1
|
Alwohoush E, Ismail MA, Al-Kurdi B, Barham R, Al Hadidi S, Awidi A, Ababneh NA. Effect of hypoxia on proliferation and differentiation of induced pluripotent stem cell-derived mesenchymal stem cells. Heliyon 2024; 10:e38857. [PMID: 39421364 PMCID: PMC11483329 DOI: 10.1016/j.heliyon.2024.e38857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 09/30/2024] [Accepted: 10/01/2024] [Indexed: 10/19/2024] Open
Abstract
Although mesenchymal stem cells (MSCs) are extensively applied in the regenerative field, the majority of MSCs die after a few weeks of transplantation. Therefore, hypoxia pre-conditioning is a crucial step in increasing the MSCs' tolerance to physiological conditions. Meanwhile, induced pluripotent stem cell-derived MSCs (iMSCs) were proposed as a possible alternative to MSCs, and recently, the interest is growing in applying iMSCs in the regenerative field. This study examined the effect of hypoxia pre-conditioning on the proliferation, viability, and differentiation of iMSCs. Both iMSCs and MSCs were subjected to two rounds of severe short-term hypoxia (1 % O2 for 24h). After that, iMSCs and MSCs were characterized by testing their surface markers' expression, proliferation, viability, oxidative stress, and differentiation potential. Our findings revealed that hypoxia did not have a consistent effect among all the analyzed lines: the severe short-term hypoxia (1 % O2) reduced iMSCs proliferation, cell viability, and MMP while showing a benign effect on surface markers expression, colony formation, ROS accumulation, and osteogenic and adipogenic differentiation. Though hypoxia adversely affected iMSCs' proliferation, this does not necessarily mean that hypoxia is harmful to iMSCs; on the contrary, our results suggest that short-term hypoxia might have a beneficial long-term effect on the proliferation of iMSCs. Thus, the effect of hypoxia on proliferation, viability, and differentiation should also be tested after a long recovery period from iMSCs. Our next step will be to test the effect of hypoxia for a longer period besides uncovering the changes in the expression profile of hypoxic iMSCs.
Collapse
Affiliation(s)
- Enas Alwohoush
- Cell Therapy Center, the University of Jordan, Amman, Jordan
| | | | - Ban Al-Kurdi
- Cell Therapy Center, the University of Jordan, Amman, Jordan
| | - Raghda Barham
- Cell Therapy Center, the University of Jordan, Amman, Jordan
| | - Sabal Al Hadidi
- Cell Therapy Center, the University of Jordan, Amman, Jordan
| | - Abdalla Awidi
- Cell Therapy Center, the University of Jordan, Amman, Jordan
- Hemostasis and Thrombosis Laboratory, School of Medicine, the University of Jordan, Amman, Jordan
- Department of Hematology and Oncology, Jordan University Hospital, Amman, Jordan
| | | |
Collapse
|
2
|
Farag A, Koung Ngeun S, Kaneda M, Aboubakr M, Tanaka R. Optimizing Cardiomyocyte Differentiation: Comparative Analysis of Bone Marrow and Adipose-Derived Mesenchymal Stem Cells in Rats Using 5-Azacytidine and Low-Dose FGF and IGF Treatment. Biomedicines 2024; 12:1923. [PMID: 39200387 PMCID: PMC11352160 DOI: 10.3390/biomedicines12081923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 08/09/2024] [Accepted: 08/19/2024] [Indexed: 09/02/2024] Open
Abstract
Mesenchymal stem cells (MSCs) exhibit multipotency, self-renewal, and immune-modulatory properties, making them promising in regenerative medicine, particularly in cardiovascular treatments. However, optimizing the MSC source and induction method of cardiac differentiation is challenging. This study compares the cardiomyogenic potential of bone marrow (BM)-MSCs and adipose-derived (AD)-MSCs using 5-Azacytidine (5-Aza) alone or combined with low doses of Fibroblast Growth Factor (FGF) and Insulin-like Growth Factor (IGF). BM-MSCs and AD-MSCs were differentiated using two protocols: 10 μmol 5-Aza alone and 10 μmol 5-Aza with 1 ng/mL FGF and 10 ng/mL IGF. Morphological, transcriptional, and translational analyses, along with cell viability assessments, were performed. Both the MSC types exhibited similar morphological changes; however, AD-MSCs achieved 70-80% confluence faster than BM-MSCs. Surface marker profiling confirmed CD29 and CD90 positivity and CD45 negativity. The differentiation protocols led to cell flattening and myotube formation, with earlier differentiation in AD-MSCs. The combined protocol reduced cell mortality in BM-MSCs and enhanced the expression of cardiac markers (MEF2c, Troponin I, GSK-3β), particularly in BM-MSCs. Immunofluorescence confirmed cardiac-specific protein expression in all the treated groups. Both MSC types exhibited the expression of cardiac-specific markers indicative of cardiomyogenic differentiation, with the combined treatment showing superior efficiency for BM-MSCs.
Collapse
Affiliation(s)
- Ahmed Farag
- Veterinary Teaching Hospital, Faculty of Agriculture, Tokyo University of Agriculture and Technology, Tokyo 183-8509, Japan
- Department of Surgery, Anesthesiology, and Radiology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt
| | - Sai Koung Ngeun
- Laboratory of Veterinary Diagnostic Imaging, Faculty of Agriculture, Tokyo University of Agriculture and Technology, Tokyo 183-8509, Japan;
| | - Masahiro Kaneda
- Laboratory of Veterinary Anatomy, Division of Animal Life Science, Tokyo University of Agriculture and Technology, Tokyo 183-8509, Japan;
| | - Mohamed Aboubakr
- Department of Pharmacology, Faculty of Veterinary Medicine, Benha University, Toukh 13736, Egypt;
| | - Ryou Tanaka
- Veterinary Teaching Hospital, Faculty of Agriculture, Tokyo University of Agriculture and Technology, Tokyo 183-8509, Japan
| |
Collapse
|
3
|
Hoffman J, Zheng S, Zhang H, Murphy RF, Dahl KN. Image-based discrimination of the early stages of mesenchymal stem cell differentiation. Mol Biol Cell 2024; 35:ar103. [PMID: 38837346 PMCID: PMC11321037 DOI: 10.1091/mbc.e24-02-0095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 05/28/2024] [Accepted: 05/29/2024] [Indexed: 06/07/2024] Open
Abstract
Mesenchymal stem cells (MSCs) are self-renewing, multipotent cells, which can be used in cellular and tissue therapeutics. MSCs cell number can be expanded in vitro, but premature differentiation results in reduced cell number and compromised therapeutic efficacies. Current techniques fail to discriminate the "stem-like" population from early stages (12 h) of differentiated MSC population. Here, we imaged nuclear structure and actin architecture using immunofluorescence and used deep learning-based computer vision technology to discriminate the early stages (6-12 h) of MSC differentiation. Convolutional neural network models trained by nucleus and actin images have high accuracy in reporting MSC differentiation; nuclear images alone can identify early stages of differentiation. Concurrently, we show that chromatin fluidity and heterochromatin levels or localization change during early MSC differentiation. This study quantifies changes in cell architecture during early MSC differentiation and describes a novel image-based diagnostic tool that could be widely used in MSC culture, expansion and utilization.
Collapse
Affiliation(s)
- Justin Hoffman
- Department of Computational Biology, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA 15213
| | - Shiyuan Zheng
- Department of Biomedical Engineering, College of Engineering, Carnegie Mellon University, Pittsburgh, PA 15213
| | - Huaiying Zhang
- Department of Biological Sciences, Mellon College of Science, Carnegie Mellon University, Pittsburgh, PA 15213
| | - Robert F. Murphy
- Department of Computational Biology, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA 15213
| | - Kris Noel Dahl
- Department of Biomedical Engineering, College of Engineering, Carnegie Mellon University, Pittsburgh, PA 15213
| |
Collapse
|
4
|
Zhu Y, Hu Y, Pan Y, Li M, Niu Y, Zhang T, Sun H, Zhou S, Liu M, Zhang Y, Wu C, Ma Y, Guo Y, Wang L. Fatty infiltration in the musculoskeletal system: pathological mechanisms and clinical implications. Front Endocrinol (Lausanne) 2024; 15:1406046. [PMID: 39006365 PMCID: PMC11241459 DOI: 10.3389/fendo.2024.1406046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 06/10/2024] [Indexed: 07/16/2024] Open
Abstract
Fatty infiltration denotes the anomalous accrual of adipocytes in non-adipose tissue, thereby generating toxic substances with the capacity to impede the ordinary physiological functions of various organs. With aging, the musculoskeletal system undergoes pronounced degenerative alterations, prompting heightened scrutiny regarding the contributory role of fatty infiltration in its pathophysiology. Several studies have demonstrated that fatty infiltration affects the normal metabolism of the musculoskeletal system, leading to substantial tissue damage. Nevertheless, a definitive and universally accepted generalization concerning the comprehensive effects of fatty infiltration on the musculoskeletal system remains elusive. As a result, this review summarizes the characteristics of different types of adipose tissue, the pathological mechanisms associated with fatty infiltration in bone, muscle, and the entirety of the musculoskeletal system, examines relevant clinical diseases, and explores potential therapeutic modalities. This review is intended to give researchers a better understanding of fatty infiltration and to contribute new ideas to the prevention and treatment of clinical musculoskeletal diseases.
Collapse
Affiliation(s)
- Yihua Zhu
- Laboratory of New Techniques of Restoration & Reconstruction, Institute of Traumatology & Orthopedics, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Yue Hu
- School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Yalan Pan
- Laboratory of New Techniques of Restoration & Reconstruction, Institute of Traumatology & Orthopedics, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
- Traditional Chinese Medicine (TCM) Nursing Intervention Laboratory of Chronic Disease Key Laboratory, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Muzhe Li
- Laboratory of New Techniques of Restoration & Reconstruction, Institute of Traumatology & Orthopedics, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Yuanyuan Niu
- Laboratory of New Techniques of Restoration & Reconstruction, Institute of Traumatology & Orthopedics, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Tianchi Zhang
- Laboratory of New Techniques of Restoration & Reconstruction, Institute of Traumatology & Orthopedics, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Haitao Sun
- Department of Orthopedic Surgery, Affiliated Huishan Hospital of Xinglin College of Nantong University, Wuxi, Jiangsu, China
| | - Shijie Zhou
- Laboratory of New Techniques of Restoration & Reconstruction, Institute of Traumatology & Orthopedics, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Mengmin Liu
- School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Yili Zhang
- School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Chengjie Wu
- Laboratory of New Techniques of Restoration & Reconstruction, Institute of Traumatology & Orthopedics, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Yong Ma
- Laboratory of New Techniques of Restoration & Reconstruction, Institute of Traumatology & Orthopedics, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
- Yancheng TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Yancheng TCM Hospital, Yancheng, Jiangsu, China
- Jiangsu CM Clinical Innovation Center of Degenerative Bone & Joint Disease, Wuxi TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Wuxi, Jiangsu, China
| | - Yang Guo
- Laboratory of New Techniques of Restoration & Reconstruction, Institute of Traumatology & Orthopedics, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
- Jiangsu CM Clinical Innovation Center of Degenerative Bone & Joint Disease, Wuxi TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Wuxi, Jiangsu, China
| | - Lining Wang
- Laboratory of New Techniques of Restoration & Reconstruction, Institute of Traumatology & Orthopedics, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
- School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
- Chinese Medicine Centre (International Collaboration between Western Sydney University and Beijing University of Chinese Medicine), Western Sydney University, Sydney, Australia
| |
Collapse
|
5
|
Yoon YS, Chung KS, Lee SY, Heo SW, Kim YR, Lee JK, Kim H, Park S, Shin YK, Lee KT. Anti-obesity effects of a standardized ethanol extract of Eisenia bicyclis by regulating the AMPK signaling pathway in 3T3-L1 cells and HFD-induced mice. Food Funct 2024; 15:6424-6437. [PMID: 38771619 DOI: 10.1039/d4fo00759j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Obesity requires treatment to mitigate the potential development of further metabolic disorders, including diabetes, hyperlipidemia, tumor growth, and non-alcoholic fatty liver disease. We investigated the anti-obesity effect of a 30% ethanol extract of Eisenia bicyclis (Kjellman) Setchell (EEB) on 3T3-L1 preadipocytes and high-fat diet (HFD)-induced obese C57BL/6 mice. Adipogenesis transcription factors including peroxisome proliferator-activated receptor (PPAR)γ, CCAAT/enhancer-binding protein-alpha (C/EBPα), and sterol regulatory element-binding protein-1 (SREBP-1) were ameliorated through the AMP-activated protein kinase (AMPK) pathway by EEB treatment in differentiated 3T3-L1 cells. EEB attenuated mitotic clonal expansion by upregulating cyclin-dependent kinase inhibitors (CDKIs) while downregulating cyclins and CDKs. In HFD-fed mice, EEB significantly decreased the total body weight, fat tissue weight, and fat in the tissue. The protein expression of PPARγ, C/EBPα, and SREBP-1 was increased in the subcutaneous fat and liver tissues, while EEB decreased the expression levels of these transcription factors. EEB also inhibited lipogenesis by downregulating acetyl-CoA carboxylase (ACC) and fatty acid synthase (FAS) expression in the subcutaneous fat and liver tissues. Moreover, the phosphorylation of AMPK and ACC was downregulated in the HFD-induced mouse group, whereas the administration of EEB improved AMPK and ACC phosphorylation; thus, EEB treatment may be related to the AMPK pathway. Histological analysis showed that EEB reduced the adipocyte size and fat accumulation in subcutaneous fat and liver tissues, respectively. EEB promotes thermogenesis in brown adipose tissue and improves insulin and leptin levels and blood lipid profiles. Our results suggest that EEB could be used as a potential agent to prevent obesity.
