1
|
Ling B, Ji J, Huang Q, Xu Y, Hu Y, Pan S, Liu S, Hua T, Tang L, Yang M. Xuebijing Injection Alleviates Sepsis-Induced Acute Lung Injury by Inhibition of Cell Apoptosis and Inflammation Through the Hippo Pathway. J Inflamm Res 2025; 18:7717-7733. [PMID: 40529898 PMCID: PMC12170829 DOI: 10.2147/jir.s523991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2025] [Accepted: 05/27/2025] [Indexed: 06/20/2025] Open
Abstract
Background Acute lung injury/acute respiratory distress syndrome (ALI/ARDS) is a critical complication of sepsis, strongly associated with poor prognosis. Xuebijing (XBJ) injection, a standardized multi-herbal formulation containing five active components (safflower, red peony, Chuanxiong, Salvia miltiorrhiza, and Angelica sinensis), has demonstrated clinical efficacy in sepsis management through its multimodal pharmacological actions. While XBJ is increasingly used as an adjunctive therapy for sepsis-induced ALI/ARDS, its specific protective mechanisms remain incompletely understood. The purpose of this study was to evaluate the improvement effect of XBJ injection on ALI in sepsis and its undefined molecular mechanism. Methods Sepsis-induced ALI (SALI) murine animal model was established in rats by cecum ligation and puncture (CLP), and these rats were treated with or without XBJ injection. Lung injury across different groups was assessed by HE staining, W/D ratio, and BALF analysis. ZO-1 and CD31 immunofluorescence were used to evaluate endothelial damage. To illustrate the mechanism of the protective effect of XBJ on SALI, human umbilical vein endothelial cells (HUVECs) stimulated with lipopolysaccharide (LPS) were used to establish an in vitro endothelial inflammation model. Inflammatory cytokines and apoptotic proteins were measured in LPS-stimulated HUVECs to evaluate endothelial inflammation. Lung tissue transcriptomic analysis was performed to explore downstream pathway, and key Hippo pathway related proteins were assessed in both rat lung tissue and HUVECs. Results In SALI animal models, treatment with XBJ significantly alleviated lung injury. Meanwhile, a substantial amelioration of endothelial damage was observed. In vitro, XBJ substantially mitigated apoptosis and inflammatory response of LPS stimulated HUVECs. Meanwhile, transcriptomic analysis revealed that XBJ significantly upregulates the gene expression of the Hippo-related signaling pathway, and we further validated these findings in both rat lung tissues and HUVECs. Conclusion Our study establishes the preventive role of XBJ injection in SALI by alleviating apoptosis and inflammatory response partially through regulating the Hippo pathway.
Collapse
Affiliation(s)
- Bingrui Ling
- The Second Department of Intensive Care Unit, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230601, People’s Republic of China
- The Laboratory of Cardiopulmonary Resuscitation and Critical Care Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230601, People’s Republic of China
| | - Jinlu Ji
- Department of Internal Emergency Medicine, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200092, People’s Republic of China
- School of Medicine, Tongji University, Shanghai, 200092, People’s Republic of China
| | - Qihui Huang
- The Second Department of Intensive Care Unit, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230601, People’s Republic of China
- The Laboratory of Cardiopulmonary Resuscitation and Critical Care Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230601, People’s Republic of China
| | - Yang Xu
- The Second Department of Intensive Care Unit, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230601, People’s Republic of China
- The Laboratory of Cardiopulmonary Resuscitation and Critical Care Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230601, People’s Republic of China
| | - Yan Hu
- The Second Department of Intensive Care Unit, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230601, People’s Republic of China
- The Laboratory of Cardiopulmonary Resuscitation and Critical Care Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230601, People’s Republic of China
| | - Sinong Pan
- The Second Department of Intensive Care Unit, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230601, People’s Republic of China
- The Laboratory of Cardiopulmonary Resuscitation and Critical Care Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230601, People’s Republic of China
| | - Siying Liu
- The Second Department of Intensive Care Unit, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230601, People’s Republic of China
- The Laboratory of Cardiopulmonary Resuscitation and Critical Care Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230601, People’s Republic of China
| | - Tianfeng Hua
- The Second Department of Intensive Care Unit, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230601, People’s Republic of China
- The Laboratory of Cardiopulmonary Resuscitation and Critical Care Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230601, People’s Republic of China
| | - Lunxian Tang
- Department of Internal Emergency Medicine, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200092, People’s Republic of China
- School of Medicine, Tongji University, Shanghai, 200092, People’s Republic of China
| | - Min Yang
- The Second Department of Intensive Care Unit, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230601, People’s Republic of China
- The Laboratory of Cardiopulmonary Resuscitation and Critical Care Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230601, People’s Republic of China
| |
Collapse
|
2
|
Chen CY, Zhang Y. Berberine: An isoquinoline alkaloid targeting the oxidative stress and gut-brain axis in the models of depression. Eur J Med Chem 2025; 290:117475. [PMID: 40107207 DOI: 10.1016/j.ejmech.2025.117475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 02/08/2025] [Accepted: 03/02/2025] [Indexed: 03/22/2025]
Abstract
Depression seriously affects people's quality of life, and there is an urgent need to find novel drugs to cure treatment-resistant depression. Berberine (BBR), extracted from Coptis chinensis Franch., Phellodendron bark, Berberis vulgaris, and Berberis petiolaris, could be a potential multi-target drug for depression. To summarize the effects of BBR on depression in terms of in vitro or in vivo experiments, we searched electronic databases, such as PubMed, Web of Science, Google Scholar, Wanfang Database, and China National Knowledge Infrastructure, from inception until May 2024. Then, we summarize that BBR has indirect antidepressant properties to improve depressive symptoms, manifesting in modulating the gut microbial community, strengthening the intestinal barrier, increasing the abundance of short-chain fatty acid-producing bacteria, and regulating tryptophan metabolism. BBR also exerts antidepressant-like effects via remodulating nuclear factor-erythroid 2-related factor 2/antioxidant response element pathway, hypothalamic-pituitary-adrenal axis, and peroxisome proliferators-activated receptor-delta. Nevertheless, further clinical trials and more high-quality animal studies are needed to show the actual clinical value of BBR for depression.
Collapse
Affiliation(s)
- Cong-Ya Chen
- Department of Anatomy, School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Yi Zhang
- Department of Anatomy, School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 102488, China.
| |
Collapse
|
3
|
Adebayo OG, Ben-Azu B, Aduema W, Oyebanjo OT, Modo E, Ndidiamaka IP, Eleazer SE, Enya JI, Ajayi AM. Ginkgolide B as a biopsychosocial treatment salvages repeated restraint stress-induced amygdalar anomalies in mice. IBRO Neurosci Rep 2025; 18:66-77. [PMID: 39844942 PMCID: PMC11750493 DOI: 10.1016/j.ibneur.2024.12.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 12/16/2024] [Accepted: 12/17/2024] [Indexed: 01/24/2025] Open
Abstract
From preclinical and clinical findings, it has been shown that the amygdala is a critical mediator of stress and primary target for stress effects in the brain. We investigated the neuroprotective effect of Ginkgolide B (GB) in repeated restraint stress-induced behavioral deficit and amygdalar inflammation in mice. Mice were orally pre-treated with GB 20 mg/kg 1 h prior to 4 h restraint stress for 21 consecutive days. Behavioural deficit and serum and amygdalar biochemical changes were estimated using spectrophotometric and ELISA techniques. The results showed that GB pre-treatment inhibited spatial memory deficit, renounces neuropsychiatric phenotypes and metabolic redox activity by augmenting the endogenous antioxidant system via Nrf2 levels in the mice. The HPA axis activity impaired by the restraint stress induction was abated with marked reduction of corticosterone, hypertrophy of the adrenal gland and blood glucose level. Meanwhile, our data further reveals that GB pre-treatment inhibited the release of neuroinflammatory mediators (MPO, TNF-α, IL-6, MAPK, COX-2) and elevated CREB production via activation of BDNF protein. Further, the acetylcholinesterase activity was inhibited while the level of glutamate release remains unchanged in the amygdala of the restraint mice. The GB treatment also up-regulate the release of BCL-2 proteins. This study suggests that GB could be considered as a therapeutic agent in the management of memory impairment, neuropsychiatric phenotypes and neuropathological alterations.
Collapse
Affiliation(s)
- Olusegun G. Adebayo
- Department of Physiology, Faculty of Basic Medical Sciences, College of Health Sciences, Osun State University, Osogbo, Osun State, Nigeria
- Neurosciences and Oral Physiology Unit, Department of Physiology, Faculty of Basic Medical Sciences, College of Medicine, University of Ibadan, Ibadan, Oyo State, Nigeria
| | - Benneth Ben-Azu
- DELSU Joint Canada-Israel Neuroscience and Biopsychiatry Laboratory, Department of Pharmacology, Faculty of Basic Medical Sciences, College of Health Sciences, Delta State University, Abraka, Delta State, Nigeria
| | - Wadioni Aduema
- Department of Physiology, Faculty of Basic Medical Sciences, Bayelsa Medical University, Yenagoa, Bayelsa State, Nigeria
| | - Oyetola T. Oyebanjo
- Neurosciences and Oral Physiology Unit, Department of Physiology, Faculty of Basic Medical Sciences, College of Medicine, University of Ibadan, Ibadan, Oyo State, Nigeria
- Department of Physiology, Faculty of Basic Medical Sciences, Babcock University, Ilishan-Remo, Nigeria
| | - Emmanuel U. Modo
- Department of Biochemistry, Faculty of Sciences, Delta State University, Abraka, Delta State, Nigeria
| | | | - Spiff E. Eleazer
- Department of Physiology, Faculty of Basic Medical Sciences, PAMO University of Medical Sciences, Port-Harcourt, River State, Nigeria
| | - Joseph Igbo Enya
- Department of Anatomy, Faculty of Basic Medical Sciences, Babcock University, Ilishan-Remo, Nigeria
| | - Abayomi M. Ajayi
- Department of Pharmacology and Therapeutics, Faculty of Basic Medical Sciences, University of Ibadan, Ibadan, Oyo State, Nigeria
| |
Collapse
|
4
|
Xu HJ, Su Y. Potential of Berberine for Rheumatoid Arthritis Prevention and Treatment. Chin J Integr Med 2025:10.1007/s11655-025-4217-y. [PMID: 40366564 DOI: 10.1007/s11655-025-4217-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/17/2025] [Indexed: 05/15/2025]
Affiliation(s)
- Hao-Jie Xu
- Department of Rheumatology and Immunology, Peking University People's Hospital, Beijing, 100044, China
| | - Yin Su
- Department of Rheumatology and Immunology, Peking University People's Hospital, Beijing, 100044, China.
- Department of Rheumatology and Immunology, Peking University People's Hospital, Qingdao, Shandong Province, 266111, China.
| |
Collapse
|
5
|
Wang L, Xu T, Wu S, Zhao C, Huang H. The efficacy and underlying mechanisms of berberine in the treatment of recurrent Clostridioides difficile infection. Int J Antimicrob Agents 2025; 65:107468. [PMID: 39986400 DOI: 10.1016/j.ijantimicag.2025.107468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 01/05/2025] [Accepted: 02/14/2025] [Indexed: 02/24/2025]
Abstract
Recurrent Clostridioides difficile infection (rCDI) is a global health threat that has received considerable attention. Berberine (BBR), a natural pentacyclic isoquinoline alkaloid, has been used as a cost-effective treatment for intestinal infections in Asia for many years. However, the effect of BBR on rCDI is not clear. The efficacy and underlying mechanisms of BBR were evaluated in a vancomycin-dependent rCDI mouse model and an intestinal organoids model. The study findings showed that BBR treatment alleviated the severity of infection and increased survival rate in rCDI mice. Mechanistically, BBR alleviated intestinal epithelial damage with higher Occludin expression, suppressed some inflammatory pathways and reduced the level of inflammatory factors in both the caecum and serum. Moreover, 16S rRNA sequencing analysis indicated that BBR reshaped the gut microbiota by increasing the abundance of Firmicutes and reducing the abundance of Proteobacteria. At genus level, BBR treatment increased levels of Blautia and Bilophila, and reduced levels of Proteus. In addition, acetic acid, one of the short-chain fatty acids (SCFAs), was also increased after BBR treatment in rCDI mice. Collectively, BBR exerted a protective effect in rCDI via multiple underlying mechanisms and is a potential drug candidate for alleviating rCDI, but further research is needed in this area.
Collapse
Affiliation(s)
- Li Wang
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, China; Key Laboratory of Clinical Pharmacology of Antibiotics, National Health Commission of the PRC, Shanghai, China; National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Teng Xu
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, China; Key Laboratory of Clinical Pharmacology of Antibiotics, National Health Commission of the PRC, Shanghai, China
| | - Shi Wu
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, China; Key Laboratory of Clinical Pharmacology of Antibiotics, National Health Commission of the PRC, Shanghai, China
| | - Chao Zhao
- National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China; MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Fudan University, Shanghai, China.
| | - Haihui Huang
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, China; Key Laboratory of Clinical Pharmacology of Antibiotics, National Health Commission of the PRC, Shanghai, China.
| |
Collapse
|
6
|
Zhang Z, Wang H, Tao B, Shi X, Chen G, Ma H, Peng R, Zhang J. Attenuation of Blood-Brain Barrier Disruption in Traumatic Brain Injury via Inhibition of NKCC1 Cotransporter: Insights into the NF-κB/NLRP3 Signaling Pathway. J Neurotrauma 2025; 42:814-831. [PMID: 39879999 DOI: 10.1089/neu.2023.0580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2025] Open
Abstract
Following traumatic brain injury (TBI), inhibition of the Na+-K+-Cl- cotransporter1 (NKCC1) has been observed to alleviate damage to the blood-brain barrier (BBB). However, the underlying mechanism for this effect remains unclear. This study aimed to investigate the mechanisms by which inhibiting the NKCC1 attenuates disruption of BBB integrity in TBI. The TBI model was induced in C57BL/6 mice through a controlled cortical impact device, and an in vitro BBB model was established using Transwell chambers. Western blot (WB) analysis was used to evaluate NOD-like receptor family pyrin domain containing 3 (NLRP3) inflammasome and nuclear factor-kappaB (NF-κB) pathway proteins. Flow cytometry and transendothelial electrical resistance (TEER) were employed to assess endothelial cell apoptosis levels and BBB integrity. ELISA was utilized to measure cytokines interleukin-1β (IL-1β) and matrix metalloproteinase-9 (MMP-9). Immunofluorescence techniques were used to evaluate protein levels and the nuclear translocation of the rela (p65) subunit. The Evans blue dye leakage assay and the brain wet-dry weight method were utilized to assess BBB integrity and brain swelling. Inhibition of NKCC1 reduced the level of NLRP3 inflammasome and the secretion of IL-1β and MMP-9 in microglia. Additionally, NKCC1 inhibition suppressed the activation of the NF-κB signaling pathway, which in turn decreased the level of NLRP3 inflammasome. The presence of NLRP3 inflammasome in BV2 cells led to compromised BBB integrity within an inflammatory milieu. Following TBI, an upregulation of NLRP3 inflammasome was observed in microglia, astrocytes, vascular endothelial cells, and neurons. Furthermore, inhibiting NKCC1 resulted in a decrease in the positive rate of NLRP3 inflammasome in microglia and the levels of inflammatory cytokines IL-1β and MMP-9 after TBI, which correlated with BBB damage and the development of cerebral edema. These findings demonstrate that the suppression of the NKCC1 cotransporter protein alleviates BBB disruption through the NF-κB/NLRP3 signaling pathway following TBI.
Collapse
Affiliation(s)
- Zehan Zhang
- Department of Neurosurgery, PLA Air Force Hospital of Southern Theatre Command, Guangzhou, China
| | - Hui Wang
- Department of Experimental Pathology, Institute of Radiation Medicine, Beijing, China
| | - Bingyan Tao
- Department of Neurosurgery, 961th Hospital of Joint Logistics Support Force, Qiqihaer, China
| | - Xudong Shi
- Medical School of Chinese People's Liberation Army, Beijing, China
- Department of Neurosurgery, the First Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Guilin Chen
- Medical School of Chinese People's Liberation Army, Beijing, China
- Department of Neurosurgery, the First Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Hengchao Ma
- Medical School of Chinese People's Liberation Army, Beijing, China
- Department of Neurosurgery, the First Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Ruiyun Peng
- Department of Experimental Pathology, Institute of Radiation Medicine, Beijing, China
| | - Jun Zhang
- Department of Neurosurgery, the First Medical Centre, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
7
|
Lee H, Kim Y, Kang S, Kim H, Kim JH, Kim W, Park H, Go GW. A comprehensive review of dietary supplements mission-specific health and performance enhancement in military soldiers. Food Sci Biotechnol 2025; 34:1219-1234. [PMID: 40110410 PMCID: PMC11914467 DOI: 10.1007/s10068-024-01728-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 09/25/2024] [Accepted: 10/02/2024] [Indexed: 03/22/2025] Open
Abstract
Soldiers undergo intensive physical training, maintain high levels of concentration, and require rapid recovery from various traumas, making them highly specialized individuals. Under high physical and mental stress conditions, soldiers experience health issues related to decreased muscle function, impaired immunity, depression, and cognitive decline. A growing need exists for dietary supplements to mitigate these issues, and the usage patterns of such supplements are continuously increasing. Therefore, as dietary supplement consumption rises within the military, a sophisticated approach to addressing nutritional supplement requirements is essential. We discuss health problems that may arise under stressful conditions in soldiers, suggesting various nutritional supplements that are essential to address these issues. In conclusion, these nutritional supplements can be used as promising interventions for numerous health problems, including enhanced muscle function, improved immunity, mental stress alleviation, and cognitive enhancement. This ultimately suggests a contribution to military personnel health and the strengthening of national defense capabilities.
