1
|
Huang L, Tan L, Lv Z, Chen W, Wu J. Pharmacology of bioactive compounds from plant extracts for improving non-alcoholic fatty liver disease through endoplasmic reticulum stress modulation: A comprehensive review. Heliyon 2024; 10:e25053. [PMID: 38322838 PMCID: PMC10844061 DOI: 10.1016/j.heliyon.2024.e25053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 01/18/2024] [Accepted: 01/18/2024] [Indexed: 02/08/2024] Open
Abstract
Background Non-alcoholic fatty liver disease (NAFLD) is a prevalent chronic liver condition with significant clinical implications. Emerging research indicates endoplasmic reticulum (ER) stress as a critical pathogenic factor governing inflammatory responses, lipid metabolism and insulin signal transduction in patients with NAFLD. ER stress-associated activation of multiple signal transduction pathways, including the unfolded protein response, disrupts lipid homeostasis and substantially contributes to NAFLD development and progression. Targeting ER stress for liver function enhancement presents an innovative therapeutic strategy. Notably, the natural bioactive compounds of plant extracts have shown potential for treating NAFLD by reducing the level of ER stress marker proteins and mitigating inflammation, stress responses, and de novo lipogenesis. However, owing to limited comprehensive reviews, the effectiveness and pharmacology of these bioactive compounds remain uncertain. Objectives To address the abovementioned challenges, the current review categorizes the bioactive compounds of plant extracts by chemical structures and properties into flavonoids, phenols, terpenoids, glycosides, lipids and quinones and examines their ameliorative potential for NAFLD under ER stress. Methods This review systematically analyses the literature on the interactions of bioactive compounds from plant extracts with molecular targets under ER stress, providing a holistic view of NAFLD therapy. Results Bioactive compounds from plant extracts may improve NAFLD by alleviating ER stress; reducing lipid synthesis, inflammation, oxidative stress and apoptosis and enhancing fatty acid metabolism. This provides a multifaceted approach for treating NAFLD. Conclusion This review underscores the role of ER stress in NAFLD and the potential of plant bioactive compounds in treating this condition. The molecular mechanisms by which plant bioactive compounds interact with their ER stress targets provide a basis for further exploration in NAFLD management.
Collapse
Affiliation(s)
- Liying Huang
- Yunnan Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Disease in Prevention and Treatment, Yunnan University of Chinese Medicine, Yunnan, Kunming, China
- Key Laboratory of Microcosmic Syndrome Differentiation, Yunnan University of Chinese Medicine, Yunnan, Kunming, China
| | - Liping Tan
- Yunnan Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Disease in Prevention and Treatment, Yunnan University of Chinese Medicine, Yunnan, Kunming, China
- Key Laboratory of Microcosmic Syndrome Differentiation, Yunnan University of Chinese Medicine, Yunnan, Kunming, China
| | - Zhuo Lv
- Yunnan Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Disease in Prevention and Treatment, Yunnan University of Chinese Medicine, Yunnan, Kunming, China
- Key Laboratory of Microcosmic Syndrome Differentiation, Yunnan University of Chinese Medicine, Yunnan, Kunming, China
| | - Wenhui Chen
- Yunnan Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Disease in Prevention and Treatment, Yunnan University of Chinese Medicine, Yunnan, Kunming, China
- Key Laboratory of Microcosmic Syndrome Differentiation, Yunnan University of Chinese Medicine, Yunnan, Kunming, China
| | - Junzi Wu
- Yunnan Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Disease in Prevention and Treatment, Yunnan University of Chinese Medicine, Yunnan, Kunming, China
- Key Laboratory of Microcosmic Syndrome Differentiation, Yunnan University of Chinese Medicine, Yunnan, Kunming, China
| |
Collapse
|
2
|
Alsherif DA, Hussein MA, Abuelkasem SS. Salvia officinalis Improves Glycemia and Suppresses Pro-inflammatory Features in Obese Rats with Metabolic Syndrome. Curr Pharm Biotechnol 2024; 25:623-636. [PMID: 37581324 DOI: 10.2174/1389201024666230811104740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 06/12/2023] [Accepted: 06/26/2023] [Indexed: 08/16/2023]
Abstract
OBJECTIVES Obesity is regarded as the main cause of metabolic diseases and a core factor for all-cause mortality in the general population, notably from cardiovascular disease. The majority of people with type 2 diabetes have obesity and insulin resistance. Some evidence indicates that an individual with obesity is approximately 10 times more likely to develop type 2 diabetes than someone with moderate body weight. One of the most significant therapeutic herbs, Salvia officinalis (Lamiaceae) (SAGE), possesses potent medicinal importance. The aim of this article was to evaluate the anti-diabetic and antiobesity activity of SAGEAE against HFD-induced obesity in rats. METHODS Thirty adult albino rats were randomly divided into five equal groups: control, High-fat Diet (HFD) administrated rats, HFD + Salvia officinalis Aqueous Extract (SAGEAE) (150 mg/kg.bw.), HFD + SAGEAE (300 mg/kg.bw.) and HFD + metformin (500 mg/kg.bw.). Body weight, plasma biochemical parameters, oxidative stress, inflammatory indicators, hepatic Phosphoenolpyruvate Carboxykinase 1 (PCK1), Glucokinase (GK), brain Leptin Receptor (LepRb), Glucose Transporter-4 (GLUT4), Sirtuin 1 (SIRT1) and mRNA33-5P gene signalling mRNA levels were all assessed after 8 weeks. A histological examination of the liver was also performed to check for lipid accumulation. RESULTS The administration of HFD resulted in increased body weight, glucose, insulin, leptin, Total Cholesterol (TC), Triglycerides (TG), Thiobarbaturic Acid Reactive Substances (TBARS), Monocyte Chemoattractant Protein-1 (MCP1), Interleukine-6 (IL-6) and tumor necrosis factor-α (TNF- α) as well as hepatic PCK1, brain LepRb and adipose tissue mRNA33-5P gene expression. However, our findings revealed a significant reduction in adiponectin, High-density Lipoproteincholesterol (HDL-C), reduced glutathione (GSH) and Superoxide Dismutase (SOD) levels as well as the expression of hepatic GK and adipose tissue SIRT1 and GLUT4 genes. Also, administration of SAGEAE significantly normalized body weight, glucose, insulin, leptin, adiponectin, TC, TG, HDL-C, TBARs, SOD, IL-6, MCP-1 and TNF-α in plasma and liver tissue of HFD-treated rats. On the other hand, PCK1, GK, LepRb, SIRT1, GLUT4 and mRNA33-5P gene expression was enhanced in obese rats when administrated with SAGEAE. Histological and US studies support the biochemical, PCR and electrophoretic results. CONCLUSION The findings imply that SAGEAE could be used as a new pharmaceutical formula in the treatment of obesity.
Collapse
Affiliation(s)
- Diana A Alsherif
- Department of Radiology and Medical Imaging, Faculty of Applied Health Science Technology, October 6th University, October 6th City, Egypt
| | - Mohammed A Hussein
- Department of Biotechnology, Faculty of Applied Health Science Technology, October 6th University, October 6th City, Egypt
| | - Suzan S Abuelkasem
- Department of Biochemistry, Faculty of Applied Health Science Technology, October 6th University, October 6th City, Egypt
| |
Collapse
|
3
|
Kadasah SF, Radwan MO. Overview of Ursolic Acid Potential for the Treatment of Metabolic Disorders, Autoimmune Diseases, and Cancers via Nuclear Receptor Pathways. Biomedicines 2023; 11:2845. [PMID: 37893218 PMCID: PMC10604592 DOI: 10.3390/biomedicines11102845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 10/17/2023] [Accepted: 10/18/2023] [Indexed: 10/29/2023] Open
Abstract
Nuclear receptors (NRs) form a family of druggable transcription factors that are regulated by ligand binding to orchestrate multifaceted physiological functions, including reproduction, immunity, metabolism, and growth. NRs represent attractive and valid targets for the management and treatment of a vast array of ailments. Pentacyclic triterpenes (PTs) are ubiquitously distributed natural products in medicinal and aromatic plants, of which ursolic acid (UA) is an extensively studied member, due to its diverse bio-pertinent activities against different cancers, inflammation, aging, obesity, diabetes, dyslipidemia, and liver injury. In fact, PTs share a common lipophilic structure that resembles NRs' endogenous ligands. Herein, we present a review of the literature on UA's effect on NRs, showcasing the resulting health benefits and potential therapeutic outcomes. De facto, UA exhibited numerous pharmacodynamic effects on PPAR, LXR, FXR, and PXR, resulting in remarkable anti-inflammatory, anti-hyperlipidemic, and hepatoprotective properties, by lowering lipid accumulation in hepatocytes and mitigating non-alcoholic steatohepatitis (NASH) and its subsequent liver fibrosis. Furthermore, UA reversed valproate and rifampicin-induced hepatic lipid accumulation. Additionally, UA showed great promise for the treatment of autoimmune inflammatory diseases such as multiple sclerosis and autoimmune arthritis by antagonizing RORγ. UA exhibited antiproliferative effects against skin, prostate, and breast cancers, partially via PPARα and RORγ pathways. Herein, for the first time, we explore and provide insights into UA bioactivity with respect to NR modulation.
Collapse
Affiliation(s)
- Sultan F. Kadasah
- Department of Biology, Faculty of Science, University of Bisha, P.O. Box 551, Bisha 61922, Saudi Arabia
| | - Mohamed O. Radwan
- Medicinal and Biological Chemistry Science Farm Joint Research Laboratory, Faculty of Life Sciences, Kumamoto University, Kumamoto 862-0973, Japan
| |
Collapse
|
4
|
Tao Y, Zhu F, Pan M, Liu Q, Wang P. Pharmacokinetic, Metabolism, and Metabolomic Strategies Provide Deep Insight Into the Underlying Mechanism of Ginkgo biloba Flavonoids in the Treatment of Cardiovascular Disease. Front Nutr 2022; 9:857370. [PMID: 35399672 PMCID: PMC8984020 DOI: 10.3389/fnut.2022.857370] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 02/21/2022] [Indexed: 12/18/2022] Open
Abstract
Ginkgo biloba, known as the "living fossil," has a long history of being used as botanical drug for treating cardiovascular diseases and the content of flavonoids as high as 24%. More than 110 different kinds of flavonoids and their derivatives have been separated from G. biloba, including flavones, flavonols, biflavonoids, catechins, and their glycosides, etc., all of which display the ability to dilate blood vessels, regulate blood lipids, and antagonize platelet activating factor, and protect against ischemic damage. At present, many types of preparations based on G. biloba extract or the bioactive flavonoids of it have been developed, which are mostly used for the treatment of cardiovascular diseases. We herein review recent progress in understanding the metabolic regulatory processes and gene regulation of cellular metabolism in cardiovascular diseases of G. biloba flavonoids. First, we present the cardioprotective flavonoids of G. biloba and their possible pharmacological mechanism. Then, it is the pharmacokinetic and liver and gut microbial metabolism pathways that enable the flavonoids to reach the target organ to exert effect that is analyzed. In the end, we review the possible endogenous pathways toward restoring lipid metabolism and energy metabolism as well as detail novel metabolomic methods for probing the cardioprotective effect of flavonoids of G. biloba.
Collapse
Affiliation(s)
- Yi Tao
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, China
| | | | | | | | - Ping Wang
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, China
| |
Collapse
|
5
|
Gomes Castro AJ, Cazarolli LH, Silva Frederico MJ, Dambrós BF, de Carvalho FK, de Medeiros Pinto VA, da Fonte Ramos C, Filippin Monteiro FB, Pizzolatti MG, Mena Barreto Silva FR. Biological activity of 2α,3β,23-trihydroxyolean-12-ene on glucose homeostasis. Eur J Pharmacol 2021; 907:174250. [PMID: 34118223 DOI: 10.1016/j.ejphar.2021.174250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 06/02/2021] [Accepted: 06/07/2021] [Indexed: 10/21/2022]
Abstract
We studied the effect and the mechanisms of action of 2α,3β,23-trihydroxyolean-12-ene (THO), from Croton heterodoxus Baill. (Euphorbiaceae), in glucose uptake in hyperglycemic rats. The effect of in vivo pretreatment with THO in hyperglycemic rats was analyzed. The in vitro effects of THO were observed in adipocytes and in adipose tissue. THO reduced glycemia, in part by increasing serum insulin and augmenting the disposal of glucose as glycogen in hepatocytes but did not change the serum concentration of glucagon-like peptide-1. THO increased glucose uptake in adipocytes and in adipose tissue by a mechanism dependent on phosphatidylinositol 3-kinase vesicular traffic and on the process of vesicle fusion at the plasma membrane in regions containing cholesterol, indicating the involvement of glucose transporter-4 (GLUT4). This triterpene may act solely via the activation and translocation of GLUT4 (rather than via nuclear actions, such as upregulation of GLUT4 synthesis), since THO did not alter the amount of GLUT4 mRNA or the content of GLUT4. Consistent with these data, the stimulatory effect of this triterpene on the quantity of GLUT4 in the membrane fraction was dependent upon p38 phosphorylation. In this experimental model, orally administered 10 mg/kg THO did not modulate extracellular serum lactate dehydrogenase. In conclusion, THO decreases hyperglycemia by increasing serum insulin and hepatic glycogen content. The THO mechanism of action on adipose tissue for glucose uptake is suggested to be via GLUT4 translocation stimulation mediated by a p38-dependent mechanism. THO is a potential antihyperglycemic agent that acts in a target tissue for glucose homeostasis.
