1
|
Chen Z, Xu L, Yuan Y, Zhang S, Xue R. Metabolic crosstalk between platelets and cancer: Mechanisms, functions, and therapeutic potential. Semin Cancer Biol 2025; 110:65-82. [PMID: 39954752 DOI: 10.1016/j.semcancer.2025.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 01/30/2025] [Accepted: 02/03/2025] [Indexed: 02/17/2025]
Abstract
Platelets, traditionally regarded as passive mediators of hemostasis, are now recognized as pivotal regulators in the tumor microenvironment, establishing metabolic feedback loops with tumor and immune cells. Tumor-derived signals trigger platelet activation, which induces rapid metabolic reprogramming, particularly glycolysis, to support activation-dependent functions such as granule secretion, morphological changes, and aggregation. Beyond self-regulation, platelets influence the metabolic processes of adjacent cells. Through direct mitochondrial transfer, platelets reprogram tumor and immune cells, promoting oxidative phosphorylation. Additionally, platelet-derived cytokines, granules, and extracellular vesicles drive metabolic alterations in immune cells, fostering suppressive phenotypes that facilitate tumor progression. This review examines three critical aspects: (1) the distinctive metabolic features of platelets, particularly under tumor-induced activation; (2) the metabolic crosstalk between activated platelets and other cellular components; and (3) the therapeutic potential of targeting platelet metabolism to disrupt tumor-promoting networks. By elucidating platelet metabolism, this review highlights its essential role in tumor biology and its therapeutic implications.
Collapse
Affiliation(s)
- Zhixue Chen
- Department of Gastroenterology and Hepatology, Shanghai Institute of Liver Diseases, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Lin Xu
- Department of Gastroenterology and Hepatology, Shanghai Institute of Liver Diseases, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Yejv Yuan
- The First Affiliated Hospital of Anhui University of Science and Technology, Huainan 232001, China
| | - Si Zhang
- NHC Key Laboratory of Glycoconjugate Research, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China.
| | - Ruyi Xue
- Department of Gastroenterology and Hepatology, Shanghai Institute of Liver Diseases, Zhongshan Hospital, Fudan University, Shanghai 200032, China.
| |
Collapse
|
2
|
Wang X, Gao X, Deng C, Xu D, Chen Y, Huang J, Li X, Shi Y. Platelet-derived mitochondria attenuate muscle atrophy following rotator cuff tears in a rat model. J Shoulder Elbow Surg 2025:S1058-2746(25)00172-7. [PMID: 39986534 DOI: 10.1016/j.jse.2025.01.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 01/09/2025] [Accepted: 01/11/2025] [Indexed: 02/24/2025]
Abstract
BACKGROUND Rotator cuff tears (RCTs) often result in muscle atrophy, compromising surgical outcomes and recovery. Mitochondrial dysfunction is implicated in this process, suggesting potential for mitochondria-based therapies. This study aimed to investigate the effects of platelet-derived mitochondria (Plt-Mito) administration into the supraspinatus muscle (SSP) following RCTs. METHODS Seventy-two male Sprague-Dawley rats were allocated into 3 distinct groups: (1) a sham surgery group, (2) a group with RCTs treated with Plt-Mito, and (3) a group with RCTs treated with phosphate-buffered saline. Treatments were administered every 2 weeks. After 12 weeks, the SSPs were analyzed for wet muscle weight ratio, muscle fiber cross-sectional area, fibrosis, antioxidant activity, mitochondrial markers, capillary density, and mitochondrial structure. RESULTS Plt-Mito successfully incorporated into SSP, maintaining functional integrity. Compared to the phosphate-buffered saline group, Plt-Mito treatment significantly preserved wet muscle weight, increased mean muscle fiber cross-sectional area, promoted muscle regeneration, reduced fibrosis, enhanced antioxidant activity (increased superoxide dismutase activity and decreased malondialdehyde activity), improved muscle vascularity (increased platelet endothelial cell adhesion molecule-1 and α-smooth muscle actin), increased expression of mitochondrial markers (C oxidase subunit IV and uncoupling protein 1) and maintained mitochondrial density and structure. CONCLUSIONS Our findings demonstrated Plt-Mito administration effectively halted muscle atrophy and fibrosis, while attenuating mitochondrial damage and dysfunction following RCTs.
Collapse
Affiliation(s)
- Xin Wang
- Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Xing Gao
- Animal Experimental Center, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Chunchu Deng
- Department of Rehabilitation Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ding Xu
- Department of Orthopedic Surgery, Ningbo NO.6 Hospital, Ningbo, China
| | - Yuanyuan Chen
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, Wuhan, China
| | - Jiaqi Huang
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, Wuhan, China
| | - Xiao Li
- Priority Medical Department, General Hospital of Central Theater Command, Wuhan, China.
| | - Yulong Shi
- Division of Joint Surgery and Sports Medicine, Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China.
| |
Collapse
|
3
|
Wang XB, Cui NH, Fang ZQ, Gao MJ, Cai D. Platelet bioenergetic profiling uncovers a metabolic pattern of high dependency on mitochondrial fatty acid oxidation in type 2 diabetic patients who developed in-stent restenosis. Redox Biol 2024; 72:103146. [PMID: 38579589 PMCID: PMC11000186 DOI: 10.1016/j.redox.2024.103146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 03/31/2024] [Indexed: 04/07/2024] Open
Abstract
Although platelet bioenergetic dysfunction is evident early in the pathogenesis of diabetic macrovascular complications, the bioenergetic characteristics in type 2 diabetic patients who developed coronary in-stent restenosis (ISR) and their effects on platelet function remain unclear. Here, we performed platelet bioenergetic profiling to characterize the bioenergetic alterations in 28 type 2 diabetic patients with ISR compared with 28 type 2 diabetic patients without ISR (non-ISR) and 28 healthy individuals. Generally, platelets from type 2 diabetic patients with ISR exhibited a specific bioenergetic alteration characterized by high dependency on fatty acid (FA) oxidation, which subsequently induced complex III deficiency, causing decreased mitochondrial respiration, increased mitochondrial oxidant production, and low efficiency of mitochondrial ATP generation. This pattern of bioenergetic dysfunction showed close relationships with both α-granule and dense granule secretion as measured by surface P-selectin expression, ATP release, and profiles of granule cargo proteins in platelet releasates. Importantly, ex vivo reproduction of high dependency on FA oxidation by exposing non-ISR platelets to its agonist mimicked the bioenergetic dysfunction observed in ISR platelets and enhanced platelet secretion, whereas pharmaceutical inhibition of FA oxidation normalized the respiratory and redox states of ISR platelets and diminished platelet secretion. Further, causal mediation analyses identified a strong association between high dependency on FA oxidation and increased angiographical severity of ISR, which was significantly mediated by the status of platelet secretion. Our findings, for the first time, uncover a pattern of bioenergetic dysfunction in ISR and enhance current understanding of the mechanistic link of high dependency on FA oxidation to platelet abnormalities in the context of diabetes.
Collapse
Affiliation(s)
- Xue-Bin Wang
- Department of Clinical Laboratory, Key Clinical Laboratory of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, Henan, China.
| | - Ning-Hua Cui
- Zhengzhou Key Laboratory of Children's Infection and Immunity, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou, 450000, Henan, China
| | - Zi-Qi Fang
- Department of Clinical Laboratory, Key Clinical Laboratory of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, Henan, China
| | - Mi-Jie Gao
- Department of Clinical Laboratory, Key Clinical Laboratory of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, Henan, China
| | - Dan Cai
- Department of Clinical Laboratory, Key Clinical Laboratory of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, Henan, China
| |
Collapse
|
4
|
Li N, Hu L, Li J, Ye Y, Bao Z, Xu Z, Chen D, Tang J, Gu Y. The Immunomodulatory effect of exosomes in diabetes: a novel and attractive therapeutic tool in diabetes therapy. Front Immunol 2024; 15:1357378. [PMID: 38720885 PMCID: PMC11076721 DOI: 10.3389/fimmu.2024.1357378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 04/03/2024] [Indexed: 05/12/2024] Open
Abstract
Exosomes carry proteins, metabolites, nucleic acids and lipids from their parent cell of origin. They are derived from cells through exocytosis, are ingested by target cells, and can transfer biological signals between local or distant cells. Therefore, exosomes are often modified in reaction to pathological processes, including infection, cancer, cardiovascular diseases and in response to metabolic perturbations such as obesity and diabetes, all of which involve a significant inflammatory aspect. Here, we discuss how immune cell-derived exosomes origin from neutrophils, T lymphocytes, macrophages impact on the immune reprogramming of diabetes and the associated complications. Besides, exosomes derived from stem cells and their immunomodulatory properties and anti-inflammation effect in diabetes are also reviewed. Moreover, As an important addition to previous reviews, we describes promising directions involving engineered exosomes as well as current challenges of clinical applications in diabetic therapy. Further research on exosomes will explore their potential in translational medicine and provide new avenues for the development of effective clinical diagnostics and therapeutic strategies for immunoregulation of diabetes.
Collapse
Affiliation(s)
- Na Li
- Research Institute for Reproductive Health and Genetic Diseases, Wuxi Maternity and Child Health Care Hospital, Wuxi, Jiangsu, China
| | - Lingli Hu
- Graduate School of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jingyang Li
- Graduate School of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yang Ye
- Research Institute for Reproductive Health and Genetic Diseases, Wuxi Maternity and Child Health Care Hospital, Wuxi, Jiangsu, China
| | - Zhengyang Bao
- Research Institute for Reproductive Health and Genetic Diseases, Wuxi Maternity and Child Health Care Hospital, Wuxi, Jiangsu, China
| | - Zhice Xu
- Research Institute for Reproductive Health and Genetic Diseases, Wuxi Maternity and Child Health Care Hospital, Wuxi, Jiangsu, China
| | - Daozhen Chen
- Research Institute for Reproductive Health and Genetic Diseases, Wuxi Maternity and Child Health Care Hospital, Wuxi, Jiangsu, China
| | - Jiaqi Tang
- Institute for Fetology, First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Ying Gu
- Research Institute for Reproductive Health and Genetic Diseases, Wuxi Maternity and Child Health Care Hospital, Wuxi, Jiangsu, China
- Department of Obstetrics, Wuxi Maternity and Child Health Care Hospital Affiliated to Nanjing Medical University, Wuxi, Jiangsu, China
| |
Collapse
|
5
|
Descalzi-Montoya DB, Yang Z, Fanning S, Hu W, LoMauro K, Zhao Y, Korngold R. Cord Blood-Derived Multipotent Stem Cells Ameliorate in Vitro/in Vivo Alloreactive Responses, and This Effect Is Associated with Exosomal Microvesicles in Vitro. Transplant Cell Ther 2024; 30:396.e1-396.e14. [PMID: 38307173 DOI: 10.1016/j.jtct.2024.01.078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 12/16/2023] [Accepted: 01/24/2024] [Indexed: 02/04/2024]
Abstract
Human cord blood derived-multipotent stem cells (CB-SCs) have been found to have immunomodulatory capabilities that can result in inhibition of immune activation. Clinically, when used to interact with apheresed peripheral blood mononuclear cells (PBMCs) before reinfusion, they can counteract inflammation and restore immune balance in patients with autoimmune diseases, including alopecia areata and type 1 diabetes. The present study aimed to explore the potential application of CB-SCs to control donor alloreactive responses involved in allogeneic hematopoietic cell transplantation, which often results in acute graft-versus-host disease (GVHD). Phenotypically, we demonstrated that CB-SCs express CD45, CD11b, and CD9 markers on the cell surface; express Oct3/4, a transcription factor for embryonic stem cells; are negative for CD3, CD14, and CD34 expression; and have low expression of HLA-DR. In an allogeneic mixed lymphocyte culture (MLC) using human CD4 T cell enriched PBMCs and allogeneic myeloid derived dendritic cells, direct coculture with CB-SCs decreased CD4 T cell proliferation and activation, as evidenced by a marked decrease in the expression of the late activation markers CD25 and HLA-DR and a reduction of the PKH26 cell proliferation membrane lipophilic marker. Cytokine profiling of MLC supernatants revealed decreased concentrations of inflammatory proteins, including IFN-γ, IL-17, IL-13, IL-2, IL-6, and MIP1-α, along with marked increases in IL-1RA, IP-10, and MCP-1 concentrations in the presence of CB-SCs. Furthermore, transwell MLC experiments revealed that a soluble component was partially responsible for the immunomodulatory effects of CB-SCs. In this regard, exosomal microvesicles (EVs) positive for CD9, CD63, and CD81 were found in CB-SC-derived, ultrafiltered, and ultracentrifuged culture supernatants. CB-SC-EVs inhibited T cell proliferation in allogeneic MLC, suggesting a potential mode of action in allogeneic responses. Finally, CB-SCs were evaluated for their cellular therapy potential in vivo and found to ameliorate the development of GVHD responses in a xenogeneic human PBMC-induced NSG mouse model. Taken together, our results indicate that CB-SCs can directly and indirectly attenuate alloreactive CD4 T cell activation and proliferation in vitro with a potentially related EV mode of action and may have potential as a cellular therapy to control donor T cell-mediated GVHD responses in vivo.