Collapse
Affiliation(s)
- Haneul Lee
- Department of Food and Nutrition, Hanyang University, Seoul, 04763 Republic of Korea
| | - Younhee Kim
- Department of Food and Nutrition, Hanyang University, Seoul, 04763 Republic of Korea
| | - Sumin Kang
- Department of Food and Nutrition, Hanyang University, Seoul, 04763 Republic of Korea
| | - Hayoon Kim
- Department of Food and Nutrition, Hanyang University, Seoul, 04763 Republic of Korea
| | - Jong-Hee Kim
- Human-Tech Convergence ProgramMajor in Sport ScienceDivision of Sport Industry and Science, Hanyang University, Seoul, 04763 Korea
| | - Wooki Kim
- Department of Food and Nutrition, Yonsei University, Seoul, 03722 Republic of Korea
| | - Hongsuk Park
- Industry-Academic Cooperation Foundation, Kumoh National Institute of Technology, Gumi, 39177 South Korea
| | - Gwang-Woong Go
- Department of Food and Nutrition, Hanyang University, Seoul, 04763 Republic of Korea
| |
Collapse
|
8
|
Guo S, Wang Y, Li J, Liu Y, Han Y, Huang C, Wu H, Hu J, Liu Z. In vitro killing effect of berberine and niclosamide on ocular Demodex folliculorum. Cont Lens Anterior Eye 2025; 48:102336. [PMID: 39616005 DOI: 10.1016/j.clae.2024.102336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 11/10/2024] [Accepted: 11/12/2024] [Indexed: 03/18/2025]
Abstract
PURPOSE To explore the in vitro killing effect of water-soluble berberine and lipid-soluble niclosamide against ocular Demodex folliculorum. METHODS Demodex with good vigor were collected from patients' eyelashes. These mites were randomly distributed into different groups with 20 mites in each group. Saline, Double Distilled Water (DDW), Polysorbate 80 (TWEEN 80), Polyethylene glycol 300 (PEG 300) and Castor Oil were used to screen solvents and cosolvents. 20 % Tea Tree Oil (TTO) and Anhydrous Ethanol (EtOH) were used as positive controls. 0.2 % Berberine, 0.25 % Niclosamide and 0.5 % Niclosamide, were designated as experimental groups. Following treatment, the analysis of Kaplan-Meier survival curves and survival time of mites and safety of drugs were then performed. RESULTS The survival of Demodex in vitro in Saline and DDW, was not significant different. Therefore, DDW, which was more conducive to the dissolution of berberine, was chosen as the solvent for berberine. 0.2 % Berberine significantly inhibited the survival distribution and survival time (P < 0.001) of Demodex in vitro compared with the DDW group. Through the evaluation of several cosolvents, PEG300 had milder effects on Demodex. Hence, the proportion of PEG300 in the niclosamide solvent group was increased to reduce the irritability of the vehicle. Furthermore, niclosamide could significantly inhibit the survival of Demodex compared with the vehicle group, and the effect of 0.5 % Niclosamide was more obvious (P < 0.001), and was better than 20 %TTO (P < 0.001). In addition, after niclosamide administration, Demodex bodies exhibited gradual distortion along with increased transparency and the presence of blurred dark particles compared to those in the vehicle group. Moreover, both drugs showed good subjective tolerability and safety in a mouse model. CONCLUSION 0.2 % berberine and 0.5 % niclosamide effectively inhibited Demodex survival in vitro, with 0.5 % niclosamide superior to 20 % TTO. These two drugs, with anti-Demodex, anti-bacterial, and anti-inflammatory properties, may offer alternative treatment for Demodex blepharitis.
Collapse
Affiliation(s)
- Shujia Guo
- Xiamen University affiliated Xiamen Eye Center, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Fujian Engineering and Research Center of Eye Regenerative Medicine, Eye Institute of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian 361005, China
| | - Yuqian Wang
- Xiamen University affiliated Xiamen Eye Center, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Fujian Engineering and Research Center of Eye Regenerative Medicine, Eye Institute of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian 361005, China
| | - Jiani Li
- Xiamen University affiliated Xiamen Eye Center, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Fujian Engineering and Research Center of Eye Regenerative Medicine, Eye Institute of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian 361005, China
| | - Yuwen Liu
- Xiamen University affiliated Xiamen Eye Center, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Fujian Engineering and Research Center of Eye Regenerative Medicine, Eye Institute of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian 361005, China
| | - Yi Han
- Department of Ophthalmology, The First Affiliated Hospital of University of South China, Hengyang, Hunan 421001, China
| | - Caihong Huang
- Xiamen University affiliated Xiamen Eye Center, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Fujian Engineering and Research Center of Eye Regenerative Medicine, Eye Institute of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian 361005, China
| | - Huping Wu
- Xiamen University affiliated Xiamen Eye Center, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Fujian Engineering and Research Center of Eye Regenerative Medicine, Eye Institute of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian 361005, China
| | - Jiaoyue Hu
- Xiamen University affiliated Xiamen Eye Center, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Fujian Engineering and Research Center of Eye Regenerative Medicine, Eye Institute of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian 361005, China.
| | - Zuguo Liu
- Xiamen University affiliated Xiamen Eye Center, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Fujian Engineering and Research Center of Eye Regenerative Medicine, Eye Institute of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian 361005, China; Department of Ophthalmology, Xiang'an Hospital of Xiamen University, Xiamen, Fujian 361005, China; Department of Ophthalmology, The First Affiliated Hospital of University of South China, Hengyang, Hunan 421001, China.
| |
Collapse
|
9
|
Cho CH, Youm G, Lim KM, Kim M, Lee DK, Cho YB, Yu HJ, Shin HS, Lee SH. Immune-enhancing effects of enzymatic hydrolysates of peanut sprouts in RAW 264.7 macrophages and cyclophosphamide-induced immunosuppressed mouse model. Food Res Int 2025; 205:115752. [PMID: 40032444 DOI: 10.1016/j.foodres.2025.115752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 01/12/2025] [Accepted: 01/14/2025] [Indexed: 03/05/2025]
Abstract
Immune deficiency is associated with the development of various diseases. Resveratrol, the main bioactive component of peanut sprouts, exerts immunomodulatory effects. Enzymatic hydrolysis increases the yield of bioactive components from plant resources. In this study, the immune-enhancing effects of three types of peanut sprout extracts (peanut sprout non-enzyme extract (PSNE), peanut sprout cellulase extract (PSCE), and peanut sprout pectinase extract (PSPE)) were evaluated to confirm the effectiveness of enzymatic hydrolysis extract of peanut sprouts. The immune-boosting potency of the extracts was assessed by measuring proinflammatory mediators (nitric oxide (NO), and prostaglandin E2 (PGE2)), inflammatory cytokines (tumor necrosis factor-α (TNF-α), interleukin (IL)-6, IL-1β, and monocyte chemoattractant protein-1 (MCP-1)) in RAW 264.7 cells. To evaluate the immune-boosting efficacy of the extract in an in vivo model, immune organ indices and total leukocyte and natural killer (NK) cell populations were measured in a cyclophosphamide-induced immunosuppressed mouse model. PSCE had a significantly higher resveratrol content than PSNE and PSPE. Moreover, PSCE actively increased NO and PGE2 production in RAW 264.7 cells in a concentration-dependent manner, indicating its immune-promoting potential. PSCE significantly increased the expression of inflammatory cytokines and promoted the phosphorylation and nuclear translocation of nuclear factor kappa-light-chain-enhancer of activated B cells, thereby enhancing immunity. In the mouse model, oral administration of PSCE enhanced immunity by suppressing the cyclophosphamide-induced loss of immune organ index and decline of leukocyte population in the blood and NK cell population in the spleen. Our results suggest that hydrolysis using cellulase can promote the immune-enhancing effects of peanut sprout extract by increasing the extraction of resveratrol.
Collapse
Affiliation(s)
- Chi Heung Cho
- Division of Functional Food Research, Korea Food Research Institute, 245 nongsaengmyeong-ro, Iseo-myeon, Wanju-gun, Jeollabuk-do 55365, Republic of Korea
| | - Gahee Youm
- Division of Functional Food Research, Korea Food Research Institute, 245 nongsaengmyeong-ro, Iseo-myeon, Wanju-gun, Jeollabuk-do 55365, Republic of Korea; Department of Food Biotechnology, University of Science and Technology, Daejeon 34113, Republic of Korea
| | - Kyung Min Lim
- Division of Functional Food Research, Korea Food Research Institute, 245 nongsaengmyeong-ro, Iseo-myeon, Wanju-gun, Jeollabuk-do 55365, Republic of Korea; Department of Food Biotechnology, University of Science and Technology, Daejeon 34113, Republic of Korea
| | - Mingyeong Kim
- Division of Functional Food Research, Korea Food Research Institute, 245 nongsaengmyeong-ro, Iseo-myeon, Wanju-gun, Jeollabuk-do 55365, Republic of Korea; Department of Food Biotechnology, University of Science and Technology, Daejeon 34113, Republic of Korea
| | - Da Kyoung Lee
- YESKIN, Co, 379 Aenggogae-ro, Namdong-gu, Incheon 21695, Republic of Korea
| | - Yong Baik Cho
- YESKIN, Co, 379 Aenggogae-ro, Namdong-gu, Incheon 21695, Republic of Korea
| | - Heong-Jun Yu
- YESKIN, Co, 379 Aenggogae-ro, Namdong-gu, Incheon 21695, Republic of Korea
| | - Hee Soon Shin
- Division of Functional Food Research, Korea Food Research Institute, 245 nongsaengmyeong-ro, Iseo-myeon, Wanju-gun, Jeollabuk-do 55365, Republic of Korea; Department of Food Biotechnology, University of Science and Technology, Daejeon 34113, Republic of Korea
| | - Sang-Hoon Lee
- Division of Functional Food Research, Korea Food Research Institute, 245 nongsaengmyeong-ro, Iseo-myeon, Wanju-gun, Jeollabuk-do 55365, Republic of Korea; Department of Food Biotechnology, University of Science and Technology, Daejeon 34113, Republic of Korea.
| |
Collapse
|
10
|
Zhao Y, Wu J, Liu X, Chen X, Wang J. Decoding nature: multi-target anti-inflammatory mechanisms of natural products in the TLR4/NF-κB pathway. Front Pharmacol 2025; 15:1467193. [PMID: 39877388 PMCID: PMC11772364 DOI: 10.3389/fphar.2024.1467193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 12/18/2024] [Indexed: 01/31/2025] Open
Abstract
Natural products are valuable medicinal resources in the field of anti-inflammation due to their significant bioactivity and low antibiotic resistance. Research has demonstrated that many natural products exert notable anti-inflammatory effects by modulating the Toll-like receptor 4 (TLR4) and nuclear factor kappa B (NF-κB) signaling pathways. The research on related signal transduction mechanisms and pharmacological mechanisms is increasingly being discovered and validated. However, there is currently a lack of comprehensive reviews focusing on the pharmacological mechanisms of natural products targeting the TLR4/NF-κB pathway for anti-inflammatory effects. In light of these considerations, this review comprehensively synthesizes recent research findings concerning the TLR4/NF-κB signaling pathway, including the translocation of TLR4 activation to lysosomes within the cytoplasm, the assembly of protein complexes mediated by ubiquitin chains K63 and K48, and the deacetylation modification of p65. These discoveries are integrated into the classical TLR4/NF-κB pathway to systematically elucidate the latest mechanisms among various targets. Additionally, we summarize the pharmacological mechanisms by which natural products exert anti-inflammatory effects through the TLR4/NF-κB pathway. This aims to elucidate the multitarget advantages of natural products in the treatment of inflammation and their potential applications, thereby providing theoretical support for molecular pharmacology research on inflammation and the development of novel natural anti-inflammatory drugs.
Collapse
Affiliation(s)
- Yue Zhao
- College of Pharmacy, Guilin Medical University, Guilin, China
- Key Laboratory of Pharmacognosy, College of Pharmacy, Guilin Medical University, Guilin, China
| | - Jiacai Wu
- College of Intelligent Medicine and Biotechnology, Guilin Medical University, Guilin, China
| | - Xiaolan Liu
- College of Pharmacy, Guilin Medical University, Guilin, China
- Key Laboratory of Pharmacognosy, College of Pharmacy, Guilin Medical University, Guilin, China
| | - Xu Chen
- College of Pharmacy, Guilin Medical University, Guilin, China
- Key Laboratory of Pharmacognosy, College of Pharmacy, Guilin Medical University, Guilin, China
| | - Juan Wang
- Key Laboratory of Pharmacognosy, College of Pharmacy, Guilin Medical University, Guilin, China
- Guangxi Key Laboratory of Molecular Medicine in Liver Injury and Repair, Guilin Medical University, Guilin, China
| |
Collapse
|
11
|
Shah B, Solanki N. Ameliorative effect of nodakenin in combating TNBS-induced ulcerative colitis by suppressing NFƙB-mediated NLRP3 inflammasome pathway. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025; 398:673-686. [PMID: 39042157 DOI: 10.1007/s00210-024-03304-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 07/15/2024] [Indexed: 07/24/2024]
Abstract
Ulcerative colitis (UC) is an enduring and complex inflammatory bowel disease that is clinically prevalent, progressive, and debilitating. As of now, the few effective medical treatments for UC have unacceptably high side effects. It is crucial to find safer and more effective UC treatments. Nodakenin possesses anti-inflammatory and antioxidant activity by suppressing several pro-inflammatory mediators. In the present study, we aimed to evaluate the colonoprotective effect of nodakenin in combating colitis through the NFƙB-mediated NLRP3 inflammasome pathway. In mice, UC was induced by 2,4,6-trinitrobenzene sulfonic acid (TNBS). Nodakenin (10, 20, and 40 mg/kg) was introduced intragastrically, and disease activity index (DAI) score was calculated. Malondialdehyde (MDA), myeloperoxidase (MPO), superoxide dismutase (SOD), nitric oxide (NO) levels, tumor necrosis factor-α (TNF-α), and interleukin-6 (IL-6) concentration were evaluated in colon homogenate. Colon samples were used for histopathological investigation and mRNA expression studies involving nuclear factor kappa B (NFƙB), cyclooxygenase-2 (COX-2), inducible nitric oxide (iNOS), nucleotide-binding receptor domain 3 (NLRP3), interleukin-1β (IL-1β), and interleukin-18 (IL-18). Nodakenin treatment was found effective in lowering the DAI score, histological score, MPO, MDA, and NO levels while elevating SOD levels as compared to the model control group, showcasing its anti-inflammatory and antioxidant properties. Nodakenin (40 mg/kg) significantly downregulated the expression of TNF-α, IL-6, NFƙB (1.24-fold), iNOS (1.2-fold), COX-2 (1.98-fold), NLRP3 (1.78-fold), IL-1β (1.29-fold), and IL-18 (1.17-fold) conferring its great anti-inflammatory potential in combating colitis. Taking together, nodakenin presumably alleviated TNBS-induced colitis by NFƙB-mediated NLRP3 inflammasome pathway and reduced colon damage by downregulating various transcriptional genes and pro-inflammatory mediators.
Collapse
Affiliation(s)
- Bhagyabhumi Shah
- Department of Pharmacology, Ramanbhai Patel College of Pharmacy, Charotar University of Science and Technology (CHARUSAT), CHARUSAT Campus, Changa, Gujarat, India.
| | - Nilay Solanki
- Department of Pharmacology, Ramanbhai Patel College of Pharmacy, Charotar University of Science and Technology (CHARUSAT), CHARUSAT Campus, Changa, Gujarat, India
| |
Collapse
|
12
|
Dai J, Guan H, Zhang L, Jiang H, Su W, Wang J, Jia X, Pang Z. Fatty Acids Derived from Royal Jelly Exert Anti-Inflammatory and Antibacterial Activities in the Treatment of Pseudomonas aeruginosa-Induced Acute Pneumonia. J Med Food 2025; 28:44-57. [PMID: 39585208 DOI: 10.1089/jmf.2024.k.0153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2024] Open
Abstract
Pseudomonas aeruginosa, an opportunistic pathogen, commonly causes hospital-acquired pneumonia. Royal jelly fatty acids (RJFAs), a mixture of various fatty acids extracted from royal jelly, exhibit antibacterial and anti-inflammatory properties in treating many infectious diseases. Nevertheless, the therapeutic mechanisms of RJFAs in treatment of acute P. aeruginosa pulmonary infection are still unclear. Herein, we initially extracted the fatty acids from royal jelly and characterized their chemical constituents using headspace gas chromatography-mass spectrometry. Furthermore, we examined the antibacterial effect of RJFAs in vitro and explored its therapeutic effect and molecular mechanisms in treating acute P. aeruginosa pulmonary infection in vivo. The in vitro antibacterial studies revealed that RJFAs significantly inhibited P. aeruginosa growth. Moreover, the in vivo studies showed that the RJFAs effectively mitigated the lung damage and inflammation induced by P. aeruginosa through impairing neutrophil infiltration, reducing the bacterial load in lung and diminishing the production of proinflammatory cytokines, including tumor necrosis factor (TNF-α), interleukin (IL-1β), IL-6, and macrophage inflammatory protein-2 (MIP-2). In addition, the mice treated with RJFAs exhibited reduced phosphorylation of extracellular signal-regulated kinase (ERK), p38, c-Jun N-terminal kinase (JNK), c-Jun, and nuclear factor-kappa B (NF-κB) p65 in the lung tissues in comparison with that of the mice without drug treatment. These findings demonstrated that RJFAs exhibited significant antibacterial and anti-inflammatory effects in treating the P. aeruginosa-induced acute pneumonia, and the anti-inflammatory effects were exerted through suppressing the mitogen-activated protein kinase/activator protein-1 (MAPK/AP-1) pathway and NF-κB activation, suggesting a promising therapeutic potential of RJFAs against acute bacterial pneumonia.
