1
|
Tous C, Kinstlinger IS, Rice MEL, Deng J, Wong WW. Multiplexing light-inducible recombinases to control cell fate, Boolean logic, and cell patterning in mammalian cells. SCIENCE ADVANCES 2025; 11:eadt1971. [PMID: 40344052 PMCID: PMC12063640 DOI: 10.1126/sciadv.adt1971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Accepted: 04/03/2025] [Indexed: 05/11/2025]
Abstract
Light-inducible regulatory proteins are powerful tools to interrogate fundamental mechanisms driving cellular behavior. In particular, genetically encoded photosensory domains fused to split proteins can tightly modulate protein activity and gene expression. While light-inducible split protein systems have performed well individually, few multichromatic and orthogonal gene regulation systems exist in mammalian cells. The design space for multichromatic circuits is limited by the small number of orthogonally addressable optogenetic switches and the types of effectors that can be actuated by them. We developed a library of red light-inducible recombinases and directed patterned myogenesis in a mesenchymal fibroblast-like cell line. To address the limited number of light-inducible domains (LIDs) responding to unique excitation spectra, we multiplexed light-inducible recombinases with our "Boolean logic and arithmetic through DNA excision" (BLADE) platform. Multiplexed optogenetic tools will be transformative for understanding the role of multiple interacting genes and their spatial context in endogenous signaling networks.
Collapse
Affiliation(s)
- Cristina Tous
- Department of Biomedical Engineering, Biological Design Center, Boston University, Boston, MA 02215, USA
| | - Ian S. Kinstlinger
- Department of Biomedical Engineering, Biological Design Center, Boston University, Boston, MA 02215, USA
| | - Maya E. L. Rice
- Department of Biomedical Engineering, Biological Design Center, Boston University, Boston, MA 02215, USA
| | - Jenny Deng
- Department of Biomedical Engineering, Biological Design Center, Boston University, Boston, MA 02215, USA
| | - Wilson W. Wong
- Department of Biomedical Engineering, Biological Design Center, Boston University, Boston, MA 02215, USA
| |
Collapse
|
2
|
Militi S, Nibhani R, Pook M, Pauklin S. SMAD2/3-SMYD2 and developmental transcription factors cooperate with cell-cycle inhibitors to guide tissue formation. Protein Cell 2025; 16:260-285. [PMID: 38758030 PMCID: PMC12053477 DOI: 10.1093/procel/pwae031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 05/05/2024] [Indexed: 05/18/2024] Open
Abstract
Tissue formation and organ homeostasis are achieved by precise coordination of proliferation and differentiation of stem cells and progenitors. While deregulation of these processes can result in degenerative disease or cancer, their molecular interplays remain unclear. Here we show that the switch of human pluripotent stem cell (hPSC) self-renewal to differentiation is associated with the induction of distinct cyclin-dependent kinase inhibitors (CDKIs). In hPSCs, Activin/Nodal/TGFβ signaling maintains CDKIs in a poised state via SMAD2/3-NANOG-OCT4-EZH2-SNON transcriptional complex. Upon gradual differentiation, CDKIs are induced by successive transcriptional complexes between SMAD2/3-SMYD2 and developmental regulators such as EOMES, thereby lengthening the G1 phase. This, in turn, induces SMAD2/3 transcriptional activity by blocking its linker phosphorylation. Such SMAD2/3-CDKI positive feedback loops drive the exit from pluripotency and stepwise cell-fate specification that could be harnessed for producing cells for therapeutic applications. Our study uncovers fundamental mechanisms of how cell-fate specification is interconnected to cell-cycle dynamics and provides insight into autonomous circuitries governing tissue self-formation.
Collapse
Affiliation(s)
- Stefania Militi
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Old Road, Headington, Oxford OX3 7LD, United Kingdom
| | - Reshma Nibhani
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Old Road, Headington, Oxford OX3 7LD, United Kingdom
| | - Martin Pook
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Old Road, Headington, Oxford OX3 7LD, United Kingdom
| | - Siim Pauklin
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Old Road, Headington, Oxford OX3 7LD, United Kingdom
| |
Collapse
|
3
|
Kim CD, Koo KM, Kim HJ, Kim TH. Recent Advances in Nanomaterials for Modulation of Stem Cell Differentiation and Its Therapeutic Applications. BIOSENSORS 2024; 14:407. [PMID: 39194636 DOI: 10.3390/bios14080407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 08/14/2024] [Accepted: 08/20/2024] [Indexed: 08/29/2024]
Abstract
Challenges in directed differentiation and survival limit the clinical use of stem cells despite their promising therapeutic potential in regenerative medicine. Nanotechnology has emerged as a powerful tool to address these challenges and enable precise control over stem cell fate. In particular, nanomaterials can mimic an extracellular matrix and provide specific cues to guide stem cell differentiation and proliferation in the field of nanotechnology. For instance, recent studies have demonstrated that nanostructured surfaces and scaffolds can enhance stem cell lineage commitment modulated by intracellular regulation and external stimulation, such as reactive oxygen species (ROS) scavenging, autophagy, or electrical stimulation. Furthermore, nanoframework-based and upconversion nanoparticles can be used to deliver bioactive molecules, growth factors, and genetic materials to facilitate stem cell differentiation and tissue regeneration. The increasing use of nanostructures in stem cell research has led to the development of new therapeutic approaches. Therefore, this review provides an overview of recent advances in nanomaterials for modulating stem cell differentiation, including metal-, carbon-, and peptide-based strategies. In addition, we highlight the potential of these nano-enabled technologies for clinical applications of stem cell therapy by focusing on improving the differentiation efficiency and therapeutics. We believe that this review will inspire researchers to intensify their efforts and deepen their understanding, thereby accelerating the development of stem cell differentiation modulation, therapeutic applications in the pharmaceutical industry, and stem cell therapeutics.
Collapse
Affiliation(s)
- Chang-Dae Kim
- School of Integrative Engineering, Chung-Ang University, 84 Heukseuk-ro, Dongjak-gu, Seoul 06974, Republic of Korea
| | - Kyeong-Mo Koo
- School of Integrative Engineering, Chung-Ang University, 84 Heukseuk-ro, Dongjak-gu, Seoul 06974, Republic of Korea
| | - Hyung-Joo Kim
- School of Integrative Engineering, Chung-Ang University, 84 Heukseuk-ro, Dongjak-gu, Seoul 06974, Republic of Korea
| | - Tae-Hyung Kim
- School of Integrative Engineering, Chung-Ang University, 84 Heukseuk-ro, Dongjak-gu, Seoul 06974, Republic of Korea
| |
Collapse
|
4
|
Borys BS, Dang T, Worden H, Larijani L, Corpuz JM, Abraham BD, Gysel EJ, Malinovska J, Krawetz R, Revay T, Argiropoulos B, Rancourt DE, Kallos MS, Jung S. Robust bioprocess design and evaluation of commercial media for the serial expansion of human induced pluripotent stem cell aggregate cultures in vertical-wheel bioreactors. Stem Cell Res Ther 2024; 15:232. [PMID: 39075528 PMCID: PMC11288049 DOI: 10.1186/s13287-024-03819-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 06/27/2024] [Indexed: 07/31/2024] Open
Abstract
BACKGROUND While pluripotent stem cell (PSC) therapies move toward clinical and commercial applications at a rapid rate, manufacturing reproducibility and robustness are notable bottlenecks in regulatory approval. Therapeutic applications of PSCs require large cell quantities to be generated under highly robust, well-defined, and economically viable conditions. Small-scale and short-term process optimization, however, is often performed in a linear fashion that does not account for time needed to verify the bioprocess protocols and analysis methods used. Design of a reproducible and robust bioprocess should be dynamic and include a continuous effort to understand how the process will respond over time and to different stresses before transitioning into large-scale production where stresses will be amplified. METHODS This study utilizes a baseline protocol, developed for the short-term culture of PSC aggregates in Vertical-Wheel® bioreactors, to evaluate key process attributes through long-term (serial passage) suspension culture. This was done to access overall process robustness when performed with various commercially available media and cell lines. Process output variables including growth kinetics, aggregate morphology, harvest efficiency, genomic stability, and functional pluripotency were assessed through short and long-term culture. RESULTS The robust nature of the expansion protocol was demonstrated over a six-day culture period where spherical aggregate formation and expansion were observed with high-fold expansions for all five commercial media tested. Profound differences in cell growth and quality were revealed only through long-term serial expansion and in-vessel dissociation operations. Some commercial media formulations tested demonstrated maintenance of cell growth rates, aggregate morphology, and high harvest recovery efficiencies through three bioreactor serial passages using multiple PSC lines. Exceptional bioprocess robustness was even demonstrated with sustained growth and quality maintenance over 10 serial bioreactor passages. However, some commercial media tested proved less equipped for serial passage cultures in bioreactors as cultures led to cell lysis during dissociation, reduction in growth rates, and a loss of aggregate morphology. CONCLUSIONS This study demonstrates the importance of systematic selection and testing of bioprocess input variables, with multiple bioprocess output variables through serial passages to create a truly reproducible and robust protocol for clinical and commercial PSC production using scalable bioreactor systems.
Collapse
Affiliation(s)
- Breanna S Borys
- Pharmaceutical Production Research Facility, University of Calgary, Calgary, AB, Canada
- PBS Biotech Inc, 4721 Calle Carga, Camarillo, CA, 93012, USA
| | - Tiffany Dang
- Pharmaceutical Production Research Facility, University of Calgary, Calgary, AB, Canada
- Department of Biomedical Engineering, University of Calgary, Calgary, AB, Canada
- McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, AB, Canada
| | - Hannah Worden
- PBS Biotech Inc, 4721 Calle Carga, Camarillo, CA, 93012, USA
| | - Leila Larijani
- Department of Biomedical Engineering, University of Calgary, Calgary, AB, Canada
- McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, AB, Canada
- Department of Medical Genetics, University of Calgary, Calgary, AB, Canada
| | - Jessica M Corpuz
- Department of Biomedical Engineering, University of Calgary, Calgary, AB, Canada
- McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, AB, Canada
| | - Brett D Abraham
- Pharmaceutical Production Research Facility, University of Calgary, Calgary, AB, Canada
- Department of Biomedical Engineering, University of Calgary, Calgary, AB, Canada
- McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, AB, Canada
| | - Emilie J Gysel
- Pharmaceutical Production Research Facility, University of Calgary, Calgary, AB, Canada
- Department of Biomedical Engineering, University of Calgary, Calgary, AB, Canada
- McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, AB, Canada
| | - Julia Malinovska
- Pharmaceutical Production Research Facility, University of Calgary, Calgary, AB, Canada
- Department of Biomedical Engineering, University of Calgary, Calgary, AB, Canada
- McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, AB, Canada
| | - Roman Krawetz
- Department of Biomedical Engineering, University of Calgary, Calgary, AB, Canada
- McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, AB, Canada
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, AB, Canada
| | - Tamas Revay
- Department of Medical Genetics, Alberta Health Services, Alberta Children's Hospital, Calgary, AB, Canada
| | - Bob Argiropoulos
- Department of Medical Genetics, Alberta Health Services, Alberta Children's Hospital, Calgary, AB, Canada
| | - Derrick E Rancourt
- Department of Biomedical Engineering, University of Calgary, Calgary, AB, Canada
- McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, AB, Canada
- Department of Cell Biology and Anatomy, University of Calgary, Calgary, AB, Canada
| | - Michael S Kallos
- Pharmaceutical Production Research Facility, University of Calgary, Calgary, AB, Canada
- Department of Biomedical Engineering, University of Calgary, Calgary, AB, Canada
- McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, AB, Canada
| | - Sunghoon Jung
- PBS Biotech Inc, 4721 Calle Carga, Camarillo, CA, 93012, USA.
| |
Collapse
|
5
|
Goh KJ, Lu H, Tan EK, Lee ZY, Wong A, Tran T, Dunn NR, Roy S. Differentiation of CD166-positive hPSC-derived lung progenitors into airway epithelial cells. Biol Open 2024; 13:bio061729. [PMID: 39387302 PMCID: PMC11554259 DOI: 10.1242/bio.061729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 09/12/2024] [Indexed: 10/15/2024] Open
Abstract
The generation of lung epithelial cells through the directed differentiation of human pluripotent stem cells (hPSCs) in vitro provides a platform to model both embryonic lung development and adult airway disease. Here, we describe a robust differentiation protocol that closely recapitulates human embryonic lung development. Differentiating cells progress through obligate intermediate stages, beginning with definitive endoderm formation and then patterning into anterior foregut endoderm that yields lung progenitors (LPs) with extended culture. These LPs can be purified using the cell surface marker CD166 (also known as ALCAM), and further matured into proximal airway epithelial cells including basal cells, secretory cells and multiciliated cells using either an organoid platform or culture at the air-liquid interface (ALI). We additionally demonstrate that these hPSC-derived airway epithelial cells can be used to model Influenza A infection. Collectively, our results underscore the utility of CD166 expression for the efficient enrichment of LPs from heterogenous differentiation cultures and the ability of these isolated cells to mature into more specialized, physiologically relevant proximal lung cell types.
Collapse
Affiliation(s)
- Kim Jee Goh
- Skin Research Institute of Singapore, Clinical Sciences Building, 11 Mandalay Road #17-01, Singapore 308232, Singapore
| | - Hao Lu
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Singapore 138673, Singapore
| | - Ee Kim Tan
- Lee Kong Chian School of Medicine, Nanyang Technological University, Clinical Sciences Building, 11 Mandalay Road, Singapore 308232, Singapore
| | - Zhao Yong Lee
- Infectious Diseases Translational Research Programme, Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, 21 Lower Kent Ridge Road, Singapore 119077, Singapore
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, 2 Medical Drive, MD9, Singapore 117593, Singapore
| | - Amanda Wong
- Infectious Diseases Translational Research Programme, Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, 21 Lower Kent Ridge Road, Singapore 119077, Singapore
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, 2 Medical Drive, MD9, Singapore 117593, Singapore
| | - Thai Tran
- Infectious Diseases Translational Research Programme, Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, 21 Lower Kent Ridge Road, Singapore 119077, Singapore
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, 2 Medical Drive, MD9, Singapore 117593, Singapore
| | - N. Ray Dunn
- Skin Research Institute of Singapore, Clinical Sciences Building, 11 Mandalay Road #17-01, Singapore 308232, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University, Clinical Sciences Building, 11 Mandalay Road, Singapore 308232, Singapore
| | - Sudipto Roy
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Singapore 138673, Singapore
- Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, 1E Kent Ridge Road, Singapore 119288, Singapore
| |
Collapse
|
6
|
Militi S, Nibhani R, Jalali M, Pauklin S. RBL2-E2F-GCN5 guide cell fate decisions during tissue specification by regulating cell-cycle-dependent fluctuations of non-cell-autonomous signaling. Cell Rep 2023; 42:113146. [PMID: 37725511 DOI: 10.1016/j.celrep.2023.113146] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 05/30/2023] [Accepted: 08/31/2023] [Indexed: 09/21/2023] Open
Abstract
The retinoblastoma family proteins (RBs) and E2F transcription factors are cell-autonomous regulators of cell-cycle progression, but they also impact fate choice in addition to tumor suppression. The range of mechanisms involved remains to be uncovered. Here, we show that RBs, particularly RBL2/p130, repress WNT ligands such as WNT4 and WNT8A, thereby directing ectoderm specification between neural crest to neuroepithelium. RBL2 achieves this function through cell-cycle-dependent cooperation with E2Fs and GCN5 on the regulatory regions of WNT loci, which direct neuroepithelial versus neural crest specification by temporal fluctuations of WNT/β-catenin and DLL/NOTCH signaling activity. Thus, the RB-E2F bona fide cell-autonomous axis controls cell fate decisions, and RBL2 regulates field effects via WNT ligands. This reveals a non-cell-autonomous function of RBL2-E2F in stem cell and tissue progenitor differentiation that has broader implications for cell-cycle-dependent cell fate specification in organogenesis, adult stem cells, tissue homeostasis, and tumorigenesis.