Collapse
Affiliation(s)
| | - Zheng Yang
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, New Jersey
| | - Stacey Fanning
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, New Jersey; Touro College of Osteopathic Medicine, New York, New York
| | - Wei Hu
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, New Jersey; Stevens Institute of Technology, Hoboken, New Jersey
| | - Katherine LoMauro
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, New Jersey
| | - Yong Zhao
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, New Jersey; Throne Biotechnologies, Paramus, New Jersey
| | - Robert Korngold
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, New Jersey.
| |
Collapse
|
6
|
Hu W, Song X, Yu H, Fan S, Shi A, Sun J, Wang H, Zhao L, Zhao Y. Suppression of B-Cell Activation by Human Cord Blood-Derived Stem Cells (CB-SCs) through the Galectin-9-Dependent Mechanism. Int J Mol Sci 2024; 25:1830. [PMID: 38339108 PMCID: PMC10855911 DOI: 10.3390/ijms25031830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 01/29/2024] [Accepted: 01/30/2024] [Indexed: 02/12/2024] Open
Abstract
We developed the Stem Cell Educator therapy among multiple clinical trials based on the immune modulations of multipotent cord blood-derived stem cells (CB-SCs) on different compartments of immune cells, such as T cells and monocytes/macrophages, in type 1 diabetes and other autoimmune diseases. However, the effects of CB-SCs on the B cells remained unclear. To better understand the molecular mechanisms underlying the immune education of CB-SCs, we explored the modulations of CB-SCs on human B cells. CB-SCs were isolated from human cord blood units and confirmed by flow cytometry with different markers for their purity. B cells were purified by using anti-CD19 immunomagnetic beads from human peripheral blood mononuclear cells (PBMCs). Next, the activated B cells were treated in the presence or absence of coculture with CB-SCs for 7 days before undergoing flow cytometry analysis of phenotypic changes with different markers. Reverse transcription-polymerase chain reaction (RT-PCR) was utilized to evaluate the levels of galectin expressions on CB-SCs with or without treatment of activated B cells in order to find the key galectin that was contributing to the B-cell modulation. Flow cytometry demonstrated that the proliferation of activated B cells was markedly suppressed in the presence of CB-SCs, leading to the downregulation of immunoglobulin production from the activated B cells. Phenotypic analysis revealed that treatment with CB-SCs increased the percentage of IgD+CD27- naïve B cells, but decreased the percentage of IgD-CD27+ switched B cells. The transwell assay showed that the immune suppression of CB-SCs on B cells was dependent on the galectin-9 molecule, as confirmed by the blocking experiment with the anti-galectin-9 monoclonal antibody. Mechanistic studies demonstrated that both calcium levels of cytoplasm and mitochondria were downregulated after the treatment with CB-SCs, causing the decline in mitochondrial membrane potential in the activated B cells. Western blot exhibited that the levels of phosphorylated Akt and Erk1/2 signaling proteins in the activated B cells were also markedly reduced in the presence of CB-SCs. CB-SCs displayed multiple immune modulations on B cells through the galectin-9-mediated mechanism and calcium flux/Akt/Erk1/2 signaling pathways. The data advance our current understanding of the molecular mechanisms underlying the Stem Cell Educator therapy to treat autoimmune diseases in clinics.
Collapse
Affiliation(s)
- Wei Hu
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ 07110, USA; (W.H.)
| | - Xiang Song
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ 07110, USA; (W.H.)
| | - Haibo Yu
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ 07110, USA; (W.H.)
| | - Sophia Fan
- Throne Biotechnologies, Paramus, NJ 07652, USA
| | - Andrew Shi
- Throne Biotechnologies, Paramus, NJ 07652, USA
| | - Jingyu Sun
- Department of Chemistry and Chemical Biology, Stevens Institute of Technology, Hoboken, NJ 07030, USA; (J.S.); (H.W.)
| | - Hongjun Wang
- Department of Chemistry and Chemical Biology, Stevens Institute of Technology, Hoboken, NJ 07030, USA; (J.S.); (H.W.)
| | - Laura Zhao
- Throne Biotechnologies, Paramus, NJ 07652, USA
| | - Yong Zhao
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ 07110, USA; (W.H.)
- Throne Biotechnologies, Paramus, NJ 07652, USA
| |
Collapse
|
7
|
Zhang W, Zhou H, Li H, Mou H, Yinwang E, Xue Y, Wang S, Zhang Y, Wang Z, Chen T, Sun H, Wang F, Zhang J, Chai X, Chen S, Li B, Zhang C, Gao J, Ye Z. Cancer cells reprogram to metastatic state through the acquisition of platelet mitochondria. Cell Rep 2023; 42:113147. [PMID: 37756158 DOI: 10.1016/j.celrep.2023.113147] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 06/30/2023] [Accepted: 08/31/2023] [Indexed: 09/29/2023] Open
Abstract
Metastasis is the major cause of cancer deaths, and cancer cells evolve to adapt to various tumor microenvironments, which hinders the treatment of tumor metastasis. Platelets play critical roles in tumor development, especially during metastasis. Here, we elucidate the role of platelet mitochondria in tumor metastasis. Cancer cells are reprogrammed to a metastatic state through the acquisition of platelet mitochondria via the PINK1/Parkin-Mfn2 pathway. Furthermore, platelet mitochondria regulate the GSH/GSSG ratio and reactive oxygen species (ROS) in cancer cells to promote lung metastasis of osteosarcoma. Impairing platelet mitochondrial function has proven to be an efficient approach to impair metastasis, providing a direction for osteosarcoma therapy. Our findings demonstrate mitochondrial transfer between platelets and cancer cells and suggest a role for platelet mitochondria in tumor metastasis.
Collapse
Affiliation(s)
- Wenkan Zhang
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, China; Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Hao Zhou
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, China; Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Hengyuan Li
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, China; Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Haochen Mou
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, China; Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Eloy Yinwang
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, China; Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Yucheng Xue
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, China; Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Shengdong Wang
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, China; Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Yongxing Zhang
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, China; Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Zenan Wang
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, China; Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Tao Chen
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, China; Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Hangxiang Sun
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, China; Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Fangqian Wang
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, China; Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Jiahao Zhang
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, China; Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Xupeng Chai
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, China; Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Shixin Chen
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, China; Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Binghao Li
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, China; Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Changqing Zhang
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China.
| | - Junjie Gao
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China.
| | - Zhaoming Ye
- Department of Orthopedics, Musculoskeletal Tumor Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310009, People's Republic of China; Institute of Orthopedic Research, Zhejiang University, Hangzhou 310009, People's Republic of China; Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, People's Republic of China.
| |
Collapse
|
8
|
Ma Y, Jiang Q, Yang B, Hu X, Shen G, Shen W, Xu J. Platelet mitochondria, a potent immune mediator in neurological diseases. Front Physiol 2023; 14:1210509. [PMID: 37719457 PMCID: PMC10502307 DOI: 10.3389/fphys.2023.1210509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 08/17/2023] [Indexed: 09/19/2023] Open
Abstract
Dysfunction of the immune response is regarded as a prominent feature of neurological diseases, including neurodegenerative diseases, malignant tumors, acute neurotraumatic insult, and cerebral ischemic/hemorrhagic diseases. Platelets play a fundamental role in normal hemostasis and thrombosis. Beyond those normal functions, platelets are hyperactivated and contribute crucially to inflammation and immune responses in the central nervous system (CNS). Mitochondria are pivotal organelles in platelets and are responsible for generating most of the ATP that is used for platelet activation and aggregation (clumping). Notably, platelet mitochondria show marked morphological and functional alterations under heightened inflammatory/oxidative stimulation. Mitochondrial dysfunction not only leads to platelet damage and apoptosis but also further aggravates immune responses. Improving mitochondrial function is hopefully an effective strategy for treating neurological diseases. In this review, the authors discuss the immunomodulatory roles of platelet-derived mitochondria (PLT-mitos) in neurological diseases and summarize the neuroprotective effects of platelet mitochondria transplantation.
Collapse
Affiliation(s)
- Yan Ma
- Transfusion Research Department, Wuhan Blood Center, Wuhan, Hubei, China
- Institute of Blood Transfusion of Hubei Province, Wuhan Blood Center, Wuhan, Hubei, China
- Wuhan National Laboratory for Optoelectronics and School of Physics, Huazhong University of Science and Technology, Wuhan, China
| | - Qian Jiang
- Transfusion Research Department, Wuhan Blood Center, Wuhan, Hubei, China
- Institute of Blood Transfusion of Hubei Province, Wuhan Blood Center, Wuhan, Hubei, China
- Wuhan National Laboratory for Optoelectronics and School of Physics, Huazhong University of Science and Technology, Wuhan, China
| | - Bingxin Yang
- Wuhan Puai Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xiaoyu Hu
- Transfusion Research Department, Wuhan Blood Center, Wuhan, Hubei, China
- Institute of Blood Transfusion of Hubei Province, Wuhan Blood Center, Wuhan, Hubei, China
- Wuhan National Laboratory for Optoelectronics and School of Physics, Huazhong University of Science and Technology, Wuhan, China
| | - Gang Shen
- Transfusion Research Department, Wuhan Blood Center, Wuhan, Hubei, China
- Institute of Blood Transfusion of Hubei Province, Wuhan Blood Center, Wuhan, Hubei, China
| | - Wei Shen
- Wuhan Puai Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jing Xu
- Wuhan Blood Center, Wuhan, Hubei, China
| |
Collapse
|
9
|
Dong W, Zhang W, Yuan L, Xie Y, Li Y, Li K, Zhu W. Rescuers from the Other Shore: Intercellular Mitochondrial Transfer and Its Implications in Central Nervous System Injury and Diseases. Cell Mol Neurobiol 2023; 43:2525-2540. [PMID: 36867301 PMCID: PMC11410152 DOI: 10.1007/s10571-023-01331-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Accepted: 02/20/2023] [Indexed: 03/04/2023]
Abstract
As the powerhouse and core of cellular metabolism and survival, mitochondria are the essential organelle in mammalian cells and maintain cellular homeostasis by changing their content and morphology to meet demands through mitochondrial quality control. It has been observed that mitochondria can move between cells under physiological and pathophysiological conditions, which provides a novel strategy for preserving mitochondrial homeostasis and also a therapeutic target for applications in clinical settings. Therefore, in this review, we will summarize currently known mechanisms of intercellular mitochondrial transfer, including modes, triggers, and functions. Due to the highly demanded energy and indispensable intercellular linkages of the central nervous system (CNS), we highlight the mitochondrial transfer in CNS. We also discuss future application possibilities and difficulties that need to be addressed in the treatment of CNS injury and diseases. This clarification should shed light on its potential clinical applications as a promising therapeutic target in neurological diseases. Intercellular mitochondrial transfer maintains the homeostasis of central nervous system (CNS), and its alteration is related to several neurological diseases. Supplementing exogenous mitochondrial donor cells and mitochondria, or utilizing some medications to regulate the process of transfer might mitigate the disease and injury.