Collapse
Affiliation(s)
- Allisson Jhonatan Gomes Castro
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | - Luisa Helena Cazarolli
- Universidade Federal da Fronteira Sul, Campus Universitário Laranjeiras Do Sul, Laranjeiras Do Sul, PR, Brazil
| | - Marisa Jadna Silva Frederico
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | - Betina Fernanda Dambrós
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | - Francieli Kanumfre de Carvalho
- Departamento de Química, Centro de Ciências Físicas e Matemáticas, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | | | | | - Fabíola Branco Filippin Monteiro
- Departamento de Análises Clínicas, Centro de Ciências da Saúde, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | - Moacir Geraldo Pizzolatti
- Departamento de Química, Centro de Ciências Físicas e Matemáticas, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | | |
Collapse
|
6
|
Hypolipidemic Effects and Preliminary Mechanism of Chrysanthemum Flavonoids, Its Main Components Luteolin and Luteoloside in Hyperlipidemia Rats. Antioxidants (Basel) 2021; 10:antiox10081309. [PMID: 34439559 PMCID: PMC8389196 DOI: 10.3390/antiox10081309] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Revised: 07/25/2021] [Accepted: 08/12/2021] [Indexed: 12/24/2022] Open
Abstract
This study aimed to investigate the key constituents and preliminary mechanism for the hypolipidemic activity of chrysanthemum flavonoids. Hyperlipidemia (HPL) rats were divided into five groups: the model control group (MC); Chrysanthemum flavone intervention group (CF); luteolin intervention group; luteoloside intervention group and simvastatin intervention group. The body weight, organ coefficient, serum lipids, antioxidant activity, and lipid metabolism enzymes were detected. Hematoxylin and eosin (H&E) staining was used to observe the liver and adipose tissue. Chrysanthemum flavonoids, luteolin, and luteoloside can reduce the weight and levels of total cholesterol (TC), triglycerides (TG), and LDL-C, and increase the level of HDL-C in the blood and reduce liver steatosis. Indicators of liver function (AST, ALT, and ALP) improved. The antioxidant activity (GSH-Px, CAT, SOD) and enzymes associated with lipid catabolism (FAβO, CYP7A1, and HL) increased, while lipid peroxidation products (MDA) and enzymes associated with lipid synthesis (FAS, HMG-CoA, and DGAT) decreased. Chrysanthemum flavonoids had a better effect on the antioxidant level and lipid metabolism-related enzyme activity. There was no significant difference in the effects of the chrysanthemum flavonoids, luteolin, and Luteoloside on improving blood lipids and hepatic steatosis—mechanisms that may be related to antioxidant levels and regulating enzymes involved in the metabolism of fatty acids, cholesterol, and triglycerides in the liver. However, chrysanthemum flavonoids had a stronger antioxidant and lipid metabolism regulation ability, and the long-term effects may be better.
Collapse
|
7
|
Wang Z, Zeng M, Wang Z, Qin F, Chen J, He Z. Dietary Luteolin: A Narrative Review Focusing on Its Pharmacokinetic Properties and Effects on Glycolipid Metabolism. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:1441-1454. [PMID: 33522240 DOI: 10.1021/acs.jafc.0c08085] [Citation(s) in RCA: 95] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Luteolin, a flavone subclass of flavonoids, is commonly found in food plants and has multiple biological activities. Recently, evidence is growing with regard to the potential of luteolin intake to beneficially affect glycolipid metabolism disorders (GLMDs), particularly insulin resistance, diabetes, and obesity. The aim of this contribution is to provide an overview of recent advances in identifying and understanding the pharmacokinetic properties (absorption, metabolism, and bioavailability) of luteolin, its regulatory effects on glycolipid metabolism, and the underlying mechanisms of action of luteolin in the brain, liver, adipose tissues, and other tissues/organs. Collectively, luteolin or its principal metabolites may contribute to counteracting GLMDs, especially for human obesity and diabetes.
Collapse
Affiliation(s)
- Zhenyu Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| | - Maomao Zeng
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| | - Zhaojun Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| | - Fang Qin
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| | - Jie Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| | - Zhiyong He
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| |
Collapse
|
8
|
Castellano JM, Espinosa JM, Perona JS. Modulation of Lipid Transport and Adipose Tissue Deposition by Small Lipophilic Compounds. Front Cell Dev Biol 2020; 8:555359. [PMID: 33163484 PMCID: PMC7591460 DOI: 10.3389/fcell.2020.555359] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 09/01/2020] [Indexed: 12/14/2022] Open
Abstract
Small lipophilic molecules present in foods of plant origin have relevant biological activities at rather low concentrations. Evidence suggests that phytosterols, carotenoids, terpenoids, and tocopherols can interact with different metabolic pathways, exerting beneficial effects against a number of metabolic diseases. These small molecules can modulate triacylglycerol absorption in the intestine and the biosynthesis of chylomicrons, the lipid carriers in the blood. Once in the bloodstream, they can impact lipoprotein clearance from blood, thereby affecting fatty acid release, incorporation into adipocytes and triglyceride reassembling and deposit. Consequently, some of these molecules can regulate pathophysiological processes associated to obesity and its related conditions, such as insulin resistance, metabolic syndrome and type-2 diabetes. The protective capacity of some lipophilic small molecules on oxidative and chemotoxic stress, can modify the expression of key genes in the adaptive cellular response, such as transcription factors, contributing to prevent the inflammatory status of adipose tissue. These small lipophilic compounds can be incorporated into diet as natural parts of food but they can also be employed to supplement other dietary and pharmacologic products as nutraceuticals, exerting protective effects against the development of metabolic diseases in which inflammation is involved. The aim of this review is to summarize the current knowledge of the influence of dietary lipophilic small biomolecules (phytosterols, carotenoids, tocopherols, and triterpenes) on lipid transport, as well as on the effects they may have on pathophysiological metabolic states, related to obesity, insulin resistance and inflammation, providing an evidence-based summary of their main beneficial effects on human health.
Collapse
Affiliation(s)
- José M Castellano
- Group of Bioactive Compounds, Nutrition and Health, Department of Food and Health, Instituto de la Grasa-Consejo Superior de Investigaciones Científicas, Seville, Spain
| | - Juan M Espinosa
- Group of Bioactive Compounds, Nutrition and Health, Department of Food and Health, Instituto de la Grasa-Consejo Superior de Investigaciones Científicas, Seville, Spain
| | - Javier S Perona
- Group of Bioactive Compounds, Nutrition and Health, Department of Food and Health, Instituto de la Grasa-Consejo Superior de Investigaciones Científicas, Seville, Spain
| |
Collapse
|
9
|
Shabbir M, Afsar T, Razak S, Almajwal A, Khan MR. Phytochemical analysis and Evaluation of hepatoprotective effect of Maytenus royleanus leaves extract against anti-tuberculosis drug induced liver injury in mice. Lipids Health Dis 2020; 19:46. [PMID: 32178678 PMCID: PMC7077109 DOI: 10.1186/s12944-020-01231-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Accepted: 03/09/2020] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Myrin®-p Forte is an anti-tuberclosis agent that can cause hepatic injuries in clinical settings. Maytenus royleanus (Celastraceae) is a medicinal plant, possesses antioxidant and anticancer activities. The hepatoprotective effect of the methanol extract of Maytenus royleanus leaves (MEM) against Myrin®-p Forte induced hepatotoxicity in mice was investigated. METHODS Mice were randomly parted into six groups (n = 6). Fixed-dose combination of Myrin®-p Forte (13.5 mg/kg Rifampicin, 6.75 mg/kg Isoniazid, 36.0 mg/kg Pyrazinamide and 24.8 mg/kg Ethambutol; RIPE] was administered for 15 days to induce liver injury. In treatment groups MEM (200 mg/kg and 400 mg/kg doses) and Vitamin B6 (180mg/kg) were administered prior to RIPE. Control group received 2% DMSO. Serum liver function tests, DNA damage, tissue antioxidant enzymes and histopathological alterations were studied. HPLC analysis was performed to determine the chemical composition using standard compounds. RESULTS The quercitin, gallic acid, luteolin, viteixin, apigenin, kaempherol, hyperoside and myricetin contents of all samples were determined by reverse-phase HPLC. Quercetin (0.217 mg/g dry weight) and luteolin (0.141 mg/g dry weight) were the major flavonoids identified in MEM. Myrin®-p Forte markedly (p < 0.05) deteriorated lipid profile and upregulated the concentration of LDH, AST, ALP, ALT and γ-GT in serum along with DNA fragmentation (37.13 ± 0.47%) and histopathological injuries in hepatic tissues of mice compared with the control group. Myrin®-p Forte increased (p < 0.001) lipid peroxidation and H2O2 while decreased (p < 0.001) the activity level of CAT, SOD, POD, GPx, GST, GSR, γ-GT and GSH. Co-administration of MEM (200 mg/kg; 400 mg/kg) or the vitamin B6 (180 mg/kg) to Myrin®-p Forte administered mice significantly ameliorated LDL, cholesterol, HDL and triglyceride content. Furthermore, MEM dose dependently corrected serum liver function tests, decrease % DNA fragmentation (17.82 ± 0.35 and 7.21 ± 0.32 respectively), DNA damage. MEM treated protect RIPE induced oxidative damage by enhancing antioxidants to oxidants balance. Histological examination comprehends biochemical findings. CONCLUSION The antioxidant effects of MEM exerted the hepatoprotective potential against the Myrin®-p Forte induced hepatotoxicity in mice.
Collapse
Affiliation(s)
- Maria Shabbir
- Atta-ur-Rahman School of Applied Biosciences, NUST, Islamabad, Pakistan.,Department of Biochemistry, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Tayyaba Afsar
- Department of Community Health Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Kingdom of Saudi Arabia.
| | - Suhail Razak
- Department of Community Health Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Kingdom of Saudi Arabia
| | - Ali Almajwal
- Department of Community Health Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Kingdom of Saudi Arabia
| | - Muhammad Rashid Khan
- Department of Biochemistry, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| |
Collapse
|
10
|
Stalin A, Kandhasamy S, Kannan BS, Verma RS, Ignacimuthu S, Kim Y, Shao Q, Chen Y, Palani P. Synthesis of a 1,2,3-bistriazole derivative of embelin and evaluation of its effect on high-fat diet fed-streptozotocin-induced type 2 diabetes in rats and molecular docking studies. Bioorg Chem 2020; 96:103579. [DOI: 10.1016/j.bioorg.2020.103579] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 12/19/2019] [Accepted: 01/10/2020] [Indexed: 12/27/2022]
|
11
|
Kobayashi S. The Effect of Polyphenols on Hypercholesterolemia through Inhibiting the Transport and Expression of Niemann-Pick C1-Like 1. Int J Mol Sci 2019; 20:ijms20194939. [PMID: 31590417 PMCID: PMC6801711 DOI: 10.3390/ijms20194939] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 09/27/2019] [Accepted: 10/04/2019] [Indexed: 01/30/2023] Open
Abstract
The Niemann-Pick C1-like 1 (NPC1L1) protein is a cholesterol transporter that is expressed in the small intestine. This report describes the discovery of NPC1L1, its transport properties, and the inhibitory effects of polyphenols on NPC1L1. NPC1L1 was identified in 2004 while searching for ezetimibe molecular targets. Excessive synthesis of cholesterol results in hyperlipidemia, which increases the amount of bile cholesterol excreted into the duodenum. The inhibition of NPC1L1 decreases blood cholesterol because food and bile cholesterol are also absorbed from NPC1L1 in the intestine. Some polyphenols, particularly luteolin, have been reported as NPC1L1-mediated anti-dyslipidemia constituents. Luteolin affects NPC1L1 through two mechanisms. Luteolin directly inhibits NPC1L1 by binding to it, which occurs in a short timeframe similar to that for ezetimibe. The other mechanism is the inhibition of NPC1L1 expression. Luteolin reduced the binding of Sterol-regulatory element-binding protein 2 (SREBP2) in the promoter region of the NPC1L1 gene and decreased mRNA levels of SREBP2 and hepatocyte nuclear factor 4α. These data suggest that luteolin decreases the expression of NPC1L1 through regulation of transcription factors. This review also explores the effect of other polyphenols on NPC1L1 and hypercholesterolemia.
