1
|
Wang Y, Yang Y, Chen Y, Zhou Y, Zhang S, Zhu W, Zhang X, Zhu J. Qing'e Pill rectifies bone homeostasis imbalance in diabetic osteoporosis via the AGE/RAGE pathway: A network pharmacology analysis and multi-omics validation. JOURNAL OF ETHNOPHARMACOLOGY 2025; 348:119816. [PMID: 40245968 DOI: 10.1016/j.jep.2025.119816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 02/24/2025] [Accepted: 04/14/2025] [Indexed: 04/19/2025]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Diabetic osteoporosis (DOP), a metabolic disorder arising from diabetes mellitus, results in a hyperglycemic state that impairs bone microstructure, strength, and quality, thereby increasing the risk of fractures and complicating treatment and rehabilitation. Qing'e Pill(QEP), first recorded in the Song Dynasty's Heji Ju Fang, is renowned as an effective formula for tonifying the kidneys and strengthening bones. Its potential therapeutic mechanisms for treating DOP remain to be explored. AIM OF THE STUDY This study aimed to elucidate the therapeutic mechanism of QEP, a Chinese herbal medicine compound, in the treatment of DOP by integrating network pharmacology and laboratory analyses. MATERIALS AND METHODS Gene targets associated with DOP were identified utilizing gene databases (GeneCards, TTD, OMIM). The active ingredients of QEP were characterized via HPLC analysis. The therapeutic potential of QEP was assessed in a rat model of DOP by monitoring blood glucose levels, employing Micro-CT imaging, and conducting histological staining. In vitro experiments were performed to confirm QEP's ability to promote bone formation. Additionally, its angiogenic potential was evaluated using scratch, migration, and tube formation assays. RESULTS QEP was observed to stimulate osteogenesis and angiogenesis in vitro, modulate the AGE/RAGE signaling pathway, and foster anti-inflammatory osteogenesis. Micro-CT analysis demonstrated significant enhancements in bone density and microstructure following QEP treatment. CONCLUSION QEP enhance osteogenesis and angiogenesis via the AGE/RAGE signaling pathway, offering anti-inflammatory, hypoglycemic, and anti-osteoporotic effects. These results support the potential clinical application of QEP in managing diabetic osteoporosis.
Collapse
Affiliation(s)
- Yingjie Wang
- Department of Orthopedics, The Second Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, 230001, China; Department of Orthopedics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China
| | - Yao Yang
- Department of Orthopedics, The Second Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, 230001, China; Department of Orthopedics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China
| | - Yuan Chen
- Department of Orthopedics, The Second Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, 230001, China; Department of Orthopedics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China
| | - Yanling Zhou
- Department of Orthopedics, The Second Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, 230001, China; Department of Orthopedics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China
| | - Siming Zhang
- Department of Orthopedics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China
| | - Wanbo Zhu
- Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Jiao Tong University, Shanghai, 200233, China.
| | - Xianzuo Zhang
- Department of Orthopedics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China.
| | - Junchen Zhu
- Department of Orthopedics, The Second Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, 230001, China.
| |
Collapse
|
2
|
Zhang R, Wang Y, Jiang H, Aheniyazi A, Tao J, Li J, Yang Y. Therapeutic Angiogenesis Mediated by Traditional Chinese Medicine: Advances in Cardiovascular Disease Treatment. JOURNAL OF ETHNOPHARMACOLOGY 2025:119871. [PMID: 40345269 DOI: 10.1016/j.jep.2025.119871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Revised: 03/26/2025] [Accepted: 04/22/2025] [Indexed: 05/11/2025]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Traditional Chinese Medicine (TCM) shows growing potential as an adjunct or alternative therapy for vascular occlusion diseases (e.g., stroke, peripheral artery disease) by promoting therapeutic angiogenesis to restore blood flow in ischemic regions while minimizing side effects. AIMS OF THE STUDY This review examines TCM-mediated angiogenesis mechanisms and therapeutic advances in vascular occlusion management, establishing a theoretical foundation for clinical translation and precision medicine development. MATERIALS AND METHODS We systematically analyzed PubMed articles on TCM-induced angiogenesis in vascular occlusion diseases, focusing on herbal formulations, single herbs, bioactive compounds, and their associated signaling pathways. Search PubMed for studies investigating the role of Chinese herbal medicine (TCM), natural compounds, and herbal medicine in angiogenesis, while excluding research related to cancer, tumor, or oncological contexts. RESULTS TCM formulas, individual herbs, and monomeric compounds enhance endothelial cell proliferation, migration, and tube formation via pathways such as HIF/VEGF, PI3K/AKT, NOTCH, BMP/ALK, and Apelin/APJ, improving ischemic blood flow. CONCLUSION This review highlights angiogenesis as a novel strategy for vascular occlusive diseases and underscores TCM's efficacy through multi-target angiogenic regulation mechanism.However, further research using modern medical technologies is needed to optimize clinical application and advance precision medicine.
Collapse
Affiliation(s)
- Rong Zhang
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830000, China; Department of Cardiology, People's Hospital of Xinjiang Uyghur Autonomous Region, Urumqi, China; Xinjiang Key Laboratory of Cardiovascular Homeostasis and Regeneration Research, Urumqi, China
| | - Yunze Wang
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830000, China; Department of Cardiology, People's Hospital of Xinjiang Uyghur Autonomous Region, Urumqi, China; Xinjiang Key Laboratory of Cardiovascular Homeostasis and Regeneration Research, Urumqi, China
| | - Haoyan Jiang
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830000, China; Department of Cardiology, People's Hospital of Xinjiang Uyghur Autonomous Region, Urumqi, China; Xinjiang Key Laboratory of Cardiovascular Homeostasis and Regeneration Research, Urumqi, China
| | - Aliyanmu Aheniyazi
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830000, China; Department of Cardiology, People's Hospital of Xinjiang Uyghur Autonomous Region, Urumqi, China; Xinjiang Key Laboratory of Cardiovascular Homeostasis and Regeneration Research, Urumqi, China
| | - Jin Tao
- Department of Cardiology, People's Hospital of Xinjiang Uyghur Autonomous Region, Urumqi, China; Xinjiang Key Laboratory of Cardiovascular Homeostasis and Regeneration Research, Urumqi, China
| | - Jinyao Li
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830000, China.
| | - Yining Yang
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830000, China; Department of Cardiology, People's Hospital of Xinjiang Uyghur Autonomous Region, Urumqi, China; Xinjiang Key Laboratory of Cardiovascular Homeostasis and Regeneration Research, Urumqi, China.
| |
Collapse
|
3
|
Chan PW, Yu H, Hsu CH, Liu CY. Characteristics of early short-term traditional Chinese medicine in breast cancer patients: A population-based cohort study. J Chin Med Assoc 2024; 87:70-78. [PMID: 37962411 DOI: 10.1097/jcma.0000000000001019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2023] Open
Abstract
BACKGROUND Traditional Chinese medicine (TCM) is frequently utilized as a complementary therapy for breast cancer patients. TCM primarily involves the use of Chinese herbal products (CHPs), which consist of single or multiherb formulas with diverse therapeutic effects documented in medical classics. The study aims to investigate the association between medication possession ratios to CHPs within 2-year post breast cancer diagnosis and 5-year survival, to explore the potential beneficial class effect of TCM. METHODS This retrospective population-based cohort study included newly diagnosed breast cancer patients between 2003 and 2006, identified from the National Health Insurance Research Database of Taiwan. Logistic regression and Cox proportional hazards analysis were utilized to assess the likelihood of medication possession ratios (MPRs) for CHPs and to examine the association of variables with 5-year survival. RESULTS A total of 3472 patients with breast cancer were included. Patients who had MPR of 1% to 9% and 10% to 19% for CHPs within 2 years after breast cancer diagnosis exhibited better 5-year survival rates compared with those who did not use CHPs (adjusted hazard ratio [aHR] 0.69, 95% confidence interval [CI] 0.55-0.86, p = 0.001; aHR 0.50, 95% CI 0.28-0.88, p = 0.016). Furthermore, the use of TCM formulations specifically targeting insomnia, such as Tian-wang-bu-xin-dan and Suan-zao-ren-tang, demonstrated a significantly positive association with survival (aHR 0.71, 95% CI 0.52-0.98, p = 0.035) among patients who were short-term users of CHPs (MPR of 1% to 19%). CONCLUSION Short-term use of TCM (ie, MPR to CHPs 1~19%) within 2-year post breast cancer diagnosis present positive association with survival outcome. Tian-wang-bu-xin-dan and Suan-zao-ren-tang may have benefits to 5-year survival, but their causality still need further investigation.
Collapse
Affiliation(s)
- Pi-Wei Chan
- Institute of Traditional Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
- School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan, ROC
| | - Hung Yu
- Department of Pharmacy, MacKay Memorial Hospital, Taipei, Taiwan, ROC
| | - Chung-Hua Hsu
- Institute of Traditional Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
- Branch of Linsen, Chinese Medicine, and Kunming, Taipei City Hospital, Taipei, Taiwan, ROC
| | - Chun-Yu Liu
- Division of Medical Oncology, Department of Oncology, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
- Comprehensive Breast Health Center, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
| |
Collapse
|
4
|
Zhang W, Yang F, Yan Q, Li J, Zhang X, Jiang Y, Dai J. Hypoxia inducible factor-1α related mechanism and TCM intervention in process of early fracture healing. CHINESE HERBAL MEDICINES 2024; 16:56-69. [PMID: 38375046 PMCID: PMC10874770 DOI: 10.1016/j.chmed.2023.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 09/19/2023] [Accepted: 09/27/2023] [Indexed: 02/21/2024] Open
Abstract
As a common clinical disease, fracture is often accompanied by pain, swelling, bleeding as well as other symptoms and has a high disability rate, even threatening life, seriously endangering patients' physical and psychological health and quality of life. Medical practitioners take many strategies for the treatment of fracture healing, including Traditional Chinese Medicine (TCM). In the early stage of fracture healing, the local fracture is often in a state of hypoxia, accompanied by the expression of hypoxia inducible factor-1α (HIF-1α), which is beneficial to wound healing. Through literature mining, we thought that hypoxia, HIF-1α and downstream factors affected the mechanism of fracture healing, as well as dominated this process. Therefore, we reviewed the local characteristics and related signaling pathways involved in the fracture healing process and summarized the intervention of TCM on these mechanisms, in order to inspirit the new strategy for fracture healing, as well as elaborate on the possible principles of TCM in treating fractures based on the HIF molecular mechanism.
Collapse
Affiliation(s)
- Wenxian Zhang
- Affiliated Hospital of Gansu University of Traditional Chinese Medicine, Lanzhou 730000, China
| | - Fusen Yang
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Qikai Yan
- Affiliated Hospital of Gansu University of Traditional Chinese Medicine, Lanzhou 730000, China
- Xi'an Hospital of Traditional Chinese Medicine, Xi'an 710021, China
| | - Jiahui Li
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Xiaogang Zhang
- Affiliated Hospital of Gansu University of Traditional Chinese Medicine, Lanzhou 730000, China
| | - Yiwei Jiang
- Affiliated Hospital of Gansu University of Traditional Chinese Medicine, Lanzhou 730000, China
| | - Jianye Dai
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
5
|
Cao N, Shou Z, Xiao Y, Liu P. Efficacy and Possible Mechanisms of Astragali Radix and its Ingredients in Animal Models of Osteoporosis: A Preclinical Review and Metaanalysis. Curr Drug Targets 2024; 25:135-148. [PMID: 38213165 DOI: 10.2174/0113894501275292231220062838] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 12/03/2023] [Accepted: 12/06/2023] [Indexed: 01/13/2024]
Abstract
BACKGROUND Astragali Radix (AR) has a long history as a traditional Chinese medicine for anti-osteoporosis (OP) treatment. The aim of the study was to explore the effect and optimal regimens of AR and its main ingredients (IAR) in OP treatment. METHODS Eligible animal studies were searched in seven databases (PubMed, Web of Science, MEDLINE, SciELO Citation Index, Cochrane Library, China National Knowledge Infrastructure and Wanfang). The primary outcomes were bone metabolic indices. The secondary outcome measure was the anti-OP mechanism of IAR. RESULTS 21 studies were enrolled in the study. The primary findings of the present article illustrated that IAR could significantly increase the bone mineral density (BMD), bone volume over the total volume, trabecular number, trabecular thickness, bone maximum load and serum calcium, while trabecular separation and serum C-terminal telopeptide of type 1 collagen were remarkably decreased (P < 0.05). In subgroup analysis, the BMD in the long treatment group (≥ 10 weeks) showed better effect size than the short treatment group (< 10 weeks) (P < 0.05). Modeling methods and animal sex were factors affecting serum alkaline phosphatase and osteocalcin levels. CONCLUSION The findings suggest the possibility of developing IAR as a drug for the treatment of OP. IAR with longer treatment time may achieve better effects regardless of animal strain and age.
