structures were not used for the multivariate fit, they serve as an independent check on the derived parameters. The calculated energies for the three new variants of OMTKY3 are in good agreement with the observed values. However, the binding energies of the other complexes are poorly predicted. This implies that the parameters that were obtained are not transferable. The possible causes for this lack of transferability are discussed.
Collapse
Affiliation(s)
- M Fujinaga
- Group in Protein Structure and Function, University of Alberta, Edmonton, Alberta, T6G 2H7, Canada.
| | | | | | | |
Collapse
|
37
|
Asao T, Takahashi K, Tashiro M. Interaction of second and third domains of Japanese quail ovomucoid with ten mammalian trypsins. BIOCHIMICA ET BIOPHYSICA ACTA 1998; 1387:415-21. [PMID: 9748658 DOI: 10.1016/s0167-4838(98)00155-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Second and third domains were prepared from Japanese quail ovomucoid and association equilibrium constants, Kas, were measured at 25 degreesC and pH 8 for these domains with trypsins from ten mammalian species: cat, cow, dog, guinea pig, hog, horse, man, rabbit, rat, and sheep. The values ranged from 108 M-1 to 1010 M-1 for the second domain-trypsin associations and from 106 M-1 to 108 M-1 for the third domain-trypsin associations. Changes in Ka values for the interactions between the trypsins and each domain are attributed to slight changes in surface conformation caused by the residue changes in the inhibitor-binding region other than the S1 pocket of the trypsin species. The representative of such residue changes is assumed to be the one observed at residue 217 of trypsin molecule. Concerning each trypsin, the Ka value with the second domain was always higher than that with the third domain. However, the ratios between the two equilibrium constants varied from 3 to 60 depending upon trypsin species. This means that amino acid changes in enzyme-contact residues other than the P1 site of the Kazal-type inhibitor can make it possible to recognize even a slight difference in inhibitor-binding surface among the enzymes with the same S1 pocket and highly similar overall three-dimensional structure.
Collapse
Affiliation(s)
- T Asao
- School of Human Environmental Sciences, Mukogawa Women's University, Nishinomiya, Hyogo 663-8558, Japan
| | | | | |
Collapse
|
38
|
Roskoski R, Ritchie P. Role of the carboxyterminal residue in peptide binding to protein farnesyltransferase and protein geranylgeranyltransferase. Arch Biochem Biophys 1998; 356:167-76. [PMID: 9705207 DOI: 10.1006/abbi.1998.0768] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Protein farnesyltransferase and protein geranylgeranyltransferase-I catalyze the prenylation of a cysteinyl group located four residues upstream of the carboxyl terminus. The identity of the carboxyterminal residue plays a significant role in determining the ability of compounds to bind to each enzyme and to serve as substrate. We compared the binding and substrate specificities of peptides with carboxyterminal substitutions to determine which residues promote selectivity and which residues promote recognition by both enzymes. Using tetrapeptide inhibitors with the general structure l-penicillamine-valine-isoleucine-X and substrates with the structure Lys-Lys-Ser-Ser-Cys-Val-Ile-X, we measured their respective Ki, Km, and kcat values for both recombinant rat protein farnesyltransferase and recombinant rat protein geranylgeranyltransferase-I. We studied the roles of carboxyterminal branched residues (leucine, isoleucine, valine, and penicillamine) and linear residues (methionine, cysteine, homocysteine, alanine, aminobutyrate, and aminohexanoate) in promoting interaction with the enzymes. For protein geranylgeranyltransferase-I, peptide substrates with carboxyterminal branched or linear residues had Km values that were 5- to 15-fold greater than the Ki values of the corresponding peptide inhibitors. For protein farnesyltransferase, peptide substrates with carboxyterminal branched residues, proline, or homoserine had Km values that were 7- to 200-fold greater than the Ki values of the corresponding peptide inhibitors. For protein farnesyltransferase the Km and Ki values for peptides ending with linear residues were in general agreement. Our studies indicate that the substrate and inhibitor binding specificities of protein geranylgeranyltransferase was much more restricted than those of protein farnesyltransferase.