Collapse
Affiliation(s)
- Shoko Kobayashi
- Research Center for Food Safety, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan.
| |
Collapse
|
12
|
Pitaloka DMIFA, Ko CH, Lin MT, Yeh SL, Yeh CL. Glutamine administration promotes hepatic glucose homeostasis through regulating the PI3K/Akt pathway in high-fat diet-induced obese mice with limb ischemia. Nutr Res 2019; 68:45-53. [DOI: 10.1016/j.nutres.2019.05.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 05/23/2019] [Accepted: 05/25/2019] [Indexed: 01/27/2023]
|
13
|
Li J, Yu H, Wang S, Wang W, Chen Q, Ma Y, Zhang Y, Wang T. Natural products, an important resource for discovery of multitarget drugs and functional food for regulation of hepatic glucose metabolism. DRUG DESIGN DEVELOPMENT AND THERAPY 2018; 12:121-135. [PMID: 29391777 PMCID: PMC5768189 DOI: 10.2147/dddt.s151860] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Imbalanced hepatic glucose homeostasis is one of the critical pathologic events in the development of metabolic syndromes (MSs). Therefore, regulation of imbalanced hepatic glucose homeostasis is important in drug development for MS treatment. In this review, we discuss the major targets that regulate hepatic glucose homeostasis in human physiologic and pathophysiologic processes, involving hepatic glucose uptake, glycolysis and glycogen synthesis, and summarize their changes in MSs. Recent literature suggests the necessity of multitarget drugs in the management of MS disorder for regulation of imbalanced glucose homeostasis in both experimental models and MS patients. Here, we highlight the potential bioactive compounds from natural products with medicinal or health care values, and focus on polypharmacologic and multitarget natural products with effects on various signaling pathways in hepatic glucose metabolism. This review shows the advantage and feasibility of discovering multicompound-multitarget drugs from natural products, and providing a new perspective of ways on drug and functional food development for MSs.
Collapse
Affiliation(s)
- Jian Li
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin
| | - Haiyang Yu
- Department of Phytochemistry, Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Sijian Wang
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin
| | - Wei Wang
- Internal Medicine, Houston Methodist Hospital, Houston, TX, USA
| | - Qian Chen
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin
| | - Yanmin Ma
- Department of Phytochemistry, Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yi Zhang
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin
| | - Tao Wang
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin
| |
Collapse
|
14
|
Targeted isolation and identification of bioactive compounds lowering cholesterol in the crude extracts of crabapples using UPLC-DAD-MS-SPE/NMR based on pharmacology-guided PLS-DA. J Pharm Biomed Anal 2017; 150:144-151. [PMID: 29232626 DOI: 10.1016/j.jpba.2017.11.061] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 11/15/2017] [Accepted: 11/26/2017] [Indexed: 11/24/2022]
Abstract
The anti-hyperlipidemic effects of crude crabapple extracts derived from Malus 'Red jade', Malus hupehensis (Pamp.) Rehd. and Malus prunifolia (Willd.) Borkh. were evaluated on high-fat diet induced obese (HF DIO) mice. The results revealed that some of these extracts could lower serum cholesterol levels in HF DIO mice. The same extracts were also parallelly analyzed by LC-MS in both positive and negative ionization modes. Based on the pharmacological results, 22 LC-MS variables were identified to be correlated with the anti-hyperlipidemic effects using partial least square discriminant analysis (PLS-DA) and independent samples t-test. Further, under the guidance of the bioactivity-correlated LC-MS signals, 10 compounds were targetedly isolated and enriched using UPLC-DAD-MS-SPE and identified/elucidated by NMR together with MS/MS as citric acid(1), p-coumaric acid(2), hyperoside(3), myricetin(4), naringenin(5), quercetin(6), kaempferol(7), gentiopicroside(8), ursolic acid(9) and 8-epiloganic acid(10). Among these 10 compounds, 6 compounds, hyperoside(3), myricetin(4), naringenin(5), quercetin(6), kaempferol(7) and ursolic acid(9), were individually studied and reported to indeed have effects on lowering the serum lipid levels. These results demonstrated the efficiency of this strategy for drug discovery. In contrast to traditional routes to discover bioactive compounds in the plant extracts, targeted isolation and identification of bioactive compounds in the crude plant extracts using UPLC-DAD-MS-SPE/NMR based on pharmacology-guided PLS-DA of LC-MS data brings forward a new efficient dereplicated approach to natural products research for drug discovery.
Collapse
|
15
|
Hussain H, Green IR, Ali I, Khan IA, Ali Z, Al-Sadi AM, Ahmed I. Ursolic acid derivatives for pharmaceutical use: a patent review (2012-2016). Expert Opin Ther Pat 2017; 27:1061-1072. [PMID: 28637397 DOI: 10.1080/13543776.2017.1344219] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
INTRODUCTION Ursolic acid (UA), belongs to a group of pentacyclic triterpenoids and is known to possess some very interesting biological properties. Protocols have been developed in order to synthesize bioactive UA analogs which have resulted in numerous ursolic acid analogs being synthesized during the period 2012-2016. Ursolic acid and its analogues can be employed to treat various cancers, inflammatory diseases, diabetes, Parkinson's disease, Alzheimer's disease, hepatitis B, hepatitis C and AIDS to mention but a few. Areas covered: This review covers patents on therapeutic activities of ursolic acid (UA) and its synthetic derivatives published during the four year period 2012-2016. A discussion about structure-activity relationships (SAR) of these analogs is also included. Expert opinion: Ursolic acid and its synthetic derivatives demonstrated excellent anticancer, antidiabetic, antiarrhythmic, anti-hyperlipidemic, antimicrobial, anti-hypercholesterolemic, and anti-cardiovascular properties. Additionally, various ursolic acid analogues have been synthesized through modification at positions C2-OH, C3-OH and C17-CO2H. It is noteworthy that the C-17 amide and amino analogs of UA possessed better anticancer activity compared to the parent compound (UA). Most importantly, UA has the potential to conjugate with other anticancer drugs or be transformed into its halo derivatives since this will greatly facilitate scientists to get lead compounds in cancer drug discovery.
Collapse
Affiliation(s)
- Hidayat Hussain
- a UoN Chair of Oman's Medicinal Plants and Marine Natural Products , University of Nizwa , Nizwa , Sultanate of Oman
- b Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography , University of California , San Diego , CA , USA
| | - Ivan R Green
- c Department of Chemistry and Polymer Science , University of Stellenbosch , Stellenbosch , South Africa
| | - Iftikhar Ali
- d Department of Chemistry , Karakoram International University , Gilgit-Baltistan , Pakistan
| | - Ikhlas A Khan
- e National Center for Natural Products Research , University of Mississippi , Oxford , MS , USA
| | - Zulfiqar Ali
- e National Center for Natural Products Research , University of Mississippi , Oxford , MS , USA
| | - Abdullah M Al-Sadi
- f Department of Crop Sciences, College of Agricultural and Marine Sciences , Sultan Qaboos University , Al Khod , Oman
| | - Ishtiaq Ahmed
- g DFG Centre for Functional Nanostructures , Karlsruhe Institute of Technology (KIT) , Karlsruhe , Germany
| |
Collapse
|
16
|
Dorjsembe B, Lee HJ, Kim M, Dulamjav B, Jigjid T, Nho CW. Achillea asiatica extract and its active compounds induce cutaneous wound healing. JOURNAL OF ETHNOPHARMACOLOGY 2017; 206:306-314. [PMID: 28602757 DOI: 10.1016/j.jep.2017.06.006] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Revised: 05/28/2017] [Accepted: 06/03/2017] [Indexed: 06/07/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Achillea asiatica Serg. is a perennial herb belonging to the Asteraceae family that has long been traditionally used to treat acute intestinal and stomach inflammation, persistent fever, ulcers, wounds, and rheumatism. AIM OF THE STUDY We investigated the effect of A. asiatica extract (AAE) on cutaneous wound healing. MATERIALS AND METHODS To assess the effect of AAE on wounds, an incisional Sprague-Dawley (SD) rat model was topically treated with AAE for 2 weeks. HaCaT keratinocytes, Hs68 dermal fibroblasts, and RAW 264.7 macrophages were used for in vitro experiments. After treatment with AAE, cell viability, cell migration, and production of nitric oxide (NO) and prostaglandin E2 (PGE2) were investigated. mRNA expression of collagen type I and III and inflammatory cytokines was measured by RT-PCR. The effect of AAE on activation of β-catenin and other markers was determined by Western blot analysis. RESULTS AAE treatment significantly increased epithelialization and accelerated wound healing in SD rats. Meanwhile, AAE and its active compounds reduced NO and PGE2 release and mRNA expression of inflammatory cytokines in RAW 264.7 macrophages, reflecting anti-inflammatory activity. Furthermore, AAE and its constituents stimulated collagen expression in Hs68 fibroblasts by activating transforming growth factor-β and stimulated keratinocyte differentiation and motility by inducing β-catenin, Akt, and keratinocyte differentiation markers. CONCLUSIONS AAE improves skin wounds in SD rats and supports keratinocyte development.
Collapse
Affiliation(s)
- Banzragch Dorjsembe
- Natural Products Research Center, Korea Institute of Science and Technology, Gangneung, Republic of Korea; Department of Biological Chemistry, University of Science and Technology, Daejeon, Republic of Korea
| | - Hee Ju Lee
- Natural Products Research Center, Korea Institute of Science and Technology, Gangneung, Republic of Korea; Systems Biotechnology Research Center, Korea Institute of Science and Technology, Gangneung, Republic of Korea
| | - Myungsuk Kim
- Natural Products Research Center, Korea Institute of Science and Technology, Gangneung, Republic of Korea; Convergence Research Center for Smart Farm Solution, Korea Institute of Science and Technology, Gangneung, Republic of Korea
| | - Batsuren Dulamjav
- Natural Product Chemistry Laboratory, Institute of Chemistry and Chemical Technology, Mongolian Academy of Science, Ulaanbaatar, Mongolia
| | - Tunsag Jigjid
- Natural Product Chemistry Laboratory, Institute of Chemistry and Chemical Technology, Mongolian Academy of Science, Ulaanbaatar, Mongolia
| | - Chu Won Nho
- Natural Products Research Center, Korea Institute of Science and Technology, Gangneung, Republic of Korea; Convergence Research Center for Smart Farm Solution, Korea Institute of Science and Technology, Gangneung, Republic of Korea.
| |
Collapse
|
17
|
Leung W, Ho FM, Li WP, Liang YC. Vitis thunbergii var. taiwaniana Leaf Extract Reduces Blood Glucose Levels in Mice with Streptozotocin-induced Diabetes. INT J PHARMACOL 2017. [DOI: 10.3923/ijp.2017.457.464] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
18
|
Veerapur VP, Pratap V, Thippeswamy BS, Marietta P, Bansal P, Kulkarni PV, Kulkarni VH. Polyphenolic enriched extract of Cassia glauca Lamk, improves streptozotocin-induced type-1 diabetes linked with partial insulin resistance in rats. JOURNAL OF ETHNOPHARMACOLOGY 2017; 198:489-498. [PMID: 28109916 DOI: 10.1016/j.jep.2017.01.025] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Revised: 01/12/2017] [Accepted: 01/15/2017] [Indexed: 06/06/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Traditionally Cassia glauca (CG) has been used to treat diabetes. AIM OF THE STUDY The study was undertaken to evaluate anti-diabetic and antioxidant activity of polyphenolic enriched extract of CG in standardized streptozotocin (STZ)-induced diabetic rats. MATERIALS AND METHODS The effect of ethanol (CGE) and water (CGW) extracts of CG (200 and 400mg/kg) treatment were evaluated in STZ (50mg/kg, iv) induced diabetic rats. On 10th day, oral glucose tolerance test and degree of insulin resistance was calculated. On 13th day, insulin tolerance test was performed to know the peripheral utilization of glucose. On 15th day, blood glucose, lipid profiles and endogenous antioxidant levels were estimated. In addition, the effects on oral glucose/sucrose tolerance test in normal rats. Further, HPLC fingerprinting profile of CGE and simultaneous quantification of biomarkers were carried out. RESULTS Supplementation with CGE and CGW significantly reduced STZ-induced deleterious effects and improved glucose tolerance, and insulin tolerance. In addition, supplementation also decreased oxidative stress by improving endogenous antioxidant levels. Furthermore, administration significantly improves sucrose tolerance suggesting that extract possess inhibition of α-glucosidase enzyme. Further, HPLC studies revealed that CGE contains three bioactive polyphenolic compounds viz., rutin (0.10±0.01mg/g), luteolin-7-glucoside (0.06±0.01mg/g) and isorhoifolin (0.7±0.05mg/g). CONCLUSION Observed beneficial outcome of CG might be attributed to the presence of polyphenolic compounds and mediated by interacting with multiple targets of diabetes and oxidative stress. Taken together, this study provided the scientific evidence for the traditional use of CG.