Collapse
Affiliation(s)
- Weichen Dong
- Department of Neurology, Affiliated Jinling Hospital, Medical School, Nanjing University, 305 East Zhongshan Road, Nanjing, 210002, Jiangsu Province, China
- Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, 22 Hankou Road, Nanjing, 210093, Jiangsu Province, China
- State Key Laboratory of Pharmaceutical Biotechnology, Division of Iron Metabolism and Mitochondrial Function, Medical School, Nanjing University, 22 Hankou Road, Nanjing, 210093, Jiangsu Province, China
| | - Wenxin Zhang
- Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, 22 Hankou Road, Nanjing, 210093, Jiangsu Province, China
- State Key Laboratory of Pharmaceutical Biotechnology, Division of Iron Metabolism and Mitochondrial Function, Medical School, Nanjing University, 22 Hankou Road, Nanjing, 210093, Jiangsu Province, China
| | - Linying Yuan
- Department of Neurology, Affiliated Jinling Hospital, Medical School, Nanjing University, 305 East Zhongshan Road, Nanjing, 210002, Jiangsu Province, China
| | - Yi Xie
- Department of Neurology, Affiliated Jinling Hospital, Medical School, Nanjing University, 305 East Zhongshan Road, Nanjing, 210002, Jiangsu Province, China
| | - Yunzi Li
- Department of Neurology, Affiliated Jinling Hospital, Medical School, Nanjing University, 305 East Zhongshan Road, Nanjing, 210002, Jiangsu Province, China
| | - Kuanyu Li
- Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, 22 Hankou Road, Nanjing, 210093, Jiangsu Province, China.
- State Key Laboratory of Pharmaceutical Biotechnology, Division of Iron Metabolism and Mitochondrial Function, Medical School, Nanjing University, 22 Hankou Road, Nanjing, 210093, Jiangsu Province, China.
| | - Wusheng Zhu
- Department of Neurology, Affiliated Jinling Hospital, Medical School, Nanjing University, 305 East Zhongshan Road, Nanjing, 210002, Jiangsu Province, China.
| |
Collapse
|
10
|
Platelets Facilitate Wound Healing by Mitochondrial Transfer and Reducing Oxidative Stress in Endothelial Cells. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2023; 2023:2345279. [PMID: 36860732 PMCID: PMC9970712 DOI: 10.1155/2023/2345279] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 01/20/2023] [Accepted: 02/01/2023] [Indexed: 02/22/2023]
Abstract
As a critical member in wound healing, vascular endothelial cells (ECs) impaired under high levels of reactive oxygen species (ROS) would hamper neovascularization. Mitochondria transfer can reduce intracellular ROS damage under pathological condition. Meanwhile, platelets can release mitochondria and alleviate oxidative stress. However, the mechanism by which platelets promote cell survival and reduce oxidative stress damage has not been clarified. Here, first, we selected ultrasound as the best method for subsequent experiments by detecting the growth factors and mitochondria released from manipulation platelet concentrates (PCs), as well as the effect of manipulation PCs on the proliferation and migration of HUVECs. Then, we found that sonicate platelet concentrates (SPC) decreased the level of ROS in HUVECs treated with hydrogen peroxide in advance, increased mitochondrial membrane potential, and reduced apoptosis. By transmission electron microscope, we saw that two kinds of mitochondria, free or wrapped in vesicles, were released by activated platelets. In addition, we explored that platelet-derived mitochondria were transferred to HUVECs partly by means of dynamin-dependent clathrin-mediated endocytosis. Consistently, we determined that platelet-derived mitochondria reduced apoptosis of HUVECs caused by oxidative stress. What is more, we screened survivin as the target of platelet-derived mitochondria via high-throughput sequencing. Finally, we demonstrated that platelet-derived mitochondria promoted wound healing in vivo. Overall, these findings revealed that platelets are important donors of mitochondria, and platelet-derived mitochondria can promote wound healing by reducing apoptosis caused by oxidative stress in vascular endothelial cells. And survivin is a potential target. These results further expand the knowledge of the platelet function and provide new insights into the role of platelet-derived mitochondria in wound healing.
Collapse
|
11
|
Zhao Y, Veysman B. Revisiting the Pathogenesis of Type 1 Diabetes: Importance of Neural Input to Pancreatic Islets and the Therapeutic Capability of Stem Cell Educator TM Therapy to Restore Their Integrity. Biomedicines 2023; 11:594. [PMID: 36831130 PMCID: PMC9952924 DOI: 10.3390/biomedicines11020594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 02/08/2023] [Accepted: 02/14/2023] [Indexed: 02/19/2023] Open
Abstract
Type 1 diabetes (T1D) is an autoimmune disease with a shortage of islet β cells. To date, the etiology of T1D remains elusive. Increasing clinical evidence and animal studies demonstrate that autoimmune cells are directed against the nervous system of pancreatic islets, contributing to the development of T1D. Therefore, it highlights the necessity to explore novel clinical approaches to fundamentally correct the T1D autoimmunity not only focusing on islet β cells but also on protecting the islet nervous system. This allows the restoration of the integrity of islet innervation and the normal islet β-cell function. To address these issues, we developed a novel technology designated the Stem Cell Educator TM therapy, based on immune education by human cord-blood-derived multipotent stem cells (CB-SC). International amulticenter clinical trials demonstrated its clinical safety and efficacy to treat T1D and other autoimmune diseases. Stem Cell Educator TM therapy may have the potential to revolutionize the treatment of T1D, without the safety and ethical concerns associated with conventional immune and/or stem cell-based therapies.
Collapse
Affiliation(s)
- Yong Zhao
- Throne Biotechnologies, Paramus, NJ 07652, USA
| | | |
Collapse
|
12
|
Song X, Hu W, Yu H, Zhao L, Zhao Y, Zhao X, Xue HH, Zhao Y. Little to no expression of angiotensin-converting enzyme-2 on most human peripheral blood immune cells but highly expressed on tissue macrophages. Cytometry A 2023; 103:136-145. [PMID: 33280254 DOI: 10.1002/cyto.a.24285] [Citation(s) in RCA: 78] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 11/21/2020] [Accepted: 11/30/2020] [Indexed: 02/06/2023]
Abstract
Angiotensin-converting enzyme-2 (ACE2) has been recognized as the binding receptor for the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Flow cytometry demonstrated that there was little to no expression of ACE2 on most of the human peripheral blood-derived immune cells including CD4+ T, CD8+ T, activated CD4+ /CD8+ T, Tregs, Th17, NKT, B, NK cells, monocytes, dendritic cells, and granulocytes. There was no ACE2 expression on platelets and very low level of ACE2 protein expression on the surface of human primary pulmonary alveolar epithelial cells. The ACE2 expression was markedly upregulated on the activated type 1 macrophages (M1). Immunohistochemistry demonstrated high expressions of ACE2 on human tissue macrophages, such as alveolar macrophages, Kupffer cells within livers, and microglial cells in brain at steady state. The data suggest that alveolar macrophages, as the frontline immune cells, may be directly targeted by the SARS-CoV-2 infection and therefore need to be considered for the prevention and treatment of COVID-19.
Collapse
Affiliation(s)
- Xiang Song
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, New Jersey, USA
| | - Wei Hu
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, New Jersey, USA
| | - Haibo Yu
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, New Jersey, USA
| | - Laura Zhao
- Tianhe Stem Cell Biotechnologies Inc., Paramus, New Jersey, USA
| | - Yeqian Zhao
- Tianhe Stem Cell Biotechnologies Inc., Paramus, New Jersey, USA
| | - Xin Zhao
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, New Jersey, USA
| | - Hai-Hui Xue
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, New Jersey, USA
| | - Yong Zhao
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, New Jersey, USA
| |
Collapse
|
13
|
Sanchez-Rangel E, Deajon-Jackson J, Hwang JJ. Pathophysiology and management of hypoglycemia in diabetes. Ann N Y Acad Sci 2022; 1518:25-46. [PMID: 36202764 DOI: 10.1111/nyas.14904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
In the century since the discovery of insulin, diabetes has changed from an early death sentence to a manageable chronic disease. This change in longevity and duration of diabetes coupled with significant advances in therapeutic options for patients has fundamentally changed the landscape of diabetes management, particularly in patients with type 1 diabetes mellitus. However, hypoglycemia remains a major barrier to achieving optimal glycemic control. Current understanding of the mechanisms of hypoglycemia has expanded to include not only counter-regulatory hormonal responses but also direct changes in brain glucose, fuel sensing, and utilization, as well as changes in neural networks that modulate behavior, mood, and cognition. Different strategies to prevent and treat hypoglycemia have been developed, including educational strategies, new insulin formulations, delivery devices, novel technologies, and pharmacologic targets. This review article will discuss current literature contributing to our understanding of the myriad of factors that lead to the development of clinically meaningful hypoglycemia and review established and novel therapies for the prevention and treatment of hypoglycemia.
Collapse
Affiliation(s)
- Elizabeth Sanchez-Rangel
- Department of Internal Medicine, Section of Endocrinology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Jelani Deajon-Jackson
- Department of Internal Medicine, Section of Endocrinology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Janice Jin Hwang
- Department of Internal Medicine, Section of Endocrinology, Yale University School of Medicine, New Haven, Connecticut, USA.,Division of Endocrinology, Department of Internal Medicine, University of North Carolina - Chapel Hill, Chapel Hill, North Carolina, USA
| |
Collapse
|
14
|
Flotyńska J, Klause D, Kulecki M, Cieluch A, Chomicka-Pawlak R, Zozulińska-Ziółkiewicz D, Uruska A. Higher NADH Dehydrogenase [Ubiquinone] Iron–Sulfur Protein 8 (NDUFS8) Serum Levels Correlate with Better Insulin Sensitivity in Type 1 Diabetes. Curr Issues Mol Biol 2022; 44:3872-3883. [PMID: 36135178 PMCID: PMC9497649 DOI: 10.3390/cimb44090266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/11/2022] [Accepted: 08/17/2022] [Indexed: 11/16/2022] Open
Abstract
Objective: The aim of the study was to evaluate NADH dehydrogenase [ubiquinone] iron–sulfur protein 8 (NDUFS8) serum concentration as a marker of Complex I, and the relationship with insulin resistance in type 1 diabetes mellitus (T1DM). Design and methods: Participants were adults with T1DM, recruited over the course of 1 year (2018–2019). NDUFS8 protein serum concentration was measured using the ELISA test. Insulin resistance was evaluated with indirect marker estimated glucose disposal rate (eGDR). The group was divided on the base of median value of eGDR (higher eGDR—better insulin sensitivity). Results: The study group consists of 12 women and 24 men. Medians of eGDR and NDUFS8 protein concentration are 7.6 (5.58–8.99) mg/kg/min and 2.25 (0.72–3.81) ng/mL, respectively. The group with higher insulin sensitivity has higher NDUFS8 protein serum concentration, lower waist to hip ratio (WHR), body mass index (BMI), and they are younger. A negative correlation is observed between NDUFS8 protein serum concentration and WHR (rs = −0.35, p = 0.03), whereas a positive correlation is observed between NDUFS8 protein serum concentration and eGDR (rs = 0.43, p = 0.008). Univariate logistic regression shows a significant association between insulin sensitivity and lower age, as well as a higher NDUFS8 serum level. A multivariate logistic regression model confirms the significance (AOR 2.38 (1.04–5.48). p = 0.042). Multivariate linear regression confirms a significant association between insulin sensitivity and better mitochondrial function (beta = 0.54, p = 0.003), independent of age, duration of diabetes, and smoking. Conclusions: Higher NDUFS8 protein serum concentration is associated with higher insulin sensitivity among adults with T1DM.