Collapse
Affiliation(s)
- Young-Seo Yoon
- Department of Pharmaceutical Biochemistry, College of Pharmacy, Kyung Hee University, Seoul, 02447, Republic of Korea.
- Department of Biomedical and Pharmaceutical Sciences, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Kyung-Sook Chung
- Department of Pharmaceutical Biochemistry, College of Pharmacy, Kyung Hee University, Seoul, 02447, Republic of Korea.
| | - Su-Yeon Lee
- Department of Pharmaceutical Biochemistry, College of Pharmacy, Kyung Hee University, Seoul, 02447, Republic of Korea.
| | - So-Won Heo
- Department of Pharmaceutical Biochemistry, College of Pharmacy, Kyung Hee University, Seoul, 02447, Republic of Korea.
- Department of Biomedical and Pharmaceutical Sciences, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Ye-Rin Kim
- Department of Pharmaceutical Biochemistry, College of Pharmacy, Kyung Hee University, Seoul, 02447, Republic of Korea.
- Department of Fundamental Pharmaceutical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Jong Kil Lee
- Department of Fundamental Pharmaceutical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
- Department of Pharmacy, College of Pharmacy, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul, 02447, Republic of Korea
| | - Hyunjae Kim
- Department of New Material Development, COSMAXBIO, Gyeonggi, 13486, Republic of Korea
| | - Soyoon Park
- Department of New Material Development, COSMAXBIO, Gyeonggi, 13486, Republic of Korea
| | - Yu-Kyong Shin
- Department of New Material Development, COSMAXBIO, Gyeonggi, 13486, Republic of Korea
| | - Kyung-Tae Lee
- Department of Pharmaceutical Biochemistry, College of Pharmacy, Kyung Hee University, Seoul, 02447, Republic of Korea.
- Department of Biomedical and Pharmaceutical Sciences, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
- Department of Fundamental Pharmaceutical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| |
Collapse
|
6
|
Lopez-Yus M, Hörndler C, Borlan S, Bernal-Monterde V, Arbones-Mainar JM. Unraveling Adipose Tissue Dysfunction: Molecular Mechanisms, Novel Biomarkers, and Therapeutic Targets for Liver Fat Deposition. Cells 2024; 13:380. [PMID: 38474344 PMCID: PMC10931433 DOI: 10.3390/cells13050380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 02/14/2024] [Accepted: 02/20/2024] [Indexed: 03/14/2024] Open
Abstract
Adipose tissue (AT), once considered a mere fat storage organ, is now recognized as a dynamic and complex entity crucial for regulating human physiology, including metabolic processes, energy balance, and immune responses. It comprises mainly two types: white adipose tissue (WAT) for energy storage and brown adipose tissue (BAT) for thermogenesis, with beige adipocytes demonstrating the plasticity of these cells. WAT, beyond lipid storage, is involved in various metabolic activities, notably lipogenesis and lipolysis, critical for maintaining energy homeostasis. It also functions as an endocrine organ, secreting adipokines that influence metabolic, inflammatory, and immune processes. However, dysfunction in WAT, especially related to obesity, leads to metabolic disturbances, including the inability to properly store excess lipids, resulting in ectopic fat deposition in organs like the liver, contributing to non-alcoholic fatty liver disease (NAFLD). This narrative review delves into the multifaceted roles of WAT, its composition, metabolic functions, and the pathophysiology of WAT dysfunction. It also explores diagnostic approaches for adipose-related disorders, emphasizing the importance of accurately assessing AT distribution and understanding the complex relationships between fat compartments and metabolic health. Furthermore, it discusses various therapeutic strategies, including innovative therapeutics like adipose-derived mesenchymal stem cells (ADMSCs)-based treatments and gene therapy, highlighting the potential of precision medicine in targeting obesity and its associated complications.
Collapse
Affiliation(s)
- Marta Lopez-Yus
- Adipocyte and Fat Biology Laboratory (AdipoFat), Translational Research Unit, University Hospital Miguel Servet, 50009 Zaragoza, Spain; (M.L.-Y.); (V.B.-M.)
- Instituto Aragones de Ciencias de la Salud (IACS), 50009 Zaragoza, Spain
- Instituto de Investigación Sanitaria (IIS) Aragon, 50009 Zaragoza, Spain;
| | - Carlos Hörndler
- Instituto de Investigación Sanitaria (IIS) Aragon, 50009 Zaragoza, Spain;
- Pathology Department, Miguel Servet University Hospital, 50009 Zaragoza, Spain
| | - Sofia Borlan
- General and Digestive Surgery Department, Miguel Servet University Hospital, 50009 Zaragoza, Spain;
| | - Vanesa Bernal-Monterde
- Adipocyte and Fat Biology Laboratory (AdipoFat), Translational Research Unit, University Hospital Miguel Servet, 50009 Zaragoza, Spain; (M.L.-Y.); (V.B.-M.)
- Instituto Aragones de Ciencias de la Salud (IACS), 50009 Zaragoza, Spain
- Gastroenterology Department, Miguel Servet University Hospital, 50009 Zaragoza, Spain
| | - Jose M. Arbones-Mainar
- Adipocyte and Fat Biology Laboratory (AdipoFat), Translational Research Unit, University Hospital Miguel Servet, 50009 Zaragoza, Spain; (M.L.-Y.); (V.B.-M.)
- Instituto Aragones de Ciencias de la Salud (IACS), 50009 Zaragoza, Spain
- Instituto de Investigación Sanitaria (IIS) Aragon, 50009 Zaragoza, Spain;
- CIBER Fisiopatología Obesidad y Nutrición (CIBERObn), Instituto Salud Carlos III, 28029 Madrid, Spain
| |
Collapse
|
7
|
Mahmoud M, Abdel-Rasheed M, Galal ER, El-Awady RR. Factors Defining Human Adipose Stem/Stromal Cell Immunomodulation in Vitro. Stem Cell Rev Rep 2024; 20:175-205. [PMID: 37962697 PMCID: PMC10799834 DOI: 10.1007/s12015-023-10654-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/06/2023] [Indexed: 11/15/2023]
Abstract
Human adipose tissue-derived stem/stromal cells (hASCs) are adult multipotent mesenchymal stem/stromal cells with immunomodulatory capacities. Here, we present up-to-date knowledge on the impact of different experimental and donor-related factors on hASC immunoregulatory functions in vitro. The experimental determinants include the immunological status of hASCs relative to target immune cells, contact vs. contactless interaction, and oxygen tension. Factors such as the ratio of hASCs to immune cells, the cellular context, the immune cell activation status, and coculture duration are also discussed. Conditioning of hASCs with different approaches before interaction with immune cells, hASC culture in xenogenic or xenofree culture medium, hASC culture in two-dimension vs. three-dimension with biomaterials, and the hASC passage number are among the experimental parameters that greatly may impact the hASC immunosuppressive potential in vitro, thus, they are also considered. Moreover, the influence of donor-related characteristics such as age, sex, and health status on hASC immunomodulation in vitro is reviewed. By analysis of the literature studies, most of the indicated determinants have been investigated in broad non-standardized ranges, so the results are not univocal. Clear conclusions cannot be drawn for the fine-tuned scenarios of many important factors to set a standard hASC immunopotency assay. Such variability needs to be carefully considered in further standardized research. Importantly, field experts' opinions may help to make it clearer.
Collapse
Affiliation(s)
- Marwa Mahmoud
- Stem Cell Research Group, Medical Research Centre of Excellence, National Research Centre, 33 El Buhouth St, Ad Doqi, Dokki, 12622, Cairo Governorate, Egypt.
- Department of Medical Molecular Genetics, Human Genetics and Genome Research Institute, National Research Centre, Cairo, Egypt.
| | - Mazen Abdel-Rasheed
- Stem Cell Research Group, Medical Research Centre of Excellence, National Research Centre, 33 El Buhouth St, Ad Doqi, Dokki, 12622, Cairo Governorate, Egypt
- Department of Reproductive Health Research, National Research Centre, Cairo, Egypt
| | - Eman Reda Galal
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo, Egypt
| | - Rehab R El-Awady
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo, Egypt
| |
Collapse
|
8
|
Mahajan A, Bhattacharyya S. Immunomodulation by mesenchymal stem cells during osteogenic differentiation: Clinical implications during bone regeneration. Mol Immunol 2023; 164:143-152. [PMID: 38011783 DOI: 10.1016/j.molimm.2023.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 11/08/2023] [Accepted: 11/12/2023] [Indexed: 11/29/2023]
Abstract
Critical bone defects resulting in delayed and non-union are a major concern in the field of orthopedics. Over the past decade, mesenchymal stem cells (MSCs) have become a promising frontier for bone repair and regeneration owing to their high expansion rate and osteogenic differentiation potential ex vivo. MSCs have also long been associated with their ability to modulate immune response in the recipients. These can even skew the immune response towards pro-inflammatory or anti-inflammatory type by sensing their local microenvironment. MSCs adopt anti-inflammatory phenotype at bone injury site and secrete various immunomodulatory factors such as IDO, NO, TGFβ1 and PGE-2 which have redundant role in osteoblast differentiation and bone formation. As such, several studies have also sought to decipher the immunomodulatory effects of osteogenically differentiated MSCs. The present review discusses the immunomodulatory status of MSCs during their osteogenic differentiation and summarizes few mechanisms that cause immunosuppression by osteogenically differentiated MSCs and its implication during bone healing.
Collapse
Affiliation(s)
- Aditi Mahajan
- Department of Biophysics, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Shalmoli Bhattacharyya
- Department of Biophysics, Post Graduate Institute of Medical Education and Research, Chandigarh, India.
| |
Collapse
|
9
|
Maione AS, Meraviglia V, Iengo L, Rabino M, Chiesa M, Catto V, Tondo C, Pompilio G, Bellin M, Sommariva E. Patient-specific primary and pluripotent stem cell-derived stromal cells recapitulate key aspects of arrhythmogenic cardiomyopathy. Sci Rep 2023; 13:16179. [PMID: 37758786 PMCID: PMC10533531 DOI: 10.1038/s41598-023-43308-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 09/21/2023] [Indexed: 09/29/2023] Open
Abstract
Primary cardiac mesenchymal stromal cells (C-MSCs) can promote the aberrant remodeling of cardiac tissue that characterizes arrhythmogenic cardiomyopathy (ACM) by differentiating into adipocytes and myofibroblasts. These cells' limitations, including restricted access to primary material and its manipulation have been overcome by the advancement of human induced pluripotent stem cells (hiPSCs), and their ability to differentiate towards the cardiac stromal population. C-MSCs derived from hiPSCs make it possible to work with virtually unlimited numbers of cells that are genetically identical to the cells of origin. We performed in vitro experiments on primary stromal cells (Primary) and hiPSC-derived stromal cells (hiPSC-D) to compare them as tools to model ACM. Both Primary and hiPSC-D cells expressed mesenchymal surface markers and possessed typical MSC differentiation potentials. hiPSC-D expressed desmosomal genes and proteins and shared a similar transcriptomic profile with Primary cells. Furthermore, ACM hiPSC-D exhibited higher propensity to accumulate lipid droplets and collagen compared to healthy control cells, similar to their primary counterparts. Therefore, both Primary and hiPSC-D cardiac stromal cells obtained from ACM patients can be used to model aspects of the disease. The choice of the most suitable model will depend on experimental needs and on the availability of human source samples.
