1
|
Dai Q, Peng Y, He P, Wu X. Interactions and communications in the prostate tumour microenvironment: evolving towards effective cancer therapy. J Drug Target 2025; 33:295-315. [PMID: 39445641 DOI: 10.1080/1061186x.2024.2418344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 10/02/2024] [Accepted: 10/14/2024] [Indexed: 10/25/2024]
Abstract
Prostate cancer is one of the most common malignancies in men. The tumour microenvironment (TME) has a critical role in the initiation, progression, and metastasis of prostate cancer. TME contains various cell types, including cancer-associated fibroblasts (CAFs), endothelial cells, immune cells such as macrophages, lymphocytes B and T, natural killer (NK) cells, and other proteins such as extracellular matrix (ECM) components. The interactions and communications between these cells within the TME are crucial for the growth and response of various solid tumours, such as prostate cancer to different anticancer modalities. In this review article, we exemplify the various mechanisms by which the TME influences prostate cancer progression. The roles of different cells, cytokines, chemokines, and growth factors in modulating the immune response and prostate tumour growth will be discussed. The impact of these cells and factors and other ECM components on tumour cell invasion and metastasis will also be discussed. We explain how these interactions in TME can affect the response of prostate cancer to therapy. We also highlight the importance of understanding these interactions to develop novel therapeutic approaches for prostate cancer.
Collapse
Affiliation(s)
- Qiang Dai
- Department of Urology, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Yanling Peng
- Department of Urology, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Peng He
- Department of Urology, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Xiaojun Wu
- Department of Urology, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| |
Collapse
|
2
|
Lei W, Xu H, Yao H, Li L, Wang M, Zhou X, Liu X. 5α-Hydroxycostic acid inhibits choroidal neovascularization in rats through a dual signalling pathway mediated by VEGF and angiopoietin 2. Mol Med 2023; 29:151. [PMID: 37914992 PMCID: PMC10621151 DOI: 10.1186/s10020-023-00674-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 05/30/2023] [Indexed: 11/03/2023] Open
Abstract
BACKGROUND 5α-Hydroxycostic acid is a eudemane sesquiterpene that is isolated from the natural plant, Laggera alata. It exerts anti-inflammatory and anti-angiogenic effects on human breast cancer cells, but its role and underlying mechanism in choroidal neovascularization (CNV) are still unclear. We conducted a study to verify that 5α-Hydroxycostic acid can inhibit the formation and leakage of CNV, and describe the possible dual pathway by which it exerts its inhibitory effects in this process. METHODS An in vitro model of choroidal neovascularization was established using VEGF164, while a rat model of choroidal neovascularization was established using a 532 nm laser. In both models, the effects of 5α-Hydroxycostic acid in vivo and in vitro were evaluated to determine its inhibitory effect on abnormal cell proliferation, migration and tubule formation, as well as its effect on pathological changes in choroidal tissues and the area of neovascularization leakage in rats. The levels of components in the VEGF/VEGFR and Ang2/Tie2 signaling pathways were measured in tissues and cells. RESULTS In vitro experiments have shown that 5α-Hydroxycostic acid can inhibit abnormal cell proliferation, migration and angiogenesis. Additionally, 5α-Hydroxycostic acid enhances cell adhesion by inhibiting the phosphorylation pathways of VEGFR2 and Tie2. In vivo experiments demonstrated that 5α-Hydroxycostic acid has a positive therapeutic effect on choroidal neovascularization in rats. It can effectively reduce vascular leakage, consistent with the results of the cell experiments. CONCLUSION 5α-Hydroxycostic acid can inhibit choroidal neovascularization by interfering with the VEGF- and Ang2/Tie2-related pathways, and it may be a good candidate drug for treating CNV.
Collapse
Affiliation(s)
- Wulong Lei
- Department of Ophthalmology, Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China
- Chongqing Key Laboratory of Ophthalmology, Chongqing, 400010, China
| | - Huan Xu
- Department of Ophthalmology, Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China
- Chongqing Key Laboratory of Ophthalmology, Chongqing, 400010, China
| | - Hao Yao
- Department of Ophthalmology, Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China
- Chongqing Key Laboratory of Ophthalmology, Chongqing, 400010, China
| | - Lanjiao Li
- Department of Ophthalmology, Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China
| | - Menglei Wang
- Department of Ophthalmology, Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China
| | - Xiyuan Zhou
- Department of Ophthalmology, Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China.
| | - Xueqin Liu
- Department of Ophthalmology, Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China.
| |
Collapse
|
3
|
Paramythiotis D, Kyriakidis F, Karlafti E, Didangelos T, Oikonomou IM, Karakatsanis A, Poulios C, Chamalidou E, Vagionas A, Michalopoulos A. Adenosquamous carcinoma of the pancreas: two case reports and review of the literature. J Med Case Rep 2022; 16:395. [DOI: https:/doi.org/10.1186/s13256-022-03610-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 09/13/2022] [Indexed: 05/16/2025] Open
Abstract
Abstract
Background
Among the total reported cases of pancreatic duct adenocarcinomas, around 1–2.9% are adenosquamous carcinomas of the pancreas. Due to limited data, preoperative diagnosis is a great challenge for physicians, and it is usually set post-operational, based on the pathologist report. We operated on two cases of adenosquamous carcinoma of the pancreas, which we present alongside the operation and treatment planning.
Case report
A 69-year-old Caucasian female and a 63-year-old Caucasian male presented themselves with jaundice in our department. The abdomen computed tomography and magnetic resonance imaging scans revealed lesions of the pancreas. A pancreas–duodenumectomy was performed in both patients, and the post-operational histology analysis revealed adenosquamous carcinoma of the pancreas head. The patients were discharged in good condition and received further chemotherapy treatment after surgery.
Conclusions
Two case reports of adenosquamous carcinoma of the pancreas are described here, which both underwent surgery resection. The limited available literature on this topic substantially limits the knowledge and guidance on treatment. A summarization of the available literature is attempted, alongside a description of possible fields of future research.
Collapse
|
4
|
Paramythiotis D, Kyriakidis F, Karlafti E, Didangelos T, Oikonomou IM, Karakatsanis A, Poulios C, Chamalidou E, Vagionas A, Michalopoulos A. Adenosquamous carcinoma of the pancreas: two case reports and review of the literature. J Med Case Rep 2022; 16:395. [PMID: 36309754 PMCID: PMC9618183 DOI: 10.1186/s13256-022-03610-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 09/13/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Among the total reported cases of pancreatic duct adenocarcinomas, around 1-2.9% are adenosquamous carcinomas of the pancreas. Due to limited data, preoperative diagnosis is a great challenge for physicians, and it is usually set post-operational, based on the pathologist report. We operated on two cases of adenosquamous carcinoma of the pancreas, which we present alongside the operation and treatment planning. CASE REPORT A 69-year-old Caucasian female and a 63-year-old Caucasian male presented themselves with jaundice in our department. The abdomen computed tomography and magnetic resonance imaging scans revealed lesions of the pancreas. A pancreas-duodenumectomy was performed in both patients, and the post-operational histology analysis revealed adenosquamous carcinoma of the pancreas head. The patients were discharged in good condition and received further chemotherapy treatment after surgery. CONCLUSIONS Two case reports of adenosquamous carcinoma of the pancreas are described here, which both underwent surgery resection. The limited available literature on this topic substantially limits the knowledge and guidance on treatment. A summarization of the available literature is attempted, alongside a description of possible fields of future research.
Collapse
Affiliation(s)
- Daniel Paramythiotis
- 1st Propaedeutic Surgery Department, AHEPA University General Hospital of Thessaloniki, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Filippos Kyriakidis
- 1st Propaedeutic Internal Medicine Department, AHEPA University General Hospital of Thessaloniki, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Eleni Karlafti
- 1st Propaedeutic Internal Medicine Department, AHEPA University General Hospital of Thessaloniki, Aristotle University of Thessaloniki, Thessaloniki, Greece
- Emergency Department, AHEPA University Hospital of Thessaloniki, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Triantafyllos Didangelos
- 1st Propaedeutic Internal Medicine Department, AHEPA University General Hospital of Thessaloniki, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Ilias-Marios Oikonomou
- 1st Propaedeutic Surgery Department, AHEPA University General Hospital of Thessaloniki, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Anestis Karakatsanis
- 1st Propaedeutic Surgery Department, AHEPA University General Hospital of Thessaloniki, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Christos Poulios
- Department of Pathology, School of Health Sciences, Faculty of Medicine, Aristotle University of Thessaloniki, University Campus, bld. 17b, 54124 Thessaloniki, Greece
| | - Eleni Chamalidou
- 1st Propaedeutic Internal Medicine Department, AHEPA University General Hospital of Thessaloniki, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | | | - Antonios Michalopoulos
- 1st Propaedeutic Surgery Department, AHEPA University General Hospital of Thessaloniki, Aristotle University of Thessaloniki, Thessaloniki, Greece
| |
Collapse
|
5
|
Gastric Cancer-Derived Extracellular Vesicles (EVs) Promote Angiogenesis via Angiopoietin-2. Cancers (Basel) 2022; 14:cancers14122953. [PMID: 35740619 PMCID: PMC9221039 DOI: 10.3390/cancers14122953] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 06/07/2022] [Accepted: 06/13/2022] [Indexed: 02/04/2023] Open
Abstract
Simple Summary Angiogenesis is the formation of new blood vessels, which is essential for gastric cancer growth and metastasis. Angiopoietin-2 is a key driver of tumor angiogenesis and has recently emerged as a promising target for antiangiogenic therapy. Extracellular vesicles play an important role in tumor progression including angiogenesis. We explored the crosstalk between gastric cancer and endothelial cells mediated by vesicles, with a specific focus on angiopoietin-2. We show that primary gastric cancer and omental metastasis tissues express angiopoietin-2. We isolated gastric cancer vesicles and demonstrated that they induce the proliferation, migration, invasion, and tube formation of endothelial cells. Characterization of the angiogenic profile of these vesicles revealed high levels of proangiogenic proteins including angiopoietin-2. Using angiopoietin-2 knockdown, we demonstrate that angiopoietin-2 mediates the proangiogenic effects of the gastric cancer vesicles. Our findings suggest a new mechanism via which gastric cancer cells induce angiogenesis. Such a mechanism may be used as a target for cancer therapy. Abstract Angiogenesis is an important control point of gastric cancer (GC) progression and metastasis. Angiopoietin-2 (ANG2) is a key driver of tumor angiogenesis and metastasis, and it has been identified in primary GC tissues. Extracellular vesicles (EVs) play an important role in mediating intercellular communication through the transfer of proteins between cells. However, the expression of ANG2 in GC-EVs has never been reported. Here, we characterized the EV-mediated crosstalk between GC and endothelial cells (ECs), with particular focus on the role of ANG2. We first demonstrate that ANG2 is expressed in GC primary and metastatic tissues. We then isolated EVs from two different GC cell lines and showed that these EVs enhance EC proliferation, migration, invasion, and tube formation in vitro and in vivo. Using an angiogenesis protein array, we showed that GC-EVs contain high levels of proangiogenic proteins, including ANG2. Lastly, using Lenti viral ANG2-shRNA, we demonstrated that the proangiogenic effects of the GC-EVs were mediated by ANG2 through the activation of the PI3K/Akt signal transduction pathway. Our data suggest a new mechanism via which GC cells induce angiogenesis. This knowledge may be utilized to develop new therapies in gastric cancer.
Collapse
|
6
|
Peng X, Yu M, Chen J. Transcriptome sequencing identifies genes associated with invasion of ovarian cancer. J Int Med Res 2021; 48:300060520950912. [PMID: 32878513 PMCID: PMC7780583 DOI: 10.1177/0300060520950912] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
OBJECTIVE To identify key genes in ovarian cancer using transcriptome sequencing in two cell lines: MCV152 (benign ovarian epithelial tumour) and SKOV-3 (ovarian serous carcinoma). METHODS Differentially expressed genes (DEGs) between SKOV-3 and MCV152 were identified. Candidate genes were assessed for enrichment in gene ontology function and Kyoto Encyclopaedia of Genes and Genomes pathway. Candidate gene expression in SKOV-3 and MCV152 cells was validated using Western blots. RESULTS A total of 2020 upregulated and 1673 downregulated DEGs between SKOV3 and MCV152 cells were identified that were significantly enriched in the cell adhesion function. Upregulated DEGs, such as angiopoietin 2 (ANGPT2), CD19 molecule (CD19), collagen type IV alpha 3 chain (COL4A3), fibroblast growth factor 18 (FGF18), integrin subunit beta 4 (ITGB4), integrin subunit beta 8 (ITGB8), laminin subunit alpha 3 (LAMA3), laminin subunit gamma 2 (LAMC2), protein phosphatase 2 regulatory subunit Bgamma (PPP2R2C) and spleen associated tyrosine kinase (SYK) were significantly involved in the extracellular matrix-receptor interaction pathway. Downregulated DEGs, such as AKT serine/threonine kinase 3 (AKT3), collagen type VI alpha 1 chain (COL6A1), colony stimulating factor 3 (CSF3), fibroblast growth factor 1 (FGF1), integrin subunit alpha 2 (ITGA2), integrin subunit alpha 11 (ITGA11), MYB proto-oncogene, transcription factor (MYB), phosphoenolpyruvate carboxykinase 2, mitochondrial (PCK2), placental growth factor (PGF), phosphoinositide-3-kinase adaptor protein 1 (PIK3AP1), serum/glucocorticoid regulated kinase 1 (SGK1), toll like receptor 4 (TLR4) and tumour protein p53 (TP53) were involved in PI3K-Akt signalling. Expression of these DEGs was confirmed by Western blot analyses. CONCLUSION Candidate genes enriched in cell adhesion, extracellular matrix-receptor interaction and PI3K-Akt signalling pathways were identified that may be closely associated with ovarian cancer invasion and potential targets for ovarian cancer treatment.