Collapse
Affiliation(s)
- Justyna Flotyńska
- Department of Internal Medicine and Diabetology, Poznan University of Medical Sciences, Raszeja Hospital, Mickiewicza 2, 60-834 Poznan, Poland
- Doctoral School, Poznan University of Medical Sciences, Collegium Stomatologicum, Bukowska 70, 60-812 Poznan, Poland
- Correspondence: ; Tel.: +48-61-8474579
| | - Daria Klause
- Department of Internal Medicine and Diabetology, Poznan University of Medical Sciences, Raszeja Hospital, Mickiewicza 2, 60-834 Poznan, Poland
| | - Michał Kulecki
- Department of Internal Medicine and Diabetology, Poznan University of Medical Sciences, Raszeja Hospital, Mickiewicza 2, 60-834 Poznan, Poland
| | - Aleksandra Cieluch
- Department of Internal Medicine and Diabetology, Poznan University of Medical Sciences, Raszeja Hospital, Mickiewicza 2, 60-834 Poznan, Poland
| | - Regina Chomicka-Pawlak
- Department of Hypertensiology, Angiology and Internal Medicine, Poznan University of Medical Sciences, University Hospital of Lord’s Transfiguration, Długa ½, 61-848 Poznan, Poland
| | - Dorota Zozulińska-Ziółkiewicz
- Department of Internal Medicine and Diabetology, Poznan University of Medical Sciences, Raszeja Hospital, Mickiewicza 2, 60-834 Poznan, Poland
| | - Aleksandra Uruska
- Department of Internal Medicine and Diabetology, Poznan University of Medical Sciences, Raszeja Hospital, Mickiewicza 2, 60-834 Poznan, Poland
| |
Collapse
|
15
|
Velarde F, Ezquerra S, Delbruyere X, Caicedo A, Hidalgo Y, Khoury M. Mesenchymal stem cell-mediated transfer of mitochondria: mechanisms and functional impact. Cell Mol Life Sci 2022; 79:177. [PMID: 35247083 PMCID: PMC11073024 DOI: 10.1007/s00018-022-04207-3] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 01/27/2022] [Accepted: 02/11/2022] [Indexed: 12/13/2022]
Abstract
There is a steadily growing interest in the use of mitochondria as therapeutic agents. The use of mitochondria derived from mesenchymal stem/stromal cells (MSCs) for therapeutic purposes represents an innovative approach to treat many diseases (immune deregulation, inflammation-related disorders, wound healing, ischemic events, and aging) with an increasing amount of promising evidence, ranging from preclinical to clinical research. Furthermore, the eventual reversal, induced by the intercellular mitochondrial transfer, of the metabolic and pro-inflammatory profile, opens new avenues to the understanding of diseases' etiology, their relation to both systemic and local risk factors, and also leads to new therapeutic tools for the control of inflammatory and degenerative diseases. To this end, we illustrate in this review, the triggers and mechanisms behind the transfer of mitochondria employed by MSCs and the underlying benefits as well as the possible adverse effects of MSCs mitochondrial exchange. We relay the rationale and opportunities for the use of these organelles in the clinic as cell-based product.
Collapse
Affiliation(s)
- Francesca Velarde
- IMPACT, Center of Interventional Medicine for Precision and Advanced Cellular Therapy, Santiago, Chile
- Laboratory of Nano-Regenerative Medicine, Faculty of Medicine, Universidad de los Andes, Santiago, Chile
- Cells for Cells and REGENERO, The Chilean Consortium for Regenerative Medicine, Santiago, Chile
- Faculty of Medicine, Universidad de los Andes, Santiago, Chile
| | - Sarah Ezquerra
- IMPACT, Center of Interventional Medicine for Precision and Advanced Cellular Therapy, Santiago, Chile
- Laboratory of Nano-Regenerative Medicine, Faculty of Medicine, Universidad de los Andes, Santiago, Chile
- Cells for Cells and REGENERO, The Chilean Consortium for Regenerative Medicine, Santiago, Chile
| | - Xavier Delbruyere
- IMPACT, Center of Interventional Medicine for Precision and Advanced Cellular Therapy, Santiago, Chile
- Laboratory of Nano-Regenerative Medicine, Faculty of Medicine, Universidad de los Andes, Santiago, Chile
- Cells for Cells and REGENERO, The Chilean Consortium for Regenerative Medicine, Santiago, Chile
| | - Andres Caicedo
- Universidad San Francisco de Quito USFQ, Colegio de Ciencias de la Salud, Escuela de Medicina, Quito, Ecuador
- Universidad San Francisco de Quito USFQ, Instituto de Investigaciones en Biomedicina iBioMed, Quito, Ecuador
- Mito-Act Research Consortium, Quito, Ecuador
- Sistemas Médicos SIME, Universidad San Francisco de Quito USFQ, Quito, Ecuador
| | - Yessia Hidalgo
- IMPACT, Center of Interventional Medicine for Precision and Advanced Cellular Therapy, Santiago, Chile.
- Laboratory of Nano-Regenerative Medicine, Faculty of Medicine, Universidad de los Andes, Santiago, Chile.
- Cells for Cells and REGENERO, The Chilean Consortium for Regenerative Medicine, Santiago, Chile.
| | - Maroun Khoury
- IMPACT, Center of Interventional Medicine for Precision and Advanced Cellular Therapy, Santiago, Chile.
- Laboratory of Nano-Regenerative Medicine, Faculty of Medicine, Universidad de los Andes, Santiago, Chile.
- Cells for Cells and REGENERO, The Chilean Consortium for Regenerative Medicine, Santiago, Chile.
| |
Collapse
|
16
|
Zambrano K, Barba D, Castillo K, Noboa L, Argueta-Zamora D, Robayo P, Arizaga E, Caicedo A, Gavilanes AWD. Fighting Parkinson's disease: the return of the mitochondria. Mitochondrion 2022; 64:34-44. [PMID: 35218960 DOI: 10.1016/j.mito.2022.02.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 02/04/2022] [Accepted: 02/14/2022] [Indexed: 12/18/2022]
Abstract
Parkinson's disease (PD) is the most common neurodegenerative movement disorder, worldwide. PD neuro-energetically affects the extrapyramidal system, by the progressive loss of striatal dopaminergic neurons in the substantia nigra pars compacta, leading to motor impairment. During the progression of PD, there will be an increase in mitochondrial dysfunction, reactive oxygen species (ROS), stress and accumulation of α-synuclein in neurons. This results in mitochondrial mutations altering their function and fission-fusion mechanisms and central nervous system (CNS) degeneration. Intracellular mitochondrial dysfunction has been studied for a long time in PD due to the decline of mitochondrial dynamics inside neurons. Mitochondrial damage-associated molecular patterns (DAMPs) have been known to contribute to several CNS pathologies especially PD pathogenesis. New and exciting evidence regarding the exchange of mitochondria between healthy to damaged cells in the central nervous system (CNS) and the therapeutic use of the artificial mitochondrial transfer/transplant (AMT) marked a return of this organelle to develop innovative therapeutic procedures for PD. The focus of this review aims to shed light on the role of mitochondria, both intra and extracellularly in PD, and how AMT could be used to generate new potential therapies in the fight against PD. Moreover, we suggest that mitochondrial therapy could work as a preventative measure, motivating the field to move towards this goal.
Collapse
Affiliation(s)
- Kevin Zambrano
- Universidad San Francisco de Quito USFQ, Colegio de Ciencias de la Salud, Escuela de Medicina, Quito, Ecuador; Universidad San Francisco de Quito USFQ, Instituto de Investigaciones en Biomedicina, Quito, Ecuador; School for Mental Health and Neuroscience (MHeNs), Maastricht University, Maastricht, The Netherlands; Mito-Act Research Consortium, Quito, Ecuador; Instituto de Neurociencias, Universidad San Francisco de Quito USFQ, Quito, Ecuador
| | - Diego Barba
- Universidad San Francisco de Quito USFQ, Colegio de Ciencias de la Salud, Escuela de Medicina, Quito, Ecuador; Universidad San Francisco de Quito USFQ, Instituto de Investigaciones en Biomedicina, Quito, Ecuador; Mito-Act Research Consortium, Quito, Ecuador
| | - Karina Castillo
- Universidad San Francisco de Quito USFQ, Colegio de Ciencias de la Salud, Escuela de Medicina, Quito, Ecuador; Universidad San Francisco de Quito USFQ, Instituto de Investigaciones en Biomedicina, Quito, Ecuador
| | - Luis Noboa
- Universidad San Francisco de Quito USFQ, Colegio de Ciencias de la Salud, Escuela de Medicina, Quito, Ecuador
| | | | - Paola Robayo
- Universidad San Francisco de Quito USFQ, Colegio de Ciencias de la Salud, Escuela de Medicina, Quito, Ecuador; Universidad San Francisco de Quito USFQ, Instituto de Investigaciones en Biomedicina, Quito, Ecuador
| | - Eduardo Arizaga
- Universidad San Francisco de Quito USFQ, Colegio de Ciencias de la Salud, Escuela de Medicina, Quito, Ecuador
| | - Andres Caicedo
- Universidad San Francisco de Quito USFQ, Colegio de Ciencias de la Salud, Escuela de Medicina, Quito, Ecuador; Universidad San Francisco de Quito USFQ, Instituto de Investigaciones en Biomedicina, Quito, Ecuador; School for Mental Health and Neuroscience (MHeNs), Maastricht University, Maastricht, The Netherlands; Mito-Act Research Consortium, Quito, Ecuador; 7 Sistemas Médicos SIME, Universidad San Francisco de Quito, Quito, Ecuador
| | - Antonio W D Gavilanes
- Universidad San Francisco de Quito USFQ, Colegio de Ciencias de la Salud, Escuela de Medicina, Quito, Ecuador; Universidad San Francisco de Quito USFQ, Instituto de Investigaciones en Biomedicina, Quito, Ecuador
| |
Collapse
|
17
|
Zhao Y, Knight CM, Jiang Z, Delgado E, Van Hoven AM, Ghanny S, Zhou Z, Zhou H, Yu H, Hu W, Li H, Li X, Perez-Basterrechea M, Zhao L, Zhao Y, Giangola J, Weinberg R, Mazzone T. Stem Cell Educator therapy in type 1 diabetes: From the bench to clinical trials. Clin Exp Rheumatol 2022; 21:103058. [PMID: 35108619 DOI: 10.1016/j.autrev.2022.103058] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Accepted: 01/25/2022] [Indexed: 12/11/2022]
Abstract
Type 1 diabetes (T1D) is an autoimmune disease that causes a deficit of pancreatic islet β cells. Millions of individuals worldwide have T1D, and its incidence increases annually. Recent clinical trials have highlighted the limits of conventional immunotherapy in T1D and underscore the need for novel treatments that not only overcome multiple immune dysfunctions, but also help restore islet β-cell function. To address these two key issues, we have developed a unique and novel procedure designated the Stem Cell Educator therapy, based on the immune education by cord-blood-derived multipotent stem cells (CB-SC). Over the last 10 years, this technology has been evaluated through international multi-center clinical studies, which have demonstrated its clinical safety and efficacy in T1D and other autoimmune diseases. Mechanistic studies revealed that Educator therapy could fundamentally correct the autoimmunity and induce immune tolerance through multiple molecular and cellular mechanisms such as the expression of a master transcription factor autoimmune regulator (AIRE) in CB-SC for T-cell modulation, an expression of Galectin-9 on CB-SC to suppress activated B cells, and secretion of CB-SC-derived exosomes to polarize human blood monocytes/macrophages into type 2 macrophages. Educator therapy is the leading immunotherapy to date to safely and efficiently correct autoimmunity and restore β cell function in T1D patients.