Collapse
Affiliation(s)
- Jiangqin Dai
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Haixing Guan
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Linlin Zhang
- Institute of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Hehe Jiang
- Institute of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Wen Su
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Jue Wang
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xiaolei Jia
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Zheng Pang
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
13
|
Guo Y, Zheng Z, Zhang G, Zhong J, Fan X, Li C, Zhu S, Cao R, Fu K. Berberine inhibits LPS-induced epithelial-mesenchymal transformation by activating the Nrf2 signalling pathway in bovine endometrial epithelial cells. Int Immunopharmacol 2024; 143:113346. [PMID: 39393271 DOI: 10.1016/j.intimp.2024.113346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 09/14/2024] [Accepted: 10/04/2024] [Indexed: 10/13/2024]
Abstract
BACKGROUND Gram-negative bacteria are the primary pathogens of endometritis in dairy cows. LPS, the primary pathogenic agent of gram-negative bacteria, triggers an ROS increase, ultimately causing epithelial-mesenchymal transformation (EMT). Its significance in endometritis pathogenesis in dairy cows cannot be overlooked. PURPOSE Our previous studies showed that berberine could activate the Nrf2 signalling pathway, but whether it can inhibit the effect of LPS-induced EMT is uncharacterized. METHODS This research examined how berberine protects bovine endometrial epithelial cells (BEECs) by treating them with the compound for 2 h before exposing them to LPS to induce injury. Subsequently, the levels of reactive oxygen species (ROS) and epithelial-mesenchymal transition (EMT) markers in BEECs were quantified using the DCFH-DA probe, RT-qPCR, and Western blotting techniques. RESULTS Our investigation revealed that the triggering of the Nrf2 signal transduction pathway can effectively prevent LPS-induced EMT by reducing ROS levels in BEECs. Additionally, we found that berberine inhibits LPS-induced EMT by activating Nrf2 to reduce ROS levels. CONCLUSION These results suggest that berberine reduces ROS levels by upregulating the Nrf2 pathway in BEECs stimulated with LPS.
Collapse
Affiliation(s)
- Yue Guo
- Institute of Animal Reproductive Physiology and Disease, College of Veterinary Medicine, Qingdao Agricultural University, Qingdao 266109, China
| | - Zhikang Zheng
- Institute of Animal Reproductive Physiology and Disease, College of Veterinary Medicine, Qingdao Agricultural University, Qingdao 266109, China
| | - Guoxing Zhang
- Institute of Animal Reproductive Physiology and Disease, College of Veterinary Medicine, Qingdao Agricultural University, Qingdao 266109, China
| | - Jiaxing Zhong
- Institute of Animal Reproductive Physiology and Disease, College of Veterinary Medicine, Qingdao Agricultural University, Qingdao 266109, China
| | - Xiucheng Fan
- Institute of Animal Reproductive Physiology and Disease, College of Veterinary Medicine, Qingdao Agricultural University, Qingdao 266109, China
| | - Chunying Li
- Institute of Animal Reproductive Physiology and Disease, College of Veterinary Medicine, Qingdao Agricultural University, Qingdao 266109, China
| | - Shiyong Zhu
- Institute of Animal Reproductive Physiology and Disease, College of Veterinary Medicine, Qingdao Agricultural University, Qingdao 266109, China
| | - Rongfeng Cao
- Institute of Animal Reproductive Physiology and Disease, College of Veterinary Medicine, Qingdao Agricultural University, Qingdao 266109, China.
| | - Kaiqiang Fu
- Institute of Animal Reproductive Physiology and Disease, College of Veterinary Medicine, Qingdao Agricultural University, Qingdao 266109, China.
| |
Collapse
|
14
|
Jiang C, Lao G, Ran J, Zhu P. Berberine alleviates AGEs-induced ferroptosis by activating NRF2 in the skin of diabetic mice. Exp Biol Med (Maywood) 2024; 249:10280. [PMID: 39735782 PMCID: PMC11673220 DOI: 10.3389/ebm.2024.10280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Accepted: 11/07/2024] [Indexed: 12/31/2024] Open
Abstract
Advanced glycation end products (AGEs) have adverse effects on the development of diabetic complications. Berberine (BBR), a natural alkaloid, has demonstrated its ability to promote the delayed healing of skin wounds. However, the impact of BBR on AGEs-induced ferroptosis in skin cells and the underlying molecular mechanisms remains unexplored. This study investigated the involvement of ferroptosis in AGEs-induced keratinocyte death, and the impact of BBR on ferroptosis in a db/db mouse model with long-term hyperglycemia was elucidated. A remarkable reduction in cell viability was observed along with increased malondialdehyde (MDA) production in AGEs-induced HaCaT cells. Intracellular reactive oxygen species (ROS) and iron levels were elevated in cells exposed to AGEs. Meanwhile, the protein expression of glutathione peroxidase 4 (GPX4) and ferritin light chain (FTL) was significantly decreased in AGEs-treated cells. However, pretreatment with BBR markedly protected cell viability and inhibited MDA levels, attenuating the intracellular ROS and iron levels and increased expression of GPX4 and FTL in vitro. Significantly diminished antiferroptotic effects of BBR on AGEs-treated keratinocytes were observed upon the knockdown of the nuclear factor E2-related factor 2 (NRF2) gene. In vivo, GPX4, FTL, and FTH expression in the epidermis of diabetic mice was significantly reduced, accompanied by enhanced lipid peroxidation. Treatment with BBR effectively rescued lipid peroxidation accumulation and upregulated GPX4, FTL, FTH, and NRF2 levels in diabetic skin. Collectively, the findings indicate that ferroptosis may play a significant role in AGEs-induced keratinocyte death. BBR protects diabetic keratinocytes against ferroptosis, partly by activating NRF2.
Collapse
Affiliation(s)
- Chunjie Jiang
- Institute of Disease-Oriented Nutritional Research, Guangzhou Red Cross Hospital, Jinan University, Guangzhou, China
| | - Guojuan Lao
- Department of Endocrinology and Metabolism, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jianmin Ran
- Institute of Disease-Oriented Nutritional Research, Guangzhou Red Cross Hospital, Jinan University, Guangzhou, China
- Department of Endocrinology and Metabolism, Guangzhou Red Cross Hospital, Jinan University, Guangzhou, China
| | - Ping Zhu
- Institute of Disease-Oriented Nutritional Research, Guangzhou Red Cross Hospital, Jinan University, Guangzhou, China
- Department of Endocrinology and Metabolism, Guangzhou Red Cross Hospital, Jinan University, Guangzhou, China
| |
Collapse
|
15
|
Cao L, Huang X, Zhu J, Xiao J, Xie L. Falcarindiol improves functional recovery and alleviates neuroinflammation after spinal cord injury by inhibiting STAT/MAPK signaling pathways. Biochem Biophys Res Commun 2024; 736:150860. [PMID: 39454306 DOI: 10.1016/j.bbrc.2024.150860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 10/15/2024] [Accepted: 10/18/2024] [Indexed: 10/28/2024]
Abstract
Spinal cord injury (SCI) is a devastating trauma in the central nervous system (CNS), leading to motor and sensory impairment. Neuroinflammation is one of the critical contributors to the progression of secondary injury. Falcarindiol has been reported to efficaciously mitigate lipopolysaccharide (LPS)-mediated inflammation in RAW 264.7 cells. The role of falcarindiol in SCI recovery remains unclear. In this present study, traumatic SCI mice models and LPS-stimulated murine microglia cell line (BV2 cells) were performed to explore the pharmacological effects and the underlying mechanisms of falcarindiol in improving SCI repair with detection of motor function recovery, morphological changes, numbers of survival neurons and protein expression levels of inflammation or apoptosis-related proteins. Our study found that falcarindiol intervention could promote motor function recovery and reduce spinal cord tissue damage in mice following SCI. Mechanistically, falcarindiol intervention suppressed apoptosis-driven neuronal cell death and mitigated inflammatory reactions following SCI. Additionally, falcarindiol inhibited the activation of signal transducer and activator of transcription (STAT) and mitogen-activated protein kinases (MAPK) signaling pathways in vivo and in vitro. This suppression of STAT and MAPK activation by falcarindiol was reversed by STAT3 agonist Colivelin TFA and MAPK agonist C16-PAF in BV2 cells, respectively. Moreover, the study further demonstrated that the anti-inflammation role of falcarindiol was obstructed by Colivelin TFA but not by C16-PAF in LPS-stimulated BV2 cells, suggesting that falcarindiol may efficaciously ameliorate neuroinflammation through inhibiting the activation of STAT signaling pathway following SCI. Collectively, our study indicates that falcarindiol may be a novel drug candidate for the treatment and management of SCI.
Collapse
Affiliation(s)
- Lin Cao
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China; Jinhua Maternal and Child Health Care Hospital, Jinhua, 321099, China
| | - Xiaoli Huang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Jiangwei Zhu
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Jian Xiao
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China.
| | - Ling Xie
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China.
| |
Collapse
|
16
|
Koochaki R, Amini E, Zarehossini S, Zareh D, Haftcheshmeh SM, Jha SK, Kesharwani P, Shakeri A, Sahebkar A. Alkaloids in Cancer therapy: Targeting the tumor microenvironment and metastasis signaling pathways. Fitoterapia 2024; 179:106222. [PMID: 39343104 DOI: 10.1016/j.fitote.2024.106222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 09/17/2024] [Accepted: 09/21/2024] [Indexed: 10/01/2024]
Abstract
The use of phytomedicine in cancer therapy is a growing field of research that takes use of the medicinal properties of plant-derived compounds. Under the domain of cancer therapy and management, alkaloids, a prominent group of natural compounds, have showed significant potential. Alkaloids often affect a wide range of essential cellular mechanisms involved in cancer progression. These multi-targeting capabilities, can give significant advantages to alkaloids in overcoming resistance mechanisms. For example, berberine, an alkaloid found in Berberis species, is widely reported to induce apoptosis by activating caspases and regulating apoptotic pathways. Notably, alkaloids like as quinine have showed promise in inhibiting the formation of new blood vessels required for tumor growth. In addition, alkaloids have shown anti-proliferative and anticancer properties mostly via modulating key signaling pathways involved in metastasis, including those regulating epithelial-mesenchymal transition. This work provides a comprehensive overview of naturally occurring alkaloids that exhibit anticancer properties, with a specific emphasis on their underlying molecular mechanisms of action. Furthermore, many methods to modify previously reported difficult physicochemical properties using nanocarriers in order to enhance its systemic bioavailability have been discussed as well. This study also includes information on newly discovered alkaloids that are now being studied in clinical trials for their potential use in cancer treatment. Further, we have also briefly mentioned on the application of high-throughput screening and molecular dynamics simulation for acceleration on the identification of potent alkaloids based compounds to target and treat cancer.
Collapse
Affiliation(s)
- Raoufeh Koochaki
- Department of Cell & Molecular Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | - Elaheh Amini
- Department of Animal Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | - Sara Zarehossini
- Department of Cell & Molecular Biology (genetic), Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | - Danial Zareh
- Department of Cell & Molecular Biology (genetic), Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | | | - Saurav Kumar Jha
- Department of Biological Sciences and Bioengineering (BSBE), Indian Institute of Technology, Kanpur 208016, Uttar Pradesh, India
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India.
| | - Abolfazl Shakeri
- Department of Pharmacognosy, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Amirhossein Sahebkar
- Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India; Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran..
| |
Collapse
|
17
|
Li L, Liu Z, Tian L, Yao S, Feng L, Lai F, Wang K, Zhang Y, Li Y, Wang J, Ren W. Single-cell proteomics delineates murine systemic immune response to blast lung injury. Commun Biol 2024; 7:1429. [PMID: 39489806 PMCID: PMC11532540 DOI: 10.1038/s42003-024-07151-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 10/25/2024] [Indexed: 11/05/2024] Open
Abstract
Victims of explosive events frequently suffer from blast lung injuries. Immune system has been implicated in the pathogenesis of this disease. However, systemic immune responses underlying the progression and recovery of injury repair remain poorly understood. Here, we depict the systemic landscape of immune dysregulation during blast lung injury and uncover immune recovery patterns. Single-cell analyses reveal dramatic changes in neutrophils, macrophages, monocytes, dendritic cells, and eosinophils after a gas explosion, along with early involvement of CD4 T, CD8 T, and Th17 cells. We demonstrate that myeloid cells primarily exert functions during the acute phase, while the spleen serves as an alternative source of granulocytes. Granulopoiesis is initiated in the bone marrow at a later stage during blast lung injury recovery, rather than at the acute stage. These findings contribute to a better understanding of the pathogenesis and provide valuable insights for potential immune interventions in blast lung injury.
Collapse
Affiliation(s)
- Long Li
- Institutes of Health Central Plain, Xinxiang Medical University, Xinxiang, China
- Henan Medical Key Laboratory for Research of Trauma and Orthopedics, The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Zhongrui Liu
- The Affiliated Traditional Chinese Medicine Hospital, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Linqiang Tian
- Institutes of Health Central Plain, Xinxiang Medical University, Xinxiang, China
- Henan Medical Key Laboratory for Research of Trauma and Orthopedics, The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Sanqiao Yao
- School of Public Health, Xinxiang Medical University, Xinxiang, China
| | - Lili Feng
- Henan Medical Key Laboratory for Research of Trauma and Orthopedics, The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Feng Lai
- Henan Medical Key Laboratory for Research of Trauma and Orthopedics, The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Kunxi Wang
- Henan Medical Key Laboratory for Research of Trauma and Orthopedics, The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Yue Zhang
- Henan Medical Key Laboratory for Research of Trauma and Orthopedics, The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Yanyan Li
- Henan Medical Key Laboratory for Research of Trauma and Orthopedics, The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Jinheng Wang
- The Affiliated Traditional Chinese Medicine Hospital, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China.
| | - Wenjie Ren
- Institutes of Health Central Plain, Xinxiang Medical University, Xinxiang, China.
- Henan Medical Key Laboratory for Research of Trauma and Orthopedics, The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang, China.
- Clinical Medical Centre of Tissue Engineering and Regeneration, Xinxiang Medical University, Xinxiang, China.
| |
Collapse
|
18
|
Song HA, Jang SY, Park MJ, Kim SW, Kang CG, Lee JH, Kim HJ, Kim J, Lee JK, Chung KS, Lee KT. Immunostimulation Signaling via Toll-like Receptor 2 Activation: A Molecular Mechanism of Lactococcus lactis OTG1204 In Vitro and In Vivo. Nutrients 2024; 16:3629. [PMID: 39519462 PMCID: PMC11547582 DOI: 10.3390/nu16213629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 10/18/2024] [Accepted: 10/23/2024] [Indexed: 11/16/2024] Open
Abstract
INTRODUCTION The immune system's defense against pathogens involves innate and adaptive responses, crucial in maintaining overall health. Immunosuppressed states render individuals more susceptible to potential diseases, indicating the need for effective strategies to bolster immune functions. OBJECTIVES Although the immunostimulatory effects of various probiotics have been studied, the specific effects and molecular mechanisms of Lactococcus lactis OTG1204 (OTG1204) remain unknown. In this study, the aim was to investigate the molecular mechanisms of OTG1204 in RAW 264.7 macrophages, the key effector cells of the innate immune system involved in host defense and inflammatory responses. Additionally, in this study, the effects of OTG1204 on cyclophosphamide (CTX)-induced immunosuppression states were investigated, thereby demonstrating its potential as an immune stimulant. METHODS To assess the macrophage activation ability and underlying mechanisms of OTG1204, RAW 264.7 cells were utilized with transfection, enzyme-linked immunosorbent assay, and quantitative real-time PCR analyses. Furthermore, to evaluate the immunostimulatory effects under immunosuppressed conditions, CTX-induced immunosuppression mice model was employed, and analyses were performed using hematoxylin and eosin staining, flow cytometry, and microbiota examination. RESULTS OTG1204 activated RAW 264.7 macrophages, leading to increased production of nitric oxide, prostaglandin E2, and cytokines. This immune activation was mediated through the upregulation of toll-like receptor 2, which subsequently activated the nuclear factor-κB (NF-kB) and mitogen-activated protein kinase (MAPK)/activator protein 1 (AP-1) pathways, thereby stimulating the immune response. In CTX-treated mice, OTG1204 recovered body weight, spleen, and mesenteric lymph node indices, and natural killer cell activity. It re-established populations of innate and adaptive immune cells and activated T cells to secrete cytokines. We also examined the gut barrier integrity and microbiota composition to assess OTG1204's impact on intestinal health, as these factors play a significant role in immune enhancement. OTG1204 enhanced gut barrier integrity by upregulating mucin 2 and tight junction proteins and modulated the gut microbiota by restoring the Firmicutes/Bacteroidetes balance and reducing the abundance of Actinobacteria and Tenericutes. CONCLUSION These results suggest that OTG1204 may serve as an effective probiotic for immune enhancement and gut health management by targeting the NF-κB and MAPK/AP-1 pathways, with minimal side effects.
Collapse
Affiliation(s)
- Hyeon-A Song
- Department of Pharmaceutical Biochemistry, College of Pharmacy, Kyung Hee University, Seoul 02447, Republic of Korea; (H.-A.S.); (S.-Y.J.); (M.-J.P.); (K.-S.C.)
- Department of Fundamental Pharmaceutical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea;
| | - Seo-Yun Jang
- Department of Pharmaceutical Biochemistry, College of Pharmacy, Kyung Hee University, Seoul 02447, Republic of Korea; (H.-A.S.); (S.-Y.J.); (M.-J.P.); (K.-S.C.)
- Department of Fundamental Pharmaceutical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea;
| | - Min-Ji Park
- Department of Pharmaceutical Biochemistry, College of Pharmacy, Kyung Hee University, Seoul 02447, Republic of Korea; (H.-A.S.); (S.-Y.J.); (M.-J.P.); (K.-S.C.)
- Department of Fundamental Pharmaceutical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea;
| | - Seung Wook Kim
- Ottogi Research Center, Anyang 14060, Republic of Korea; (S.W.K.); (C.G.K.); (J.H.L.); (H.-J.K.); (J.K.)
| | - Choon Gil Kang
- Ottogi Research Center, Anyang 14060, Republic of Korea; (S.W.K.); (C.G.K.); (J.H.L.); (H.-J.K.); (J.K.)
| | - Joo Hyun Lee
- Ottogi Research Center, Anyang 14060, Republic of Korea; (S.W.K.); (C.G.K.); (J.H.L.); (H.-J.K.); (J.K.)
| | - Hye-Jin Kim
- Ottogi Research Center, Anyang 14060, Republic of Korea; (S.W.K.); (C.G.K.); (J.H.L.); (H.-J.K.); (J.K.)
| | - Jiheon Kim
- Ottogi Research Center, Anyang 14060, Republic of Korea; (S.W.K.); (C.G.K.); (J.H.L.); (H.-J.K.); (J.K.)
| | - Jong Kil Lee
- Department of Fundamental Pharmaceutical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea;
| | - Kyung-Sook Chung
- Department of Pharmaceutical Biochemistry, College of Pharmacy, Kyung Hee University, Seoul 02447, Republic of Korea; (H.-A.S.); (S.-Y.J.); (M.-J.P.); (K.-S.C.)
| | - Kyung-Tae Lee
- Department of Pharmaceutical Biochemistry, College of Pharmacy, Kyung Hee University, Seoul 02447, Republic of Korea; (H.-A.S.); (S.-Y.J.); (M.-J.P.); (K.-S.C.)