Collapse
Affiliation(s)
- Xiandong Peng
- Shanghai Ji Ai Genetics and IVF Institute, Obstetrics and Gynaecology Hospital of Fudan University, Shanghai, China
| | - Min Yu
- Shanghai Ji Ai Genetics and IVF Institute, Obstetrics and Gynaecology Hospital of Fudan University, Shanghai, China
| | - Jiazhou Chen
- Shanghai Ji Ai Genetics and IVF Institute, Obstetrics and Gynaecology Hospital of Fudan University, Shanghai, China
| |
Collapse
|
7
|
Urosevic J, Blasco MT, Llorente A, Bellmunt A, Berenguer-Llergo A, Guiu M, Cañellas A, Fernandez E, Burkov I, Clapés M, Cartanà M, Figueras-Puig C, Batlle E, Nebreda AR, Gomis RR. ERK1/2 Signaling Induces Upregulation of ANGPT2 and CXCR4 to Mediate Liver Metastasis in Colon Cancer. Cancer Res 2020; 80:4668-4680. [PMID: 32816905 DOI: 10.1158/0008-5472.can-19-4028] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 06/23/2020] [Accepted: 08/12/2020] [Indexed: 11/16/2022]
Abstract
Carcinoma development in colorectal cancer is driven by genetic alterations in numerous signaling pathways. Alterations in the RAS-ERK1/2 pathway are associated with the shortest overall survival for patients after diagnosis of colorectal cancer metastatic disease, yet how RAS-ERK signaling regulates colorectal cancer metastasis remains unknown. In this study, we used an unbiased screening approach based on selection of highly liver metastatic colorectal cancer cells in vivo to determine genes associated with metastasis. From this, an ERK1/2-controlled metastatic gene set (EMGS) was defined. EMGS was associated with increased recurrence and reduced survival in patients with colorectal cancer tumors. Higher levels of EMGS expression were detected in the colorectal cancer subsets consensus molecular subtype (CMS)1 and CMS4. ANGPT2 and CXCR4, two genes within the EMGS, were subjected to gain-of-function and loss-of-function studies in several colorectal cancer cell lines and then tested in clinical samples. The RAS-ERK1/2 axis controlled expression of the cytokine ANGPT2 and the cytokine receptor CXCR4 in colorectal cancer cells, which facilitated development of liver but not lung metastases, suggesting that ANGPT2 and CXCR4 are important for metastatic outgrowth in the liver. CXCR4 controlled the expression of cytokines IL10 and CXCL1, providing evidence for a causal role of IL10 in supporting liver colonization. In summary, these studies demonstrate that amplification of ERK1/2 signaling in KRAS-mutated colorectal cancer cells affects the cytokine milieu of the tumors, possibly affecting tumor-stroma interactions and favoring liver metastasis formation. SIGNIFICANCE: These findings identify amplified ERK1/2 signaling in KRAS-mutated colorectal cancer cells as a driver of tumor-stroma interactions that favor formation of metastases in the liver.
Collapse
Affiliation(s)
- Jelena Urosevic
- Cancer Science Program, Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain.,CIBERONC, Spain
| | - María Teresa Blasco
- Cancer Science Program, Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain.,CIBERONC, Spain
| | - Alicia Llorente
- Cancer Science Program, Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Anna Bellmunt
- Cancer Science Program, Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Antoni Berenguer-Llergo
- Biostatistics and Bioinformatics Unit, Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Marc Guiu
- Cancer Science Program, Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Adrià Cañellas
- Cancer Science Program, Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain.,CIBERONC, Spain
| | - Esther Fernandez
- Cancer Science Program, Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Ivan Burkov
- Cancer Science Program, Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Maria Clapés
- Cancer Science Program, Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Mireia Cartanà
- Cancer Science Program, Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Cristina Figueras-Puig
- Cancer Science Program, Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Eduard Batlle
- Cancer Science Program, Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain.,CIBERONC, Spain.,ICREA, Institució Catalana de Recerca i Estudis Avançats, Barcelona, Spain
| | - Angel R Nebreda
- Cancer Science Program, Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain.,ICREA, Institució Catalana de Recerca i Estudis Avançats, Barcelona, Spain
| | - Roger R Gomis
- Cancer Science Program, Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain. .,CIBERONC, Spain.,ICREA, Institució Catalana de Recerca i Estudis Avançats, Barcelona, Spain.,School of Medicine, Universitat de Barcelona, Barcelona, Spain
| |
Collapse
|
8
|
Yu X, Ye F. Role of Angiopoietins in Development of Cancer and Neoplasia Associated with Viral Infection. Cells 2020; 9:cells9020457. [PMID: 32085414 PMCID: PMC7072744 DOI: 10.3390/cells9020457] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 02/09/2020] [Accepted: 02/13/2020] [Indexed: 02/06/2023] Open
Abstract
Angiopoietin/tyrosine protein kinase receptor Tie-2 signaling in endothelial cells plays an essential role in angiogenesis and wound healing. Angiopoietin-1 (Ang-1) is crucial for blood vessel maturation while angiopoietin-2 (Ang-2), in collaboration with vascular endothelial growth factor (VEGF), initiates angiogenesis by destabilizing existing blood vessels. In healthy people, the Ang-1 level is sustained while Ang-2 expression is restricted. In cancer patients, Ang-2 level is elevated, which correlates with poor prognosis. Ang-2 not only drives tumor angiogenesis but also attracts infiltration of myeloid cells. The latter rapidly differentiate into tumor stromal cells that foster tumor angiogenesis and progression, and weaken the host’s anti-tumor immunity. Moreover, through integrin signaling, Ang-2 induces expression of matrix metallopeptidases (MMPs) to promote tumor cell invasion and metastasis. Many oncogenic viruses induce expression of Ang-2 to promote development of neoplasia associated with viral infection. Multiple Ang-2 inhibitors exhibit remarkable anti-tumor activities, further highlighting the importance of Ang-2 in cancer development.
Collapse
Affiliation(s)
- Xiaolan Yu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, College of Life Sciences, Hubei University, Wuhan 430062, China
- Hubei Key Laboratory of Industrial Biotechnology, College of Life Sciences, Hubei University, Wuhan 430062, China
- Correspondence: (X.Y.); (F.Y.); Tel.: +086-27-88661237 (X.Y.); +216-368-8892 (F.Y.)
| | - Fengchun Ye
- Department of Molecular Biology & Microbiology, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA
- Correspondence: (X.Y.); (F.Y.); Tel.: +086-27-88661237 (X.Y.); +216-368-8892 (F.Y.)
| |
Collapse
|
9
|
Liu J, Xu W, Li S, Sun R, Cheng W. Multi-omics analysis of tumor mutational burden combined with prognostic assessment in epithelial ovarian cancer based on TCGA database. Int J Med Sci 2020; 17:3200-3213. [PMID: 33173439 PMCID: PMC7646107 DOI: 10.7150/ijms.50491] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 10/07/2020] [Indexed: 12/16/2022] Open
Abstract
Background: Tumor mutation burden (TMB) is considered as a novel biomarker of response to immunotherapy and correlated with survival outcomes in various malignancies. Here, TMB-related genes (TRGs) expression signatures were constructed to investigate the association between TMB and prognosis in epithelial ovarian cancer (EOC), and the potential mechanism in immunoregulation was also explored. Methods: Based on somatic mutation data of 436 EOC samples from The Cancer Genome Atlas database, we examined the relationship between TMB level and overall survival (OS), as well as disease-free survival (DFS). Next, the TRGs signatures were constructed and validated. Differential abundance of immune cell infiltration, expression levels of immunomodulators and functional enrichment in high- and low-risk groups were also analyzed. Results: Higher TMB level revealed better OS and DFS, and correlated with earlier clinical stages in EOCs (P = 2.796e-04). The OS-related prognostic model constructed based on seven TRGs (B3GALT1, LIN7B, ANGPT2, D2HGDH, TAF13, PFDN4 and DNAJC19) significantly stratified EOC patients into high- and low-risk groups (P < 0.001). The AUC values of the seven-gene prognostic signature at 1 year, 3 years, and 5 years were 0.703, 0.758 and 0.777. While the DFS-related prognostic model was constructed based on the 4 TRGs (LPIN3, PXYLP1, IGSF23 and B3GALT1), with AUCs of 0.617, 0.756, and 0.731, respectively. Functional analysis indicated that immune-related pathways were enriched in low-risk groups. When considering the infiltration patterns of immune cells, we found higher proportions of follicular helper T (Tfh) cell and M1 macrophage, while lower infiltration of M0 macrophage in low-risk groups (P < 0.05). Accordingly, TMB levels of low-risk patients were significantly higher both in OS and DFS model (P < 0.01). Conclusions: Our TRGs-based models are reliable predictive tools for OS and DFS. High TMB may confer with an immunogenic microenvironment and predict favorable outcomes in EOCs.
Collapse
Affiliation(s)
- Jinhui Liu
- Department of Gynecology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, People's Republic of China
| | - Wei Xu
- Department of Gynecology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, People's Republic of China
| | - Siyue Li
- Department of Gynecology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, People's Republic of China
| | - Rui Sun
- Department of Gynecology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, People's Republic of China
| | - Wenjun Cheng
- Department of Gynecology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, People's Republic of China
| |
Collapse
|
10
|
Michalska-Jakubus M, Cutolo M, Smith V, Krasowska D. Imbalanced serum levels of Ang1, Ang2 and VEGF in systemic sclerosis: Integrated effects on microvascular reactivity. Microvasc Res 2019; 125:103881. [PMID: 31075243 DOI: 10.1016/j.mvr.2019.103881] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 02/03/2019] [Accepted: 05/04/2019] [Indexed: 11/30/2022]
Abstract
INTRODUCTION AND AIM Microangiopathy is a hallmark of systemic sclerosis (SSc). It is a progressive process from an early inflammatory and proangiogenic environment to insufficient microvascular repair with loss of microvessels. The exact underlying mechanisms remain ill-defined. Aim of the study was to investigate whether imbalanced angiopoietins/VEGF serum profile should be related in SSc to the altered microvascular reactivity characterized by aberrant angiogenesis and avascularity. MATERIALS AND METHODS Serum levels of Angiopoietin-1 (Ang1), Angiopoietin-2 (Ang2) and VEGF were measured by ELISA in 47 SSc patients and 27 healthy controls. Microvascular alterations were assessed by nailfold videocapillaroscopy (NVC). RESULTS Serum concentrations of Ang1 were significantly lower [mean (S.D.): 21516.04 (11,441.035) pg/ml], and Ang2 significantly increased [25,89.55 (934.225) pg/ml] in SSc as compared with the control group [Ang1: 28,457.08 (10,431.905) pg/ml; Ang2: 1556.23 (481.255) pg/ml, p < 0.01, respectively], whereas VEGF did not differ significantly. The ratios of Ang1/Ang2 and Ang1/VEGF were significantly lower in SSc patients (8.346 ± 4.523 and 95.17 ± 75.0, respectively) than in healthy subjects (17.612 ± 6.731 p < 0.000001 and 183.11 ± 137.73; p = 0.004]. Formation of giant capillaries with vascular leakage and collapse was associated with significant increase in VEGF and concomitant Ang1 deficiency. Capillary loss was related to significant increase in VEGF with respect to those with preserved capillary number (395.12 ± 256.27 pg/mL vs. 254.80 ± 213.61 pg/mL) whereas elevated Ang2 levels induced more advanced capillary damage as indicated by the presence of the "Late" NVC pattern. CONCLUSIONS We found that serum levels of Ang1, Ang2 and VEGF are differentially expressed in SSc and altered Ang1/Ang2 profile might underlay the aberrant angiogenesis in SSc despite increase in VEGF. For the first time we identified that significant deficiency of Ang1 might be involved in early capillary enlargement, followed by collapse and lack of stable newly-formed vessels in VEGF-enriched environment, whereas Ang2 levels seem to increase later in disease progression and advanced microvascular damage ("Late" NVC pattern).