Collapse
Affiliation(s)
- Stefania Militi
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Old Road, Headington, Oxford OX3 7LD, UK
| | - Reshma Nibhani
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Old Road, Headington, Oxford OX3 7LD, UK
| | - Morteza Jalali
- Anne McLaren Laboratory for Regenerative Medicine, Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
| | - Siim Pauklin
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Old Road, Headington, Oxford OX3 7LD, UK.
| |
Collapse
|
7
|
Madrigal P, Deng S, Feng Y, Militi S, Goh KJ, Nibhani R, Grandy R, Osnato A, Ortmann D, Brown S, Pauklin S. Epigenetic and transcriptional regulations prime cell fate before division during human pluripotent stem cell differentiation. Nat Commun 2023; 14:405. [PMID: 36697417 PMCID: PMC9876972 DOI: 10.1038/s41467-023-36116-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 01/17/2023] [Indexed: 01/26/2023] Open
Abstract
Stem cells undergo cellular division during their differentiation to produce daughter cells with a new cellular identity. However, the epigenetic events and molecular mechanisms occurring between consecutive cell divisions have been insufficiently studied due to technical limitations. Here, using the FUCCI reporter we developed a cell-cycle synchronised human pluripotent stem cell (hPSC) differentiation system for uncovering epigenome and transcriptome dynamics during the first two divisions leading to definitive endoderm. We observed that transcription of key differentiation markers occurs before cell division, while chromatin accessibility analyses revealed the early inhibition of alternative cell fates. We found that Activator protein-1 members controlled by p38/MAPK signalling are necessary for inducing endoderm while blocking cell fate shifting toward mesoderm, and that enhancers are rapidly established and decommissioned between different cell divisions. Our study has practical biomedical utility for producing hPSC-derived patient-specific cell types since p38/MAPK induction increased the differentiation efficiency of insulin-producing pancreatic beta-cells.
Collapse
Affiliation(s)
- Pedro Madrigal
- Department of Surgery, University of Cambridge, Cambridge, CB2 0QQ, UK
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, CB10 1SA, UK
- Wellcome - MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, CB2 0SZ, UK
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, CB10 1SD, UK
| | - Siwei Deng
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Old Road, University of Oxford, Headington, Oxford, OX3 7LD, UK
| | - Yuliang Feng
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Old Road, University of Oxford, Headington, Oxford, OX3 7LD, UK
| | - Stefania Militi
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Old Road, University of Oxford, Headington, Oxford, OX3 7LD, UK
| | - Kim Jee Goh
- Department of Surgery, University of Cambridge, Cambridge, CB2 0QQ, UK
- The Francis Crick Institute, London, NW1 1AT, UK
| | - Reshma Nibhani
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Old Road, University of Oxford, Headington, Oxford, OX3 7LD, UK
| | - Rodrigo Grandy
- Department of Surgery, University of Cambridge, Cambridge, CB2 0QQ, UK
| | - Anna Osnato
- Department of Surgery, University of Cambridge, Cambridge, CB2 0QQ, UK
| | - Daniel Ortmann
- Department of Surgery, University of Cambridge, Cambridge, CB2 0QQ, UK
| | - Stephanie Brown
- Department of Surgery, University of Cambridge, Cambridge, CB2 0QQ, UK
| | - Siim Pauklin
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Old Road, University of Oxford, Headington, Oxford, OX3 7LD, UK.
| |
Collapse
|
8
|
Grogan S, Kopcow J, D’Lima D. Challenges Facing the Translation of Embryonic Stem Cell Therapy for the Treatment of Cartilage Lesions. Stem Cells Transl Med 2022; 11:1186-1195. [PMID: 36493381 PMCID: PMC9801304 DOI: 10.1093/stcltm/szac078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 10/02/2022] [Indexed: 12/13/2022] Open
Abstract
Osteoarthritis is a common disease resulting in significant disability without approved disease-modifying treatment (other than total joint replacement). Stem cell-based therapy is being actively explored for the repair of cartilage lesions in the treatment and prevention of osteoarthritis. Embryonic stem cells are a very attractive source as they address many of the limitations inherent in autologous stem cells, such as variability in function and limited expansion. Over the past 20 years, there has been widespread interest in differentiating ESC into mesenchymal stem cells and chondroprogenitors with successful in vitro, ex vivo, and early animal studies. However, to date, none have progressed to clinical trials. In this review, we compare and contrast the various approaches to differentiating ESC; and discuss the benefits and drawbacks of each approach. Approaches relying on spontaneous differentiation are simpler but not as efficient as more targeted approaches. Methods replicating developmental biology are more efficient and reproducible but involve many steps in a complicated process. The small-molecule approach, arguably, combines the advantages of the above two methods because of the relative efficiency, reproducibility, and simplicity. To better understand the reasons for lack of progression to clinical applications, we explore technical, scientific, clinical, and regulatory challenges that remain to be overcome to achieve success in clinical applications.
Collapse
Affiliation(s)
- Shawn Grogan
- Corresponding author: Darryl D’Lima, MD, PhD, Shiley Center for Orthopaedic Research and Education, Scripps Health, 10666 N. Torrey Pines Road, La Jolla, CA 92037, USA.
| | - Joel Kopcow
- Shiley Center for Orthopaedic Research and Education, Scripps Health, La Jolla, CA, USA
| | - Darryl D’Lima
- Shiley Center for Orthopaedic Research and Education, Scripps Health, La Jolla, CA, USA
| |
Collapse
|
9
|
Jhuang YL, Yang CW, Tseng YF, Hsu CL, Li HY, Yuan RH, Jeng YM. SIN3-HDAC complex-associated factor, a chromatin remodelling gene located in the 12p amplicon, is a potential germ cell tumour-specific oncogene. J Pathol 2022; 258:353-365. [PMID: 36056608 DOI: 10.1002/path.6007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 08/20/2022] [Accepted: 08/30/2022] [Indexed: 01/27/2023]
Abstract
A genetic hallmark of malignant germ cell tumours (GCTs) is isochromosome 12p, but oncogenes located in 12p that are specifically expressed in GCT have not yet been identified. SIN3-HDAC complex-associated factor (SINHCAF) is a subunit of the Sin3/histone deacetylase (HDAC) complex, and it defines a Sin3a-Hdac complex variant that is required for the self-renewal of mouse embryonic stem cells. This study demonstrated that SINHCAF is expressed in a vast majority of malignant GCTs and is rarely expressed in somatic malignancy. Fluorescence in situ hybridisation revealed SINHCAF amplification in malignant GCTs. SINHCAF silencing using shRNA reduced anchorage-dependent cell proliferation and tumoursphere formation and inhibited tumour cell migration and invasion in GCT cell lines. Moreover, in the GCT cell line NTERA2/D1, SINHCAF silencing inhibited the expression of genes associated with embryonic stem cells and induced the expression of genes associated with neuronal and white fat cell differentiation. Compared with somatic cell lines, GCT cell lines were more susceptible to HDAC inhibitor treatment. Thus, we identified SINHCAF to be a potential oncogene located in the amplicon of chromosome 12p and showed that SINHCAF was specifically expressed in malignant GCTs. HDAC inhibitor treatment may counteract the oncogenic activity of SINHCAF and is a promising therapeutic approach for GCTs. © 2022 The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Yu-Ling Jhuang
- Graduate Institute of Pathology, National Taiwan University, Taipei, Taiwan.,Department of Pathology, National Taiwan University Hospital, Taipei, Taiwan
| | - Chun-Wei Yang
- Graduate Institute of Pathology, National Taiwan University, Taipei, Taiwan
| | - Yu-Fen Tseng
- Department of Pathology, National Taiwan University Hospital, Taipei, Taiwan
| | - Chia-Lang Hsu
- Department of Medical Research, National Taiwan University Hospital, Taipei, Taiwan
| | - Huei-Ying Li
- Medical Microbiota Center of the First Core Laboratory, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Ray-Hwang Yuan
- Department of Surgery, National Taiwan University Hospital, Taipei, Taiwan.,Department of Surgery, National Taiwan University Hospital, Hsinchu Branch, Hsinchu, Taiwan
| | - Yung-Ming Jeng
- Graduate Institute of Pathology, National Taiwan University, Taipei, Taiwan.,Department of Pathology, National Taiwan University Hospital, Taipei, Taiwan
| |
Collapse
|
10
|
Takano C, Horie M, Taiko I, Trinh QD, Kanemaru K, Komine-Aizawa S, Hayakawa S, Miki T. Inhibition of Epithelial-Mesenchymal Transition Maintains Stemness in Human Amniotic Epithelial Cells. Stem Cell Rev Rep 2022; 18:3083-3091. [PMID: 35931939 DOI: 10.1007/s12015-022-10420-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/23/2022] [Indexed: 10/15/2022]
Abstract
Human amniotic epithelial cells (hAECs), which are a type of placental stem cell, express stem cell marker genes and are capable of differentiating into all three germ layers under appropriate culture conditions. hAECs are known to undergo TGF-β-dependent epithelial-mesenchymal transition (EMT); however, the impact of EMT on the stemness or differentiation of hAECs has not yet been determined. Here, we first confirmed that hAECs undergo EMT immediately after starting primary culture. Comprehensive transcriptome analysis using RNA-seq revealed that inhibition of TGF-β-dependent EMT maintained the expression of stemness-related genes, including NANOG and POU5F1, in hAECs. Moreover, the maintenance of stemness did not affect the nontumorigenic characteristics of hAECs. We showed for the first time that TGF-β-dependent EMT negatively affected the stemness of hAECs, providing novel insight into cellular processes of placental stem cells.
Collapse
Affiliation(s)
- Chika Takano
- Division of Microbiology, Department of Pathology and Microbiology, Nihon University School of Medicine, Tokyo, Japan.,Department of Pediatrics and Child Health, Nihon University School of Medicine, Tokyo, Japan
| | - Masafumi Horie
- Department of Molecular and Cellular Pathology, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Isamu Taiko
- Department of Physiology, Nihon University School of Medicine, Tokyo, Japan
| | - Quang Duy Trinh
- Division of Microbiology, Department of Pathology and Microbiology, Nihon University School of Medicine, Tokyo, Japan
| | - Kazunori Kanemaru
- Department of Physiology, Nihon University School of Medicine, Tokyo, Japan
| | - Shihoko Komine-Aizawa
- Division of Microbiology, Department of Pathology and Microbiology, Nihon University School of Medicine, Tokyo, Japan
| | - Satoshi Hayakawa
- Division of Microbiology, Department of Pathology and Microbiology, Nihon University School of Medicine, Tokyo, Japan
| | - Toshio Miki
- Department of Physiology, Nihon University School of Medicine, Tokyo, Japan.
| |
Collapse
|
11
|
Li Y, Xia Z, Yin H, Dai Y, Li F, Chen J, Qiu M, Huang H. An efficient method of inducing differentiation of mouse embryonic stem cells into primitive endodermal cells. Biochem Biophys Res Commun 2022; 599:156-163. [PMID: 35202849 DOI: 10.1016/j.bbrc.2022.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 02/01/2022] [Indexed: 11/02/2022]
Abstract
Primitive Endoderm (PrE) is an extraembryonic structure derived from inner cell mass (ICM) in the blastocysts. Its interaction with the epiblast is critical to sustain embryonic growth and embryonic pattern. In this study, we reported a simple and efficient method to induce the differentiation of mouse Embryonic Stem Cells (mESCs) into PrE cells. In the process of ESC monolayer adherent culture, 1 μM atRA and 10 μM CHIR inducers were used to activate RA and Wnt signaling pathways respectively. After 9 days of differentiation, the proportion of PrE cells was up to 85%. Further studies indicated that Wnt signaling pathway acted as a switch that RA induces mESCs differentiation between SMC and PrE cell. In the presence of only RA signaling, mESCs adopted the fate of smooth muscle cells (SMCs); Simultaneous activation of the Wnt signaling pathway changed the differentiation fate of mESCs into PrE cells. This efficient induction method can provide new cellular resources and models for relevant studies of PrE.
Collapse
Affiliation(s)
- Yan Li
- Zhejiang Key Laboratory of Organ Development and Regeneration, College of Life and Environmental Sciences, Hangzhou Normal University, Zhejiang, 311121, China
| | - Zhiyu Xia
- Zhejiang Key Laboratory of Organ Development and Regeneration, College of Life and Environmental Sciences, Hangzhou Normal University, Zhejiang, 311121, China; Institute of Cancer Stem Cell, Dalian Medical University, Dalian, 116044, China
| | - Haihong Yin
- Zhejiang Key Laboratory of Organ Development and Regeneration, College of Life and Environmental Sciences, Hangzhou Normal University, Zhejiang, 311121, China
| | - Youran Dai
- Zhejiang Key Laboratory of Organ Development and Regeneration, College of Life and Environmental Sciences, Hangzhou Normal University, Zhejiang, 311121, China
| | - Feixue Li
- Zhejiang Key Laboratory of Organ Development and Regeneration, College of Life and Environmental Sciences, Hangzhou Normal University, Zhejiang, 311121, China
| | - Jianming Chen
- Zhejiang Key Laboratory of Organ Development and Regeneration, College of Life and Environmental Sciences, Hangzhou Normal University, Zhejiang, 311121, China
| | - Mengsheng Qiu
- Zhejiang Key Laboratory of Organ Development and Regeneration, College of Life and Environmental Sciences, Hangzhou Normal University, Zhejiang, 311121, China
| | - Huarong Huang
- Zhejiang Key Laboratory of Organ Development and Regeneration, College of Life and Environmental Sciences, Hangzhou Normal University, Zhejiang, 311121, China.
| |
Collapse
|
12
|
Human Induced Pluripotent Stem Cell-Derived Vascular Cells: Recent Progress and Future Directions. J Cardiovasc Dev Dis 2021; 8:jcdd8110148. [PMID: 34821701 PMCID: PMC8622843 DOI: 10.3390/jcdd8110148] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 11/01/2021] [Accepted: 11/02/2021] [Indexed: 12/12/2022] Open
Abstract
Human induced pluripotent stem cells (hiPSCs) hold great promise for cardiovascular regeneration following ischemic injury. Considerable effort has been made toward the development and optimization of methods to differentiate hiPSCs into vascular cells, such as endothelial and smooth muscle cells (ECs and SMCs). In particular, hiPSC-derived ECs have shown robust potential for promoting neovascularization in animal models of cardiovascular diseases, potentially achieving significant and sustained therapeutic benefits. However, the use of hiPSC-derived SMCs that possess high therapeutic relevance is a relatively new area of investigation, still in the earlier investigational stages. In this review, we first discuss different methodologies to derive vascular cells from hiPSCs with a particular emphasis on the role of key developmental signals. Furthermore, we propose a standardized framework for assessing and defining the EC and SMC identity that might be suitable for inducing tissue repair and regeneration. We then highlight the regenerative effects of hiPSC-derived vascular cells on animal models of myocardial infarction and hindlimb ischemia. Finally, we address several obstacles that need to be overcome to fully implement the use of hiPSC-derived vascular cells for clinical application.