Collapse
Affiliation(s)
- Angela Serena Maione
- Unit of Vascular Biology and Regenerative Medicine, Centro Cardiologico Monzino IRCCS, 20138, Milan, Italy.
| | - Viviana Meraviglia
- Department of Anatomy and Embryology, Leiden University Medical Center, 2333 ZC, Leiden, The Netherlands
| | - Lara Iengo
- Unit of Vascular Biology and Regenerative Medicine, Centro Cardiologico Monzino IRCCS, 20138, Milan, Italy
| | - Martina Rabino
- Unit of Vascular Biology and Regenerative Medicine, Centro Cardiologico Monzino IRCCS, 20138, Milan, Italy
| | - Mattia Chiesa
- Bioinformatics and Artificial Intelligence Facility, Centro Cardiologico Monzino IRCCS, 20138, Milan, Italy
- Department of Electronics, Information and Biomedical Engineering, Politecnico di Milano, 20133, Milan, Italy
| | - Valentina Catto
- Department of Electronics, Information and Biomedical Engineering, Politecnico di Milano, 20133, Milan, Italy
- Department of Clinical Electrophysiology and Cardiac Pacing, Centro Cardiologico Monzino IRCCS, 20138, Milan, Italy
| | - Claudio Tondo
- Department of Clinical Electrophysiology and Cardiac Pacing, Centro Cardiologico Monzino IRCCS, 20138, Milan, Italy
- Department of Biomedical, Surgical and Dental Sciences, Università Degli Studi Di Milano, 20122, Milan, Italy
| | - Giulio Pompilio
- Unit of Vascular Biology and Regenerative Medicine, Centro Cardiologico Monzino IRCCS, 20138, Milan, Italy
- Department of Biomedical, Surgical and Dental Sciences, Università Degli Studi Di Milano, 20122, Milan, Italy
| | - Milena Bellin
- Department of Anatomy and Embryology, Leiden University Medical Center, 2333 ZC, Leiden, The Netherlands
- Department of Biology, University of Padua, 35121, Padua, Italy
- Veneto Institute of Molecular Medicine, 35129, Padua, Italy
| | - Elena Sommariva
- Unit of Vascular Biology and Regenerative Medicine, Centro Cardiologico Monzino IRCCS, 20138, Milan, Italy
| |
Collapse
|
10
|
Vilar A, Hodgson-Garms M, Kusuma GD, Donderwinkel I, Carthew J, Tan JL, Lim R, Frith JE. Substrate mechanical properties bias MSC paracrine activity and therapeutic potential. Acta Biomater 2023; 168:144-158. [PMID: 37422008 DOI: 10.1016/j.actbio.2023.06.041] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 06/14/2023] [Accepted: 06/27/2023] [Indexed: 07/10/2023]
Abstract
Mesenchymal stromal cells (MSCs) have significant therapeutic potential due to their ability to differentiate into musculoskeletal lineages suitable for tissue-engineering, as well as the immunomodulatory and pro-regenerative effects of the paracrine factors that these cells secrete. Cues from the extracellular environment, including physical stimuli such as substrate stiffness, are strong drivers of MSC differentiation, but their effects upon MSC paracrine activity are not well understood. This study, therefore sought to determine the impact of substrate stiffness on the paracrine activity of MSCs, analysing both effects on MSC fate and their effect on T-cell and macrophage activity and angiogenesis. The data show that conditioned medium (CM) from MSCs cultured on 0.2 kPa (soft) and 100 kPa (stiff) polyacrylamide hydrogels have differing effects on MSC proliferation and differentiation, with stiff CM promoting proliferation whilst soft CM promoted differentiation. There were also differences in the effects upon macrophage phagocytosis and angiogenesis, with the most beneficial effects from soft CM. Analysis of the media composition identified differences in the levels of proteins including IL-6, OPG, and TIMP-2. Using recombinant proteins and blocking antibodies, we confirmed a role for OPG in modulating MSC proliferation with a complex combination of factors involved in the regulation of MSC differentiation. Together the data confirm that the physical microenvironment has an important influence on the MSC secretome and that this can alter the differentiation and regenerative potential of the cells. These findings can be used to tailor the culture environment for manufacturing potent MSCs for specific clinical applications or to inform the design of biomaterials that enable the retention of MSC activity after delivery into the body. STATEMENT OF SIGNIFICANCE: • MSCs cultured on 100 kPa matrices produce a secretome that boosts MSC proliferation • MSCs cultured on 0.2 kPa matrices produce a secretome that promotes MSC osteogenesis and adipogenesis, as well as angiogenesis and macrophage phagocytosis • IL-6 secretion is elevated in MSCs on 0.2 kPa substrates • OPG, TIMP-2, MCP-1, and sTNFR1 secretion are elevated in MSCs on 100 kPa substrates.
Collapse
Affiliation(s)
- Aeolus Vilar
- Department of Materials Science and Engineering, Monash University, Clayton, Victoria 3800, Australia; ARC Training Centre for Cell and Tissue Engineering Technologies, Monash University, Clayton, Victoria 3800, Australia
| | - Margeaux Hodgson-Garms
- Department of Materials Science and Engineering, Monash University, Clayton, Victoria 3800, Australia
| | - Gina D Kusuma
- Department of Materials Science and Engineering, Monash University, Clayton, Victoria 3800, Australia
| | - Ilze Donderwinkel
- Department of Materials Science and Engineering, Monash University, Clayton, Victoria 3800, Australia
| | - James Carthew
- Department of Materials Science and Engineering, Monash University, Clayton, Victoria 3800, Australia
| | - Jean L Tan
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, Victoria 3800, Australia; Department of Obstetrics and Gynecology, Monash University, Clayton, Victoria 3800, Australia
| | - Rebecca Lim
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, Victoria 3800, Australia; Department of Obstetrics and Gynecology, Monash University, Clayton, Victoria 3800, Australia; Australian Regenerative Medicine Institute, Monash University, Clayton, Australia
| | - Jessica E Frith
- Department of Materials Science and Engineering, Monash University, Clayton, Victoria 3800, Australia; Australian Regenerative Medicine Institute, Monash University, Clayton, Australia; ARC Training Centre for Cell and Tissue Engineering Technologies, Monash University, Clayton, Victoria 3800, Australia.
| |
Collapse
|
11
|
Couto PS, Stibbs DJ, Rotondi MC, Takeuchi Y, Rafiq QA. Scalable manufacturing of gene-modified human mesenchymal stromal cells with microcarriers in spinner flasks. Appl Microbiol Biotechnol 2023; 107:5669-5685. [PMID: 37470820 PMCID: PMC10439856 DOI: 10.1007/s00253-023-12634-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 06/06/2023] [Accepted: 06/11/2023] [Indexed: 07/21/2023]
Abstract
Due to their immunomodulatory properties and in vitro differentiation ability, human mesenchymal stromal cells (hMSCs) have been investigated in more than 1000 clinical trials over the last decade. Multiple studies that have explored the development of gene-modified hMSC-based products are now reaching early stages of clinical trial programmes. From an engineering perspective, the challenge lies in developing manufacturing methods capable of producing sufficient doses of ex vivo gene-modified hMSCs for clinical applications. This work demonstrates, for the first time, a scalable manufacturing process using a microcarrier-bioreactor system for the expansion of gene-modified hMSCs. Upon isolation, umbilical cord tissue mesenchymal stromal cells (UCT-hMSCs) were transduced using a lentiviral vector (LV) with green fluorescent protein (GFP) or vascular endothelial growth factor (VEGF) transgenes. The cells were then seeded in 100 mL spinner flasks using Spherecol microcarriers and expanded for seven days. After six days in culture, both non-transduced and transduced cell populations attained comparable maximum cell concentrations (≈1.8 × 105 cell/mL). Analysis of the culture supernatant identified that glucose was fully depleted after day five across the cell populations. Lactate concentrations observed throughout the culture reached a maximum of 7.5 mM on day seven. Immunophenotype analysis revealed that the transduction followed by an expansion step was not responsible for the downregulation of the cell surface receptors used to identify hMSCs. The levels of CD73, CD90, and CD105 expressing cells were above 90% for the non-transduced and transduced cells. In addition, the expression of negative markers (CD11b, CD19, CD34, CD45, and HLA-DR) was also shown to be below 5%, which is aligned with the criteria established for hMSCs by the International Society for Cell and Gene Therapy (ISCT). This work provides a foundation for the scalable manufacturing of gene-modified hMSCs which will overcome a significant translational and commercial bottleneck. KEY POINTS: • hMSCs were successfully transduced by lentiviral vectors carrying two different transgenes: GFP and VEGF • Transduced hMSCs were successfully expanded on microcarriers using spinner flasks during a period of 7 days • The genetic modification step did not cause any detrimental impact on the hMSC immunophenotype characteristics.
Collapse
Affiliation(s)
- Pedro Silva Couto
- Department of Biochemical Engineering, Advanced Centre for Biochemical Engineering, University College London, Gower Street, London, WC1E 6BT UK
| | - Dale J. Stibbs
- Department of Biochemical Engineering, Advanced Centre for Biochemical Engineering, University College London, Gower Street, London, WC1E 6BT UK
| | - Marco C. Rotondi
- Department of Biochemical Engineering, Advanced Centre for Biochemical Engineering, University College London, Gower Street, London, WC1E 6BT UK
| | - Yasuhiro Takeuchi
- Division of Infection and Immunity, University College London, Gower Street, London, WC1E 6BT UK
- Biotherapeutics and Advanced Therapies, Scientific Research and Innovation, Medicines, and Healthcare Products Regulatory Agency, South Mimms, EN6 3QG UK
| | - Qasim A. Rafiq
- Department of Biochemical Engineering, Advanced Centre for Biochemical Engineering, University College London, Gower Street, London, WC1E 6BT UK
| |
Collapse
|
12
|
Michurina S, Stafeev I, Boldyreva M, Truong VA, Ratner E, Menshikov M, Hu YC, Parfyonova Y. Transplantation of Adipose-Tissue-Engineered Constructs with CRISPR-Mediated UCP1 Activation. Int J Mol Sci 2023; 24:ijms24043844. [PMID: 36835254 PMCID: PMC9959691 DOI: 10.3390/ijms24043844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 02/05/2023] [Accepted: 02/10/2023] [Indexed: 02/17/2023] Open
Abstract
Thermogenic adipocytes have potential utility for the development of approaches to treat type 2 diabetes and obesity-associated diseases. Although several reports have proved the positive effect of beige and brown adipocyte transplantation in obese mice, translation to human cell therapy needs improvement. Here, we describe the application of CRISPR activation (CRISPRa) technology for generating safe and efficient adipose-tissue-engineered constructs with enhanced mitochondrial uncoupling protein 1 (UCP1) expression. We designed the CRISPRa system for the activation of UCP1 gene expression. CRISPRa-UCP1 was delivered into mature adipocytes by a baculovirus vector. Modified adipocytes were transplanted in C57BL/6 mice, followed by analysis of grafts, inflammation and systemic glucose metabolism. Staining of grafts on day 8 after transplantation shows them to contain UCP1-positive adipocytes. Following transplantation, adipocytes remain in grafts and exhibit expression of PGC1α transcription factor and hormone sensitive lipase (HSL). Transplantation of CRISPRa-UCP1-modified adipocytes does not influence glucose metabolism or inflammation in recipient mice. We show the utility and safety of baculovirus vectors for CRISPRa-based thermogenic gene activation. Our findings suggest a means of improving existing cell therapy approaches using baculovirus vectors and CRISPRa for modification and transplantation of non-immunogenic adipocytes.