Collapse
Affiliation(s)
- Małgorzata Michalska-Jakubus
- Department of Dermatology, Venereology and Paediatric Dermatology, Medical University of Lublin, Lublin, Poland.
| | - Maurizio Cutolo
- Research Laboratory and Academic Division of Clinical Rheumatology, Department of Internal Medicine, University of Genoa, Genoa, Italy.
| | - Vanessa Smith
- Faculty of Internal Medicine, Ghent University, Belgium.
| | - Dorota Krasowska
- Department of Dermatology, Venereology and Paediatric Dermatology, Medical University of Lublin, Lublin, Poland.
| |
Collapse
|
11
|
Jiang W, Ji M. Receptor tyrosine kinases in PI3K signaling: The therapeutic targets in cancer. Semin Cancer Biol 2019; 59:3-22. [PMID: 30943434 DOI: 10.1016/j.semcancer.2019.03.006] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2018] [Revised: 03/09/2019] [Accepted: 03/28/2019] [Indexed: 12/17/2022]
Abstract
The phosphoinositide 3-kinase (PI3K) pathway, one of the most commonly activated signaling pathways in human cancers, plays a crucial role in the regulation of cell proliferation, differentiation, and survival. This pathway is usually activated by receptor tyrosine kinases (RTKs), whose constitutive and aberrant activation is via gain-of-function mutations, chromosomal rearrangement, gene amplification and autocrine. Blockage of PI3K pathway by targeted therapy on RTKs with tyrosine kinases inhibitors (TKIs) and monoclonal antibodies (mAbs) has achieved great progress in past decades; however, there still remain big challenges during their clinical application. In this review, we provide an overview about the most frequently encountered alterations in RTKs and focus on current therapeutic agents developed to counteract their aberrant functions, accompanied with discussions of two major challenges to the RTKs-targeted therapy in cancer - resistance and toxicity.
Collapse
Affiliation(s)
- Wei Jiang
- Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, PR China; Key Laboratory for Tumor Precision Medicine of Shaanxi Province, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, PR China
| | - Meiju Ji
- Key Laboratory for Tumor Precision Medicine of Shaanxi Province, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, PR China; Center for Translational Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, PR China.
| |
Collapse
|
12
|
Abstract
Tumor blood vessel formation (angiogenesis) is essential for tumor growth and metastasis. Two main endothelial ligand–receptor pathways regulating angiogenesis are vascular endothelial growth factor (VEGF) receptor and angiopoietin-TIE receptor pathways. The angiopoietin-TIE pathway is required for the remodeling and maturation of the blood and lymphatic vessels during embryonic development after VEGF and VEGF-C mediated development of the primary vascular plexus. Angiopoietin-1 (ANGPT1) stabilizes the vasculature after angiogenic processes, via tyrosine kinase with immunoglobulin-like and EGF-like domains 2 (TIE2) activation. In contrast, ANGPT2 is upregulated at sites of vascular remodeling. ANGPT2 is secreted by activated endothelial cells in inflammation, promoting vascular destabilization. ANGPT2 has been found to be expressed in many human cancers. Intriguingly, in preclinical models inhibition of ANGPT2 has provided promising results in preventing tumor angiogenesis, tumor growth, and metastasis, making it an attractive candidate to target in tumors. However, until now the first ANGPT2 targeting therapies have been less effective in clinical trials than in experimental models. Additionally, in preclinical models combined therapy against ANGPT2 and VEGF or immune checkpoint inhibitors has been superior to monotherapies, and these pathways are also targeted in early clinical trials. In order to improve current anti-angiogenic therapies and successfully exploit ANGPT2 as a target for cancer treatment, the biology of the angiopoietin-TIE pathway needs to be profoundly clarified.
Collapse
Affiliation(s)
- Dieter Marmé
- Tumor Biology Center, Freiburg, Baden-Württemberg Germany
| |
Collapse
|
13
|
Abstract
Adenosquamous carcinoma of the pancreas (ASCP) is an uncommon variant of exocrine pancreatic malignancies, characterized by a histological admixture of adenomatous and squamous cell elements. This cancer is characterized by a poorly differentiated histology and a poorer clinical outcome compared to pancreatic ductal adenocarcinoma (PDAC). Unlike PDAC, that is characterized by a low microvascular density (MVD) and collapsed vasculature, no data are available about angiogenesis in ASPC. Immunohistochemical evaluation of MVD and trypatse-positive mast cells (MCs) were performed on a single case of ASCP compared to PDAC. Moreover, the levels of angiopoietin-1 and -2 (Ang-1, Ang-2), receptor tyrosine kinase with immunoglobulin and epidermal growth factor homology domain-2 (Tie-2), vascular endothelial growth factor A (VEGFA), hypoxia-inducible factor 1 alpha (HIF1A), miR-21-5p, miR-181a-5p, miR-122-5p, and miR-27a-3p were evaluated by real-time PCR. Higher number of tryptase-positive MCs and MVD are observed in the ASCP case compared to PDAC one. Lower levels of miR-122-5p and higher expression of VEGFA, HIF1A and Ang-2 genes were observed in ASCP. Furthermore, lower Ang-1 and Tie-2 transcript levels and higher increases of miR-21-5p, miR27a-3p and miR-181a-5p levels were found in the rarest form of pancreatic carcinoma. Our data demonstrate an important angiogenic activity in ASCP with a putative role of miR-21-5p, miR-181a-5p, miR-122-5p and miR-27a-3p in the regulation of this process.
Collapse
|
14
|
Arivazhagan J, Nandeesha H, Dorairajan LN, Sreenivasulu K. Association of elevated interleukin-17 and angiopoietin-2 with prostate size in benign prostatic hyperplasia. Aging Male 2017; 20:115-118. [PMID: 28590830 DOI: 10.1080/13685538.2017.1284778] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
INTRODUCTION Inflammation and angiogenesis are known to play a role in the development prostate tumors. The present study was designed to assess the levels of markers of inflammation and angiogenesis like interleukin-17 (IL-17) and angiopoietin-2 (ANGPT2) levels and their association with prostate size in patients with benign prostatic hyperplasia (BPH). MATERIALS AND METHODS 42 BPH cases and 42 controls were enrolled in the study. IL-17 and ANGPT2 were estimated in both the groups. RESULTS IL-17 and ANGPT2 were significantly increased in BPH cases when compared with controls. Multivariate analysis showed that ANGPT2 predicts the prostate size in patients with BPH (R2 = 0.203, beta = 0.355, p = 0.028). Linear regression analysis showed that IL-17 was significantly associated with ANGPT2 in BPH cases (R2 = 0.129, beta - 0.359, p = 0.020). CONCLUSIONS We conclude that IL-17 and ANGPT2 are elevated in BPH cases and ANGPT2 was associated with IL-17 and prostate size.
Collapse
Affiliation(s)
- Jaimatha Arivazhagan
- a Jawaharlal Institute of Postgraduate Medical Education and Research , Puducherry , India and
| | - Hanumanthappa Nandeesha
- a Jawaharlal Institute of Postgraduate Medical Education and Research , Puducherry , India and
| | - Lalgudi Narayanan Dorairajan
- b Department of Biochemistry and Urology , Jawaharlal Institute of Postgraduate Medical Education and Research , Puducherry , India
| | - Karli Sreenivasulu
- a Jawaharlal Institute of Postgraduate Medical Education and Research , Puducherry , India and
| |
Collapse
|
15
|
González Á, García de Durango C, Alonso V, Bravo B, Rodríguez de Gortázar A, Wells A, Forteza J, Vidal-Vanaclocha F. Distinct Osteomimetic Response of Androgen-Dependent and Independent Human Prostate Cancer Cells to Mechanical Action of Fluid Flow: Prometastatic Implications. Prostate 2017; 77:321-333. [PMID: 27813116 DOI: 10.1002/pros.23270] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2016] [Accepted: 10/11/2016] [Indexed: 12/20/2022]
Abstract
BACKGROUND AND METHODS Prostate cancer frequently expresses an osteomimetic phenotype, but it is unclear how it is regulated and what biological and clinical implications it confers. Because mechanical forces physiologically regulate bone-remodeling activity in osteocytes, we hypothesized that mechanical action of fluid flow (MAFF) at the cancer microenvironment may similarly foster prostate cancer cell osteomimicry. RESULTS We showed that in vitro MAFF on androgen-dependent (LNCap) and androgen-independent (PC3) prostate cancer cells remarkably increased OPG, VEGF, RunX2, PTH1R, and PTHrP gene expression in both cell lines irrespective of their androgen dependency. MAFF also altered the cytokine secretion pattern of prostate cancer cells, including Ang2, SCF, and TNFα increase with TRAIL decrease in the supernatant of both cell lines; preferential increase of Leptin and PDGF-BB in LnCap and of VEGF, IL-8, and G-CSF in PC3; and exclusive increase of FGFβ, MIF, and PECAM-1 with HGF decrease in LnCap, and of TGBβ1, HGF, M-CSF, CXCL1, and CCL7 with NGF decrease in PC3. Murine MLO-Y4 osteocyte-conditioned medium (CM) abrogated M-CSF, G-CSG, IL-8, TNFα, and FGFβ secretion-stimulating activity of mechanical stimulation on PC3 cells, and did the opposite effect on LnCap cells. However, MAFF fostered osteomimetic gene expression response of PC3 cells, but not of LnCap cells, to mechanically stimulated osteocyte-CM. Moreover, it abrogated TNFα and IL-8 secretion inhibitory effect of osteocyte-CM on mechanically stimulated PC3 cells and G-CSF, TNFα, and FGFβ-stimulating effect on mechanically stimulated LnCap cells. CONCLUSIONS MAFF activated osteoblast-like phenotype of prostate cancer cells and altered their responses to osteocyte soluble factors. It also induced osteocyte production of osteomimetic gene expression- and cytokine secretion-stimulating factors for prostate cancer cells, particularly, when they were mechanically stimulated. Importantly, MAFF induced a prometastatic response in androgen-independent prostate cancer cells, suggesting the interest of mechanical stimulation-dependent transcription and secretion patterns as diagnostic biomarkers, and as therapeutic targets for the screening of bone-metastasizing phenotype inhibitors upregulated during prostate cancer cell response to MAFF at the cancer microenvironment. Prostate 77:321-333, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Álvaro González
- Department of Molecular and Cellular Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Cira García de Durango
- Institute of Applied Molecular Medicine (IMMA), CEU-San Pablo University School of Medicine, Madrid, Spain
| | - Verónica Alonso
- Institute of Applied Molecular Medicine (IMMA), CEU-San Pablo University School of Medicine, Madrid, Spain
| | - Beatriz Bravo
- Institute of Applied Molecular Medicine (IMMA), CEU-San Pablo University School of Medicine, Madrid, Spain
| | | | - Alan Wells
- Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Jerónimo Forteza
- Valencia Institute of Pathology, Catholic University of Valencia School of Medicine and Odontology, Valencia, Spain
| | - Fernando Vidal-Vanaclocha
- Valencia Institute of Pathology, Catholic University of Valencia School of Medicine and Odontology, Valencia, Spain
| |
Collapse
|
16
|
Biel NM, Siemann DW. Targeting the Angiopoietin-2/Tie-2 axis in conjunction with VEGF signal interference. Cancer Lett 2016; 380:525-533. [PMID: 25312939 PMCID: PMC4394020 DOI: 10.1016/j.canlet.2014.09.035] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Revised: 09/11/2014] [Accepted: 09/30/2014] [Indexed: 12/13/2022]
Abstract
Anti-angiogenic therapies target the tumor vasculature, impairing its development and growth. It was hypothesized over 40 years ago by the late Judah Folkman and Julie Denekamp that depriving a tumor of oxygen and nutrients, by targeting the tumor vasculature, could have therapeutic benefits. Identification of growth factors and signaling pathways important in angiogenesis subsequently led to the development of a series of anti-angiogenic agents that over the past decade have become part of the standard of care in several disease settings. Unfortunately not all patients respond to the currently available anti-angiogenic therapies while others become resistant to these agents following prolonged exposure. Identification of new pathways that may drive angiogenesis led to the development of second-generation anti-angiogenic agents such as those targeting the Ang-2/Tie2 axis. Recently, it has become clear that combination of first and second generation agents targeting the blood vessel network can lead to outcomes superior to those using either agent alone. The present review focuses on the current status of VEGF and Ang-2 targeted agents and the potential utility of using them in combination to impair tumor angiogenesis.
Collapse
Affiliation(s)
- Nikolett M Biel
- Department of Pathology, University of Florida College of Medicine, 1395 Center Drive, Gainesville, FL 32610, USA.
| | - Dietmar W Siemann
- Department of Radiation Oncology, University of Florida College of Medicine, 2000 SW, Archer Road, Gainesville, FL 32610, USA
| |
Collapse
|
17
|
Qi C, Bin Li, Yang Y, Yang Y, Li J, Zhou Q, Wen Y, Zeng C, Zheng L, Zhang Q, Li J, He X, Zhou J, Shao C, Wang L. Glipizide suppresses prostate cancer progression in the TRAMP model by inhibiting angiogenesis. Sci Rep 2016; 6:27819. [PMID: 27292155 PMCID: PMC4904209 DOI: 10.1038/srep27819] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Accepted: 05/18/2016] [Indexed: 12/13/2022] Open
Abstract
Drug repurposing of non-cancer drugs represents an attractive approach to develop new cancer therapy. Using the TRAMP transgenic mouse model, glipizide, a widely used drug for type 2 diabetes mellitus, has been identified to suppress prostate cancer (PC) growth and metastasis. Angiogenesis is intimately associated with various human cancer developments. Intriguingly, glipizide significantly reduces microvessel density in PC tumor tissues, while not inhibiting prostate cancer cell proliferation from the MTT assay and flow cytometry investigation. Moreover, glipizide inhibits the tubular structure formation of human umbilical vein endothelial cells by regulating the HMGIY/Angiopoietin-1 signaling pathway. Taken together, these results demonstrate that glipizide has the potential to be repurposed as an effective therapeutic for the treatment of PC by targeting tumor-induced angiogenesis.