Collapse
Affiliation(s)
- Ning Cao
- Pharmacy Department, The Second Affiliated Hospital, Zhejiang Chinese Medical University, China
| | - Zhangxuan Shou
- Pharmacy Department, The Second Affiliated Hospital, Zhejiang Chinese Medical University, China
| | - Yi Xiao
- HD Biosciences (A WuXi company) Pharma Tech, Shanghai 201201, China
| | - Puqing Liu
- Pharmacy Department, The Second Affiliated Hospital, Zhejiang Chinese Medical University, China
| |
Collapse
|
6
|
Eldeeb DW, Hommos AM, Taalab MR, Abd El Rehim SS. Immuno-histologic and histomorphometric evaluation of Angelica sinensis adjunctive to ß-tricalcium phosphate in critical-sized class II furcation defects in dogs. BDJ Open 2023; 9:23. [PMID: 37353505 DOI: 10.1038/s41405-023-00150-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 05/21/2023] [Accepted: 05/22/2023] [Indexed: 06/25/2023] Open
Abstract
OBJECTIVE The study evaluates the effectiveness of Angelica sinensis (As) adjunctive to Beta-tricalcium phosphate (β-TCP) bone graft in the management of induced critical sized class II furcation defects in dogs. MATERIAL AND METHOD A randomized study design was conducted on the third and fourth premolars of six dogs. A total of twenty-four defects were surgically created. After reflecting a mucoperiosteal flap, twelve defects were filled with As granules mixed with β-TCP (Experimental group) while the other twelve defects were filled with β-TCP only (Control group) and both were covered by collagen membrane. At the fourth and eighth weeks, jaw segments were dissected and processed for immune-histological examination and histomorphometry analysis. RESULTS At four and eight weeks after treatment, experimental group showed a statistically significant increase in the height of newly formed interradicular bone (p = 0.001 and p = 0.0001 respectively), its surface area (p = 0.002 and p = 0.02 respectively), and the thickness of its trabeculae (p = 0.0001 and p = 0.001 respectively), when compared to control group. Moreover. alkaline phosphatase immunoreaction showed higher intensity in the osteoblast cells of experimental group compared to control group. CONCLUSION As enhances periodontal regeneration and bone-formation when used in the management of furcation defects.
Collapse
Affiliation(s)
- Dina W Eldeeb
- Oral Diagnosis and Radiology Department, Faculty of Dentistry, Alexandria University, Alexandria, Egypt.
| | - Ahmed M Hommos
- Oral Diagnosis and Radiology Department, Faculty of Dentistry, Alexandria University, Alexandria, Egypt
| | - Maha R Taalab
- Oral Diagnosis and Radiology Department, Faculty of Dentistry, Alexandria University, Alexandria, Egypt
| | | |
Collapse
|
7
|
Long Z, Xiang W, He Q, Xiao W, Wei H, Li H, Guo H, Chen Y, Yuan M, Yuan X, Zeng L, Yang K, Deng Y, Huang Z. Efficacy and safety of dietary polyphenols in rheumatoid arthritis: A systematic review and meta-analysis of 47 randomized controlled trials. Front Immunol 2023; 14:1024120. [PMID: 37033930 PMCID: PMC10073448 DOI: 10.3389/fimmu.2023.1024120] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Accepted: 01/27/2023] [Indexed: 04/11/2023] Open
Abstract
Objective To evaluate safety and efficacy of dietary polyphenols in the treatment of rheumatoid arthritis (RA). Methods CNKI, Pubmed, Cochrane library, Embase were searched to collect randomized controlled trials (RCTs) of dietary polyphenols in the treatment of RA. The databases were searched from the time of their establishment to November 8nd, 2022. After 2 reviewers independently screened the literature, extracted data, and assessed the risk of bias of the included studies, Meta-analysis was performed using RevMan5.4 software. Results A total of 49 records (47 RCTs) were finally included, involving 3852 participants and 15 types of dietary polyphenols (Cinnamon extract, Cranberry extract, Crocus sativus L. extract, Curcumin, Garlic extract, Ginger extract, Hesperidin, Olive oil, Pomegranate extract, Puerarin, Quercetin, Resveratrol, Sesamin, Tea polyphenols, Total glucosides of paeony). Pomegranate extract, Resveratrol, Garlic extract, Puerarin, Hesperidin, Ginger extract, Cinnamon extract, Sesamin only involve in 1 RCT. Cranberry extract, Crocus sativus L. extract, Olive oil, Quercetin, Tea polyphenols involve in 2 RCTs. Total glucosides of paeony and Curcumin involve in more than 3 RCTs. These RCTs showed that these dietary polyphenols could improve disease activity score for 28 joints (DAS28), inflammation levels or oxidative stress levels in RA. The addition of dietary polyphenols did not increase adverse events. Conclusion Dietary polyphenols may improve DAS28, reduce C-reactive protein (CRP) and erythrocyte sedimentation rate (ESR), and improve oxidative stress, etc. However, more RCTs are needed to verify or modify the efficacy and safety of dietary polyphenols. Systematic review registration https://www.crd.york.ac.uk/prospero/, identifier CRD42022315645.
Collapse
Affiliation(s)
- Zhiyong Long
- Department of Rehabilitation Medicine, Guangzhou Panyu Central Hospital, Guangzhou, China
| | - Wang Xiang
- The First People's Hospital of Changde City, Changde, China
| | - Qi He
- People's Hospital of Ningxiang City, Ningxiang, China
| | - Wei Xiao
- The First People's Hospital of Changde City, Changde, China
| | - Huagen Wei
- Dental Materials Science, Applied Oral Sciences and Community Dental Care, Faculty of Dentistry, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Hao Li
- Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Hua Guo
- Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yuling Chen
- Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Mengxia Yuan
- Joint Shantou International Eye Center of Shantou University and The Chinese University of Hong Kong, Shantou University Medical College, Shantou, China
| | - Xiao Yuan
- Hunan University of Chinese Medicine, Changsha, China
| | - Liuting Zeng
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Kailin Yang
- Hunan University of Chinese Medicine, Changsha, China
| | | | - Zhen Huang
- Department of Rehabilitation Medicine, Guangzhou Panyu Central Hospital, Guangzhou, China
| |
Collapse
|
8
|
Wu C, Chen F, Huang S, Zhang Z, Wan J, Zhang W, Liu X. Progress on the role of traditional Chinese medicine in therapeutic angiogenesis of heart failure. JOURNAL OF ETHNOPHARMACOLOGY 2023; 301:115770. [PMID: 36191661 DOI: 10.1016/j.jep.2022.115770] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 09/21/2022] [Accepted: 09/25/2022] [Indexed: 06/16/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Cardiovascular diseases are still the leading cause of death worldwide. Heart failure (HF), as the terminal stage of many cardiovascular diseases, has brought a heavy burden to the global medical system. Microvascular rarefaction (decreased myocardial capillary density) with reduced coronary flow reserve is a hallmark of HF and therapeutic myocardial angiogenesis is now emerging as a promising approach for the prevention and treatment in HF. Traditional Chinese medicine (TCM) has made remarkable achievements in the treatment of many cardiovascular diseases. Growing evidence have shown that their protective effect in HF is closely related to therapeutic angiogenesis. AIM OF THE STUDY This review is to enlighten the therapeutic effect and pro-angiogenic mechanism of TCM in HF, and provide valuable hints for the development of pro-angiogenic drugs for the treatment of HF. MATERIALS AND METHODS The relevant information about cardioprotective TCM was collected from electronic scientific databases such as PubMed, Web of Science, ScienceDirect, and China National Knowledge Infrastructure (CNKI). RESULTS The studies showed that TCM formulas, extracts, and compounds from herbal medicines can provide therapeutic effect in HF with their pro-angiogenic activity. Their actions are achieved mainly by regulating the key angiogenesis factors particularly VEGF, as well as related regulators including signal molecules and pathways, non-coding miRNAs and stem cells. CONCLUSION TCM and their active components might be promising in therapeutic angiogenesis for the treatment of HF.
Collapse
Affiliation(s)
- Chennan Wu
- School of Pharmacy, Second Military Medical University, Shanghai, China.
| | - Fei Chen
- School of Pharmacy, Second Military Medical University, Shanghai, China.
| | - Si Huang
- School of Pharmacy, Second Military Medical University, Shanghai, China.
| | - Zhen Zhang
- School of Pharmacy, Second Military Medical University, Shanghai, China.
| | - Jingjing Wan
- School of Pharmacy, Second Military Medical University, Shanghai, China.
| | - Weidong Zhang
- School of Pharmacy, Second Military Medical University, Shanghai, China; Academy of Interdisciplinary Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| | - Xia Liu
- School of Pharmacy, Second Military Medical University, Shanghai, China.
| |
Collapse
|
9
|
Ji L, Huang P, Wang Q, Li X, Li Y. Modulation of the biological network of lumbar spinal stenosis by Tongdu Huoxue Decoction based on clinical metabolomics. Front Mol Biosci 2023; 10:1074500. [PMID: 37025656 PMCID: PMC10070985 DOI: 10.3389/fmolb.2023.1074500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 03/13/2023] [Indexed: 04/08/2023] Open
Abstract
Objective: To explore the clinical efficacy and metabolic mechanism of Tongdu Huoxue Decoction (THD) in treating lumbar spinal stenosis (LSS). Methods: A total of 40 LSS patients and 20 healthy participants were recruited from January 2022 to June 2022. The patients' pre- and post-treatment visual analogue scale (VAS) and Japanese Orthopaedic Association (JOA) scores were recorded. ELISA kits were used to assess pre- and post-treatment levels of serum Interleukin-1beta (IL-1β), Alpha tumour necrosis factor (TNF-α) and prostaglandin E2 (PGE2). Finally, the patients' pre- and post-treatment and healthy human sera were subjected to extensively targeted metabolomics using Ultra Performance Liquid Chromatography (UPLC) to identify potential differential metabolites and metabolic pathways using multivariate statistical analysis. Results: Compared to the pre-treatment (group A), the patients' VAS scores decreased significantly (p < 0.05), while JOA scores increased significantly (p < 0.05) post-treatment (group B), indicating that THD could effectively improve the pain and lumbar spine function of LSS patients. Moreover, THD could effectively inhibit the expression of IL-1β, TNF-α and PGE2-associated inflammatory factors in serum. Regarding metabolomics, the levels of 41 differential metabolites were significantly different in the normal group (group NC) compared to group A, and those were significantly restored after treatment with THD, including chenodeoxycholic acid 3-sulfate, taurohyodeoxycholic acid, 3,5-Dihydroxy-4-methoxybenzoic acid, pinocembrin. These biomarkers are mainly involved in purine metabolism, steroid hormone biosynthesis and amino acid metabolism. Conclusion: This clinical trial demonstrated that THD is effective in improving pain, lumbar spine function and serum levels of inflammation in patients with LSS. Moreover, its mechanism of action is related to the regulation of purine metabolism, steroid hormone biosynthesis and the expression of key biomarkers in the metabolic pathway of amino acid metabolism.
Collapse
Affiliation(s)
- Luhong Ji
- Hubei University of Chinese Medicine, Wuhan, Hubei, China
| | - Ping Huang
- Hubei University of Chinese Medicine, Wuhan, Hubei, China
- Department of Rehabilitation Medicine, Central Theater General Hospital, Wuhan, Hubei, China
| | - Qiong Wang
- Hubei University of Chinese Medicine, Wuhan, Hubei, China
| | - Xugui Li
- Hubei 672 Orthopaedic Hospital of Integrated Traditional Chinese and Western Medicine, Wuhan, Hubei, China
- *Correspondence: Xugui Li, ; Ying Li,
| | - Ying Li
- Hubei University of Chinese Medicine, Wuhan, Hubei, China
- *Correspondence: Xugui Li, ; Ying Li,
| |
Collapse
|
10
|
Feng Z, Ou Y, Hao L. The roles of glycolysis in osteosarcoma. Front Pharmacol 2022; 13:950886. [PMID: 36059961 PMCID: PMC9428632 DOI: 10.3389/fphar.2022.950886] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 07/25/2022] [Indexed: 12/02/2022] Open
Abstract
Metabolic reprogramming is of great significance in the progression of various cancers and is critical for cancer progression, diagnosis, and treatment. Cellular metabolic pathways mainly include glycolysis, fat metabolism, glutamine decomposition, and oxidative phosphorylation. In cancer cells, reprogramming metabolic pathways is used to meet the massive energy requirement for tumorigenesis and development. Metabolisms are also altered in malignant osteosarcoma (OS) cells. Among reprogrammed metabolisms, alterations in aerobic glycolysis are key to the massive biosynthesis and energy demands of OS cells to sustain their growth and metastasis. Numerous studies have demonstrated that compared to normal cells, glycolysis in OS cells under aerobic conditions is substantially enhanced to promote malignant behaviors such as proliferation, invasion, metastasis, and drug resistance of OS. Glycolysis in OS is closely related to various oncogenes and tumor suppressor genes, and numerous signaling pathways have been reported to be involved in the regulation of glycolysis. In recent years, a vast number of inhibitors and natural products have been discovered to inhibit OS progression by targeting glycolysis-related proteins. These potential inhibitors and natural products may be ideal candidates for the treatment of osteosarcoma following hundreds of preclinical and clinical trials. In this article, we explore key pathways, glycolysis enzymes, non-coding RNAs, inhibitors, and natural products regulating aerobic glycolysis in OS cells to gain a deeper understanding of the relationship between glycolysis and the progression of OS and discover novel therapeutic approaches targeting glycolytic metabolism in OS.
Collapse
|
11
|
Gao ZR, Feng YZ, Zhao YQ, Zhao J, Zhou YH, Ye Q, Chen Y, Tan L, Zhang SH, Feng Y, Hu J, Ou-Yang ZY, Dusenge MA, Guo Y. Traditional Chinese medicine promotes bone regeneration in bone tissue engineering. Chin Med 2022; 17:86. [PMID: 35858928 PMCID: PMC9297608 DOI: 10.1186/s13020-022-00640-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 06/30/2022] [Indexed: 11/10/2022] Open
Abstract
Bone tissue engineering (BTE) is a promising method for the repair of difficult-to-heal bone tissue damage by providing three-dimensional structures for cell attachment, proliferation, and differentiation. Traditional Chinese medicine (TCM) has been introduced as an effective global medical program by the World Health Organization, comprising intricate components, and promoting bone regeneration by regulating multiple mechanisms and targets. This study outlines the potential therapeutic capabilities of TCM combined with BTE in bone regeneration. The effective active components promoting bone regeneration can be generally divided into flavonoids, alkaloids, glycosides, terpenoids, and polyphenols, among others. The chemical structures of the monomers, their sources, efficacy, and mechanisms are described. We summarize the use of compounds and medicinal parts of TCM to stimulate bone regeneration. Finally, the limitations and prospects of applying TCM in BTE are introduced, providing a direction for further development of novel and potential TCM.