- Department of Fundamental Pharmaceutical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea;
| |
Collapse
|
19
|
Deng C, Zhang H, Li Y, Cheng X, Liu Y, Huang S, Cheng J, Chen H, Shao P, Jiang B, Wang X, Wang K. Exosomes derived from mesenchymal stem cells containing berberine for ulcerative colitis therapy. J Colloid Interface Sci 2024; 671:354-373. [PMID: 38815372 DOI: 10.1016/j.jcis.2024.05.162] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 05/17/2024] [Accepted: 05/21/2024] [Indexed: 06/01/2024]
Abstract
Berberine (Ber), an isoquinoline alkaloid, is a potential drug therapy for ulcerative colitis (UC) because of its anti-inflammatory activity, high biological safety, and few side effects. Nevertheless, its clinical application is hindered by its limited water solubility and low bioavailability. Currently, compared to synthetic nanocarriers, exosomes as carriers possess advantages such as low toxicity, high stability, and high specificity. Human placental mesenchymal stem cell-derived exosomes (HplMSC-Exos) have emerged as a promising drug delivery system, offering intrinsic anti-inflammatory and antioxidant activities. Therefore, we engineered MSC-Exos loaded with Ber (Exos-Ber) to enhance the solubility and bioavailability of Ber and for colon targeting, revealing a novel approach for treating UC with natural compounds. Structurally and functionally, Exos-Ber closely resembled unmodified Exos. Both in vitro and in vivo investigations confirmed the antioxidant and anti-inflammatory properties of Exos-Ber. Notably, Exos-Ber exhibited reparative effects on injured epithelial cells and reduced cellular apoptosis. Furthermore, Exos-Ber concurrently demonstrated anti-inflammatory and antioxidant activities, contributing to the mitigation of UC, possibly through its modulation of the MAPK signaling pathway. Overall, our findings demonstrate the potential of Exos-Ber as a promising therapeutic option for alleviating UC, highlighting its capacity to enhance the clinical applicability of Ber.
Collapse
Affiliation(s)
- Chao Deng
- Wuxi School of Medicine, Jiangnan University, Wuxi 214122, P. R. China
| | - Huanxiao Zhang
- Wuxi School of Medicine, Jiangnan University, Wuxi 214122, P. R. China
| | - Yuxuan Li
- Wuxi School of Medicine, Jiangnan University, Wuxi 214122, P. R. China
| | - Xinyi Cheng
- Wuxi School of Medicine, Jiangnan University, Wuxi 214122, P. R. China
| | - Youyi Liu
- Wuxi School of Medicine, Jiangnan University, Wuxi 214122, P. R. China
| | - Shubing Huang
- Wuxi School of Medicine, Jiangnan University, Wuxi 214122, P. R. China
| | - Jianqing Cheng
- Wuxi School of Medicine, Jiangnan University, Wuxi 214122, P. R. China
| | - Hui Chen
- Yixing Hospital of Traditional Chinese Medicine, Wuxi 214200, P. R. China
| | - Ping Shao
- Yixing Hospital of Traditional Chinese Medicine, Wuxi 214200, P. R. China
| | - Bing Jiang
- Yixing Hospital of Traditional Chinese Medicine, Wuxi 214200, P. R. China.
| | - Xianwen Wang
- School of Biomedical Engineering, Research and Engineering Center of Biomedical Materials, Anhui Medical University, Hefei 230032, P. R. China.
| | - Kewei Wang
- Affiliated Hospital of Jiangnan University, Wuxi 214122, P. R. China.
| |
Collapse
|
20
|
Mi R, Cheng H, Chen R, Bai B, Li A, Gao F, Xue G. Effects and mechanisms of long-acting glucagon-like peptide-1 receptor agonist semaglutide on microglia phenotypic transformation and neuroinflammation after cerebral ischemia/reperfusion in rats. Brain Circ 2024; 10:354-365. [PMID: 40012598 PMCID: PMC11850941 DOI: 10.4103/bc.bc_38_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 08/14/2024] [Accepted: 09/04/2024] [Indexed: 02/28/2025] Open
Abstract
BACKGROUND The optimal method for addressing cerebral ischemic stroke involves promptly restoring blood supply. However, cerebral ischemia-reperfusion injury (CIRI) is an unavoidable consequence of this event. Neuroinflammation is deemed the primary mechanism of CIRI, with various activation phenotypes of microglia playing a pivotal role. Research has demonstrated that long-lasting agonists of the glucagon-like peptide-1 receptor can suppress neuroinflammation and microglial activation. METHODS A transient middle cerebral artery occlusion (tMCAO) rat model was established to investigate the effects of semaglutide. Neurological impairments were evaluated utilizing modified neurological severity score on days 1, 3, and 7 postinterventions. Brains were stained with 2,3,5-Triphenyltetrazolium Chloride to determine infarct volume. To assess the expression of various microglia activation phenotypes and neuroinflammatory biomarkers, we utilized immunohistochemistry and immunoblotting. RESULTS The study demonstrated that semaglutide in the tMCAO model could decrease neurological deficit scores and reduce the size of cerebral infarcts. In addition, we observed low levels of cluster of differentiation 68 (CD68, an indicator of M1 microglial activation) and tumor necrosis factor alpha (a pro-inflammatory mediator). Moreover, the results indicated a rise in the levels of CD206 (an indicator of M2 activation) and transforming growth factor beta (an anti-inflammatory mediator), while simultaneously reducing P65 levels in the nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) signaling cascade. CONCLUSION In the CIRI model, semaglutide exhibits notable neuroprotective effects on rats, reducing neuroinflammation through the regulation of microglia phenotype transformation and inhibition of NF-κB activation.
Collapse
Affiliation(s)
- Rulin Mi
- Department of Neurology, Second Hospital, Shanxi Medical University, Taiyuan, Shanxi Province, China
| | - Huifeng Cheng
- Department of Geriatric Medicine, Southern University of Science and Technology Hospital, Shenzhen, China
| | - Rui Chen
- Department of Neurology, Second Hospital, Shanxi Medical University, Taiyuan, Shanxi Province, China
| | - Bo Bai
- Department of Neurology, Second Hospital, Shanxi Medical University, Taiyuan, Shanxi Province, China
| | - An Li
- Department of Neurology, Second Hospital, Shanxi Medical University, Taiyuan, Shanxi Province, China
| | - Fankai Gao
- Department of Neurology, Second Hospital, Shanxi Medical University, Taiyuan, Shanxi Province, China
| | - Guofang Xue
- Department of Neurology, Second Hospital, Shanxi Medical University, Taiyuan, Shanxi Province, China
| |
Collapse
|
21
|
Xu N, Wu J, Wang W, Sun S, Sun M, Bian Y, Zhang H, Liu S, Yu G. Anti-tumor therapy of glycyrrhetinic acid targeted liposome co-delivery of doxorubicin and berberine for hepatocellular carcinoma. Drug Deliv Transl Res 2024; 14:2386-2402. [PMID: 38236508 DOI: 10.1007/s13346-023-01512-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/26/2023] [Indexed: 01/19/2024]
Abstract
During the development of hepatocellular carcinoma (HCC), hepatic stellate cells undergo activation and transform into cancer-associated fibroblasts (CAFs) due to the influence of tumor cells. The interaction between CAFs and tumor cells can compromise the effectiveness of chemotherapy drugs and promote tumor proliferation, invasion, and metastasis. This study explores the potential of glycyrrhetinic acid (GA)-modified liposomes (lip-GA) as a strategy for co-delivery of berberine (Ber) and doxorubicin (Dox) to treat HCC. The characterizations of liposomes, including particle size, zeta potential, polydispersity index, stability and in vitro drug release, were investigated. The study evaluated the anti-proliferation and anti-migration effects of Dox&Ber@lip-GA on the Huh-7 + LX-2 cell model were through MTT and wound-healing assays. Additionally, the in vivo drug distribution and anti-tumor efficacy were investigated using the H22 + NIH-3T3-bearing mouse model. The results indicated that Dox&Ber@lip-GA exhibited a nanoscale particle size, accumulated specifically in the tumor region, and was efficiently taken up by tumor cells. Compared to other groups, Dox&Ber@lip-GA demonstrated higher cytotoxicity and lower migration rates. Additionally, it significantly reduced the deposition of extracellular matrix (ECM) and inhibited tumor angiogenesis, thereby suppressing tumor growth. In conclusion, Dox&Ber@lip-GA exhibited superior anti-tumor effects both in vitro and in vivo, highlighting its potential as an effective therapeutic strategy for combating HCC.
Collapse
Affiliation(s)
- Na Xu
- School of Clinical Medicine, Weifang Medicine University, Weifang, China
- Department of Oncology, The First Affiliated Hospital of Weifang Medical College: Weifang People's Hospital, Weifang, China
| | - Jingliang Wu
- School of Nursing, Weifang University of Science and Technology, Weifang, China.
| | - Weihao Wang
- School of Clinical Medicine, Weifang Medicine University, Weifang, China
| | - Shujie Sun
- School of Nursing, Weifang University of Science and Technology, Weifang, China
| | - Mengmeng Sun
- School of Clinical Medicine, Weifang Medicine University, Weifang, China
- Department of Oncology, The First Affiliated Hospital of Weifang Medical College: Weifang People's Hospital, Weifang, China
| | - Yandong Bian
- School of Clinical Medicine, Weifang Medicine University, Weifang, China
| | - Huien Zhang
- School of Clinical Medicine, Weifang Medicine University, Weifang, China
| | - Shuzhen Liu
- School of Clinical Medicine, Weifang Medicine University, Weifang, China
- Department of Oncology, The First Affiliated Hospital of Weifang Medical College: Weifang People's Hospital, Weifang, China
| | - Guohua Yu
- School of Clinical Medicine, Weifang Medicine University, Weifang, China.
- Department of Oncology, The First Affiliated Hospital of Weifang Medical College: Weifang People's Hospital, Weifang, China.
| |
Collapse
|
22
|
Huang C, liu H, Yang Y, He Y, shen W. Berberine suppressed the epithelial-mesenchymal transition (EMT) of colon epithelial cells through the TGF-β1/Smad and NF-κB pathways associated with miRNA-1269a. Heliyon 2024; 10:e36059. [PMID: 39224263 PMCID: PMC11367465 DOI: 10.1016/j.heliyon.2024.e36059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 07/19/2024] [Accepted: 08/08/2024] [Indexed: 09/04/2024] Open
Abstract
Objective To explore the mechanisms of the TGF-β1/Smad and NF-κB pathways in the effect of berberine (BBR) on colon cancer epithelial-mesenchymal transition (EMT) and their regulatory relationships with microRNAs (miRNAs). Methods TGF-β1 was used to induce EMT in normal colon epithelial HCoEpiC cells and colon cancer HT29 cells in vitro. After BBR intervention, the expression of EMT-related markers and the major molecules involved in the TGF-β1/Smad and NF-κB pathways were detected via western blotting. Cell migration was detected via wound healing assays. SMAD2 and NF-κB p65 were overexpressed and transfected into cells, and the inhibitors SB431542 and BAY 11-7082 were added to block the TGF-β1/Smad and NF-κB pathways, respectively. The mRNA expression levels of related microRNA genes were detected by using RT‒PCR. Results Treatment with 10 ng/ml TGF-β1 for 72 h significantly induced EMT in HCoEpiC and HT29 cells, which was repressed by BBR. BBR significantly inhibited the TGF-β1-induced migration of HCoEpiC and HT29 cells and the TGF-β1-promoted expression of p-Smad2/3, NF-κB p65, and p-IκBα. Compared to those in the group treated with TGF-β1, the expression of NF-κB p65 and p-Smad2 in the group treated with NF-κB pathway inhibitor BAY 11-7082 was decreased (P < 0.05), and TGF-β1 signalling inhibitor SB431542 significantly reduced the expression of NF-κB p65 (P < 0.05). Overexpression of NF-κB p65 and SMAD2 in HT29 cells decreased the expression of E-cadherin and caused a relative increase in N-cadherin. BBR mediated the expression profile of microRNAs in TGF-β1-induced HCoEpiC cells, but this pattern differed from that in HT29 cells. SB431542 and BAY 11-7082 significantly reduced the mRNA level of miR-1269a in HCoEpiC and HT29 cells (P < 0.05). Overexpressed NF-κB p65 and SMAD2 increased the mRNA level of miR-1269a in both cell lines; however, this increase was significantly lower than that in the TGF-β1 treatment group (P < 0.05). Conclusion BBR can significantly inhibit TGF-β1-induced EMT in normal and cancerous colon epithelial cells through the inhibition of the TGF-β1/Smad and NF-κB p65 pathways. TGF-β1/Smads can promote the NF-κB p65 pathway, which is a common target of miR-1269a, and can partially regulate the expression of miR-1269a.
Collapse
Affiliation(s)
- chao Huang
- Department of Traditional Chinese Medicine, The Second Affiliated Hospital of Shenzhen University (People's Hospital of Shenzhen Baoan District), Shenzhen, 518100, China
| | - Haosheng liu
- Department of Traditional Chinese Medicine, The Second Affiliated Hospital of Shenzhen University (People's Hospital of Shenzhen Baoan District), Shenzhen, 518100, China
| | - Yidian Yang
- Department of Traditional Chinese Medicine, The Second Affiliated Hospital of Shenzhen University (People's Hospital of Shenzhen Baoan District), Shenzhen, 518100, China
| | - Yue He
- Department of Traditional Chinese Medicine, The Second Affiliated Hospital of Shenzhen University (People's Hospital of Shenzhen Baoan District), Shenzhen, 518100, China
| | - Weizeng shen
- Department of Traditional Chinese Medicine, The Second Affiliated Hospital of Shenzhen University (People's Hospital of Shenzhen Baoan District), Shenzhen, 518100, China
| |
Collapse
|
23
|
Kong EQZ, Subramaniyan V, Lubau NSA. Uncovering the impact of alcohol on internal organs and reproductive health: Exploring TLR4/NF-kB and CYP2E1/ROS/Nrf2 pathways. Animal Model Exp Med 2024; 7:444-459. [PMID: 38853347 PMCID: PMC11369036 DOI: 10.1002/ame2.12436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Accepted: 05/10/2024] [Indexed: 06/11/2024] Open
Abstract
This review delves into the detrimental impact of alcohol consumption on internal organs and reproductive health, elucidating the underlying mechanisms involving the Toll-like receptor 4 (TLR4)/Nuclear factor kappa light chain enhancer of activated B cells (NF-kB) pathway and the Cytochrome P450 2E1 (CYP2E1)/reactive oxygen species (ROS)/nuclear factor erythroid 2-related factor 2 (Nrf2) pathways. The TLR4/NF-kB pathway, crucial for inflammatory and immune responses, triggers the production of pro-inflammatory agents and type-1 interferon, disrupting the balance between inflammatory and antioxidant responses when tissues are chronically exposed to alcohol. Alcohol-induced dysbiosis in gut microbes heightens gut wall permeability to pathogen-associated molecular patterns (PAMPs), leading to liver cell infection and subsequent inflammation. Concurrently, CYP2E1-mediated alcohol metabolism generates ROS, causing oxidative stress and damaging cells, lipids, proteins, and deoxyribonucleic acid (DNA). To counteract this inflammatory imbalance, Nrf2 regulates gene expression, inhibiting inflammatory progression and promoting antioxidant responses. Excessive alcohol intake results in elevated liver enzymes (ADH, CYP2E1, and catalase), ROS, NADH, acetaldehyde, and acetate, leading to damage in vital organs such as the heart, brain, and lungs. Moreover, alcohol negatively affects reproductive health by inhibiting the hypothalamic-pituitary-gonadal axis, causing infertility in both men and women. These findings underscore the profound health concerns associated with alcohol-induced damage, emphasizing the need for public awareness regarding the intricate interplay between immune responses and the multi-organ impacts of alcohol consumption.
Collapse
Affiliation(s)
- Eason Qi Zheng Kong
- Pharmacology Unit, Jeffrey Cheah School of Medicine and Health SciencesMonash University MalaysiaSubang JayaSelangorMalaysia
| | - Vetriselvan Subramaniyan
- Pharmacology Unit, Jeffrey Cheah School of Medicine and Health SciencesMonash University MalaysiaSubang JayaSelangorMalaysia
- Center for Global Health Research, Saveetha Medical CollegeSaveetha Institute of Medical and Technical SciencesChennaiTamil NaduIndia
| | - Natasha Sura Anak Lubau
- Pharmacology Unit, Jeffrey Cheah School of Medicine and Health SciencesMonash University MalaysiaSubang JayaSelangorMalaysia
| |
Collapse
|
24
|
Wang J, Wu S, Gao H, Yu C, Chen X, Yuan Z. Integrated metabolomics and network pharmacology analysis to explore pig bile-processed Rhizoma Coptidis and Fructus Evodiae sauce-processed Rhizoma Coptidis in lipopolysaccharide-induced inflammatory response. J Chromatogr B Analyt Technol Biomed Life Sci 2024; 1243:124192. [PMID: 38941716 DOI: 10.1016/j.jchromb.2024.124192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 04/15/2024] [Accepted: 06/07/2024] [Indexed: 06/30/2024]
Abstract
Pig bile- and Fructus Evodiae sauce-processed Rhizoma Coptidis (Danhuanglian, DHL; Yuhuanglian, YHL, respectively) are two types of processed Rhizoma Coptidis (Huanglian, HL) in traditional Chinese medicine (TCM). DHL and YHL are representative of HL generated from the subordinate and counter system processing methods, respectively, both noted for their anti-inflammatory effects. How these processing methods can affect the medicinal efficacy of HL remains a hot topic. Here, we discussed the influence of the two methods on the efficacy of final HL products (i.e., DHL and YHL) by comparing their components and anti-inflammatory mechanisms. Enzyme-linked immunosorbent assay was employed to measure inflammatory factors in RAW264.7 cells induced by lipopolysaccharide, and UPLC-Q-Exactive Orbitrap-MS was utilized to analyze the endogenous differential metabolites of RAW264.7 cells treated with HL, YHL, and DHL, and thus to identify the related metabolic pathways. Finally, using network pharmacology, we constructed a "disease-target-differential metabolites-active ingredients" network map. Compared with the control, all three products, HL, YHL, and DHL, significantly reduced IL-6, TNF-α, and IL-1β levels. 12 differential metabolites related to inflammation were identified and 25 target proteins were overlapping among the three groups. Notably, the anti-inflammatory effects of DHL and YHL were mediated by metabolic pathways such as aminoacyl-tRNA biosynthesis, arginine and proline metabolism, alanine, aspartate and glutamate metabolism, and arginine biosynthesis. Specifically, DHL significantly impacted free fatty acid levels, which was not observed with HL and YHL. On screening, DHL had 9 active ingredients, including three from pig bile, and YHL had 12 active ingredients, with six from the processing excipient Fructus Evodiae. The distinct anti-inflammatory mechanisms and material basis of YHL and DHL were characterized by consistency and distinctiveness. Thus, this study underscores the significant influence of processing methods on the medicinal efficacy of TCMs by revealing their regulatory mechanisms and material bases.