Collapse
Affiliation(s)
- Cuiling Qi
- Vascular Biology Research Institute, School of Basic Course, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Bin Li
- Vascular Biology Research Institute, School of Basic Course, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Yang Yang
- Vascular Biology Research Institute, School of Basic Course, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Yongxia Yang
- Vascular Biology Research Institute, School of Basic Course, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Jialin Li
- Vascular Biology Research Institute, School of Basic Course, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Qin Zhou
- Vascular Biology Research Institute, School of Basic Course, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Yinxin Wen
- Vascular Biology Research Institute, School of Basic Course, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Cuiling Zeng
- Vascular Biology Research Institute, School of Basic Course, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Lingyun Zheng
- Vascular Biology Research Institute, School of Basic Course, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Qianqian Zhang
- Vascular Biology Research Institute, School of Basic Course, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Jiangchao Li
- Vascular Biology Research Institute, School of Basic Course, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Xiaodong He
- Vascular Biology Research Institute, School of Basic Course, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Jia Zhou
- Department of Pathology, the Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510630, China
| | - Chunkui Shao
- Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX 77555, United States
| | - Lijing Wang
- Vascular Biology Research Institute, School of Basic Course, Guangdong Pharmaceutical University, Guangzhou 510006, China
| |
Collapse
|
18
|
Chen Z, Zhu S, Hong J, Soutto M, Peng D, Belkhiri A, Xu Z, El-Rifai W. Gastric tumour-derived ANGPT2 regulation by DARPP-32 promotes angiogenesis. Gut 2016; 65:925-34. [PMID: 25779598 PMCID: PMC4573388 DOI: 10.1136/gutjnl-2014-308416] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Accepted: 02/27/2015] [Indexed: 12/16/2022]
Abstract
OBJECTIVE Overexpression of dopamine and cAMP-regulated phosphoprotein, Mr 32000 (DARPP-32), and its truncated isoform (t-DARPP) are associated with gastric tumorigenesis. Herein, we investigated the role of DARPP-32 proteins in regulating angiopoietin 2 (ANGPT2) and promoting tumour angiogenesis. DESIGN Quantitative real-time RT-PCR, immunoblotting, luciferase reporter, immunofluorescence, immunohistochemistry and angiogenesis assays were applied to investigate the regulation of angiogenesis by DARPP-32 proteins. RESULTS Overexpression of DARPP-32 significantly increased the mRNA and protein levels of ANGPT2 in gastric cancer cells. The overexpression of DARPP-32 T34A mutant or the N-terminal truncated isoform, t-DARPP, led to similar effects ruling out the T34-dependent regulation of protein phosphatase 1 activity in regulating ANGPT2. DARPP-32 proteins induced a secreted form of ANGPT2, which was detectable in the media, functionally active, and able to induce angiogenesis, measured by the human umbilical vein endothelial cells tube formation assay. Antibody blocking of the secreted ANGPT2 abrogated its function. To identify the mechanism by which DARPP-32 regulates ANGPT2, we examined the activities of NF-κB and signal transducer and activator of transcription 3 (STAT3), known regulators of angiogenesis. The results ruled out NF-κB and showed induction of STAT3 phosphorylation, activation and nuclear localisation. Inhibition or knockdown of STAT3 significantly attenuated the induction of ANGPT2 by DARPP-32 proteins. In vivo xenograft models demonstrated that overexpression of DARPP-32 promotes angiogenesis and tumour growth. Analyses of human gastric cancer tissues showed a strong correlation between DARPP-32 and ANGPT2. CONCLUSIONS Our novel findings establish the role of DARPP-32-STAT3 axis in regulating ANGPT2 in cancer cells to promote angiogenesis and tumorigenesis.
Collapse
Affiliation(s)
- Zheng Chen
- Department of Surgery, Vanderbilt University Medical Center, Nashville, Tennessee
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Shoumin Zhu
- Department of Surgery, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Jun Hong
- Department of Surgery, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Mohammed Soutto
- Department of Surgery, Vanderbilt University Medical Center, Nashville, Tennessee
| | - DunFa Peng
- Department of Surgery, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Abbes Belkhiri
- Department of Surgery, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Zekuan Xu
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Wael El-Rifai
- Department of Surgery, Vanderbilt University Medical Center, Nashville, Tennessee
- Department of Cancer Biology, Vanderbilt University Medical Center, Nashville, Tennessee
- Department of Veterans Affairs, Tennessee Valley Healthcare System, Nashville, Tennessee
| |
Collapse
|
19
|
Leibowitz-Amit R, Pintilie M, Khoja L, Azad AA, Berger R, Laird AD, Aftab DT, Chi KN, Joshua AM. Changes in plasma biomarkers following treatment with cabozantinib in metastatic castration-resistant prostate cancer: a post hoc analysis of an extension cohort of a phase II trial. J Transl Med 2016; 14:12. [PMID: 26762579 PMCID: PMC4712499 DOI: 10.1186/s12967-015-0747-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2015] [Accepted: 12/04/2015] [Indexed: 11/10/2022] Open
Abstract
Background
Cabozantinib is an orally available inhibitor of tyrosine kinases including VEGFR2 and c-MET. We performed a post hoc analysis to find associations between select plasma biomarkers and treatment response in patients (pts) with metastatic castration resistant prostate cancer (mCRPC) who received cabozantinib 100 mg daily as part of a phase 2 non-randomized expansion cohort (NCT00940225). Methods
Plasma samples were collected at baseline, 6 weeks and at time of maximal response from 81 mCRPC pts with bone metastases, of which 33 also had measurable soft-tissue disease. Levels of 27 biomarkers were measured in duplicate using enzyme-linked immunosorbent assay. Spearman correlation coefficients were calculated for the association between biomarker levels or their change on treatment and either bone scan response (BSR) or soft tissue response according to RECIST. Results A BSR and RECIST response were seen in 66/81 pts (81 %) and 6/33 pts (18 %) respectively. No significant associations were found between any biomarker at any time point and either type of response. Plasma concentrations of VEGFA, FLT3L, c-MET, AXL, Gas6A, bone-specific alkaline phosphatase, interleukin-8 and the hypoxia markers CA9 and clusterin significantly increased during treatment with cabozantinib irrespective of response. The plasma concentrations of VEGFR2, Trap5b, Angiopoietin-2, TIMP-2 and TIE-2 significantly decreased during treatment with caboznatinib. Conclusions Our data did not reveal plasma biomarkers associated with response to cabozantinib. The observed alterations in several biomarkers during treatment with cabozantinib may provide insights on the effects of cabozantinib on tumor cells and on tumor micro-environment and may help point to potential co-targeting approaches.
Collapse
Affiliation(s)
| | - Melania Pintilie
- Division of Biostatistics, Princess Margaret Cancer Center, University Health Network, Toronto, Canada.
| | - Leila Khoja
- Division of Medical Oncology and Hematology, Princess Margaret Cancer Center, University Health Network, 610 University Ave, Toronto, ON, M5G 2M9, Canada.
| | - Arun A Azad
- Department of Medical Oncology, British Columbia Cancer Agency, Vancouver, British Columbia, Canada.
| | - Raanan Berger
- Department of Oncology, Sheba Medical Center, Tel Hashomer, Israel.
| | | | | | - Kim N Chi
- Department of Medical Oncology, British Columbia Cancer Agency, Vancouver, British Columbia, Canada.
| | - Anthony M Joshua
- Division of Medical Oncology and Hematology, Princess Margaret Cancer Center, University Health Network, 610 University Ave, Toronto, ON, M5G 2M9, Canada.
| |
Collapse
|
20
|
Joshi G, Singh PK, Negi A, Rana A, Singh S, Kumar R. Growth factors mediated cell signalling in prostate cancer progression: Implications in discovery of anti-prostate cancer agents. Chem Biol Interact 2015; 240:120-33. [PMID: 26297992 DOI: 10.1016/j.cbi.2015.08.009] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Revised: 07/16/2015] [Accepted: 08/11/2015] [Indexed: 12/14/2022]
Abstract
Cancer is one of the leading causes of mortality amongst world's population, in which prostate cancer is one of the most encountered malignancies among men. Globally, it is the sixth leading cause of cancer-related death in men. Prostate cancer is more prevalent in the developed world and is increasing at alarming rates in the developing countries. Prostate cancer is mostly a very sluggish progressing disease, caused by the overproduction of steroidal hormones like dihydrotestosterone or due to over-expression of enzymes such as 5-α-reductase. Various studies have revealed that growth factors play a crucial role in the progression of prostate cancer as they act either by directly elevating the level of steroidal hormones or upregulating enzyme efficacy by the active feedback mechanism. Presently, treatment options for prostate cancer include radiotherapy, surgery and chemotherapy. If treatment is done with prevailing traditional chemotherapy; it leads to resistance and development of androgen-independent prostate cancer that further complicates the situation with no cure option left. The current review article is an attempt to cover and establish an understanding of some major signalling pathways intervened through survival factors (IGF-1R), growth factors (TGF-α, EGF), Wnt, Hedgehog, interleukin, cytokinins and death factor receptor which are frequently dysregulated in prostate cancer. This will enable the researchers to design and develop better therapeutic strategies targeting growth factors and their cross talks mediated prostate cancer cell signalling.
Collapse
Affiliation(s)
- Gaurav Joshi
- Laboratory for Drug Design and Synthesis, Centre for Pharmaceutical Sciences and Natural Products, School of Basic and Applied Sciences, Central University of Punjab, Bathinda 151001, India
| | - Pankaj Kumar Singh
- Laboratory for Drug Design and Synthesis, Centre for Pharmaceutical Sciences and Natural Products, School of Basic and Applied Sciences, Central University of Punjab, Bathinda 151001, India
| | - Arvind Negi
- Laboratory for Drug Design and Synthesis, Centre for Pharmaceutical Sciences and Natural Products, School of Basic and Applied Sciences, Central University of Punjab, Bathinda 151001, India
| | - Anil Rana
- Laboratory for Drug Design and Synthesis, Centre for Pharmaceutical Sciences and Natural Products, School of Basic and Applied Sciences, Central University of Punjab, Bathinda 151001, India
| | - Sandeep Singh
- Centre for Genetic Diseases and Molecular Medicine, School of Emerging Life Science Technologies, Central University of Punjab, Bathinda 151001, India
| | - Raj Kumar
- Laboratory for Drug Design and Synthesis, Centre for Pharmaceutical Sciences and Natural Products, School of Basic and Applied Sciences, Central University of Punjab, Bathinda 151001, India.
| |
Collapse
|
21
|
Wozney JL, Antonarakis ES. Growth factor and signaling pathways and their relevance to prostate cancer therapeutics. Cancer Metastasis Rev 2014; 33:581-94. [PMID: 24402967 PMCID: PMC4090293 DOI: 10.1007/s10555-013-9475-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Treatments that target the androgen axis represent an effective strategy for patients with advanced prostate cancer, but the disease remains incurable and new therapeutic approaches are necessary. Significant advances have recently occurred in our understanding of the growth factor and signaling pathways that are active in prostate cancer. In conjunction with this, many new targeted therapies with sound preclinical rationale have entered clinical development and are being tested in men with castration-resistant prostate cancer. Some of the most relevant pathways currently being exploited for therapeutic gain are HGF/c-Met signaling, the PI3K/AKT/mTOR pathway, Hedgehog signaling, the endothelin axis, Src kinase signaling, the IGF pathway, and angiogenesis. Here, we summarize the biological basis for the use of selected targeted agents and the results from available clinical trials of these drugs in men with prostate cancer.
Collapse
Affiliation(s)
- Jocelyn L. Wozney
- Johns Hopkins Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD, USA
| | - Emmanuel S. Antonarakis
- Prostate Cancer Research Program, Johns Hopkins Sidney Kimmel Comprehensive Cancer Center, CRB1-1 M45, 1650 Orleans St., Baltimore, MD 21231, USA
| |
Collapse
|
22
|
Statins, 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitors, potentiate the anti-angiogenic effects of bevacizumab by suppressing angiopoietin2, BiP, and Hsp90α in human colorectal cancer. Br J Cancer 2014; 111:497-505. [PMID: 24945998 PMCID: PMC4119970 DOI: 10.1038/bjc.2014.283] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Revised: 04/07/2014] [Accepted: 04/30/2014] [Indexed: 02/07/2023] Open
Abstract
Background: Statins, 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitors, are commonly prescribed because of their therapeutic and preventive effects on cardiovascular diseases. Even though they have been occasionally reported to have antitumour activity, it is unknown whether statins have anti-angiogenic effect in human colorectal cancer (CRC). Methods: A total of 11 human CRC cell lines were used to test the effects of bevacizumab, statins, and bevacizumab plus statins on human umbilical vein endothelial cell (HUVEC) viability and invasion in vitro. To determine the molecular mechanism of statins as anti-angiogenic agents, we performed an angiogenesis antibody array and proteomics analysis and confirmed the results using immunoblot assay, HUVEC invasion rescue assay, and siRNA assay. The antitumoural effects of bevacizumab and statins were evaluated in xenograft models. Results: A conventional dose of statins (simvastatin 0.2 μM, lovastatin 0.4 μM, atorvastatin 0.1 μM, and pravastatin 0.4 μM) in combination with bevacizumab directly reduced the cell viability, migration, invasion, and tube formation of HUVECs. The culture media of the CRC cells treated with bevacizumab or statins were also found to inhibit HUVEC invasion by suppressing angiogenic mediators, such as angiopoietin2, binding immunoglobulin protein (BiP), and Hsp90α. The combined treatment with bevacizumab and simvastatin significantly reduced the growth and metastases of xenograft tumours compared with treatment with bevacizumab alone. Conclusions: The addition of simvastatin at a dose used in patients with cardiovascular diseases (40–80 mg once daily) may potentiate the anti-angiogenic effects of bevacizumab on CRC by suppressing angiopoietin2, BiP, and Hsp90α in cancer cells. A clinical trial of simvastatin in combination with bevacizumab in patients with CRC is needed.