Collapse
Affiliation(s)
- Yong Zhao
- Throne Biotechnologies, Paramus, NJ 07652, USA.
| | - Colette M Knight
- Hackensack Meridian School of Medicine, Inserra Family Diabetes Institute, Department of Medicine, Hackensack University Medical Center, Hackensack, NJ 07601, USA.
| | - Zhaoshun Jiang
- Department of Endocrinology, The 960th Hospital of the PLA Joint Logistics Support Force, Jinan, Shandong 250031, China.
| | - Elias Delgado
- Department of Endocrinology and Nutrition, Hospital Universitario Central de Asturias (HUCA), Department of Medicine, University of Oviedo, Health Research Institute of the Principality of Asturias (ISPA), Oviedo 33006, Spain.
| | - Anne Marie Van Hoven
- Hackensack Meridian School of Medicine, Inserra Family Diabetes Institute, Department of Medicine, Hackensack University Medical Center, Hackensack, NJ 07601, USA
| | - Steven Ghanny
- Department of Pediatric, Division of Endocrinology and Diabetes, Hackensack University Medical Center, Hackensack, NJ 07601, USA
| | - Zhiguang Zhou
- Department of Metabolism and Endocrinology, National Clinical Research Center for Metabolic Diseases, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Huimin Zhou
- Section of Endocrinology, The First Affiliated Hospital of Hebei Medical University, Shijiazhuang, Hebei 050031, China
| | - Haibo Yu
- Department of Metabolism and Endocrinology, National Clinical Research Center for Metabolic Diseases, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Wei Hu
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, USA
| | - Heng Li
- Section of Neurology, Jinan Central Hospital, Shandong University, Jinan, Shandong 250020, China
| | - Xia Li
- Department of Metabolism and Endocrinology, National Clinical Research Center for Metabolic Diseases, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Marcos Perez-Basterrechea
- Unit of Cell Therapy and Regenerative Medicine, Hematology and Hemotherapy, Central University Hospital of Asturias, Health Research Institute of the Principality of Asturias (ISPA), Oviedo 33006, Spain
| | - Laura Zhao
- Throne Biotechnologies, Paramus, NJ 07652, USA
| | - Yeqian Zhao
- Throne Biotechnologies, Paramus, NJ 07652, USA
| | - Joseph Giangola
- Hackensack Meridian School of Medicine, Inserra Family Diabetes Institute, Department of Medicine, Hackensack University Medical Center, Hackensack, NJ 07601, USA
| | - Rona Weinberg
- MPN Laboratory, New York Blood Center, New York, NY 10065, USA
| | | |
Collapse
|
18
|
Jougleux JL, Léger JL, Djeungoue-Petga MA, Roy P, Soucy MFN, Veilleux V, Hébert MPA, Hebert-Chatelain E, Boudreau LH. Evaluating the mitochondrial activity and inflammatory state of dimethyl sulfoxide differentiated PLB-985 cells. Mol Immunol 2021; 135:1-11. [PMID: 33838400 DOI: 10.1016/j.molimm.2021.03.026] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 03/14/2021] [Accepted: 03/31/2021] [Indexed: 12/19/2022]
Abstract
Neutrophils play a key role in the innate immunity with their ability to generate and release inflammatory mediators that promote the inflammatory response and consequently restore the hemostasis. As active participants in several steps of the normal inflammatory response, neutrophils are also involved in chronic inflammatory diseases such as asthma, atherosclerosis, and arthritis. Given their dual role in the modulation of inflammation, regulating the inflammatory response of neutrophils has been suggested as an important therapeutic approach by numerous researchers. The neutrophils have a relatively short lifespan, which can be problematic for some in vitro experiments. To address this issue, researchers have used the human monomyelocyte cell line PLB-985 as an in vitro model for exploratory experiments addressing neutrophil-related physiological functions. PLB-985 cells can be differentiated into a neutrophil-like phenotype upon exposure to several agonists, including dimethyl sulfoxide (DMSO). Whether this differentiation of PLB-985 affects important features related to the neutrophil's normal functions (i.e., mitochondrial activity, eicosanoid production) remains elusive, and characterizing these changes will be the focal point of this study. Our results indicate that the differentiation affected the proliferation of PLB-985 cells, without inducing apoptosis. A significant decrease in mitochondrial respiration was observed in differentiated PLB-985 cells. However, the overall mitochondria content was not affected. Immunoblotting with mitochondrial antibodies revealed a strong modulation of the succinate dehydrogenase A, superoxide dismutase 2, ubiquinol-cytochrome c reductase core protein 2 and ATP synthase subunit α in differentiated PLB-985 cells. Finally, eicosanoids (leukotriene B4, 12-hydroxyheptadecatrienoic and 15-hydroxyeicosatetraenoic acids) production was significantly increased in differentiated cells. In summary, our data demonstrate that the differentiation process of PLB-985 cells does not impact their viability despite a reduced respiratory state of the cells. This process is also accompanied by modulation of the inflammatory state of the cell. Of importance, our data suggest that PLB-985 cells could be suitable in vitro candidates to study mitochondrial-related dysfunctions in inflammatory diseases.
Collapse
Affiliation(s)
- Jean-Luc Jougleux
- Department of Chemistry and Biochemistry, Université de Moncton, Moncton, NB, Canada; New Brunswick Center for Precision Medicine, Moncton, NB, Canada
| | - Jacob L Léger
- Department of Chemistry and Biochemistry, Université de Moncton, Moncton, NB, Canada; New Brunswick Center for Precision Medicine, Moncton, NB, Canada
| | - Marie-Ange Djeungoue-Petga
- Canada Research Chair in Mitochondrial Signaling and Physiopathology, Department of Biology, Université de Moncton, Moncton, NB, Canada; New Brunswick Center for Precision Medicine, Moncton, NB, Canada
| | - Patrick Roy
- Department of Chemistry and Biochemistry, Université de Moncton, Moncton, NB, Canada; New Brunswick Center for Precision Medicine, Moncton, NB, Canada
| | - Marie-France N Soucy
- Department of Chemistry and Biochemistry, Université de Moncton, Moncton, NB, Canada; New Brunswick Center for Precision Medicine, Moncton, NB, Canada
| | - Vanessa Veilleux
- Department of Chemistry and Biochemistry, Université de Moncton, Moncton, NB, Canada; New Brunswick Center for Precision Medicine, Moncton, NB, Canada
| | - Mathieu P A Hébert
- Department of Chemistry and Biochemistry, Université de Moncton, Moncton, NB, Canada; New Brunswick Center for Precision Medicine, Moncton, NB, Canada
| | - Etienne Hebert-Chatelain
- Canada Research Chair in Mitochondrial Signaling and Physiopathology, Department of Biology, Université de Moncton, Moncton, NB, Canada; New Brunswick Center for Precision Medicine, Moncton, NB, Canada
| | - Luc H Boudreau
- Department of Chemistry and Biochemistry, Université de Moncton, Moncton, NB, Canada; New Brunswick Center for Precision Medicine, Moncton, NB, Canada.
| |
Collapse
|
19
|
Liu J, Ting JP, Al-Azzam S, Ding Y, Afshar S. Therapeutic Advances in Diabetes, Autoimmune, and Neurological Diseases. Int J Mol Sci 2021; 22:ijms22062805. [PMID: 33802091 PMCID: PMC8001105 DOI: 10.3390/ijms22062805] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 03/02/2021] [Accepted: 03/06/2021] [Indexed: 02/08/2023] Open
Abstract
Since 2015, 170 small molecules, 60 antibody-based entities, 12 peptides, and 15 gene- or cell-therapies have been approved by FDA for diverse disease indications. Recent advancement in medicine is facilitated by identification of new targets and mechanisms of actions, advancement in discovery and development platforms, and the emergence of novel technologies. Early disease detection, precision intervention, and personalized treatments have revolutionized patient care in the last decade. In this review, we provide a comprehensive overview of current and emerging therapeutic modalities developed in the recent years. We focus on nine diseases in three major therapeutics areas, diabetes, autoimmune, and neurological disorders. The pathogenesis of each disease at physiological and molecular levels is discussed and recently approved drugs as well as drugs in the clinic are presented.
Collapse
Affiliation(s)
- Jinsha Liu
- Protein Engineering, Lilly Biotechnology Center, Eli Lilly and Company, San Diego, CA 92121, USA; (J.L.); (J.P.T.); (Y.D.)
| | - Joey Paolo Ting
- Protein Engineering, Lilly Biotechnology Center, Eli Lilly and Company, San Diego, CA 92121, USA; (J.L.); (J.P.T.); (Y.D.)
| | - Shams Al-Azzam
- Professional Scientific Services, Eurofins Lancaster Laboratories, Lancaster, PA 17605, USA;
| | - Yun Ding
- Protein Engineering, Lilly Biotechnology Center, Eli Lilly and Company, San Diego, CA 92121, USA; (J.L.); (J.P.T.); (Y.D.)
| | - Sepideh Afshar
- Protein Engineering, Lilly Biotechnology Center, Eli Lilly and Company, San Diego, CA 92121, USA; (J.L.); (J.P.T.); (Y.D.)
- Correspondence:
| |
Collapse
|
20
|
Su YJ, Wang PW, Weng SW. The Role of Mitochondria in Immune-Cell-Mediated Tissue Regeneration and Ageing. Int J Mol Sci 2021; 22:2668. [PMID: 33800867 PMCID: PMC7961648 DOI: 10.3390/ijms22052668] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 03/03/2021] [Indexed: 12/25/2022] Open
Abstract
During tissue injury events, the innate immune system responds immediately to alarms sent from the injured cells, and the adaptive immune system subsequently joins in the inflammatory reaction. The control mechanism of each immune reaction relies on the orchestration of different types of T cells and the activators, antigen-presenting cells, co-stimulatory molecules, and cytokines. Mitochondria are an intracellular signaling organelle and energy plant, which supply the energy requirement of the immune system and maintain the system activation with the production of reactive oxygen species (ROS). Extracellular mitochondria can elicit regenerative effects or serve as an activator of the immune cells to eliminate the damaged cells. Recent clarification of the cytosolic escape of mitochondrial DNA triggering innate immunity underscores the pivotal role of mitochondria in inflammation-related diseases. Human mesenchymal stem cells could transfer mitochondria through nanotubular structures to defective mitochondrial DNA cells. In recent years, mitochondrial therapy has shown promise in treating heart ischemic events, Parkinson's disease, and fulminating hepatitis. Taken together, these results emphasize the emerging role of mitochondria in immune-cell-mediated tissue regeneration and ageing.
Collapse
Affiliation(s)
- Yu-Jih Su
- Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan
- College of Medicine, Chang Gung University, Kaohsiung 833, Taiwan
- Center for Mitochondrial Research and Medicine, Kaohsiung Chang Gung Memorial Hospital, 123, Dapi Road, Niaosong District, Kaohsiung 833, Taiwan; (Y.-J.S.); (P.-W.W.)
| | - Pei-Wen Wang
- Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan
- College of Medicine, Chang Gung University, Kaohsiung 833, Taiwan
- Center for Mitochondrial Research and Medicine, Kaohsiung Chang Gung Memorial Hospital, 123, Dapi Road, Niaosong District, Kaohsiung 833, Taiwan; (Y.-J.S.); (P.-W.W.)
| | - Shao-Wen Weng
- Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan
- College of Medicine, Chang Gung University, Kaohsiung 833, Taiwan
- Center for Mitochondrial Research and Medicine, Kaohsiung Chang Gung Memorial Hospital, 123, Dapi Road, Niaosong District, Kaohsiung 833, Taiwan; (Y.-J.S.); (P.-W.W.)
| |
Collapse
|
21
|
Abstract
Purpose of Review The well-established crosstalk between hematopoietic stem cells (HSC) and bone marrow (BM) microenvironment is critical for the homeostasis and hematopoietic regeneration in response to blood formation emergencies. Past decade has witnessed that the intercellular communication mediated by the transfer of cytoplasmic material and organelles between cells can regenerate and/or repair the damaged cells. Mitochondria have recently emerged as a potential regulator of HSC fate. This review intends to discuss recent advances in the understanding of the mitochondrial dynamics, specifically focused on the role of mitochondrial transfer, in the maintenance of HSC activity with clear implications in stem cell transplantation and regenerative medicine. Recent Findings HSC are highly heterogeneous in their mitochondrial metabolism, and the quiescence and potency of HSC depend on the status of mitochondrial dynamics and the clearance of damaged mitochondria. Recent evidence has shown that in stress response, BM stromal cells transfer healthy mitochondria to HSC, facilitate HSC bioenergetics shift towards oxidative phosphorylation, and subsequently stimulate leukocyte expansion. Furthermore, metabolic rewiring following mitochondria transfer from HSPC to BM stromal cells likely to repair the damaged BM niche and accelerate limiting HSC transplantation post myeloablative conditioning.