Collapse
Affiliation(s)
- Svetlana Michurina
- National Medical Research Centre of Cardiology Named after Academician E. I. Chazov, 121552 Moscow, Russia
- Faculty of Biology, Lomonosov Moscow State University, 119991 Moscow, Russia
- Correspondence: (S.M.); (I.S.)
| | - Iurii Stafeev
- National Medical Research Centre of Cardiology Named after Academician E. I. Chazov, 121552 Moscow, Russia
- Correspondence: (S.M.); (I.S.)
| | - Maria Boldyreva
- National Medical Research Centre of Cardiology Named after Academician E. I. Chazov, 121552 Moscow, Russia
- Cell and Molecular Biology Unit, Faculty of Biology and Biotechnology, National Research University Higher School of Economics, 101000 Moscow, Russia
| | - Vu Anh Truong
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu 300044, Taiwan
| | - Elizaveta Ratner
- National Medical Research Centre of Cardiology Named after Academician E. I. Chazov, 121552 Moscow, Russia
| | - Mikhail Menshikov
- National Medical Research Centre of Cardiology Named after Academician E. I. Chazov, 121552 Moscow, Russia
| | - Yu-Chen Hu
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu 300044, Taiwan
- Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, Hsinchu 300044, Taiwan
| | - Yelena Parfyonova
- National Medical Research Centre of Cardiology Named after Academician E. I. Chazov, 121552 Moscow, Russia
- Faculty of Basic Medicine, Lomonosov Moscow State University, 119991 Moscow, Russia
| |
Collapse
|
13
|
Guo J, Wang F, Hu Y, Luo Y, Wei Y, Xu K, Zhang H, Liu H, Bo L, Lv S, Sheng S, Zhuang X, Zhang T, Xu C, Chen X, Su J. Exosome-based bone-targeting drug delivery alleviates impaired osteoblastic bone formation and bone loss in inflammatory bowel diseases. Cell Rep Med 2023; 4:100881. [PMID: 36603578 PMCID: PMC9873828 DOI: 10.1016/j.xcrm.2022.100881] [Citation(s) in RCA: 75] [Impact Index Per Article: 37.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 11/12/2022] [Accepted: 12/12/2022] [Indexed: 01/06/2023]
Abstract
Systematic bone loss is commonly complicated with inflammatory bowel diseases (IBDs) with unclear pathogenesis and uncertain treatment. In experimental colitis mouse models established by dextran sulfate sodium and IL-10 knockout induced with piroxicam, bone mass and quality are significantly decreased. Colitis mice demonstrate a lower bone formation rate and fewer osteoblasts in femur. Bone marrow mesenchymal stem/stromal cells (BMSCs) from colitis mice tend to differentiate into adipocytes rather than osteoblasts. Serum from patients with IBD promotes adipogenesis of human BMSCs. RNA sequencing reveals that colitis downregulates Wnt signaling in BMSCs. For treatment, exosomes with Golgi glycoprotein 1 inserted could carry Wnt agonist 1 and accumulate in bone via intravenous administration. They could alleviate bone loss, promote bone formation, and accelerate fracture healing in colitis mice. Collectively, BMSC commitment in inflammatory microenvironment contributes to lower bone quantity and quality and could be rescued by redirecting differentiation toward osteoblasts through bone-targeted drug delivery.
Collapse
Affiliation(s)
- Jiawei Guo
- Institute of Translational Medicine, Shanghai University, Shanghai 200444, China; Department of Orthopedics Trauma, Shanghai Changhai Hospital, Naval Medical University, Shanghai 200433, China
| | - Fuxiao Wang
- Institute of Translational Medicine, Shanghai University, Shanghai 200444, China
| | - Yan Hu
- Institute of Translational Medicine, Shanghai University, Shanghai 200444, China
| | - Ying Luo
- Department of Orthopedics Trauma, Shanghai Changhai Hospital, Naval Medical University, Shanghai 200433, China
| | - Yan Wei
- Institute of Translational Medicine, Shanghai University, Shanghai 200444, China
| | - Ke Xu
- Institute of Translational Medicine, Shanghai University, Shanghai 200444, China
| | - Hao Zhang
- Institute of Translational Medicine, Shanghai University, Shanghai 200444, China
| | - Han Liu
- Institute of Translational Medicine, Shanghai University, Shanghai 200444, China
| | - Lumin Bo
- Department of Gastroenterology, Shanghai Changhai Hospital, Naval Medical University, Shanghai 200433, China
| | - Shunli Lv
- Department of Gastroenterology, Shanghai Changhai Hospital, Naval Medical University, Shanghai 200433, China
| | - Shihao Sheng
- Department of Orthopedics Trauma, Shanghai Changhai Hospital, Naval Medical University, Shanghai 200433, China
| | - Xinchen Zhuang
- Department of Orthopedics Trauma, Shanghai Changhai Hospital, Naval Medical University, Shanghai 200433, China
| | - Tao Zhang
- Department of Orthopedics Trauma, Shanghai Changhai Hospital, Naval Medical University, Shanghai 200433, China
| | - Can Xu
- Department of Gastroenterology, Shanghai Changhai Hospital, Naval Medical University, Shanghai 200433, China.
| | - Xiao Chen
- Department of Orthopedics Trauma, Shanghai Changhai Hospital, Naval Medical University, Shanghai 200433, China.
| | - Jiacan Su
- Institute of Translational Medicine, Shanghai University, Shanghai 200444, China; Department of Orthopedics Trauma, Shanghai Changhai Hospital, Naval Medical University, Shanghai 200433, China; Organoid Research Center, Shanghai University, Shanghai 200444, China.
| |
Collapse
|
14
|
Controlled Release of Encapsuled Stromal-Derived Factor 1α Improves Bone Marrow Mesenchymal Stromal Cells Migration. BIOENGINEERING (BASEL, SWITZERLAND) 2022; 9:bioengineering9120754. [PMID: 36550960 PMCID: PMC9774977 DOI: 10.3390/bioengineering9120754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 11/18/2022] [Accepted: 11/29/2022] [Indexed: 12/04/2022]
Abstract
Stem cell treatment is a promising method of therapy for the group of patients whose conventional options for treatment have been limited or rejected. Stem cells have the potential to repair, replace, restore and regenerate cells. Moreover, their proliferation level is high. Owing to these features, they can be used in the treatment of numerous diseases, such as cancer, lung diseases or ischemic heart diseases. In recent years, stem cell therapy has greatly developed, shedding light on stromal-derived factor 1α (SDF-1α). SDF-1α is a mobilizing chemokine for application of endogenous stem cells to injury sites. Unfortunately, SDF-1α presented short-term results in stem cell treatment trials. Considering the tremendous benefits of this therapy, we developed biodegradable polymeric microspheres for the release of SDF-1α in a controlled and long-lasting manner. The microspheres were designed from poly(L-lactide/glycolide/trimethylene carbonate) (PLA/GA/TMC). The effect of controlled release of SDF-1α from microspheres was investigated on the migration level of bone marrow Mesenchymal Stromal Cells (bmMSCs) derived from a pig. The study showed that SDF-1α, released from the microspheres, is more efficient at attracting bmMSCs than SDF-1α alone. This may enable the controlled delivery of selected and labeled MSCs to the destination in the future.
Collapse
|
15
|
Hoang VT, Nguyen HP, Nguyen VN, Hoang DM, Nguyen TST, Nguyen Thanh L. “Adipose-derived mesenchymal stem cell therapy for the management of female sexual dysfunction: Literature reviews and study design of a clinical trial”. Front Cell Dev Biol 2022; 10:956274. [PMID: 36247008 PMCID: PMC9554747 DOI: 10.3389/fcell.2022.956274] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 07/29/2022] [Indexed: 11/25/2022] Open
Abstract
Hormone imbalance and female sexual dysfunction immensely affect perimenopausal female health and quality of life. Hormone therapy can improve female hormone deficiency, but long-term use increases the risk of cardiovascular diseases and cancer. Therefore, it is necessary to develop a novel effective treatment to achieve long-term improvement in female general and sexual health. This study reviewed factors affecting syndromes of female sexual dysfunction and its current therapy options. Next, the authors introduced research data on mesenchymal stromal cell/mesenchymal stem cell (MSC) therapy to treat female reproductive diseases, including Asherman’s syndrome, premature ovarian failure/primary ovarian insufficiency, and vaginal atrophy. Among adult tissue-derived MSCs, adipose tissue-derived stem cells (ASCs) have emerged as the most potent therapeutic cell therapy due to their abundant presence in the stromal vascular fraction of fat, high proliferation capacity, superior immunomodulation, and strong secretion profile of regenerative factors. Potential mechanisms and side effects of ASCs for the treatment of female sexual dysfunction will be discussed. Our phase I clinical trial has demonstrated the safety of autologous ASC therapy for women and men with sexual hormone deficiency. We designed the first randomized controlled crossover phase II trial to investigate the safety and efficacy of autologous ASCs to treat female sexual dysfunction in perimenopausal women. Here, we introduce the rationale, trial design, and methodology of this clinical study. Because aging and metabolic diseases negatively impact the bioactivity of adult-derived MSCs, this study will use ASCs cultured in physiological oxygen tension (5%) to cope with these challenges. A total of 130 perimenopausal women with sexual dysfunction will receive two intravenous infusions of autologous ASCs in a crossover design. The aims of the proposed study are to evaluate 1) the safety of cell infusion based on the frequency and severity of adverse events/serious adverse events during infusion and follow-up and 2) improvements in female sexual function assessed by the Female Sexual Function Index (FSFI), the Utian Quality of Life Scale (UQOL), and the levels of follicle-stimulating hormone (FSH) and estradiol. In addition, cellular aging biomarkers, including plasminogen activator inhibitor-1 (PAI-1), p16 and p21 expression in T cells and the inflammatory cytokine profile, will also be characterized. Overall, this study will provide essential insights into the effects and potential mechanisms of ASC therapy for perimenopausal women with sexual dysfunction. It also suggests direction and design strategies for future research.
Collapse
Affiliation(s)
- Van T. Hoang
- Vinmec Research Institute of Stem Cell and Gene Technology, Vinmec Health Care System, Hanoi, Vietnam
| | - Hoang-Phuong Nguyen
- Vinmec Research Institute of Stem Cell and Gene Technology, Vinmec Health Care System, Hanoi, Vietnam
| | - Viet Nhan Nguyen
- Vinmec International Hospital—Times City, Vinmec Health Care System, Hanoi, Vietnam
- College of Health Science, Vin University, Vinhomes Ocean Park, Hanoi, Vietnam
| | - Duc M. Hoang
- Vinmec Research Institute of Stem Cell and Gene Technology, Vinmec Health Care System, Hanoi, Vietnam
| | - Tan-Sinh Thi Nguyen
- Vinmec International Hospital—Times City, Vinmec Health Care System, Hanoi, Vietnam
| | - Liem Nguyen Thanh
- Vinmec Research Institute of Stem Cell and Gene Technology, Vinmec Health Care System, Hanoi, Vietnam
- Vinmec International Hospital—Times City, Vinmec Health Care System, Hanoi, Vietnam
- College of Health Science, Vin University, Vinhomes Ocean Park, Hanoi, Vietnam
- *Correspondence: Liem Nguyen Thanh,
| |
Collapse
|
16
|
Lee SY, Chung KS, Son SR, Lee SY, Jang DS, Lee JK, Kim HJ, Na CS, Lee SH, Lee KT. A Botanical Mixture Consisting of Inula japonica and Potentilla chinensis Relieves Obesity via the AMPK Signaling Pathway in 3T3-L1 Adipocytes and HFD-Fed Obese Mice. Nutrients 2022; 14:nu14183685. [PMID: 36145056 PMCID: PMC9505034 DOI: 10.3390/nu14183685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 08/29/2022] [Accepted: 09/02/2022] [Indexed: 11/16/2022] Open
Abstract
Excessive lipid accumulation in white adipose tissue (WAT) is the major cause of obesity. Herein, we investigated the anti-obesity effect and molecular mechanism of a botanical mixture of 30% EtOH extract from the leaves of Inula japonica and Potentilla chinensis (EEIP) in 3T3-L1 preadipocytes and high-fat diet (HFD)-fed obese mice. In vitro, EEIP prevented lipid accumulation by downregulating the expression of lipogenesis-related transcription factors such as CCAAT/enhancer binding protein (C/EBP)α, peroxisome proliferator-activated receptor (PPAR)γ, and sterol regulatory element binding protein (SREBP)-1 via AMP-activated protein kinase (AMPK) activation and G0/G1 cell cycle arrest by regulating the Akt-mTOR pathways without inducing cytotoxicity. In vivo, EEIP significantly reduced body weight gain and body fat mass in the group administered concurrently with HFD (pre-) or administered during the maintenance of HFD (post-) including subcutaneous, gonadal, renal, and mesenteric fats, and improved blood lipid profiles and metabolic hormones. EEIP pre-administration also alleviated WAT hypertrophy and liver lipid accumulation by reducing C/EBPα, PPARγ, and SREBP-1 expression via AMPK activation. In the brown adipose tissue, EEIP pre-administration upregulated the expression of thermogenic factors. Furthermore, EEIP improved the HFD-induced altered gut microbiota in mice. Taken together, our data indicated that EEIP improves HFD-induced obesity through adipogenesis inhibition in the WAT and liver and is a promising dietary natural material for improving obesity.