Collapse
|
23
|
Linares PM, Chaparro M, Gisbert JP. Angiopoietins in inflammation and their implication in the development of inflammatory bowel disease. A review. J Crohns Colitis 2014; 8:183-90. [PMID: 23859759 DOI: 10.1016/j.crohns.2013.06.013] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2013] [Accepted: 06/19/2013] [Indexed: 02/08/2023]
Abstract
BACKGROUND Angiopoietins are essential angiogenic mediators. Since inflammatory bowel disease (IBD) involves inflammation, ulceration and regeneration of the intestinal mucosa, the angiopoietin system has been proposed as a factor to maintain pathological angiogenesis during the development of the IBD. AIM To review the potential role of angiopoietins in the inflammation driven by angiogenesis during the course of the IBD. METHODS Publications were identified by PubMed searches using the following key words: angiopoietin; Tie-2 receptor; angiogenesis; inflammatory bowel disease and inflammation, in various combinations. RESULTS Angiopoietin-1 acts as a regulator of blood vessel maturation and has anti-inflammatory properties, whereas angiopoietin-2 marks the onset of angiogenesis and is required for normal formation of lymph vessels. Both angiopoietins make use of their angiogenic regulatory effects via the angiopoietin tyrosine-kinase receptor (Tie-2). While angiogenesis has been shown to promote and sustain many events of inflammation, the involvement of the angiopoietin system in IBD has been reported in few studies. It is not clear whether the angiopoietins' role in the development of intestinal inflammation is due to an imbalance in the levels of these proteins or this system exerts its pro-angiogenic properties through a different mechanism during the close-loop relationship between angiogenesis and inflammation. CONCLUSIONS Angiopoietins have key functions in the angiogenic process, and their abnormal activation might depend on their surrounding inflamed environment. The determination of these angiogenic factors in serum and tissue could be useful for monitoring IBD progression.
Collapse
Affiliation(s)
- Pablo M Linares
- Gastroenterology Unit, Hospital Universitario de La Princesa and Instituto de Investigación Sanitaria Princesa (IP), Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Spain.
| | - María Chaparro
- Gastroenterology Unit, Hospital Universitario de La Princesa and Instituto de Investigación Sanitaria Princesa (IP), Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Spain
| | - Javier P Gisbert
- Gastroenterology Unit, Hospital Universitario de La Princesa and Instituto de Investigación Sanitaria Princesa (IP), Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Spain
| |
Collapse
|
24
|
Lorbeer R, Baumeister SE, Dörr M, Nauck M, Grotevendt A, Völzke H, Vasan RS, Wallaschofski H, Lieb W. Circulating angiopoietin-2, its soluble receptor Tie-2, and mortality in the general population. Eur J Heart Fail 2014; 15:1327-34. [DOI: 10.1093/eurjhf/hft117] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Affiliation(s)
- Roberto Lorbeer
- Institute for Community Medicine; Ernst Moritz Arndt University Greifswald; Germany
| | | | - Marcus Dörr
- Department of Internal Medicine; Ernst Moritz Arndt University Greifswald; Germany
- DZHK (German Centre for Cardiovascular Research); Greifswald Germany
| | - Matthias Nauck
- DZHK (German Centre for Cardiovascular Research); Greifswald Germany
| | - Anne Grotevendt
- Institute of Clinical Chemistry and Laboratory Medicine; Ernst Moritz Arndt University Greifswald; Germany
| | - Henry Völzke
- Institute for Community Medicine; Ernst Moritz Arndt University Greifswald; Germany
- DZHK (German Centre for Cardiovascular Research); Greifswald Germany
| | - Ramachandran S. Vasan
- Preventive Medicine & Epidemiology Section; Boston University School of Medicine and Framingham Heart Study; Framingham MA USA
| | - Henri Wallaschofski
- DZHK (German Centre for Cardiovascular Research); Greifswald Germany
- Institute of Clinical Chemistry and Laboratory Medicine; Ernst Moritz Arndt University Greifswald; Germany
| | - Wolfgang Lieb
- Institute for Community Medicine; Ernst Moritz Arndt University Greifswald; Germany
- Institute of Epidemiology; Christian Albrechts University; Kiel Germany
| |
Collapse
|
25
|
[Pilot study on predictive value of plasmatic levels of 9 angiogenetic biomarkers in selection of patients candidate to prostate biopsy]. Urologia 2014; 80:297-301. [PMID: 24419924 DOI: 10.5301/urologia.5000023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/16/2013] [Indexed: 11/20/2022]
Abstract
To reduce the number of negative prostate biopsies in patients with elevated PSA serum levels represents a major challenge in urological oncology. Angiogenetic factors might be involved in initial stages of prostate cancer and might represent useful tools in patients' selection for prostate biopsy. The plasmatic levels of Angiopoietin-2, Follistatin, G-CSF, HGF, IL-8, Leptin, PDGF-BB, PECAM-1 and VEGF were measured by BioPlex immunoassay in patients undergoing prostate biopsy for palpable prostate nodule and/or elevated PSA levels (≥4 ng/mL). They were related with biopsy results. ROC curve analysis was exploited to test the diagnostic accuracy of each biomarker by AUC calculation. A potential cut-off level was computed. Fifty patients were entered. Median PSA was 6.8 ng/mL. A prostate nodule was palpable in 18 (36%) patients. The median number of biopsy cores was 12. Prostate cancer was detected in 25 (50%) and ASAP and PIN in 2 more patients (4%) respectively. Among the 9 considered biomarkers, only leptin showed an interesting diagnostic performance with an AUC of 0.781, at a cut-off value of 2.11 ng/mL, demonstrating a sensitivity of 78%, a specificity of 77% and a positive predictive value of 85%. Main limitations of our study are the exploratory design and the criteria adopted for patients' selection determining a detection rate for prostate cancer above the usual range. Leptin only, in our preliminary study, shows promising diagnostic accuracy for the selection of patients candidate to prostate biopsy. Further studies are required to confirm its diagnostic value and its relation with BMI.
Collapse
|
26
|
Esposito M, Kang Y. Targeting tumor-stromal interactions in bone metastasis. Pharmacol Ther 2013; 141:222-33. [PMID: 24140083 DOI: 10.1016/j.pharmthera.2013.10.006] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2013] [Accepted: 09/05/2013] [Indexed: 12/17/2022]
Abstract
Bone metastasis is a frequent occurrence in late stage solid tumors, including breast cancers, prostate or lung. However, the causes for this proclivity have only recently been elucidated. Significant progress has been made in the past decade toward understanding the molecular underpinnings of bone metastasis, and much of this research reveals a crucial role of the host stroma in each step of the metastatic cascade. Tumor-stromal interactions are crucial in engineering a pre-metastatic niche, accommodating metastatic seeding, and establishing the vicious cycle of bone metastasis. Current treatments in bone metastasis focus on latter steps of the metastatic cascade, with most treatments targeting the process of bone remodeling; however, emerging research identifies many other candidates as promising targets. Host stromal cells including platelets and endothelial cells are important in the early steps of metastatic homing, attachment and extravasation while a variety of immune cells, parenchymal cells and mesenchymal cells of the bone marrow are important in the establishment of overt, immune-suppressed metastatic lesions. Many participants during these steps have been identified and functionally validated. Significant contributors include integrins, (αvβ3, α2β1, α4β1), TGFβ family members, bone resident proteins (BSP, OPG, SPARC, OPN), RANKL, and PTHrP. In this review, we will discuss the contribution of host stromal cells to pre-metastatic niche conditioning, seeding, dormancy, bone-remodeling, immune regulation, and chemotherapeutic shielding in bone metastasis. Research exploring these interactions between bone metastases and stromal cells has yielded many therapeutic targets, and we will discuss both the current and future therapeutic avenues in treating bone metastasis.
Collapse
Affiliation(s)
- Mark Esposito
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, United States
| | - Yibin Kang
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, United States.
| |
Collapse
|
27
|
Buehler D, Rush P, Hasenstein JR, Rice SR, Hafez GR, Longley BJ, Kozak KR. Expression of angiopoietin-TIE system components in angiosarcoma. Mod Pathol 2013; 26:1032-40. [PMID: 23558570 PMCID: PMC3706492 DOI: 10.1038/modpathol.2013.43] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2012] [Revised: 01/07/2013] [Accepted: 01/08/2013] [Indexed: 01/08/2023]
Abstract
Angiosarcoma is an aggressive malignancy of endothelial differentiation. Potential roles of the endothelial angiopoietin-tunica interna endothelial cell kinase (ANGPT-TIE) system in angiosarcoma diagnosis, pathogenesis, prognosis and treatment are undefined. To examine the expression and prognostic significance of angiopoietin-1, angiopoietin-2, TIE1 and TEK (TIE2) proteins in angiosarcoma, we immunohistochemically evaluated clinically annotated human angiosarcoma samples. Correlations of protein expression with overall survival and pathological features were explored. The cohort included 51 patients diagnosed with angiosarcoma at the age of 30-86 years (median 67). The 5-year overall survival was 45% with a median of 26 months. Moderate to strong expression of angiopoietin-1, TIE1 and TEK (TIE2) was identified in the majority of angiosarcomas and moderate to strong expression of angiopoietin-2 was observed in 42% of angiosarcomas. Increased angiopoietin-1 expression correlated with improved survival. Non-significant trends toward longer survival were also observed with increased TIE1 and TEK (TIE2) expression. Increased expression of angiopoietin-2, TIE1 and TEK (TIE2) was associated with vasoformative architecture. No differences in expression of these proteins were observed when patients were segregated by age, gender, presence or absence of metastases at diagnosis, primary tumor location, radiation association or the presence of necrosis. We conclude that components of the ANGPT-TIE system are commonly expressed in angiosarcomas. Reduced expression of these proteins is associated with non-vasoformative and clinically more aggressive lesions.
Collapse
Affiliation(s)
- Darya Buehler
- Department of Pathology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Patrick Rush
- Department of Pathology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Jason R. Hasenstein
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Stephanie R. Rice
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Gholam Reza Hafez
- Department of Pathology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - B. Jack Longley
- Department of Dermatology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Kevin R Kozak
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| |
Collapse
|
28
|
Tan IDA, Ricciardelli C, Russell DL. The metalloproteinase ADAMTS1: a comprehensive review of its role in tumorigenic and metastatic pathways. Int J Cancer 2013; 133:2263-76. [PMID: 23444028 DOI: 10.1002/ijc.28127] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2012] [Accepted: 02/14/2013] [Indexed: 01/07/2023]
Abstract
As it was first characterized in 1997, the ADAMTS (A Disintegrin and Metalloprotease with ThromboSpondin motifs) metalloprotease family has been associated with many physiological and pathological conditions. Of the 19 proteases belonging to this family, considerable attention has been devoted to the role of its first member ADAMTS1 in cancer. Elevated ADAMTS1 promotes pro-tumorigenic changes such as increased tumor cell proliferation, inhibited apoptosis and altered vascularization. Importantly, it facilitates significant peritumoral remodeling of the extracellular matrix environment to promote tumor progression and metastasis. However, discrepancy exists, as several studies also depict ADAMTS1 as a tumor suppressor. This article reviews the current understanding of ADAMTS1 regulation and the consequence of its dysregulation in primary cancer and ADAMTS1-mediated pathways of cancer progression and metastasis.