Collapse
|
22
|
Levoux J, Prola A, Lafuste P, Gervais M, Chevallier N, Koumaiha Z, Kefi K, Braud L, Schmitt A, Yacia A, Schirmann A, Hersant B, Sid-Ahmed M, Ben Larbi S, Komrskova K, Rohlena J, Relaix F, Neuzil J, Rodriguez AM. Platelets Facilitate the Wound-Healing Capability of Mesenchymal Stem Cells by Mitochondrial Transfer and Metabolic Reprogramming. Cell Metab 2021; 33:283-299.e9. [PMID: 33400911 DOI: 10.1016/j.cmet.2020.12.006] [Citation(s) in RCA: 134] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 07/31/2020] [Accepted: 12/07/2020] [Indexed: 02/07/2023]
Abstract
Platelets are known to enhance the wound-healing activity of mesenchymal stem cells (MSCs). However, the mechanism by which platelets improve the therapeutic potential of MSCs has not been elucidated. Here, we provide evidence that, upon their activation, platelets transfer respiratory-competent mitochondria to MSCs primarily via dynamin-dependent clathrin-mediated endocytosis. We found that this process enhances the therapeutic efficacy of MSCs following their engraftment in several mouse models of tissue injury, including full-thickness cutaneous wound and dystrophic skeletal muscle. By combining in vitro and in vivo experiments, we demonstrate that platelet-derived mitochondria promote the pro-angiogenic activity of MSCs via their metabolic remodeling. Notably, we show that activation of the de novo fatty acid synthesis pathway is required for increased secretion of pro-angiogenic factors by platelet-preconditioned MSCs. These results reveal a new mechanism by which platelets potentiate MSC properties and underline the importance of testing platelet mitochondria quality prior to their clinical use.
Collapse
Affiliation(s)
- Jennyfer Levoux
- Université Paris-Est Créteil, INSERM, IMRB, 94010 Créteil, France
| | - Alexandre Prola
- Université Paris-Est Créteil, INSERM, IMRB, 94010 Créteil, France; EnvA, IMRB, 94700 Maisons-Alfort, France
| | - Peggy Lafuste
- Université Paris-Est Créteil, INSERM, IMRB, 94010 Créteil, France
| | - Marianne Gervais
- Université Paris-Est Créteil, INSERM, IMRB, 94010 Créteil, France
| | - Nathalie Chevallier
- Université Paris-Est Créteil, INSERM, IMRB, 94010 Créteil, France; Etablissement Français du Sang, 94017, Créteil, France
| | - Zeynab Koumaiha
- Université Paris-Est Créteil, INSERM, IMRB, 94010 Créteil, France
| | - Kaouthar Kefi
- Université Paris-Est Créteil, INSERM, IMRB, 94010 Créteil, France
| | - Laura Braud
- Université Paris-Est Créteil, INSERM, IMRB, 94010 Créteil, France
| | - Alain Schmitt
- Université de Paris, Institut Cochin, INSERM, CNRS, 75014, Paris, France
| | - Azzedine Yacia
- Université de Paris, Institut Cochin, INSERM, CNRS, 75014, Paris, France
| | | | - Barbara Hersant
- Université Paris-Est Créteil, INSERM, IMRB, 94010 Créteil, France; AP-HP, Hôpital Henri Mondor, A. Chenevier, Service de chirurgie plastique et maxillo-faciale, Créteil, France
| | - Mounia Sid-Ahmed
- Université Paris-Est Créteil, INSERM, IMRB, 94010 Créteil, France; AP-HP, Hôpital Henri Mondor, A. Chenevier, Service de chirurgie plastique et maxillo-faciale, Créteil, France
| | - Sabrina Ben Larbi
- Institut NeuroMyoGène, Université Claude Bernard - Lyon 1, University Lyon, CNRS UMR 5310, INSERM U1217, Lyon, France
| | - Katerina Komrskova
- Institute of Biotechnology, Czech Academy of Sciences, 252 50 Prague-West, Prague, Czech Republic; Department of Zoology, Faculty of Science, Charles University, 128 44 Prague 2, Czech Republic
| | - Jakub Rohlena
- Institute of Biotechnology, Czech Academy of Sciences, 252 50 Prague-West, Prague, Czech Republic
| | - Frederic Relaix
- Université Paris-Est Créteil, INSERM, IMRB, 94010 Créteil, France; EnvA, IMRB, 94700 Maisons-Alfort, France; APHP, Hôpitaux Universitaires Henri Mondor & Centre de Référence des Maladies Neuromusculaires GNMH, 94000, Créteil, France
| | - Jiri Neuzil
- Institute of Biotechnology, Czech Academy of Sciences, 252 50 Prague-West, Prague, Czech Republic; School of Medical Science, Griffith University, Southport, QLD 4222, Australia
| | | |
Collapse
|
23
|
Espino De la Fuente-Muñoz C, Arias C. The therapeutic potential of mitochondrial transplantation for the treatment of neurodegenerative disorders. Rev Neurosci 2020; 32:203-217. [PMID: 33550783 DOI: 10.1515/revneuro-2020-0068] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 09/29/2020] [Indexed: 02/07/2023]
Abstract
Mitochondrial activity is essential to support neural functions, and changes in the integrity and activity of the mitochondria can contribute to synaptic damage and neuronal death, especially in degenerative diseases associated with age, such as Alzheimer's and Parkinson's disease. Currently, different approaches are used to treat these conditions, and one strategy under research is mitochondrial transplantation. For years, mitochondria have been shown to be transferred between cells of different tissues. This process has allowed several attempts to develop transplantation schemes by isolating functional mitochondria and introducing them into damaged tissue in particular to counteract the harmful effects of myocardial ischemia. Recently, mitochondrial transfer between brain cells has also been reported, and thus, mitochondrial transplantation for disorders of the nervous system has begun to be investigated. In this review, we focus on the relevance of mitochondria in the nervous system, as well as some mitochondrial alterations that occur in neurodegenerative diseases associated with age. In addition, we describe studies that have performed mitochondrial transplantation in various tissues, and we emphasize the advances in mitochondrial transplantation aimed at treating diseases of the nervous system.
Collapse
Affiliation(s)
- César Espino De la Fuente-Muñoz
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, AP 70-228, 04510, Ciudad de México, México
| | - Clorinda Arias
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, AP 70-228, 04510, Ciudad de México, México
| |
Collapse
|
24
|
Yu H, Hu W, Song X, Zhao Y. Notch-HEY2 signaling pathway contributes to the differentiation of CD34 + hematopoietic-like stem cells from adult peripheral blood insulin-producing cells after the treatment with platelet-derived mitochondria. Mol Biol Rep 2020; 47:8347-8352. [PMID: 32997309 DOI: 10.1007/s11033-020-05874-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 09/28/2020] [Indexed: 11/30/2022]
Abstract
Previous works characterized a novel cell population from adult human peripheral blood, designated peripheral blood insulin-producing cells (PB-IPC). PB-IPC displayed the pluripotent potential of differentiations after the treatment with platelet-derived mitochondria and gave rise to three germ layer-derived cells such as the mitochondrion-induced CD34+ hematopoietic stem cells (HSC)-like cells (miCD34+ HSC). To determine the molecular mechanism underlying the differentiation of miCD34+ cells, mechanistic studies established that MitoTracker Deep Red-labeled mitochondria could enter into the PB-IPC in a dose-dependent manner. Blocking Notch signaling pathway with a γ-secretase inhibitor, DAPT, markedly inhibited the proliferation of PB-IPC and improved the differentiation of miCD34+ HSC. Additionally, treatment with platelet-derived mitochondria can reprogram the differentiation of PB-IPC into miCD34+ HSC through inhibition of the Notch/HEY2 signaling pathway, as demonstrated by blocking experiments with HEY2 small interfering RNA (siRNA). The data indicated that Notch signaling pathway contributes to the miCD34+ HSC differentiation, thus advancing our understanding of the mitochondrial reprogramming and the potential treatment of human hematopoietic disease.
Collapse
Affiliation(s)
- Haibo Yu
- Center for Discovery and Innovation, Hackensack Meridian Health, 340 Kingsland Street, Nutley, NJ, 07110, USA
| | - Wei Hu
- Center for Discovery and Innovation, Hackensack Meridian Health, 340 Kingsland Street, Nutley, NJ, 07110, USA
| | - Xiang Song
- Center for Discovery and Innovation, Hackensack Meridian Health, 340 Kingsland Street, Nutley, NJ, 07110, USA
| | - Yong Zhao
- Center for Discovery and Innovation, Hackensack Meridian Health, 340 Kingsland Street, Nutley, NJ, 07110, USA.
| |
Collapse
|
25
|
Immune Modulation of Platelet-Derived Mitochondria on Memory CD4 + T Cells in Humans. Int J Mol Sci 2020; 21:ijms21176295. [PMID: 32878069 PMCID: PMC7504222 DOI: 10.3390/ijms21176295] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 08/25/2020] [Accepted: 08/28/2020] [Indexed: 12/13/2022] Open
Abstract
CD4+ T cells are one of the key immune cells contributing to the immunopathogenesis of type 1 diabetes (T1D). Previous studies have reported that platelet-derived mitochondria suppress the proliferation of peripheral blood mononuclear cells (PBMC). To further characterize the immune modulation of platelet-derived mitochondria, the purified CD4+ T cells were treated, respectively, with platelet-derived mitochondria. The data demonstrated that MitoTracker Deep Red-labeled platelet-derived mitochondria could directly target CD4+ T cells through C-X-C motif chemokine receptor 4 (CXCR4) and its ligand stromal cell-derived factor-1 (SDF-1), regulating the anti-CD3/CD28 bead-activated CD4+ T cells. The result was an up-regulation of Naïve and central memory (TCM) CD4+ T cells, the down-regulation of effector memory (TEM) CD4+ T cells, and modulations of cytokine productions and gene expressions. Thus, platelet-derived mitochondria have a translational potential as novel immune modulators to treat T1D and other autoimmune diseases.
Collapse
|
26
|
Hu W, Song X, Yu H, Sun J, Zhao Y. Therapeutic Potentials of Extracellular Vesicles for the Treatment of Diabetes and Diabetic Complications. Int J Mol Sci 2020; 21:ijms21145163. [PMID: 32708290 PMCID: PMC7404127 DOI: 10.3390/ijms21145163] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 07/13/2020] [Accepted: 07/16/2020] [Indexed: 12/14/2022] Open
Abstract
Extracellular vesicles (EVs), including exosomes and microvesicles, are nano-to-micrometer vesicles released from nearly all cellular types. EVs comprise a mixture of bioactive molecules (e.g., mRNAs, miRNAs, lipids, and proteins) that can be transported to the targeted cells/tissues via the blood or lymph circulation. Recently, EVs have received increased attention, owing to their emerging roles in cell-to-cell communication, or as biomarkers with the therapeutic potential to replace cell-based therapy. Diabetes comprises a group of metabolic disorders characterized by hyperglycemia that cause the development of life-threatening complications. The impacts of conventional clinical treatment are generally limited and are followed by many side effects, including hypoglycemia, obesity, and damage to the liver and kidney. Recently, several studies have shown that EVs released by stem cells and immune cells can regulate gene expression in the recipient cells, thus providing a strategy to treat diabetes and its complications. In this review, we summarize the results from currently available studies, demonstrating the therapeutic potentials of EVs in diabetes and diabetic complications. Additionally, we highlight recommendations for future research.
Collapse
Affiliation(s)
- Wei Hu
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ 07110, USA; (W.H.); (X.S.); (H.Y.)
- Department of Chemistry and Chemistry Biology, Stevens Institute of Technology, Hoboken, NJ 07030, USA;
| | - Xiang Song
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ 07110, USA; (W.H.); (X.S.); (H.Y.)
| | - Haibo Yu
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ 07110, USA; (W.H.); (X.S.); (H.Y.)
| | - Jingyu Sun
- Department of Chemistry and Chemistry Biology, Stevens Institute of Technology, Hoboken, NJ 07030, USA;
| | - Yong Zhao
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ 07110, USA; (W.H.); (X.S.); (H.Y.)