Collapse
Affiliation(s)
- Zheng-Rong Gao
- Department of Stomatology, The Second Xiangya Hospital, Central South University, 139 Renmin Middle Road, Changsha, 410011, Hunan, China
| | - Yun-Zhi Feng
- Department of Stomatology, The Second Xiangya Hospital, Central South University, 139 Renmin Middle Road, Changsha, 410011, Hunan, China
| | - Ya-Qiong Zhao
- Department of Stomatology, The Second Xiangya Hospital, Central South University, 139 Renmin Middle Road, Changsha, 410011, Hunan, China
| | - Jie Zhao
- Department of Stomatology, The Second Xiangya Hospital, Central South University, 139 Renmin Middle Road, Changsha, 410011, Hunan, China
| | - Ying-Hui Zhou
- Department of Endocrinology and Metabolism, Hunan Provincial Key Laboratory of Metabolic Bone Diseases, National Clinical Research Center for Metabolic Disease, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Qin Ye
- Department of Stomatology, The Second Xiangya Hospital, Central South University, 139 Renmin Middle Road, Changsha, 410011, Hunan, China
| | - Yun Chen
- Department of Stomatology, The Second Xiangya Hospital, Central South University, 139 Renmin Middle Road, Changsha, 410011, Hunan, China
| | - Li Tan
- Department of Stomatology, The Second Xiangya Hospital, Central South University, 139 Renmin Middle Road, Changsha, 410011, Hunan, China
| | - Shao-Hui Zhang
- Department of Stomatology, The Second Xiangya Hospital, Central South University, 139 Renmin Middle Road, Changsha, 410011, Hunan, China
| | - Yao Feng
- Department of Stomatology, The Second Xiangya Hospital, Central South University, 139 Renmin Middle Road, Changsha, 410011, Hunan, China
| | - Jing Hu
- Department of Stomatology, The Second Xiangya Hospital, Central South University, 139 Renmin Middle Road, Changsha, 410011, Hunan, China
| | - Ze-Yue Ou-Yang
- Department of Stomatology, The Second Xiangya Hospital, Central South University, 139 Renmin Middle Road, Changsha, 410011, Hunan, China
| | - Marie Aimee Dusenge
- Department of Stomatology, The Second Xiangya Hospital, Central South University, 139 Renmin Middle Road, Changsha, 410011, Hunan, China
| | - Yue Guo
- Department of Stomatology, The Second Xiangya Hospital, Central South University, 139 Renmin Middle Road, Changsha, 410011, Hunan, China.
| |
Collapse
|
12
|
Feng G, Li D, Liu J, Sun S, Zhang P, Liu W, Zhang Y, Meng B, Li J, Chai L. The Herbal Combination of Radix astragali, Radix angelicae sinensis, and Caulis lonicerae Regulates the Functions of Type 2 Innate Lymphocytes and Macrophages Contributing to the Resolution of Collagen-Induced Arthritis. Front Pharmacol 2022; 13:964559. [PMID: 35928276 PMCID: PMC9343953 DOI: 10.3389/fphar.2022.964559] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 06/21/2022] [Indexed: 12/13/2022] Open
Abstract
Type 2 innate lymphocytes (ILC2s), promoting inflammation resolution, was a potential target for rheumatoid arthritis (RA) treatment. Our previous studies confirmed that R. astragali and R. angelicae sinensis could intervene in immunologic balance of T lymphocytes. C. lonicerae also have anti-inflammatory therapeutic effects. In this study, the possible molecular mechanisms of the combination of these three herbs for the functions of ILC2s and macrophages contributing to the resolution of collagen-induced arthritis (CIA) were studied. Therefore, we used R. astragali, R. angelicae sinensis, and C. lonicerae as treatment. The synovial inflammation and articular cartilage destruction were alleviated after herbal treatment. The percentages of ILC2s and Tregs increased significantly. The differentiation of Th17 cells and the secretion of IL-17 and IFN-γ significantly decreased. In addition, treatment by the combination of these three herbs could increase the level of anti-inflammatory cytokine IL-4 secreted, active the STAT6 signaling pathway, and then contribute to the transformation of M1 macrophages to M2 phenotype. The combination of the three herbs could promote inflammation resolution of synovial tissue by regulating ILC2s immune response network. The synergistic effects of three drugs were superior to the combination of R. astragali and R. angelicae sinensis or C. lonicerae alone.
Collapse
Affiliation(s)
- Guiyu Feng
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Dongyang Li
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Juan Liu
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Song Sun
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Pingxin Zhang
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Wei Liu
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Yingkai Zhang
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Boyang Meng
- Department of Pharmacy, The Third Affiliated Hospital of Beijing University of Chinese Medicine, Beijing, China
- *Correspondence: Boyang Meng, ; Jinyu Li, ; Limin Chai,
| | - Jinyu Li
- Department of Orthopedic, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
- *Correspondence: Boyang Meng, ; Jinyu Li, ; Limin Chai,
| | - Limin Chai
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
- *Correspondence: Boyang Meng, ; Jinyu Li, ; Limin Chai,
| |
Collapse
|
13
|
Wang D, Du Z, Mighri F, Xu Z, Wang L, Zhang Z. Proanthocyanidins Promote Endothelial Cell Viability and Angiogenesis. J Cardiovasc Pharmacol 2022; 79:719-729. [PMID: 35170488 DOI: 10.1097/fjc.0000000000001231] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 01/12/2022] [Indexed: 11/25/2022]
Abstract
ABSTRACT Botanic drugs are reportedly effective in treating ischemic conditions by improving vascular circulation. However, it has been very rare for biomaterial researchers to look into the possibility of using such products in the context of tissue regeneration. This work studied 4 botanic drugs to explore their effects on vascular endothelial cell growth. Human umbilical endothelial cells were cultured in the presence of different doses of astragalus powder extract, astragalus injection, puerarin injection, and proanthocyanidin (PAC). Among the 4 drugs, PAC showed a potent effect on cell viability and stimulated cell growth in a dose-dependent manner. In particular, the PAC under test was able to maintain a high level of cell viability/proliferation comparable with the cells supplemented with the endothelial cell growth medium, at both low and normal serum conditions. Blocking either endothelial cell growth factor receptors or epithelial cell growth factor receptors was ineffective in reducing the stimulatory effect. The PAC released from polyvinyl alcohol cryogels stimulated HUVECs proliferation. The chick embryo chorioallantoic membrane model was further used to test the angiogenicity of PAC, showing that this botanic drug was potent in stimulating vasculature development. This work therefore demonstrates for the first time that PAC is capable of upregulating endothelial cell activity and growth in vitro in the absence of growth factors and that PAC can be loaded and released from drug carriers and can stimulate angiogenesis. These findings suggest the application of PAC in angiogenesis and tissue regeneration.
Collapse
Affiliation(s)
- Dingkun Wang
- Department of Chemical Engineering, Université Laval, Quebec, Quebec, Canada
- Department of Surgery, Université Laval, Quebec, Quebec, Canada
- Division of Regenerative Medicine, Research Centre of CHU-Université Laval, Quebec, Quebec, Canada
| | - Zhiyong Du
- Department of Surgery, Université Laval, Quebec, Quebec, Canada
- Division of Regenerative Medicine, Research Centre of CHU-Université Laval, Quebec, Quebec, Canada
| | - Frej Mighri
- Department of Chemical Engineering, Université Laval, Quebec, Quebec, Canada
| | - Zaipin Xu
- Department of Veterinary Medicine, Guizhou University, Guiyang, China; and
| | - Lu Wang
- Engineering Research Center of the Utilization for Characteristic Bio-pharmaceutical Resources in Southwest, Guizhou University, Guiyang, China
| | - Ze Zhang
- Department of Surgery, Université Laval, Quebec, Quebec, Canada
- Division of Regenerative Medicine, Research Centre of CHU-Université Laval, Quebec, Quebec, Canada
| |
Collapse
|
14
|
Li X, Wen Y, Sheng L, Guo R, Zhang Y, Shao L. Icariin activates autophagy to trigger TGFβ1 upregulation and promote angiogenesis in EA.hy926 human vascular endothelial cells. Bioengineered 2021; 13:164-177. [PMID: 34847836 PMCID: PMC8805869 DOI: 10.1080/21655979.2021.2011637] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Angiogenesis plays an important role in tissue development and repair, and how to regulate angiogenesis effectively is a widely studied problem in the biomedical field. In recent years, the role of autophagy in vascular endothelial cells has attracted extensive attention. Icariin (ICA) is a traditional Chinese medicine that has been proven to have outstanding protective effects on the vascular system and to regulate cellular autophagy effectively. However, at present, it has not been reported whether ICA can affect the angiogenic ability of endothelial cells by affecting autophagy. In this study, we aimed to investigate whether ICA affects the angiogenesis capacity of EA.hy926 human vascular endothelial cells through autophagy and explain the underlying potential mechanisms. First, we determined that ICA at appropriate concentrations has the ability to promote cell migration and angiogenesis using wound healing assays and tube formation assays. Then, at the molecular level, we observed the upregulation of VEGFA, VEGFR2, ANGI, ANGII, and Tie2 mRNA and detected the upregulation of TGFβ1 protein by Western blotting. We also demonstrated that angiogenic concentrations of ICA can effectively activate autophagy. The autophagy inhibitor 3-MA significantly suppressed TGFβ1 expression and tube formation in EA.hy926 cells. Overall, we hope that our studies might help to further understand the effect of ICA on vascular endothelial cells and provide a theoretical basis for future angiogenic applications of ICA
Collapse
Affiliation(s)
- Xiaolong Li
- Foshan Stomatological Hospital, School of Medicine, Foshan University, Foshan, PR China
| | - Yujie Wen
- Foshan Stomatological Hospital, School of Medicine, Foshan University, Foshan, PR China
| | - Liyuan Sheng
- Shenzhen Institute, Peking University, Shenzhen, China
| | - Rui Guo
- Department of Biomedical Engineering, Jinan University, Guangzhou, China
| | - Yanli Zhang
- Stomatological Hospital, Southern Medical University, Guangzhou, China
| | - Longquan Shao
- Stomatological Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
15
|
Rajput SA, Wang XQ, Yan HC. Morin hydrate: A comprehensive review on novel natural dietary bioactive compound with versatile biological and pharmacological potential. Biomed Pharmacother 2021; 138:111511. [PMID: 33744757 DOI: 10.1016/j.biopha.2021.111511] [Citation(s) in RCA: 91] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 03/07/2021] [Accepted: 03/11/2021] [Indexed: 01/02/2023] Open
Abstract
Flavonoids are natural plant-derived dietary bioactive compounds having a substantial impact on human health. Morin hydrate is a bioflavonoid mainly obtained from fruits, stem, and leaves of Moraceae family members' plants. Plenty of evidences supported that morin hydrate exerts its beneficial effects against various chronic and life-threatening degenerative diseases. Our current article discloses the recent advances that have been studied to explore the biological/pharmacological properties and molecular mechanisms to better understand the beneficial and multiple health benefits of morin hydrate. Indeed, Morin hydrate exerts free radical scavenging, antioxidant, anti-inflammatory, anti-cancerous, anti-microbial, antidiabetic, anti-arthritis, cardioprotective, neuroprotective, nephroprotective, and hepatoprotective effects. Moreover, morin hydrate exhibits its pharmacological activities by modulating various cellular signaling pathways such as Nuclear factor kappa-light-chain-enhancer of activated B cells (NF-қB), Mitogen-activated protein kinase (MAPK), Janus kinases/ Signal transducer and activator of transcription proteins (JAKs/STATs), Kelch-like ECH-associated protein1/Nuclear erythroid-2-related factor (Keap1/Nrf2), Endoplasmic reticulum (ER), Mitochondrial-mediated apoptosis, Wnt/β-catenin, and Mechanistic target of rapamycin (mTOR). Most importantly, morin hydrate has the potential to modulate a variety of biological networks. Therefore, it can be predicted that this therapeutically potent compound could serve as a dietary agent for the expansion of human health and might be helpful for the development of the novel drug in the future. However, due to the lack of clinical trials, special human clinical trials are needed to address the effects of morin hydrate on various life-threatening disparities to recommend morin and/or morin-rich foods with other foods or bioactive dietary components, as well as dose-response interaction and safety profile.
Collapse
Affiliation(s)
- Shahid Ali Rajput
- College of Animal Science, South China Agricultural University/Guangdong Laboratory for Lingnan Modern Agriculture/Guangdong Provincial Key Laboratory of Animal Nutrition Control/National Engineering Research Center for Breeding Swine Industry, Guangzhou, Guangdong, China
| | - Xiu-Qi Wang
- College of Animal Science, South China Agricultural University/Guangdong Laboratory for Lingnan Modern Agriculture/Guangdong Provincial Key Laboratory of Animal Nutrition Control/National Engineering Research Center for Breeding Swine Industry, Guangzhou, Guangdong, China.
| | - Hui-Chao Yan
- College of Animal Science, South China Agricultural University/Guangdong Laboratory for Lingnan Modern Agriculture/Guangdong Provincial Key Laboratory of Animal Nutrition Control/National Engineering Research Center for Breeding Swine Industry, Guangzhou, Guangdong, China.
| |
Collapse
|
16
|
Effects of icariin on the proliferation and osteogenic differentiation of human amniotic mesenchymal stem cells. J Orthop Surg Res 2020; 15:578. [PMID: 33267896 PMCID: PMC7709318 DOI: 10.1186/s13018-020-02076-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 11/05/2020] [Indexed: 12/15/2022] Open
Abstract
Background Tissue engineering technology has been applied extensively for clinical research and human amnion mesenchymal stem cells (hAMSCs) could cause mesenchymal stem cells to differentiate into the bone tissue. However, it is necessary to develop and identify the safer appropriate amount of osteogenic inducer. The objective of this study is to investigate the effect of icariin (ICA) on the proliferation and osteogenic differentiation of hAMSCs. Methods The morphology and phenotype of hAMSCs were discovered by flow cytometry and immunocytochemical staining. The osteogenic differentiation of hAMSCs under the influence of different concentrations of ICA were assessed by alkaline phosphatase (ALP) activity substrate assay and alizarin red staining. Results MTT assay revealed that the hAMSCs pretreated with ICA exhibited increased proliferation when compared with the control group, and the most optimum concentration of ICA was 1 × 10− 6 mol/L. The combined analysis of ALP activity and ARS staining showed that ICA could significantly promote the osteogenic differentiation of hAMSCs, and the effect was most significant when the concentration of ICA was 1 × 10− 6 mol/L. Conclusion All the above results implied that ICA could significantly increase proliferation and enhance the osteogenic differentiation of hAMSCs, especially when the concentration of ICA was 1 × 10− 6 mol/L.