Collapse
Affiliation(s)
- Izza de Arao Tan
- Robinson Institute, School of Paediatrics and Reproductive Health, Department of Obstetrics and Gynaecology, Univeristy of Adelaide, South Australia, Australia
| | | | | |
Collapse
|
29
|
Diaz-Sanchez A, Matilla A, Nuñez O, Lorente R, Fernandez A, Rincón D, Campos R, Bañares R, Clemente G. Serum angiopoietin-2 level as a predictor of tumor invasiveness in patients with hepatocellular carcinoma. Scand J Gastroenterol 2013; 48:334-43. [PMID: 23249262 DOI: 10.3109/00365521.2012.746391] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
BACKGROUND Because hepatocellular carcinoma (HCC) has important angiogenic activity, the expression of angiopoietin-2 (Ang-2) may have a pathogenic role. The information about the influence of serum Ang-2 (sAng-2) in patients with HCC is scarce. AIMS The aim was to assess the association between sAng-2 levels and characteristics of tumor and liver disease in patients with HCC. METHODS sAng-2 concentrations in peripheral (sAng-2-P) and hepatic (sAng-2-H) veins were analyzed by ELISA in 33 patients with chronic liver disease who underwent a splanchnic hemodynamic study. Thirty-two patients received treatment for HCC. RESULTS The median age was 61 years and 79% were male. Hepatitis C infection (70%) was the main etiology. Most patients were Child-Pugh grade A (72.7%). sAng-2-P and sAng-2-H were well correlated (r = 0.95; p < 0.0001). A significant association was found between sAng-2-H and lobar tumor extension, vascular thrombosis, BCLC staging, infiltrating pattern, abnormal alpha-fetoprotein level, fulfillment of the Milan criteria, and performance of nonsystemic treatment. sAng-2-H also showed a significant correlation with the MELD score (r = 0.49; p = 0.007), albumin (r = -0.63; p < 0.001), and HVPG (r = 0.44; p = 0.02). Eleven patients received treatment with radiofrequency ablation and eight with transarterial chemoembolization. HCC treatment did not influence the sAng-2 concentration while the necrosis response to treatment was not influenced by previous sAng-2 levels. CONCLUSIONS Ang-2 seems to play an important role in the angiogenic processes of HCC and its serum levels are associated with tumor characteristics and invasive behavior. Our results suggest that Ang-2 is not related with treatment response and its level is not modified by treatment.
Collapse
Affiliation(s)
- Antonio Diaz-Sanchez
- Gastroenterology Unit, Hospital Universitario del Sureste, Arganda del Rey, Madrid, Spain.
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Molnar N, Siemann DW. Combined Ang-2 and VEGF Targeting Therapies in Renal Cell Carcinoma. ACTA ACUST UNITED AC 2013. [DOI: 10.4236/jct.2013.49a2001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
31
|
Danza K, Pilato B, Lacalamita R, Addati T, Giotta F, Bruno A, Paradiso A, Tommasi S. Angiogenetic axis angiopoietins/Tie2 and VEGF in familial breast cancer. Eur J Hum Genet 2012; 21:824-30. [PMID: 23232696 DOI: 10.1038/ejhg.2012.273] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2012] [Revised: 10/25/2012] [Accepted: 11/14/2012] [Indexed: 11/09/2022] Open
Abstract
Angiogenesis leads to the formation of blood vessels from pre-existing ones, allowing tumor growth. Vascular endothelial growth factor (VEGF) and Angiopoietins (Ang-1, Ang-2) have a pivotal role in tumor angiogenesis but few data regarding their role in hereditary breast cancer are available. The aim of the present study was to analyze Ang-1, Ang-2, tyrosine-protein kinase receptor Tie2 and VEGF expression and their correlation in a cohort of familial and sporadic breast cancers in order to verify whether the presence of germline mutations in BRCA may have a role in tumor microenvironment regulation. Tumor samples from a cohort of 41 patients with a first diagnosis and a family history of breast cancer and 19 patients with sporadic breast cancers were enrolled. The expression of Tie2, Ang-1, Ang-2 and VEGF were analyzed by quantitative real-time PCR. Patients harboring BRCA mutations had higher levels of Ang-1 (P=0.05), Ang-2 (P=0.02) and VEGF (P=0.04) mRNA compared with those without BRCA mutations (BRCAX). The same was observed in triple-negative breast cancer (TNBC). Moreover, a positive correlation between Ang-2 and VEGF was found in both the familial breast cancer group (BRCA carriers: r=0.83; P<0.0001 and BRCAX: r=0.58; P=0.008) and in TNBC (r=0.62; P=0.007). The higher levels of Ang-1, Ang-2 and VEGF mRNA found in BRCA carriers and TNBCs suggest that they could be attractive angiogenic therapeutic targets in these breast cancers.
Collapse
Affiliation(s)
- K Danza
- Molecular Genetic Laboratory, National Cancer Research Centre, Istituto Tumori Giovanni Paolo II, Bari, Italy
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Daly C, Eichten A, Castanaro C, Pasnikowski E, Adler A, Lalani AS, Papadopoulos N, Kyle AH, Minchinton AI, Yancopoulos GD, Thurston G. Angiopoietin-2 functions as a Tie2 agonist in tumor models, where it limits the effects of VEGF inhibition. Cancer Res 2012; 73:108-18. [PMID: 23149917 DOI: 10.1158/0008-5472.can-12-2064] [Citation(s) in RCA: 182] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The angiopoietins Ang1 (ANGPT1) and Ang2 (ANGPT2) are secreted factors that bind to the endothelial cell-specific receptor tyrosine kinase Tie2 (TEK) and regulate angiogenesis. Ang1 activates Tie2 to promote blood vessel maturation and stabilization. In contrast, Ang2, which is highly expressed by tumor endothelial cells, is thought to inhibit Tie2 activity and destabilize blood vessels, thereby facilitating VEGF-dependent vessel growth. Here, we show that the inhibition of tumor xenograft growth caused by an Ang2-specific antibody (REGN910) is reversed by systemic administration of the Tie2 agonist Ang1. These results indicate that Ang2 blockade inhibits tumor growth by decreasing Tie2 activity, showing that Ang2 is a Tie2 activator. REGN910 treatment of tumors resulted in increased expression of genes that are repressed by Tie2 activation, providing further evidence that REGN910 inhibits Tie2 signaling. Combination treatment with REGN910 plus the VEGF blocker aflibercept reduced tumor vascularity and tumor perfusion more dramatically than either single agent, resulting in more extensive tumor cell death and more potent inhibition of tumor growth. Challenging the prevailing model of Ang2 as a destabilizing factor, our findings indicate that Ang2 plays a protective role in tumor endothelial cells by activating Tie2, thereby limiting the antivascular effects of VEGF inhibition. Thus, blockade of Ang2 might enhance the clinical benefits currently provided by anti-VEGF agents. .
Collapse
|
33
|
Dose-related estrogen effects on gene expression in fetal mouse prostate mesenchymal cells. PLoS One 2012; 7:e48311. [PMID: 23144751 PMCID: PMC3483223 DOI: 10.1371/journal.pone.0048311] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2012] [Accepted: 09/24/2012] [Indexed: 01/09/2023] Open
Abstract
Developmental exposure of mouse fetuses to estrogens results in dose-dependent permanent effects on prostate morphology and function. Fetal prostatic mesenchyme cells express estrogen receptor alpha (ERα) and androgen receptors and convert stimuli from circulating estrogens and androgens into paracrine signaling to regulate epithelial cell proliferation and differentiation. To obtain mechanistic insight into the role of different doses of estradiol (E2) in regulating mesenchymal cells, we examined E2-induced transcriptomal changes in primary cultures of fetal mouse prostate mesenchymal cells. Urogenital sinus mesenchyme cells were obtained from male mouse fetuses at gestation day 17 and exposed to 10 pM, 100 pM or 100 nM E2 in the presence of a physiological concentration of dihydrotestosterone (0.69 nM) for four days. Gene ontology studies suggested that low doses of E2 (10 pM and 100 pM) induce genes involved in morphological tissue development and sterol biosynthesis but suppress genes involved in growth factor signaling. Genes involved in cell adhesion were enriched among both up-regulated and down-regulated genes. Genes showing inverted-U-shape dose responses (enhanced by E2 at 10 pM E2 but suppressed at 100 pM) were enriched in the glycolytic pathway. At the highest dose (100 nM), E2 induced genes enriched for cell adhesion, steroid hormone signaling and metabolism, cytokines and their receptors, cell-to-cell communication, Wnt signaling, and TGF- β signaling. These results suggest that prostate mesenchymal cells may regulate epithelial cells through direct cell contacts when estrogen level is low whereas secreted growth factors and cytokines might play significant roles when estrogen level is high.
Collapse
|
34
|
Khan R, Sharma M, Kumar L, Husain SA, Sharma A. Interrelationship and expression profiling of cyclooxygenase and angiogenic factors in Indian patients with multiple myeloma. Ann Hematol 2012; 92:101-9. [PMID: 22971811 DOI: 10.1007/s00277-012-1572-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2012] [Accepted: 08/31/2012] [Indexed: 10/27/2022]
Abstract
Multiple myeloma (MM) is classically illustrated by a desynchronized cytokine system with rise in inflammatory cytokines. There are recent reports which emphasized the potential role of angiogenesis in the development of MM. Role of cyclooxygenase 2 (COX-2) is well documented in the pathogenesis of solid tumors, but little is known about its occurrence and function in hematologic neoplasms. Involvement of neoangiogenesis is reported in the progression of MM, and angiopoietins probably contribute to this progression by enhancing neovascularization. Circulatory and mRNA levels of angiogenic factors and cyclooxygenase were determined in 125 subjects (75 MM patients and 50 healthy controls) by using enzyme-linked immunosorbent assay and quantitative PCR. We observed significant increase for angiogenic factors (Ang-1, Ang-2, hepatocyte growth factor, and vascular endothelial growth factor) and cyclooxygenase at circulatory level, as well as at mRNA level, as compared to healthy controls except insignificant increase for Ang-1 at circulatory level. We have also observed the significant positive correlation of all angiogenic factors with cyclooxygenase. The strong association found between angiogenic factors and COX-2 in this study may lead to the development of combination therapeutic strategy to treat MM. Therefore, targeting COX-2 by using its effective inhibitors demonstrating antiangiogenic and antitumor effects could be used as a new therapeutic approach for treatment of MM.
Collapse
Affiliation(s)
- Rehan Khan
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, 110029, India
| | | | | | | | | |
Collapse
|
35
|
Tomić TT, Gustavsson H, Wang W, Jennbacken K, Welén K, Damber JE. Castration resistant prostate cancer is associated with increased blood vessel stabilization and elevated levels of VEGF and Ang-2. Prostate 2012; 72:705-12. [PMID: 21809353 DOI: 10.1002/pros.21472] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2011] [Accepted: 07/13/2011] [Indexed: 11/09/2022]
Abstract
BACKGROUND Angiogenesis is important for the progression of prostate cancer and may be a target for treatment in castration resistant (CR) disease. This study was performed to investigate blood vessel stabilization and expression of the pro-angiogenic factors vascular endothelial growth factor (VEGF) and Angiopoietin-2 (Ang-2) in CR and hormone naïve (HN) prostate cancer. The effect of androgen deprivation therapy (ADT) on these parameters was also studied. METHODS VEGF and Ang-2, as well as pericyte coverage of blood vessels were studied in HN and CR prostate tumors by immunohistochemistry. The effects of ADT on VEGF expression and microvessel density (MVD) were investigated in biopsies at diagnosis, 3 months after starting ADT and at tumor relapse. Plasma was also analyzed for VEGF and Ang-2 with ELISA. RESULTS CR tumors had higher levels of VEGF and Ang-2 as well as increased blood vessel stabilization compared to HN tumors. Three months after initiated ADT an increase of VEGF but not MVD in the tumors was observed. In contrast, plasma levels of VEGF decreased after ADT, and increased again at time of tumor relapse. Ang-2 levels were unaffected. CONCLUSIONS CR prostate cancer is associated with elevated levels of VEGF and Ang-2, indicating that these factors could be used as targets for anti-angiogenic treatment. Still, the observed increase in blood vessel stabilization in CR tumors could influence the outcome of anti-angiogenic treatment. Furthermore, increased VEGF expression after 3 months of ADT justifies the use of VEGF-based anti-angiogenic drugs in combination with ADT for the treatment of advanced prostate cancer.
Collapse
Affiliation(s)
- Tajana Tešan Tomić
- Sahlgrenska Cancer Center, Department of Urology, Institute of Clinical Sciences, Sahlgrenska Academy at University of Gothenburg, Göteborg, Sweden
| | | | | | | | | | | |
Collapse
|
36
|
Molnar N, Siemann DW. Inhibition of endothelial/smooth muscle cell contact loss by the investigational angiopoietin-2 antibody MEDI3617. Microvasc Res 2012; 83:290-7. [PMID: 22387475 DOI: 10.1016/j.mvr.2012.02.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2011] [Revised: 02/13/2012] [Accepted: 02/14/2012] [Indexed: 02/05/2023]
Abstract
A tumor's dependence on angiogenesis for survival and growth has led to the advancement of a variety of blood vessel directed anticancer treatment strategies. Overexpression of angiopoietin-2 (Ang-2) in tumor vasculature and its crucial role in angiogenesis, i.e. the destabilization of endothelial/peri-endothelial cell interactions, now raises the possibility of additional novel anti-angiogenic therapeutics. The present study utilized a co-culture sphere model to (i) demonstrate the destabilizing effect of Ang-2 on endothelial/smooth muscle cell contact and (ii) evaluate the impact of the investigational Ang-2 antibody MEDI3617 on endothelial/smooth muscle cell dissociation. Real time imaging of spheres showed both exogenous Ang-2 and PMA induced endogenous Ang-2 secretion resulted in sphere destabilization (loss of endothelial cells from smooth muscle cell core). The presence of MEDI3617 inhibited this process. To assess the anti-angiogenic potential of MEDI3617 in vivo, nude mice were injected intradermally with human renal cell carcinoma cells (Caki-1, Caki-2) and the number of blood vessels induced over a 3 day period was scored. MEDI3617 (2, 10, 20 mg/kg) significantly reduced the initiation of blood vessels for both tumor models at all doses investigated. These data indicate that MEDI3617 treatment significantly impairs the initiation of angiogenesis by inhibiting the Ang-2 mediated disruption of endothelial/muscle cell interaction associated with blood vessel destabilization and thereby reduces tumor cell induced angiogenesis. The results support the notion that targeting the angiopoietin/Tie2 axis may offer novel anti-angiogenic strategies for cancer treatment.