- Correspondence: ; Tel.: +1-201-880-3460
| |
Collapse
|
27
|
Generation of Hematopoietic-Like Stem Cells from Adult Human Peripheral Blood Following Treatment with Platelet-Derived Mitochondria. Int J Mol Sci 2020; 21:ijms21124249. [PMID: 32549211 PMCID: PMC7352808 DOI: 10.3390/ijms21124249] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 06/06/2020] [Accepted: 06/11/2020] [Indexed: 02/07/2023] Open
Abstract
Adult stem cells represent a potential source for cellular therapy to treat serious human diseases. We characterized the insulin-producing cells from adult peripheral blood (designated PB-IPC), which displayed a unique phenotype. Mitochondria are normally located in the cellular cytoplasm, where they generate ATP to power the cell’s functions. Ex vivo and in vivo functional studies established that treatment with platelet-derived mitochondria can reprogram the transformation of adult PB-IPC into functional CD34+ hematopoietic stem cells (HSC)-like cells, leading to the production of blood cells such as T cells, B cells, monocytes/macrophages, granulocytes, red blood cells, and megakaryocytes (MKs)/platelets. These findings revealed a novel function of mitochondria in directly contributing to cellular reprogramming, thus overcoming the limitations and safety concerns of using conventional technologies to reprogram embryonic stem (ES) and induced pluripotent stem (iPS) cells in regenerative medicine.
Collapse
|
28
|
Yu H, Hu W, Song X, Zhao Y. Generation of Multipotent Stem Cells from Adult Human Peripheral Blood Following the Treatment with Platelet-Derived Mitochondria. Cells 2020; 9:cells9061350. [PMID: 32485922 PMCID: PMC7349571 DOI: 10.3390/cells9061350] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 05/26/2020] [Accepted: 05/28/2020] [Indexed: 12/19/2022] Open
Abstract
Autologous stem cells are highly preferred for cellular therapy to treat human diseases. Mitochondria are organelles normally located in cytoplasm. Our recent studies demonstrated the differentiation of adult peripheral blood-derived insulin-producing cells (designated PB-IPC) into hematopoietic-like cells after the treatment with platelet-derived mitochondria. To further explore the molecular mechanism and their therapeutic potentials, through confocal and electron microscopy, we found that mitochondria enter cells and directly penetrate the nucleus of PB-IPC after the treatment with platelet-derived mitochondria, where they can produce profound epigenetic changes as demonstrated by RNA-seq and PCR array. Ex vivo functional studies established that mitochondrion-induced PB-IPC (miPB-IPC) can give rise to retinal pigment epithelium (RPE) cells and neuronal cells in the presence of different inducers. Further colony analysis highlighted the multipotent capability of the differentiation of PB-IPC into three-germ layer-derived cells. Therefore, these data indicate a novel function of mitochondria in cellular reprogramming, leading to the generation of autologous multipotent stem cells for clinical applications.
Collapse
Affiliation(s)
| | | | | | - Yong Zhao
- Correspondence: ; Tel.: +201-880-3460
| |
Collapse
|
29
|
Song X, Hu W, Yu H, Wang H, Zhao Y, Korngold R, Zhao Y. Existence of Circulating Mitochondria in Human and Animal Peripheral Blood. Int J Mol Sci 2020; 21:ijms21062122. [PMID: 32204530 PMCID: PMC7139699 DOI: 10.3390/ijms21062122] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 03/13/2020] [Accepted: 03/17/2020] [Indexed: 12/18/2022] Open
Abstract
Mitochondria are usually located in the cytoplasm of cells where they generate adenosine triphosphate (ATP) to empower cellular functions. However, we found circulating mitochondria in human and animal blood. Electron microscopy confirmed the presence of mitochondria in adult human blood plasma. Flow cytometry analyses demonstrated that circulating mitochondria from the plasma of human cord blood and adult peripheral blood displayed the immune tolerance-associated membrane molecules such as CD270 and PD-L1 (programmed cell death-ligand 1). Similar data were obtained from fetal bovine serum (FBS) and horse serum of different vendors. Mitochondria remained detectable even after 56 °C heat inactivation. A real-time PCR array revealed purified mitochondria from animal sera expressed several genes that contribute to human T- and B-cell activation. Transwell experiments confirmed the migration capability of mitochondria through their expression of the chemokine receptor CXCR4 in responses to its ligand stromal-derived factor-1α (SDF-1α). Functional analysis established that human plasma mitochondria stimulated the proliferation of anti-CD3/CD28 bead-activated PBMC, up-regulated the percentage of activated CD4+ T and CD8+ T cells, and reduced the production of inflammatory cytokines. These findings suggested that the existence of circulating mitochondria in blood may function as a novel mediator for cell-cell communications and maintenance of homeostasis. Plasma-related products should be cautiously utilized in cell cultures due to the mitochondrial contamination.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Yong Zhao
- Correspondence: ; Tel.: +1-201-880-3460
| |
Collapse
|
30
|
Hu W, Song X, Yu H, Sun J, Zhao Y. Released Exosomes Contribute to the Immune Modulation of Cord Blood-Derived Stem Cells. Front Immunol 2020; 11:165. [PMID: 32161585 PMCID: PMC7052489 DOI: 10.3389/fimmu.2020.00165] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Accepted: 01/21/2020] [Indexed: 01/06/2023] Open
Abstract
Background: Clinical studies demonstrated the immune modulation of cord blood-derived stem cells (CB-SC) for the treatment of type 1 diabetes and other autoimmune diseases, with long-lasting clinical efficacy. To determine the molecular mechanisms underlying the immune modulation of CB-SC, the actions of exosomes released from CB-SC were explored in this study. Methods: Exosomes were isolated from CB-SC cultures using ultracentrifugation and confirmed with different markers. The activated T cells and purified monocytes from peripheral blood mononuclear cells (PBMC) were treated with CB-SC in the presence or absence of the purified exosomes, followed by functional and flow cytometry analysis of phenotypic changes with different immune cell markers. Results: CB-SC-derived exosomes displayed the exosome-specific markers including CD9, CD63, and Alix, at the size of 85.95 ± 22.57 nm. In comparison with the treatment of CB-SC, functional analysis demonstrated that the CB-SC-derived exosomes inhibited the proliferation of activated PBMC, reduced the production of inflammatory cytokines, downregulated the percentage of activated CD4+ T and CD8+ T cells, and increased the percentage of naive CD4+ T and CD8+ T cells. Using the fluorescence dye DiO-labeled exosomes, flow cytometry revealed that exosomes preferably bound to the monocytes in the PBMC, leading to an improvement of mitochondrial membrane potential of treated monocytes. Further study indicated that the purified monocytes gave rise to spindle-like macrophages displaying type 2 macrophage (M2) surface markers and upregulating an expression of immune tolerance-related cytokines after the treatment with exosomes. Conclusions: CB-SC-derived exosomes display multiple immune modulations and primarily on monocytes, contributing to the immune education of CB-SC in the clinical treatment of autoimmune diseases.
Collapse
Affiliation(s)
- Wei Hu
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ, United States.,Department of Chemistry and Chemistry Biology, Stevens Institute of Technology, Hoboken, NJ, United States
| | - Xiang Song
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ, United States
| | - Haibo Yu
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ, United States
| | - Jingyu Sun
- Department of Chemistry and Chemistry Biology, Stevens Institute of Technology, Hoboken, NJ, United States
| | - Yong Zhao
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ, United States
| |
Collapse
|
31
|
Atkinson SP. Previews. Stem Cells 2019. [DOI: 10.1002/stem.3099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
32
|
Miliotis S, Nicolalde B, Ortega M, Yepez J, Caicedo A. Forms of extracellular mitochondria and their impact in health. Mitochondrion 2019; 48:16-30. [PMID: 30771504 DOI: 10.1016/j.mito.2019.02.002] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2018] [Revised: 11/09/2018] [Accepted: 02/06/2019] [Indexed: 12/15/2022]
Abstract
Mitochondria play an important role as an intracellular energy plant and signaling organelle. However, mitochondria also exist outside cells where they could mediate cell-to-cell communication, repair and serve as an activator of the immune response. Their effects depend on the mitochondrial state or the form in which it is present, either as a whole functional structure as fragments or only as mitochondrial DNA. Herein, we provide evidence of why extracellular mitochondria and their varying forms are considered regenerative factors or pro-inflammatory activators. Understanding these aspects will provide the base of their use in therapy or as a biomarker of disease severity and prognosis.
Collapse
Affiliation(s)
- Sophia Miliotis
- Universidad San Francisco de Quito, The Latitude Zero Ecuador Research Initiative, L0ERI, 17-12-841, Ecuador
| | - Bryan Nicolalde
- Universidad San Francisco de Quito, Colegio de Ciencias de la Salud - Hospital de los Valles, Escuela de Medicina, Quito 17-12-841, Ecuador
| | - Mayra Ortega
- Universidad San Francisco de Quito, Colegio de Ciencias Biológicas y Ambientales, Escuela de Biotecnología, Quito 17-12-841, Ecuador; Universidad San Francisco de Quito, Instituto de Investigaciones en Biomedicina, Quito 17-12-841, Ecuador
| | - Jackie Yepez
- Universidad San Francisco de Quito, The Latitude Zero Ecuador Research Initiative, L0ERI, 17-12-841, Ecuador
| | - Andrés Caicedo
- Universidad San Francisco de Quito, Colegio de Ciencias de la Salud - Hospital de los Valles, Escuela de Medicina, Quito 17-12-841, Ecuador; Universidad San Francisco de Quito, Instituto de Investigaciones en Biomedicina, Quito 17-12-841, Ecuador; Mito-Act Research Consortium, Quito, Ecuador; Sistemas Médicos - Universidad San Francisco de Quito, SIME-USFQ, Quito 17-12-841, Ecuador.
| |
Collapse
|
33
|
Murray LMA, Krasnodembskaya AD. Concise Review: Intercellular Communication Via Organelle Transfer in the Biology and Therapeutic Applications of Stem Cells. Stem Cells 2018; 37:14-25. [PMID: 30353966 DOI: 10.1002/stem.2922] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 09/14/2018] [Accepted: 09/22/2018] [Indexed: 12/13/2022]
Abstract
The therapeutic potential of stem cell-based therapies may be largely dependent on the ability of stem cells to modulate host cells rather than on their differentiation into host tissues. Within the last decade, there has been considerable interest in the intercellular communication mediated by the transfer of cytoplasmic material and organelles between cells. Numerous studies have shown that mitochondria and lysosomes are transported between cells by various mechanisms, such as tunneling nanotubes, microvesicles, and cellular fusion. This review will focus on the known instances of organelle transfer between stem cells and differentiated cells, what effects it has on recipient cells and how organelle transfer is regulated. Stem Cells 2019;37:14-25.
Collapse
Affiliation(s)
- Lisa M A Murray
- Centre for Experimental Medicine, School of Medicine Dentistry & Biomedical Sciences, Queen's University Belfast, Belfast, United Kingdom
| | - Anna D Krasnodembskaya
- Centre for Experimental Medicine, School of Medicine Dentistry & Biomedical Sciences, Queen's University Belfast, Belfast, United Kingdom
| |
Collapse
|
34
|
Cooper TT, Bell GI, Hess DA. Inhibition of Retinoic Acid Production Expands a Megakaryocyte-Enriched Subpopulation with Islet Regenerative Function. Stem Cells Dev 2018; 27:1449-1461. [PMID: 30039749 DOI: 10.1089/scd.2018.0111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Islet regeneration is stimulated after transplantation of human umbilical cord blood (UCB) hematopoietic progenitor cells with high aldehyde dehydrogenase (ALDH)-activity into NOD/SCID mice with streptozotocin (STZ)-induced β cell ablation. ALDHhi progenitor cells represent a rare subset within UCB that will require expansion without the loss of islet regenerative functions for use in cell therapies. ALDHhi cells efficiently expand (>70-fold) under serum-free conditions; however, high ALDH-activity is rapidly diminished during culture coinciding with emergence of a committed megakaryocyte phenotype CD41+/CD42+/CD38+. ALDH-activity is also the rate-limiting step in retinoic acid (RA) production, a potent driver of hematopoietic differentiation. We have previously shown that inhibition of RA production during 9-day cultures, using diethylaminobenzaldehyde (DEAB) treatment, enhanced the expansion of ALDHhi cells (>20-fold) with vascular regenerative paracrine functions. Herein, we sought to determine if DEAB-treatment also expanded ALDHhi cells that retain islet regenerative function following intrapancreatic transplantation into hyperglycemic mice. After DEAB-treatment, expanded ALDHhi cell subset was enriched for CD34+/CD38- expression and demonstrated enhanced myeloid multipotency in vitro compared to the ALDHlo cell subset. Unfortunately, DEAB-treated ALDHhi cells did not support islet regeneration after transplantation. Conversely, expanded ALDHlo cells from DEAB-treated conditions reduced hyperglycemia, and increased islet number and cell proliferation in STZ-induced hyperglycemic NOD/SCID mice. DEAB-treated ALDHlo cells were largely committed to a CD41+/CD42+ megakaryocyte phenotype. Collectively, this study provides preliminary evidence that committed cells of the megakaryocyte-lineage support endogenous islet regeneration and/or function, and the retention of high ALDH-activity did not coincide with islet regenerative function after expansion under serum-free culture conditions.