Collapse
|
17
|
Yu W, Hu W, Ke X, Zhou X, Yin C, Yin M. Different effects of total flavonoids from Arachniodes exilis on human umbilical cord mesenchymal stem cells in vitro. Medicine (Baltimore) 2020; 99:e20628. [PMID: 32569193 PMCID: PMC7310876 DOI: 10.1097/md.0000000000020628] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Traditional Chinese medicines are used in promotion of fractured bone healing and bone diseases. Some studies reported total flavonoids from plant can be used as an auxiliary source of exogenous.Use different methods to identify and verify effects of total flavonoids from Arachniodes exilis (TFAE) on human umbilical cord mesenchymal stem cells (HUCMSCs) in vitro.Concentrations of 1 and 5 μg/mL TFAE significantly increased ALPase activity in HUCMSCs compared to the other concentrations at days 3 and 7 (P < .05). RT-PCR showed that expression levels of osteogenic genes (Col1a1, OPN, Runx2 and Osx) were remarkably enhanced in HUCMSCs following treatment with different concentrations of TFAE for 9 days compared with 0 μg/mL TFAE group (control). The results showed that concentration < 5 μg/mL of TFAE induced osteogenic differentiation in HUCMSCs Alizarin red staining assays revealed that both TFAE and S1191 was significantly decreased (7.80 ± 0.66) compared with the TFAE group (16.00 ± 0.97) (P < .01). ALPase activity on days 3 and 7 was relatively lower in HUCMSCs grown in media supplemented with both S1191 and TFAE than that of in TFAE group only. The results indicated that osteogenic markers (Col1a1, OPN, Runx2 and Osx) were significantly downregulated in the TFAE + S1191 group in comparison to the control group. The expressions of Col1a and OPN in the TFAE + S1191 group decreased significantly (P < .01) by Western blotting.TFAE promotes the odonto/osteogenic differentiation of human UCMSCs via activation of ER.
Collapse
Affiliation(s)
- Wenmin Yu
- The School of Basic Medical Science, Jiujiang University/Jiujiang Key Laboratory of Translational Medicine, Jiujiang
| | - Wenlong Hu
- Medicine Graduate School of Nanchang University
- Department of Orthopedics, The Second Hospital Affiliated to Nanchang University, Nanchang, P. R. China
| | - Xiumei Ke
- The School of Basic Medical Science, Jiujiang University/Jiujiang Key Laboratory of Translational Medicine, Jiujiang
| | - Xufeng Zhou
- The School of Basic Medical Science, Jiujiang University/Jiujiang Key Laboratory of Translational Medicine, Jiujiang
| | - Changchang Yin
- The School of Basic Medical Science, Jiujiang University/Jiujiang Key Laboratory of Translational Medicine, Jiujiang
| | - Ming Yin
- Medicine Graduate School of Nanchang University
- Department of Orthopedics, The Second Hospital Affiliated to Nanchang University, Nanchang, P. R. China
| |
Collapse
|
18
|
Zhi X, Fang C, Gu Y, Chen H, Chen X, Cui J, Hu Y, Weng W, Zhou Q, Wang Y, Wang Y, Jiang H, Li X, Cao L, Chen X, Su J. Guaiacol suppresses osteoclastogenesis by blocking interactions of RANK with TRAF6 and C-Src and inhibiting NF-κB, MAPK and AKT pathways. J Cell Mol Med 2020; 24:5122-5134. [PMID: 32185887 PMCID: PMC7205840 DOI: 10.1111/jcmm.15153] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 12/31/2019] [Accepted: 01/29/2020] [Indexed: 02/07/2023] Open
Abstract
Angelica sinensis (AS; Dang Gui), a traditional Chinese herb, has for centuries been used for the treatment of bone diseases, including osteoporosis and osteonecrosis. However, the effective ingredient and underlying mechanisms remain elusive. Here, we identified guaiacol as the active component of AS by two‐dimensional cell membrane chromatography/C18 column/time‐of‐flight mass spectrometry (2D CMC/C18 column/TOFMS). Guaiacol suppressed osteoclastogenesis and osteoclast function in bone marrow monocytes (BMMCs) and RAW264.7 cells in vitro in a dose‐dependent manner. Co‐immunoprecipitation indicated that guaiacol blocked RANK‐TRAF6 association and RANK‐C‐Src association. Moreover, guaiacol prevented phosphorylation of p65, p50, IκB (NF‐κB pathway), ERK, JNK, c‐fos, p38 (MAPK pathway) and Akt (AKT pathway), and reduced the expression levels of Cathepsin K, CTR, MMP‐9 and TRAP. Guaiacol also suppressed the expression of nuclear factor of activated T‐cells cytoplasmic 1(NFATc1) and the RANKL‐induced Ca2+ oscillation. In vivo, it ameliorated ovariectomy‐induced bone loss by suppressing excessive osteoclastogenesis. Taken together, our findings suggest that guaiacol inhibits RANKL‐induced osteoclastogenesis by blocking the interactions of RANK with TRAF6 and C‐Src, and by suppressing the NF‐κB, MAPK and AKT signalling pathways. Therefore, this compound shows therapeutic potential for osteoclastogenesis‐related bone diseases, including postmenopausal osteoporosis.
Collapse
Affiliation(s)
- Xin Zhi
- Department of Orthopedics Trauma, Shanghai Changhai Hospital, Naval Military Medical University, Shanghai, China.,Basic Medical School, Naval Military Medical University, Shanghai, China
| | - Chao Fang
- Department of Orthopedics Trauma, Shanghai Changhai Hospital, Naval Military Medical University, Shanghai, China
| | - Yanqiu Gu
- Department of Pharmacy, Shanghai 9th People's Hospital, Shanghai, China
| | - Huiwen Chen
- Department of Orthopedics Trauma, Shanghai Changhai Hospital, Naval Military Medical University, Shanghai, China
| | - Xiaofei Chen
- School of Pharmacy, Naval Military Medical University, Shanghai, China
| | - Jin Cui
- Department of Orthopedics Trauma, Shanghai Changhai Hospital, Naval Military Medical University, Shanghai, China
| | - Yan Hu
- Department of Orthopedics Trauma, Shanghai Changhai Hospital, Naval Military Medical University, Shanghai, China
| | - Weizong Weng
- Department of Orthopedics Trauma, Shanghai Changhai Hospital, Naval Military Medical University, Shanghai, China
| | - Qirong Zhou
- Department of Orthopedics Trauma, Shanghai Changhai Hospital, Naval Military Medical University, Shanghai, China
| | - Yajun Wang
- Department of Orthopedics Trauma, Shanghai Changhai Hospital, Naval Military Medical University, Shanghai, China
| | - Yao Wang
- Department of Orthopedics Trauma, Shanghai Changhai Hospital, Naval Military Medical University, Shanghai, China
| | - Hao Jiang
- Department of Orthopedics Trauma, Shanghai Changhai Hospital, Naval Military Medical University, Shanghai, China
| | - Xiaoqun Li
- Department of Orthopedics Trauma, Shanghai Changhai Hospital, Naval Military Medical University, Shanghai, China.,Basic Medical School, Naval Military Medical University, Shanghai, China
| | - Liehu Cao
- Department of Orthopedics Trauma, Shanghai Luodian Hospital, Shanghai, China
| | - Xiao Chen
- Department of Orthopedics Trauma, Shanghai Changhai Hospital, Naval Military Medical University, Shanghai, China.,Department of Chemistry, Fudan University, Shanghai, China
| | - Jiacan Su
- Department of Orthopedics Trauma, Shanghai Changhai Hospital, Naval Military Medical University, Shanghai, China.,China-South Korea Bioengineering Center, Shanghai, China
| |
Collapse
|
19
|
Waqas M, Qamar H, Zhang J, Yao W, Li A, Wang Y, Iqbal M, Mehmood K, Jiang X, Li J. Puerarin enhance vascular proliferation and halt apoptosis in thiram-induced avian tibial dyschondroplasia by regulating HIF-1α, TIMP-3 and BCL-2 expressions. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 190:110126. [PMID: 31918251 DOI: 10.1016/j.ecoenv.2019.110126] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 12/18/2019] [Accepted: 12/21/2019] [Indexed: 06/10/2023]
Abstract
Tetramethyl thiuram disulfide (thiram) is a dithiocarbamate pesticide used for crop protection and storage. But, it's widespread utilization is associated with deleterious growth plate cartilage disorder in broilers termed as avian tibial dyschondroplasia (TD). TD results in non-mineralized and less vascularized proximal tibial growth plate cartilage causing lameness and poor growth performance. This study investigated the therapeutic potential of puerarin against thiram toxicity in TD affected chickens. One-day-old broiler chickens (n = 240) were alienated into three equal groups i.e. control, TD and puerarin (n = 80) and were offered standard feed. Additionally, TD and puerarin groups were offered thiram at 50 mg/kg of feed from 4 to 7 days for TD induction followed by puerarin therapy at 120 mg/kg to puerarin group only from 8 to 18 days for TD treatment. Thiram feeding to TD and puerarin group chickens caused lameness, mortality, and increased the aspartate aminotransferase (AST), alanine aminotransferase (ALT), malondialdehyde (MDA) levels and growth plate (GP) size and upregulated HIF-1α expression. Besides, the production parameters, alkaline phosphatase (ALP), superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) levels and the expressions of TIMP-3 and BCL-2 were decreased (p < 0.05). Puerarin alleviated lameness, enhanced angiogenesis and growth performance and serum and antioxidant enzymes, decreased apoptosis and recuperated GP width by significantly downregulating HIF-1α and upregulating the TIMP-3 and BCL-2 mRNA and protein expressions in puerarin group chickens (p < 0.05). In conclusion, the toxic effects associated with thiram can be mitigated using puerarin.
Collapse
Affiliation(s)
- Muhammad Waqas
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, PR China; Faculty of Veterinary & Animal Sciences, University of the Poonch, Rawalakot, District Poonch, 12350, Azad Jammu & Kashmir, Pakistan
| | - Hammad Qamar
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Jialu Zhang
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Wangyuan Yao
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Aoyun Li
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Yaping Wang
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Mudassar Iqbal
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, PR China; University College of Veterinary & Animal Sciences, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan
| | - Khalid Mehmood
- University College of Veterinary & Animal Sciences, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan
| | - Xiong Jiang
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Jiakui Li
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, PR China; College of Animal Husbandry and Veterinary Medicine, Tibet Agricultural and Animal Husbandry University, Linzhi, 860000, China.
| |
Collapse
|
20
|
Wang YQ, Wang NX, Luo Y, Yu CY, Xiao JH. Ganoderal A effectively induces osteogenic differentiation of human amniotic mesenchymal stem cells via cross-talk between Wnt/β-catenin and BMP/SMAD signaling pathways. Biomed Pharmacother 2020; 123:109807. [PMID: 31896066 DOI: 10.1016/j.biopha.2019.109807] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 12/12/2019] [Accepted: 12/19/2019] [Indexed: 02/06/2023] Open
Abstract
Osteogenic inducers play central roles in effective stem cell-based treatment of bone defects/losses. However, the current routine osteogenic inducer is a cocktail comprising three components that must be improved due to low induction efficiency and side effects. Therefore, there is an urgent need to develop safer and more effective osteoinducers. Herein, we demonstrated the osteogenic effect of Ganoderal A (GD-A), a tetracyclic triterpenoid compound from Ganoderma lucidum. GD-A showed no cytotoxicity toward human amniotic mesenchymal stem cells (hAMSCs) at doses of 0.001-10 μM; furthermore, 0.01 μM GD-A significantly induced the generation of osteoblast-specific markers, such as alkaline phosphatase, and calcium deposition in hAMSCs. At molecular levels, GD-A promoted the expression of multiple osteoblast differentiation markers, such as RUNX2, OSX, OPN, ALP, OCN, and COL1α1. Both Wnt/β-catenin and BMP/SMAD signaling were shown as active during hAMSC osteodifferentiation. Furthermore, specific blocking of both signals by KYA1797K and SB431542 significantly inhibited alkaline phosphatase secretion and RUNX2 and ALP expression when used alone or in combination. Meanwhile, both signals were also blocked. These findings suggest that GD-A induces hAMSC differentiation into osteoblasts through signaling cross-talk between Wnt/β-catenin and BMP/SMAD. Taken together, GD-A is a safe, effective, and novel osteoinducer and might be used for stem cell-based therapy for bone defects/losses.