Collapse
MESH Headings
- Angiogenesis Inhibitors/pharmacology
- Angiopoietin-2/biosynthesis
- Angiopoietin-2/chemistry
- Animals
- Antibodies/chemistry
- Antibodies, Monoclonal/pharmacology
- Antibodies, Monoclonal, Humanized
- Carcinoma, Renal Cell/metabolism
- Coculture Techniques
- Dose-Response Relationship, Drug
- Endothelium, Vascular/cytology
- Endothelium, Vascular/drug effects
- Enzyme-Linked Immunosorbent Assay/methods
- Human Umbilical Vein Endothelial Cells
- Humans
- Mice
- Mice, Nude
- Microcirculation
- Myocytes, Smooth Muscle/cytology
- Myocytes, Smooth Muscle/drug effects
- Neoplasm Transplantation
- Neoplasms/drug therapy
- Neovascularization, Pathologic
Collapse
Affiliation(s)
- Nikolett Molnar
- Department of Pharmacology and Therapeutics, University of Florida College of Medicine, Gainesville, FL 32610, USA.
| | | |
Collapse
|
37
|
Petrillo M, Scambia G, Ferrandina G. Novel targets for VEGF-independent anti-angiogenic drugs. Expert Opin Investig Drugs 2012; 21:451-72. [PMID: 22339615 DOI: 10.1517/13543784.2012.661715] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
INTRODUCTION In the last decades, the active research in the field of tumor angiogenesis led to the development of a class of agents providing an effective inhibition of neovessels formation through the blockade of VEGF-related pathways. More recently, the identification of several non-VEGF factors such as PDGF, FGF, HGF, angiopoietins, ALK1/endoglin, endothelis and ephrins involved in tumor angiogenesis have emphasized the need to develop agents targeting multiple pro-angiogenic pathways. AREAS COVERED This review aimed at summarizing the role of non-VEGF molecular pathways in targeting tumor angiogenesis. Preclinical and clinical data for investigational agents against non-VEGF targets have been reviewed emphasizing the role of combined inhibition strategies. EXPERT OPINION Besides the successful development of drugs providing a specific VEGF blockade, novel agents targeting alternative angiogenesis-related pathways are being tested. Although it seems that the potential clinical usefulness of these novel compounds have been not yet fully investigated, sunitinib, sorafenib, pazopanib and other multikinase inhibitors have certainly displayed encouraging results. A more in-depth clarification of anti-angiogenic agents is still needed, in order to design the best clinical setting and schedule for target-based agents and possibly anticipate potential tools to overcome the emerging issue of anti-angiogenic drug resistance.
Collapse
Affiliation(s)
- Marco Petrillo
- Catholic University of the Sacred Heart, Gynecologic Oncology Unit, Department of Oncology, Campobasso, Italy
| | | | | |
Collapse
|
38
|
Salvatori L, Caporuscio F, Verdina A, Starace G, Crispi S, Nicotra MR, Russo A, Calogero RA, Morgante E, Natali PG, Russo MA, Petrangeli E. Cell-to-cell signaling influences the fate of prostate cancer stem cells and their potential to generate more aggressive tumors. PLoS One 2012; 7:e31467. [PMID: 22328933 PMCID: PMC3273473 DOI: 10.1371/journal.pone.0031467] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2011] [Accepted: 01/09/2012] [Indexed: 11/22/2022] Open
Abstract
An increasing number of malignancies has been shown to be initiated and propelled by small subpopulations of cancer stem cells (CSC). However, whether tumor aggressiveness is driven by CSC and by what extent this property may be relevant within the tumor mass is still unsettled. To address this issue, we isolated a rare tumor cell population on the basis of its CD44+CD24− phenotype from the human androgen-independent prostate carcinoma cell line DU145 and established its CSC properties. The behavior of selected CSC was investigated with respect to the bulk DU145 cells. The injection of CSC in nude mice generated highly vascularized tumors infiltrating the adjacent tissues, showing high density of neuroendocrine cells and expressing low levels of E-cadherin and β-catenin as well as high levels of vimentin. On the contrary, when a comparable number of unsorted DU145 cells were injected the resulting tumors were less aggressive. To investigate the different features of tumors in vivo, the influence of differentiated tumor cells on CSC was examined in vitro by growing CSC in the absence or presence of conditioned medium from DU145 cells. CSC grown in permissive conditions differentiated into cell populations with features similar to those of cells held in aggressive tumors generated from CSC injection. Differently, conditioned medium induced CSC to differentiate into a cell phenotype comparable to cells of scarcely aggressive tumors originated from bulk DU145 cell injection. These findings show for the first time that CSC are able to generate differentiated cells expressing either highly or scarcely aggressive phenotype, thus influencing prostate cancer progression. The fate of CSC was determined by signals released from tumor environment. Moreover, using microarray analysis we selected some molecules which could be involved in this cell-to-cell signaling, hypothesizing their potential value for prognostic or therapeutic applications.
Collapse
Affiliation(s)
- Luisa Salvatori
- Institute of Molecular Biology and Pathology, CNR, Rome, Italy.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Bartus C, Brown LF, Bonner MY, Arbiser JL. High level expression of angiopoietin-2 in human abscesses. J Am Acad Dermatol 2011; 64:200-1. [PMID: 21167418 PMCID: PMC3011889 DOI: 10.1016/j.jaad.2010.02.025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2009] [Revised: 02/10/2010] [Accepted: 02/14/2010] [Indexed: 12/21/2022]
Affiliation(s)
- Cynthia Bartus
- Departments of Dermatology, Emory University School of Medicine, Atlanta, Georgia 30322 U.S.A
| | - Lawrence F. Brown
- Division of Signal Transduction, Department of Pathology Beth Israel Deaconess Medical Center, Harvard Medical School, Boston Massachusetts, 02115
| | - Michael Y. Bonner
- Departments of Dermatology, Emory University School of Medicine, Atlanta, Georgia 30322 U.S.A
| | - Jack L. Arbiser
- Departments of Dermatology, Emory University School of Medicine, Atlanta, Georgia 30322 U.S.A
| |
Collapse
|
40
|
Morrissey C, Dowell A, Koreckij TD, Nguyen H, Lakely B, Fanslow WC, True LD, Corey E, Vessella RL. Inhibition of angiopoietin-2 in LuCaP 23.1 prostate cancer tumors decreases tumor growth and viability. Prostate 2010; 70:1799-808. [PMID: 20583134 PMCID: PMC3104406 DOI: 10.1002/pros.21216] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
BACKGROUND Angiopoietin-2 is expressed in prostate cancer (PCa) bone, liver, and lymph node metastases, whereas, its competitor angiopoietin-1 has limited expression in these tissues. Therefore, we hypothesized that the inhibition of angiopoietin-2 activity in PCa will impede angiogenesis, tumor growth, and alter bone response in vivo. METHODS To test our hypothesis we used L1-10, a peptide-Fc fusion that inhibits interactions between angiopoietin-2 and its receptor tie2. We blocked angiopoietin-2 activity using L1-10 in established subcutaneous and intra-tibial LuCaP 23.1 xenografts. We then determined the effect of L1-10 on survival, tumor growth, serum PSA, proliferation, microvessel density, and angiogenesis-associated gene expression in subcutaneous tumors. We also determined serum PSA, tumor area, and bone response in intra-tibial tumors. RESULTS The administration of L1-10 decreased tumor volume and serum PSA, and increased survival in SCID mice bearing subcutaneous LuCaP 23.1 tumors. Histomorphometric analysis, showed a further significant decrease in tumor epithelial area within the L1-10 treated LuCaP 23.1 subcutaneous tumors (P=0.0063). There was also a significant decrease in cell proliferation (P=0.012), microvessel density (P=0.012), and a significant increase in ANGPT-2 and HIF-1α mRNA expression (P≤0.05) associated with L1-10 treatment. Alternatively, in LuCaP 23.1 intra-tibial tumors L1-10 treatment did not significantly change serum PSA, tumor area or bone response. CONCLUSIONS Our results demonstrate that inhibiting angiopoietin-2 activity impedes angiogenesis and growth of LuCaP 23.1 PCa xenografts. Based on these data, we hypothesize that angiopoietin-2 inhibition in combination with other therapies may represent a potential therapy for patients with metastatic disease.
Collapse
Affiliation(s)
- Colm Morrissey
- Department of Urology, University of Washington, Seattle, WA 98195, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Blum R, Gupta R, Burger PE, Ontiveros CS, Salm SN, Xiong X, Kamb A, Wesche H, Marshall L, Cutler G, Wang X, Zavadil J, Moscatelli D, Wilson EL. Molecular signatures of the primitive prostate stem cell niche reveal novel mesenchymal-epithelial signaling pathways. PLoS One 2010; 5:e13024. [PMID: 20941365 PMCID: PMC2948007 DOI: 10.1371/journal.pone.0013024] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2010] [Accepted: 08/05/2010] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Signals between stem cells and stroma are important in establishing the stem cell niche. However, very little is known about the regulation of any mammalian stem cell niche as pure isolates of stem cells and their adjacent mesenchyme are not readily available. The prostate offers a unique model to study signals between stem cells and their adjacent stroma as in the embryonic prostate stem cell niche, the urogenital sinus mesenchyme is easily separated from the epithelial stem cells. Here we investigate the distinctive molecular signals of these two stem cell compartments in a mammalian system. METHODOLOGY/PRINCIPAL FINDINGS We isolated fetal murine urogenital sinus epithelium and urogenital sinus mesenchyme and determined their differentially expressed genes. To distinguish transcripts that are shared by other developing epithelial/mesenchymal compartments from those that pertain to the prostate stem cell niche, we also determined the global gene expression of epidermis and dermis of the same embryos. Our analysis indicates that several of the key transcriptional components that are predicted to be active in the embryonic prostate stem cell niche regulate processes such as self-renewal (e.g., E2f and Ap2), lipid metabolism (e.g., Srebp1) and cell migration (e.g., Areb6 and Rreb1). Several of the enriched promoter binding motifs are shared between the prostate epithelial/mesenchymal compartments and their epidermis/dermis counterparts, indicating their likely relevance in epithelial/mesenchymal signaling in primitive cellular compartments. Based on differential gene expression we also defined ligand-receptor interactions that may be part of the molecular interplay of the embryonic prostate stem cell niche. CONCLUSIONS/SIGNIFICANCE We provide a comprehensive description of the transcriptional program of the major regulators that are likely to control the cellular interactions in the embryonic prostatic stem cell niche, many of which may be common to mammalian niches in general. This study provides a comprehensive source for further studies of mesenchymal/epithelial interactions in the prostate stem cell niche. The elucidation of pathways in the normal primitive niche may provide greater insight into mechanisms subverted during abnormal proliferative and oncogenic processes. Understanding these events may result in the development of specific targeted therapies for prostatic diseases such as benign prostatic hypertrophy and carcinomas.
Collapse
Affiliation(s)
- Roy Blum
- Department of Cell Biology, New York University School of Medicine, New York, New York, United States of America
- Department of Pathology, New York University School of Medicine, New York, New York, United States of America
| | - Rashmi Gupta
- Department of Cell Biology, New York University School of Medicine, New York, New York, United States of America
| | - Patricia E. Burger
- Division of Immunology, University of Cape Town, Cape Town, South Africa
| | - Christopher S. Ontiveros
- Department of Cell Biology, New York University School of Medicine, New York, New York, United States of America
| | - Sarah N. Salm
- Department of Cell Biology, New York University School of Medicine, New York, New York, United States of America
- Department of Science, Borough of Manhattan Community College/City University of New York, New York, New York, United States of America
| | - Xiaozhong Xiong
- Department of Cell Biology, New York University School of Medicine, New York, New York, United States of America
| | - Alexander Kamb
- Amgen Inc, South San Francisco, California, United States of America
| | - Holger Wesche
- Amgen Inc, South San Francisco, California, United States of America
| | - Lisa Marshall
- Amgen Inc, South San Francisco, California, United States of America
| | - Gene Cutler
- Amgen Inc, South San Francisco, California, United States of America
| | - Xiangyun Wang
- Pfizer Inc, Groton, Connecticut, United States of America
| | - Jiri Zavadil
- Department of Pathology, New York University School of Medicine, New York, New York, United States of America
- NYU Cancer Institute, New York University School of Medicine, New York, New York, United States of America
- Center for Health Informatics and Bioinformatics, New York University Medical Center, New York, New York, United States of America
| | - David Moscatelli
- Department of Cell Biology, New York University School of Medicine, New York, New York, United States of America
- NYU Cancer Institute, New York University School of Medicine, New York, New York, United States of America
| | - E. Lynette Wilson
- Department of Cell Biology, New York University School of Medicine, New York, New York, United States of America
- Division of Immunology, University of Cape Town, Cape Town, South Africa
- Department of Urology, New York University School of Medicine, New York, New York, United States of America
- NYU Cancer Institute, New York University School of Medicine, New York, New York, United States of America
| |
Collapse
|
42
|
Abstract
Angiopoietins (ANGPTs) are ligands of the endothelial cell receptor TIE2 and have crucial roles in the tumour angiogenic switch. Increased expression of ANGPT2 relative to ANGPT1 in tumours correlates with poor prognosis. The biological effects of the ANGPT-TIE system are context dependent, which brings into question what the best strategy is to target this pathway. This Review presents an encompassing picture of what we know about this important axis in tumour biology. The various options for therapeutic intervention are discussed to identify the best path forwards.