Collapse
|
13
|
Zamorano M, Castillo RL, Beltran JF, Herrera L, Farias JA, Antileo C, Aguilar-Gallardo C, Pessoa A, Calle Y, Farias JG. Tackling Ischemic Reperfusion Injury With the Aid of Stem Cells and Tissue Engineering. Front Physiol 2021; 12:705256. [PMID: 34603075 PMCID: PMC8484708 DOI: 10.3389/fphys.2021.705256] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 08/11/2021] [Indexed: 01/14/2023] Open
Abstract
Ischemia is a severe condition in which blood supply, including oxygen (O), to organs and tissues is interrupted and reduced. This is usually due to a clog or blockage in the arteries that feed the affected organ. Reinstatement of blood flow is essential to salvage ischemic tissues, restoring O, and nutrient supply. However, reperfusion itself may lead to major adverse consequences. Ischemia-reperfusion injury is often prompted by the local and systemic inflammatory reaction, as well as oxidative stress, and contributes to organ and tissue damage. In addition, the duration and consecutive ischemia-reperfusion cycles are related to the severity of the damage and could lead to chronic wounds. Clinical pathophysiological conditions associated with reperfusion events, including stroke, myocardial infarction, wounds, lung, renal, liver, and intestinal damage or failure, are concomitant in due process with a disability, morbidity, and mortality. Consequently, preventive or palliative therapies for this injury are in demand. Tissue engineering offers a promising toolset to tackle ischemia-reperfusion injuries. It devises tissue-mimetics by using the following: (1) the unique therapeutic features of stem cells, i.e., self-renewal, differentiability, anti-inflammatory, and immunosuppressants effects; (2) growth factors to drive cell growth, and development; (3) functional biomaterials, to provide defined microarchitecture for cell-cell interactions; (4) bioprocess design tools to emulate the macroscopic environment that interacts with tissues. This strategy allows the production of cell therapeutics capable of addressing ischemia-reperfusion injury (IRI). In addition, it allows the development of physiological-tissue-mimetics to study this condition or to assess the effect of drugs. Thus, it provides a sound platform for a better understanding of the reperfusion condition. This review article presents a synopsis and discusses tissue engineering applications available to treat various types of ischemia-reperfusions, ultimately aiming to highlight possible therapies and to bring closer the gap between preclinical and clinical settings.
Collapse
Affiliation(s)
- Mauricio Zamorano
- Department of Chemical Engineering, Universidad de La Frontera, Temuco, Chile
| | | | - Jorge F Beltran
- Department of Chemical Engineering, Universidad de La Frontera, Temuco, Chile
| | - Lisandra Herrera
- Department of Chemical Engineering, Universidad de La Frontera, Temuco, Chile
| | - Joaquín A Farias
- Facultad de Ingeniería y Ciencias, Universidad Adolfo Ibíñtez, Santiago, Chile
| | - Christian Antileo
- Department of Chemical Engineering, Universidad de La Frontera, Temuco, Chile
| | - Cristobal Aguilar-Gallardo
- Hematological Transplant and Cell Therapy Unit, Hospital Universitario y Politécnico La Fe, Valencia, Spain
| | - Adalberto Pessoa
- Department of Biochemical and Pharmaceutical Technology, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Yolanda Calle
- Department of Life Sciences, Whitelands College, University of Roehampton, London, United Kingdom
| | - Jorge G Farias
- Department of Chemical Engineering, Universidad de La Frontera, Temuco, Chile
| |
Collapse
|
14
|
Mai HN, Kim EJ, Jung HS. Application of hiPSCs in tooth regeneration via cellular modulation. J Oral Biosci 2021; 63:225-231. [PMID: 34033906 DOI: 10.1016/j.job.2021.05.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 05/08/2021] [Accepted: 05/12/2021] [Indexed: 01/03/2023]
Abstract
BACKGROUND Induced pluripotent stem cell (iPSC)-based technology provides limitless resources for customized development of organs without any ethical concerns. In theory, iPSCs generated from terminally differentiated cells can be induced to further differentiate into all types of organs that are derived from the embryonic germ layers. Since iPSC reprogramming technology is relatively new, extensive efforts by the researchers have been put together to optimize the protocols to establish in vitro differentiation of human iPSCs (hiPSCs) into various desirable cell types/organs. HIGHLIGHTS In the present study, we review the potential application of iPSCs as an efficient alternative to primary cells for modulating signal molecules. Furthermore, an efficient culture system that promotes the differentiation of cell lineages and tissue formation has been reviewed. We also summarize the recent studies wherein tissue engineering of the three germ layers has been explored. Particularly, we focus on the current research strategies for iPSC-based tooth regeneration via molecular modulation. CONCLUSION In recent decades, robust knowledge regarding the hiPSC-based regenerative therapy has been accumulated, especially focusing on cellular modulation. This review provides the optimization of the procedures designed to regenerate specific organs.
Collapse
Affiliation(s)
- Han Ngoc Mai
- Division in Anatomy and Developmental Biology, Department of Oral Biology, Taste Research Center, Oral Science Research Center, BK21 FOUR Project, Yonsei University College of Dentistry, Seoul, Korea
| | - Eun-Jung Kim
- Division in Anatomy and Developmental Biology, Department of Oral Biology, Taste Research Center, Oral Science Research Center, BK21 FOUR Project, Yonsei University College of Dentistry, Seoul, Korea
| | - Han-Sung Jung
- Division in Anatomy and Developmental Biology, Department of Oral Biology, Taste Research Center, Oral Science Research Center, BK21 FOUR Project, Yonsei University College of Dentistry, Seoul, Korea.
| |
Collapse
|
15
|
Canu G, Ruhrberg C. First blood: the endothelial origins of hematopoietic progenitors. Angiogenesis 2021; 24:199-211. [PMID: 33783643 PMCID: PMC8205888 DOI: 10.1007/s10456-021-09783-9] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 03/10/2021] [Indexed: 12/20/2022]
Abstract
Hematopoiesis in vertebrate embryos occurs in temporally and spatially overlapping waves in close proximity to blood vascular endothelial cells. Initially, yolk sac hematopoiesis produces primitive erythrocytes, megakaryocytes, and macrophages. Thereafter, sequential waves of definitive hematopoiesis arise from yolk sac and intraembryonic hemogenic endothelia through an endothelial-to-hematopoietic transition (EHT). During EHT, the endothelial and hematopoietic transcriptional programs are tightly co-regulated to orchestrate a shift in cell identity. In the yolk sac, EHT generates erythro-myeloid progenitors, which upon migration to the liver differentiate into fetal blood cells, including erythrocytes and tissue-resident macrophages. In the dorsal aorta, EHT produces hematopoietic stem cells, which engraft the fetal liver and then the bone marrow to sustain adult hematopoiesis. Recent studies have defined the relationship between the developing vascular and hematopoietic systems in animal models, including molecular mechanisms that drive the hemato-endothelial transcription program for EHT. Moreover, human pluripotent stem cells have enabled modeling of fetal human hematopoiesis and have begun to generate cell types of clinical interest for regenerative medicine.
Collapse
Affiliation(s)
- Giovanni Canu
- UCL Institute of Ophthalmology, University College London, 11-43 Bath Street, London, EC1V 9EL, UK
| | - Christiana Ruhrberg
- UCL Institute of Ophthalmology, University College London, 11-43 Bath Street, London, EC1V 9EL, UK.
| |
Collapse
|
16
|
Ziegler N, Bader E, Epanchintsev A, Margerie D, Kannt A, Schmoll D. AMPKβ1 and AMPKβ2 define an isoform-specific gene signature in human pluripotent stem cells, differentially mediating cardiac lineage specification. J Biol Chem 2021; 295:17659-17671. [PMID: 33454005 DOI: 10.1074/jbc.ra120.013990] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 10/07/2020] [Indexed: 12/18/2022] Open
Abstract
AMP-activated protein kinase (AMPK) is a key regulator of energy metabolism that phosphorylates a wide range of proteins to maintain cellular homeostasis. AMPK consists of three subunits: α, β, and γ. AMPKα and β are encoded by two genes, the γ subunit by three genes, all of which are expressed in a tissue-specific manner. It is not fully understood, whether individual isoforms have different functions. Using RNA-Seq technology, we provide evidence that the loss of AMPKβ1 and AMPKβ2 lead to different gene expression profiles in human induced pluripotent stem cells (hiPSCs), indicating isoform-specific function. The knockout of AMPKβ2 was associated with a higher number of differentially regulated genes than the deletion of AMPKβ1, suggesting that AMPKβ2 has a more comprehensive impact on the transcriptome. Bioinformatics analysis identified cell differentiation as one biological function being specifically associated with AMPKβ2. Correspondingly, the two isoforms differentially affected lineage decision toward a cardiac cell fate. Although the lack of PRKAB1 impacted differentiation into cardiomyocytes only at late stages of cardiac maturation, the availability of PRKAB2 was indispensable for mesoderm specification as shown by gene expression analysis and histochemical staining for cardiac lineage markers such as cTnT, GATA4, and NKX2.5. Ultimately, the lack of AMPKβ1 impairs, whereas deficiency of AMPKβ2 abrogates differentiation into cardiomyocytes. Finally, we demonstrate that AMPK affects cellular physiology by engaging in the regulation of hiPSC transcription in an isoform-specific manner, providing the basis for further investigations elucidating the role of dedicated AMPK subunits in the modulation of gene expression.
Collapse
Affiliation(s)
- Nicole Ziegler
- Research & Development, Sanofi-Aventis Deutschland GmbH, Frankfurt/Main, Germany.
| | - Erik Bader
- Integrated Drug Discovery, Sanofi-Aventis Deutschland GmbH, Frankfurt/Main, Germany
| | - Alexey Epanchintsev
- Research & Development, Sanofi-Aventis Deutschland GmbH, Frankfurt/Main, Germany
| | - Daniel Margerie
- Research & Development, Digital Data Sciences, Sanofi-Aventis Deutschland GmbH, Frankfurt/Main, Germany
| | - Aimo Kannt
- Research & Development, Sanofi-Aventis Deutschland GmbH, Frankfurt/Main, Germany
| | - Dieter Schmoll
- Research & Development, Sanofi-Aventis Deutschland GmbH, Frankfurt/Main, Germany.
| |
Collapse
|
17
|
Simultaneous and quantitative monitoring transcription factors in human embryonic stem cell differentiation using mass spectrometry-based targeted proteomics. Anal Bioanal Chem 2021; 413:2081-2089. [PMID: 33655347 DOI: 10.1007/s00216-021-03160-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 12/15/2020] [Accepted: 01/06/2021] [Indexed: 11/27/2022]
Abstract
Human embryonic stem cells (hESCs) can be self-propagated indefinitely in culture while holding the capacity to generate almost all cell types. Although this powerful differentiation ability of hESCs has become a potential source of cell replacement therapies, application of stem cells in clinical practice relies heavily on the exquisite control of their developmental fate. In general, an essential first step in differentiation is to exit the pluripotent state, which is precariously balanced and depends on a variety of factors, mainly centering on the core transcriptional mechanism. To date, much evidence has indicated that transcription factors such as Sox2, Oct4, and Nanog control the self-renewal and pluripotency of hESCs. Their expression displays a restricted spatial-temporal pattern and their small changes in level can significantly affect directed differentiation and the cell type derived. So far, few assays have been developed to monitor this process. Herein, we provided a mass spectrometry (MS)-based approach for simultaneous and quantitative monitoring of these transcription factors, in an attempt to provide insight into their contributions in hESC differentiation.
Collapse
|
18
|
Di Luca M, Fitzpatrick E, Burtenshaw D, Liu W, Helt JC, Hakimjavadi R, Corcoran E, Gusti Y, Sheridan D, Harman S, Lally C, Redmond EM, Cahill PA. The calcium binding protein S100β marks hedgehog-responsive resident vascular stem cells within vascular lesions. NPJ Regen Med 2021; 6:10. [PMID: 33649337 PMCID: PMC7921434 DOI: 10.1038/s41536-021-00120-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 01/14/2021] [Indexed: 01/09/2023] Open
Abstract
A hallmark of subclinical atherosclerosis is the accumulation of vascular smooth muscle cell (SMC)-like cells leading to intimal thickening. While medial SMCs contribute, the participation of hedgehog-responsive resident vascular stem cells (vSCs) to lesion formation remains unclear. Using transgenic eGFP mice and genetic lineage tracing of S100β vSCs in vivo, we identified S100β/Sca1 cells derived from a S100β non-SMC parent population within lesions that co-localise with smooth muscle α-actin (SMA) cells following iatrogenic flow restriction, an effect attenuated following hedgehog inhibition with the smoothened inhibitor, cyclopamine. In vitro, S100β/Sca1 cells isolated from atheroprone regions of the mouse aorta expressed hedgehog signalling components, acquired the di-methylation of histone 3 lysine 4 (H3K4me2) stable SMC epigenetic mark at the Myh11 locus and underwent myogenic differentiation in response to recombinant sonic hedgehog (SHh). Both S100β and PTCH1 cells were present in human vessels while S100β cells were enriched in arteriosclerotic lesions. Recombinant SHh promoted myogenic differentiation of human induced pluripotent stem cell-derived S100β neuroectoderm progenitors in vitro. We conclude that hedgehog-responsive S100β vSCs contribute to lesion formation and support targeting hedgehog signalling to treat subclinical arteriosclerosis.