Collapse
Affiliation(s)
- R Roskoski
- Department of Biochemistry and Molecular Biology, Louisiana State University Medical Center, New Orleans 70119, USA
| | | |
Collapse
|
39
|
Krook M, Lindbladh C, Eriksen JA, Mosbach K. Selection of a cyclic nonapeptide inhibitor to alpha-chymotrypsin using a phage display peptide library. Mol Divers 1998; 3:149-59. [PMID: 9680646 DOI: 10.1023/a:1009697515328] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
A cyclic nonapeptide library displayed on filamentous bacteriophages was selected 6 times against alpha-chymotrypsin (EC 3.4.21.1) at three different pH conditions (6.5, 7.0, and 7.5). Phage peptide clones from the sixth selection, at all three pH conditions, interacted more strongly with alpha-chymotrypsin than the original library and a wild-type phage did. DNA sequencing of the selected phage peptide clones showed that different cyclic nonapeptide sequences had been selected at the different pH conditions. The oxidized form of the synthetic peptide, Cys-Cys-Phe-Ser-Trp-Arg-Cys-Arg-Cys, selected at pH 7.5, could completely inhibit the enzymatic activity of alpha-chymotrypsin. The structurally related enzymes trypsin (bovine) and elastase (porcine) were only marginally inhibited by the same peptide under the same conditions. The inhibition constant for alpha-chymotrypsin was estimated to be 10(-6) M. Phage clones expressing this peptide had a lower affinity for phenylmethylsulfonylfluoride-modified alpha-chymotrypsin than for natural alpha-chymotrypsin as determined by an enzyme immunosorbent assay. This peptide phage clone was also competitively prevented from binding to alpha-chymotrypsin by the corresponding synthetic oxidized peptide. Collectively, the results suggest that the oxidized form of the selected peptide Cys-Cys-Phe- Ser-Trp-Arg-Cys-Arg-Cys interacts with the active site of alpha-chymotrypsin and acts as a specific inhibitor to the enzyme. To our knowledge, the selected sequence Cys-Cys-Phe-Ser-Trp-Arg-Cys-Arg-Cys has not been found in nature.
Collapse
Affiliation(s)
- M Krook
- Department of Pure and Applied Biochemistry, Lund University, Sweden
| | | | | | | |
Collapse
|
40
|
Kawaguchi SI, Kuramitsu S. Thermodynamics and molecular simulation analysis of hydrophobic substrate recognition by aminotransferases. J Biol Chem 1998; 273:18353-64. [PMID: 9660802 DOI: 10.1074/jbc.273.29.18353] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Aromatic amino acid aminotransferase (AroAT) and aspartate aminotransferase (AspAT) are known as dual-substrate enzymes, which can bind acidic and hydrophobic substrates in the same pocket (Kawaguchi, S., Nobe, Y., Yasuoka, J., Wakamiya, T., Kusumoto, S., and Kuramitsu, S. (1997) J. Biochem. (Tokyo) 122, 55-63). In order to elucidate the mechanism of hydrophobic substrate recognition, kinetic and thermodynamic analyses using substrates with different hydrophobicities were performed. They revealed that 1) amino acid substrate specificity (kmax/Kd) depended on the affinity for the substrate (1/Kd) and 2) binding of the hydrophobic side chain was enthalpy-driven, suggesting that van der Waals interactions between the substrate-binding pocket and hydrophobic substrate predominated. Three-dimensional structures of AspAT and AroAT bound to alpha-aminoheptanoic acid were built using the homology modeling method. A molecular dynamic simulation study suggested that the outward-facing position of the Arg292 side chain was the preferred state to a greater extent in AroAT than AspAT, which would make the hydrophobic substrate bound state of the former more stable. Furthermore, AroAT appeared to have a more flexible conformation than AspAT. Such flexibility would be expected to reduce the energetic cost of conformational rearrangement induced by substrate binding. These two mechanisms (positional preference of Arg and flexible conformation) may account for the high activity of AroAT toward hydrophobic substrates.
Collapse
Affiliation(s)
- S i Kawaguchi
- Department of Biology, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
| | | |
Collapse
|
41
|
Apostol I, Levine J, Lippincott J, Leach J, Hess E, Glascock CB, Weickert MJ, Blackmore R. Incorporation of norvaline at leucine positions in recombinant human hemoglobin expressed in Escherichia coli. J Biol Chem 1997; 272:28980-8. [PMID: 9360970 DOI: 10.1074/jbc.272.46.28980] [Citation(s) in RCA: 71] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
We report here a novel finding that norvaline can be incorporated in place of leucine in recombinant human hemoglobin expressed in Escherichia coli. The presence of the norvaline was confirmed by several analytical methods such as amino acid analysis, peptide mapping, electrospray mass spectrometry, and Edman protein sequencing. It appears that substitution is distributed across both the beta- and di-alpha-globins in purified recombinant hemoglobin. The level of misincorporation correlated with the ratio of the free norvaline/leucine pool available in the cell culture. This suggests that the incorporation of norvaline for leucine occurs through misaminoacylation of tRNALeu, similar to the misincorporation of norleucine for methionine found in many recombinant proteins expressed in E. coli.