Collapse
Affiliation(s)
- V P Veerapur
- SET's College of Pharmacy, S.R Nagar, Dharwad 580002, Karnataka, India; Sree Siddaganga College of Pharmacy, B.H Road, Tumkur 572102, Karnataka, India.
| | - V Pratap
- SET's College of Pharmacy, S.R Nagar, Dharwad 580002, Karnataka, India
| | - B S Thippeswamy
- SET's College of Pharmacy, S.R Nagar, Dharwad 580002, Karnataka, India; College of Pharmacy, Al-Dawadmi, Shaqra University, Ministry of Higher Education, Saudi Arabia
| | - P Marietta
- SET's College of Pharmacy, S.R Nagar, Dharwad 580002, Karnataka, India
| | - Punit Bansal
- Manipal College of Pharmaceutical Sciences, Manipal University, Manipal 576104, Karnataka, India
| | - P V Kulkarni
- SET's College of Pharmacy, S.R Nagar, Dharwad 580002, Karnataka, India
| | - V H Kulkarni
- SET's College of Pharmacy, S.R Nagar, Dharwad 580002, Karnataka, India
| |
Collapse
|
19
|
Leaf Extract from Lithocarpus polystachyus Rehd. Promote Glycogen Synthesis in T2DM Mice. PLoS One 2016; 11:e0166557. [PMID: 27893760 PMCID: PMC5125604 DOI: 10.1371/journal.pone.0166557] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2016] [Accepted: 10/31/2016] [Indexed: 12/14/2022] Open
Abstract
The purpose of this study was to investigate the effects of leaf extract from Lithocarpus polystachyus Rehd. on type II diabetes mellitus (T2DM) and the active ingredients of this effect. In addition, this study determined, for the first time, the underlying molecular and pharmacological mechanisms of the extracts on hyperglycemia using long-term double high diet-fed and streptozotocin (STZ) induced type II diabetic mice. In the present study, leaf extract, phloridzin and trilobatin were assessed in vivo (gavage) and in vitro (non-invasive micro-test technique, NMT) in experimental T2DM mice. The biochemical parameters were measured including blood glucose and blood lipid level, liver biochemical indexes, and hepatic glycogen. The relative expression of glycometabolism-related genes was detected. The effect of leaf extracts on physiological glucose flux in liver tissue from control and T2DM mice was also investigated. Body weight of experimental T2DM mice increased significantly after the first week, but stabilized over the subsequent three weeks; body weight of all other groups did not change during the four weeks’ study. After four weeks, all treatment groups decreased blood glucose, and treatment with leaf extract had numerous positive effects: a) promoted in glucose uptake in liver, b) increased synthesis of liver glycogen, c) reduced oxidative stress, d) up-regulation of glucokinase (GK), glucose transporter 2 (GLUT2), insulin receptor (IR) and insulin receptor substrate (IRS) expression in liver, e) down-regulation of glucose-6-phosphatase (G-6-P) expression, and f) ameliorated blood lipid levels. Both treatment with trilobatin or phloridzin accelerated liver glycogen synthesis, decreased oxidative stress and increased expression of GK. IRS and phosphoenolpyruvate carboxykinase (PEPCK) were both up-regulated after treatment with trilobatin. Expression of GLUT2, PEPCK and G-6-P were also increased in liver tissue after treatment with phloridzin. Our data indicate that leaf extract from L. polystachyus Rehd. has a preferable hypoglycemic effects than trilobatin or phloridzin alone. Leaf extract significantly increased glucose uptake and hepatic glycogen synthesis while also inducing a decline of hepatic gluconeogenesis and oxidative stress in T2DM mice. From this study, we draw conclusions that L. polystachyus promoted glycogen synthesis in T2DM mice, and that the active compounds were not only the trilobatin or phloridzin.
Collapse
|
20
|
Quan KT, Park HS, Oh J, Park HB, Ferreira D, Myung CS, Na M. Arborinane Triterpenoids from Rubia philippinensis Inhibit Proliferation and Migration of Vascular Smooth Muscle Cells Induced by the Platelet-Derived Growth Factor. JOURNAL OF NATURAL PRODUCTS 2016; 79:2559-2569. [PMID: 27704813 DOI: 10.1021/acs.jnatprod.6b00489] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The abnormal proliferation and migration of vascular smooth muscle cells (VSMCs) are associated with cardiovascular diseases and related complications. Such deleterious proliferation and migration events are triggered by cytokines and growth factors, and among them, platelet-derived growth factor (PDGF) is recognized as the most potent inducer. Despite the genus Rubia being researched to identify valuable commercial and medicinal virtues, Rubia philippinensis has rarely been investigated. Nine arborinane-type triterpenoids (1-9) were identified from this underutilized plant species. In particular, 4 was identified as the first arborinane derivative carrying a ketocarbonyl motif at C-19. The presence of the cyclopentanone moiety and the associated configurational assignment were determined by utilizing NOE and coupling constant analysis. These compounds were assessed for their inhibitory potential on PDGF-induced proliferation and the migration of VSMCs. Treatment with 5 μM compound 5 (62.6 ± 10.7%) and compound 9 (41.1 ± 4.7%) impeded PDGF-stimulated proliferation without exerting cytotoxicity. Compound 7 exhibited antimigration activity in a dose-dependent manner (38.5 ± 3.0% at 10 μM, 57.6 ± 3.2% at 30 μM). These results suggest that the arborinane-type triterpenoids may be a pertinent starting point for the development of cardiovascular drugs capable of preventing the intimal accumulation of VSMCs.
Collapse
Affiliation(s)
- Khong Trong Quan
- Department of Pharmaceutical Analysis and Standardization, National Institute of Medicinal Materials , Hanoi, Vietnam
| | | | - Joonseok Oh
- Department of Chemistry, Yale University , New Haven, Connecticut 06520, United States
- Chemical Biology Institute, Yale University , New Haven, Connecticut 06516, United States
| | - Hyun Bong Park
- Department of Chemistry, Yale University , New Haven, Connecticut 06520, United States
- Chemical Biology Institute, Yale University , New Haven, Connecticut 06516, United States
| | - Daneel Ferreira
- Department of BioMolecular Sciences, Division of Pharmacognosy, and Research Institute of Pharmaceutical Sciences, School of Pharmacy, The University of Mississippi , University, Mississippi 38677, United States
| | - Chang-Seon Myung
- Institute of Drug Research & Development, Chungnam National University , Daejeon 34134, Republic of Korea
| | | |
Collapse
|
21
|
Lee YN, Hsu GSW, Lin WT, Lu YF. Hypolipidemic and Antioxidative Effects ofGlossogyne tenuifoliain Hamsters Fed an Atherogenic Diet. J Med Food 2016; 19:513-7. [DOI: 10.1089/jmf.2015.3549] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Affiliation(s)
- Yi-Ning Lee
- Department of Nutritional Science, Fu-Jen Catholic University, New Taipei City, Taiwan
| | - Guoo-Shyng Wang Hsu
- Department of Nutritional Science, Fu-Jen Catholic University, New Taipei City, Taiwan
| | - Wan-Teng Lin
- Department of Hospitality Management, Tunghai University, Taichung, Taiwan
| | - Yi-Fa Lu
- Department of Nutritional Science, Fu-Jen Catholic University, New Taipei City, Taiwan
| |
Collapse
|
22
|
Stalin A, Irudayaraj SS, Gandhi GR, Balakrishna K, Ignacimuthu S, Al-Dhabi NA. Hypoglycemic activity of 6-bromoembelin and vilangin in high-fat diet fed-streptozotocin-induced type 2 diabetic rats and molecular docking studies. Life Sci 2016; 153:100-17. [PMID: 27091376 DOI: 10.1016/j.lfs.2016.04.016] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Revised: 04/06/2016] [Accepted: 04/13/2016] [Indexed: 12/14/2022]
Abstract
AIMS This paper investigates the hypoglycemic activity of two derivatives of embelin (1) viz. 6-bromoembelin (2) and vilangin (3), in high-fat diet - STZ induced diabetic rats. MAIN METHODS The effects of 6-bromoembelin (2) and vilangin (3) on insulin resistance, β-cell dysfunction and glucose transport in high-fat diet (HFD) fed-streptozotocin (STZ) (40mg/kg) induced type 2 diabetic rats were evaluated. The binding modes of 6-bromoembelin (2) and vilangin (3) into PPARγ, PI3K, Akt, and GLUT4 were also studied using Autodock 4.2 and ADT 1.5.6 programs. KEY FINDINGS At the dose of 30mg/kg, the plasma glucose, plasma insulin and body weight were reduced by both embelin derivatives in diabetic rats. Additionally the altered lipid profiles and hexokinase, glucose-6-phosphatase and fructose-1,6-bisphosphatase levels were brought to normal. Compared to diabetic control group, there was a significant increase in the expression of PPARγ in epididymal adipose tissue. Inhibition of adipogenic activity and mild activation of PPARγ levels in the skeletal muscle and liver were observed. In epididymal adipose tissue, the compounds increased the insulin-mediated glucose uptake through the activation and translocation of GLUT4 in PI3K/p-Akt signaling cascade. SIGNIFICANCE The derivatives of embelin such as 6-bromoembelin (2) and vilangin (3) may be useful in the prevention and treatment of obesity-linked type 2 diabetes mellitus.
Collapse
Affiliation(s)
- Antony Stalin
- Division of Bioinformatics, Entomology Research Institute, Loyola College, Chennai 600034, India
| | | | - Gopalsamy Rajiv Gandhi
- Division of Ethnopharmacology, Entomology Research Institute, Loyola College, Chennai 600034, India
| | - Kedike Balakrishna
- Division of Ethnopharmacology, Entomology Research Institute, Loyola College, Chennai 600034, India
| | - Savarimuthu Ignacimuthu
- Division of Bioinformatics, Entomology Research Institute, Loyola College, Chennai 600034, India; Division of Ethnopharmacology, Entomology Research Institute, Loyola College, Chennai 600034, India; Visiting professor program, Deanship of Scientific Research, College of Science, King Saud University, Riyadh 11451, Saudi Arabia.
| | - Naif Abdullah Al-Dhabi
- Department of Botany and Microbiology, Addiriyah Chair for Environmental Studies, College of Science, King Saud University, Post box 2455, Riyadh 11451, Saudi Arabia
| |
Collapse
|
23
|
Silva FSG, Oliveira PJ, Duarte MF. Oleanolic, Ursolic, and Betulinic Acids as Food Supplements or Pharmaceutical Agents for Type 2 Diabetes: Promise or Illusion? JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2016; 64:2991-3008. [PMID: 27012451 DOI: 10.1021/acs.jafc.5b06021] [Citation(s) in RCA: 93] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Oleanolic (OA), ursolic (UA), and betulinic (BA) acids are three triterpenic acids (TAs) with potential effects for treatment of type 2 diabetes (T2DM). Mechanistic studies showed that these TAs act as hypoglycemic and antiobesity agents mainly through (i) reducing the absorption of glucose; (ii) decreasing endogenous glucose production; (iii) increasing insulin sensitivity; (iv) improving lipid homeostasis; and (v) promoting body weight regulation. Besides these promising beneficial effects, it is believed that OA, UA, and BA protect against diabetes-related comorbidities due to their antiatherogenic, anti-inflammatory, and antioxidant properties. We also highlight the protective effect of OA, UA, and BA against oxidative damage, which may be very relevant for the treatment and/or prevention of T2DM. In the present review, we provide an integrative description of the antidiabetic properties of OA, UA, and BA, evaluating the potential use of these TAs as food supplements or pharmaceutical agents to prevent and/or treat T2DM.