Collapse
Affiliation(s)
- Mariana Di Luca
- Dublin City University, Vascular Biology & Therapeutics Group, School of Biotechnology, Dublin, Ireland
| | - Emma Fitzpatrick
- Dublin City University, Vascular Biology & Therapeutics Group, School of Biotechnology, Dublin, Ireland
| | - Denise Burtenshaw
- Dublin City University, Vascular Biology & Therapeutics Group, School of Biotechnology, Dublin, Ireland
| | - Weimin Liu
- University of Rochester, Department of Surgery, Rochester, NY, USA
| | | | - Roya Hakimjavadi
- Dublin City University, Vascular Biology & Therapeutics Group, School of Biotechnology, Dublin, Ireland
| | - Eoin Corcoran
- Dublin City University, Vascular Biology & Therapeutics Group, School of Biotechnology, Dublin, Ireland
| | - Yusof Gusti
- Dublin City University, Vascular Biology & Therapeutics Group, School of Biotechnology, Dublin, Ireland
| | - Daniel Sheridan
- Dublin City University, Vascular Biology & Therapeutics Group, School of Biotechnology, Dublin, Ireland
| | - Susan Harman
- Dublin City University, Vascular Biology & Therapeutics Group, School of Biotechnology, Dublin, Ireland
| | - Catriona Lally
- Trinity College Dublin, Trinity Centre for Bioengineering, Trinity Biomedical Sciences Institute, Dublin, Ireland
| | - Eileen M Redmond
- University of Rochester, Department of Surgery, Rochester, NY, USA
| | - Paul A Cahill
- Dublin City University, Vascular Biology & Therapeutics Group, School of Biotechnology, Dublin, Ireland.
| |
Collapse
|
19
|
Goh KJ, Tan EK, Lu H, Roy S, Dunn NR. An NKX2-1 GFP and TP63 tdTomato dual fluorescent reporter for the investigation of human lung basal cell biology. Sci Rep 2021; 11:4712. [PMID: 33633173 PMCID: PMC7907081 DOI: 10.1038/s41598-021-83825-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 02/08/2021] [Indexed: 11/09/2022] Open
Abstract
Basal cells are multipotent stem cells responsible for the repair and regeneration of all the epithelial cell types present in the proximal lung. In mice, the elusive origins of basal cells and their contribution to lung development were recently revealed by high-resolution, lineage tracing studies. It however remains unclear if human basal cells originate and participate in lung development in a similar fashion, particularly with mounting evidence for significant species-specific differences in this process. To address this outstanding question, in the last several years differentiation protocols incorporating human pluripotent stem cells (hPSC) have been developed to produce human basal cells in vitro with varying efficiencies. To facilitate this endeavour, we introduced tdTomato into the human TP63 gene, whose expression specifically labels basal cells, in the background of a previously described hPSC line harbouring an NKX2-1GFP reporter allele. The functionality and specificity of the NKX2-1GFP;TP63tdTomato hPSC line was validated by directed differentiation into lung progenitors as well as more specialised lung epithelial subtypes using an organoid platform. This dual fluorescent reporter hPSC line will be useful for tracking, isolating and expanding basal cells from heterogenous differentiation cultures for further study.
Collapse
Affiliation(s)
- Kim Jee Goh
- Institute of Medical Biology, Agency for Science Technology and Research (A∗STAR), 8A Biomedical Grove, #06-06 Immunos, Singapore, 138648, Singapore
- Skin Research Institute of Singapore, 11 Mandalay Road #17-01 Clinical Sciences Building, Singapore, 308232, Singapore
| | - Ee Kim Tan
- Institute of Medical Biology, Agency for Science Technology and Research (A∗STAR), 8A Biomedical Grove, #06-06 Immunos, Singapore, 138648, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University, Clinical Sciences Building, 11 Mandalay Road, Singapore, 308232, Singapore
| | - Hao Lu
- Institute of Molecular and Cell Biology, Proteos, 61 Biopolis Drive, Singapore, 138673, Singapore
| | - Sudipto Roy
- Institute of Molecular and Cell Biology, Proteos, 61 Biopolis Drive, Singapore, 138673, Singapore
- Department of Pediatrics, Yong Loo Lin School of Medicine, National University of Singapore, 1E Kent Ridge Road, Singapore, 119288, Singapore
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore, 117543, Singapore
| | - N Ray Dunn
- Institute of Medical Biology, Agency for Science Technology and Research (A∗STAR), 8A Biomedical Grove, #06-06 Immunos, Singapore, 138648, Singapore.
- Skin Research Institute of Singapore, 11 Mandalay Road #17-01 Clinical Sciences Building, Singapore, 308232, Singapore.
- Lee Kong Chian School of Medicine, Nanyang Technological University, Clinical Sciences Building, 11 Mandalay Road, Singapore, 308232, Singapore.
| |
Collapse
|
20
|
Brown ML, Schneyer A. A Decade Later: Revisiting the TGFβ Family's Role in Diabetes. Trends Endocrinol Metab 2021; 32:36-47. [PMID: 33261990 DOI: 10.1016/j.tem.2020.11.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 11/02/2020] [Accepted: 11/03/2020] [Indexed: 12/16/2022]
Abstract
In 2010, we published a review summarizing the role of the transforming growth factor-beta (TGFβ) family of proteins in diabetes. At that time there were still many outstanding questions that needed to be answered. In this updated review, we revisit the topic and provide new evidence that supports findings from previous studies included in the 2010 review and adds to the knowledge base with new findings and information. The most substantial contributions in the past 10 years have been in the areas of human data, the investigation of TGFβ family members other than activin [e.g., bone morphogenetic proteins (BMPs), growth and differentiation factor 11 (GDF11), nodal], and the expansion of β-cell number through various mechanisms including transdifferentiation, which was previously believed to not be possible.
Collapse
Affiliation(s)
| | - Alan Schneyer
- Fairbanks Pharmaceuticals, Inc., Springfield, MA 01199, USA
| |
Collapse
|
21
|
Eldridge CB, Allen FJ, Crisp A, Grandy RA, Vallier L, Sale JE. A p53-Dependent Checkpoint Induced upon DNA Damage Alters Cell Fate during hiPSC Differentiation. Stem Cell Reports 2020; 15:827-835. [PMID: 32888504 PMCID: PMC7561492 DOI: 10.1016/j.stemcr.2020.08.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 08/07/2020] [Accepted: 08/07/2020] [Indexed: 12/14/2022] Open
Abstract
The ability of human induced pluripotent stem cells (hiPSCs) to differentiate in vitro to each of the three germ layer lineages has made them an important model of early human development and a tool for tissue engineering. However, the factors that disturb the intricate transcriptional choreography of differentiation remain incompletely understood. Here, we uncover a critical time window during which DNA damage significantly reduces the efficiency and fidelity with which hiPSCs differentiate to definitive endoderm. DNA damage prevents the normal reduction of p53 levels as cells pass through the epithelial-to-mesenchymal transition, diverting the transcriptional program toward mesoderm without induction of an apoptotic response. In contrast, TP53-deficient cells differentiate to endoderm with high efficiency after DNA damage, suggesting that p53 enforces a "differentiation checkpoint" in early endoderm differentiation that alters cell fate in response to DNA damage.
Collapse
Affiliation(s)
- Cara B Eldridge
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Finian J Allen
- Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, UK
| | - Alastair Crisp
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Rodrigo A Grandy
- Wellcome-MRC Cambridge Stem Cell Institute, Anne McLaren Laboratory, University of Cambridge, Cambridge CB2 0SZ, UK
| | - Ludovic Vallier
- Wellcome-MRC Cambridge Stem Cell Institute, Anne McLaren Laboratory, University of Cambridge, Cambridge CB2 0SZ, UK; Department of Surgery, University of Cambridge, Cambridge CB2 0QQ, UK; Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton CB10 1SA, UK
| | - Julian E Sale
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK.
| |
Collapse
|
22
|
Yang J, Jiang W. The Role of SMAD2/3 in Human Embryonic Stem Cells. Front Cell Dev Biol 2020; 8:653. [PMID: 32850796 PMCID: PMC7396709 DOI: 10.3389/fcell.2020.00653] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 07/01/2020] [Indexed: 12/11/2022] Open
Abstract
Human embryonic stem cells (hESCs) possess the potential of long-term self-renewal and three primary germ layers differentiation, and thus hESCs are expected to have broad applications in cell therapy, drug screening and basic research on human early embryonic development. Many efforts have been put to dissect the regulation of pluripotency and direct differentiation of hESCs. TGFβ/Activin/Nodal signal pathway critically regulates pluripotency maintenance and cell differentiation through the main signal transducer SMAD2/3 in hESCs, but the action manners of SMAD2/3 in hESCs are sophisticated and not documented yet. Here we review and discuss the roles of SMAD2/3 in hESC pluripotency maintenance and differentiation initiation separately. We summarize that SMAD2/3 regulates pluripotency and differentiation mainly through four aspects, (1) controlling divergent transcriptional networks of pluripotency and differentiation; (2) interacting with chromatin modifiers to make the chromatin accessible or recruiting METTL3-METTL14-WTAP complex and depositing m6A to the mRNA of pluripotency genes; (3) acting as a transcription factor to activate endoderm-specific genes to thus initiate definitive endoderm differentiation, which happens as cyclin D/CDK4/6 downstream target in later G1 phase as well; (4) interacting with endoderm specific lncRNAs to promote differentiation.
Collapse
Affiliation(s)
- Jie Yang
- Department of Biological Repositories, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Wei Jiang
- Department of Biological Repositories, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan University, Wuhan, China
- Human Genetics Resource Preservation Center of Wuhan University, Wuhan, China
| |
Collapse
|
23
|
Goh KJ, Chen JH, Rocha N, Semple RK. Human pluripotent stem cell-based models suggest preadipocyte senescence as a possible cause of metabolic complications of Werner and Bloom Syndromes. Sci Rep 2020; 10:7490. [PMID: 32367056 PMCID: PMC7198505 DOI: 10.1038/s41598-020-64136-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 04/08/2020] [Indexed: 11/09/2022] Open
Abstract
Werner Syndrome (WS) and Bloom Syndrome (BS) are disorders of DNA damage repair caused by biallelic disruption of the WRN or BLM DNA helicases respectively. Both are commonly associated with insulin resistant diabetes, usually accompanied by dyslipidemia and fatty liver, as seen in lipodystrophies. In keeping with this, progressive reduction of subcutaneous adipose tissue is commonly observed. To interrogate the underlying cause of adipose tissue dysfunction in these syndromes, CRISPR/Cas9 genome editing was used to generate human pluripotent stem cell (hPSC) lacking either functional WRN or BLM helicase. No deleterious effects were observed in WRN−/− or BLM−/− embryonic stem cells, however upon their differentiation into adipocyte precursors (AP), premature senescence emerged, impairing later stages of adipogenesis. The resulting adipocytes were also found to be senescent, with increased levels of senescent markers and senescence-associated secretory phenotype (SASP) components. SASP components initiate and reinforce senescence in adjacent cells, which is likely to create a positive feedback loop of cellular senescence within the adipocyte precursor compartment, as demonstrated in normal ageing. Such a scenario could progressively attenuate adipose mass and function, giving rise to “lipodystrophy-like” insulin resistance. Further assessment of pharmacological senolytic strategies are warranted to mitigate this component of Werner and Bloom syndromes.
Collapse
Affiliation(s)
- Kim Jee Goh
- The University of Cambridge Metabolic Research Laboratories, Wellcome Trust-MRC Institute of Metabolic Science, Cambridge, UK
| | - Jian-Hua Chen
- The University of Cambridge Metabolic Research Laboratories, Wellcome Trust-MRC Institute of Metabolic Science, Cambridge, UK.,The National Institute for Health Research Cambridge Biomedical Research Centre, Cambridge, UK
| | - Nuno Rocha
- The University of Cambridge Metabolic Research Laboratories, Wellcome Trust-MRC Institute of Metabolic Science, Cambridge, UK.,The National Institute for Health Research Cambridge Biomedical Research Centre, Cambridge, UK
| | - Robert K Semple
- The University of Cambridge Metabolic Research Laboratories, Wellcome Trust-MRC Institute of Metabolic Science, Cambridge, UK. .,The National Institute for Health Research Cambridge Biomedical Research Centre, Cambridge, UK. .,Centre for Cardiovascular Science, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK.
| |
Collapse
|
24
|
Kuo HH, Gao X, DeKeyser JM, Fetterman KA, Pinheiro EA, Weddle CJ, Fonoudi H, Orman MV, Romero-Tejeda M, Jouni M, Blancard M, Magdy T, Epting CL, George AL, Burridge PW. Negligible-Cost and Weekend-Free Chemically Defined Human iPSC Culture. Stem Cell Reports 2020; 14:256-270. [PMID: 31928950 PMCID: PMC7013200 DOI: 10.1016/j.stemcr.2019.12.007] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 12/05/2019] [Accepted: 12/09/2019] [Indexed: 12/19/2022] Open
Abstract
Human induced pluripotent stem cell (hiPSC) culture has become routine, yet the cost of pluripotent cell media, frequent medium changes, and the reproducibility of differentiation have remained restrictive. Here, we describe the formulation of a hiPSC culture medium (B8) as a result of the exhaustive optimization of medium constituents and concentrations, establishing the necessity and relative contributions of each component to the pluripotent state and cell proliferation. The reagents in B8 represent only 3% of the costs of commercial media, made possible primarily by the in-lab generation of three E. coli-expressed, codon-optimized recombinant proteins: fibroblast growth factor 2, transforming growth factor β3, and neuregulin 1. We demonstrate the derivation and culture of 34 hiPSC lines in B8 as well as the maintenance of pluripotency long term (over 100 passages). This formula also allows a weekend-free feeding schedule without sacrificing capacity for differentiation.
Collapse
Affiliation(s)
- Hui-Hsuan Kuo
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA; Center for Pharmacogenomics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Xiaozhi Gao
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA; Center for Pharmacogenomics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Jean-Marc DeKeyser
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA; Center for Pharmacogenomics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - K Ashley Fetterman
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA; Center for Pharmacogenomics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Emily A Pinheiro
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA; Center for Pharmacogenomics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Carly J Weddle
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA; Center for Pharmacogenomics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Hananeh Fonoudi
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA; Center for Pharmacogenomics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Michael V Orman
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA; Center for Pharmacogenomics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Marisol Romero-Tejeda
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA; Center for Pharmacogenomics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Mariam Jouni
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA; Center for Pharmacogenomics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Malorie Blancard
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA; Center for Pharmacogenomics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Tarek Magdy
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA; Center for Pharmacogenomics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Conrad L Epting
- Departments of Pediatrics and Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Alfred L George
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA; Center for Pharmacogenomics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Paul W Burridge
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA; Center for Pharmacogenomics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.
| |
Collapse
|
25
|
GP130 signaling and the control of naïve pluripotency in humans, monkeys, and pigs. Exp Cell Res 2020; 386:111712. [DOI: 10.1016/j.yexcr.2019.111712] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 10/31/2019] [Accepted: 11/02/2019] [Indexed: 12/19/2022]
|
26
|
Bai HJ, Zhang P, Ma L, Liang H, Wei G, Yang HT. SMYD2 Drives Mesendodermal Differentiation of Human Embryonic Stem Cells Through Mediating the Transcriptional Activation of Key Mesendodermal Genes. Stem Cells 2019; 37:1401-1415. [PMID: 31348575 DOI: 10.1002/stem.3068] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 06/27/2019] [Accepted: 07/09/2019] [Indexed: 01/04/2023]
Abstract
Histone methyltransferases play a critical role in early human development, whereas their roles and precise mechanisms are less understood. SET and MYND domain-containing protein 2 (SMYD2) is a histone lysine methyltransferase induced during early differentiation of human embryonic stem cells (hESCs), but little is known about its function in undifferentiated hESCs and in their early lineage fate decision as well as underlying mechanisms. Here, we explored the role of SMYD2 in the self-renewal and mesendodermal lineage commitment of hESCs. We demonstrated that the expression of SMYD2 was significantly enhanced during mesendodermal but not neuroectodermal differentiation of hESCs. SMYD2 knockout (SMYD2-/- ) did not affect self-renewal and early neuroectodermal differentiation of hESCs, whereas it blocked the mesendodermal lineage commitment. This phenotype was rescued by reintroduction of SMYD2 into the SMYD2-/- hESCs. Mechanistically, the bindings of SMYD2 at the promoter regions of critical mesendodermal transcription factor genes, namely, brachyury (T), eomesodermin (EOMES), mix paired-like homeobox (MIXL1), and goosecoid homeobox (GSC) were significantly enhanced during mesendodermal differentiation of SMYD2+/+ hESCs but totally suppressed in SMYD2-/- ones. Concomitantly, such a suppression was associated with the remarkable reduction of methylation at histone 3 lysine 4 and lysine 36 but not at histone 4 lysine 20 globally and specifically on the promoter regions of mesendodermal genes, namely, T, EOMES, MIXL1, and GSC. These results reveal that the histone methyltransferase SMYD2 is dispensable in the undifferentiated hESCs and the early neuroectodermal differentiation, but it promotes the mesendodermal differentiation of hESCs through the epigenetic control of critical genes to mesendodermal lineage commitment. Stem Cells 2019;37:1401-1415.