Collapse
Affiliation(s)
- Su-Yeon Lee
- Department of Pharmaceutical Biochemistry, College of Pharmacy, Kyung Hee University, Seoul 02447, Korea
- Department of Biomedical and Pharmaceutical Sciences, Graduate School, Kyung Hee University, Seoul 02447, Korea
| | - Kyung-Sook Chung
- Department of Pharmaceutical Biochemistry, College of Pharmacy, Kyung Hee University, Seoul 02447, Korea
- Department of Biomedical and Pharmaceutical Sciences, Graduate School, Kyung Hee University, Seoul 02447, Korea
| | - So-Ri Son
- Department of Biomedical and Pharmaceutical Sciences, Graduate School, Kyung Hee University, Seoul 02447, Korea
| | - So Young Lee
- Department of Biomedical and Pharmaceutical Sciences, Graduate School, Kyung Hee University, Seoul 02447, Korea
| | - Dae Sik Jang
- Department of Biomedical and Pharmaceutical Sciences, Graduate School, Kyung Hee University, Seoul 02447, Korea
| | - Jong-Kil Lee
- Department of Pharmacy, College of Pharmacy, Kyung Hee University, Seoul 02447, Korea
| | - Hyun-Jae Kim
- Department of New Material Development, COSMAXBIO, Seongnam 13486, Korea
| | - Chang-Seon Na
- Department of New Material Development, COSMAXBIO, Seongnam 13486, Korea
| | - Sun-Hee Lee
- Department of New Material Development, COSMAXBIO, Seongnam 13486, Korea
- Correspondence: (S.-H.L.); (K.-T.L.); Tel.: +82-31-8018-0390 (S.-H.L.); +82-2-961-0860 (K.-T.L.)
| | - Kyung-Tae Lee
- Department of Pharmaceutical Biochemistry, College of Pharmacy, Kyung Hee University, Seoul 02447, Korea
- Department of Biomedical and Pharmaceutical Sciences, Graduate School, Kyung Hee University, Seoul 02447, Korea
- Correspondence: (S.-H.L.); (K.-T.L.); Tel.: +82-31-8018-0390 (S.-H.L.); +82-2-961-0860 (K.-T.L.)
| |
Collapse
|
17
|
YIN X, ZHANG X, ZHU R, SONG P. Effect of astragaloside IV on the immunoregulatory function of adipose-derived mesenchymal stem cells from patients with psoriasis vulgaris. J TRADIT CHIN MED 2022; 42:513-519. [PMID: 35848967 PMCID: PMC9924762 DOI: 10.19852/j.cnki.jtcm.20220516.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/16/2023]
Abstract
OBJECTIVE To compare the phenotype and adipogenic and osteogenic differentiation capacities of adipose-derived mesenchymal stem cells (AMSCs) isolated from patients with psoriasis vulgaris and healthy donors, and to explore the effects of astragaloside IV, a Traditional Chinese Medicine, on the immunoregulatory function of AMSCs. METHODS AMSCs were isolated from human adipose tissue and cultured for three generations in vitro. Cell phenotype and cell cycle analysis were performed by flow cytometry. Adipogenic and osteogenic differentiation of AMSCs was examined by lipid (oil red O) and alkaline phosphatase staining, respectively. Expression of inflammatory mediators was examined by real-time quantitative polymerase chain reaction analysis, and proliferation was quantified using the cell counting kit-8 assay. RESULTS Expression of CD29, CD44, and CD73 was higher in AMSCs from healthy donors than psoriasis patients, while the reverse was true for expression of CD45, CD31, and HLA-DR. AMSCs from psoriasis patients had a greater ability to undergo adipogenic differentiation than cells from healthy donors, whereas there was no significant difference in osteogenic differentiation between AMSCs from the two sources. Compared with AMSCs from healthy donors, psoriasis patient-derived AMSCs expressed lower levels of the anti-inflammatory cytokines interleukin-10 and trans-forming growth factor-β (TGF-β) and the immune checkpoint ligand programmed cell death 1 ligand 1 (PD-L1) (P < 0.05) and higher levels of the pro-inflammatory cytokines tumor necrosis factor-α (TNF-α) and interferon-γ (IFN-γ). Incubation of AMSCs from psoriasis patients with astragaloside IV had no significant effect on pro-liferation but increased the expression of TGF-β and PD-L1 and decreased the expression of IFN-γ and TNF-α. CONCLUSION AMSCs from patients with psoriasis vulgaris display abnormal proliferation and adipogenesis and an enhanced pro-inflammatory phenotype. These defects were normalized by treatment with astragaloside IV, suggesting that this Traditional Chinese Medicine may be useful for restoring the immunoregulatory function of AMSCs and immune homeostasis in patients with psoriasis vulgaris.
Collapse
Affiliation(s)
- Xiuping YIN
- 1 Department of Dermatology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Xiaotong ZHANG
- 1 Department of Dermatology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Rongjia ZHU
- 2 Beijing Key Laboratory of New Drug Development and Clinical Trial of Stem Cell Therapy (BZ0381)/Center of Excellence in Tissue Engineering, Institute of Basic Medical Sciences CAMS, School of Basic Medicine PUMC, Beijing 100005, China
- ZHU Rongjia, Beijing Key Laboratory of New Drug Development and Clinical Trial of Stem Cell Therapy (BZ0381)/Center of Excellence in Tissue Engineering, Institute of Basic Medical Sciences CAMS, School of Basic Medicine PUMC, Beijing 100005, China. , Telephone: +86-13381260786; +86-15210829378
| | - Ping SONG
- 1 Department of Dermatology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
- Prof. SONG Ping, Department of Dermatology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China.
| |
Collapse
|
18
|
Lu X, Lv C, Zhao Y, Wang Y, Li Y, Ji C, Wang Z, Ye W, Yu S, Bai J, Cai W. TSG-6 released from adipose stem cells-derived small extracellular vesicle protects against spinal cord ischemia reperfusion injury by inhibiting endoplasmic reticulum stress. Stem Cell Res Ther 2022; 13:291. [PMID: 35831906 PMCID: PMC9281104 DOI: 10.1186/s13287-022-02963-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 06/12/2022] [Indexed: 11/30/2022] Open
Abstract
Background Spinal cord ischemia reperfusion injury (SCIRI) is a complication of aortic aneurysm repair or spinal cord surgery that is associated with permanent neurological deficits. Mesenchymal stem cell (MSC)-derived small extracellular vesicles (sEVs) have been shown to be potential therapeutic options for improving motor functions after SCIRI. Due to their easy access and multi-directional differentiation potential, adipose‐derived stem cells (ADSCs) are preferable for this application. However, the effects of ADSC-derived sEVs (ADSC-sEVs) on SCIRI have not been reported. Results We found that ADSC-sEVs inhibited SCIRI-induced neuronal apoptosis, degradation of tight junction proteins and suppressed endoplasmic reticulum (ER) stress. However, in the presence of the ER stress inducer, tunicamycin, its anti-apoptotic and blood–spinal cord barrier (BSCB) protective effects were significantly reversed. We found that ADSC-sEVs contain tumor necrosis factor (TNF)-stimulated gene-6 (TSG-6) whose overexpression inhibited ER stress in vivo by modulating the PI3K/AKT pathway. Conclusions ADSC-sEVs inhibit neuronal apoptosis and BSCB disruption in SCIRI by transmitting TSG-6, which suppresses ER stress by modulating the PI3K/AKT pathway. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-022-02963-4.
Collapse
Affiliation(s)
- Xiao Lu
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, Jiangsu Province, China.,Department of Orthopaedics, Dongtai Hospital Affiliated to Nantong University, Dongtai City, Jiangsu, China
| | - Chengtang Lv
- Department of Orthopaedics, Yancheng Third People's Hospital, Yancheng, 224000, Jiangsu, China
| | - Yuechao Zhao
- Department of Orthopedic Oncology, Changzheng Hospital, Secondary Military Medical University, Shanghai, China.,Department of Orthopedic, PLA Navy No.905 Hospital, Secondary Military Medical University, Shanghai, China
| | - Yufei Wang
- Zhejiang University-University of Edinburgh Institute (ZJU-UoE Institute), Haining, Zhejiang, China
| | - Yao Li
- Department of Orthopedics, Shanghai Tenth People's Hospital, Tongji University School of Medicine, 301 Yanchang Road, Shanghai, China
| | - Chengyue Ji
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, Jiangsu Province, China
| | - Zhuanghui Wang
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, Jiangsu Province, China
| | - Wu Ye
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, Jiangsu Province, China
| | - Shunzhi Yu
- Department of Orthopedics, Shanghai Tenth People's Hospital, Tongji University School of Medicine, 301 Yanchang Road, Shanghai, China.
| | - Jianling Bai
- Department of Biostatistics, School of Public Health, Nanjing Medical University, Jiangsu Province, Nanjing, 211166, China.
| | - Weihua Cai
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, Jiangsu Province, China.
| |
Collapse
|
19
|
Ren G, Peng Q, Fink T, Zachar V, Porsborg SR. Potency assays for human adipose-derived stem cells as a medicinal product toward wound healing. Stem Cell Res Ther 2022; 13:249. [PMID: 35690872 PMCID: PMC9188073 DOI: 10.1186/s13287-022-02928-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 05/29/2022] [Indexed: 11/18/2022] Open
Abstract
In pre-clinical studies, human adipose-derived stem cells (hASCs) have shown great promise as a treatment modality for healing of cutaneous wounds. The advantages of hASCs are that they are relatively easy to obtain in large numbers from basic liposuctions, they maintain their characteristics after long-term in vitro culture, and they possess low immunogenicity, which enables the use of hASCs from random donors. It has been hypothesized that hASCs exert their wound healing properties by reducing inflammation, inducing angiogenesis, and promoting fibroblast and keratinocyte growth. Due to the inherent variability associated with the donor-dependent nature of ASC-based products, it appears necessary that the quality of the different products is prospectively certified using a set of most relevant potency assays. In this review, we present an overview of the available methodologies to assess the Mode and the Mechanism of Action of hASCs, specifically in the wound healing scenario. In conclusion, we propose a panel of potential potency assays to include in the future production of ASC-based medicinal products.
Collapse
Affiliation(s)
- Guoqiang Ren
- Regenerative Medicine Group, Department of Health Science and Technology, Aalborg University, Fredrik Bajers Vej 3B, 9220, Aalborg, Denmark
| | - Qiuyue Peng
- Regenerative Medicine Group, Department of Health Science and Technology, Aalborg University, Fredrik Bajers Vej 3B, 9220, Aalborg, Denmark
| | - Trine Fink
- Regenerative Medicine Group, Department of Health Science and Technology, Aalborg University, Fredrik Bajers Vej 3B, 9220, Aalborg, Denmark
| | - Vladimir Zachar
- Regenerative Medicine Group, Department of Health Science and Technology, Aalborg University, Fredrik Bajers Vej 3B, 9220, Aalborg, Denmark
| | - Simone Riis Porsborg
- Regenerative Medicine Group, Department of Health Science and Technology, Aalborg University, Fredrik Bajers Vej 3B, 9220, Aalborg, Denmark.
| |
Collapse
|
20
|
Peng Q, Shan D, Cui K, Li K, Zhu B, Wu H, Wang B, Wong S, Norton V, Dong Y, Lu YW, Zhou C, Chen H. The Role of Endothelial-to-Mesenchymal Transition in Cardiovascular Disease. Cells 2022; 11:1834. [PMID: 35681530 PMCID: PMC9180466 DOI: 10.3390/cells11111834] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 06/01/2022] [Accepted: 06/01/2022] [Indexed: 02/07/2023] Open
Abstract
Endothelial-to-mesenchymal transition (EndoMT) is the process of endothelial cells progressively losing endothelial-specific markers and gaining mesenchymal phenotypes. In the normal physiological condition, EndoMT plays a fundamental role in forming the cardiac valves of the developing heart. However, EndoMT contributes to the development of various cardiovascular diseases (CVD), such as atherosclerosis, valve diseases, fibrosis, and pulmonary arterial hypertension (PAH). Therefore, a deeper understanding of the cellular and molecular mechanisms underlying EndoMT in CVD should provide urgently needed insights into reversing this condition. This review summarizes a 30-year span of relevant literature, delineating the EndoMT process in particular, key signaling pathways, and the underlying regulatory networks involved in CVD.