Collapse
Affiliation(s)
- I Apostol
- Somatogen, Inc., Boulder, Colorado 80301, USA
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Baker BM, Murphy KP. Dissecting the energetics of a protein-protein interaction: the binding of ovomucoid third domain to elastase. J Mol Biol 1997; 268:557-69. [PMID: 9159490 DOI: 10.1006/jmbi.1997.0977] [Citation(s) in RCA: 126] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
An understanding of the structural basis for protein-protein interactions, and molecular recognition in general, requires complete characterization of binding energetics. Not only does this include quantification of the changes that occur in all of the thermodynamic parameters upon binding, including the enthalpy, entropy and heat capacity, but a description of how these changes are modulated by environmental conditions, most notably pH. Here, we have investigated the binding of turkey ovomucoid third domain (OMTKY3), a potent serine protease inhibitor, to the serine protease porcine pancreatic elastase (PPE) using isothermal titration calorimetry and structure-based thermodynamic calculations. We find that near neutral pH the binding energetics are influenced by a shift in the pKa of an ionizable group, most likely histidine 57 in the protease active site. Consequently, the observed binding energetics are strongly dependent upon solution conditions. Through a global analysis, the intrinsic energetics of binding have been determined, as have those associated with the pKa shift. The protonation energetics suggest that the drop in pKa is largely due to desolvation of the histidine residue. The resulting deprotonation is necessary for the enzymatic function of elastase. Intrinsically, at 25 degrees C the binding of OMTKY3 to PPE is characterized by an almost negligible enthalpy change, a large positive entropy change, and a large negative heat capacity change. These parameters are consistent with a model of the OMTKY3-PPE complex, which shows a large and significantly apolar protein-protein interface. Thermodynamic calculations based upon changes that occur in polar and apolar solvent-accessible surface area are in very good agreement with the measured intrinsic binding energetics.
Collapse
Affiliation(s)
- B M Baker
- Department of Biochemistry, University of Iowa, Iowa City 52242, USA
| | | |
Collapse
|
43
|
Lu W, Apostol I, Qasim MA, Warne N, Wynn R, Zhang WL, Anderson S, Chiang YW, Ogin E, Rothberg I, Ryan K, Laskowski M. Binding of amino acid side-chains to S1 cavities of serine proteinases. J Mol Biol 1997; 266:441-61. [PMID: 9047374 DOI: 10.1006/jmbi.1996.0781] [Citation(s) in RCA: 131] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The P1 or primary specificity residue of standard mechanism canonical protein inhibitors of serine proteinases, inserts into the S1 primary specificity cavity of the cognate enzyme upon enzyme-inhibitor complex formation. Both natural evolution and protein engineering often change the P1 residue to greatly alter the specificity and the binding strength. To systematize such results we have obtained all 20 coded P1 variants of one such inhibitor, turkey ovomucoid third domain, by recombinant DNA technology. The variants were extensively characterized. The association equilibrium constants were measured at pH 8.30, 21 (+/-2) degrees C, for interaction of these variants with six well characterized serine proteinases with hydrophobic S1, cavities. The enzyme names are followed by the best, worst and most specific coded residue for each. Bovine chymotrypsin A alpha (Tyr, Pro, Trp), porcine pancreatic elastase (Leu/Ala, Arg, Ala), subtilisin Carlsberg (Cys, Pro, Glu), Streptomyces griseus proteinase A (Cys, Pro, Leu) and B (Cys, Pro, Lys) and human leukocyte elastase (Ile, Asp, Ile). The data set was merged with Ka values for five non-coded variants at P1 of turkey ovomucoid third domain obtained in our laboratory by enzymatic semisynthesis. The ratios of the highest to the lowest Ka for each of the six enzymes range from 10(6) to 10(8). The dominant force for binding to these pockets is the hydrophobic interaction. Excess steric bulk (too large for the pocket), awkward shape (Pro, Val and Ile), polarity (Ser) oppose interaction. Ionic charges, especially negative charges on Glu- and Asp- are strongly unfavorable. The Pearson pro duct moment correlations for all the 15 enzyme pairs were calculated. We suggest that these may serve as a quantitative description of the specificity of the enzymes at P1. The sets of Streptomyces griseus proteinases A and B and of the two elastases are strongly positively correlated. Strikingly, chymotrypsin and pancreatic elastase are negatively correlated (-0.10). Such correlations can be usefully extended to many other enzymes and to many other binding pockets to provide a general measure of pocket binding specificity.