Collapse
Affiliation(s)
- Hua-Jun Bai
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Laboratory of Molecular Cardiology, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences (SIBS), University of Chinese Academy of Sciences (CAS), CAS, Shanghai, People's Republic of China
| | - Peng Zhang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Laboratory of Molecular Cardiology, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences (SIBS), University of Chinese Academy of Sciences (CAS), CAS, Shanghai, People's Republic of China
| | - Li Ma
- CAS Key Laboratory of Computational Biology, Laboratory of Epigenome Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences (SIBS), University of Chinese Academy of Sciences (CAS), CAS, Shanghai, People's Republic of China
| | - He Liang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Laboratory of Molecular Cardiology, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences (SIBS), University of Chinese Academy of Sciences (CAS), CAS, Shanghai, People's Republic of China
| | - Gang Wei
- CAS Key Laboratory of Computational Biology, Laboratory of Epigenome Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences (SIBS), University of Chinese Academy of Sciences (CAS), CAS, Shanghai, People's Republic of China
| | - Huang-Tian Yang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Laboratory of Molecular Cardiology, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences (SIBS), University of Chinese Academy of Sciences (CAS), CAS, Shanghai, People's Republic of China
| |
Collapse
|
27
|
Yu Y, Feng XH. TGF-β signaling in cell fate control and cancer. Curr Opin Cell Biol 2019; 61:56-63. [PMID: 31382143 DOI: 10.1016/j.ceb.2019.07.007] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 07/05/2019] [Indexed: 12/11/2022]
Abstract
Members of the transforming growth factor-β (TGF-β) family regulate cell fate decisions during early embryonic development and tissue homeostasis in the adult. Deregulation of TGF-β family signaling contributes to developmental anomalies, fibrotic disorders, tumorigenesis and immune diseases. TGF-β exerts a wide spectrum of cellular functions by activating canonical (SMAD-dependent) or non-canonical (SMAD-independent) pathways in a cell type-specific and context-dependent manner. Here, we focus on recent advances in the understanding of the mechanisms and functions of SMAD and non-SMAD pathways in physiology and pathology.
Collapse
Affiliation(s)
- Yi Yu
- The MOE Key Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Xin-Hua Feng
- The MOE Key Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China; DeBakey Department of Surgery and Department of Molecular & Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA.
| |
Collapse
|
28
|
Kuang YL, Munoz A, Nalula G, Santostefano KE, Sanghez V, Sanchez G, Terada N, Mattis AN, Iacovino M, Iribarren C, Krauss RM, Medina MW. Evaluation of commonly used ectoderm markers in iPSC trilineage differentiation. Stem Cell Res 2019; 37:101434. [PMID: 30999275 PMCID: PMC6570500 DOI: 10.1016/j.scr.2019.101434] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 03/27/2019] [Accepted: 04/08/2019] [Indexed: 01/08/2023] Open
Abstract
Patient-derived induced pluripotent stem cells (iPSCs) have become a promising resource for exploring genetics of complex diseases, discovering new drugs, and advancing regenerative medicine. Increasingly, laboratories are creating their own banks of iPSCs derived from diverse donors. However, there are not yet standardized guidelines for qualifying these cell lines, i.e., distinguishing between bona fide human iPSCs, somatic cells, and imperfectly reprogrammed cells. Here, we report the establishment of a panel of 30 iPSCs from CD34+ peripheral blood mononuclear cells, of which 10 were further differentiated in vitro into all three germ layers. We characterized these different cell types with commonly used pluripotent and lineage specific markers, and showed that NES, TUBB3, and OTX2 cannot be reliably used as ectoderm differentiation markers. Our work highlights the importance of marker selection in iPSC authentication, and the need for the field to establish definitive standard assays.
Collapse
Affiliation(s)
- Yu-Lin Kuang
- Children's Hospital Oakland Research Institute, 5700 Martin Luther King Jr Way, Oakland, CA 94609, USA
| | - Antonio Munoz
- Children's Hospital Oakland Research Institute, 5700 Martin Luther King Jr Way, Oakland, CA 94609, USA
| | - Gilbert Nalula
- Children's Hospital Oakland Research Institute, 5700 Martin Luther King Jr Way, Oakland, CA 94609, USA
| | - Katherine E Santostefano
- University of Florida College of Medicine, 1395 Center Drive Box 100275, Gainesville, FL 32610, USA
| | - Valentina Sanghez
- Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, 1123 W Carson Street, Torrance, CA 90502, USA
| | - Gabriela Sanchez
- Kaiser Permanente Division of Research, 2000 Broadway, Oakland, CA 94612, USA
| | - Naohiro Terada
- University of Florida College of Medicine, 1395 Center Drive Box 100275, Gainesville, FL 32610, USA
| | - Aras N Mattis
- Department of Pathology, University of California San Francisco, 513 Parnassus Avenue, San Francisco, CA 94143, USA
| | - Michelina Iacovino
- Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, 1123 W Carson Street, Torrance, CA 90502, USA
| | - Carlos Iribarren
- Kaiser Permanente Division of Research, 2000 Broadway, Oakland, CA 94612, USA
| | - Ronald M Krauss
- Children's Hospital Oakland Research Institute, 5700 Martin Luther King Jr Way, Oakland, CA 94609, USA
| | - Marisa W Medina
- Children's Hospital Oakland Research Institute, 5700 Martin Luther King Jr Way, Oakland, CA 94609, USA.
| |
Collapse
|
29
|
Rosa S, Praça C, Pitrez PR, Gouveia PJ, Aranguren XL, Ricotti L, Ferreira LS. Functional characterization of iPSC-derived arterial- and venous-like endothelial cells. Sci Rep 2019; 9:3826. [PMID: 30846769 PMCID: PMC6405900 DOI: 10.1038/s41598-019-40417-9] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2018] [Accepted: 02/11/2019] [Indexed: 02/06/2023] Open
Abstract
The current work reports the functional characterization of human induced pluripotent stem cells (iPSCs)- arterial and venous-like endothelial cells (ECs), derived in chemically defined conditions, either in monoculture or seeded in a scaffold with mechanical properties similar to blood vessels. iPSC-derived arterial- and venous-like endothelial cells were obtained in two steps: differentiation of iPSCs into endothelial precursor cells (CD31pos/KDRpos/VE-Cadmed/EphB2neg/COUP-TFneg) followed by their differentiation into arterial and venous-like ECs using a high and low vascular endothelial growth factor (VEGF) concentration. Cells were characterized at gene, protein and functional levels. Functionally, both arterial and venous-like iPSC-derived ECs responded to vasoactive agonists such as thrombin and prostaglandin E2 (PGE2), similar to somatic ECs; however, arterial-like iPSC-derived ECs produced higher nitric oxide (NO) and elongation to shear stress than venous-like iPSC-derived ECs. Both cells adhered, proliferated and prevented platelet activation when seeded in poly(caprolactone) scaffolds. Interestingly, both iPSC-derived ECs cultured in monoculture or in a scaffold showed a different inflammatory profile than somatic ECs. Although both somatic and iPSC-derived ECs responded to tumor necrosis factor-α (TNF-α) by an increase in the expression of intercellular adhesion molecule 1 (ICAM-1), only somatic ECs showed an upregulation in the expression of E-selectin or vascular cell adhesion molecule 1 (VCAM-1).
Collapse
Affiliation(s)
- S Rosa
- CNC UC- Center for Neurosciences and Cell Biology, University of Coimbra, 3004-517, Coimbra, Portugal
| | - C Praça
- CNC UC- Center for Neurosciences and Cell Biology, University of Coimbra, 3004-517, Coimbra, Portugal.,Faculty of Medicine, University of Coimbra, 3000-354, Coimbra, Portugal
| | - P R Pitrez
- CNC UC- Center for Neurosciences and Cell Biology, University of Coimbra, 3004-517, Coimbra, Portugal.,Faculty of Medicine, University of Coimbra, 3000-354, Coimbra, Portugal
| | - P José Gouveia
- CNC UC- Center for Neurosciences and Cell Biology, University of Coimbra, 3004-517, Coimbra, Portugal.,IIIUC- Institute for Interdisciplinary Research, University of Coimbra, Casa Costa Alemão - Pólo II, Rua Dom Francisco de Lemos, 3030-789, Coimbra, Portugal
| | - X L Aranguren
- Hematology and Cell Therapy Area, Clinica Universidad de Navarra, and Division of Oncology, Center for Applied Medical Research, University of Navarra, Pamplona, Spain
| | - L Ricotti
- The BioRobotics Institute, Scuola Superiore Sant' Anna, Viale Rinaldo Piaggio 34, 56025, Pontedera, PI, Italy
| | - L Silva Ferreira
- CNC UC- Center for Neurosciences and Cell Biology, University of Coimbra, 3004-517, Coimbra, Portugal. .,Faculty of Medicine, University of Coimbra, 3000-354, Coimbra, Portugal.
| |
Collapse
|
30
|
Baek SK, Cho YS, Kim IS, Jeon SB, Moon DK, Hwangbo C, Choi JW, Kim TS, Lee JH. A Rho-Associated Coiled-Coil Containing Kinase Inhibitor, Y-27632, Improves Viability of Dissociated Single Cells, Efficiency of Colony Formation, and Cryopreservation in Porcine Pluripotent Stem Cells. Cell Reprogram 2019; 21:37-50. [DOI: 10.1089/cell.2018.0020] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Affiliation(s)
- Sang-Ki Baek
- Department of Animal Bioscience, College of Agriculture and Life Sciences, Gyeongsang National University, Jinju, Republic of Korea
- Division of Applied Life Science (BK21 Plus), IALS, PMBBRC, Gyeongsang National University, Jinju, Republic of Korea
| | - Young-Soo Cho
- Department of Animal Bioscience, College of Agriculture and Life Sciences, Gyeongsang National University, Jinju, Republic of Korea
- Division of Applied Life Science (BK21 Plus), IALS, PMBBRC, Gyeongsang National University, Jinju, Republic of Korea
| | - Ik-Sung Kim
- Department of Animal Bioscience, College of Agriculture and Life Sciences, Gyeongsang National University, Jinju, Republic of Korea
| | - Soo-Been Jeon
- Department of Animal Bioscience, College of Agriculture and Life Sciences, Gyeongsang National University, Jinju, Republic of Korea
| | - Dae-Ky Moon
- Department of Animal Bioscience, College of Agriculture and Life Sciences, Gyeongsang National University, Jinju, Republic of Korea
| | - Cheol Hwangbo
- Division of Applied Life Science (BK21 Plus), IALS, PMBBRC, Gyeongsang National University, Jinju, Republic of Korea
- Division of Life Science, College of Natural Sciences, Gyeongsang National University, Jinju, Republic of Korea
| | - Jung-Woo Choi
- College of Animal Life Science, Kangwon National University, Chuncheon, Republic of Korea
| | - Tae-Suk Kim
- Department of Animal Bioscience, College of Agriculture and Life Sciences, Gyeongsang National University, Jinju, Republic of Korea
| | - Joon-Hee Lee
- Department of Animal Bioscience, College of Agriculture and Life Sciences, Gyeongsang National University, Jinju, Republic of Korea
| |
Collapse
|
31
|
Sun H, Zhu Q, Guo P, Zhang Y, Tighe S, Zhu Y. Trabecular meshwork cells are a valuable resource for cellular therapy of glaucoma. J Cell Mol Med 2019; 23:1678-1686. [PMID: 30659738 PMCID: PMC6378204 DOI: 10.1111/jcmm.14158] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 11/15/2018] [Accepted: 12/23/2018] [Indexed: 12/16/2022] Open
Abstract
Trabecular meshwork (TM) contains a subset of adult stem cells or progenitors that can be differentiated into corneal endothelial cells, adipocytes and chondrocytes, but not osteocytes or keratocytes. Accordingly, these progenitors can be utilized as a cell‐based therapy to prevent blindness caused by glaucoma, corneal endothelial dysfunction and other diseases in general. In this review, we review in vitro expansion techniques for TM progenitors, discuss their phenotypic properties, and highlight their potential clinical applications in various ophthalmic diseases.
Collapse
Affiliation(s)
- Hong Sun
- Department of Ophthalmology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Qin Zhu
- Department of Ophthalmology, the Second People's Hospital of Yunnan Province (Fourth Affiliated Hospital of Kunming Medical University), Yunnan Eye Institute, Key Laboratory of Yunnan Province for the Prevention and Treatment of Ophthalmology (2017DG008), Provincial Innovation Team for Cataract and Ocular Fundus Disease, The Second People's Hospital of Yunnan Province (2017HC010), Expert Workstation of Yao Ke (2017IC064), Kunming, China
| | - Ping Guo
- Shenzhen University School of Medicine, Shenzhen Eye Hospital, Shenzhen, China
| | - Yuan Zhang
- Tissue Tech, Inc., Ocular Surface Center, Ocular Surface Research & Education Foundation, Miami, Florida
| | - Sean Tighe
- Tissue Tech, Inc., Ocular Surface Center, Ocular Surface Research & Education Foundation, Miami, Florida
| | - Yingting Zhu
- Tissue Tech, Inc., Ocular Surface Center, Ocular Surface Research & Education Foundation, Miami, Florida
| |
Collapse
|
32
|
Jung-Klawitter S, Opladen T. Induced pluripotent stem cells (iPSCs) as model to study inherited defects of neurotransmission in inborn errors of metabolism. J Inherit Metab Dis 2018; 41:1103-1116. [PMID: 29980968 DOI: 10.1007/s10545-018-0225-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 05/08/2018] [Accepted: 06/25/2018] [Indexed: 11/29/2022]
Abstract
The ability to reprogram somatic cells to induced pluripotent stem cells (iPSCs) has revolutionized the way of modeling human disease. Especially for the modeling of rare human monogenetic diseases with limited numbers of patients available worldwide and limited access to the mostly affected tissues, iPSCs have become an invaluable tool. To study rare diseases affecting neurotransmitter biosynthesis and neurotransmission, stem cell models carrying patient-specific mutations have become highly important as most of the cell types present in the human brain and the central nervous system (CNS), including motoneurons, neurons, oligodendrocytes, astrocytes, and microglia, can be differentiated from iPSCs following distinct developmental programs. Differentiation can be performed using classical 2D differentiation protocols, thereby generating specific subtypes of neurons or glial cells in a dish. On the other side, 3D differentiation into "organoids" opened new ways to study misregulated developmental processes associated with rare neurological and neurometabolic diseases. For the analysis of defects in neurotransmission associated with rare neurometabolic diseases, different types of brain organoids have been made available during the last years including forebrain, midbrain and cerebral organoids. In this review, we illustrate reprogramming of somatic cells to iPSCs, differentiation in 2D and 3D, as well as already available disease-specific iPSC models, and discuss current and future applications of these techniques.