Collapse
Affiliation(s)
- Yi-Qing Wang
- Zunyi Municiptal Key Laboratory of Medicinal Biotechnology, Affiliated Hospital of Zunyi Medical University, Zunyi 563003, China
| | - Nuo-Xin Wang
- Zunyi Municiptal Key Laboratory of Medicinal Biotechnology, Affiliated Hospital of Zunyi Medical University, Zunyi 563003, China; Center for Translational Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi 563003, China
| | - Yi Luo
- Zunyi Municiptal Key Laboratory of Medicinal Biotechnology, Affiliated Hospital of Zunyi Medical University, Zunyi 563003, China; Center for Translational Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi 563003, China
| | - Chang-Yin Yu
- Department of Neurology, Affiliated Hospital of Zunyi Medical University, Zunyi 563003, China.
| | - Jian-Hui Xiao
- Zunyi Municiptal Key Laboratory of Medicinal Biotechnology, Affiliated Hospital of Zunyi Medical University, Zunyi 563003, China; Center for Translational Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi 563003, China.
| |
Collapse
|
21
|
Lin YL, Huang XF, Chang KF, Liao KW, Tsai NM. Encapsulated n-Butylidenephthalide Efficiently Crosses the Blood-Brain Barrier and Suppresses Growth of Glioblastoma. Int J Nanomedicine 2020; 15:749-760. [PMID: 32099363 PMCID: PMC6999785 DOI: 10.2147/ijn.s235815] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 01/10/2020] [Indexed: 12/30/2022] Open
Abstract
Background n-Butylidenephthalide (BP) has anti-tumor effects on glioblastoma. However, the limitation of BP for clinical application is its unstable structure. A polycationic liposomal polyethylenimine (PEI) and polyethylene glycol (PEG) complex (LPPC) has been developed to encapsulate BP for drug structure protection. The purpose of this study was to investigate the anti-cancer effects of the BP/LPPC complex on glioblastoma in vitro and in vivo. Methods DBTRG-05MG tumor bearing xenograft mice were treated with BP and BP/LPPC and then their tumor sizes, survival, drug biodistribution were measured. RG2 tumor bearing F344 rats also treated with BP and BP/LPPC and then their tumor sizes by magnetic resonance imaging for evaluation blood–brain barrier (BBB) across and drug therapeutic effects. After treated with BP/LPPC in vitro, cell uptake, cell cycle and apoptotic regulators were analyzed for evaluation the therapeutic mechanism. Results In athymic mice, BP/LPPC could efficiently suppress tumor growth and prolong survival. In F334 rats, BP/LPPC crossed the BBB and led to tumor shrinkage. BP/LPPC promoted cell cycle arrest at the G0/G1 phase and triggered the extrinsic and intrinsic cell apoptosis pathways resulting cell death. BP/LPPC also efficiently suppressed VEGF, VEGFR1, VEGFR2, MMP2 and MMP9 expression. Conclusion BP/LPPC was rapidly and efficiently transported to the tumor area across the BBB and induced cell apoptosis, anti-angiogenetic and anti-metastatic effects in vitro and in vivo.
Collapse
Affiliation(s)
- Yu-Ling Lin
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei 11529, Taiwan, Republic of China
| | - Xiao-Fan Huang
- Department of Medical Laboratory and Biotechnology, Chung Shan Medical University, Taichung 40201, Taiwan, Republic of China.,Institute of Medicine of Chung Shun Medical University, Taichung 40201, Taiwan, Republic of China
| | - Kai-Fu Chang
- Department of Medical Laboratory and Biotechnology, Chung Shan Medical University, Taichung 40201, Taiwan, Republic of China.,Institute of Medicine of Chung Shun Medical University, Taichung 40201, Taiwan, Republic of China
| | - Kuang-Wen Liao
- Department of Biological Science and Technology, National Chiao Tung University, Hsinchu 30010, Taiwan, Republic of China.,Institute of Molecular Medicine and Bioengineering, National Chiao Tung University, Hsinchu 30010, Taiwan, Republic of China.,Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan, Republic of China
| | - Nu-Man Tsai
- Department of Medical Laboratory and Biotechnology, Chung Shan Medical University, Taichung 40201, Taiwan, Republic of China.,Clinical Laboratory, Chung Shan Medical University Hospital, Taichung 40201, Taiwan, Republic of China
| |
Collapse
|
22
|
Gao S, Li L, Li L, Ni J, Guo R, Mao J, Fan G. Effects of the combination of tanshinone IIA and puerarin on cardiac function and inflammatory response in myocardial ischemia mice. J Mol Cell Cardiol 2019; 137:59-70. [DOI: 10.1016/j.yjmcc.2019.09.012] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 09/19/2019] [Accepted: 09/21/2019] [Indexed: 02/08/2023]
|
23
|
Waqas M, Wang Y, Li A, Qamar H, Yao W, Tong X, Zhang J, Iqbal M, Mehmood K, Li J. Osthole: A Coumarin Derivative Assuage Thiram-Induced Tibial Dyschondroplasia by Regulating BMP-2 and RUNX-2 Expressions in Chickens. Antioxidants (Basel) 2019; 8:antiox8090330. [PMID: 31443437 PMCID: PMC6770413 DOI: 10.3390/antiox8090330] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 08/12/2019] [Accepted: 08/20/2019] [Indexed: 02/07/2023] Open
Abstract
Avian tibial dyschondroplasia affects fast growing broiler chickens accounting for almost 30% of leg ailments in broilers. The present project was designed to assess the efficacy of osthole against avian tibial dyschondroplasia (TD). Two hundred and forty chickens were equally allocated into control, TD and osthole groups (n = 80). The TD and osthole group chickens were challenged with tetramethylthiuram disulfide (thiram) at 50 mg/kg of feed from 4–7 days, followed by osthole administration at 20 mg/kg orally to the osthole group only from 8–18 days. Thiram feeding resulted in lameness, increased mortality, and decreased production parameters, alkaline phosphatase (ALP), superoxide dismutase (SOD), total antioxidant capacity (T-AOC), and glutathione peroxidase (GSH-PX) levels, along with significantly increased aspartate aminotransferase (AST), alanine aminotransferase (ALT), malondialdehyde (MDA) levels, and growth plate size. Moreover, the genes and protein expressions of BMP-2 and RUNX-2 were significantly down-regulated in TD affected chickens (p < 0.05). Osthole administration showed promising results by alleviating lameness; increased ALP, SOD, T-AOC, and GSH-Px levels; and decreased the AST, ALT, and MDA levels significantly. It restored the size of the growth plate and significantly up-regulated the BMP-2 and RUNX-2 expressions (p < 0.05). In conclusion, the oxidative stress and growth plate anomalies could be assuaged using osthole.
Collapse
Affiliation(s)
- Muhammad Waqas
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
- Faculty of Veterinary & Animal Sciences, University of the Poonch, Rawalakot, District Poonch 12350, Azad Jammu & Kashmir, Pakistan
| | - Yaping Wang
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Aoyun Li
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Hammad Qamar
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Wangyuan Yao
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiaole Tong
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Jialu Zhang
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Mudassar Iqbal
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
- University College of Veterinary & Animal Sciences, Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Khalid Mehmood
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
- University College of Veterinary & Animal Sciences, Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Jiakui Li
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China.
- College of Animal Husbandry and Veterinary Medicine, Tibet Agricultural and Animal Husbandry University, Linzhi 860000, China.
| |
Collapse
|
24
|
Yang L, Liu N, Zhao W, Li X, Han L, Zhang Z, Wang Y, Mao B. Angiogenic function of astragaloside IV in rats with myocardial infarction occurs via the PKD1-HDAC5-VEGF pathway. Exp Ther Med 2019; 17:2511-2518. [PMID: 30906439 PMCID: PMC6425153 DOI: 10.3892/etm.2019.7273] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Accepted: 12/13/2018] [Indexed: 12/11/2022] Open
Abstract
The current study aimed to assess the role and mechanism of astragaloside IV (AS-IV) in myocardial infarction. A myocardial infarction model was established via the ligation of the left anterior descending artery. Rats were randomly divided into sham, DMSO, model, AS-IV, AS-IV-CID755673 and CID755673 inhibitor groups. Rats were then sacrificed following 4 weeks of treatment and segmental heart samples were obtained for hematoxylin and eosin, and masson staining. The expression of PKD1, HDAC5 and VEGF were analyzed using immunohistochemistry, reverse transcription polymerase chain reaction and western blotting. Compared with the sham and DMSO groups, the morphology of myocardium in the model and CID755673 inhibitor groups were disordered and exhibited necrotic myocardial cells and collagen tissues. Following treatment with AS-IV, the morphology of the myocardium was markedly improved and the number of new blood vessels increased. However, following treatment with CID755673, the myocardial tissue of rats became disordered, with an increased number of necrotic cells and the closure of certain vessels. The expression of PKD1, HDAC5 and VEGF mRNA and protein in myocardial tissue of model group and CID755673 inhibitor group were significantly lower than the other four groups (P<0.05), whereas these levels in the AS-IV group were significantly higher than those in the other five groups (P<0.01). Additionally, the AS-IV-CID755673 group exhibited significantly higher levels of PKD1, HDAC5 and VEGF mRNA and protein than the sham, DMSO, CID755673 inhibitor and model groups (P<0.05). Furthermore, the protein expression of pS205 PKD1, pS259 HDAC5 and pTyr951 VEGF in the myocardium of rats was comparable with that of PKD1, HDAC5 and VEGF. AS-IV may partly promote the angiogenesis of myocardial tissue in rats with myocardial infarction via the PKD1-HDAC5-VEGF pathway.
Collapse
Affiliation(s)
- Lei Yang
- Henan Key Laboratory of Zhang ZhongJing Formulae and Herbs for Immunoregulation, Nanyang Institute of Technology, Nanyang, Henan 473004, P.R. China.,The Zhang ZhongJing School of Chinese Medicine, Nanyang Institute of Technology, Nanyang, Henan 473004, P.R. China
| | - Nuan Liu
- Henan Key Laboratory of Zhang ZhongJing Formulae and Herbs for Immunoregulation, Nanyang Institute of Technology, Nanyang, Henan 473004, P.R. China.,The Zhang ZhongJing School of Chinese Medicine, Nanyang Institute of Technology, Nanyang, Henan 473004, P.R. China
| | - Wei Zhao
- Henan Key Laboratory of Zhang ZhongJing Formulae and Herbs for Immunoregulation, Nanyang Institute of Technology, Nanyang, Henan 473004, P.R. China.,The Zhang ZhongJing School of Chinese Medicine, Nanyang Institute of Technology, Nanyang, Henan 473004, P.R. China
| | - Xing Li
- Henan Key Laboratory of Zhang ZhongJing Formulae and Herbs for Immunoregulation, Nanyang Institute of Technology, Nanyang, Henan 473004, P.R. China.,The Zhang ZhongJing School of Chinese Medicine, Nanyang Institute of Technology, Nanyang, Henan 473004, P.R. China
| | - Li Han
- Henan Key Laboratory of Zhang ZhongJing Formulae and Herbs for Immunoregulation, Nanyang Institute of Technology, Nanyang, Henan 473004, P.R. China.,The Zhang ZhongJing School of Chinese Medicine, Nanyang Institute of Technology, Nanyang, Henan 473004, P.R. China
| | - Zhongming Zhang
- Henan Key Laboratory of Zhang ZhongJing Formulae and Herbs for Immunoregulation, Nanyang Institute of Technology, Nanyang, Henan 473004, P.R. China.,The Zhang ZhongJing School of Chinese Medicine, Nanyang Institute of Technology, Nanyang, Henan 473004, P.R. China
| | - Yanke Wang
- Henan Key Laboratory of Zhang ZhongJing Formulae and Herbs for Immunoregulation, Nanyang Institute of Technology, Nanyang, Henan 473004, P.R. China
| | - Bingyu Mao
- Henan Key Laboratory of Zhang ZhongJing Formulae and Herbs for Immunoregulation, Nanyang Institute of Technology, Nanyang, Henan 473004, P.R. China.,The Zhang ZhongJing School of Chinese Medicine, Nanyang Institute of Technology, Nanyang, Henan 473004, P.R. China
| |
Collapse
|
25
|
Eyvazi M, Farahzadi R, Karimian Fathi N, Karimipour M, Soleimani Rad J, Montaseri A. Mummy Material Can Promote Differentiation of Adipose Derived Stem Cells into Osteoblast through Enhancement of Bone Specific Transcription Factors Expression. Adv Pharm Bull 2018; 8:457-464. [PMID: 30276142 PMCID: PMC6156472 DOI: 10.15171/apb.2018.053] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2018] [Revised: 07/17/2018] [Accepted: 07/19/2018] [Indexed: 12/20/2022] Open
Abstract
Purpose: Application of Mummy material for treatment of different diseases such as bone fracture, cutaneous wounds and joint inflammation has been advised since hundred years ago in Persian traditional medicine. Due to the claims of indigenous people and advice of traditional medicine for application of this material in healing of bone fractures, this study has been designed to evaluate whether Mummy material can promote the differentiation of mesenchymal stem cells into osteoblasts and enhance the expression of bone specific genes and proteins. Methods: Adipose derived stem cells (ASCs) at fourth cell passage were divided into control, osteogenesis group (received osteogenic medium), Mummy group (received Mummy at concentration of 500 µg/ml). ASCs in the fourth group were treated with both osteogenic medium and Mummy (500µg/ml). Cells in all groups were harvested on days 7, 14 and 21 days for further evaluation through Real time RT-PCR, Von kossa staining, Immunocytochemistry and flowcytometery. Results: Treatment of ASCs with Mummy at concentration of 500µg/ml promotes the expression level of Osteocalcin, RUNX-2 and β1-integrin genes in different time points but that of the Osterix did not changed. Furthermore the expression of Osteocalcin protein enhanced significantly in ASCs treated with Mummy detected by Immunocytochemistry and flowcytometery technique compared to the control groups. The results of this study also showed that treatment of ASCs with Mummy resulted in formation of mineral deposits which was evaluated by Von Kossa staining method. Conclusion: Obtained data from this study reveals that Mummy is a potent enhancer for differentiation of ASCs into osteoblasts in in vitro system, probably through increasing the level of bone specific genes and proteins.