Collapse
Affiliation(s)
- Filomena S G Silva
- Centro de Biotecnologia Agrı́cola e Agro-Alimentar do Alentejo (CEBAL)/Instituto Politécnico de Beja (IPBeja) , Apartado 6158, 7801-908 Beja, Portugal
| | - Paulo J Oliveira
- CNC, Center for Neuroscience and Cellular Biology, UC-Biotech Building, Biocant Park, University of Coimbra , 3060-107 Cantanhede, Portugal
| | - Maria F Duarte
- Centro de Biotecnologia Agrı́cola e Agro-Alimentar do Alentejo (CEBAL)/Instituto Politécnico de Beja (IPBeja) , Apartado 6158, 7801-908 Beja, Portugal
| |
Collapse
|
24
|
Kim KM, Lee KS, Lee GY, Jin H, Durrance ES, Park HS, Choi SH, Park KS, Kim YB, Jang HC, Lim S. Anti-diabetic efficacy of KICG1338, a novel glycogen synthase kinase-3β inhibitor, and its molecular characterization in animal models of type 2 diabetes and insulin resistance. Mol Cell Endocrinol 2015; 409:1-10. [PMID: 25802191 DOI: 10.1016/j.mce.2015.03.011] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Revised: 03/10/2015] [Accepted: 03/17/2015] [Indexed: 02/06/2023]
Abstract
Selective inhibition of glycogen synthase kinase-3 (GSK3) has been targeted as a novel therapeutic strategy for diabetes mellitus. We investigated the anti-diabetic efficacy and molecular mechanisms of KICG1338 (2-(4-fluoro-phenyl)-3H-imidazo[4,5-b]pyridine-7-carboxylic acid(4-methyl-pyridin-3-yl)-amide), a GSK3β inhibitor, in three animal models: Otsuka Long-Evans Tokushima Fatty (OLETF) rats, leptin receptors-deficient db/db mice, and diet-induced obese (DIO) mice. Biochemical parameters including glucose tolerance tests and gene expressions associated with glucose metabolism were investigated. Glucose excursion decreased significantly by KICG1338-treated OLETF rats, accompanied by increase in insulin receptor substrate-1 and glucose transporter (GLUT)-4 expressions in muscle and decreased GLUT-2 expression in liver. Glucose-lowering effects were similarly observed in KICG1338-treated db/db and DIO mice. KICG1338 treatment increased adiponectin levels and decreased TNF-α levels. KICG1338 therapy also led to greater β-cell preservation and less hepatic fat infiltration with decreased expressions of genes involved in inflammation and endoplasmic reticulum stress. These data demonstrate anti-diabetic efficacy of KICG1338, a novel GSK3β inhibitor.
Collapse
Affiliation(s)
- Kyoung Min Kim
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
| | - Kuy-Sook Lee
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seongnam, Republic of Korea; Biomedical Research Institute, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
| | - Gha Young Lee
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seongnam, Republic of Korea; Biomedical Research Institute, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
| | - Hyunjin Jin
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seongnam, Republic of Korea; Biomedical Research Institute, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
| | - Eunice Sung Durrance
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seongnam, Republic of Korea; Biomedical Research Institute, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
| | - Ho Seon Park
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Sung Hee Choi
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
| | - Kyong Soo Park
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea; Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, College of Medicine Seoul National University, Seoul, Republic of Korea
| | - Young-Bum Kim
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, College of Medicine Seoul National University, Seoul, Republic of Korea; Division of Endocrinology, Metabolism and Diabetes, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| | - Hak Chul Jang
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
| | - Soo Lim
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seongnam, Republic of Korea.
| |
Collapse
|
25
|
Castro AJG, Cazarolli LH, de Carvalho FK, da Luz G, Altenhofen D, dos Santos ARS, Pizzolatti MG, Silva FRMB. Acute effect of 3β-hidroxihop-22(29)ene on insulin secretion is mediated by GLP-1, potassium and calcium channels for the glucose homeostasis. J Steroid Biochem Mol Biol 2015; 150:112-22. [PMID: 25843210 DOI: 10.1016/j.jsbmb.2015.03.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Revised: 03/05/2015] [Accepted: 03/17/2015] [Indexed: 11/16/2022]
Abstract
The effect of 3β-hidroxihop-22(29)ene (3-BHO) on insulin and glucagon-like peptide 1 (GLP-1) secretion as well as the mechanism of action of the compound in pancreatic islet on glucose homeostasis was investigated. The data from in vivo treatment show that 3-BHO significantly reduces the hyperglycemia by increasing the insulin and GLP-1 secretion, as well as by accumulating hepatic glycogen in hyperglycemic rats. In rat pancreatic β-cell, 3-BHO stimulates the glucose uptake, insulin vesicles translocation to the plasma membrane and thus the insulin secretion through the involvement of potassium channels (ATP- and Ca(2+)-dependent K(+) channels) and calcium channels (L-type voltage-dependent calcium channels (L-VDCC)). Furthermore, this study also provides evidence for a crosstalk between intracellular high calcium concentration, PKA and PKC in the signal transduction of 3-BHO to stimulate insulin secretion. In conclusion, 3-BHO diminishes glycaemia, stimulates GLP-1 secretion and potentiates insulin secretion and increase hepatic glycogen content. Moreover, this triterpene modulates calcium influx characterizing ATP-K(+), Ca(2+)-K(+) and L-VDCC channels-dependent pathways as well as PKA and PKC activity in pancreatic islets underlying the signaling of 3-BHO for the secretory activity and contribution on glucose homeostasis.
Collapse
Affiliation(s)
- Allisson Jhonatan Gomes Castro
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Campus Universitário, Bairro Trindade, Cx. Postal 5069, CEP 88040-900, Florianópolis, SC, Brazil
| | - Luisa Helena Cazarolli
- Universidade Federal da Fronteira Sul, Campus Universitário Laranjeiras do Sul, Laranjeiras do Sul, PR, Brazil
| | - Francieli Kanumfre de Carvalho
- Departamento de Química, Centro de Ciências Físicas e Matemáticas, Universidade Federal de Santa Catarina, Campus Universitário, Bairro Trindade, Florianópolis, SC, Brazil
| | - Gabrielle da Luz
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Campus Universitário, Bairro Trindade, Cx. Postal 5069, CEP 88040-900, Florianópolis, SC, Brazil
| | - Delsi Altenhofen
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Campus Universitário, Bairro Trindade, Cx. Postal 5069, CEP 88040-900, Florianópolis, SC, Brazil
| | - Adair Roberto Soares dos Santos
- Universidade Federal de Santa Catarina, Departamento de Ciências Fisiológicas, Centro de Ciências Biológicas, Campus Universitário, Bairro Trindade, Florianópolis, SC, Brazil
| | - Moacir Geraldo Pizzolatti
- Departamento de Química, Centro de Ciências Físicas e Matemáticas, Universidade Federal de Santa Catarina, Campus Universitário, Bairro Trindade, Florianópolis, SC, Brazil
| | - Fátima Regina Mena Barreto Silva
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Campus Universitário, Bairro Trindade, Cx. Postal 5069, CEP 88040-900, Florianópolis, SC, Brazil.
| |
Collapse
|
26
|
Effects on Liver Lipid Metabolism of the Naturally Occurring Dietary Flavone Luteolin-7-glucoside. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2015; 2015:647832. [PMID: 26113868 PMCID: PMC4465769 DOI: 10.1155/2015/647832] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Revised: 04/20/2015] [Accepted: 04/20/2015] [Indexed: 12/14/2022]
Abstract
Disruptions in whole-body lipid metabolism can lead to the onset of several pathologies such as nonalcoholic fatty liver disease (NAFLD) and cardiovascular diseases (CVDs). The present study aimed at elucidating the molecular mechanisms behind the lipid-lowering effects of the flavone luteolin-7-glucoside (L7G) which we previously showed to improve plasma lipid profile in rats. L7G is abundant in plant foods of Mediterranean diet such as aromatic plants used as herbs. Results show that dietary supplementation with L7G for one week induced the expression of peroxisome proliferator-activated receptor-alpha (PPAR-α) and of its target gene carnitine palmitoyl transferase 1 (CPT-1) in rat liver. L7G showed a tendency to decrease the hepatic expression of sterol regulatory element-binding protein-1 (SREBP-1), without affecting fatty acid synthase (FAS) protein levels. Although SREBP-2 and LDLr mRNA levels did not change, the expression of HMG CoA reductase (HMGCR) was significantly repressed by L7G. L7G also inhibited this enzyme's in vitro activity in a dose dependent manner, but only at high and not physiologically relevant concentrations. These results add new evidence that the flavone luteolin-7-glucoside may help in preventing metabolic diseases and clarify the mechanisms underlying the beneficial health effects of diets rich in fruits and vegetables.
Collapse
|
27
|
Li JS, Wang WJ, Sun Y, Zhang YH, Zheng L. Ursolic acid inhibits the development of nonalcoholic fatty liver disease by attenuating endoplasmic reticulum stress. Food Funct 2015; 6:1643-51. [PMID: 25892149 DOI: 10.1039/c5fo00083a] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Ursolic acid (UA) is a natural pentacyclic triterpenoid compound, which is enriched with many herbs and plants, such as apple, cranberry and olive. UA performs multiple biological activities including anti-oxidation, anti-inflammation, anti-cancer and hepatoprotection. However, the exact mechanism underlying the hepatoprotective activity of UA remains unclear. In this study, the effects of UA on the development of nonalcoholic fatty liver disease (NAFLD) were investigated. In vivo, UA treatment (0.14%, w/w) significantly decreased the liver weight, serum levels of ALT/AST and hepatic steatosis in db/db mice (a type 2 diabetic mouse model). In vitro, UA treatment (10-30 μg ml(-1)) significantly decreased palmitic acid induced intracellular lipid accumulation in L02 cells. Our results suggested that the beneficial effects of UA on NAFLD may be due to its ability to increase lipid β-oxidation and to inhibit the hepatic endoplasmic reticulum (ER) stress. Together, UA may be further considered as a natural compound for NAFLD treatment.
Collapse
Affiliation(s)
- Jian-Shuang Li
- College of Life Sciences, Wuhan University, Wuhan, Hubei 430072, P. R. China.
| | | | | | | | | |
Collapse
|
28
|
Jia Y, Kim S, Kim J, Kim B, Wu C, Lee JH, Jun HJ, Kim N, Lee D, Lee SJ. Ursolic acid improves lipid and glucose metabolism in high-fat-fed C57BL/6J mice by activating peroxisome proliferator-activated receptor alpha and hepatic autophagy. Mol Nutr Food Res 2015; 59:344-54. [PMID: 25418615 DOI: 10.1002/mnfr.201400399] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Revised: 10/16/2014] [Accepted: 10/17/2014] [Indexed: 12/19/2022]
Abstract
SCOPE This study investigated metabolic effects of ursolic acid (UA), a peroxisome proliferation-activated receptor (PPAR)-α activator, in vivo. METHODS AND RESULTS High-fat diet (HFD)-fed C57BL/6J mice were orally administered UA (50 or 200 mg/kg body weight) for 8 wk. UA reduced liver and adipose tissue mass, adipocyte size, and plasma leptin concentrations, plasma triglyceride and low-density-lipoprotein cholesterol concentrations, while it elevated the high-density-lipoprotein cholesterol and adiponectin concentrations significantly compared with controls. UA induced the expression of PPARα and its responsive genes involved in fatty acid uptake and β-oxidation in the livers, whereas genes involved in lipogenesis, including sterol regulatory element-binding proteins-1c, were downregulated. UA administration improved glucose tolerance and insulin sensitivity significantly compared with the HFD-fed control livers. UA administration also activated hepatic autophagy as assessed by the expression of microtubule-associated protein 1A/1B-light chain 3 (LC3)-II and other key proteins in the autophagy pathway. CONCLUSION Our findings suggest that UA ameliorates lipid and glucose metabolism in HFD-fed mice primarily by the activation of PPARα and induction of the hepatic autophagy pathway. Thus, intake of UA in the diet or in an isolated form may ameliorate lipid and glucose metabolism.