Collapse
|
43
|
Abstract
It is becoming increasingly clear that angiogenesis plays a crucial role in prostate cancer (CaP) survival, progression, and metastasis. Tumor angiogenesis is a hallmark of advanced cancers and an attractive treatment target in multiple solid tumors. By understanding the molecular basis of resistance to androgen withdrawal and chemotherapy in CaP, the rational design of targeted therapeutics is possible. This review summarizes the recent advancements that have improved our understanding of the role of angiogenesis in CaP metastasis and the potential therapeutic efficacy of inhibiting angiogenesis in this disease. Current therapeutic options for patients with metastatic hormone-refractory CaP are very limited. Targeting vasculature is a developing area, which shows promise for the control of late stage and recurrent CaP disease and for overcoming drug resistance. We discuss angiogenesis and its postulated mechanisms and focus on the regulation of angiogenesis in CaP progression and the therapeutic beneficial effects associated with targeting of the CaP vasculature to overcome the resistance to current treatments and CaP recurrence.
Collapse
Affiliation(s)
- Yong Li
- Cancer Care Centre, St George Hospital, Sydney, NSW, Australia.
| | | |
Collapse
|
44
|
Tešan T, Gustavsson H, Welén K, Damber JE. Differential expression of angiopoietin-2 and vascular endothelial growth factor in androgen-independent prostate cancer models. BJU Int 2008; 102:1034-9. [DOI: 10.1111/j.1464-410x.2008.07768.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
45
|
Gaya A, Daley F, Taylor NJ, Tozer G, Qureshi U, Padhani A, Pedley RB, Begent R, Wellsted D, Stirling JJ, Rustin G. Relationship between human tumour angiogenic profile and combretastatin-induced vascular shutdown: an exploratory study. Br J Cancer 2008; 99:321-6. [PMID: 18612312 PMCID: PMC2480970 DOI: 10.1038/sj.bjc.6604426] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Revised: 04/28/2008] [Accepted: 04/28/2008] [Indexed: 12/03/2022] Open
Abstract
Combretastatin-A4-phosphate (CA4P) acts most effectively against immature tumour vasculature. We investigated whether histological angiogenic profile can explain the differential sensitivity of human tumours to CA4P, by correlating the kinetic changes demonstrated by dynamic MRI (DCE-MRI) in response to CA4P, with tumour immunohistochemical angiogenic markers. Tissue was received from 24 patients (mean age 59, range 32-73, 18 women, 6 men). An angiogenic profile was performed using standard immunohistochemical techniques. Dynamic MRI data were obtained for the same patients before and 4 h after CA4P. Three patients showed a statistically significant fall in K(trans) following CA4P, and one a statistically significant fall in IAUGC(60). No statistically significant correlations were seen between the continuous or categorical variables and the DCE-MRI kinetic parameters other than between ang-2 and K(trans) (P=0.044). In conclusion, we found no strong relationships between changes in DCE-MRI kinetic variables following CA4P and the immunohistochemical angiogenic profile.
Collapse
Affiliation(s)
- A Gaya
- Department of Clinical Oncology, Guy's & St Thomas' Hospitals, London SE1 7EH, UK.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Singh AP, Bafna S, Chaudhary K, Venkatraman G, Smith L, Eudy JD, Johansson SL, Lin MF, Batra SK. Genome-wide expression profiling reveals transcriptomic variation and perturbed gene networks in androgen-dependent and androgen-independent prostate cancer cells. Cancer Lett 2008; 259:28-38. [PMID: 17977648 PMCID: PMC2784916 DOI: 10.1016/j.canlet.2007.09.018] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2007] [Revised: 09/17/2007] [Accepted: 09/18/2007] [Indexed: 01/23/2023]
Abstract
Previously, we have developed a unique in vitro LNCaP cell model, which includes androgen-dependent (LNCaP-C33), androgen-independent (LNCaP-C81) and an intermediate phenotype (LNCaP-C51) cell lines resembling the stages of prostate cancer progression to hormone independence. This model is advantageous in overcoming the heterogeneity associated with the prostate cancer up to a certain extent. We characterized and compared the gene expression profiles in LNCaP-C33 (androgen-dependent) and LNCaP-C81 (androgen-independent) cells using Affymetrix GeneChip array analyses. Multiple genes were identified exhibiting differential expression during androgen-independent progression. Among the important genes upregulated in androgen-independent cells were PCDH7, TPTE, TSPY, EPHA3, HGF, MET, EGF, TEM8, etc., whereas many candidate tumor suppressor genes (HTATIP2, CDKN2A, CDKN2B, CDKN1C, TP53, TP73, ICAM1, SOCS1/2, SPRY2, PPP2CA, PPP3CA, etc.) were decreased. Pathway prediction analysis identified important gene networks associated with growth-promoting and apoptotic signaling that were perturbed during androgen-independent progression. Further investigation of one of the genes, PPP2CA, which encodes the catalytic subunit of a serine phosphatase PP2A, a potent tumor suppressor, revealed that its expression was decreased in prostate cancer compared to adjacent normal/benign tissue. Furthermore, the downregulated expression of PPP2CA was significantly correlated with tumor stage and Gleason grade. Future studies on the identified differentially expressed genes and signaling pathways may be helpful in understanding the biology of prostate cancer progression and prove useful in developing novel prognostic biomarkers and therapy for androgen-refractory prostate cancer.
Collapse
Affiliation(s)
- Ajay P. Singh
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska
| | - Sangeeta Bafna
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska
| | - Kunal Chaudhary
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska
| | - Ganesh Venkatraman
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska
| | - Lynette Smith
- Department of preventive and Societal Medicine, University of Nebraska Medical Center, Omaha, Nebraska
| | - James D. Eudy
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, Nebraska
| | - Sonny L. Johansson
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska
| | - Ming-Fong Lin
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska
| | - Surinder K. Batra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska
| |
Collapse
|
47
|
Affiliation(s)
- Levi E Fried
- Department of Dermatology, Emory University School of Medicine, WMB 5309, 101 Woodruff Circle Atlanta, GA 30322, USA
| | | |
Collapse
|
48
|
Morrissey C, True LD, Roudier MP, Coleman IM, Hawley S, Nelson PS, Coleman R, Wang YC, Corey E, Lange PH, Higano CS, Vessella RL. Differential expression of angiogenesis associated genes in prostate cancer bone, liver and lymph node metastases. Clin Exp Metastasis 2007; 25:377-88. [DOI: 10.1007/s10585-007-9116-4] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2007] [Accepted: 10/10/2007] [Indexed: 11/28/2022]
|
49
|
Nakayama T, Inaba M, Naito S, Mihara Y, Miura S, Taba M, Yoshizaki A, Wen CY, Sekine I. Expression of Angiopoietin-1, 2 and 4 and Tie-1 and 2 in gastrointestinal stromal tumor, leiomyoma and schwannoma. World J Gastroenterol 2007; 13:4473-9. [PMID: 17724803 PMCID: PMC4611580 DOI: 10.3748/wjg.v13.i33.4473] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the role of angiopoietin (Ang) -1, -2 and -4 and its receptors, Tie-1 and -2, in the growth and differentiation of gastrointestinal stromal tumors (GISTs).
METHODS: Thirty GISTs, seventeen leiomyomas and six schwannomas were examined by immunohistochemistry in this study.
RESULTS: Ang-1, -2 and -4 proteins were expressed in the cytoplasm of tumor cells, and Tie-1 and -2 were expressed both in the cytoplasm and on the membrane of all tumors. Immunohistochemical staining revealed that 66.7% of GISTs (20 of 30), 76.5% of leiomyomas (13 of 17) and 83.3% of schwannomas (5 of 6) were positive for Ang-1. 83.3% of GISTs (25 of 30), 82.4% of leiomyomas (14 of 17) and 100% of schwannomas (6 of 6) were positive for Ang-2. 36.7% of GISTs (11 of 30), 58.8% of leiomyomas (10 of 17) and 83.3% of schwannomas (5 of 6) were positive for Ang-4. 60.0% of GISTs (18 of 30), 82.4% of leiomyomas and 100% of schwannomas (6 of 6) were positive for Tie-1. 10.0% of GISTs (3 of 30), 94.1% of leiomyomas (16 of 17) and 33.3% of schwannomas (2 of 6) were positive for Tie-2. Tie-2 expression was statistically different between GISTs and leiomyomas (P < 0.001). However, there was no correlation between expression of angiopoietin pathway components and clinical risk categories.
CONCLUSION: Our results suggest that the angiopoietin pathway plays an important role in the differentiation of GISTs, leiomyomas and schwannomas.
Collapse
Affiliation(s)
- Toshiyuki Nakayama
- Department of Tumor and Diagnostic Pathology, Nagasaki University Graduate School of Biomedical Sciences, 1-12-4 Sakamoto, Nagasaki, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Imanishi Y, Hu B, Jarzynka MJ, Guo P, Elishaev E, Bar-Joseph I, Cheng SY. Angiopoietin-2 stimulates breast cancer metastasis through the alpha(5)beta(1) integrin-mediated pathway. Cancer Res 2007; 67:4254-63. [PMID: 17483337 PMCID: PMC2881574 DOI: 10.1158/0008-5472.can-06-4100] [Citation(s) in RCA: 156] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Acquisition of a metastatic phenotype by breast cancer cells includes alternations of multigenic programs that permit tumor cells to metastasize to distant organs. Here, we report that angiopoietin-2 (Ang2), a known growth factor, is capable of promoting breast cancer cell invasion leading to metastasis. Analysis of 185 primary human breast cancer specimens that include 97 tumors showing lymph node and/or distant metastasis reveals a significant correlation between the expression of Ang2 and E-cadherin, Snail, metastatic potential, tumor grade, and lymph-vascular invasion during breast cancer progression. Using a xenograft model, we show that overexpression of Ang2 in poorly metastatic MCF-7 breast cancer cells suppresses expression of E-cadherin and induces Snail expression and phosphorylation of Akt and glycogen synthase kinase-3beta (GSK-3beta) promoting metastasis to the lymph nodes and lung. In cell culture, Ang2 promotes cell migration and invasion in Tie2-deficient breast cancer cells through the alpha(5)beta(1) integrin/integrin-linked kinase (ILK)/Akt, GSK-3beta/Snail/E-cadherin signaling pathway. Inhibition of ILK and the alpha(5)beta(1) integrin abrogates Ang2 modulation of Akt, GSK-3beta, Snail, and E-cadherin and Ang2-stimulated breast cancer cell migration and invasion. Together, these results underscore the significant contribution of Ang2 in cancer progression, not only by stimulating angiogenesis but also by promoting metastasis, and provide a mechanism by which breast cancer cells acquire an enhanced invasive phenotype contributing to metastasis.
Collapse
Affiliation(s)
- Yorihisha Imanishi
- Cancer Institute and Research Pavilion at the Hillman Cancer Center, University of Pittsburgh, Pennsylvania
- Department of Pathology, Research Pavilion at the Hillman Cancer Center, University of Pittsburgh, Pennsylvania
| | - Bo Hu
- Cancer Institute and Research Pavilion at the Hillman Cancer Center, University of Pittsburgh, Pennsylvania
- Department of Medicine, Research Pavilion at the Hillman Cancer Center, University of Pittsburgh, Pennsylvania
| | - Michael J. Jarzynka
- Cancer Institute and Research Pavilion at the Hillman Cancer Center, University of Pittsburgh, Pennsylvania
- Department of Pathology, Research Pavilion at the Hillman Cancer Center, University of Pittsburgh, Pennsylvania
| | - Ping Guo
- Cancer Institute and Research Pavilion at the Hillman Cancer Center, University of Pittsburgh, Pennsylvania
- Department of Pathology, Research Pavilion at the Hillman Cancer Center, University of Pittsburgh, Pennsylvania
| | - Esther Elishaev
- Department of Pathology, Research Pavilion at the Hillman Cancer Center, University of Pittsburgh, Pennsylvania
- Magee-Womens Hospital, Pittsburgh, Pennsylvania
| | - Ifat Bar-Joseph
- Cancer Institute and Research Pavilion at the Hillman Cancer Center, University of Pittsburgh, Pennsylvania
- Department of Pathology, Research Pavilion at the Hillman Cancer Center, University of Pittsburgh, Pennsylvania
| | - Shi-Yuan Cheng
- Cancer Institute and Research Pavilion at the Hillman Cancer Center, University of Pittsburgh, Pennsylvania
- Department of Pathology, Research Pavilion at the Hillman Cancer Center, University of Pittsburgh, Pennsylvania
| |
Collapse
|