Collapse
Affiliation(s)
- Tyler Thomas Cooper
- 1 Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, Western University , London, Canada .,2 Molecular Medicine Research Laboratories, Krembil Centre for Stem Cell Biology, Robarts Research Institute , London, Canada
| | - Gillian I Bell
- 2 Molecular Medicine Research Laboratories, Krembil Centre for Stem Cell Biology, Robarts Research Institute , London, Canada
| | - David A Hess
- 1 Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, Western University , London, Canada .,2 Molecular Medicine Research Laboratories, Krembil Centre for Stem Cell Biology, Robarts Research Institute , London, Canada
| |
Collapse
|
35
|
Aslamy A, Oh E, Ahn M, Moin ASM, Chang M, Duncan M, Hacker-Stratton J, El-Shahawy M, Kandeel F, DiMeglio LA, Thurmond DC. Exocytosis Protein DOC2B as a Biomarker of Type 1 Diabetes. J Clin Endocrinol Metab 2018; 103:1966-1976. [PMID: 29506054 PMCID: PMC6276681 DOI: 10.1210/jc.2017-02492] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Accepted: 02/26/2018] [Indexed: 12/20/2022]
Abstract
CONTEXT Efforts to preserve β-cell mass in the preclinical stages of type 1 diabetes (T1D) are limited by few blood-derived biomarkers of β-cell destruction. OBJECTIVE Platelets are proposed sources of blood-derived biomarkers for a variety of diseases, and they show distinct proteomic changes in T1D. Thus, we investigated changes in the exocytosis protein, double C2 domain protein-β (DOC2B) in platelets and islets from T1D humans, and prediabetic nonobese diabetic (NOD) mice. DESIGN, PATIENTS, AND MAIN OUTCOME MEASURE Protein levels of DOC2B were assessed in platelets and islets from prediabetic NOD mice and humans, with and without T1D. Seventeen new-onset T1D human subjects (10.3 ± 3.8 years) were recruited immediately following diagnosis, and platelet DOC2B levels were compared with 14 matched nondiabetic subjects (11.4 ± 2.9 years). Furthermore, DOC2B levels were assessed in T1D human pancreatic tissue samples, cytokine-stimulated human islets ex vivo, and platelets from T1D subjects before and after islet transplantation. RESULTS DOC2B protein abundance was substantially reduced in prediabetic NOD mouse platelets, and these changes were mirrored in the pancreatic islets from the same mice. Likewise, human DOC2B levels were reduced over twofold in platelets from new-onset T1D human subjects, and this reduction was mirrored in T1D human islets. Cytokine stimulation of normal islets reduced DOC2B expression ex vivo. Remarkably, platelet DOC2B levels increased after islet transplantation in patients with T1D. CONCLUSIONS Reduction of DOC2B is an early feature of T1D, and DOC2B abundance may serve as a valuable in vivo indicator of β-cell mass and an early biomarker of T1D.
Collapse
Affiliation(s)
- Arianne Aslamy
- Department of Molecular and Cellular Endocrinology, Diabetes & Metabolism
Research Institute, and Beckman Research Institute of City of Hope, Duarte, California
- Department of Cellular and Integrative Physiology, Indiana University School of
Medicine, Indianapolis, Indiana
| | - Eunjin Oh
- Department of Molecular and Cellular Endocrinology, Diabetes & Metabolism
Research Institute, and Beckman Research Institute of City of Hope, Duarte, California
| | - Miwon Ahn
- Department of Molecular and Cellular Endocrinology, Diabetes & Metabolism
Research Institute, and Beckman Research Institute of City of Hope, Duarte, California
| | - Abu Saleh Md Moin
- Department of Molecular and Cellular Endocrinology, Diabetes & Metabolism
Research Institute, and Beckman Research Institute of City of Hope, Duarte, California
| | - Mariann Chang
- Department of Molecular and Cellular Endocrinology, Diabetes & Metabolism
Research Institute, and Beckman Research Institute of City of Hope, Duarte, California
| | - Molly Duncan
- Department of Pediatrics, Section of Pediatric Endocrinology/Diabetology, and
Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis,
Indiana
| | - Jeannette Hacker-Stratton
- Department of Clinical and Translational Research and Cellular Therapeutics,
Diabetes & Metabolism Research Institute, and Beckman Research Institute of City of
Hope, Duarte, California
| | - Mohamed El-Shahawy
- Department of Clinical and Translational Research and Cellular Therapeutics,
Diabetes & Metabolism Research Institute, and Beckman Research Institute of City of
Hope, Duarte, California
| | - Fouad Kandeel
- Department of Clinical and Translational Research and Cellular Therapeutics,
Diabetes & Metabolism Research Institute, and Beckman Research Institute of City of
Hope, Duarte, California
| | - Linda A DiMeglio
- Department of Pediatrics, Section of Pediatric Endocrinology/Diabetology, and
Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis,
Indiana
| | - Debbie C Thurmond
- Department of Molecular and Cellular Endocrinology, Diabetes & Metabolism
Research Institute, and Beckman Research Institute of City of Hope, Duarte, California
- Department of Cellular and Integrative Physiology, Indiana University School of
Medicine, Indianapolis, Indiana
- Correspondence and Reprint Requests: Debbie C. Thurmond, PhD, Department of Molecular and Cellular Endocrinology,
Diabetes and Metabolism Research Institute, and Beckman Research Institute of City of
Hope, 1500 East Duarte Road, Duarte, California 91010. E-mail:
| |
Collapse
|
36
|
Wu S, Zhang A, Li S, Chatterjee S, Qi R, Segura‐Ibarra V, Ferrari M, Gupte A, Blanco E, Hamilton DJ. Polymer Functionalization of Isolated Mitochondria for Cellular Transplantation and Metabolic Phenotype Alteration. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2018; 5:1700530. [PMID: 29593955 PMCID: PMC5867055 DOI: 10.1002/advs.201700530] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Revised: 10/26/2017] [Indexed: 05/31/2023]
Abstract
Aberrant mitochondrial energy transfer underlies prevalent chronic health conditions, including cancer, cardiovascular, and neurodegenerative diseases. Mitochondrial transplantation represents an innovative strategy aimed at restoring favorable metabolic phenotypes in cells with dysfunctional energy metabolism. While promising, significant barriers to in vivo translation of this approach abound, including limited cellular uptake and recognition of mitochondria as foreign. The objective is to functionalize isolated mitochondria with a biocompatible polymer to enhance cellular transplantation and eventual in vivo applications. Herein, it is demonstrated that grafting of a polymer conjugate composed of dextran with triphenylphosphonium onto isolated mitochondria protects the organelles and facilitates cellular internalization compared with uncoated mitochondria. Importantly, mitochondrial transplantation into cancer and cardiovascular cells has profound effects on respiration, mediating a shift toward improved oxidative phosphorylation, and reduced glycolysis. These findings represent the first demonstration of polymer functionalization of isolated mitochondria, highlighting a viable strategy for enabling clinical applications of mitochondrial transplantation.
Collapse
Affiliation(s)
- Suhong Wu
- Department of NanomedicineHouston Methodist Research InstituteHoustonTX77030USA
| | - Aijun Zhang
- Center for BioenergeticsHouston Methodist Research InstituteHoustonTX77030USA
| | - Shumin Li
- Center for BioenergeticsHouston Methodist Research InstituteHoustonTX77030USA
| | - Somik Chatterjee
- Center for BioenergeticsHouston Methodist Research InstituteHoustonTX77030USA
| | - Ruogu Qi
- Department of NanomedicineHouston Methodist Research InstituteHoustonTX77030USA
| | | | - Mauro Ferrari
- Department of NanomedicineHouston Methodist Research InstituteHoustonTX77030USA
- Department of MedicineWeill Cornell MedicineNew YorkNY10065USA
| | - Anisha Gupte
- Center for BioenergeticsHouston Methodist Research InstituteHoustonTX77030USA
- Department of PhysiologyWeill Cornell MedicineNew YorkNY10065USA
| | - Elvin Blanco
- Department of NanomedicineHouston Methodist Research InstituteHoustonTX77030USA
| | - Dale J. Hamilton
- Center for BioenergeticsHouston Methodist Research InstituteHoustonTX77030USA
- Department of MedicineWeill Cornell MedicineNew YorkNY10065USA
- Division EndocrinologyDiabetes, and MetabolismDepartment of MedicineHouston Methodist HospitalHoustonTX77030USA
| |
Collapse
|
37
|
Hepatic protein tyrosine phosphatase receptor gamma links obesity-induced inflammation to insulin resistance. Nat Commun 2017; 8:1820. [PMID: 29180649 PMCID: PMC5703876 DOI: 10.1038/s41467-017-02074-2] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2017] [Accepted: 11/03/2017] [Indexed: 12/31/2022] Open
Abstract
Obesity-induced inflammation engenders insulin resistance and type 2 diabetes mellitus (T2DM) but the inflammatory effectors linking obesity to insulin resistance are incompletely understood. Here, we show that hepatic expression of Protein Tyrosine Phosphatase Receptor Gamma (PTPR-γ) is stimulated by inflammation in obese/T2DM mice and positively correlates with indices of inflammation and insulin resistance in humans. NF-κB binds to the promoter of Ptprg and is required for inflammation-induced PTPR-γ expression. PTPR-γ loss-of-function lowers glycemia and insulinemia by enhancing insulin-stimulated suppression of endogenous glucose production. These phenotypes are rescued by re-expression of Ptprg only in liver of mice lacking Ptprg globally. Hepatic PTPR-γ overexpression that mimics levels found in obesity is sufficient to cause severe hepatic and systemic insulin resistance. We propose hepatic PTPR-γ as a link between obesity-induced inflammation and insulin resistance and as potential target for treatment of T2DM. During obesity, chronic inflammation leads to insulin resistance and diabetes. Here, Brenachot et al. show that Protein Tyrosine Phosphatase Receptor Gamma is upregulated in obesity by inflammatory signals and correlates with insulin resistance in humans. Its deletion in mouse models of obesity and inflammation ameliorates insulin resistance by suppressing glucose production.
Collapse
|
38
|
Hotamisligil GS. Foundations of Immunometabolism and Implications for Metabolic Health and Disease. Immunity 2017; 47:406-420. [PMID: 28930657 DOI: 10.1016/j.immuni.2017.08.009] [Citation(s) in RCA: 314] [Impact Index Per Article: 39.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Revised: 06/06/2017] [Accepted: 08/16/2017] [Indexed: 02/06/2023]
Abstract
Highly ordered interactions between immune and metabolic responses are evolutionarily conserved and paramount for tissue and organismal health. Disruption of these interactions underlies the emergence of many pathologies, particularly chronic non-communicable diseases such as obesity and diabetes. Here, we examine decades of research identifying the complex immunometabolic signaling networks and the cellular and molecular events that occur in the setting of altered nutrient and energy exposures and offer a historical perspective. Furthermore, we describe recent advances such as the discovery that a broad complement of immune cells play a role in immunometabolism and the emerging evidence that nutrients and metabolites modulate inflammatory pathways. Lastly, we discuss how this work may eventually lead to tangible therapeutic advancements to promote health.
Collapse
Affiliation(s)
- Gökhan S Hotamisligil
- Department of Genetics and Complex Diseases and Sabri Ülker Center, Harvard T.H. Chan School of Public Health, Broad Institute of Harvard and MIT, Boston, MA 02115, USA.
| |
Collapse
|