Collapse
Affiliation(s)
- W Lu
- Department of Chemistry, Purdue University, West Lafayette, IN 47907, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Lu W, Qasim MA, Kent SBH. Comparative Total Syntheses of Turkey Ovomucoid Third Domain by Both Stepwise Solid Phase Peptide Synthesis and Native Chemical Ligation. J Am Chem Soc 1996. [DOI: 10.1021/ja960812o] [Citation(s) in RCA: 51] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Wuyuan Lu
- Contribution from The Scripps Research Institute, 10666 North Torrey Pines Road, La Jolla, California 92037, and the Chemistry Department, Purdue University, West Lafayette, Indiana 47907
| | - M. A. Qasim
- Contribution from The Scripps Research Institute, 10666 North Torrey Pines Road, La Jolla, California 92037, and the Chemistry Department, Purdue University, West Lafayette, Indiana 47907
| | - Stephen B. H. Kent
- Contribution from The Scripps Research Institute, 10666 North Torrey Pines Road, La Jolla, California 92037, and the Chemistry Department, Purdue University, West Lafayette, Indiana 47907
| |
Collapse
|
45
|
Abstract
Serpins are well-characterized inhibitors of the chymotrypsin family serine proteinases. We have investigated the interaction of two serpins with members of the subtilisin family, proteinases that possess a similar catalytic mechanism to the chymotrypsins, but a totally different scaffold. We demonstrate that alpha 1 proteinase inhibitor inhibits subtilisin Carlsberg and proteinase K, and alpha 1 antichymotrypsin inhibits proteinase K, but not subtilisin Carlsberg. When inhibition occurs, the rate of formation and stability of the complexes are similar to those formed between serpins and chymotrypsin family members. However, inhibition of subtilisins is characterized by large partition ratios where more than four molecules of each serpin are required to inhibit one subtilisin molecule. The partition ratio is caused by the serpins acting as substrates or inhibitors. The ratio decreases as temperature is elevated in the range 0-45 degrees C, indicating that the serpins are more efficient inhibitors at high temperature. These aspects of the subtilisin interaction are all observed during inhibition of chymotrypsin family members by serpins, indicating that serpins accomplish inhibition of these two distinct proteinase families by the same mechanism.
Collapse
Affiliation(s)
- T Komiyama
- Department of Pathology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | | | | | |
Collapse
|
46
|
Abstract
A long sought goal in the physical chemistry of macromolecular structure, and one directly relevant to understanding the molecular basis of biological recognition, is predicting the geometry of bimolecular complexes from the geometries of their free monomers. Even when the monomers remain relatively unchanged by complex formation, prediction has been difficult because the free energies of alternative conformations of the complex have been difficult to evaluate quickly and accurately. This has forced the use of incomplete target functions, which typically do no better than to provide tens of possible complexes with no way of choosing between them. Here we present a general framework for empirical free energy evaluation and report calculations, based on a relatively complete and easily executable free energy function, that indicate that the structures of complexes can be predicted accurately from the structures of monomers, including close sequence homologues. The calculations also suggest that the binding free energies themselves may be predicted with reasonable accuracy. The method is compared to an alternative formulation that has also been applied recently to the same data set. Both approaches promise to open new opportunities in macromolecular design and specificity modification.
Collapse
Affiliation(s)
- Z Weng
- Department of Biomedical Engineering, Boston University, Massachusetts 02215, USA
| | | | | |
Collapse
|
47
|
Abul Qasim M, Ranjbar MR, Wynn R, Anderson S, Laskowski M. Ionizable P1 residues in serine proteinase inhibitors undergo large pK shifts on complex formation. J Biol Chem 1995; 270:27419-22. [PMID: 7499197 DOI: 10.1074/jbc.270.46.27419] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
The burial of charged residues in proteins is rare as it is thermodynamically strongly disfavored. However, in "standard mechanism" protein inhibitors of serine proteinases, the P1 residue, which is highly exposed, becomes buried in the S1 specificity pocket of the enzyme. In many enzymes, such as Streptomyces griseus proteinase B (SGPB) the S1 pocket is hydrophobic. We measured the pH dependence of the association equilibrium constant for the interaction of SGPB with turkey ovomucoid third domain P1 mutants, Glu18 OMTKY3 and His18 OMTKY3. In order to eliminate the effects of other ionizable groups on the enzyme and the inhibitor, we divided these pH dependences by the pH dependence of the association equilibrium constant for the Gln18 OMTKY3 mutant. This yielded for Glu18, pKf (free inhibitor) of 4.46 +/- 0.05 and pKc (complex) of 8.74 +/- 0.06. For His18 the values are pKf 6.63 +/- 0.08 and pKc 4.31 +/- 0.07. At low pH values Glu18 variant is a relatively good inhibitor for SGPB. This may be biologically relevant.