Collapse
Affiliation(s)
- Sabine Jung-Klawitter
- Department of General Pediatrics, Division of Neuropediatrics and Metabolic Medicine, University Hospital Heidelberg, Im Neuenheimer Feld 669, 69120, Heidelberg, Germany.
| | - Thomas Opladen
- Department of General Pediatrics, Division of Neuropediatrics and Metabolic Medicine, University Hospital Heidelberg, Im Neuenheimer Feld 669, 69120, Heidelberg, Germany
| |
Collapse
|
33
|
Lahlou H, Lopez-Juarez A, Fontbonne A, Nivet E, Zine A. Modeling human early otic sensory cell development with induced pluripotent stem cells. PLoS One 2018; 13:e0198954. [PMID: 29902227 PMCID: PMC6002076 DOI: 10.1371/journal.pone.0198954] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Accepted: 05/24/2018] [Indexed: 11/18/2022] Open
Abstract
The inner ear represents a promising system to develop cell-based therapies from human induced pluripotent stem cells (hiPSCs). In the developing ear, Notch signaling plays multiple roles in otic region specification and for cell fate determination. Optimizing hiPSC induction for the generation of appropriate numbers of otic progenitors and derivatives, such as hair cells, may provide an unlimited supply of cells for research and cell-based therapy. In this study, we used monolayer cultures, otic-inducing agents, Notch modulation, and marker expression to track early and otic sensory lineages during hiPSC differentiation. Otic/placodal progenitors were derived from hiPSC cultures in medium supplemented with FGF3/FGF10 for 13 days. These progenitor cells were then treated for 7 days with retinoic acid (RA) and epidermal growth factor (EGF) or a Notch inhibitor. The differentiated cultures were analyzed in parallel by qPCR and immunocytochemistry. After the 13 day induction, hiPSC-derived cells displayed an upregulated expression of a panel of otic/placodal markers. Strikingly, a subset of these induced progenitor cells displayed key-otic sensory markers, the percentage of which was increased in cultures under Notch inhibition as compared to RA/EGF-treated cultures. Our results show that modulating Notch pathway during in vitro differentiation of hiPSC-derived otic/placodal progenitors is a valuable strategy to promote the expression of human otic sensory lineage genes.
Collapse
Affiliation(s)
- Hanae Lahlou
- Aix Marseille Université, CNRS, LNIA UMR 7260, Marseille, France
| | | | - Arnaud Fontbonne
- Aix Marseille Université, CNRS, LNIA UMR 7260, Marseille, France
| | - Emmanuel Nivet
- Aix Marseille Université, CNRS, NICN UMR 7259, Marseille, France
| | - Azel Zine
- Aix Marseille Université, CNRS, LNIA UMR 7260, Marseille, France
- Université de Montpellier, Faculté de Pharmacie, Montpellier, France
- * E-mail: ,
| |
Collapse
|
34
|
Bertero A, Brown S, Madrigal P, Osnato A, Ortmann D, Yiangou L, Kadiwala J, Hubner NC, de Los Mozos IR, Sadée C, Lenaerts AS, Nakanoh S, Grandy R, Farnell E, Ule J, Stunnenberg HG, Mendjan S, Vallier L. The SMAD2/3 interactome reveals that TGFβ controls m 6A mRNA methylation in pluripotency. Nature 2018; 555:256-259. [PMID: 29489750 PMCID: PMC5951268 DOI: 10.1038/nature25784] [Citation(s) in RCA: 278] [Impact Index Per Article: 39.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 01/22/2018] [Indexed: 12/17/2022]
Abstract
The TGFβ pathway has essential roles in embryonic development, organ homeostasis, tissue repair and disease. These diverse effects are mediated through the intracellular effectors SMAD2 and SMAD3 (hereafter SMAD2/3), whose canonical function is to control the activity of target genes by interacting with transcriptional regulators. Therefore, a complete description of the factors that interact with SMAD2/3 in a given cell type would have broad implications for many areas of cell biology. Here we describe the interactome of SMAD2/3 in human pluripotent stem cells. This analysis reveals that SMAD2/3 is involved in multiple molecular processes in addition to its role in transcription. In particular, we identify a functional interaction with the METTL3-METTL14-WTAP complex, which mediates the conversion of adenosine to N6-methyladenosine (m6A) on RNA. We show that SMAD2/3 promotes binding of the m6A methyltransferase complex to a subset of transcripts involved in early cell fate decisions. This mechanism destabilizes specific SMAD2/3 transcriptional targets, including the pluripotency factor gene NANOG, priming them for rapid downregulation upon differentiation to enable timely exit from pluripotency. Collectively, these findings reveal the mechanism by which extracellular signalling can induce rapid cellular responses through regulation of the epitranscriptome. These aspects of TGFβ signalling could have far-reaching implications in many other cell types and in diseases such as cancer.
Collapse
Affiliation(s)
- Alessandro Bertero
- Wellcome Trust-MRC Cambridge Stem Cell Institute, Anne McLaren Laboratory and Department of Surgery, University of Cambridge, Cambridge CB2 0SZ, UK
| | - Stephanie Brown
- Wellcome Trust-MRC Cambridge Stem Cell Institute, Anne McLaren Laboratory and Department of Surgery, University of Cambridge, Cambridge CB2 0SZ, UK
| | - Pedro Madrigal
- Wellcome Trust-MRC Cambridge Stem Cell Institute, Anne McLaren Laboratory and Department of Surgery, University of Cambridge, Cambridge CB2 0SZ, UK.,Wellcome Trust Sanger Institute, Hinxton CB10 1SA, UK
| | - Anna Osnato
- Wellcome Trust-MRC Cambridge Stem Cell Institute, Anne McLaren Laboratory and Department of Surgery, University of Cambridge, Cambridge CB2 0SZ, UK
| | - Daniel Ortmann
- Wellcome Trust-MRC Cambridge Stem Cell Institute, Anne McLaren Laboratory and Department of Surgery, University of Cambridge, Cambridge CB2 0SZ, UK
| | - Loukia Yiangou
- Wellcome Trust-MRC Cambridge Stem Cell Institute, Anne McLaren Laboratory and Department of Surgery, University of Cambridge, Cambridge CB2 0SZ, UK
| | - Juned Kadiwala
- Wellcome Trust-MRC Cambridge Stem Cell Institute, Anne McLaren Laboratory and Department of Surgery, University of Cambridge, Cambridge CB2 0SZ, UK
| | - Nina C Hubner
- Department of Molecular Biology, Radboud University, Nijmegen 6525GA, The Netherlands
| | - Igor Ruiz de Los Mozos
- Francis Crick Institute and Department of Molecular Neuroscience, University College London, London NW1 1AT, UK
| | - Christoph Sadée
- Francis Crick Institute and Department of Molecular Neuroscience, University College London, London NW1 1AT, UK
| | - An-Sofie Lenaerts
- Wellcome Trust-MRC Cambridge Stem Cell Institute, Anne McLaren Laboratory and Department of Surgery, University of Cambridge, Cambridge CB2 0SZ, UK
| | - Shota Nakanoh
- Wellcome Trust-MRC Cambridge Stem Cell Institute, Anne McLaren Laboratory and Department of Surgery, University of Cambridge, Cambridge CB2 0SZ, UK
| | - Rodrigo Grandy
- Wellcome Trust-MRC Cambridge Stem Cell Institute, Anne McLaren Laboratory and Department of Surgery, University of Cambridge, Cambridge CB2 0SZ, UK
| | - Edward Farnell
- Department of Pathology, University of Cambridge, Cambridge CB2 1QP, UK
| | - Jernej Ule
- Francis Crick Institute and Department of Molecular Neuroscience, University College London, London NW1 1AT, UK
| | - Hendrik G Stunnenberg
- Department of Molecular Biology, Radboud University, Nijmegen 6525GA, The Netherlands
| | - Sasha Mendjan
- Wellcome Trust-MRC Cambridge Stem Cell Institute, Anne McLaren Laboratory and Department of Surgery, University of Cambridge, Cambridge CB2 0SZ, UK
| | - Ludovic Vallier
- Wellcome Trust-MRC Cambridge Stem Cell Institute, Anne McLaren Laboratory and Department of Surgery, University of Cambridge, Cambridge CB2 0SZ, UK.,Wellcome Trust Sanger Institute, Hinxton CB10 1SA, UK
| |
Collapse
|
35
|
Al Madhoun A, Alkandari S, Ali H, Carrio N, Atari M, Bitar MS, Al-Mulla F. Chemically Defined Conditions Mediate an Efficient Induction of Mesodermal Lineage from Human Umbilical Cord- and Bone Marrow- Mesenchymal Stem Cells and Dental Pulp Pluripotent-Like Stem Cells. Cell Reprogram 2018; 20:9-16. [PMID: 29412734 DOI: 10.1089/cell.2017.0028] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The human umbilical cord Wharton's Jelly- and the bone marrow- mesenchymal stem cells (WJ-MSCs and BM-MSCs, respectively) and the newly identified dental pulp pluripotent-like stem cells (DPPSCs) are new sources for stem cells with prospective use in cell regeneration and therapy. These cells are self-renewable, can be differentiated into several lineages, and can potentiate the immune responses. We hypothesized that three-dimensional (3D) culture conditions and directed differentiation using specific signaling regulators will enhance an efficient generation of mesoderm (MD) lineage independent from the origin or source of the stem cells. For a period of 3-days, cell aggregates were generated in a serum-free media containing ascorbic acid, retinoic acid, and keratinocyte growth factor; sonic hedgehog and bone morphogenic protein-4 signaling were inhibited using small molecules. In all cell types used, the biochemical and molecular analysis revealed a time course-dependent induction of the mesodermal, but not endodermal or ectodermal makers. In this study, we utilized a novel and efficient serum-free protocol to differentiate WJ-MSCs, BM-MSCs, and DPPSCs into MD-cells. Successful development of an efficient differentiation protocol can further be utilized and expanded on to obtain MD- derivative cell lineages.
Collapse
Affiliation(s)
- Ashraf Al Madhoun
- 1 Functional Genomic Unit, Research Division, Dasman Diabetes Institute , Dasman, Kuwait
| | - Sarah Alkandari
- 1 Functional Genomic Unit, Research Division, Dasman Diabetes Institute , Dasman, Kuwait
| | - Hamad Ali
- 1 Functional Genomic Unit, Research Division, Dasman Diabetes Institute , Dasman, Kuwait
- 2 Department of Medical Laboratory Sciences (MLS), Faculty of Allied Health Sciences, Health Sciences Center, Kuwait University , Kuwait
| | - Neus Carrio
- 3 Regenerative Medicine Research Institute , UIC Barcelona, Barcelona, Spain
| | - Maher Atari
- 3 Regenerative Medicine Research Institute , UIC Barcelona, Barcelona, Spain
| | - Milad S Bitar
- 4 Department of Pharmacology and Toxicology, Health Sciences Center, Kuwait University , Kuwait
| | - Fahd Al-Mulla
- 1 Functional Genomic Unit, Research Division, Dasman Diabetes Institute , Dasman, Kuwait
| |
Collapse
|
36
|
|
37
|
Fernández-Flores F, García-Verdugo JM, Martín-Ibáñez R, Herranz C, Fondevila D, Canals JM, Arús C, Pumarola M. Characterization of the canine rostral ventricular-subventricular zone: Morphological, immunohistochemical, ultrastructural, and neurosphere assay studies. J Comp Neurol 2017; 526:721-741. [DOI: 10.1002/cne.24365] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2016] [Revised: 10/09/2017] [Accepted: 11/16/2017] [Indexed: 02/01/2023]
Affiliation(s)
- Francisco Fernández-Flores
- Veterinary Faculty, Department of Animal Medicine and Surgery; Universitat Autònoma de Barcelona; Bellaterra (Cerdanyola del Vallès) Barcelona Spain
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN); Universitat Autònoma de Barcelona; Bellaterra (Cerdanyola del Vallès) Barcelona Spain
| | - José Manuel García-Verdugo
- Laboratorio de Neurobiologia comparada, Institut Cavanilles de Biodiversitat i Biologia Evolutiva, Universitat de València, CIBERNED; Valencia Spain
| | - Raquel Martín-Ibáñez
- Stem Cells and Regenerative Medicine Laboratory; Production and Validation Center of Advanced Therapies (Creatio), Faculty of Medicine and Health Science, Department of Biomedicine; University of Barcelona; Barcelona Spain
- Neuroscience Institute, University of Barcelona; Barcelona Spain
- August Pi i Sunyer Biomedical Research Institute (IDIBAPS); Barcelona Spain
- Networked Biomedical Research Centre for Neurodegenerative Disorders (CIBERNED); Valencia Spain
| | - Cristina Herranz
- Stem Cells and Regenerative Medicine Laboratory; Production and Validation Center of Advanced Therapies (Creatio), Faculty of Medicine and Health Science, Department of Biomedicine; University of Barcelona; Barcelona Spain
- Neuroscience Institute, University of Barcelona; Barcelona Spain
- August Pi i Sunyer Biomedical Research Institute (IDIBAPS); Barcelona Spain
- Networked Biomedical Research Centre for Neurodegenerative Disorders (CIBERNED); Valencia Spain
| | - Dolors Fondevila
- Veterinary Faculty, Department of Animal Medicine and Surgery; Universitat Autònoma de Barcelona; Bellaterra (Cerdanyola del Vallès) Barcelona Spain
| | - Josep María Canals
- Stem Cells and Regenerative Medicine Laboratory; Production and Validation Center of Advanced Therapies (Creatio), Faculty of Medicine and Health Science, Department of Biomedicine; University of Barcelona; Barcelona Spain
- Neuroscience Institute, University of Barcelona; Barcelona Spain
- August Pi i Sunyer Biomedical Research Institute (IDIBAPS); Barcelona Spain
- Networked Biomedical Research Centre for Neurodegenerative Disorders (CIBERNED); Valencia Spain
| | - Carles Arús
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN); Universitat Autònoma de Barcelona; Bellaterra (Cerdanyola del Vallès) Barcelona Spain
- Departament de Bioquímica i Biologia Molecular; Universitat Autònoma de Barcelona; Bellaterra (Cerdanyola del Vallès) Barcelona Spain
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona; Bellaterra (Cerdanyola del Vallès) Barcelona Spain
| | - Martí Pumarola
- Veterinary Faculty, Department of Animal Medicine and Surgery; Universitat Autònoma de Barcelona; Bellaterra (Cerdanyola del Vallès) Barcelona Spain
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN); Universitat Autònoma de Barcelona; Bellaterra (Cerdanyola del Vallès) Barcelona Spain
| |
Collapse
|
38
|
Guo W, Fumagalli L, Prior R, Van Den Bosch L. Current Advances and Limitations in Modeling ALS/FTD in a Dish Using Induced Pluripotent Stem Cells. Front Neurosci 2017; 11:671. [PMID: 29326542 PMCID: PMC5733489 DOI: 10.3389/fnins.2017.00671] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Accepted: 11/20/2017] [Indexed: 12/11/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) are two age-dependent multifactorial neurodegenerative disorders, which are typically characterized by the selective death of motor neurons and cerebral cortex neurons, respectively. These two diseases share many clinical, genetic and pathological aspects. During the past decade, cell reprogramming technologies enabled researchers to generate human induced pluripotent stem cells (iPSCs) from somatic cells. This resulted in the unique opportunity to obtain specific neuronal and non-neuronal cell types from patients which could be used for basic research. Moreover, these in vitro models can mimic not only the familial forms of ALS/FTD, but also sporadic cases without known genetic cause. At present, there have been extensive technical advances in the generation of iPSCs, as well as in the differentiation procedures to obtain iPSC-derived motor neurons, cortical neurons and non-neuronal cells. The major challenge at this moment is to determine whether these iPSC-derived cells show relevant phenotypes that recapitulate complex diseases. In this review, we will summarize the work related to iPSC models of ALS and FTD. In addition, we will discuss potential drawbacks and solutions for establishing more trustworthy iPSC models for both ALS and FTD.