Collapse
Affiliation(s)
- Yaoyao Jia
- Department of Biotechnology, Graduate School of Life Sciences & Biotechnology, Korea University, Seoul, Republic of Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Noh HM, Ahn EM, Yun JM, Cho BL, Paek YJ. Angelica keiskei Koidzumi extracts improve some markers of liver function in habitual alcohol drinkers: a randomized double-blind clinical trial. J Med Food 2015; 18:166-72. [PMID: 25531033 DOI: 10.1089/jmf.2014.3222] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Alcohol induces oxidative stress and inflammatory response, which can lead to hepatitis and cirrhosis. Previous studies reported that the extracts of Angelica keiskei Koidzumi (AKE) have antioxidant and anti-inflammatory properties, suggesting that AKE could improve abnormalities associated with alcoholic liver disease. In this study, the effectiveness of AKE supplementation was assessed in 82 habitual alcohol drinkers (male: more than 14 units per week, female: more than 7 units per week) with abnormal liver biochemistry in a placebo-controlled, randomized double-blind trial over 12 weeks. Among the subjects, 65% (n=43) were heavy drinkers consuming more than 35 units per week. Among heavy drinkers, gamma-glutamyl transferase levels of 19 subjects per AKE-treated group were significantly decreased (21.16±37.63, P=.016) with significant differences observed compared to the 24 subjects per placebo group (P=.046). However, no significant differences were observed in aspartate aminotransferase and alanine aminotransferase levels between the AKE- and placebo-treated groups. These results suggest that AKE supplementation might improve liver function in heavy drinkers.
Collapse
Affiliation(s)
- Hye-Mi Noh
- 1 Department of Family Medicine, Hallym University College of Medicine , Anyang, Korea
| | | | | | | | | |
Collapse
|
30
|
Castro AJG, Frederico MJS, Cazarolli LH, Mendes CP, Bretanha LC, Schmidt ÉC, Bouzon ZL, de Medeiros Pinto VA, da Fonte Ramos C, Pizzolatti MG, Silva FRMB. The mechanism of action of ursolic acid as insulin secretagogue and insulinomimetic is mediated by cross-talk between calcium and kinases to regulate glucose balance. BIOCHIMICA ET BIOPHYSICA ACTA 2015; 1850:51-61. [PMID: 25312987 DOI: 10.1016/j.bbagen.2014.10.001] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Revised: 09/23/2014] [Accepted: 10/03/2014] [Indexed: 12/29/2022]
Abstract
BACKGROUND The effect of in vivo treatment with ursolic acid (UA) on glycemia in hyperglycemic rats and its mechanism of action on muscle were studied. METHODS The UA effects on glycemia, glycogen, LDH, calcium and on insulin levels were evaluated after glucose tolerance curve. The β-cells were evaluated through the transmission electron microscopy. UA mechanism of action was studied on muscles through the glucose uptake with/without specific insulin signaling inhibitors. The nuclear effect of UA and the GLUT4 expression on muscle were studied using thymidine, GLUT4 immunocontent, immunofluorescence and RT-PCR. RESULTS UA presented a potent antihyperglycemic effect, increased insulin vesicle translocation, insulin secretion and augmented glycogen content. Also, UA stimulates the glucose uptake through the involvement of the classical insulin signaling related to the GLUT4 translocation to the plasma membrane as well as the GLUT4 synthesis. These were characterized by increasing the GLUT4 mRNA expression, the activation of DNA transcription, the expression of GLUT4 and its presence at plasma membrane. Also, the modulation of calcium, phospholipase C, protein kinase C and PKCaM II is mandatory for the full stimulatory effect of UA on glucose uptake. UA did not change the serum LDH and serum calcium balance. CONCLUSIONS The antihyperglycemic role of UA is mediated through insulin secretion and insulinomimetic effect on glucose uptake, synthesis and translocation of GLUT4 by a mechanism of cross-talk between calcium and protein kinases. GENERAL SIGNIFICANCE UA is a potential anti-diabetic agent with pharmacological properties for insulin resistance and diabetes therapy.
Collapse
Affiliation(s)
- Allisson Jhonatan Gomes Castro
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | - Marisa Jádna Silva Frederico
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | - Luisa Helena Cazarolli
- Universidade Federal da Fronteira Sul, Campus Universitário Laranjeiras do Sul, Laranjeiras do Sul, PR, Brazil
| | - Camila Pires Mendes
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | - Lizandra Czermainski Bretanha
- Departamento de Química, Centro de Ciências Físicas e Matemáticas, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | - Éder Carlos Schmidt
- Departamento de Biologia Celular, Embriologia e Genética, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | - Zenilda Laurita Bouzon
- Departamento de Biologia Celular, Embriologia e Genética, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | | | | | - Moacir Geraldo Pizzolatti
- Departamento de Química, Centro de Ciências Físicas e Matemáticas, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | | |
Collapse
|
31
|
Li F, Wong TY, Lin SM, Chow S, Cheung WH, Chan FL, Chen S, Leung LK. Coadministrating luteolin minimizes the side effects of the aromatase inhibitor letrozole. J Pharmacol Exp Ther 2014; 351:270-7. [PMID: 25138022 DOI: 10.1124/jpet.114.216754] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Aromatase inhibitors (AIs) have been used as adjuvant therapeutic agents for breast cancer. Their adverse side effect on blood lipid is well documented. Some natural compounds have been shown to be potential AIs. In the present study, we compared the efficacy of the flavonoid luteolin to the clinically approved AI letrozole (Femara; Novartis Pharmaceuticals, East Hanover, NJ) in a cell and a mouse model. In the in vitro experimental results for aromatase inhibition, the Ki values of luteolin and letrozole were estimated to be 2.44 µM and 0.41 nM, respectively. Both letrozole and luteolin appeared to be competitive inhibitors. Subsequently, an animal model was used for the comparison. Aromatase-expressing MCF-7 cells were transplanted into ovariectomized athymic mice. Luteolin was given by mouth at 5, 20, and 50 mg/kg, whereas letrozole was administered by intravenous injection. Similar to letrozole, luteolin administration reduced plasma estrogen concentrations and suppressed the xenograft proliferation. The regulation of cell cycle and apoptotic proteins-such as a decrease in the expression of Bcl-xL, cyclin-A/D1/E, CDK2/4, and increase in that of Bax-was about the same in both treatments. The most significant disparity was on blood lipids. In contrast to letrozole, luteolin increased fasting plasma high-density lipoprotein concentrations and produced a desirable blood lipid profile. These results suggested that the flavonoid could be a coadjuvant therapeutic agent without impairing the action of AIs.
Collapse
Affiliation(s)
- Fengjuan Li
- Department of Physiology and Pathophysiology, Peking University Health Science Center, Beijing, China (F.L.); Biochemistry Programme, School of Life Sciences, Faculty of Science (F.L), Food and Nutritional Sciences Programme , School of Life Sciences, Faculty of Science (T.Y.W., L.K.L.), Department of Orthopaedics and Traumatology, Faculty of Medicine (Si.C., W.C.), and School of Biomedical Sciences, Faculty of Medicine (F.L.C.), The Chinese University of Hong Kong, Shatin, Hong Kong; Department of Food Science, National Chiayi University, Chiayi City, Taiwan, Republic of China (S.L.); and Department of Cancer Biology, Beckman Research Institute of the City of Hope, Duarte, California (Sh.C.)
| | - Tsz Yan Wong
- Department of Physiology and Pathophysiology, Peking University Health Science Center, Beijing, China (F.L.); Biochemistry Programme, School of Life Sciences, Faculty of Science (F.L), Food and Nutritional Sciences Programme , School of Life Sciences, Faculty of Science (T.Y.W., L.K.L.), Department of Orthopaedics and Traumatology, Faculty of Medicine (Si.C., W.C.), and School of Biomedical Sciences, Faculty of Medicine (F.L.C.), The Chinese University of Hong Kong, Shatin, Hong Kong; Department of Food Science, National Chiayi University, Chiayi City, Taiwan, Republic of China (S.L.); and Department of Cancer Biology, Beckman Research Institute of the City of Hope, Duarte, California (Sh.C.)
| | - Shu-mei Lin
- Department of Physiology and Pathophysiology, Peking University Health Science Center, Beijing, China (F.L.); Biochemistry Programme, School of Life Sciences, Faculty of Science (F.L), Food and Nutritional Sciences Programme , School of Life Sciences, Faculty of Science (T.Y.W., L.K.L.), Department of Orthopaedics and Traumatology, Faculty of Medicine (Si.C., W.C.), and School of Biomedical Sciences, Faculty of Medicine (F.L.C.), The Chinese University of Hong Kong, Shatin, Hong Kong; Department of Food Science, National Chiayi University, Chiayi City, Taiwan, Republic of China (S.L.); and Department of Cancer Biology, Beckman Research Institute of the City of Hope, Duarte, California (Sh.C.)
| | - Simon Chow
- Department of Physiology and Pathophysiology, Peking University Health Science Center, Beijing, China (F.L.); Biochemistry Programme, School of Life Sciences, Faculty of Science (F.L), Food and Nutritional Sciences Programme , School of Life Sciences, Faculty of Science (T.Y.W., L.K.L.), Department of Orthopaedics and Traumatology, Faculty of Medicine (Si.C., W.C.), and School of Biomedical Sciences, Faculty of Medicine (F.L.C.), The Chinese University of Hong Kong, Shatin, Hong Kong; Department of Food Science, National Chiayi University, Chiayi City, Taiwan, Republic of China (S.L.); and Department of Cancer Biology, Beckman Research Institute of the City of Hope, Duarte, California (Sh.C.)
| | - Wing-hoi Cheung
- Department of Physiology and Pathophysiology, Peking University Health Science Center, Beijing, China (F.L.); Biochemistry Programme, School of Life Sciences, Faculty of Science (F.L), Food and Nutritional Sciences Programme , School of Life Sciences, Faculty of Science (T.Y.W., L.K.L.), Department of Orthopaedics and Traumatology, Faculty of Medicine (Si.C., W.C.), and School of Biomedical Sciences, Faculty of Medicine (F.L.C.), The Chinese University of Hong Kong, Shatin, Hong Kong; Department of Food Science, National Chiayi University, Chiayi City, Taiwan, Republic of China (S.L.); and Department of Cancer Biology, Beckman Research Institute of the City of Hope, Duarte, California (Sh.C.)
| | - Franky L Chan
- Department of Physiology and Pathophysiology, Peking University Health Science Center, Beijing, China (F.L.); Biochemistry Programme, School of Life Sciences, Faculty of Science (F.L), Food and Nutritional Sciences Programme , School of Life Sciences, Faculty of Science (T.Y.W., L.K.L.), Department of Orthopaedics and Traumatology, Faculty of Medicine (Si.C., W.C.), and School of Biomedical Sciences, Faculty of Medicine (F.L.C.), The Chinese University of Hong Kong, Shatin, Hong Kong; Department of Food Science, National Chiayi University, Chiayi City, Taiwan, Republic of China (S.L.); and Department of Cancer Biology, Beckman Research Institute of the City of Hope, Duarte, California (Sh.C.)
| | - Shiuan Chen
- Department of Physiology and Pathophysiology, Peking University Health Science Center, Beijing, China (F.L.); Biochemistry Programme, School of Life Sciences, Faculty of Science (F.L), Food and Nutritional Sciences Programme , School of Life Sciences, Faculty of Science (T.Y.W., L.K.L.), Department of Orthopaedics and Traumatology, Faculty of Medicine (Si.C., W.C.), and School of Biomedical Sciences, Faculty of Medicine (F.L.C.), The Chinese University of Hong Kong, Shatin, Hong Kong; Department of Food Science, National Chiayi University, Chiayi City, Taiwan, Republic of China (S.L.); and Department of Cancer Biology, Beckman Research Institute of the City of Hope, Duarte, California (Sh.C.)
| | - Lai K Leung
- Department of Physiology and Pathophysiology, Peking University Health Science Center, Beijing, China (F.L.); Biochemistry Programme, School of Life Sciences, Faculty of Science (F.L), Food and Nutritional Sciences Programme , School of Life Sciences, Faculty of Science (T.Y.W., L.K.L.), Department of Orthopaedics and Traumatology, Faculty of Medicine (Si.C., W.C.), and School of Biomedical Sciences, Faculty of Medicine (F.L.C.), The Chinese University of Hong Kong, Shatin, Hong Kong; Department of Food Science, National Chiayi University, Chiayi City, Taiwan, Republic of China (S.L.); and Department of Cancer Biology, Beckman Research Institute of the City of Hope, Duarte, California (Sh.C.)