Collapse
Affiliation(s)
- Jing Wang
- College of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, Liaoning, China
| | - Songnan Wu
- College of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, Liaoning, China
| | - Hui Gao
- College of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, Liaoning, China
| | - Caina Yu
- College of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, Liaoning, China
| | - Xuelian Chen
- Gynaecological Ward of Panyu District, Guangdong Maternal and Child Health Hospital, Guangzhou, Guangdong, China
| | - Zimin Yuan
- College of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, Liaoning, China.
| |
Collapse
|
25
|
Yan M, Sun Z, Zhang S, Yang G, Jiang X, Wang G, Li R, Wang Q, Tian X. SOCS modulates JAK-STAT pathway as a novel target to mediate the occurrence of neuroinflammation: Molecular details and treatment options. Brain Res Bull 2024; 213:110988. [PMID: 38805766 DOI: 10.1016/j.brainresbull.2024.110988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 04/28/2024] [Accepted: 05/26/2024] [Indexed: 05/30/2024]
Abstract
SOCS (Suppressor of Cytokine Signalling) proteins are intracellular negative regulators that primarily modulate and inhibit cytokine-mediated signal transduction, playing a crucial role in immune homeostasis and related inflammatory diseases. SOCS act as inhibitors by regulating the Janus kinase-signal transducer and activator of transcription (JAK-STAT) signaling pathway, thereby intervening in the pathogenesis of inflammation and autoimmune diseases. Recent studies have also demonstrated their involvement in central immunity and neuroinflammation, showing a dual functionality. However, the specific mechanisms of SOCS in the central nervous system remain unclear. This review thoroughly elucidates the specific mechanisms linking the SOCS-JAK-STAT pathway with the inflammatory manifestations of neurodegenerative diseases. Based on this, it proposes the theory that SOCS proteins can regulate the JAK-STAT pathway and inhibit the occurrence of neuroinflammation. Additionally, this review explores in detail the current therapeutic landscape and potential of targeting SOCS in the brain via the JAK-STAT pathway for neuroinflammation, offering insights into potential targets for the treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Min Yan
- College of Graduate Education, Shandong Sport University, Jinan 255300, China
| | - Zhiyuan Sun
- College of Graduate Education, Shandong Sport University, Jinan 255300, China
| | - Sen Zhang
- College of Graduate Education, Shandong Sport University, Jinan 255300, China
| | - Guangxin Yang
- College of Graduate Education, Shandong Sport University, Jinan 255300, China
| | - Xing Jiang
- College of Graduate Education, Shandong Sport University, Jinan 255300, China
| | - Guilong Wang
- College of Graduate Education, Shandong Sport University, Jinan 255300, China
| | - Ran Li
- College of Graduate Education, Shandong Sport University, Jinan 255300, China.
| | - Qinglu Wang
- College of Graduate Education, Shandong Sport University, Jinan 255300, China.
| | - Xuewen Tian
- College of Graduate Education, Shandong Sport University, Jinan 255300, China.
| |
Collapse
|
26
|
Xiao X, Huang S, Yang Z, Zhu Y, Zhu L, Zhao Y, Bai J, Kim KH. Momordica charantia Bioactive Components: Hypoglycemic and Hypolipidemic Benefits Through Gut Health Modulation. J Med Food 2024; 27:589-600. [PMID: 38770678 DOI: 10.1089/jmf.2024.k.0037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2024] Open
Abstract
Momordica charantia (MC), a member of the Cucurbitaceae family, is well known for its pharmacological activities that exhibit hypoglycemic and hypolipidemic properties. These properties are largely because of its abundant bioactive compounds and phytochemicals. Over the years, numerous studies have confirmed the regulatory effects of MC extract on glycolipid metabolism. However, there is a lack of comprehensive reviews on newly discovered MC-related components, such as insulin receptor-binding protein-19, adMc1, and MC protein-30 and triterpenoids 3β,7β,25-trihydroxycucurbita-5,23(E)-dien-19-al, and the role of MC in gut microbiota and bitter taste receptors. This review offers an up-to-date overview of the recently reported chemical compositions of MC, including polysaccharides, saponins, polyphenolics, peptides, and their beneficial effects. It also provides the latest updates on the role of MC in the regulation of gut microbiota and bitter taste receptor signaling pathways. As a result, this review will serve as a theoretical basis for potential applications in the creation or modification of MC-based nutrient supplements.
Collapse
Affiliation(s)
- Xiang Xiao
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Shiting Huang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Zihan Yang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Ying Zhu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Lin Zhu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Yansheng Zhao
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Juan Bai
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Kee-Hong Kim
- Department of Food Science, Purdue University, West Lafayette, Indiana, USA
| |
Collapse
|
27
|
Liao W, Zhang R, Chen G, Zhu X, Wu W, Chen Z, Jiang C, Lin Z, Ma L, Yu H. Berberine synergises with ferroptosis inducer sensitizing NSCLC to ferroptosis in p53-dependent SLC7A11-GPX4 pathway. Biomed Pharmacother 2024; 176:116832. [PMID: 38850659 DOI: 10.1016/j.biopha.2024.116832] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 05/21/2024] [Accepted: 05/26/2024] [Indexed: 06/10/2024] Open
Abstract
Berberine (BBR) is a compound derived from Chinese herbal medicine, known for its anticancer properties through multiple signaling pathways. However, whether BBR can inhibit tumor growth by participating in ferroptosis remains unconfirmed. In this study, we demonstrated that berberine synergistically inhibited NSCLC in combination with multiple ferroptosis inducers, and this combination synergistically down-regulated the mRNA and protein expression of SLC7A11, GPX4, and NRF2, resulting in ferroptosis accompanied by significant depletion of GSH, and aberrant accumulation of reactive oxygen species and malondialdehyde. In a lung cancer allograft model, the combination treatment exhibited enhanced anticancer effects compared to using either drug alone. Notably, p53 is critical in determining the ferroptosis sensitivity. We found that the combination treatment did not elicit a synergistic anticancer effect in cells with a p53 mutation or with exogenous expression of mutant p53. These findings provide insight into the mechanism by which combination induces ferroptosis and the regulatory role of p53 in this process. It may guide the development of new strategies for treating NSCLC, offering great medical potential for personal diagnosis and treatment.
Collapse
Affiliation(s)
- Weilin Liao
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macao Special Administrative Region of China
| | - Ren Zhang
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macao Special Administrative Region of China
| | - Geer Chen
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macao Special Administrative Region of China
| | - Xiaoyu Zhu
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macao Special Administrative Region of China
| | - Weiyu Wu
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macao Special Administrative Region of China
| | - Ziyu Chen
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macao Special Administrative Region of China
| | - Chenyu Jiang
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macao Special Administrative Region of China
| | - Zicong Lin
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macao Special Administrative Region of China
| | - Lijuan Ma
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macao Special Administrative Region of China
| | - Haijie Yu
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macao Special Administrative Region of China.
| |
Collapse
|
28
|
Chu C, Ru H, Chen Y, Xu J, Wang C, Jin Y. Gallic acid attenuates LPS-induced inflammation in Caco-2 cells by suppressing the activation of the NF-κB/MAPK signaling pathway. Acta Biochim Biophys Sin (Shanghai) 2024; 56:905-915. [PMID: 38516705 PMCID: PMC11214974 DOI: 10.3724/abbs.2024008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 12/20/2023] [Indexed: 03/23/2024] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic inflammatory disease characterized by intestinal barrier dysfunction, inflammatory synergistic effects and excessive tissue injury. Gallic acid (GA) is renowned for its remarkable biological activity, encompassing anti-inflammatory and antioxidant properties. However, the underlying mechanisms by which GA protects against intestinal inflammation have not been fully elucidated. The aim of this study is to investigate the effect of GA on the inflammation of a lipopolysaccharide (LPS)-stimulated human colon carcinoma cell line (Caco-2) and on the intestinal barrier dysfunction, and explore the underlying molecular mechanism involved. Our findings demonstrate that 5 μg/mL GA restores the downregulation of the mRNA and protein levels of Claudin-1, Occludin, and ZO-1 and decreases the expressions of inflammatory factors such as IL-6, IL-1β and TNF-α induced by LPS. In addition, GA exhibits a protective effect by reducing the LPS-enhanced early and late apoptotic ratios, downregulating the mRNA levels of pro-apoptotic factors ( Bax, Bad, Caspase-3, Caspase-8, and Caspase-9), and upregulating the mRNA levels of anti-apoptotic factor Bcl-2 in Caco-2 cells. GA also reduces the levels of reactive oxygen species increased by LPS and restores the activity of antioxidant enzymes, namely, superoxide dismutase and catalase, as well as the level of glutathione. More importantly, GA exerts its anti-inflammatory effects by inhibiting the LPS-induced phosphorylation of key signaling molecules in the NF-κB/MAPK pathway, including p65, IκB-α, p38, JNK, and ERK, in Caco-2 cells. Overall, our findings show that GA increases the expressions of tight junction proteins, reduces cell apoptosis, relieves oxidative stress and suppresses the activation of the NF-κB/MAPK pathway to reduce LPS-induced intestinal inflammation in Caco-2 cells, indicating that GA has potential as a therapeutic agent for intestinal inflammation.
Collapse
Affiliation(s)
- Chu Chu
- />College of Biotechnology and BioengineeringZhejiang University of TechnologyHangzhou310032China
| | - Huan Ru
- />College of Biotechnology and BioengineeringZhejiang University of TechnologyHangzhou310032China
| | - Yuyan Chen
- />College of Biotechnology and BioengineeringZhejiang University of TechnologyHangzhou310032China
| | - Jinhua Xu
- />College of Biotechnology and BioengineeringZhejiang University of TechnologyHangzhou310032China
| | - Caihong Wang
- />College of Biotechnology and BioengineeringZhejiang University of TechnologyHangzhou310032China
| | - Yuanxiang Jin
- />College of Biotechnology and BioengineeringZhejiang University of TechnologyHangzhou310032China
| |
Collapse
|
29
|
Chen C, Dai W, Qin Y, Yuan C, Chen J, Zhang M. The protective effects and potential mechanisms of fulvic acid against ethanol-induced gastric mucosal injury in mice. Nat Prod Res 2024:1-6. [PMID: 38824682 DOI: 10.1080/14786419.2024.2360679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Accepted: 05/21/2024] [Indexed: 06/04/2024]
Abstract
Fulvic acid (FA) is a kind of natural organic acids extracted from lignite, which is the active ingredient in Wujin oral liquid, a proprietary Chinese medicine used to treat gastric and duodenal ulcers. However, our understanding of the mechanisms of FA remains limited. Currently, the protection of FA and its mechanism were explored using the ethanol-induced gastric mucosal injury mouse model. The histopathological examinations showed FAs at three doses effectively reduced gastric congestion, oedema caused by ethanol, and prevented gastric epithelial cell fall-off. When compared to the model group, FAs reduced IL-1β and IL-6 levels in serum, as well as IL-1β, IL-6, TNF-α, and COX-2 expression levels in tissue. Furthermore, FAs significantly inhibited p65, P38 MAPK, and Erk1/2 phosphorylation in damaged gastric tissue. It was indicated FA has good protection against ethanol-induced gastric mucosa injuries in mice and this effect was related to NF-κB and MAPK signalling pathways.
Collapse
Affiliation(s)
- Chonglian Chen
- Center for Pharmaceutical Sciences and Engineering, Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - Weifeng Dai
- Center for Pharmaceutical Sciences and Engineering, Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - Yi Qin
- Center for Pharmaceutical Sciences and Engineering, Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - Cheng Yuan
- Center for Pharmaceutical Sciences and Engineering, Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - Jie Chen
- The Third People's Hospital of Kunming, Kunming, China
| | - Mi Zhang
- Center for Pharmaceutical Sciences and Engineering, Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| |
Collapse
|
30
|
Lee SA, Riella LV. Narrative Review of Immunomodulatory and Anti-inflammatory Effects of Sodium-Glucose Cotransporter 2 Inhibitors: Unveiling Novel Therapeutic Frontiers. Kidney Int Rep 2024; 9:1601-1613. [PMID: 38899203 PMCID: PMC11184259 DOI: 10.1016/j.ekir.2024.02.1435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 02/08/2024] [Accepted: 02/25/2024] [Indexed: 06/21/2024] Open
Abstract
Sodium-glucose cotransporter 2 inhibitors (SGLT2 inhibitors) have evolved from their initial role as antidiabetic drugs to garner recognition for their remarkable cardio-protective and reno-protective attributes. They have become a crucial component of therapeutic guidelines for congestive heart failure and proteinuric chronic kidney disease (CKD). These benefits extend beyond glycemic control, because improvements in cardiovascular and renal outcomes occur swiftly. Recent studies have unveiled the immunomodulatory properties of SGLT2 inhibitors; thus, shedding light on their potential to influence the immune system and inflammation. This comprehensive review explores the current state of knowledge regarding the impact of SGLT2 inhibitors on the immune system and inflammation, focusing on preclinical and clinical evidence. The review delves into their antiinflammatory and immunomodulating effects, offering insights into clinical implications, and exploring emerging research areas related to their prospective immunomodulatory impact.
Collapse
Affiliation(s)
- Sul A. Lee
- Department of Medicine, Division of Nephrology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Leonardo V. Riella
- Department of Medicine, Division of Nephrology, Massachusetts General Hospital, Boston, Massachusetts, USA
- Center for Transplantation Sciences, Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Medicine and Surgery, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
31
|
Xiang G, Yang L, Qin J, Wang S, Zhang Y, Yang S. Revealing the potential bioactive components and mechanism of Qianhua Gout Capsules in the treatment of gouty arthritis through network pharmacology, molecular docking and pharmacodynamic study strategies. Heliyon 2024; 10:e30983. [PMID: 38770346 PMCID: PMC11103544 DOI: 10.1016/j.heliyon.2024.e30983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 05/08/2024] [Accepted: 05/08/2024] [Indexed: 05/22/2024] Open
Abstract
Recent clinical studies have confirmed the effectiveness of Qianhua Gout Capsules (QGC) in the treatment of gouty arthritis (GA). However, the specific regulatory targets and mechanisms of action of QGC are still unclear. To address this gap, we utilized network pharmacology, molecular docking, and pharmacodynamic approaches to investigate the bioactive components and associated mechanisms of QGC in the treatment of GA. By employing UPLC-Q Exactive-MS, we identified the compounds present in QGC, with active ingredients defined as those with oral bioavailability ≥30 % and drug similarity ≥0.18. Subsequently, the targets of these active compounds were determined using the TCMSP database, while GA-related targets were identified from DisGeNET, GeneCards, TTD, OMIM, and DrugBank databases. Further analysis including PPI analysis, GO analysis, and KEGG pathway enrichment was conducted on the targets. Validation of the predicted results was performed using a GA rat model, evaluating pathological changes, inflammatory markers, and pathway protein expression. Our results revealed a total of 130 components, 44 active components, 16 potential shared targets, GO-enriched terms, and 47 signaling pathways related to disease targets. Key active ingredients included quercetin, kaempferol, β-sitosterol, luteolin, and wogonin. The PPI analysis highlighted five targets (PPARG, IL-6, MMP-9, IL-1β, CXCL-8) with the highest connectivity, predominantly enriched in the IL-17 signaling pathway. Molecular docking experiments demonstrated strong binding of CXCL8, IL-1β, IL-6, MMP9, and PPARG targets with the top five active compounds. Furthermore, animal experiments confirmed the efficacy of QGC in treating GA in rats, showing reductions in TNF-α, IL-6, and MDA levels, and increases in SOD levels in serum. In synovial tissues, QGC treatment upregulated CXCL8 and PPARG expression, while downregulating IL-1β, MMP9, and IL-6 expression. In conclusion, this study applied a network pharmacology approach to uncover the composition of QGC, predict its pharmacological interactions, and demonstrate its in vivo efficacy, providing insights into the anti-GA mechanisms of QGC. These findings pave the way for future investigations into the therapeutic mechanisms underlying QGC's effectiveness in the treatment of GA.