Collapse
Affiliation(s)
- Wenting Guo
- KU Leuven-Department of Neurosciences, Experimental Neurology and Leuven Institute for Neuroscience and Disease, Leuven, Belgium.,Laboratory of Neurobiology, VIB & KU Leuven Center for Brain & Disease Research, Leuven, Belgium
| | - Laura Fumagalli
- KU Leuven-Department of Neurosciences, Experimental Neurology and Leuven Institute for Neuroscience and Disease, Leuven, Belgium.,Laboratory of Neurobiology, VIB & KU Leuven Center for Brain & Disease Research, Leuven, Belgium
| | - Robert Prior
- KU Leuven-Department of Neurosciences, Experimental Neurology and Leuven Institute for Neuroscience and Disease, Leuven, Belgium.,Laboratory of Neurobiology, VIB & KU Leuven Center for Brain & Disease Research, Leuven, Belgium
| | - Ludo Van Den Bosch
- KU Leuven-Department of Neurosciences, Experimental Neurology and Leuven Institute for Neuroscience and Disease, Leuven, Belgium.,Laboratory of Neurobiology, VIB & KU Leuven Center for Brain & Disease Research, Leuven, Belgium
| |
Collapse
|
39
|
Future Challenges in the Generation of Hepatocyte-Like Cells From Human Pluripotent Stem Cells. CURRENT PATHOBIOLOGY REPORTS 2017. [DOI: 10.1007/s40139-017-0150-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
40
|
Mullen AC, Wrana JL. TGF-β Family Signaling in Embryonic and Somatic Stem-Cell Renewal and Differentiation. Cold Spring Harb Perspect Biol 2017; 9:cshperspect.a022186. [PMID: 28108485 DOI: 10.1101/cshperspect.a022186] [Citation(s) in RCA: 89] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Soon after the discovery of transforming growth factor-β (TGF-β), seminal work in vertebrate and invertebrate models revealed the TGF-β family to be central regulators of tissue morphogenesis. Members of the TGF-β family direct some of the earliest cell-fate decisions in animal development, coordinate complex organogenesis, and contribute to tissue homeostasis in the adult. Here, we focus on the role of the TGF-β family in mammalian stem-cell biology and discuss its wide and varied activities both in the regulation of pluripotency and in cell-fate commitment.
Collapse
Affiliation(s)
- Alan C Mullen
- Gastrointestinal Unit, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114.,Harvard Stem Cell Institute, Cambridge, Massachusetts 02138
| | - Jeffrey L Wrana
- Lunenfeld-Tanenbam Research Institute, Mount Sinai Hospital and Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5G 1X5, Canada
| |
Collapse
|
41
|
Kilpinen H, Goncalves A, Leha A, Afzal V, Alasoo K, Ashford S, Bala S, Bensaddek D, Casale FP, Culley OJ, Danecek P, Faulconbridge A, Harrison PW, Kathuria A, McCarthy D, McCarthy SA, Meleckyte R, Memari Y, Moens N, Soares F, Mann A, Streeter I, Agu CA, Alderton A, Nelson R, Harper S, Patel M, White A, Patel SR, Clarke L, Halai R, Kirton CM, Kolb-Kokocinski A, Beales P, Birney E, Danovi D, Lamond AI, Ouwehand WH, Vallier L, Watt FM, Durbin R, Stegle O, Gaffney DJ. Common genetic variation drives molecular heterogeneity in human iPSCs. Nature 2017; 546:370-375. [PMID: 28489815 PMCID: PMC5524171 DOI: 10.1038/nature22403] [Citation(s) in RCA: 387] [Impact Index Per Article: 48.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Accepted: 04/27/2017] [Indexed: 02/07/2023]
Abstract
Technology utilizing human induced pluripotent stem cells (iPS cells) has enormous potential to provide improved cellular models of human disease. However, variable genetic and phenotypic characterization of many existing iPS cell lines limits their potential use for research and therapy. Here we describe the systematic generation, genotyping and phenotyping of 711 iPS cell lines derived from 301 healthy individuals by the Human Induced Pluripotent Stem Cells Initiative. Our study outlines the major sources of genetic and phenotypic variation in iPS cells and establishes their suitability as models of complex human traits and cancer. Through genome-wide profiling we find that 5-46% of the variation in different iPS cell phenotypes, including differentiation capacity and cellular morphology, arises from differences between individuals. Additionally, we assess the phenotypic consequences of genomic copy-number alterations that are repeatedly observed in iPS cells. In addition, we present a comprehensive map of common regulatory variants affecting the transcriptome of human pluripotent cells.
Collapse
Affiliation(s)
- Helena Kilpinen
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SD, United Kingdom
| | - Angela Goncalves
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, United Kingdom
| | - Andreas Leha
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, United Kingdom
| | - Vackar Afzal
- Centre for Gene Regulation & Expression, School of Life Sciences, University of Dundee, DD1 5EH, United Kingdom
| | - Kaur Alasoo
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, United Kingdom
| | - Sofie Ashford
- Department of Haematology, University of Cambridge, Cambridge Biomedical Campus, Cambridge, United Kingdom
| | - Sendu Bala
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, United Kingdom
| | - Dalila Bensaddek
- Centre for Gene Regulation & Expression, School of Life Sciences, University of Dundee, DD1 5EH, United Kingdom
| | - Francesco Paolo Casale
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SD, United Kingdom
| | - Oliver J Culley
- Centre for Stem Cells & Regenerative Medicine, King's College London, Tower Wing, Guy's Hospital, Great Maze Pond, London SE1 9RT, United Kingdom
| | - Petr Danecek
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, United Kingdom
| | - Adam Faulconbridge
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SD, United Kingdom
| | - Peter W Harrison
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SD, United Kingdom
| | - Annie Kathuria
- Centre for Stem Cells & Regenerative Medicine, King's College London, Tower Wing, Guy's Hospital, Great Maze Pond, London SE1 9RT, United Kingdom
| | - Davis McCarthy
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SD, United Kingdom
- St Vincent’s Institute of Medical Research, 41 Victoria Parade Fitzroy Victoria 3065, Australia
| | - Shane A McCarthy
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, United Kingdom
| | - Ruta Meleckyte
- Centre for Stem Cells & Regenerative Medicine, King's College London, Tower Wing, Guy's Hospital, Great Maze Pond, London SE1 9RT, United Kingdom
| | - Yasin Memari
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, United Kingdom
| | - Nathalie Moens
- Centre for Stem Cells & Regenerative Medicine, King's College London, Tower Wing, Guy's Hospital, Great Maze Pond, London SE1 9RT, United Kingdom
| | - Filipa Soares
- Wellcome Trust and MRC Cambridge Stem Cell Institute and Biomedical Research Centre, Anne McLaren Laboratory, Department of Surgery, University of Cambridge, CB2 0SZ, United Kingdom
| | - Alice Mann
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, United Kingdom
| | - Ian Streeter
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SD, United Kingdom
| | - Chukwuma A Agu
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, United Kingdom
| | - Alex Alderton
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, United Kingdom
| | - Rachel Nelson
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, United Kingdom
| | - Sarah Harper
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, United Kingdom
| | - Minal Patel
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, United Kingdom
| | - Alistair White
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, United Kingdom
| | - Sharad R Patel
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, United Kingdom
| | - Laura Clarke
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SD, United Kingdom
| | - Reena Halai
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, United Kingdom
| | - Christopher M Kirton
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, United Kingdom
| | - Anja Kolb-Kokocinski
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, United Kingdom
| | - Philip Beales
- UCL Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, United Kingdom
| | - Ewan Birney
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SD, United Kingdom
| | - Davide Danovi
- Centre for Stem Cells & Regenerative Medicine, King's College London, Tower Wing, Guy's Hospital, Great Maze Pond, London SE1 9RT, United Kingdom
| | - Angus I Lamond
- Centre for Gene Regulation & Expression, School of Life Sciences, University of Dundee, DD1 5EH, United Kingdom
| | - Willem H Ouwehand
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, United Kingdom
- Department of Haematology, University of Cambridge, Cambridge Biomedical Campus, Cambridge, United Kingdom
- NHS Blood and Transplant, Cambridge Biomedical Campus, Cambridge, United Kingdom
| | - Ludovic Vallier
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, United Kingdom
- Wellcome Trust and MRC Cambridge Stem Cell Institute and Biomedical Research Centre, Anne McLaren Laboratory, Department of Surgery, University of Cambridge, CB2 0SZ, United Kingdom
| | - Fiona M Watt
- Centre for Stem Cells & Regenerative Medicine, King's College London, Tower Wing, Guy's Hospital, Great Maze Pond, London SE1 9RT, United Kingdom
| | - Richard Durbin
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, United Kingdom
| | - Oliver Stegle
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SD, United Kingdom
| | - Daniel J Gaffney
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, United Kingdom
| |
Collapse
|
42
|
Ludtmann MHR, Arber C, Bartolome F, de Vicente M, Preza E, Carro E, Houlden H, Gandhi S, Wray S, Abramov AY. Mutations in valosin-containing protein (VCP) decrease ADP/ATP translocation across the mitochondrial membrane and impair energy metabolism in human neurons. J Biol Chem 2017; 292:8907-8917. [PMID: 28360103 PMCID: PMC5448124 DOI: 10.1074/jbc.m116.762898] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Revised: 03/29/2017] [Indexed: 12/27/2022] Open
Abstract
Mutations in the gene encoding valosin-containing protein (VCP) lead to multisystem proteinopathies including frontotemporal dementia. We have previously shown that patient-derived VCP mutant fibroblasts exhibit lower mitochondrial membrane potential, uncoupled respiration, and reduced ATP levels. This study addresses the underlying basis for mitochondrial uncoupling using VCP knockdown neuroblastoma cell lines, induced pluripotent stem cells (iPSCs), and iPSC-derived cortical neurons from patients with pathogenic mutations in VCP Using fluorescent live cell imaging and respiration analysis we demonstrate a VCP mutation/knockdown-induced dysregulation in the adenine nucleotide translocase, which results in a slower rate of ADP or ATP translocation across the mitochondrial membranes. This deregulation can explain the mitochondrial uncoupling and lower ATP levels in VCP mutation-bearing neurons via reduced ADP availability for ATP synthesis. This study provides evidence for a role of adenine nucleotide translocase in the mechanism underlying altered mitochondrial function in VCP-related degeneration, and this new insight may inform efforts to better understand and manage neurodegenerative disease and other proteinopathies.
Collapse
Affiliation(s)
- Marthe H R Ludtmann
- From the Department of Molecular Neuroscience, UCL Institute of Neurology, London WC1N 3BG, United Kingdom
| | - Charles Arber
- From the Department of Molecular Neuroscience, UCL Institute of Neurology, London WC1N 3BG, United Kingdom
| | - Fernando Bartolome
- the Neurodegenerative Disorders Group, Research Institute Hospital 12 de Octubre (i+12), Madrid 28041, Spain
- the Biomedical Research Networking Center on Neurodegenerative Diseases (CIBERNED), Madrid 28041, Spain
| | - Macarena de Vicente
- the Neurodegenerative Disorders Group, Research Institute Hospital 12 de Octubre (i+12), Madrid 28041, Spain
- the Biomedical Research Networking Center on Neurodegenerative Diseases (CIBERNED), Madrid 28041, Spain
| | - Elisavet Preza
- From the Department of Molecular Neuroscience, UCL Institute of Neurology, London WC1N 3BG, United Kingdom
| | - Eva Carro
- the Neurodegenerative Disorders Group, Research Institute Hospital 12 de Octubre (i+12), Madrid 28041, Spain
- the Biomedical Research Networking Center on Neurodegenerative Diseases (CIBERNED), Madrid 28041, Spain
| | - Henry Houlden
- the Institute of Neurology, MRC Centre for Neuromuscular Diseases, London WC1N 3BG, United Kingdom
| | - Sonia Gandhi
- the Sobell Department of Motor Neuroscience and Movement Disorders, UCL Institute of Neurology, London WC1N 3BG, United Kingdom, and
| | - Selina Wray
- From the Department of Molecular Neuroscience, UCL Institute of Neurology, London WC1N 3BG, United Kingdom
| | - Andrey Y Abramov
- From the Department of Molecular Neuroscience, UCL Institute of Neurology, London WC1N 3BG, United Kingdom,
| |
Collapse
|
43
|
The potential of induced pluripotent stem cells as a tool to study skeletal dysplasias and cartilage-related pathologic conditions. Osteoarthritis Cartilage 2017; 25:616-624. [PMID: 27919783 DOI: 10.1016/j.joca.2016.11.015] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Revised: 11/10/2016] [Accepted: 11/28/2016] [Indexed: 02/07/2023]
Abstract
The development of induced pluripotent stem cells (iPSCs) technology has opened up new horizons for development of new research tools especially for skeletal dysplasias, which often lack human disease models. Regenerative medicine and tissue engineering could be the next areas to benefit from refinement of iPSC methods to repair focal cartilage defects, while applications for osteoarthritis (OA) and drug screening have evolved rather slowly. Although the advances in iPSC research of skeletal dysplasias and repair of focal cartilage lesions are not directly relevant to OA, they can be considered to pave the way to future prospects and solutions to OA research, too. The same problems which face the present cell-based treatments of cartilage injuries concern also the iPSC-based ones. However, established iPSC lines, which have no genomic aberrations and which efficiently differentiate into extracellular matrix secreting chondrocytes, could be an invaluable cell source for cell transplantations in the future. The safety issues concerning the recipient risks of teratoma formation and immune response still have to be solved before the potential use of iPSCs in cartilage repair of focal cartilage defects and OA.