| |
Collapse
|
32
|
He Y, Li W, Li Y, Zhang S, Wang Y, Sun C. Ursolic acid increases glucose uptake through the PI3K signaling pathway in adipocytes. PLoS One 2014; 9:e110711. [PMID: 25329874 PMCID: PMC4203820 DOI: 10.1371/journal.pone.0110711] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Accepted: 09/14/2014] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Ursolic acid (UA), a triterpenoid compound, is reported to have a glucose-lowering effect. However, the mechanisms are not fully understood. Adipose tissue is one of peripheral tissues that collectively control the circulating glucose levels. OBJECTIVE The objective of the present study was to determine the effect and further the mechanism of action of UA in adipocytes. METHODS AND RESULTS The 3T3-L1 preadipocytes were induced to differentiate and treated with different concentrations of UA. NBD-fluorescent glucose was used as the tracer to measure glucose uptake and Western blotting used to determine the expression and activity of proteins involved in glucose transport. It was found that 2.5, 5 and 10 µM of UA promoted glucose uptake in a dose-dependent manner (17%, 29% and 35%, respectively). 10 µM UA-induced glucose uptake with insulin stimulation was completely blocked by the phosphatidylinositol (PI) 3-kinase (PI3K) inhibitor wortmannin (1 µM), but not by SB203580 (10 µM), the inhibitor of mitogen-activated protein kinase (MAPK), or compound C (2.5 µM), the inhibitor of AMP-activated kinase (AMPK) inhibitor. Furthermore, the downstream protein activities of the PI3K pathway, phosphoinositide-dependent kinase (PDK) and phosphoinositide-dependent serine/threoninekinase (AKT) were increased by 10 µM of UA in the presence of insulin. Interestingly, the activity of AS160 and protein kinase C (PKC) and the expression of glucose transporter 4 (GLUT4) were stimulated by 10 µM of UA under either the basal or insulin-stimulated status. Moreover, the translocation of GLUT4 from cytoplasm to cell membrane was increased by UA but decreased when the PI3K inhibitor was applied. CONCLUSIONS Our results suggest that UA stimulates glucose uptake in 3T3-L1 adipocytes through the PI3K pathway, providing important information regarding the mechanism of action of UA for its anti-diabetic effect.
Collapse
Affiliation(s)
- Yonghan He
- Department of Nutrition and Food Hygiene, Public Health College, Harbin Medical University, Harbin, Heilongjiang, People’s Republic of China
- Aquatic and Crop Resource Development, Life Sciences Branch, National Research Council Canada, Charlottetown, Prince Edward Island, Canada
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, People’s Republic of China
| | - Wen Li
- Department of Endocrinology, Third People's Hospital of Yunnan Province, Kunming, Yunnan, People’s Republic of China
| | - Ying Li
- Department of Nutrition and Food Hygiene, Public Health College, Harbin Medical University, Harbin, Heilongjiang, People’s Republic of China
| | - Shuocheng Zhang
- Aquatic and Crop Resource Development, Life Sciences Branch, National Research Council Canada, Charlottetown, Prince Edward Island, Canada
- Department of Biomedical Sciences, University of Prince Edward Island, Charlottetown, Prince Edward Island, Canada
| | - Yanwen Wang
- Aquatic and Crop Resource Development, Life Sciences Branch, National Research Council Canada, Charlottetown, Prince Edward Island, Canada
- Department of Biomedical Sciences, University of Prince Edward Island, Charlottetown, Prince Edward Island, Canada
| | - Changhao Sun
- Department of Nutrition and Food Hygiene, Public Health College, Harbin Medical University, Harbin, Heilongjiang, People’s Republic of China
| |
Collapse
|
33
|
El-Bassossy HM, Abo-Warda SM, Fahmy A. Chrysin and luteolin alleviate vascular complications associated with insulin resistance mainly through PPAR-γ activation. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2014; 42:1153-67. [PMID: 25169908 DOI: 10.1142/s0192415x14500724] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Chrysin and luteolin are two flavonoids with Peroxisome proliferators-activated receptor γ (PPAR-γ) stimulating activity. Here, we investigated the protective effect of chrysin and luteolin from vascular complications associated with insulin resistance (IR). IR was induced in rats by drinking fructose for 12 weeks while chrysin and luteolin were given for 6 weeks with or without PPAR-γ antagonist, bisphenol A diglycidyl ether (BADGE). Then, blood pressure (BP) was recorded and serum levels of glucose, insulin, advanced glycation end products (AGEs) and lipids were measured. Concentration response curves for phenylephrine (PE), KCl, and acetylcholine (ACh) were obtained in thoracic aorta rings. Aortic reactive oxygen species (ROS) and nitric oxide (NO) generation were also studied. Chrysin and luteolin significantly alleviated systolic BP elevations caused by IR, while the co-administration of BADGE prevented chrysin alleviation. Although, neither chrysin nor luteolin affected ACh impaired vasodilatation, they both alleviated exaggerated vasoconstrictions to PE and KCl in IR animals. In addition, incubation of the aorta from IR animals with chrysin or luteolin prevented exaggerated vasoconstrictions to PE and KCl. On the other hand, co-administration of BADGE or co-incubation with GW9662, the selective PPAR-γ antagonist, prevented chrysin alleviation. Both chrysin and luteolin inhibited the developed hyperinsulinemia and increases in serum AGEs, lipids while, BADGE reduced the effect of chrysin on hyperinsulinemia and dyslipidemia. Chrysin and luteolin markedly inhibited elevated NO and ROS in IR aortae while BADGE did not change their effect on NO and ROS. In conclusion, chrysin and luteolin alleviate vascular complications associated with IR mainly through PPAR-γ dependent pathways.
Collapse
Affiliation(s)
- Hany M El-Bassossy
- Department of Pharmacology, Faculty of Pharmacy, King Abdulaziz University, Kingdom of Saudi Arabia , Department of Pharmacology, Faculty of Pharmacy, Zagazig University, Egypt
| | | | | |
Collapse
|
34
|
Ramachandran V, Saravanan R, Senthilraja P. Antidiabetic and antihyperlipidemic activity of asiatic acid in diabetic rats, role of HMG CoA: in vivo and in silico approaches. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2014; 21:225-232. [PMID: 24075211 DOI: 10.1016/j.phymed.2013.08.027] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2013] [Revised: 04/29/2013] [Accepted: 08/22/2013] [Indexed: 06/02/2023]
Abstract
Hyperlipidemia is an associated complication of diabetes and also a major risk factor for cardiovascular diseases. The present study was designed to examine the antihyperlipidemic effect of asiatic acid (AA) in streptozotocin (STZ) induced diabetic rats. Diabetes was induced in male Wistar rats by a single intraperitoneal injection of STZ (40 mg/kg b.w.). Diabetic rats show increased plasma glucose, total cholesterol, triglycerides, free fatty acids, phospholipids, low density lipoprotein, very low density liprotein, atherogenic index and decreased insulin and high density lipoprotein in diabetic rats. The activity of 3-hydroxy 3-methylglutaryl coenzyme A (HMG CoA) reductase increased significantly in contrast to the activities of lipoprotein lipase and lecithin cholesterol acyltransferase. In addition, the molecular docking of AA against HMG CoA reductase involved in cholesterol biosynthesis using Argus software. Diabetic rats were treated with AA shifted all these parameters towards normalcy. AA has shown best ligand binding energy 11.8122 kcal/mol. The antihyperlipidemic effect of AA was compared with glibenclamide; a well-known antihyperglycemic drug. In conclusion, this study indicates that AA showed an antihyperlipidemic effect in addition to its antidiabetic effect in experimental diabetes.
Collapse
Affiliation(s)
- Vinayagam Ramachandran
- Department of Biochemistry and Biotechnology, Faculty of Science, Annamalai University, Annamalainagar 608002, India
| | - Ramalingam Saravanan
- Department of Biochemistry and Biotechnology, Faculty of Science, Annamalai University, Annamalainagar 608002, India.
| | - Poomalai Senthilraja
- Department of Zoology, Faculty of Science, Annamalai University, Annamalainagar 608002, India
| |
Collapse
|
35
|
Olennikov DN, Chirikova NK, Okhlopkova ZM, Zulfugarov IS. Chemical composition and antioxidant activity of Tánara Ótó (Dracocephalum palmatum Stephan), a medicinal plant used by the North-Yakutian nomads. Molecules 2013; 18:14105-21. [PMID: 24241154 PMCID: PMC6269879 DOI: 10.3390/molecules181114105] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2013] [Revised: 11/06/2013] [Accepted: 11/08/2013] [Indexed: 02/07/2023] Open
Abstract
Dracocephalum palmatum Stephan (Lamiaceae) is a medicinal plant used by the North-Yakutian nomads. From the crude ethanolic extract of the aerial parts of this plant, 23 compounds (phenylpropanoids, coumarins, flavonoids, and triterpenes) were isolated. Among these, eight compounds (salvianolic acid B, caftaric acid, cichoric acid, umbelliferone, aesculetin, apigenin-7-O-β-D-glucuronopyranoside, isorhoifolin, and luteolin-4'-O-β-D-glucopyranoside) were detected for the first time in the genus Dracocephalum. Their structures were elucidated based on chemical and spectral data. The levels of most of the compounds detected in the cultivated sample were close to that of the wild sample, indicating the reproducibility of the biologically active compounds of D. palmatum through cultivation. Investigation into the biological activity of D. palmatum under in vitro conditions demonstrated that its extracts have a strong antioxidant effect due to the presence of high concentrations of phenolic compounds.
Collapse
Affiliation(s)
- Daniil N. Olennikov
- Institute of General and Experimental Biology, Siberian Division, Russian Academy of Science, Sakh’yanovoy str., 6, Ulan-Ude 670047, Russia
| | - Nadezhda K. Chirikova
- Department of Biochemistry and Biotechnology, North-Eastern Federal University, 58 Belinsky Str., Yakutsk 677-027, Russia; E-Mail:
| | - Zhanna M. Okhlopkova
- Department of Biology, North-Eastern Federal University, 58 Belinsky Str., Yakutsk 677-027, Russia; E-Mails: (Z.M.O.); (I.S.Z.)
| | - Ismayl S. Zulfugarov
- Department of Biology, North-Eastern Federal University, 58 Belinsky Str., Yakutsk 677-027, Russia; E-Mails: (Z.M.O.); (I.S.Z.)
- Department of Molecular Biology, Pusan National University, Pusan 609-735, Korea
- Institute of Botany, Azerbaijan National Academy of Sciences, Baku AZ 1073, Azerbaijan
| |
Collapse
|
36
|
González-Castejón M, García-Carrasco B, Fernández-Dacosta R, Dávalos A, Rodriguez-Casado A. Reduction of Adipogenesis and Lipid Accumulation by Taraxacum officinale
(Dandelion) Extracts in 3T3L1 Adipocytes: An in vitro
Study. Phytother Res 2013; 28:745-52. [DOI: 10.1002/ptr.5059] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2013] [Revised: 07/23/2013] [Accepted: 07/23/2013] [Indexed: 11/08/2022]
Affiliation(s)
| | | | | | - Alberto Dávalos
- IMDEA Food Institute; Crta. Cantoblanco 8 28049 Madrid Spain
| | | |
Collapse
|
37
|
Ansari MA, Roberts KN, Scheff SW. Dose- and time-dependent neuroprotective effects of Pycnogenol following traumatic brain injury. J Neurotrauma 2013; 30:1542-9. [PMID: 23557184 DOI: 10.1089/neu.2013.2910] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
After traumatic brain injury (TBI), both primary and secondary injury cascades are initiated, leading to neuronal death and cognitive dysfunction. We have previously shown that the combinational bioflavonoid, Pycnogenol (PYC), alters some secondary injury cascades and protects synaptic proteins when administered immediately following trauma. The purpose of the present study was to explore further the beneficial effects of PYC and to test whether it can be used in a more clinically relevant fashion. Young adult male Sprague-Dawley rats were subjected to a unilateral moderate/severe cortical contusion. Subjects received a single intravenous (i.v.) injection of PYC (1, 5, or 10 mg/kg) or vehicle, with treatment initiated at 15 min, 2 h, or 4 h post injury. All rats were killed at 96 h post TBI. Both the cortex and hippocampus ipsilateral and contralateral to the injury were evaluated for possible changes in oxidative stress (thiobarbituric acid reactive species; TBARS) and both pre- and post-synaptic proteins (synapsin-I, synaptophysin, drebrin, post synaptic density protein-95, and synapse associated protein-97). Following TBI, TBARS were significantly increased in both the injured cortex and ipsilateral hippocampus. Regardless of the dose and delay in treatment, PYC treatment significantly lowered TBARS. PYC treatment significantly protected both the cortex and hippocampus from injury-related declines in pre- and post-synaptic proteins. These results demonstrate that a single i.v. treatment of PYC is neuroprotective after TBI with a therapeutic window of at least 4 h post trauma. The natural bioflavonoid PYC may provide a possible therapeutic intervention in neurotrauma.