Collapse
Affiliation(s)
- Gelin Xiang
- National Traditional Chinese Medicine Clinical Research Base and Drug Research Center of the Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Ethnic Medicine of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Luyin Yang
- National Traditional Chinese Medicine Clinical Research Base and Drug Research Center of the Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
- Institute of Integrated Chinese and Western Medicine, Southwest Medical University, Luzhou, China
| | - Jing Qin
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Ethnic Medicine of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Shaohui Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Ethnic Medicine of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Meishan Hospital of Chengdu University of Traditional Chinese Medicine, Meishan, China
| | - Yi Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Ethnic Medicine of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Meishan Hospital of Chengdu University of Traditional Chinese Medicine, Meishan, China
| | - Sijin Yang
- National Traditional Chinese Medicine Clinical Research Base and Drug Research Center of the Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
- Institute of Integrated Chinese and Western Medicine, Southwest Medical University, Luzhou, China
| |
Collapse
|
32
|
Singh J, Bisht P, Srivastav S, Kumar Y, Sharma V, Kumar A, Akhtar MS, Khan MF, Aldosari SA, Yadav S, Yadav NK, Mukherjee M, Sharma AK. Amelioration of endothelial integrity by 3,5,4'-trihydroxy-trans-stilbene against high-fat-diet-induced obesity and -associated vasculopathy and myocardial infarction in rats, targeting TLR4/MyD88/NF-κB/iNOS signaling cascade. Biochem Biophys Res Commun 2024; 705:149756. [PMID: 38460440 DOI: 10.1016/j.bbrc.2024.149756] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 02/21/2024] [Accepted: 03/04/2024] [Indexed: 03/11/2024]
Abstract
Exacerbated expression of TLR4 protein (foremost pattern recognition receptor) during obesity could trigger NF-κB/iNOS signaling through linker protein (MyD88), predisposed to an indispensable inflammatory response. The induction of this detrimental cascade leads to myocardial and vascular abnormalities. Molecular docking was studied for protein-ligand interaction between these potential targets and resveratrol. The pre-treatment of resveratrol (20 mg/kg/p.o/per day for ten weeks) was given to investigate the therapeutic effect against HFD-induced obesity and associated vascular endothelial dysfunction (VED) and myocardial infarction (MI) in Wistar rats. In addition to accessing the levels of serum biomarkers for VED and MI, oxidative stress, inflammatory cytokines, and histopathology of these tissues were investigated. Lipopolysaccharide (for receptor activation) and protein expression analysis were introduced to explore the mechanistic involvement of TLR4/MyD88/NF-κB/iNOS signaling. Assessment of in-silico analysis showed significant interaction between protein and ligand. The involvement of this proposed signaling (TLR4/MyD88/NF-κB/iNOS) was further endorsed by the impact of lipopolysaccharide and protein expression analysis in obese and treated rats. Moreover, resveratrol pre-treated rats showed significantly lowered cardio and vascular damage measured by the distinct down expression of the TLR4/MyD88/NF-κB/iNOS pathway by resveratrol treatment endorses its ameliorative effect against VED and MI.
Collapse
Affiliation(s)
- Jitender Singh
- Department of Cardiovascular Pharmacology, Amity Institute of Pharmacy, Amity University, Gurugram, Haryana, 122413, India
| | - Priyanka Bisht
- Department of Cardiovascular Pharmacology, Amity Institute of Pharmacy, Amity University, Gurugram, Haryana, 122413, India
| | - Srishti Srivastav
- Department of Cardiovascular Pharmacology, Amity Institute of Pharmacy, Amity University, Gurugram, Haryana, 122413, India
| | - Yash Kumar
- Department of Cardiovascular Pharmacology, Amity Institute of Pharmacy, Amity University, Gurugram, Haryana, 122413, India
| | - Vikash Sharma
- Department of Cardiovascular Pharmacology, Amity Institute of Pharmacy, Amity University, Gurugram, Haryana, 122413, India
| | - Ashish Kumar
- Department of Cardiovascular Pharmacology, Amity Institute of Pharmacy, Amity University, Gurugram, Haryana, 122413, India
| | - Md Sayeed Akhtar
- Department of Clinical Pharmacy, College of Pharmacy, King Khalid University, Alfara, Abha, 62223, Saudi Arabia
| | - Mohd Faiyaz Khan
- Department of Clinical Pharmacy, College of Pharmacy, Prince Sattam Bin Abdul Aziz University, Al-Kharj, 11942, Saudi Arabia
| | - Saad A Aldosari
- Department of Clinical Pharmacy, College of Pharmacy, Prince Sattam Bin Abdul Aziz University, Al-Kharj, 11942, Saudi Arabia
| | - Snehlata Yadav
- Department of Pharmaceutical Sciences, Indra Gandhi University, Meerpur, Rewari, 122502, Haryana, India
| | - Nirmala K Yadav
- Department of Pharmaceutical Sciences, Indra Gandhi University, Meerpur, Rewari, 122502, Haryana, India
| | - Monalisa Mukherjee
- Molecular Sciences and Engineering Laboratory, Amity Institute of Click Chemistry Research and Studies, Amity University, Noida, Uttar Pradesh, 201303, India
| | - Arun K Sharma
- Department of Cardiovascular Pharmacology, Amity Institute of Pharmacy, Amity University, Gurugram, Haryana, 122413, India.
| |
Collapse
|
33
|
Li Y, Xu T, Zhao Y, Zhang H, Liu Z, Wang H, Huang C, Shu Z, Gao L, Xie R, Jiao T, Zhang D, Zhang D, Liang X, Zang Y, Sun Y, Liu H, Li J, Zhou Y. Discovery and Optimization of Novel Nonbile Acid FXR Agonists as Preclinical Candidates for the Treatment of Inflammatory Bowel Disease. J Med Chem 2024; 67:5642-5661. [PMID: 38547240 DOI: 10.1021/acs.jmedchem.3c02304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2024]
Abstract
Inflammatory bowel disease (IBD) is a multifactorial chronic inflammation of the intestine and has become a global public health concern. A farnesoid X receptor (FXR) was recently reported to play a key role in hepatic-intestinal circulation, intestinal metabolism, immunity, and microbial regulation, and thus, it becomes a promising therapeutic target for IBD. In this study, we identified a series of nonbile acid FXR agonists, in which 33 novel compounds were designed and synthesized by the structure-based drug design strategy from our previously identified hit compound. Compound 33 exhibited a potent FXR agonistic activity, high intestinal distribution, good anti-inflammatory activity, and the ability to repair the colon epithelium in a DSS-induced acute enteritis model. Based on the results of RNA-seq analysis, we further investigated the therapeutic potential of the combination of compound 33 with 5-ASA. Overall, the results indicated that compound 33 is a promising drug candidate for IBD treatment.
Collapse
Affiliation(s)
- Yuan Li
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Tingting Xu
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Yue Zhao
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Hui Zhang
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Zesheng Liu
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Hao Wang
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Chaoying Huang
- School of Medicine, Shanghai University, Shanghai, 200444, China
| | - Zhihao Shu
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Lixin Gao
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Rongrong Xie
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Tingying Jiao
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Dan Zhang
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Dong Zhang
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Xuewu Liang
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Yi Zang
- Lingang laboratory, Shanghai, 201203, China
| | - Yili Sun
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, Shandong 264117, China
| | - Hong Liu
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, China
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China
| | - Jia Li
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, China
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, Shandong 264117, China
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China
| | - Yu Zhou
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, China
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China
| |
Collapse
|
34
|
Choi S, Han S, Lee S, Kim J, Kim J, Kang DK. Synergistic Antioxidant and Anti-Inflammatory Effects of Phenolic Acid-Conjugated Glutamine-Histidine-Glycine-Valine (QHGV) Peptides Derived from Oysters ( Crassostrea talienwhanensis). Antioxidants (Basel) 2024; 13:447. [PMID: 38671896 PMCID: PMC11047712 DOI: 10.3390/antiox13040447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/01/2024] [Accepted: 04/08/2024] [Indexed: 04/28/2024] Open
Abstract
The glutamine-histidine-glycine-valine (QHGV), a peptide derived from oysters, exhibits antioxidant activity and is being actively researched as a potential pharmaceutical and functional cosmetic ingredient. In this study, we synthesized the QHGV peptide and explored the hitherto unknown anti-inflammatory effects of QHGV. The antioxidant property was also characterized by conjugating with various naturally derived phenolic acids, such as caffeic, gallic, ferulic, sinapinic, and vanillic acids. Conjugation with phenolic acids not only enhanced the antioxidant activity of QHGV but also diminished the lipopolysaccharide-induced generation of reactive oxygen species (ROS) in the murine macrophage cell line, RAW 264.7. The reduction in the levels of reactive oxygen species led to the reduced mRNA expression of inducible nitric oxide synthase (iNos) and cyclooxygenase 2 (Cox-2), resulting in an anti-inflammatory effect through the inhibition of the phosphorylation of mitogen-activated protein kinase, including extracellular signal-activated protein kinase, c-Jun NH2-terminal kinase, and p38. Furthermore, the phenolic acid-conjugated peptides increased the mRNA and protein levels of collagen type I, indicative of a wrinkle-improvement effect. The phenolic acid conjugates of the peptide were not cytotoxic to human keratinocytes such as HaCaT cells. These results suggest that phenolic acid conjugation can enhance the potential of peptides as drug and cosmetic resources.
Collapse
Affiliation(s)
- Soyun Choi
- Department of Chemistry, Incheon National University, Incheon 22012, Republic of Korea; (S.C.); (S.L.); (J.K.)
| | - Sohee Han
- WellPep Co., Ltd., Incheon 22012, Republic of Korea; (S.H.); (J.K.)
| | - Seungmi Lee
- Department of Chemistry, Incheon National University, Incheon 22012, Republic of Korea; (S.C.); (S.L.); (J.K.)
| | - Jongmin Kim
- WellPep Co., Ltd., Incheon 22012, Republic of Korea; (S.H.); (J.K.)
| | - Jinho Kim
- Department of Chemistry, Incheon National University, Incheon 22012, Republic of Korea; (S.C.); (S.L.); (J.K.)
| | - Dong-Ku Kang
- Department of Chemistry, Incheon National University, Incheon 22012, Republic of Korea; (S.C.); (S.L.); (J.K.)
- Bioplastic Research Center, Incheon National University, Incheon 22012, Republic of Korea
- Research Institute of Basic Sciences, Core Research Institute, Incheon National University, Incheon 22012, Republic of Korea
| |
Collapse
|
35
|
Shen S, Qu X, Liu Y, Wang M, Zhou H, Xia H. Evaluation of Antioxidant Activity and Treatment of Eczema by Berberine Hydrochloride-Loaded Liposomes-in-Gel. Molecules 2024; 29:1566. [PMID: 38611845 PMCID: PMC11013229 DOI: 10.3390/molecules29071566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 03/22/2024] [Accepted: 03/29/2024] [Indexed: 04/14/2024] Open
Abstract
In this paper, berberine hydrochloride-loaded liposomes-in-gel were designed and developed to investigate their antioxidant properties and therapeutic effects on the eczema model of the mouse. Berberine hydrochloride-liposomes (BBH-L) as the nanoparticles were prepared by the thin-film hydration method and then dispersed BBH-L evenly in the gel matrix to prepare the berberine hydrochloride liposomes-gel (BBH-L-Gel) by the natural swelling method. Their antioxidant capacity was investigated by the free radical scavenging ability on 2,2-diphenyl-1-picrylhydrazyl (DPPH) and H2O2 and the inhibition of lipid peroxides malondialdehyde (MDA). An eczema model was established, and the efficacy of the eczema treatment was preliminarily evaluated using ear swelling, the spleen index, and pathological sections as indicators. The results indicate that the entrapment efficiency of BBH-L prepared by the thin-film hydration method was 78.56% ± 0.7%, with a particle size of 155.4 ± 9.3 nm. For BBH-L-Gel, the viscosity and pH were 18.16 ± 6.34 m Pas and 7.32 ± 0.08, respectively. The cumulative release in the unit area of the in vitro transdermal study was 85.01 ± 4.53 μg/cm2. BBH-L-Gel had a good scavenging capacity on DPPH and H2O2, and it could effectively inhibit the production of hepatic lipid peroxides MDA in the concentration range of 0.4-2.0 mg/mL. The topical application of BBH-L-Gel could effectively alleviate eczema symptoms and reduce oxidative stress injury in mice. This study demonstrates that BBH-L-Gel has good skin permeability, excellent sustained release, and antioxidant capabilities. They can effectively alleviate the itching, inflammation, and allergic symptoms caused by eczema, providing a new strategy for clinical applications in eczema treatment.
Collapse
Affiliation(s)
- Si Shen
- College of Pharmacy, Anhui University of Chinese Medicine, No. 350, Long Zi Hu Road, Hefei 230012, China; (S.S.); (X.Q.); (Y.L.)
| | - Xiaobo Qu
- College of Pharmacy, Anhui University of Chinese Medicine, No. 350, Long Zi Hu Road, Hefei 230012, China; (S.S.); (X.Q.); (Y.L.)
- Drug Advanced Research Institute of Yangtze Delta, Nantong 226100, China
| | - Yinyin Liu
- College of Pharmacy, Anhui University of Chinese Medicine, No. 350, Long Zi Hu Road, Hefei 230012, China; (S.S.); (X.Q.); (Y.L.)
| | - Mengmeng Wang
- College of Pharmacy, Anhui University of Chinese Medicine, No. 350, Long Zi Hu Road, Hefei 230012, China; (S.S.); (X.Q.); (Y.L.)
| | - Haifeng Zhou
- Drug Advanced Research Institute of Yangtze Delta, Nantong 226100, China
| | - Hongmei Xia
- College of Pharmacy, Anhui University of Chinese Medicine, No. 350, Long Zi Hu Road, Hefei 230012, China; (S.S.); (X.Q.); (Y.L.)
| |
Collapse
|
36
|
Zhu F, Zhi Y, Li Y, Niu H, Ren S. The Mechanism of Polygonum Hydropiper L-Coptis Chinensis in the Treatment of Ulcerative Colitis Based on Network Pharmacology and Experimental Validation. FRONT BIOSCI-LANDMRK 2024; 29:93. [PMID: 38538280 DOI: 10.31083/j.fbl2903093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 01/16/2024] [Accepted: 01/31/2024] [Indexed: 01/05/2025]
Abstract
BACKGROUND Polygonum hydropiper L (PH) was widely used to treat dysentery, gastroenteritis, diarrhea and other diseases. Coptis chinensis (CC) had the effects of clearing dampness-heat, purging fire, and detoxifying. Study confirmed that flavonoids in PH and alkaloids in CC alleviated inflammation to inhibit the development of intestinal inflammation. However, how PH-CC affects UC was unclear. Therefore, the aim of this study is to analyze the mechanism of PH-CC on ulcerative colitis (UC) through network pharmacology and in vivo experiments. METHODS The active ingredients and targets of PH-CC and targets of UC were screened based on related databases. The core targets of PH-CC on UC was predicted by protein-protein interaction network (PPI), and then the Gene Ontology-biological processes (GO-BP) function enrichment analysis was conducted using the Database for Annotation, Visualization and Integrated Discovery (DAVID) database. The binding activity between pyroptosis proteins, core targets and effective ingredients were verified based on molecular docking technology. Finally, combined with the results of network pharmacology and literature research, the mechanism of PH-CC against UC was verified by in vivo experiments. RESULTS There were 23 active components and 191 potential targets in PH-CC, 5275 targets in UC, and 141 co-targets. GO-BP functional analysis of 141 co-targets showed that the first 20 biological processes were closely related to inflammation and lipopolysaccharide (LPS) stimulation. Furthermore, core targets had good binding activity with the corresponding compounds. Animal experiment indicated that PH-CC effectively prevented weight loss in UC mice, reduced the disease activity index (DAI) score, maintained colon length, suppressed myeloperoxidase (MPO) activity, inhibited pyroptosis protein expression, and downregulated the levels of IL-18 and IL-1β to alleviate intestinal inflammation. CONCLUSIONS The results of network pharmacology and animal experiments showed that PH-CC suppressed the inflammatory response, restored colon morphology, and inhibited pyroptosis in UC mice. Thus, PH-CC may improve UC by regulating the NOD-like receptor protein domain 3 (NLRP3)/Caspase-1 signaling pathway.
Collapse
Affiliation(s)
- Feifei Zhu
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Key Laboratory for Research and Development of Tropical Herbs, Haikou Key Laboratory of Li Nationality Medicine, School of Pharmacy, Hainan Medical University, 571199 Haikou, Hainan, China
| | - Yunyun Zhi
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Key Laboratory for Research and Development of Tropical Herbs, Haikou Key Laboratory of Li Nationality Medicine, School of Pharmacy, Hainan Medical University, 571199 Haikou, Hainan, China
| | - Yonghui Li
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Key Laboratory for Research and Development of Tropical Herbs, Haikou Key Laboratory of Li Nationality Medicine, School of Pharmacy, Hainan Medical University, 571199 Haikou, Hainan, China
| | - Haiyan Niu
- Department of Pathology, The First Affiliated Hospital of Hainan Medical University, 570102 Haikou, Hainan, China
| | - Shouzhong Ren
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Key Laboratory for Research and Development of Tropical Herbs, Haikou Key Laboratory of Li Nationality Medicine, School of Pharmacy, Hainan Medical University, 571199 Haikou, Hainan, China
| |
Collapse
|
37
|
Lin Y, He L, Cai Y, Wang X, Wang S, Li F. The role of circadian clock in regulating cell functions: implications for diseases. MedComm (Beijing) 2024; 5:e504. [PMID: 38469551 PMCID: PMC10925886 DOI: 10.1002/mco2.504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 01/28/2024] [Accepted: 01/30/2024] [Indexed: 03/13/2024] Open
Abstract
The circadian clock system orchestrates daily behavioral and physiological rhythms, facilitating adaptation to environmental and internal oscillations. Disruptions in circadian rhythms have been linked to increased susceptibility to various diseases and can exacerbate existing conditions. This review delves into the intricate regulation of diurnal gene expression and cell function by circadian clocks across diverse tissues. . Specifically, we explore the rhythmicity of gene expressions, behaviors, and functions in both immune and non-immune cells, elucidating the regulatory effects and mechanisms imposed by circadian clocks. A detailed discussion is centered on elucidating the complex functions of circadian clocks in regulating key cellular signaling pathways. We further review the circadian regulation in diverse diseases, with a focus on inflammatory diseases, cancers, and systemic diseases. By highlighting the intimate interplay between circadian clocks and diseases, especially through clock-controlled cell function, this review contributes to the development of novel disease intervention strategies. This enhanced understanding holds significant promise for the design of targeted therapies that can exploit the circadian regulation mechanisms for improved treatment efficacy.