Collapse
|
44
|
Kondo Y, Hattori K, Tashiro S, Nakatani E, Yoshimitsu R, Satoh T, Sugiura S, Kanamori T, Ohnuma K. Compartmentalized microfluidic perfusion system to culture human induced pluripotent stem cell aggregates. J Biosci Bioeng 2017; 124:234-241. [PMID: 28434976 DOI: 10.1016/j.jbiosc.2017.03.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Accepted: 03/24/2017] [Indexed: 01/31/2023]
Abstract
Microfluidic perfusion systems enable small-volume cell cultures under precisely controlled microenvironments, and are typically developed for cell-based high-throughput screening. However, most such systems are designed to manipulate dissociated single cells, not cell aggregates, and are thus unsuitable to induce differentiation in human induced pluripotent stem cells (hiPSCs), which is conventionally achieved by using cell aggregates to increase cell-cell interactions. We have now developed a compartmentalized microfluidic perfusion system with large flow channels to load, culture, and observe cell aggregates. Homogeneously sized cell aggregates to be loaded into the device were prepared by shredding flat hiPSC colonies into squares. These aggregates were then seeded into microchambers coated with fibronectin and bovine serum albumin (BSA) to establish adherent and floating cultures, respectively, both of which are frequently used to differentiate hiPSCs. However, the number of aggregates loaded in fibronectin-coated microchambers was much lower than in BSA-coated microchambers, suggesting that fibronectin traps cell aggregates before they reach the chambers. Accordingly, hiPSCs that reached the microchambers subsequently adhered. In contrast, BSA-coated microchambers did not allow cell aggregates to adhere, but were sufficiently deep to prevent cell aggregates from flowing out during perfusion of media. Immunostaining for markers of undifferentiated cells showed that cultures on both fibronectin- and BSA-coated microchambers were successfully established. Notably, we found that floating aggregates eventually adhered to surfaces coated with BSA upon differentiation, and that differentiation depends on the initial size of aggregates. Collectively, these results suggest that the microfluidic system is suitable for manipulating hiPSC aggregates in compartmentalized microchambers.
Collapse
Affiliation(s)
- Yuki Kondo
- Department of Bioengineering, Nagaoka University of Technology, 1603-1 Kamitomioka, Nagaoka, Niigata 940-2188, Japan
| | - Koji Hattori
- Research Center for Stem Cell Engineering, National Institute of Advanced Industrial Science and Technology (AIST), Central 5th, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan
| | - Shota Tashiro
- Department of Bioengineering, Nagaoka University of Technology, 1603-1 Kamitomioka, Nagaoka, Niigata 940-2188, Japan
| | - Eri Nakatani
- Department of Bioengineering, Nagaoka University of Technology, 1603-1 Kamitomioka, Nagaoka, Niigata 940-2188, Japan
| | - Ryosuke Yoshimitsu
- Department of Bioengineering, Nagaoka University of Technology, 1603-1 Kamitomioka, Nagaoka, Niigata 940-2188, Japan
| | - Taku Satoh
- Biotechnology Research Institute for Drug Discovery, National Institute of Advanced Industrial Science and Technology (AIST), Central 5th, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan
| | - Shinji Sugiura
- Biotechnology Research Institute for Drug Discovery, National Institute of Advanced Industrial Science and Technology (AIST), Central 5th, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan
| | - Toshiyuki Kanamori
- Biotechnology Research Institute for Drug Discovery, National Institute of Advanced Industrial Science and Technology (AIST), Central 5th, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan
| | - Kiyoshi Ohnuma
- Department of Bioengineering, Nagaoka University of Technology, 1603-1 Kamitomioka, Nagaoka, Niigata 940-2188, Japan; Department of Science of Technology Innovation, Nagaoka University of Technology, 1603-1 Kamitomioka-cho, Nagaoka, Niigata 940-2188, Japan.
| |
Collapse
|
45
|
Qu S, Yan L, Fang B, Ye S, Li P, Ge S, Wu J, Qu D, Song H. Generation of enhanced definitive endoderm from human embryonic stem cells under an albumin/insulin-free and chemically defined condition. Life Sci 2017; 175:37-46. [DOI: 10.1016/j.lfs.2017.03.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2016] [Revised: 03/12/2017] [Accepted: 03/21/2017] [Indexed: 12/14/2022]
|
46
|
Pluripotency of embryo-derived stem cells from rodents, lagomorphs, and primates: Slippery slope, terrace and cliff. Stem Cell Res 2017; 19:104-112. [DOI: 10.1016/j.scr.2017.01.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Revised: 01/01/2017] [Accepted: 01/13/2017] [Indexed: 12/14/2022] Open
|
47
|
Hawkins KE, Moschidou D, Faccenda D, Wruck W, Martin-Trujillo A, Hau KL, Ranzoni AM, Sanchez-Freire V, Tommasini F, Eaton S, De Coppi P, Monk D, Campanella M, Thrasher AJ, Adjaye J, Guillot PV. Human Amniocytes Are Receptive to Chemically Induced Reprogramming to Pluripotency. Mol Ther 2017; 25:427-442. [PMID: 28153093 PMCID: PMC5368475 DOI: 10.1016/j.ymthe.2016.11.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Revised: 11/11/2016] [Accepted: 11/27/2016] [Indexed: 01/05/2023] Open
Abstract
Restoring pluripotency using chemical compounds alone would be a major step forward in developing clinical-grade pluripotent stem cells, but this has not yet been reported in human cells. We previously demonstrated that VPA_AFS cells, human amniocytes cultivated with valproic acid (VPA) acquired functional pluripotency while remaining distinct from human embryonic stem cells (hESCs), questioning the relationship between the modulation of cell fate and molecular regulation of the pluripotency network. Here, we used single-cell analysis and functional assays to reveal that VPA treatment resulted in a homogeneous population of self-renewing non-transformed cells that fulfill the hallmarks of pluripotency, i.e., a short G1 phase, a dependence on glycolytic metabolism, expression of epigenetic modifications on histones 3 and 4, and reactivation of endogenous OCT4 and downstream targets at a lower level than that observed in hESCs. Mechanistic insights into the process of VPA-induced reprogramming revealed that it was dependent on OCT4 promoter activation, which was achieved independently of the PI3K (phosphatidylinositol 3-kinase)/AKT/mTOR (mammalian target of rapamycin) pathway or GSK3β inhibition but was concomitant with the presence of acetylated histones H3K9 and H3K56, which promote pluripotency. Our data identify, for the first time, the pluripotent transcriptional and molecular signature and metabolic status of human chemically induced pluripotent stem cells.
Collapse
Affiliation(s)
- Kate E Hawkins
- Institute for Women's Health, Maternal and Fetal Medicine Department, University College London (UCL), London WC1E 6HX, UK
| | - Dafni Moschidou
- Institute for Women's Health, Maternal and Fetal Medicine Department, University College London (UCL), London WC1E 6HX, UK
| | - Danilo Faccenda
- Department of Comparative Biomedical Sciences, The Royal Veterinary College (RVC), Royal College Street, London NW1 0TU, UK
| | - Wasco Wruck
- Institute for Stem Cell Research and Regenerative Medicine, Heinrich Heine University Dusseldorf, Dusseldorf 40225, Germany
| | - Alex Martin-Trujillo
- Imprinting and Cancer Group, Cancer Epigenetic and Biology Program, Bellvitge Institute for Biomedical Research (IDIBELL), Hospital Duran i Reynals, Barcelona 08908, Spain
| | - Kwan-Leong Hau
- Institute for Women's Health, Maternal and Fetal Medicine Department, University College London (UCL), London WC1E 6HX, UK; Imperial College London, National Heart and Lung Institute, Hammersmith Campus, Du Cane Road, London W12 0NN, UK
| | - Anna Maria Ranzoni
- Institute for Women's Health, Maternal and Fetal Medicine Department, University College London (UCL), London WC1E 6HX, UK
| | | | - Fabio Tommasini
- Institute for Women's Health, Maternal and Fetal Medicine Department, University College London (UCL), London WC1E 6HX, UK; Institute for Child Health, University College London, London WC1N 1EH, UK
| | - Simon Eaton
- Institute for Child Health, University College London, London WC1N 1EH, UK
| | - Paolo De Coppi
- Institute for Child Health, University College London, London WC1N 1EH, UK
| | - David Monk
- Institute for Stem Cell Research and Regenerative Medicine, Heinrich Heine University Dusseldorf, Dusseldorf 40225, Germany
| | - Michelangelo Campanella
- Department of Comparative Biomedical Sciences, The Royal Veterinary College (RVC), Royal College Street, London NW1 0TU, UK; Consortium for Mitochondrial Research, University College London, Royal College Street, London NW1 0TU, UK
| | - Adrian J Thrasher
- Institute for Child Health, University College London, London WC1N 1EH, UK
| | - James Adjaye
- Institute for Stem Cell Research and Regenerative Medicine, Heinrich Heine University Dusseldorf, Dusseldorf 40225, Germany
| | - Pascale V Guillot
- Institute for Women's Health, Maternal and Fetal Medicine Department, University College London (UCL), London WC1E 6HX, UK.
| |
Collapse
|
48
|
Wang L, Xu X, Cao Y, Li Z, Cheng H, Zhu G, Duan F, Na J, Han JDJ, Chen YG. Activin/Smad2-induced Histone H3 Lys-27 Trimethylation (H3K27me3) Reduction Is Crucial to Initiate Mesendoderm Differentiation of Human Embryonic Stem Cells. J Biol Chem 2016; 292:1339-1350. [PMID: 27965357 DOI: 10.1074/jbc.m116.766949] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Revised: 12/10/2016] [Indexed: 01/10/2023] Open
Abstract
Differentiation of human embryonic stem cells into mesendoderm (ME) is directed by extrinsic signals and intrinsic epigenetic modifications. However, the dynamics of these epigenetic modifications and the mechanisms by which extrinsic signals regulate the epigenetic modifications during the initiation of ME differentiation remain elusive. In this study, we report that levels of histone H3 Lys-27 trimethylation (H3K27me3) decrease during ME initiation, which is essential for subsequent differentiation induced by the combined effects of activin and Wnt signaling. Furthermore, we demonstrate that activin mediates the H3K27me3 decrease via the Smad2-mediated reduction of EZH2 protein level. Our results suggest a two-step process of ME initiation: first, epigenetic priming via removal of H3K27me3 marks and, second, transcription activation. Our findings demonstrate a critical role of H3K27me3 priming and a direct interaction between extrinsic signals and epigenetic modifications during ME initiation.
Collapse
Affiliation(s)
- Lu Wang
- From the State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Xuanhao Xu
- From the State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Yaqiang Cao
- the Chinese Academy of Sciences Key Laboratory of Computational Biology, Chinese Academy of Sciences-Max Planck Partner Institute for Computational Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai 200031, China, and
| | - Zhongwei Li
- From the State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Hao Cheng
- the Chinese Academy of Sciences Key Laboratory of Computational Biology, Chinese Academy of Sciences-Max Planck Partner Institute for Computational Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai 200031, China, and
| | - Gaoyang Zhu
- From the State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Fuyu Duan
- the School of Medicine, Tsinghua University, Beijing 100084, China
| | - Jie Na
- the School of Medicine, Tsinghua University, Beijing 100084, China
| | - Jing-Dong J Han
- the Chinese Academy of Sciences Key Laboratory of Computational Biology, Chinese Academy of Sciences-Max Planck Partner Institute for Computational Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai 200031, China, and
| | - Ye-Guang Chen
- From the State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China,
| |
Collapse
|
49
|
Al Madhoun A, Ali H, AlKandari S, Atizado VL, Akhter N, Al-Mulla F, Atari M. Defined three-dimensional culture conditions mediate efficient induction of definitive endoderm lineage from human umbilical cord Wharton's jelly mesenchymal stem cells. Stem Cell Res Ther 2016; 7:165. [PMID: 27852316 PMCID: PMC5111269 DOI: 10.1186/s13287-016-0426-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2016] [Accepted: 10/18/2016] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Wharton's jelly-derived mesenchymal stem cells (WJ-MSCs) are gaining increasing interest as an alternative source of stem cells for regenerative medicine applications. Definitive endoderm (DE) specification is a prerequisite for the development of vital organs such as liver and pancreas. Hence, efficient induction of the DE lineage from stem cells is crucial for subsequent generation of clinically relevant cell types. Here we present a defined 3D differentiation protocol of WJ-MSCs into DE cells. METHODS WJ-MSCs were cultured in suspension to generate spheroids, about 1500 cells each, for 7 days. The serum-free differentiation media contained specific growth factors, cytokines, and small molecules that specifically regulate signaling pathways including sonic hedgehog, bone morphogenetic protein, Activin/Wnt, and Notch. RESULTS We obtained more than 85 % DE cells as shown with FACS analysis using antibodies directed against the DE marker CXCR4. In addition, biochemical and molecular analysis of bona-fide DE markers revealed a time-course induction of Sox17, CXCR4, and FoxA2. Focused PCR-based array also indicated a specific induction into the DE lineage. CONCLUSIONS In this study, we report an efficient serum-free protocol to differentiate WJ-MSCs into DE cells utilizing 3D spheroid formation. Our approach might aid in the development of new protocols to obtain DE-derivative lineages including liver-like and pancreatic insulin-producing cells.
Collapse
Affiliation(s)
| | - Hamad Ali
- Research Division, Dasman Diabetes Institute, 1180 Dasman, Kuwait
- Department of Medical Laboratory Sciences, Faculty of Allied Health Sciences, Health Sciences Center, Kuwait University, Al-Jabriya, Kuwait
| | - Sarah AlKandari
- Research Division, Dasman Diabetes Institute, 1180 Dasman, Kuwait
| | | | - Nadeem Akhter
- Research Division, Dasman Diabetes Institute, 1180 Dasman, Kuwait
| | - Fahd Al-Mulla
- Department of Pathology, Molecular Pathology Unit, Faculty of Medicine, Health Sciences Center, Kuwait University, Al-Jabriya, Kuwait
| | - Maher Atari
- UIC Regenerative Medicine Research Institute, International University of Catalonia, Barcelona, Spain
| |
Collapse
|
50
|
Rao J, Greber B. Concise Review: Signaling Control of Early Fate Decisions Around the Human Pluripotent Stem Cell State. Stem Cells 2016; 35:277-283. [PMID: 27758015 DOI: 10.1002/stem.2527] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Revised: 09/22/2016] [Accepted: 10/04/2016] [Indexed: 01/23/2023]
Abstract
Human embryonic stem cells (hESCs) present a fascinating and powerful system for generating specialized cell types of the human body. Culture and directed differentiation of these cells however requires an understanding of the pluripotent ground state and of how cell lineage decisions in this system are made. In this review, we highlight both these aspects in light of recent findings and technical progress. Hence, advances in culturing the human preimplantation embryo beyond the implantation barrier and in analyzing it at the single-cell level shed new light on the hESC tissue of origin. We argue that these findings have important implications for our view of hESC identity and we critically discuss recent efforts in converting these cells to a more primitive state. With an emphasis on the roles played by major signaling pathways, we furthermore attempt to infer key principles underlying cell fate control in hESCs from recently published work. This integrated model combines defined signaling pathway manipulation with the regulation of core hESC genes, to aid in controlling cell lineage allocation in a rational manner. Stem Cells 2017;35:277-283.
Collapse
Affiliation(s)
- Jyoti Rao
- Max Planck Institute for Molecular Biomedicine, Human Stem Cell Pluripotency Group, Münster, Germany.,Chemical Genomics Centre of the Max Planck Society, Dortmund, Germany
| | - Boris Greber
- Max Planck Institute for Molecular Biomedicine, Human Stem Cell Pluripotency Group, Münster, Germany.,Chemical Genomics Centre of the Max Planck Society, Dortmund, Germany
| |
Collapse
|