Collapse
Affiliation(s)
- Mubeen A Ansari
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, Kentucky 40536-0230, USA
| | | | | |
Collapse
|
38
|
Castellano JM, Guinda A, Delgado T, Rada M, Cayuela JA. Biochemical basis of the antidiabetic activity of oleanolic acid and related pentacyclic triterpenes. Diabetes 2013; 62:1791-9. [PMID: 23704520 PMCID: PMC3661625 DOI: 10.2337/db12-1215] [Citation(s) in RCA: 166] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Oleanolic acid (OA), a natural component of many plant food and medicinal herbs, is endowed with a wide range of pharmacological properties whose therapeutic potential has only partly been exploited until now. Throughout complex and multifactorial mechanisms, OA exerts beneficial effects against diabetes and metabolic syndrome. It improves insulin response, preserves functionality and survival of β-cells, and protects against diabetes complications. OA may directly modulate enzymes connected to insulin biosynthesis, secretion, and signaling. However, its major contributions appear to be derived from the interaction with important transduction pathways, and many of its effects are consistently related to activation of the transcription factor Nrf2. Doing that, OA induces the expression of antioxidant enzymes and phase II response genes, blocks NF-κB, and represses the polyol pathway, AGEs production, and hyperlipidemia. The management of type 2 diabetes requires an integrated approach, which includes the early intervention to prevent or delay the disease progression, and the use of therapies to control glycemia and lipidemia in its late stages. In this sense, the use of functional foods or drugs containing OA is, undoubtedly, an interesting path.
Collapse
Affiliation(s)
- Jose M Castellano
- Instituto de la Grasa, Consejo Superior de Investigaciones Cientificas, Seville, Spain.
| | | | | | | | | |
Collapse
|
39
|
Chrysin and Luteolin Attenuate Diabetes-Induced Impairment in Endothelial-Dependent Relaxation: Effect on Lipid Profile, AGEs and NO Generation. Phytother Res 2013; 27:1678-84. [DOI: 10.1002/ptr.4917] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2012] [Revised: 11/27/2012] [Accepted: 11/28/2012] [Indexed: 12/11/2022]
|
40
|
Fan S, Zhang Y, Hu N, Sun Q, Ding X, Li G, Zheng B, Gu M, Huang F, Sun YQ, Zhou Z, Lu X, Huang C, Ji G. Extract of Kuding tea prevents high-fat diet-induced metabolic disorders in C57BL/6 mice via liver X receptor (LXR) β antagonism. PLoS One 2012; 7:e51007. [PMID: 23226556 PMCID: PMC3514219 DOI: 10.1371/journal.pone.0051007] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2012] [Accepted: 10/31/2012] [Indexed: 01/08/2023] Open
Abstract
OBJECTIVE To investigate the effects of ilex kudingcha C. J. Tseng (kuding tea), a traditional beverage in China, on the metabolic disorders in C57BL/6 mice induced by high-fat diets. DESIGN For the preventive experiment, the female C57BL/6 mice were fed with a standard diet (Chow), high-fat diet (HF), and high-fat diet mixed with 0.05% ethanol extract of kuding tea (EK) for 5 weeks. For the therapeutic experiment, the C57BL/6 mice were fed high-fat diet for 3 months, and then mice were split and EK was given with oral gavages for 2 weeks at 50 mg/day/kg. Body weight and daily food intake amounts were measured. At the end of treatment, the adipocyte images were assayed with a scanning electron microscope, and the fasting blood glucose, glucose tolerance test, serum lipid profile and lipids in the livers were analyzed. A reporter gene assay system was used to test the whether EK could act on nuclear receptor transcription factors, and the gene expression analysis was performed with a quantitative PCR assay. RESULTS In the preventive treatment, EK blocked the body weight gain, reduced the size of the adipocytes, lowered serum triglyceride, cholesterol, LDL-cholesterol, fasting blood glucose levels and glucose tolerance in high-fat diet-fed C57BL/6 mice. In the therapeutic treatment, EK reduced the size of the white adipocytes, serum TG and fasting blood glucose levels in obese mice. With the reporter assay, EK inhibited LXRβ transactivity and mRNA expression of LXRβ target genes. CONCLUSION We observed that EK has both preventive and therapeutic roles in metabolic disorders in mice induced with high-fat diets. The effects appear to be mediated through the antagonism of LXRβ transactivity. Our data indicate that kuding tea is a useful dietary therapy and a potential source for the development of novel anti-obesity and lipid lowering drugs.
Collapse
Affiliation(s)
- Shengjie Fan
- Drug Discovery Lab, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yu Zhang
- Drug Discovery Lab, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Na Hu
- Scientific Experimental Center, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Qinhu Sun
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiaobo Ding
- Drug Discovery Lab, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing, China
- Key Laboratory of Horticulture Science for Southern Mountainous Regions, Ministry of Education, Chongqing, China
| | - Guowen Li
- Institute of Digestive Disease, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Bin Zheng
- Drug Discovery Lab, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ming Gu
- Drug Discovery Lab, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Feisi Huang
- Drug Discovery Lab, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yin-Qiang Sun
- Scientific Experimental Center, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zhiqin Zhou
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing, China
- Key Laboratory of Horticulture Science for Southern Mountainous Regions, Ministry of Education, Chongqing, China
| | - Xiong Lu
- Scientific Experimental Center, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Cheng Huang
- Drug Discovery Lab, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Guang Ji
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing, China
| |
Collapse
|
41
|
Neuroprotective effect of Pycnogenol® following traumatic brain injury. Exp Neurol 2012; 239:183-91. [PMID: 23059456 DOI: 10.1016/j.expneurol.2012.09.019] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2012] [Revised: 09/24/2012] [Accepted: 09/27/2012] [Indexed: 01/16/2023]
Abstract
Traumatic brain injury (TBI) involves primary and secondary injury cascades that underlie delayed neuronal dysfunction and death. Oxidative stress is one of the most celebrated secondary injury mechanisms. A close relationship exists between levels of oxidative stress and the pathogenesis of TBI. However, other cascades, such as an increase in proinflammatory cytokines, also play important roles in the overall response to the trauma. Pharmacologic intervention, in order to be successful, requires a multifaceted approach. Naturally occurring flavonoids are unique in possessing not only tremendous free radical scavenging properties but also the ability to modulate cellular homeostasis leading to a reduction in inflammation and cell toxicity. This study evaluated the therapeutic role of Pycnogenol (PYC), a patented combinational bioflavonoid. Young adult Sprague-Dawley rats were subjected to a unilateral moderate cortical contusion and treated post injury with PYC or vehicle. At either 48 or 96 h post trauma, the animals were killed and the cortex and hippocampus analyzed for changes in enzymatic and non-enzymatic oxidative stress markers. In addition, possible changes in both pre- and post-synaptic proteins (synapsin-1, PSD-95, drebrin, synapse associated protein-97) were analyzed. Finally, a separate cohort of animals was used to evaluate two proinflammatory cytokines (IL-6, TNF-α). Following the trauma there was a significant increase in oxidative stress in both the injured cortex and the ipsilateral hippocampus. Animals treated with PYC significantly ameliorated levels of protein carbonyls, lipid peroxidation, and protein nitration. The PYC treatment also significantly reduced the loss of key pre- and post-synaptic proteins with some levels in the hippocampus of PYC treated animals not significantly different from sham operated controls. Although levels of the proinflammatory cytokines were significantly elevated in both injury groups, the cohort treated with PYC showed a significant reduction compared to vehicle treated controls. These results are the first to show a neuroprotective effect of PYC following TBI. They also suggest that the diverse effects of bioflavonoids may provide a unique avenue for possible therapeutic intervention following head trauma.
Collapse
|
42
|
Bansal P, Paul P, Mudgal J, G. Nayak P, Thomas Pannakal S, Priyadarsini K, Unnikrishnan M. Antidiabetic, antihyperlipidemic and antioxidant effects of the flavonoid rich fraction of Pilea microphylla (L.) in high fat diet/streptozotocin-induced diabetes in mice. ACTA ACUST UNITED AC 2012; 64:651-8. [DOI: 10.1016/j.etp.2010.12.009] [Citation(s) in RCA: 100] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2010] [Revised: 11/25/2010] [Accepted: 12/09/2010] [Indexed: 01/06/2023]
|
43
|
Bioactivity-guided fractionation of the triglyceride-lowering component and in vivo and in vitro evaluation of hypolipidemic effects of Calyx seu Fructus Physalis. Lipids Health Dis 2012; 11:38. [PMID: 22413998 PMCID: PMC3338407 DOI: 10.1186/1476-511x-11-38] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2012] [Accepted: 03/14/2012] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND In folklore, some people take the decoction of Calyx seu Fructus Physalis (CSFP) for lowering blood lipids. The present study is designed to evaluate the lipid-lowering activities of CSFP, and search for its pharmacodynamical material. METHODS CSFP was extracted by water and 75% ethanol, respectively. The extracts of CSFP for reducing serum lipid levels were evaluated on mouse model of hyperlipidemia. The optimized extract was subjected to the bioactivity-guided fractionation in which the liquid-liquid extraction, collumn chromatography, the in vivo and in vitro models of hyperlipidemia were utilized. The structure of active component was determined by ¹³C-NMR and ¹H-NMR. RESULTS The 75% ethanol extract of CSFP decreased the serum total cholesterol (TC) and triglyceride (TG) levels in mouse model of hyperlipidemia. Followed a separation process for the 75% ethanol extract of CSFP, the fraction B was proved to be an active fraction for lowering lipid in vivo and in vitro experiments, which could significantly decrease the serum TC and TG levels in mouse model of hyperlipidemia, and remarkably decrease the increase of TG in primary mouse hepatocytes induced by high glucose and the increase of TG in HepG2 cells induced by oleic acid. The fraction B2, isolated from B on bioactivity-guided fractionation, could significantly decrease TG level in HepG2 cells. One compound with the highest content in B2 was isolated and determined as luteolin-7-O-beta-D-glucopyranoside by NMR spectra. It could significantly reduce the TG level in HepG2 cells, and inhibited the accumulation of lipids by oil red O stain. CONCLUSION Our results demonstrated that the 75% ethanol extract of CSFP could improve in vitro and in vivo lipid accumulation. Luteolin-7-O-beta-D-glucopyranoside might be a leading pharmacodynamical material of CSFP for lowering lipids.
Collapse
|
44
|
Bansal P, Paul P, Shankar G, Munjal D, Nayak P, Priyadarsini K, Unnikrishnan M. Flavonoid rich fraction of Pilea microphylla (L.) attenuates metabolic abnormalities and improves pancreatic function in C57BL/KsJ-db/db mice. ACTA ACUST UNITED AC 2011. [DOI: 10.1016/j.bionut.2011.09.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
45
|
Theoharides TC, Sismanopoulos N, Delivanis DA, Zhang B, Hatziagelaki EE, Kalogeromitros D. Mast cells squeeze the heart and stretch the gird: their role in atherosclerosis and obesity. Trends Pharmacol Sci 2011; 32:534-42. [PMID: 21741097 DOI: 10.1016/j.tips.2011.05.005] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2011] [Revised: 05/18/2011] [Accepted: 05/19/2011] [Indexed: 11/26/2022]
Abstract
Mast cells are crucial for the development of allergic and anaphylactic reactions, but they are also involved in acquired and innate immunity. Increasing evidence now implicates mast cells in inflammatory diseases through activation by non-allergic triggers such as neuropeptides and cytokines. This review discusses how mast cells contribute to the inflammatory processes associated with coronary artery disease and obesity. Animal models indicate that mast cells, through the secretion of various vasoactive mediators, cytokines and proteinases, contribute to coronary plaque progression and destabilization, as well as to diet-induced obesity and diabetes. Understanding how mast cells participate in these inflammatory processes could help in the development of unique inhibitors with novel therapeutic applications for these diseases, which constitute the greatest current threat to global human health and welfare.
Collapse
Affiliation(s)
- Theoharis C Theoharides
- Laboratory of Molecular Immunopharmacology and Drug Discovery, Department of Molecular Physiology and Pharmacology, Tufts University School of Medicine, Boston, MA 02111, USA.
| | | | | | | | | | | |
Collapse
|