Collapse
Affiliation(s)
- Maryam Eyvazi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Raheleh Farahzadi
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nahid Karimian Fathi
- Biochemistry Department, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Karimipour
- Anatomical Sciences Department, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Jafar Soleimani Rad
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Azadeh Montaseri
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
26
|
Li J, Mi QL, Zhang FM, Yang YK, Chen JH, Ye L, Zhang CM, Guangyu-Yang, Hu QF, Liu ZH, Wang XH, Li XM. Two New Isoflavones from Pueraria lobata and Their Bioactivities. Chem Nat Compd 2018. [DOI: 10.1007/s10600-018-2497-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
27
|
Xue W, Yu J, Chen W. Plants and Their Bioactive Constituents in Mesenchymal Stem Cell-Based Periodontal Regeneration: A Novel Prospective. BIOMED RESEARCH INTERNATIONAL 2018; 2018:7571363. [PMID: 30175141 PMCID: PMC6098897 DOI: 10.1155/2018/7571363] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 06/12/2018] [Accepted: 07/04/2018] [Indexed: 12/24/2022]
Abstract
Periodontitis is a common chronic inflammatory disease, which causes the destruction of both the soft and mineralized tissues. However, current treatments such as bone graft materials, barrier membranes, and protein products all have difficulties in regenerating the complete periodontal tissue structure. Stem cell-based tissue engineering has now emerged as one of the most effective treatments for the patients suffering from periodontal diseases. Plants not only can be substrates for life processes, but also contain hormones or functional molecules. Numbers of preclinical studies have revealed that products from plant can be successfully applied in modulating proliferation and differentiation of human mesenchymal stem cells. Plant-derived substances can induce stem cells osteogenic differentiation, and they also possess angiogenic potency. Furthermore, in the field of tissue engineering, plant-derived compounds or plant extracts can be incorporated with biomaterials or utilized as biomaterials for cell transplantation. So it is speculated that botanical products may become a new perspective in stem cell-based periodontal regeneration. However, the lack of achieving predict clinical efficacy and quality control has been the major impediment to its extensive application. This review gives an overview of the prospect of applying different plant-derived substances in various human mesenchymal stem cells-based periodontal regeneration.
Collapse
Affiliation(s)
- Wenqing Xue
- Key Laboratory of Oral Diseases of Jiangsu Province and Stomatological Institute of Nanjing Medical University, 140 Hanzhong Road, Nanjing, Jiangsu 210029, China
- Department of Periodontics, School of Stomatology, Nanjing Medical University, 136 Hanzhong Road, Nanjing, Jiangsu 210029, China
| | - Jinhua Yu
- Key Laboratory of Oral Diseases of Jiangsu Province and Stomatological Institute of Nanjing Medical University, 140 Hanzhong Road, Nanjing, Jiangsu 210029, China
- Department of Endodontics, School of Stomatology, Nanjing Medical University, 136 Hanzhong Road, Nanjing, Jiangsu 210029, China
| | - Wu Chen
- Key Laboratory of Oral Diseases of Jiangsu Province and Stomatological Institute of Nanjing Medical University, 140 Hanzhong Road, Nanjing, Jiangsu 210029, China
- Department of Periodontics, School of Stomatology, Nanjing Medical University, 136 Hanzhong Road, Nanjing, Jiangsu 210029, China
| |
Collapse
|
28
|
Lee DH, Kim IK, Cho HY, Seo JH, Jang JM, Kim J. Effect of herbal extracts on bone regeneration in a rat calvaria defect model and screening system. J Korean Assoc Oral Maxillofac Surg 2018; 44:79-85. [PMID: 29732313 PMCID: PMC5932276 DOI: 10.5125/jkaoms.2018.44.2.79] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Revised: 01/03/2018] [Accepted: 01/03/2018] [Indexed: 11/18/2022] Open
Abstract
Objectives The aim of this study was to evaluate the effects of herbal extracts on bone regeneration. Two known samples were screened. Materials and Methods We previously established a rat calvaria defect model using a combination of collagen scaffold and herbal extracts. An 8 mm diameter trephine bur with a low-speed dental hand piece was used to create a circular calvaria defect. The experimental group was divided into 4 classifications: control, collagen matrix, Danshen with collagen, and Ge Gan with collagen. Animals in each group were sacrificed at 4, 6, 8, and 10 weeks after surgery, and bone regeneration ability was evaluated by histological examination. Results Results revealed that both Danshen and Ge Gan extracts increased bone formation activity when used with collagen matrix. All groups showed almost the same histological findings until 6 weeks. However, after 6 weeks, bone formation activity proceeded differently in each group. In the experimental groups, new bone formation activity was found continuously up to 10 weeks. In the Danshen and Ge Gan groups, grafted materials were still present until 10 weeks after treatment, as evidenced by foreign body reactions showing multinucleated giant cells in chronic inflammatory vascular connective tissue. Conclusion Histological analyses showed that Danshen and Ge Gan extractions increased bone formation activity when used in conjunction with collagen matrix.
Collapse
Affiliation(s)
- Dong-Hwan Lee
- Oral and Maxillofacial Surgery, Department of Dentistry, Inha University School of Medicine, Incheon, Korea
| | - Il-Kyu Kim
- Oral and Maxillofacial Surgery, Department of Dentistry, Inha University School of Medicine, Incheon, Korea
| | - Hyun-Young Cho
- Oral and Maxillofacial Surgery, Department of Dentistry, Inha University School of Medicine, Incheon, Korea
| | - Ji-Hoon Seo
- Oral and Maxillofacial Surgery, Department of Dentistry, Inha University School of Medicine, Incheon, Korea
| | - Jun-Min Jang
- Oral and Maxillofacial Surgery, Department of Dentistry, Inha University School of Medicine, Incheon, Korea
| | - Jin Kim
- Oral Cancer Research Institute and Department of Oral Pathology, Yonsei University College of Dentistry, Seoul, Korea
| |
Collapse
|
29
|
Wang WQ, Hong G, Han JM, Murata H, Sasaki K. The effect of crude drugs on the angiogenic property and dynamic viscoelasticity of PEMA-based soft polymer materials. Dent Mater J 2017; 36:770-777. [PMID: 28747598 DOI: 10.4012/dmj.2016-387] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
This study aimed to determine the effect of crude drugs on the dynamic viscoelasticity and angiogenic property of soft polymer materials, in vitro. Two kinds of polyethyl methacrylates, and crude drugs (Astragalus membranaceus Bunge [HQ] and Salvia miltiorrhiza Bunge [DS]) were used in their powdered forms. And, acetyl tributyl citrate and ethyl alcohol were used in the liquid form. The dynamic viscoelasticity of each specimen was measured after 0, 1, 3, 7, 14 and 28 days of immersion in distilled water. The CellPlayer angiogenesis PrimeKit assay was used to test angiogenesis. Significant differences in dynamic viscoelasticity were observed among the materials. Specimens containing 1 wt% HQ showed higher angiogenic activity than those containing 5 wt% and 10 wt% HQ, and DS. Our results suggest that the addition of low amounts of crude drugs to soft polymer materials may promote angiogenesis in human tissues.
Collapse
Affiliation(s)
- Wei-Qi Wang
- Division of Advanced Prosthetic Dentistry, Graduate School of Dentistry, Tohoku University
| | - Guang Hong
- Liaison Center for Innovative Dentistry, Graduate School of Dentistry, Tohoku University
| | - Jian-Min Han
- Dental Materials Laboratory, National Engineering Laboratory for Digital and Material Technology of Stomatology, Peking University School and Hospital of Stomatology
| | - Hiroshi Murata
- Department of Prosthetic Dentistry, Graduate School of Biomedical Sciences, Nagasaki University
| | - Keiichi Sasaki
- Division of Advanced Prosthetic Dentistry, Graduate School of Dentistry, Tohoku University
| |
Collapse
|
30
|
Zhang X, Zou L, Li J, Xu B, Wu T, Fan H, Xu W, Yao W, Yang Y, Liu Y, Cui L. Salvianolic acid B and danshensu induce osteogenic differentiation of rat bone marrow stromal stem cells by upregulating the nitric oxide pathway. Exp Ther Med 2017; 14:2779-2788. [PMID: 28966669 PMCID: PMC5615234 DOI: 10.3892/etm.2017.4914] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Accepted: 02/10/2017] [Indexed: 12/30/2022] Open
Abstract
The aim of the present study was to investigate the effect of salvianolic acid B (Sal B) and danshensu (DSU) on the osteogenic differentiation of bone marrow mesenchymal stem cells (MSCs) and the mechanisms of the effects. The osteogenic differentiation of MSCs in culture was assessed by measuring alkaline phosphatase (ALP) activity, osteocalcin (OCN) production, nitric oxide (NO) production and the mRNA expression levels of osteoprotegerin (OPG) and its ligand by MSCs. MSCs were successfully induced to differentiate into osteoblasts and adipocytes. Sal B and DSU increased the ALP activity and the production of OCN in the absence of an ossification inducer. The increase in ALP activity was more pronounced when induction was combined with the osteogenic inducer, Sal B, which enhanced the expression of OPG; however, Sal B reduced the expression of receptor activator of nuclear factor-κB ligand (RANKL) by MSCs. Sal B reversed the inhibitory effect of N-nitro L-arginine methylester on the MSCs and increased ALP activity, OCN content and the OPG/RANKL ratio. Based on these results, it was concluded that Sal B increases the osteogenic differentiation of MSCs, most likely by regulating the nitric oxide pathway.
Collapse
Affiliation(s)
- Xinle Zhang
- Department of Pharmacology, Guangdong Medical University, Zhanjiang, Guangdong 524023, P.R. China
| | - Liyi Zou
- Department of Pharmacology, Guangdong Medical University, Zhanjiang, Guangdong 524023, P.R. China
| | - Jin Li
- Department of Pharmacology, Guangdong Medical University, Zhanjiang, Guangdong 524023, P.R. China
| | - Bilian Xu
- Department of Pharmacology, Guangdong Medical University, Zhanjiang, Guangdong 524023, P.R. China
| | - Tie Wu
- Department of Pharmacology, Guangdong Medical University, Zhanjiang, Guangdong 524023, P.R. China
| | - Huanqiong Fan
- Department of Pharmacology, Guangdong Medical University, Zhanjiang, Guangdong 524023, P.R. China
| | - Weiming Xu
- Department of Pharmacology, Guangdong Medical University, Zhanjiang, Guangdong 524023, P.R. China
| | - Weimin Yao
- Department of Respiratory Medicine, The Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524023, P.R. China
| | - Yajun Yang
- Department of Pharmacology, Guangdong Medical University, Zhanjiang, Guangdong 524023, P.R. China
| | - Yuyu Liu
- Department of Pharmacology, Guangdong Medical University, Zhanjiang, Guangdong 524023, P.R. China
| | - Liao Cui
- Department of Pharmacology, Guangdong Medical University, Zhanjiang, Guangdong 524023, P.R. China
- Guangdong Key Laboratory for Research and Development of Natural Drugs, Guangdong Medical University, Zhanjiang, Guangdong 524023, P.R. China
| |
Collapse
|
31
|
Mehmood K, Zhang H, Iqbal MK, Rehman MU, Shahzad M, Li K, Huang S, Nabi F, Zhang L, Li J. In VitroEffect of Apigenin and Danshen in Tibial Dyschondroplasia Through Inhibition of Heat-Shock Protein 90 and Vascular Endothelial Growth Factor Expressions in Avian Growth Plate Cells. Avian Dis 2017; 61:372-377. [DOI: 10.1637/11641-032817-regr] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Khalid Mehmood
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
- University College of Veterinary & Animal Sciences, Islamia University of Bahawalpur 63100, Pakistan
| | - Hui Zhang
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | - Muhammad Kashif Iqbal
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | - Mujeeb Ur Rehman
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | - Muhammad Shahzad
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
- University College of Veterinary & Animal Sciences, Islamia University of Bahawalpur 63100, Pakistan
| | - Kun Li
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | - Shucheng Huang
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | - Fazul Nabi
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | - Lihong Zhang
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | - Jiakui Li
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
- College of Animals Husbandry and Veterinary Medicine, Tibet Agricultural and Animal Husbandry University, Linzhi, Tibet 860000, People's Republic of China
| |
Collapse
|
32
|
Cheng HH, Chou CT, Liang WZ, Kuo CC, Shieh P, Wang JL, Jan CR. Effects of puerarin on intracellular Ca 2+ and cell viability of MDCK renal tubular cells. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2017; 52:83-89. [PMID: 28384516 DOI: 10.1016/j.etap.2017.03.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Revised: 03/20/2017] [Accepted: 03/21/2017] [Indexed: 06/07/2023]
Abstract
Puerarin is a natural compound and has been used as herb medication in a number of countries, especially in Asia. The effect of puerarin on Ca2+ signaling is unknown in renal cells. This study examined whether puerarin affected Ca2+ physiology in MDCK renal tubular cells. Cytosolic free Ca2+ levels ([Ca2+]i) were measured using the fluorescent dye fura-2. Cell viability was examined by using WST-1 assay. Puerarin induced [Ca2+]i rises and the response was reduced by removing extracellular Ca2+. Puerarin-induced Ca2+ entry was not altered by protein kinase C (PKC) activity, but was inhibited by nifedipine. In Ca2+-free medium, treatment with the endoplasmic reticulum Ca2+ pump inhibitor 2,5-di-tert-butylhydroquinone (BHQ) or thapsigargin partly inhibited puerarin-evoked [Ca2+]i rises. Inhibition of phospholipase C (PLC) with U73122 did not change puerarin-induced [Ca2+]i rises. Puerarin at 25-50μM caused cytotoxicity, which was not reversed by pretreatment with the Ca2+ chelator 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid-acetoxymethyl ester (BAPTA/AM). Collectively, in MDCK cells, puerarin induced [Ca2+]i rises by evoking PLC-independent Ca2+ release from the endoplasmic reticulum and other unknown stores, and Ca2+ entry via nifedipine-sensitive, PKC-insensitive Ca2+ entry pathways. Puerarin also caused Ca2+-independent cell death.