Collapse
Affiliation(s)
- Qianman Peng
- Vascular Biology Program, Department of Surgery, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Dan Shan
- Vascular Biology Program, Department of Surgery, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Kui Cui
- Vascular Biology Program, Department of Surgery, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Kathryn Li
- Vascular Biology Program, Department of Surgery, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Bo Zhu
- Vascular Biology Program, Department of Surgery, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Hao Wu
- Vascular Biology Program, Department of Surgery, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Beibei Wang
- Vascular Biology Program, Department of Surgery, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Scott Wong
- Vascular Biology Program, Department of Surgery, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Vikram Norton
- Vascular Biology Program, Department of Surgery, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Yunzhou Dong
- Vascular Biology Program, Department of Surgery, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Yao Wei Lu
- Vascular Biology Program, Department of Surgery, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Changcheng Zhou
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, CA 92521, USA
| | - Hong Chen
- Vascular Biology Program, Department of Surgery, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
21
|
A Comparative Study on the Adipogenic Differentiation of Mesenchymal Stem/Stromal Cells in 2D and 3D Culture. Cells 2022; 11:cells11081313. [PMID: 35455993 PMCID: PMC9029885 DOI: 10.3390/cells11081313] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 04/07/2022] [Accepted: 04/08/2022] [Indexed: 02/04/2023] Open
Abstract
Mesenchymal stem/stromal cells (MSC) are capable of renewing the progenitor cell fraction or differentiating in a tissue-specific manner. Adipogenic differentiation of adipose-tissue-derived MSC (adMSC) is important in various pathological processes. Adipocytes and their progenitors are metabolically active and secrete molecules (adipokines) that have both pro- and anti-inflammatory properties. Cell culturing in 2D is commonly used to study cellular responses, but the 2D environment does not reflect the structural situation for most cell types. Therefore, 3D culture systems have been developed to create an environment considered more physiological. Since knowledge about the effects of 3D cultivation on adipogenic differentiation is limited, we investigated its effects on adipogenic differentiation and adipokine release of adMSC (up to 28 days) and compared these with the effects in 2D. We demonstrated that cultivation conditions are crucial for cell behavior: in both 2D and 3D culture, adipogenic differentiation occurred only after specific stimulation. While the size and structure of adipogenically stimulated 3D spheroids remained stable during the experiment, the unstimulated spheroids showed signs of disintegration. Adipokine release was dependent on culture dimensionality; we found upregulated adiponectin and downregulated pro-inflammatory factors. Our findings are relevant for cell therapeutic applications of adMSC in complex, three-dimensionally arranged tissues.
Collapse
|
22
|
Ezure T, Amano S, Matsuzaki K. Infiltration of subcutaneous adipose layer into the dermal layer with aging. Skin Res Technol 2022; 28:311-316. [PMID: 35020969 PMCID: PMC9907710 DOI: 10.1111/srt.13133] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 12/18/2021] [Indexed: 12/31/2022]
Abstract
BACKGROUND The elasticity of the dermal layer decreases with aging, leading to ulcer formation and wrinkling, but the mechanism of this change is not fully understood, because it is difficult to access the complex three-dimensional (3D) internal structure of the dermis. OBJECTIVE To clarify age-dependent changes in the overall 3D structure of the dermal layer by means of 3D analysis technology. METHODS We observed sun-protected human skin by means of X-ray micro CT, identified the layers of the skin, and reconstructed the 3D structure on computer. Age-dependent structural changes of the dermal layer were evaluated by statistical comparison of young and aged skin. RESULTS Histological observations suggested the presence of two types of ectopic fat deposits, namely infiltrated subcutaneous fat and isolated fat, in the lower region of the reticular dermal layer in aged skin. To elucidate their nature, we observed skin specimens by X-ray microCT. The epidermis, dermal layer, and subcutaneous adipose layer were well differentiated on CT images, and 3D skin was digitally reconstructed on computer. This method clearly showed that the isolated fat observed histologically was in fact connected to the subcutaneous fat, namely all ectopic fat is connected to the subcutaneous adipose layer. Statistical analysis showed that the severity of fat infiltration into dermal layer is significantly increased in aged skin compared with young skin. CONCLUSION Our findings indicate that subcutaneous fat infiltrates into the dermal layer of aged skin. Our 3D analysis approach is advantageous to understand changes of complex internal skin structures with aging.
Collapse
Affiliation(s)
- Tomonobu Ezure
- MIRAI Technology Institute, Shiseido Co., Ltd., Yokohama-shi, Japan
| | - Satoshi Amano
- MIRAI Technology Institute, Shiseido Co., Ltd., Yokohama-shi, Japan
| | - Kyoichi Matsuzaki
- Department of Plastic and Reconstructive Surgery, International University of Health and Welfare, School of Medicine, Narita, Japan
| |
Collapse
|
23
|
Gu F, Zhang K, Li J, Xie X, Wen Q, Sui Z, Su Z, Yu T. Changes of Migration, Immunoregulation and Osteogenic Differentiation of Mesenchymal Stem Cells in Different Stages of Inflammation. Int J Med Sci 2022; 19:25-33. [PMID: 34975296 PMCID: PMC8692114 DOI: 10.7150/ijms.58428] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 10/25/2021] [Indexed: 12/17/2022] Open
Abstract
Bone infection has always been the focus of orthopedic research. Mesenchymal stem cells (MSCs) are the natural progenitors of osteoblasts, and the process of osteogenesis is triggered in response to different signals from the extracellular matrix. MSCs exert important functions including secretion and immune regulation and also play a key role in bone regeneration. The biological behavior of MSCs in acute and chronic inflammation, especially the transformation between acute inflammation and chronic inflammation, has aroused great interest among researchers. This paper reviews the recent literature and summarizes the behavior and biological characteristics of MSCs in acute and chronic inflammation to stimulate further research on MSCs and treatment of bone diseases.
Collapse
Affiliation(s)
- Feng Gu
- Department of Orthopedics, First Hospital of Jilin University, Changchun 130021, Jilin, China
| | - Ke Zhang
- Department of Orthopedics, First Hospital of Jilin University, Changchun 130021, Jilin, China
| | - Jiangbi Li
- Department of Orthopedics, First Hospital of Jilin University, Changchun 130021, Jilin, China
| | - Xiaoping Xie
- Department of Orthopedics, First Hospital of Jilin University, Changchun 130021, Jilin, China
| | - Qiangqiang Wen
- Department of Orthopedics, First Hospital of Jilin University, Changchun 130021, Jilin, China
| | - Zhenjiang Sui
- Department of Orthopedics, First Hospital of Jilin University, Changchun 130021, Jilin, China
| | - Zilong Su
- Department of Orthopedics, First Hospital of Jilin University, Changchun 130021, Jilin, China
| | - Tiecheng Yu
- Department of Orthopedics, First Hospital of Jilin University, Changchun 130021, Jilin, China
| |
Collapse
|
24
|
Costela Ruiz VJ, Melguizo Rodríguez L, Illescas Montes R, García Recio E, Arias Santiago S, Ruiz C, De Luna Bertos E. Human adipose tissue-derived mesenchymal stromal cells and their phagocytic capacity. J Cell Mol Med 2021; 26:178-185. [PMID: 34854223 PMCID: PMC8742185 DOI: 10.1111/jcmm.17070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 11/02/2021] [Accepted: 11/11/2021] [Indexed: 11/30/2022] Open
Abstract
Mesenchymal stromal cells (MSCs) have evidenced considerable therapeutic potential in numerous clinical fields, especially in tissue regeneration. The immunological characteristics of this cell population include the expression of Toll‐like receptors and mannose receptors, among others. The study objective was to determine whether MSCs have phagocytic capacity against different target particles. We isolated and characterized three human adipose tissue MSC (HAT‐MSC) lines from three patients and analysed their phagocytic capacity by flow cytometry, using fluorescent latex beads, and by transmission electron microscopy, using Escherichia coli, Staphylococcus aureus and Candida albicans as biological materials and latex beads as non‐biological material. The results demonstrate that HAT‐MSCs can phagocyte particles of different nature and size. The percentage of phagocytic cells ranged between 33.8% and 56.2% (mean of 44.37% ± 11.253) according to the cell line, and a high phagocytic index was observed. The high phagocytic capacity observed in MSCs, which have known regenerative potential, may offer an advance in the approach to certain local and systemic infections.
Collapse
Affiliation(s)
- Víctor J Costela Ruiz
- Biomedical Group (BIO277), Department of Nursing, Faculty of Health Sciences, University of Granada, Granada, Spain.,Biosanitary Research Institute, ibs Granada, Granada, Spain
| | - Lucía Melguizo Rodríguez
- Biomedical Group (BIO277), Department of Nursing, Faculty of Health Sciences, University of Granada, Granada, Spain.,Biosanitary Research Institute, ibs Granada, Granada, Spain
| | - Rebeca Illescas Montes
- Biomedical Group (BIO277), Department of Nursing, Faculty of Health Sciences, University of Granada, Granada, Spain.,Biosanitary Research Institute, ibs Granada, Granada, Spain
| | - Enrique García Recio
- Biomedical Group (BIO277), Department of Nursing, Faculty of Health Sciences, University of Granada, Granada, Spain.,Biosanitary Research Institute, ibs Granada, Granada, Spain
| | - Salvador Arias Santiago
- Biosanitary Research Institute, ibs Granada, Granada, Spain.,Surgical Medical Dermatology and Venereology Service, Department of Medicine, Virgen de las Nieves Hospital, Granada, Spain
| | - Concepción Ruiz
- Biomedical Group (BIO277), Department of Nursing, Faculty of Health Sciences, University of Granada, Granada, Spain.,Biosanitary Research Institute, ibs Granada, Granada, Spain.,Institute of Neuroscience, Centre for Medical Research (CIBM), Health Technology Park (PTS), University of Granada, Granada, Spain
| | - Elvira De Luna Bertos
- Biomedical Group (BIO277), Department of Nursing, Faculty of Health Sciences, University of Granada, Granada, Spain.,Biosanitary Research Institute, ibs Granada, Granada, Spain
| |
Collapse
|
25
|
Al-Sayegh M, Ali H, Jamal MH, ElGindi M, Chanyong T, Al-Awadi K, Abu-Farha M. Mouse Embryonic Fibroblast Adipogenic Potential: A Comprehensive Transcriptome Analysis. Adipocyte 2021; 10:1-20. [PMID: 33345692 PMCID: PMC7757854 DOI: 10.1080/21623945.2020.1859789] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Our understanding of adipose tissue has progressed from an inert tissue for energy storage to be one of the largest endocrine organs regulating metabolic homoeostasis through its ability to synthesize and release various adipokines that regulate a myriad of pathways. The field of adipose tissue biology is growing due to this association with various chronic metabolic diseases. An important process in the regulation of adipose tissue biology is adipogenesis, which is the formation of new adipocytes. Investigating adipogenesis in vitro is currently a focus for identifying factors that might be utilized in clinically. A powerful tool for such work is high-throughput sequencing which can rapidly identify changes at gene expression level. Various cell models exist for studying adipogenesis and has been used in high-throughput studies, yet little is known about transcriptome profile that underlies adipogenesis in mouse embryonic fibroblasts. This study utilizes RNA-sequencing and computational analysis with DESeq2, gene ontology, protein–protein networks, and robust rank analysis to understand adipogenesis in mouse embryonic fibroblasts in-depth. Our analyses confirmed the requirement of mitotic clonal expansion prior to adipogenesis in this cell model and highlight the role of Cebpa and Cebpb in regulating adipogenesis through interactions of large numbers of genes.