Collapse
Affiliation(s)
- Yanke Lin
- Infectious Diseases InstituteGuangzhou Eighth People's HospitalGuangzhou Medical UniversityGuangzhouChina
- Guangdong TCRCure Biopharma Technology Co., Ltd.GuangzhouChina
| | | | - Yuting Cai
- School of Pharmaceutical SciencesGuangzhou University of Chinese MedicineGuangzhouChina
| | - Xiaokang Wang
- Department of PharmacyShenzhen Longhua District Central HospitalShenzhenChina
| | - Shuai Wang
- School of Pharmaceutical SciencesGuangzhou University of Chinese MedicineGuangzhouChina
| | - Feng Li
- Infectious Diseases InstituteGuangzhou Eighth People's HospitalGuangzhou Medical UniversityGuangzhouChina
| |
Collapse
|
38
|
Wang Y, Wang R, Zhu J, Chen L. Identification of mitophagy and ferroptosis-related hub genes associated with intracerebral haemorrhage through bioinformatics analysis. Ann Hum Biol 2024; 51:2334719. [PMID: 38863372 DOI: 10.1080/03014460.2024.2334719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 03/21/2024] [Indexed: 06/13/2024]
Abstract
BACKGROUND Mitophagy and ferroptosis occur in intracerebral haemorrhage (ICH) but our understanding of mitophagy and ferroptosis-related genes remains incomplete. AIM This study aims to identify shared ICH genes for both processes. METHODS ICH differentially expressed mitophagy and ferroptosis-related genes (DEMFRGs) were sourced from the GEO database and literature. Enrichment analysis elucidated functions. Hub genes were selected via STRING, MCODE, and MCC algorithms in Cytoscape. miRNAs targeting hubs were predicted using miRWalk 3.0, forming a miRNA-hub gene network. Immune microenvironment variances were assessed with MCP and TIMER. Potential small molecules for ICH were forecasted via CMap database. RESULTS 64 DEMFRGs and ten hub genes potentially involved in various processes like ferroptosis, TNF signalling pathway, MAPK signalling pathway, and NF-kappa B signalling pathway were discovered. Several miRNAs were identified as shared targets of hub genes. The ICH group showed increased infiltration of monocytic lineage and myeloid dendritic cells compared to the Healthy group. Ten potential small molecule drugs (e.g. Zebularine, TWS-119, CG-930) were predicted via CMap. CONCLUSION Several shared genes between mitophagy and ferroptosis potentially drive ICH progression via TNF, MAPK, and NF-kappa B pathways. These results offer valuable insights for further exploring the connection between mitophagy, ferroptosis, and ICH.
Collapse
Affiliation(s)
- Yan Wang
- Department of Basic Medicine, Cangzhou Medical College, Cangzhou, China
| | - Rufeng Wang
- Department of Basic Medicine, Cangzhou Medical College, Cangzhou, China
| | - Jianzhong Zhu
- Department of Basic Medicine, Cangzhou Medical College, Cangzhou, China
| | - Ling Chen
- Department of Gynaecology, People's Hospital Affiliated to Cangzhou Medical College, Cangzhou, China
| |
Collapse
|
39
|
Zhang MJ, Shi M, Yu Y, Wang H, Ou R, Ge RS. CP41, a novel curcumin analogue, induces apoptosis in endometrial cancer cells by activating the H3F3A/ proteasome-MAPK signaling pathway and enhancing oxidative stress. Life Sci 2024; 338:122406. [PMID: 38176583 DOI: 10.1016/j.lfs.2023.122406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/28/2023] [Accepted: 12/29/2023] [Indexed: 01/06/2024]
Abstract
AIMS Curcumin is a natural compound and has good antitumor properties, but its clinical use is limited by its low bioavailability. We constructed the derivative CP41 (3,5-bis(2-chlorobenzylidene)-1-piperidin-4-one) by enhancing the bioavailability of curcumin while retaining its antitumor properties. MAIN METHODS CCK-8 (Cell Counting Kit-8) was used to detect the effect of CP41 on cell proliferation; Western blotting, immunofluorescence, immunoprecipitation, quantitative PCR and enzyme-linked immunosorbent assay were used to evaluate the expression of subcutaneous tumor-related molecules in cells and mice. KEY FINDINGS Our results showed that CP41 inhibited the proliferation of endometrial cancer cells by suppressing the proliferation of AN3CA and HEC-1-B cells. We found that CP41 significantly increased H3F3A and inhibited proteasome activity, which activated MAPK signaling and led to apoptosis. Further experiments showed that H3F3A is a potential target of CP41. Correlation analysis showed that H3F3A was positively correlated with the sensitivity to chemotherapeutic agents in endometrial cancer. CP41 significantly induced reactive oxygen species (ROS) levels and activated endoplasmic reticulum stress, which led to apoptosis. The safety profile of CP41 was also evaluated, and CP41 did not cause significant drug toxicity in mice. SIGNIFICANCE CP41 showed stronger antitumor potency than curcumin, and its antitumor activity may be achieved by inducing ROS and activating H3F3A-mediated apoptosis.
Collapse
Affiliation(s)
- Min-Jie Zhang
- Department of Anaesthesiology, the Second Affiliated Hospital, Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China; Department of Obstetrics and Gynecology, the Second Affiliated Hospital, Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Mengna Shi
- Department of Anaesthesiology, the Second Affiliated Hospital, Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China; Department of Obstetrics and Gynecology, the Second Affiliated Hospital, Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Yang Yu
- Department of Anaesthesiology, the Second Affiliated Hospital, Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Hong Wang
- Department of Anaesthesiology, the Second Affiliated Hospital, Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Rongying Ou
- Department of Obstetrics and Gynecology, the First Affiliated Hospital, Wenzhou, Zhejiang 325000, China
| | - Ren-Shan Ge
- Department of Anaesthesiology, the Second Affiliated Hospital, Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China; Department of Obstetrics and Gynecology, the Second Affiliated Hospital, Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China; Key Laboratory of Structural Malformations in Children of Zhejiang Province, Key Laboratory of Environment and Male Reproductive Medicine of Wenzhou, Zhejiang 325000, China.
| |
Collapse
|
40
|
Wang G, Ma F, Xie K, Li X, Tan X, Xia Y, Wang Y, Dong J. Liensinine alleviates mouse intestinal injury induced by sepsis through inhibition of oxidative stress, inflammation, and cell apoptosis. Int Immunopharmacol 2024; 127:111335. [PMID: 38101222 DOI: 10.1016/j.intimp.2023.111335] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 11/29/2023] [Accepted: 11/29/2023] [Indexed: 12/17/2023]
Abstract
Sepsis is a clinical syndrome triggered by an imbalanced host response to pathogens that can lead to multiple organ dysfunction. The immune response and barrier function of the gut play an important role in the pathogenesis and progression of sepsis. This study aimed to explore the potential role of natural alkaloid Liensinine in the treatment of intestinal injury caused by sepsis and its possible molecular mechanism. In this study, a mouse model of sepsis was established by injecting LPS to explore the protective effect of Liensinine on intestinal injury in sepsis. The results showed that Liensinine could reduce the intestinal damage caused by LPS and increase the number of goblet cells. Furthermore, it decreased the release of inflammatory cytokines by inhibiting NF-kB phosphorylation and NLRP3 inflammasome synthesis. Liensinine also reduced the oxidative stress and ROS accumulation caused by LPS, and played an anti-oxidative stress role by regulating the Nrf2/keap1 signaling pathway. In addition, Liensinine alleviated the inhibition of intestinal autophagy caused by LPS by inhibiting the PI3K/Akt/mTOR pathway. And then it reduced the excessive apoptosis of intestinal cells. This study provides valuable insights for sepsis prevention and treatment, offering a potential therapeutic candidate to protect against intestinal injury and regulate the inflammatory response in sepsis.
Collapse
Affiliation(s)
- Guanglu Wang
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China; Department of Medicine Laboratory, Department of Cardiac Function Examination, The Second People's Hospital of Lianyungang Affiliated to Kangda College of Nanjing Medical University, The Second People's Hospital of Lianyungang City, Lianyungang 222000, China
| | - Fenfen Ma
- Department of Medicine Laboratory, Department of Cardiac Function Examination, The Second People's Hospital of Lianyungang Affiliated to Kangda College of Nanjing Medical University, The Second People's Hospital of Lianyungang City, Lianyungang 222000, China
| | - Kunmei Xie
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China; Department of Medicine Laboratory, Department of Cardiac Function Examination, The Second People's Hospital of Lianyungang Affiliated to Kangda College of Nanjing Medical University, The Second People's Hospital of Lianyungang City, Lianyungang 222000, China
| | - Xueqing Li
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China
| | - Xuelian Tan
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China
| | - Yan Xia
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China
| | - Yan Wang
- Department of Medicine Laboratory, Department of Cardiac Function Examination, The Second People's Hospital of Lianyungang Affiliated to Kangda College of Nanjing Medical University, The Second People's Hospital of Lianyungang City, Lianyungang 222000, China.
| | - Jingquan Dong
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China.
| |
Collapse
|
41
|
Mahboubi Kancha M, Alizadeh M, Mehrabi M. Comparison of the protective effects of CS/TPP and CS/HPMCP nanoparticles containing berberine in ethanol-induced hepatotoxicity in rat. BMC Complement Med Ther 2024; 24:39. [PMID: 38225618 PMCID: PMC10789080 DOI: 10.1186/s12906-023-04318-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 12/16/2023] [Indexed: 01/17/2024] Open
Abstract
BACKGROUND Alcoholic liver disease (ALD) is a globally critical condition with no available efficient treatments. METHODS Herein, we generated chitosan (CS) nanoparticles cross-linked with two different agents, hydroxypropyl methylcellulose phthalate (HPMCP; termed as CS/HPMCP) and tripolyphosphate (TPP; termed as CS/TPP), and loaded them with berberine (BBr; referred to as CS/HPMCP/BBr and CS/TPP/BBr, respectively). Alongside the encapsulation efficiency (EE) and loading capacity (LC), the releasing activity of the nanoparticles was also measured in stimulated gastric fluid (SGF) and stimulated intestinal fluid (SIF) conditions. The effects of the prepared nanoparticles on the viability of mesenchymal stem cells (MSCs) were also evaluated. Ultimately, the protective effects of the nanoparticles were investigated in ALD mouse models. RESULTS SEM images demonstrated that CS/HPMCP and CS/TPP nanoparticles had an average size of 235.5 ± 42 and 172 ± 21 nm, respectively. The LC and EE for CS/HPMCP/BBr were calculated as 79.78% and 75.79%, respectively; while the LC and EE for CS/TPP/BBr were 84.26% and 80.05%, respectively. pH was a determining factor for releasing BBr from CS/HPMCP nanoparticles as a higher cargo-releasing rate was observed in a less acidic environment. Both the BBr-loaded nanoparticles increased the viability of MSCs in comparison with their BBr-free counterparts. In vivo results demonstrated CS/HPMCP/BBr and CS/TPP/BBr nanoparticles protected enzymatic liver functionality against ethanol-induced damage. They also prevented histopathological ethanol-induced damage. CONCLUSIONS Crosslinking CS nanoparticles with HPMCP can mediate controlled drug release in the intestine improving the bioavailability of BBr.
Collapse
Affiliation(s)
- Maral Mahboubi Kancha
- Student Research Committee, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
- Department of Medical Nanotechnology, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Morteza Alizadeh
- Department of Tissue Engineering, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Mohsen Mehrabi
- Department of Medical Nanotechnology, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran.
| |
Collapse
|
42
|
Mohammadi F, Rahimi K, Ahmadi A, Hooshmandi Z, Amini S, Mohammadi A. Anti-inflammatory effects of Mentha pulegium L. extract on human peripheral blood mononuclear cells are mediated by TLR-4 and NF-κB suppression. Heliyon 2024; 10:e24040. [PMID: 38234883 PMCID: PMC10792569 DOI: 10.1016/j.heliyon.2024.e24040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 12/23/2023] [Accepted: 01/02/2024] [Indexed: 01/19/2024] Open
Abstract
There is great interest in evaluating the anti-inflammatory properties of new herbal products. Thus, the effects of Mentha pulegium L. extract on gene and protein expressions of pro-inflammatory mediators and transcription factors were determined. The hydro-ethanolic extract of Mentha pulegium L. was obtained and optimal non-cytotoxic concentrations of the extract were determined by MTT assay. Then, three different concentrations of Mentha pulegium L. (10, 30, and 90 μg/mL) were used to pre-treat the lipopolysaccharide (LPS)-stimulated and non-stimulated peripheral blood mononuclear cells (PBMCs) of 10 healthy individuals. Finally, the tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), IL-6, Toll-like receptor-4 (TLR-4), nuclear factor-kappa B (NF-κB) p65, activator protein-1 (AP-1), inducible nitric oxide synthase (iNOS), and cyclooxygenase-2 (COX-2) gene expressions and TNF-α, IL-1β, IL-6, TLR-4, prostaglandin E2 (PGE2), and COX-2 protein levels were measured. MTT results showed that there is no significant difference in cell viability among 10, 20, 40, and 80 μg/mL concentrations of Mentha pulegium L. extract at 24, 48, and 72 h (P > 0.05). The IC50 values were 236.1, 147.0, and 118.0 μg/mL after 24, 48, and 72 h respectively. TNF-α, IL-1β, IL-6, TLR-4, iNOS, and NF-κB p65 mRNA levels in the pre-treated LPS-stimulated PBMCs were concentration-dependently reduced (P < 0.01 for TNF-α, TLR-4, and NF-κB p65; P < 0.05 for IL-1β, IL-6, and iNOS). Also, the protein levels of pro-inflammatory mediators decreased and these differences were significant for TNF-α, IL-1β, and TLR-4 (P < 0.001, P < 0.01, and P < 0.001, respectively). Mentha pulegium L. extract decreased the expression and biosynthesis of pro-inflammatory mediators. These effects are mainly mediated by TLR-4 and NF-κB suppression. Thus, Mentha pulegium L. could be useful in treating or ameliorating chronic inflammatory diseases.
Collapse
Affiliation(s)
- Firouz Mohammadi
- Department of Biology, Sanandaj Branch, Islamic Azad University, Sanandaj, Iran
| | - Kaveh Rahimi
- Department of Basic Sciences, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Abbas Ahmadi
- Cellular and Molecular Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Zahra Hooshmandi
- Department of Biology, Sanandaj Branch, Islamic Azad University, Sanandaj, Iran
| | - Sabrieh Amini
- Department of Biology, Sanandaj Branch, Islamic Azad University, Sanandaj, Iran
| | - Asadollah Mohammadi
- Cellular and Molecular Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
| |
Collapse
|
43
|
Hao P, Zhang P, Liu Y, Cao Y, Du L, Gao L, Dong Q. Network pharmacology and experiment validation investigate the potential mechanism of triptolide in oral squamous cell carcinoma. Front Pharmacol 2024; 14:1302059. [PMID: 38259290 PMCID: PMC10800448 DOI: 10.3389/fphar.2023.1302059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 12/18/2023] [Indexed: 01/24/2024] Open
Abstract
Objective: This study aimed to investigate the molecular mechanism of triptolide in the treatment of oral squamous cell carcinoma (OSCC) via network pharmacology and experimental validation. Methods: The network pharmacological method was used to predict the key targets, detect the signal pathways for the treatment of OSCC, and screen the critical components and targets for molecular docking. Predicted targets were validated in cellular and xenograft mouse model. Results: In this study, we predicted action on 17 relevant targets of OSCC by network pharmacology. PPI network demonstrated that Jun, MAPK8, TP53, STAT3, VEGFA, IL2, CXCR4, PTGS2, IL4 might be the critical targets of triptolide in the treatment of OSCC. These potential targets are mainly closely related to JAK-STAT and MAPK signaling pathways. The analysis of molecular docking showed that triptolide has high affinity with Jun, MAPK8 and TP53. Triptolide can suppress the growth of OSCC cells and xenograft mice tumor, and downregulate the expression of Jun, MAPK8, TP53, STAT3, VEGFA, IL2, CXCR4, PTGS2 to achieve the therapeutic effect of OSCC. Conclusion: Through network pharmacological methods and experimental studies, we predicted and validated the potential targets and related pathways of triptolide for OSCC treatment. The results suggest that triptolide can inhibit the growth of OSCC via several key targets.
Collapse
Affiliation(s)
- Puyu Hao
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan, China
- Environmental and Operational Medicine Research Department, Academy of Military Medical Sciences, Academy of Military Sciences, Tianjin, China
| | - Pengcheng Zhang
- Environmental and Operational Medicine Research Department, Academy of Military Medical Sciences, Academy of Military Sciences, Tianjin, China
| | - Ying Liu
- Environmental and Operational Medicine Research Department, Academy of Military Medical Sciences, Academy of Military Sciences, Tianjin, China
| | - Yang Cao
- Environmental and Operational Medicine Research Department, Academy of Military Medical Sciences, Academy of Military Sciences, Tianjin, China
| | - Lianqun Du
- Environmental and Operational Medicine Research Department, Academy of Military Medical Sciences, Academy of Military Sciences, Tianjin, China
| | - Li Gao
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan, China
| | - Qingyang Dong
- Environmental and Operational Medicine Research Department, Academy of Military Medical Sciences, Academy of Military Sciences, Tianjin, China
| |
Collapse
|
44
|
Guo Q, Lu T, Zhang M, Wang Q, Zhao M, Wang T, Du M. Protective Effect of Berberine on Acute Gastric Ulcer by Promotion of Tricarboxylic Acid Cycle-Mediated Arachidonic Acid Metabolism. J Inflamm Res 2024; 17:15-28. [PMID: 38193042 PMCID: PMC10772049 DOI: 10.2147/jir.s436653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 12/19/2023] [Indexed: 01/10/2024] Open
Abstract
Background and Objective Peptic ulcer is a high incidence gastrointestinal disease in China. Berberine (BBR) is a natural product isolated from the Chinese herb Coptis chinensis Franch that has protective effects in digestive diseases. We aimed to evaluate the ability of BBR to attenuate acute gastric ulcer induced by one-time administration of ethanol in the rat. Methods Tissue pathological morphology, macroscopic score, ulcer healing rate, and serum levels of the inflammatory cytokines nitric oxide (NO), interleukin-6 (IL-6), and prostaglandin E2 (PGE2), and anti-inflammatory interleukin-10 (IL-10) were used to determine the efficacy of BBR and evaluated to identify the optimal dosage. Subsequently, transcriptome and metabolome sequencing were conducted in Control, Model, and optimal dosage groups to explore the pathogenesis of the disease and the mechanism of action of the drug. The levels of malondialdehyde (MDA), myeloperoxidase (MPO), as well as those of superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) were determined by enzyme-linked immunosorbent assay to verify the results of transcriptomics and metabolomics analyses. Results BBR significantly improved the pathological morphology of gastric ulcers, increased the macroscopic score and healing rate, decreased serum levels of NO, IL-6, and PGE2, and increased serum levels of IL-10, thus effectively alleviating gastric ulcer severity. Transcriptome results showed that the therapeutic effect of BBR was mainly mediated by the arachidonic acid metabolism pathway at the gene level, which is closely associated with inflammation and increased levels of reactive oxygen species (ROS). The differentially accumulated metabolite prostaglandin E1, which is a negative regulator of ROS, was significantly up-regulated after BBR administration. The validation results indicated that BBR pretreatment increased SOD and GSH-Px enzyme activities, while reducing levels of the oxidative products MDA and MPO. Conclusion This study demonstrated that BBR exerts a protective effect on acute gastric ulcer by promoting tricarboxylic acid cycle-mediated arachidonic acid metabolism.