Collapse
Affiliation(s)
- He-Hsiung Cheng
- Department of Medicine, Chang Bing Show Chwan Memorial Hospital, Changhua County 50544, Taiwan
| | - Chiang-Ting Chou
- Department of Nursing, Division of Basic Medical Sciences, Chang Gung University of Science and Technology, Chia-Yi 61363, Taiwan; Chronic Diseases and Health Promotion Research Center, Chang Gung University of Science and Technology, Chia-Yi 61363, Taiwan
| | - Wei-Zhe Liang
- Department of Medical Education and Research, Kaohsiung Veterans General Hospital, Kaohsiung 81362, Taiwan
| | - Chun-Chi Kuo
- Department of Nursing, Tzu Hui Institute of Technology, Pingtung 92641, Taiwan
| | - Pochuan Shieh
- Department of Pharmacy, Tajen University, Pingtung 90741, Taiwan.
| | - Jue-Long Wang
- Department of Rehabilitation, Kaohsiung Veterans General Hospital Tainan Branch, Tainan 71051, Taiwan.
| | - Chung-Ren Jan
- Department of Medical Education and Research, Kaohsiung Veterans General Hospital, Kaohsiung 81362, Taiwan.
| |
Collapse
|
33
|
Ding ZT, Li XM, Yang GY, Zhang FM, Li J, Mi QL, Tang SY, Yang YK, Chen JH, Liu CB, Shen QP, Liu ZH, Hu QF. Three New Isoflavones from the Root of Pueraria lobata and their Bioactivities. HETEROCYCLES 2017. [DOI: 10.3987/com-17-13739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
34
|
Iqbal MK, Liu J, Nabi F, Rehman MU, Zhang H, Tahir AH, Li J. Recovery of Chicken Growth Plate by Heat-Shock Protein 90 Inhibitors Epigallocatechin-3-Gallate and Apigenin in Thiram-Induced Tibial Dyschondroplasia. Avian Dis 2016; 60:773-778. [DOI: 10.1637/11425-041816-reg] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
35
|
Luo J, Zhong Y, Huang S, Li L, Zhang C, Zou X. Ginkgolide B enhances the differentiation of preosteoblastic MC3T3-E1 cells through VEGF: Involvement of the p38 MAPK signaling pathway. Mol Med Rep 2016; 14:4787-4794. [PMID: 27748928 DOI: 10.3892/mmr.2016.5829] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Accepted: 09/29/2016] [Indexed: 11/06/2022] Open
Abstract
Ginkgolide B (GB) is one of the ginkgolides isolated from the leaves of the Ginkgo biloba tree. Our previous study indicated that GB promotes the proliferation, migration and adhesion of endothelial progenitor cells, and the induction of angiogenesis through vascular endothelial factor (VEGF). In the present study, the effects of GB on the differentiation of MC3T3‑E1 cells and the signaling pathway involved were investigated in vitro. The MC3T3‑E1 cell viability activities were assessed using an MTS assay. Measurements of alkaline phosphatase activity and Alizarin Red staining were used to identify osteoblastic differentiation of the MC3T3‑E1 cells. The mRNA and secretion levels of VEGF were detected using reverse transcription‑quantitative polymerase chain reaction (RT‑qPCR) analysis and enzyme-linked immunosorbent assays, respectively. The protein expression levels of phosphorylation‑associated markers were detected using western blot analysis and associated gene expression was determined using RT‑qPCR analysis. It was found that GB significantly promoted alkaline phosphatase activity and osteoblastic mineralization in the MC3T3‑E1 cells. In addition, the mRNA expression and secretion levels of VEGF in the MC3T3‑E1 cells were significantly increased in MC3T3‑E1 cells treated with GB. SB203580, a specific inhibitor of p38 mitogen‑activated protein (MAP) kinase, markedly suppressed the GB‑induced p38 kinase phosphorylation and GB‑induced synthesis of VEGF. PD98059, an inhibitor of the upstream kinase, which activates p44/p42 MAP kinase, had minimal effect on the GB‑induced phosphorylation of p44/p42 MAP kinase or the GB‑induced synthesis of VEGF. Taken together, these results indicated that GB promoted osteoblastic differentiation of the MC3T3‑E1 cells through VEGF, and that the p38, but not the p44/p42 MAP kinase signaling pathway, was involved in the GB‑induced synthesis of VEGF.
Collapse
Affiliation(s)
- Jiaquan Luo
- Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, The First Affiliated Hospital of Sun Yat‑Sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Yu Zhong
- Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, The First Affiliated Hospital of Sun Yat‑Sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Sheng Huang
- Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, The First Affiliated Hospital of Sun Yat‑Sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Liangping Li
- Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, The First Affiliated Hospital of Sun Yat‑Sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Chi Zhang
- Department of Pharmacology, Peking University International Hospital, Beijing 102206, P.R. China
| | - Xuenong Zou
- Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, The First Affiliated Hospital of Sun Yat‑Sen University, Guangzhou, Guangdong 510080, P.R. China
| |
Collapse
|
36
|
Liu JM, Lin PH, Hsu RJ, Chang YH, Cheng KC, Pang ST, Lin SK. Complementary traditional Chinese medicine therapy improves survival in patients with metastatic prostate cancer. Medicine (Baltimore) 2016; 95:e4475. [PMID: 27495088 PMCID: PMC4979842 DOI: 10.1097/md.0000000000004475] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
More than 50% of prostate cancer patients have used traditional Chinese medicine (TCM) in Taiwan. However, the long-term clinical efficacy of TCM in prostate cancer patients remains unclear. Here, we investigated the relationship between TCM use and the survival of prostate cancer patients.A retrospective nationwide cohort study of prostate cancer patients was conducted between 1998 and 2003 using the Taiwan National Health Insurance Research Database. Patients were classified as TCM users or nonusers, and monitored from the day of prostate cancer diagnosis to death or end of 2012. The association between death risk and TCM use was determined using Cox proportional-hazards models and Kaplan-Meier curves.Of the 1132 selected prostate cancer patients, 730 (64.5%) and 402 (35.5%) were TCM users and nonusers, respectively. The mean follow-up period was 8.38 years, and 292 (25.8%) deaths were reported. TCM users had a decreased mortality rate (21.9%) compared with nonusers (32.8%). A lower death risk was observed with longer TCM use, especially in patients who used TCM for ≧200 days (adjusted hazard ratio [aHR] 0.61, 95% confidence interval [CI] 0.44-0.84). TCM users with metastatic prostate cancer had a significant lower HR than nonusers (aHR 0.70, 95% CI 0.51-0.95). Chai-Hu-Jia-Long-Gu-Mu-Li-Tang was the most significant TCM formulae for improving survival in metastatic prostate cancer (aHR 0.18, 95% CI 0.04-0.94).The result suggested that complementary TCM therapy might be associated with a reduced risk of death in metastatic prostate cancer patients.
Collapse
Affiliation(s)
- Jui-Ming Liu
- Division of Urology, Department of Surgery, Taoyuan General Hospital, Ministry of Health and Welfare
| | - Po-Hung Lin
- Division of Urology, Department of Surgery, Chang Gung Memorial Hospital
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University
| | - Ren-Jun Hsu
- Biobank Management Center of the Tri-Service General Hospital, National Defense Medical Center
- Department of Pathology and Graduate Institute of Pathology and Parasitology, the Tri-Service General Hospital, National Defense Medical Center
- Graduate Institute of Life Sciences, National Defense Medical Center
| | - Ying-Hsu Chang
- Division of Urology, Department of Surgery, Chang Gung Memorial Hospital
| | - Kuan-Chen Cheng
- Graduate Institute of Food Science and Technology, National Taiwan University
- Institute of Biotechnology, National Taiwan University
- Department of Medical Research, China Medical University Hospital, China Medical University
| | - See-Tong Pang
- Division of Urology, Department of Surgery, Chang Gung Memorial Hospital
| | - Shun-Ku Lin
- Department of Chinese Medicine, Taipei City Hospital, Renai Branch, Taipei City, Taiwan
| |
Collapse
|
37
|
Wang C, Wang W, Jin X, Shen J, Hu W, Jiang T. Puerarin attenuates inflammation and oxidation in mice with collagen antibody-induced arthritis via TLR4/NF-κB signaling. Mol Med Rep 2016; 14:1365-70. [DOI: 10.3892/mmr.2016.5357] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Accepted: 05/05/2016] [Indexed: 11/06/2022] Open
|
38
|
Che CT, Wong MS, Lam CWK. Natural Products from Chinese Medicines with Potential Benefits to Bone Health. Molecules 2016; 21:239. [PMID: 26927052 PMCID: PMC6274145 DOI: 10.3390/molecules21030239] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Revised: 02/03/2016] [Accepted: 02/12/2016] [Indexed: 01/23/2023] Open
Abstract
Osteoporosis is a progressive, systemic bone disorder characterized by loss of bone mass and microstructure, leading to reduced bone strength and increased risk of fracture. It is often associated with reduced quality of life and other medical complications. The disease is common in the aging population, particularly among postmenopausal women and patients who receive long-term steroidal therapy. Given the rapid growth of the aging population, increasing life expectancy, the prevalence of bone loss, and financial burden to the healthcare system and individuals, demand for new therapeutic agents and nutritional supplements for the management and promotion of bone health is pressing. With the advent of global interest in complementary and alternative medicine and natural products, Chinese medicine serves as a viable source to offer benefits for the improvement and maintenance of bone health. This review summarizes the scientific information obtained from recent literatures on the chemical ingredients of Chinese medicinal plants that have been reported to possess osteoprotective and related properties in cell-based and/or animal models. Some of these natural products (or their derivatives) may become promising leads for development into dietary supplements or therapeutic drugs.
Collapse
Affiliation(s)
- Chun-Tao Che
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The University of Illinois at Chicago, Chicago, IL 60612, USA.
| | - Man Sau Wong
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, China.
| | - Christopher Wai Kei Lam
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau, China.
| |
Collapse
|
39
|
Seto SW, Kiat H, Lee SMY, Bensoussan A, Sun YT, Hoi MPM, Chang D. Zebrafish models of cardiovascular diseases and their applications in herbal medicine research. Eur J Pharmacol 2015; 768:77-86. [PMID: 26494630 DOI: 10.1016/j.ejphar.2015.10.031] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Revised: 10/02/2015] [Accepted: 10/16/2015] [Indexed: 01/12/2023]
Abstract
The zebrafish (Danio rerio) has recently become a powerful animal model for cardiovascular research and drug discovery due to its ease of maintenance, genetic manipulability and ability for high-throughput screening. Recent advances in imaging techniques and generation of transgenic zebrafish have greatly facilitated in vivo analysis of cellular events of cardiovascular development and pathogenesis. More importantly, recent studies have demonstrated the functional similarity of drug metabolism systems between zebrafish and humans, highlighting the clinical relevance of employing zebrafish in identifying lead compounds in Chinese herbal medicine with potential beneficial cardiovascular effects. This paper seeks to summarise the scope of zebrafish models employed in cardiovascular studies and the application of these research models in Chinese herbal medicine to date.
Collapse
Affiliation(s)
- Sai-Wang Seto
- National Institute of Complementary Medicine, Western Sydney University, Campbelltown, NSW, Australia
| | - Hosen Kiat
- Faculty of Medicine, University of New South Wales, NSW, Australia; School of Medicine, Western Sydney University, Locked Bag 1797, Penrith, NSW, Australia; Faculty of Medicine and Health Sciences, Macquarie University, NSW, Australia
| | - Simon M Y Lee
- State Key Laboratory Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Alan Bensoussan
- National Institute of Complementary Medicine, Western Sydney University, Campbelltown, NSW, Australia
| | - Yu-Ting Sun
- National Institute of Complementary Medicine, Western Sydney University, Campbelltown, NSW, Australia
| | - Maggie P M Hoi
- State Key Laboratory Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Dennis Chang
- National Institute of Complementary Medicine, Western Sydney University, Campbelltown, NSW, Australia.
| |
Collapse
|
40
|
Lee CH, Li TC, Tsai CI, Lin SY, Lee IT, Lee HJ, Wu YC, Su YC. Yang Deficiency Body Constitution Acts as a Predictor of Diabetic Retinopathy in Patients with Type 2 Diabetes: Taichung Diabetic Body Constitution Study. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2015; 2015:940898. [PMID: 26167195 PMCID: PMC4475744 DOI: 10.1155/2015/940898] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Accepted: 01/19/2015] [Indexed: 12/14/2022]
Abstract
Objective. Diabetic retinopathy (DR), the most common microvascular complication of diabetes mellitus (DM), can cause severe visual impairment and blindness. To prevent the development of DR, identifying the associated risk factors for patient classification is critical. We conducted a cross-sectional study to determine whether body constitution (BC) is an independent predictor of DR. Method. 673 type 2 DM (T2DM) patients were recruited from a medical center, all received DR examination and body constitution questionnaire to assess BC. Other risk factors for DR were also recorded, including life style, history of diabetes, and blood pressure, etc. Multiple logistic regression analysis was conducted to calculate the odds ratios (ORs) for DR. Results. The prevalence of DR was significantly lower in Yang deficiency patients compared with non-Yang deficiency patients (24.69% versus 38.18% P = 0.02). After adjusting for other risk factors, we observed that patients exhibiting Yang deficiency BC were less likely to present with DR (OR = 0.531; 95% confidence interval = 0.312-0.903, P = 0.018). Conclusion. In addition to traditional risk factors, Yang deficiency BC might be an independent predictor of DR among T2DM patients and the results can be used as evidence for traditional Chinese medicine patient classification.