Collapse
Affiliation(s)
- M Abul Qasim
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907-1393, USA
| | | | | | | | | |
Collapse
|
48
|
Huang K, Lu W, Anderson S, Laskowski M, James MN. Water molecules participate in proteinase-inhibitor interactions: crystal structures of Leu18, Ala18, and Gly18 variants of turkey ovomucoid inhibitor third domain complexed with Streptomyces griseus proteinase B. Protein Sci 1995; 4:1985-97. [PMID: 8535235 PMCID: PMC2142981 DOI: 10.1002/pro.5560041004] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Crystal structures of the complexes of Streptomyces griseus proteinase B (SGPB) with three P1 variants of turkey ovomucoid inhibitor third domain (OMTKY3), Leu18, Ala18, and Gly18, have been determined and refined to high resolution. Comparisons among these structures and of each with native, uncomplexed SGPB reveal that each complex features a unique solvent structure in the S1 binding pocket. The number and relative positions of water molecules bound in the S1 binding pocket vary according to the size of the side chain of the P1 residue. Water molecules in the S1 binding pocket of SGPB are redistributed in response to the complex formation, probably to optimize hydrogen bonds between the enzyme and the inhibitor. There are extensive water-mediated hydrogen bonds in the interfaces of the complexes. In all complexes, Asn 36 of OMTKY3 participates in forming hydrogen bonds, via water molecules, with residues lining the S1 binding pocket of SGPB. For a homologous series of aliphatic straight side chains, Gly18, Ala18, Abu18, Ape18, and Ahp18 variants, the binding free energy is a linear function of the hydrophobic surface area buried in the interface of the corresponding complexes. The resulting constant of proportionality is 34.1 cal mol-1 A-2. These structures confirm that the binding of OMTKY3 to the preformed S1 pocket in SGPB involves no substantial structural disturbances that commonly occur in the site-directed mutagenesis studies of interior residues in other proteins, thus providing one of the most reliable assessments of the contribution of the hydrophobic effect to protein-complex stability.
Collapse
Affiliation(s)
- K Huang
- Department of Biochemistry, University of Alberta, Edmonton, Canada
| | | | | | | | | |
Collapse
|
49
|
Wangikar PP, Rich JO, Clark DS, Dordick JS. Probing enzymic transition state hydrophobicities. Biochemistry 1995; 34:12302-10. [PMID: 7547973 DOI: 10.1021/bi00038a026] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Hydrophobic interactions are important in numerous biological processes; however, the nature and extent of hydrophobic interactions in nonaqueous enzymology remain poorly defined. We have estimated the free energies of enzyme--substrate hydrophobic interactions for a model reaction catalyzed by subtilisin BPN'(from Bacillus amyloliquefaciens) in various solvents. Transition state stabilization of subtilisin in water has contributions from both ground state destabilization of hydrophobic substrates and intrinsic enzyme--substrate hydrophobic interactions. Both contributions are evident even in hydrophobic organic solvents and can be modified by protein engineering of the enzyme's binding site, as well as by changing the hydrophobicity of the reaction medium. We have also developed a method to estimate the hydrophobicity of the enzymic transition state involving systematic variation of the substrate and solvent hydrophobicities. The observed binding pocket hydrophobicities were directly affected by replacing the Gly166 residue, located at the back of hydrophobic S1 binding pocket of subtilisin BPN', with more hydrophobic amino acids such as alanine and valine. Thus, the observed S1 binding pocket hydrophobicities of the wild-type, G166A, and G166V mutants were measured to be 1.2, 1.8, and 2.6 log P units, respectively. Our method of calculating effective binding pocket hydrophobicity was found to be applicable to other enzymes, including horseradish peroxidase and alpha-chymotrypsin. Measurements of the binding pocket hydrophobicities have significant implications toward tailoring enzyme function in aqueous as well as nonaqueous media.
Collapse
Affiliation(s)
- P P Wangikar
- Department of Chemical and Biochemical Engineering, University of Iowa, Iowa City 52242, USA
| | | | | | | |
Collapse
|
50
|
Abstract
Semisynthesis is used to create defined analogues of proteins by the chemical manipulation of peptide fragments largely derived from the natural protein and the subsequent reassembly of those fragments into a near-native conformation. In common with the total synthesis of proteins, it requires efficient and non-destructive methods for peptide religation. Recently, a wide range of chemoselective ligation schemes have been elaborated that now permit the assembly of minimally protected peptides from either synthetic or natural sources.
Collapse
|