Collapse
Affiliation(s)
- Qiuyan Guo
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, People’s Republic of China
- Artemisinin Research Center and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, People’s Republic of China
| | - Tianming Lu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, People’s Republic of China
- Department of Epidemiology and Health Statistics, School of Public Health, Guangxi Medical University, Nanning, Guangxi, 530021, People’s Republic of China
| | - Min Zhang
- Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, 100700, People’s Republic of China
| | - Qixin Wang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, People’s Republic of China
- Artemisinin Research Center and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, People’s Republic of China
| | - Minghong Zhao
- Artemisinin Research Center and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, People’s Republic of China
- Laboratory Medicine, Guizhou Aerospace Hospital, Zunyi, Guizhou, 563000, People’s Republic of China
| | - Tongchun Wang
- Traditional Chinese Medicine Orthopedics and Traumatology Department, Shandong Wendeng Orthopedic Hospital, Wendeng, Shandong, 264400, People’s Republic of China
| | - Maobo Du
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, People’s Republic of China
| |
Collapse
|
45
|
Huang YM, Wu YS, Dang YY, Xu YM, Ma KY, Dai XY. Par3L, a polarity protein, promotes M1 macrophage polarization and aggravates atherosclerosis in mice via p65 and ERK activation. Acta Pharmacol Sin 2024; 45:112-124. [PMID: 37731037 PMCID: PMC10770347 DOI: 10.1038/s41401-023-01161-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 08/29/2023] [Indexed: 09/22/2023]
Abstract
Proinflammatory M1 macrophages are critical for the progression of atherosclerosis. The Par3-like protein (Par3L) is a homolog of the Par3 family involved in cell polarity establishment. Par3L has been shown to maintain the stemness of mammary stem cells and promote the survival of colorectal cancer cells. In this study, we investigated the roles of the polar protein Par3L in M1 macrophage polarization and atherosclerosis. To induce atherosclerosis, Apoe-/- mice were fed with an atherosclerotic Western diet for 8 or 16 weeks. We showed that Par3L expression was significantly increased in human and mouse atherosclerotic plaques. In primary mouse macrophages, oxidized low-density lipoprotein (oxLDL, 50 μg/mL) time-dependently increased Par3L expression. In Apoe-/- mice, adenovirus-mediated Par3L overexpression aggravated atherosclerotic plaque formation accompanied by increased M1 macrophages in atherosclerotic plaques and bone marrow. In mouse bone marrow-derived macrophages (BMDMs) or peritoneal macrophages (PMs), we revealed that Par3L overexpression promoted LPS and IFNγ-induced M1 macrophage polarization by activating p65 and extracellular signal-regulated kinase (ERK) rather than p38 and JNK signaling. Our results uncover a previously unidentified role for the polarity protein Par3L in aggravating atherosclerosis and favoring M1 macrophage polarization, suggesting that Par3L may serve as a potential therapeutic target for atherosclerosis.
Collapse
Affiliation(s)
- Yi-Min Huang
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, 511436, China
| | - Yu-Sen Wu
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, 511436, China
| | - Yuan-Ye Dang
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, 511436, China
| | - Yi-Ming Xu
- School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 511436, China
| | - Kong-Yang Ma
- Centre for Infection and Immunity Studies (CIIS), School of Medicine, Sun Yat-sen University, Shenzhen, 518107, China
| | - Xiao-Yan Dai
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, 511436, China.
| |
Collapse
|
46
|
Flori E, Mosca S, Kovacs D, Briganti S, Ottaviani M, Mastrofrancesco A, Truglio M, Picardo M. Skin Anti-Inflammatory Potential with Reduced Side Effects of Novel Glucocorticoid Receptor Agonists. Int J Mol Sci 2023; 25:267. [PMID: 38203435 PMCID: PMC10778823 DOI: 10.3390/ijms25010267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 12/19/2023] [Accepted: 12/21/2023] [Indexed: 01/12/2024] Open
Abstract
Glucocorticoids (GCs) are commonly used in the treatment of inflammatory skin diseases, although the balance between therapeutic benefits and side effects is still crucial in clinical practice. One of the major and well-known adverse effects of topical GCs is cutaneous atrophy, which seems to be related to the activation of the glucorticoid receptor (GR) genomic pathway. Dissociating anti-inflammatory activity from atrophogenicity represents an important goal to achieve, in order to avoid side effects on keratinocytes and fibroblasts, known target cells of GC action. To this end, we evaluated the biological activity and safety profile of two novel chemical compounds, DE.303 and KL.202, developed as non-transcriptionally acting GR ligands. In primary keratinocytes, both compounds demonstrated anti-inflammatory properties inhibiting NF-κB activity, downregulating inflammatory cytokine release and interfering with pivotal signaling pathways involved in the inflammatory process. Of note, these beneficial actions were not associated with GC-related atrophic effects: treatments of primary keratinocytes and fibroblasts with DE.303 and KL.202 did not induce, contrarily to dexamethasone-a known potent GC-alterations in extracellular matrix components and lipid synthesis, thus confirming their safety profile. These data provide the basis for evaluating these compounds as effective alternatives to the currently used GCs in managing inflammatory skin diseases.
Collapse
Affiliation(s)
- Enrica Flori
- Laboratory of Cutaneous Physiopathology and Integrated Center of Metabolomics Research, San Gallicano Dermatological Institute, IRCCS, 00144 Rome, Italy; (S.M.); (D.K.); (S.B.); (M.O.)
| | - Sarah Mosca
- Laboratory of Cutaneous Physiopathology and Integrated Center of Metabolomics Research, San Gallicano Dermatological Institute, IRCCS, 00144 Rome, Italy; (S.M.); (D.K.); (S.B.); (M.O.)
| | - Daniela Kovacs
- Laboratory of Cutaneous Physiopathology and Integrated Center of Metabolomics Research, San Gallicano Dermatological Institute, IRCCS, 00144 Rome, Italy; (S.M.); (D.K.); (S.B.); (M.O.)
| | - Stefania Briganti
- Laboratory of Cutaneous Physiopathology and Integrated Center of Metabolomics Research, San Gallicano Dermatological Institute, IRCCS, 00144 Rome, Italy; (S.M.); (D.K.); (S.B.); (M.O.)
| | - Monica Ottaviani
- Laboratory of Cutaneous Physiopathology and Integrated Center of Metabolomics Research, San Gallicano Dermatological Institute, IRCCS, 00144 Rome, Italy; (S.M.); (D.K.); (S.B.); (M.O.)
| | - Arianna Mastrofrancesco
- Microbiology and Virology, San Gallicano Dermatological Institute, IRCCS, 00144 Rome, Italy; (A.M.); (M.T.)
| | - Mauro Truglio
- Microbiology and Virology, San Gallicano Dermatological Institute, IRCCS, 00144 Rome, Italy; (A.M.); (M.T.)
| | - Mauro Picardo
- Istituto Dermopatico dell’Immacolata, IDI-IRCCS, 00167 Rome, Italy;
| |
Collapse
|
47
|
Hussain MS, Gupta G, Goyal A, Thapa R, Almalki WH, Kazmi I, Alzarea SI, Fuloria S, Meenakshi DU, Jakhmola V, Pandey M, Singh SK, Dua K. From nature to therapy: Luteolin's potential as an immune system modulator in inflammatory disorders. J Biochem Mol Toxicol 2023; 37:e23482. [PMID: 37530602 DOI: 10.1002/jbt.23482] [Citation(s) in RCA: 52] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 07/05/2023] [Accepted: 07/20/2023] [Indexed: 08/03/2023]
Abstract
Inflammation is an essential immune response that helps fight infections and heal tissues. However, chronic inflammation has been linked to several diseases, including cancer, autoimmune disorders, cardiovascular diseases, and neurological disorders. This has increased interest in finding natural substances that can modulate the immune system inflammatory signaling pathways to prevent or treat these diseases. Luteolin is a flavonoid found in many fruits, vegetables, and herbs. It has been shown to have anti-inflammatory effects by altering signaling pathways in immune cells. This review article discusses the current research on luteolin's role as a natural immune system modulator of inflammatory signaling mechanisms, such as its effects on nuclear factor-kappa B, mitogen-activated protein kinases, Janus kinase/signal transducer and activator of transcription, and inflammasome signaling processes. The safety profile of luteolin and its potential therapeutic uses in conditions linked to inflammation are also discussed. Overall, the data point to Luteolin's intriguing potential as a natural regulator of immune system inflammatory signaling processes. More research is needed to fully understand its mechanisms of action and possible therapeutic applications.
Collapse
Affiliation(s)
- Md Sadique Hussain
- School of Pharmaceutical Sciences, Jaipur National University, Jaipur, Rajasthan, India
| | - Gaurav Gupta
- School of Pharmacy, Suresh Gyan Vihar University, Jaipur, India
- Center for Global Health research (CGHR), Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, India
| | - Ahsas Goyal
- Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, India
| | - Riya Thapa
- School of Pharmacy, Suresh Gyan Vihar University, Jaipur, India
| | | | - Imran Kazmi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Sami I Alzarea
- Department of Pharmacology, College of Pharmacy, Jouf University, Sakaka, Al-Jouf, Saudi Arabia
| | | | | | - Vikas Jakhmola
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| | - Manisha Pandey
- Department of Pharmaceutical Sciences, Central University of Haryana, Mahendergarh, India
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, Australia
| | - Kamal Dua
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, Australia
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
48
|
Cao F, Xia W, Dai S, Wang C, Shi R, Yang Y, Guo C, Xu XL, Luo J. Berberine: An inspiring resource for the treatment of colorectal diseases. Biomed Pharmacother 2023; 167:115571. [PMID: 37757496 DOI: 10.1016/j.biopha.2023.115571] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 09/21/2023] [Accepted: 09/21/2023] [Indexed: 09/29/2023] Open
Abstract
Colorectal cancer is a prevalent malignant tumor with a complex and diverse pathogenesis. In recent years, natural products have shown promising application prospects as sources of anticancer drugs. BBR, a class of benzoquinoline alkaloids extracted from various plants, is widely used in disease treatments owing to its pharmacological activities, including antibacterial, anti-inflammatory, antioxidant, anticancer, and anti-angiogenesis properties. Research has demonstrated that BBR exerts an anti-Salmonella and -Escherichia coli infection effect, attenuating inflammatory reactions by inhibiting harmful bacteria. During the stage of colorectal precancerous lesions, BBR inhibits the activity of cell cyclin by regulating the PI3K/AKT, MAPK, and Wnt signaling pathways, thereby decelerating the cell cycle progression of polyp or adenoma cells. Moreover, the inhibitory effect of BBR on colorectal cancer primarily occurs through the regulation of the cancer cell cycle, anti-angiogenesis, gut microbiota, and antioxidant pathways. The specific involved pathways include the MPK/ERK, NF-kB, and EGFR signaling pathways, encompassing the regulation of Bcl-2 family proteins, vascular endothelial growth factor, and superoxide dismutase. This study reviews and summarizes, for the first time, the specific mechanisms of action of BBR in the carcinogenesis process of colorectal cancer, providing novel insights for its clinical application in intestinal diseases.
Collapse
Affiliation(s)
- Fang Cao
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | | | - Shengcheng Dai
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Changkang Wang
- Hospital of Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Rui Shi
- Tong Ren People's Hospital, Chongqing, China
| | - Yujie Yang
- Chongqing Xinqiao Community Health Service Center, Chongqing, China
| | - Cui Guo
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - Xue Liang Xu
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - Jian Luo
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| |
Collapse
|
49
|
Mahjoor M, Mahmoudvand G, Farokhi S, Shadab A, Kashfi M, Afkhami H. Double-edged sword of JAK/STAT signaling pathway in viral infections: novel insights into virotherapy. Cell Commun Signal 2023; 21:272. [PMID: 37784164 PMCID: PMC10544547 DOI: 10.1186/s12964-023-01240-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 07/19/2023] [Indexed: 10/04/2023] Open
Abstract
The Janus kinase/signal transducer and activator of transcription (JAK/STAT) is an intricate signaling cascade composed of various cytokines, interferons (IFN, growth factors, and other molecules. This pathway provides a delicate mechanism through which extracellular factors adjust gene expression, thereby acting as a substantial basis for environmental signals to influence cell growth and differentiation. The interactions between the JAK/STAT cascade and antiviral IFNs are critical to the host's immune response against viral microorganisms. Recently, with the emergence of therapeutic classes that target JAKs, the significance of this cascade has been recognized in an unprecedented way. Despite the functions of the JAK/STAT pathway in adjusting immune responses against viral pathogens, a vast body of evidence proposes the role of this cascade in the replication and pathogenesis of viral pathogens. In this article, we review the structure of the JAK/STAT signaling cascade and its role in immuno-inflammatory responses. We also highlight the paradoxical effects of this pathway in the pathogenesis of viral infections. Video Abstract.
Collapse
Affiliation(s)
- Mohamad Mahjoor
- Cellular and Molecular Research Center, Qom University of Medical Sciences, Qom, Iran
- Department of Immunology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Golnaz Mahmoudvand
- Student Research Committee, USERN Office, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Simin Farokhi
- Student Research Committee, USERN Office, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Alireza Shadab
- Department of Immunology, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran
- Iran University of Medical Sciences, Deputy of Health, Tehran, Iran
| | - Mojtaba Kashfi
- Cellular and Molecular Research Center, Qom University of Medical Sciences, Qom, Iran.
- Nervous System Stem Cells Research Center, Semnan University of Medical Sciences, Semnan, Iran.
- Department of Medical Microbiology, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Hamed Afkhami
- Cellular and Molecular Research Center, Qom University of Medical Sciences, Qom, Iran.
- Nervous System Stem Cells Research Center, Semnan University of Medical Sciences, Semnan, Iran.
- Department of Medical Microbiology, Faculty of Medicine, Shahed University, Tehran, Iran.
| |
Collapse
|
50
|
Yang L, Huang Y, Chen F, Wang Y, Su K, Zhao M, Tao W, Liu W. Berberine attenuates depression-like behavior by modulating the hippocampal NLRP3 ubiquitination signaling pathway through Trim65. Int Immunopharmacol 2023; 123:110808. [PMID: 37595491 DOI: 10.1016/j.intimp.2023.110808] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 08/10/2023] [Accepted: 08/13/2023] [Indexed: 08/20/2023]
Abstract
OBJECTIVE Increasing evidence suggests that inflammation appears to play a role in the genesis of depression. Berberine has potent anti-inflammatory effects and potential antidepressant activity, although the mechanism by which it works is yet unclear. Our study aimed to investigate the molecular mechanisms through which berberine treats depression and reduces inflammation. METHODS The CUMS model and behavioral evaluation were utilized in this study to evaluate the efficacy of berberine in the treatment of depression. Berberine's effect on the inflammatory response in CUMS mice was evaluated via ELISA assays and western blotting. Nissl staining was used to observe hippocampal neuronal functional damage. Western blotting, ELISA, ubiquitination tests, and immunoprecipitation were utilized in conjunction with in vitro experiments to study the involvement of Trim65 in the antidepressant effects of berberine. RESULTS The results suggest that berberine effectively alleviates depressive symptoms, suppresses the expression of genes associated with the NLRP3 inflammasome (NLRP3, cleaved caspase-1, ASC, GSDMD-N, Pro-IL-1β, IL-1β, Pro-IL-18, and IL-18), and reduces hippocampal neuronal functional damage in CUMS mice. Further studies showed that knockdown of Trim65 reversed the effects of berberine and increased NLRP3 inflammasome activity. Finally, K285, an important site for Trim65 binding to NLRP3, was identified. CONCLUSION Our study describes the mechanism of berberine limiting NLRP3 inflammasome activity by promoting the conjugation of Trim65 to NLRP3 and NLRP3 ubiquitination, and suggests NLRP3 inflammasome activation as a prospective target for treating inflammation-associated disorders such as depression.
Collapse
Affiliation(s)
- Lu Yang
- Nanjing University of Chinese Medicine, Nanjing, 210023, China; Department of Gastroenterology, Nanjing Integrated Traditional Chinese and Western Medicine Hospital, Nanjing, 210014, China
| | - Yuzhen Huang
- Nanjing University of Chinese Medicine, Nanjing, 210023, China; Department of Gastroenterology, Nanjing Integrated Traditional Chinese and Western Medicine Hospital, Nanjing, 210014, China
| | - Fengxi Chen
- Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Yan Wang
- Nanjing University of Chinese Medicine, Nanjing, 210023, China; Department of Gastroenterology, Nanjing Integrated Traditional Chinese and Western Medicine Hospital, Nanjing, 210014, China
| | - Kunhan Su
- Department of Gastroenterology, Nanjing Integrated Traditional Chinese and Western Medicine Hospital, Nanjing, 210014, China
| | - Ming Zhao
- Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Weiwei Tao
- Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Wanli Liu
- Department of Gastroenterology, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, China.
| |
Collapse
|