Collapse
Affiliation(s)
- Cheng-Hung Lee
- Graduate Institute of Chinese Medicine, College of Chinese Medicine, China Medical University, Taichung, Taiwan
- Department of Traditional Chinese Medicine, Han Ming Hospital, Changhua, Taiwan
- School of Chinese Medicine, College of Chinese Medicine, China Medical University, Taichung, Taiwan
| | - Tsai-Chung Li
- Graduate Institute of Biostatistics, China Medical University, Taichung, Taiwan
- Department of Health Administration, College of Health Science, Asian University, Taichung, Taiwan
| | - Chia-I Tsai
- Department of Traditional Chinese Medicine, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Shih-Yi Lin
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Taichung Veterans General Hospital, Taichung, Taiwan
| | - I-Te Lee
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Taichung Veterans General Hospital, Taichung, Taiwan
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
- School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Hsin-Jung Lee
- Division of New Drugs, Center for Drug Evaluation, Taipei, Taiwan
| | - Ya-Chi Wu
- Division of New Drugs, Center for Drug Evaluation, Taipei, Taiwan
| | - Yi-Chang Su
- Graduate Institute of Chinese Medicine, College of Chinese Medicine, China Medical University, Taichung, Taiwan
- School of Chinese Medicine, College of Chinese Medicine, China Medical University, Taichung, Taiwan
| |
Collapse
|
41
|
Phytochemical progress made in investigations of Angelica sinensis (Oliv.) Diels. Chin J Nat Med 2015; 13:241-9. [DOI: 10.1016/s1875-5364(15)30010-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2014] [Indexed: 11/23/2022]
|
42
|
Jia Z, Chen S, Hao C, Huang Y, Liu Z, Pan A, Liao R, Wang X, Lu Z. Outbreak of extrapulmonary tuberculosis infection associated with acupuncture point injection. Clin Microbiol Infect 2014; 21:349-53. [PMID: 25677256 DOI: 10.1016/j.cmi.2014.10.023] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2014] [Revised: 10/23/2014] [Accepted: 10/23/2014] [Indexed: 11/26/2022]
Abstract
Mycobacterium tuberculosis infection is rarely reported to be associated with acupuncture practices. We performed a retrospective outbreak investigation of a unique outbreak of 33 extrapulmonary M. tuberculosis infections related to acupuncture point injection therapy (AIT) among clients who visited a private traditional Chinese medicine clinical centre in China. The lumps, abscesses and ulcers occurred mostly on the neck, shoulders, waist, knees and hips, localized at acupuncture point meridian sites. These symptoms appeared from January to November 2011, with a peak cluster of infections in September 2011 (nine cases). M. tuberculosis Beijing strain was isolated and confirmed by DNA sequencing. All diagnosed patients were treated empirically with appropriate antibiotic treatment, and their condition improved. Our study indicated that this outbreak was most likely resulted from contaminated AIT. Drafting standard guidelines for AIT is urgently needed, and routine medical supervision should be provided, including obligating health providers to perform routine physical examinations that include testing for infectious diseases.
Collapse
Affiliation(s)
- Z Jia
- National Institute of Drug Dependence, Peking University, Beijing 100191, PR China; Takemi Program in International Health, Department of Global Health and Population, Harvard School of Public Health, 665 Huntington Avenue, Boston, MA 02115, USA
| | - S Chen
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, Zhejiang 310006, PR China
| | - C Hao
- School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong 510080, PR China; Takemi Program in International Health, Department of Global Health and Population, Harvard School of Public Health, 665 Huntington Avenue, Boston, MA 02115, USA
| | - Y Huang
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - Z Liu
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, Zhejiang 310006, PR China
| | - A Pan
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, Zhejiang 310006, PR China
| | - R Liao
- Office of Scientific Research, Peking University, Beijing 100871, PR China.
| | - X Wang
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, Zhejiang 310006, PR China.
| | - Z Lu
- Department of Biomedical Engineering, College of Engineering, Peking University, Beijing 100871, PR China.
| |
Collapse
|
43
|
Guo Y, Li Y, Xue L, Severino RP, Gao S, Niu J, Qin LP, Zhang D, Brömme D. Salvia miltiorrhiza: an ancient Chinese herbal medicine as a source for anti-osteoporotic drugs. JOURNAL OF ETHNOPHARMACOLOGY 2014; 155:1401-16. [PMID: 25109459 DOI: 10.1016/j.jep.2014.07.058] [Citation(s) in RCA: 138] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Revised: 07/27/2014] [Accepted: 07/29/2014] [Indexed: 05/07/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Red sage (Salvia miltiorrhiza Bunge), also known as Danshen in Chinese, has been used historically and is currently exploited in combination with other herbs to treat skeletal diseases in traditional Chinese medicine (TCM). With the advance of modern analytical technology, a multitude of bone-targeting, pharmaceutically active, compounds has been isolated and characterized from various sources of TCM including those produced in Salvia miltiorrhiza root. The aim of the review is to provide a comprehensive overview about the historical TCM interpretation of the action of Salvia miltiorrhiza in osteoporosis, its use clinical trials, its main phytochemical constituents, and its action on bone-resorptive and bone formation-stimulating mechanisms in in vitro and in vivo studies. MATERIALS AND METHODS Literature sources used were Pubmed, CNKI.net, Cqvip.com, PubChem, and the Web of Science. For the inquiry, keywords such as Salvia, danshen, osteoporosis, bone, osteoclast and osteoblast were used in various combinations. About 130 research papers and reviews were consulted. RESULTS In TCM, the anti-osteopororotic effect of Salvia miltiorrhiza is ascribed to its action on liver and blood stasis as main therapeutic targets defining osteoporosis. 36 clinical trials were identified which used Salvia miltiorrhiza in combination with other herbs and components to treat post-menopausal, senile, and secondary osteoporosis. On average the trials were characterized by high efficacy (>80%) and low toxicity problems. However, various limitations such as small patient samples, short treatment duration, frequent lack of detailed numerical data, and no clear endpoints must be taken into consideration. To date, more than 100 individual compounds have been isolated from this plant and tested in various animal models and biochemical assays. Compounds display anti-resorptive and bone formation-stimulating features targeting different pathways in the bone remodeling cycle. Pathways affected include the activation of osteoblasts, the modulation of osteoclastogenesis, and the inhibition of collagen degradation by cathepsin K. CONCLUSIONS The inclusion of Salvia miltiorrhiza in more than 30% of all herbal clinical trials successfully targeting osteoporosis has stimulated significant interest in the identification and characterization of individual constituents of this herb. The review highlights the anti-osteoporotic potential of Salvia miltiorrhiza in clinical applications and the potential of the herb to provide potent compounds targeting specific pathways in bone resorption and bone formation.
Collapse
Key Words
- Anti-resorptive activity
- Danshen
- Osteoporosis
- Pro-anabolic activity
- Salvia miltiorrhiza
- Salvianolic acid A, CID 5281793
- caffeic acid, CID 689043
- cryptotanshinone, CID 160254
- oleanolic acid, CID 10494
- p-coumaric acid, CID 637542
- raloxifene, CID 5035
- salvianolic acid B (Synonym: Salvianic acid B), CID 11629084
- tanshinone I, CID 114917
- tanshinone IIA, CID 164676
- ursolic acid, CID 64945
Collapse
Affiliation(s)
- Yubo Guo
- Diabetes Research Center, School of Preclinical Medicine, Beijing University of Chinese Medicine, Beijing 100029, PR China
| | - Yu Li
- School of Preclinical Medicine, Beijing University of Chinese Medicine, Beijing 100029, PR China
| | - Liming Xue
- Department of Oral Biological and Medical Sciences, The University of British Columbia, Vancouver, BC, Canada V6T1Z3
| | - Richele P Severino
- Department of Oral Biological and Medical Sciences, The University of British Columbia, Vancouver, BC, Canada V6T1Z3
| | - Sihua Gao
- Diabetes Research Center, School of Preclinical Medicine, Beijing University of Chinese Medicine, Beijing 100029, PR China
| | - Jianzhao Niu
- School of Preclinical Medicine, Beijing University of Chinese Medicine, Beijing 100029, PR China
| | - Lu-Ping Qin
- Department of Pharmacognosy, Second Military Medical University, Shanghai 200433, PR China
| | - Dongwei Zhang
- Diabetes Research Center, School of Preclinical Medicine, Beijing University of Chinese Medicine, Beijing 100029, PR China; Department of Oral Biological and Medical Sciences, The University of British Columbia, Vancouver, BC, Canada V6T1Z3.
| | - Dieter Brömme
- Department of Oral Biological and Medical Sciences, The University of British Columbia, Vancouver, BC, Canada V6T1Z3.
| |
Collapse
|
44
|
Wu T, Chu H, Tu W, Song M, Chen D, Yuan J, Yu L, Ma Y, Liu Q, Jin L, Zhou X, Zou H, Wu W, Wang J. Dissection of the mechanism of traditional Chinese medical prescription-Yiqihuoxue formula as an effective anti-fibrotic treatment for systemic sclerosis. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2014; 14:224. [PMID: 24998426 PMCID: PMC4226964 DOI: 10.1186/1472-6882-14-224] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2013] [Accepted: 06/30/2014] [Indexed: 12/30/2022]
Abstract
Background Systemic sclerosis (SSc) is a connective tissue fibrotic disease for which there is no effective treatment. Traditional Chinese Medicine (TCM), such as the Yiqihuoxue formula used in Shanghai TCM-integrated Hospital, has shown the efficacy of anti-fibrosis in clinical applications. This study was aiming to dissect the anti-fibrotic mechanism of Yiqihuoxue treatment for SSc. Methods Bleomycin-induced mice and SSc dermal fibroblasts were treated with Yiqihuoxue decoction; NIH-3T3 fibroblasts were exposed to exogenous TGF-β1, and then cultured with or without Yiqihuoxue decoction. Luciferase reporter gene assay was used to determine the activity of Smad binding element (SBE). Quantitative reverse transcription-polymerase chain reaction (RT-PCR) was used to examine the mRNA levels of extracellular matrix (ECM) genes. The protein levels of type I collagen, Smad3 and phosphorylated-Smad3 (p-Smad3) were detected by western blotting. Student’s t-tests were used to determine the significance of the results. Results Bleomycin-induced mice, SSc dermal fibroblasts and TGF-β1-induced NIH/3T3 fibroblasts showed higher levels of ECM gene transcriptions and collagen production. In addition, the phosphorylation level of Smad3 and activity of SBE were significantly increased after exogenous TGF-β1 induction. Whereas, Yiqihuoxue treatment could obviously attenuate fibrosis in bleomycin-induced mice, down regulate ECM gene expressions and collagen production in SSc dermal fibroblasts and TGF-β1-induced NIH/3T3 fibroblasts. Furthermore, the aberrantly high phosphorylation level of Smad3 and activity of SBE in the TGF-β1-induced NIH/3T3 fibroblasts were also dramatically decreased by Yiqihuoxue treatment. Conclusions Yiqihuoxue treatment could effectively reduce collagen production via down-regulating the phosphorylation of Smad3 and then the activity of SBE, which are involved in the TGF-β pathway and constitutively activated in the progression of SSc.
Collapse
|
45
|
Lee YW, Chen TL, Shih YRV, Tsai CL, Chang CC, Liang HH, Tseng SH, Chien SC, Wang CC. Adjunctive traditional Chinese medicine therapy improves survival in patients with advanced breast cancer: a population-based study. Cancer 2014; 120:1338-44. [PMID: 24496917 DOI: 10.1002/cncr.28579] [Citation(s) in RCA: 94] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2013] [Revised: 12/16/2013] [Accepted: 01/02/2014] [Indexed: 12/25/2022]
Abstract
BACKGROUND Traditional Chinese medicine (TCM) is one of the most common complementary and alternative medicines used in the treatment of patients with breast cancer. However, the clinical effect of TCM on survival, which is a major concern in these individuals, lacks evidence from large-scale clinical studies. METHODS The authors used the Taiwan National Health Insurance Research Database to conduct a retrospective population-based cohort study of patients with advanced breast cancer between 2001 and 2010. The patients were separated into TCM users and nonusers, and Cox regression models were applied to determine the association between the use of TCM and patient survival. RESULTS A total of 729 patients with advanced breast cancer receiving taxanes were included in the current study. Of this cohort, the mean age was 52.0 years; 115 patients were TCM users (15.8%) and 614 patients were TCM nonusers. The mean follow-up was 2.8 years, with 277 deaths reported to occur during the 10-year period. Multivariate analysis demonstrated that, compared with nonusers, the use of TCM was associated with a significantly decreased risk of all-cause mortality (adjusted hazards ratio [HR], 0.55 [95% confidence interval, 0.33-0.90] for TCM use of 30-180 days; adjusted HR, 0.46 [95% confidence interval, 0.27-0.78] for TCM use of >180 days). Among the frequently used TCMs, those found to be most effective (lowest HRs) in reducing mortality were Bai Hua She She Cao, Ban Zhi Lian, and Huang Qi. CONCLUSIONS The results of the current observational study suggest that adjunctive TCM therapy may lower the risk of death in patients with advanced breast cancer. Future randomized controlled trials are required to validate these findings.
Collapse
Affiliation(s)
- Yuan-Wen Lee
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan; Department of Anesthesiology, Taipei Medical University Hospital, Taipei, Taiwan; Department of Anesthesiology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Wenden A, Yang Y, Chai L, Wong RWK. Salvia Miltiorrhiza
Induces VEGF Expression and Regulates Expression of VEGF Receptors in Osteoblastic Cells. Phytother Res 2013; 28:673-7. [DOI: 10.1002/ptr.5031] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2013] [Revised: 05/22/2013] [Accepted: 05/28/2013] [Indexed: 01/29/2023]
Affiliation(s)
- Alex Wenden
- Orthodontics, Faculty of Dentistry; The University of Hong Kong, Hong Kong SAR; China
| | - Yanqi Yang
- Orthodontics, Faculty of Dentistry; The University of Hong Kong, Hong Kong SAR; China
| | - Lei Chai
- Orthodontics, Faculty of Dentistry; The University of Hong Kong, Hong Kong SAR; China
- School of Dentistry; University of Queensland; Brisbane Australia
| | - Ricky W. K. Wong
- Orthodontics, Faculty of Dentistry; The University of Hong Kong, Hong Kong SAR; China
| |
Collapse
|