Collapse
Affiliation(s)
- Mohamed Al-Sayegh
- New York University Abu Dhabi, Division of Biology, Abu Dhabi, United Arab Emirates
| | - Hamad Ali
- Department of Medical Laboratory Sciences, Faculty of Allied Health Sciences, Health Sciences Center (HSC), Kuwait University, Kuwait City, State of Kuwait
- Department of Genetics and Bioinformatics, Dasman Diabetes Institute (DDI), Kuwait City, State of Kuwait
| | - Mohammad H Jamal
- Department of Surgery, Faculty of Medicine, Health Sciences Center (HSC), Kuwait University, Kuwait City, State of Kuwait
| | - Mei ElGindi
- New York University Abu Dhabi, Division of Biology, Abu Dhabi, United Arab Emirates
| | - Tina Chanyong
- New York University Abu Dhabi, Division of Biology, Abu Dhabi, United Arab Emirates
| | - Khulood Al-Awadi
- New York University Abu Dhabi, Design Studio, Abu Dhabi, United Arab Emirates
| | - Mohamed Abu-Farha
- Department of Biochemistry and Molecular Biology, Dasman Diabetes Institute (DDI), Kuwait City, State of Kuwait
| |
Collapse
|
26
|
Kulus M, Sibiak R, Stefańska K, Zdun M, Wieczorkiewicz M, Piotrowska-Kempisty H, Jaśkowski JM, Bukowska D, Ratajczak K, Zabel M, Mozdziak P, Kempisty B. Mesenchymal Stem/Stromal Cells Derived from Human and Animal Perinatal Tissues-Origins, Characteristics, Signaling Pathways, and Clinical Trials. Cells 2021; 10:cells10123278. [PMID: 34943786 PMCID: PMC8699543 DOI: 10.3390/cells10123278] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 11/13/2021] [Accepted: 11/19/2021] [Indexed: 12/15/2022] Open
Abstract
Mesenchymal stem/stromal cells (MSCs) are currently one of the most extensively researched fields due to their promising opportunity for use in regenerative medicine. There are many sources of MSCs, of which cells of perinatal origin appear to be an invaluable pool. Compared to embryonic stem cells, they are devoid of ethical conflicts because they are derived from tissues surrounding the fetus and can be safely recovered from medical waste after delivery. Additionally, perinatal MSCs exhibit better self-renewal and differentiation properties than those derived from adult tissues. It is important to consider the anatomy of perinatal tissues and the general description of MSCs, including their isolation, differentiation, and characterization of different types of perinatal MSCs from both animals and humans (placenta, umbilical cord, amniotic fluid). Ultimately, signaling pathways are essential to consider regarding the clinical applications of MSCs. It is important to consider the origin of these cells, referring to the anatomical structure of the organs of origin, when describing the general and specific characteristics of the different types of MSCs as well as the pathways involved in differentiation.
Collapse
Affiliation(s)
- Magdalena Kulus
- Department of Veterinary Surgery, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, 87-100 Torun, Poland; (M.K.); (K.R.)
| | - Rafał Sibiak
- Department of Histology and Embryology, Poznan University of Medical Sciences, 60-781 Poznan, Poland; (R.S.); (K.S.)
- Division of Reproduction, Department of Obstetrics, Gynecology, and Gynecologic Oncology, Poznan University of Medical Sciences, 60-535 Poznan, Poland
| | - Katarzyna Stefańska
- Department of Histology and Embryology, Poznan University of Medical Sciences, 60-781 Poznan, Poland; (R.S.); (K.S.)
| | - Maciej Zdun
- Department of Basic and Preclinical Sciences, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, 87-100 Torun, Poland; (M.Z.); (M.W.); (H.P.-K.)
| | - Maria Wieczorkiewicz
- Department of Basic and Preclinical Sciences, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, 87-100 Torun, Poland; (M.Z.); (M.W.); (H.P.-K.)
| | - Hanna Piotrowska-Kempisty
- Department of Basic and Preclinical Sciences, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, 87-100 Torun, Poland; (M.Z.); (M.W.); (H.P.-K.)
- Department of Toxicology, Poznan University of Medical Sciences, 60-631 Poznan, Poland
| | - Jędrzej M. Jaśkowski
- Department of Diagnostics and Clinical Sciences, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, 87-100 Torun, Poland; (J.M.J.); (D.B.)
| | - Dorota Bukowska
- Department of Diagnostics and Clinical Sciences, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, 87-100 Torun, Poland; (J.M.J.); (D.B.)
| | - Kornel Ratajczak
- Department of Veterinary Surgery, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, 87-100 Torun, Poland; (M.K.); (K.R.)
| | - Maciej Zabel
- Division of Anatomy and Histology, University of Zielona Gora, 65-046 Zielona Gora, Poland;
| | - Paul Mozdziak
- Prestage Department of Poultry Science, North Carolina State University, Raleigh, NC 27695, USA;
| | - Bartosz Kempisty
- Department of Veterinary Surgery, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, 87-100 Torun, Poland; (M.K.); (K.R.)
- Department of Histology and Embryology, Poznan University of Medical Sciences, 60-781 Poznan, Poland; (R.S.); (K.S.)
- Prestage Department of Poultry Science, North Carolina State University, Raleigh, NC 27695, USA;
- Department of Anatomy, Poznan University of Medical Sciences, 60-781 Poznan, Poland
- Correspondence:
| |
Collapse
|
27
|
The regulatory effect of hyaluronan on human mesenchymal stem cells' fate modulates their interaction with cancer cells in vitro. Sci Rep 2021; 11:21229. [PMID: 34707175 PMCID: PMC8551322 DOI: 10.1038/s41598-021-00754-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Accepted: 10/18/2021] [Indexed: 12/21/2022] Open
Abstract
Metastatic spread of cancer cells into a pre-metastatic niche is highly dependent on a supporting microenvironment. Human bone marrow-derived mesenchymal stem cells (bmMSCs) contribute to the tumor microenvironment and promote cancer metastasis by inducing epithelial-to-mesenchymal transition and immune evasion. The underlying mechanisms, however, are incompletely understood. The glycosaminoglycan hyaluronan (HA) is a central component of the extracellular matrix and has been shown to harbor pro-metastatic properties. In this study we investigated the highly disseminating breast cancer and glioblastoma multiforme cell lines MDA-MB-321 and U87-MG which strongly differ in their metastatic potential to evaluate the impact of HA on tumor promoting features of bmMSC and their interaction with tumor cells. We show that adipogenic differentiation of bmMSC is regulated by the HA-matrix. This study reveals that MDA-MB-231 cells inhibit this process by the induction of HA-synthesis in bmMSCs and thus preserve the pro-tumorigenic properties of bmMSC. Furthermore, we show that adhesion of MDA-MB-231 cells to bmMSC is facilitated by the tumor cell-induced HA-rich matrix and is mediated by the HA-receptor LAYN. We postulate that invasive breast cancer cells modulate the HA-matrix of bmMSC to adapt the pre-metastatic niche. Thus, the HA-matrix provides a potential novel therapeutic target to prevent cancer metastasis.
Collapse
|
28
|
IFN- γ Licensing Does Not Enhance the Reduced Immunomodulatory Potential and Migratory Ability of Differentiation-Induced Porcine Bone Marrow-Derived Mesenchymal Stem Cells in an In Vitro Xenogeneic Application. BIOMED RESEARCH INTERNATIONAL 2021; 2021:4604856. [PMID: 34527737 PMCID: PMC8437647 DOI: 10.1155/2021/4604856] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 08/12/2021] [Accepted: 08/14/2021] [Indexed: 01/10/2023]
Abstract
IFN-γ licensing to mesenchymal stem cells (MSCs) is applied to enhance the therapeutic potential of MSCs. However, although the features of MSCs are affected by several stimuli, little information is available on changes to the therapeutic potential of IFN-γ-licensed differentiated MSCs during xenogeneic applications. Therefore, the present study is aimed at clarifying the effects of adipogenic/osteogenic differentiation and IFN-γ licensing on the in vitro immunomodulatory and migratory properties of porcine bone marrow-derived MSCs in xenogeneic applications using human peripheral blood mononuclear cells (PBMCs). IFN-γ licensing in differentiated MSCs lowered lineage-specific gene expression but did not affect MSC-specific cell surface molecules. Although indoleamine 2,3 deoxygenase (IDO) activity and expression were increased after IFN-γ licensing in undifferentiated MSCs, they were reduced after differentiation. IFN-γ licensing to differentiated MSCs elevated the reduced IDO expression in differentiated MSCs; however, the increase was not sufficient to reach to the level achieved by undifferentiated MSCs. During a mixed lymphocyte reaction with quantification of TNF-α concentration, proliferation and activation of xenogeneic PBMCs were suppressed by undifferentiated MSCs but inhibited to a lesser extent by differentiated MSCs. IFN-γ licensing increasingly suppressed proliferation of PBMCs in undifferentiated MSCs but it was incapable of elevating the reduced immunosuppressive ability of differentiated MSCs. Migratory ability through a scratch assay and gene expression study was reduced in differentiated MSCs than their undifferentiated counterparts; IFN-γ licensing was unable to enhance the reduced migratory ability in differentiated MSCs. Similar results were found in a Transwell system with differentiated MSCs in the upper chamber toward xenogeneic PBMCs in the lower chamber, despite IFN-γ licensing increased the migratory ability of undifferentiated MSCs. Overall, IFN-γ licensing did not enhance the reduced immunomodulatory and migratory properties of differentiated MSCs in a xenogeneic application. This study provides a better understanding of the ways in which MSC therapy can be applied.
Collapse
|
29
|
Zhang X, Xie Q, Ye Z, Li Y, Che Z, Huang M, Zeng J. Mesenchymal Stem Cells and Tuberculosis: Clinical Challenges and Opportunities. Front Immunol 2021; 12:695278. [PMID: 34367155 PMCID: PMC8340780 DOI: 10.3389/fimmu.2021.695278] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 06/30/2021] [Indexed: 12/22/2022] Open
Abstract
Tuberculosis (TB) is one of the communicable diseases caused by Mycobacterium tuberculosis (Mtb) infection, affecting nearly one-third of the world's population. However, because the pathogenesis of TB is still not fully understood and the development of anti-TB drug is slow, TB remains a global public health problem. In recent years, with the gradual discovery and confirmation of the immunomodulatory properties of mesenchymal stem cells (MSCs), more and more studies, including our team's research, have shown that MSCs seem to be closely related to the growth status of Mtb and the occurrence and development of TB, which is expected to bring new hope for the clinical treatment of TB. This article reviews the relationship between MSCs and the occurrence and development of TB and the potential application of MSCs in the treatment of TB.
Collapse
Affiliation(s)
- Xueying Zhang
- Dongguan Key Laboratory of Medical Bioactive Molecular Developmental and Translational Research, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, China
- Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan, China
| | - Qi Xie
- Dongguan Key Laboratory of Medical Bioactive Molecular Developmental and Translational Research, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, China
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, China
| | - Ziyu Ye
- Dongguan Key Laboratory of Medical Bioactive Molecular Developmental and Translational Research, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, China
| | - Yanyun Li
- Dongguan Key Laboratory of Medical Bioactive Molecular Developmental and Translational Research, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, China
- Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan, China
| | - Zhengping Che
- Dongguan Key Laboratory of Medical Bioactive Molecular Developmental and Translational Research, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, China
- Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan, China
| | - Mingyuan Huang
- Dongguan Key Laboratory of Medical Bioactive Molecular Developmental and Translational Research, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, China
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, China
| | - Jincheng Zeng
- Dongguan Key Laboratory of Medical Bioactive Molecular Developmental and Translational Research, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, China
- Key Laboratory of Medical Bioactive Molecular Research for Department of Education of Guangdong Province, School of Basic Medicine, Guangdong Medical University, Dongguan, China
- Collaborative Innovation Center for Antitumor Active Substance Research and Development, School of Basic Medicine, Guangdong Medical University, Zhanjiang, China
| |
Collapse
|
30
|
Mesenchymal Stem Cell Transplantation for Ischemic Diseases: Mechanisms and Challenges. Tissue Eng Regen Med 2021; 18:587-611. [PMID: 33884577 DOI: 10.1007/s13770-021-00334-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 02/07/2021] [Accepted: 02/16/2021] [Indexed: 12/20/2022] Open
Abstract
Ischemic diseases are conditions associated with the restriction or blockage of blood supply to specific tissues. These conditions can cause moderate to severe complications in patients, and can lead to permanent disabilities. Since they are blood vessel-related diseases, ischemic diseases are usually treated with endothelial cells or endothelial progenitor cells that can regenerate new blood vessels. However, in recent years, mesenchymal stem cells (MSCs) have shown potent bioeffects on angiogenesis, thus playing a role in blood regeneration. Indeed, MSCs can trigger angiogenesis at ischemic sites by several mechanisms related to their trans-differentiation potential. These mechanisms include inhibition of apoptosis, stimulation of angiogenesis via angiogenic growth factors, and regulation of immune responses, as well as regulation of scarring to suppress blood vessel regeneration when needed. However, preclinical and clinical trials of MSC transplantation in ischemic diseases have shown some limitations in terms of treatment efficacy. Such studies have emphasized the current challenges of MSC-based therapies. Treatment efficacy could be enhanced if the limitations were better understood and potentially resolved. This review will summarize some of the strategies by which MSCs have been utilized for ischemic disease treatment, and will highlight some challenges of those applications as well as suggesting some strategies to improve treatment efficacy.
Collapse
|
31
|
Some Special Aspects of Liver Repair after Resection and Administration of Multipotent Stromal Cells in Experiment. Life (Basel) 2021; 11:life11010066. [PMID: 33477612 PMCID: PMC7831301 DOI: 10.3390/life11010066] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/06/2021] [Accepted: 01/13/2021] [Indexed: 12/12/2022] Open
Abstract
Changes in rat liver after resection and injection of autologous multipotent mesenchymal stromal cells of bone marrow origin (MSCs) transfected with the GFP gene and cell membranes stained with red-fluorescent lipophilic membrane dye were studied by light microscopy. It was found that after the introduction of MSCs into the damaged liver, their differentiation into any cells was not found. However, under the conditions of MSCs use, the number of neutrophils in the parenchyma normalizes earlier, and necrosis and hemorrhages disappear more quickly. It was concluded that the use of MSCs at liver resection for the rapid restoration of an organ is inappropriate, since the injected cells in vivo do not differentiate either into hepatocytes, into epithelial cells of bile capillaries, into endotheliocytes and pericytes of the vascular membranes, into fibroblasts of the scar or other connective tissue structures, or into any other cells present in the liver.
Collapse
|
32
|
Silva Couto P, Rotondi M, Bersenev A, Hewitt C, Nienow A, Verter F, Rafiq Q. Expansion of human mesenchymal stem/stromal cells (hMSCs) in bioreactors using microcarriers: lessons learnt and what the future holds. Biotechnol Adv 2020; 45:107636. [DOI: 10.1016/j.biotechadv.2020.107636] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 08/01/2020] [Accepted: 09/22/2020] [Indexed: 02/06/2023]
|
33
|
Chen L, Wang Y, Li S, Zuo B, Zhang X, Wang F, Sun D. Exosomes derived from GDNF-modified human adipose mesenchymal stem cells ameliorate peritubular capillary loss in tubulointerstitial fibrosis by activating the SIRT1/eNOS signaling pathway. Theranostics 2020; 10:9425-9442. [PMID: 32802201 PMCID: PMC7415791 DOI: 10.7150/thno.43315] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Accepted: 07/12/2020] [Indexed: 01/08/2023] Open
Abstract
Mesenchymal stem cells (MSCs) have emerged as ideal cell-based therapeutic candidates for the structural and functional restoration of the diseased kidney. Glial cell line-derived neurotrophic factor (GDNF) has been demonstrated to promote the therapeutic effect of MSCs on ameliorating renal injury. The mechanism may involve the transfer of endogenous molecules via paracrine factors to salvage injured cells, but these factors remain unknown. Methods: GDNF was transfected into human adipose mesenchymal stem cells via a lentiviral transfection system, and exosomes were isolated (GDNF-AMSC-exos). Using the unilateral ureteral obstruction (UUO) mouse model and human umbilical vein endothelial cells (HUVECs) against hypoxia/serum deprivation (H/SD) injury models, we investigated whether GDNF-AMSC-exos ameliorate peritubular capillary (PTC) loss in tubulointerstitial fibrosis and whether this effect is mediated by the Sirtuin 1 (SIRT1) signaling pathway. Additionally, by using SIRT1 activators or siRNAs, the roles of the candidate mRNA and its downstream gene in GDNF-AMSC-exo-induced regulation of endothelial cell function were assessed. PTC characteristics were detected by fluorescent microangiography (FMA) and analyzed by the MATLAB software. Results: The green fluorescent PKH67-labeled exosomes were visualized in the UUO kidneys and colocalized with CD81. GDNF-AMSC-exos significantly decreased PTC rarefaction and renal fibrosis scores in mice with UUO. In vitro studies revealed that GDNF-AMSC-exos exerted cytoprotective effects on HUVECs against H/SD injury by stimulating migration and angiogenesis as well as conferring apoptosis resistance. Mechanistically, GDNF-AMSC-exos enhanced SIRT1 signaling, which was accompanied by increased levels of phosphorylated endothelial nitric oxide synthase (p-eNOS). We also confirmed the SIRT1-eNOS interaction in HUVECs by immunoprecipitation. Furthermore, we observed a correlation of the PTC number with the SIRT1 expression level in the kidney in vivo. Conclusion: Our study unveiled a mechanism by which exosomes ameliorate renal fibrosis: GDNF-AMSC-exos may activate an angiogenesis program in surviving PTCs after injury by activating the SIRT1/eNOS signaling pathway.
Collapse
|
34
|
Salerno A, Brady K, Rikkers M, Li C, Caamaño-Gutierrez E, Falciani F, Blom AW, Whitehouse MR, Hollander AP. MMP13 and TIMP1 are functional markers for two different potential modes of action by mesenchymal stem/stromal cells when treating osteoarthritis. Stem Cells 2020; 38:1438-1453. [PMID: 32652878 DOI: 10.1002/stem.3255] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 06/11/2020] [Indexed: 01/01/2023]
Abstract
Mesenchymal stem cells (MSCs) have been investigated as a potential injectable therapy for the treatment of knee osteoarthritis, with some evidence of success in preliminary human trials. However, optimization and scale-up of this therapeutic approach depends on the identification of functional markers that are linked to their mechanism of action. One possible mechanism is through their chondrogenic differentiation and direct role in neo-cartilage synthesis. Alternatively, they could remain undifferentiated and act through the release of trophic factors that stimulate endogenous repair processes within the joint. Here, we show that extensive in vitro aging of bone marrow-derived human MSCs leads to loss of chondrogenesis but no reduction in trophic repair, thereby separating out the two modes of action. By integrating transcriptomic and proteomic data using Ingenuity Pathway Analysis, we found that reduced chondrogenesis with passage is linked to downregulation of the FOXM1 signaling pathway while maintenance of trophic repair is linked to CXCL12. In an attempt at developing functional markers of MSC potency, we identified loss of mRNA expression for MMP13 as correlating with loss of chondrogenic potential of MSCs and continued secretion of high levels of TIMP1 protein as correlating with the maintenance of trophic repair capacity. Since an allogeneic injectable osteoar therapy would require extensive cell expansion in vitro, we conclude that early passage MMP13+ , TIMP1-secretinghigh MSCs should be used for autologous OA therapies designed to act through engraftment and chondrogenesis, while later passage MMP13- , TIMP1-secretinghigh MSCs could be exploited for allogeneic OA therapies designed to act through trophic repair.
Collapse
Affiliation(s)
- Anna Salerno
- Institute of Lifecourse and Medical Sciences, University of Liverpool, Liverpool, UK
| | - Kyla Brady
- Institute of Lifecourse and Medical Sciences, University of Liverpool, Liverpool, UK
| | - Margot Rikkers
- Institute of Lifecourse and Medical Sciences, University of Liverpool, Liverpool, UK.,Department of Orthopaedics, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Chao Li
- Institute of Lifecourse and Medical Sciences, University of Liverpool, Liverpool, UK
| | - Eva Caamaño-Gutierrez
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK.,Computational Biology Facility, University of Liverpool, Liverpool, UK
| | - Francesco Falciani
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK.,Computational Biology Facility, University of Liverpool, Liverpool, UK
| | - Ashley W Blom
- Musculoskeletal Research Unit, University of Bristol, Bristol, UK.,National Institute for Health Research Bristol Biomedical Research Centre, University Hospitals Bristol NHS Foundation Trust and University of Bristol, Bristol, UK
| | - Michael R Whitehouse
- Musculoskeletal Research Unit, University of Bristol, Bristol, UK.,National Institute for Health Research Bristol Biomedical Research Centre, University Hospitals Bristol NHS Foundation Trust and University of Bristol, Bristol, UK
| | - Anthony P Hollander
- Institute of Lifecourse and Medical Sciences, University of Liverpool, Liverpool, UK
| |
Collapse
|
35
|
Xiao B, Wang G, Li W. Weighted gene correlation network analysis reveals novel biomarkers associated with mesenchymal stromal cell differentiation in early phase. PeerJ 2020; 8:e8907. [PMID: 32280568 PMCID: PMC7134052 DOI: 10.7717/peerj.8907] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 03/13/2020] [Indexed: 12/26/2022] Open
Abstract
Osteoporosis is a major public health problem that is associated with high morbidity and mortality, and its prevalence is increasing as the world’s population ages. Therefore, understanding the molecular basis of the disease is becoming a high priority. In this regard, studies have shown that an imbalance in adipogenic and osteogenic differentiation of bone marrow mesenchymal stem cells (MSCs) is associated with osteoporosis. In this study, we conducted a Weighted Gene Co-Expression Network Analysis to identify gene modules associated with the differentiation of bone marrow MSCs. Gene Ontology and Kyoto Encyclopedia of Genes and Genome enrichment analysis showed that the most significant module, the brown module, was enriched with genes involved in cell cycle regulation, which is in line with the initial results published using these data. In addition, the Cytoscape platform was used to identify important hub genes and lncRNAs correlated with the gene modules. Furthermore, differential gene expression analysis identified 157 and 40 genes that were upregulated and downregulated, respectively, after 3 h of MSCs differentiation. Interestingly, regulatory network analysis, and comparison of the differentially expressed genes with those in the brown module identified potential novel biomarker genes, including two transcription factors (ZNF740, FOS) and two hub genes (FOXQ1, SGK1), which were further validated for differential expression in another data set of differentiation of MSCs. Finally, Gene Set Enrichment Analysis suggested that the two most important candidate hub genes are involved in regulatory pathways, such as the JAK-STAT and RAS signaling pathways. In summary, we have revealed new molecular mechanisms of MSCs differentiation and identified novel genes that could be used as potential therapeutic targets for the treatment of osteoporosis.
Collapse
Affiliation(s)
- Bin Xiao
- Department of Orthopedics, Second Affiliated Hospital of Shaanxi University of Traditional Chinese Medicine, Xianyang, Shaanxi, China
| | - Guozhu Wang
- Department of Orthopedics, Second Affiliated Hospital of Shaanxi University of Traditional Chinese Medicine, Xianyang, Shaanxi, China
| | - Weiwei Li
- Department of Orthopedics, Second Affiliated Hospital of Shaanxi University of Traditional Chinese Medicine, Xianyang, Shaanxi, China
| |
Collapse
|
36
|
Berthelot JM, Le Goff B, Maugars Y. Bone marrow mesenchymal stem cells in rheumatoid arthritis, spondyloarthritis, and ankylosing spondylitis: problems rather than solutions? Arthritis Res Ther 2019; 21:239. [PMID: 31722720 PMCID: PMC6854713 DOI: 10.1186/s13075-019-2014-8] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Accepted: 09/24/2019] [Indexed: 12/14/2022] Open
Abstract
Background Bone marrow mesenchymal stem cells (BM-MSCs) can dampen inflammation in animal models of inflammatory rheumatisms and human osteoarthritis. They are expected to be a solution for numerous human conditions. However, in rheumatoid arthritis (RA) and spondyloarthritis (SpA), subsets of subchondral BM-MSCs might conversely fuel synovitis and enthesitis. Main text Abnormal behaviour of BM-MSCs and/or their progeny has been found in RA and SpA. BM-MSCs also contribute to the ossifying processes observed in ankylosing spondylitis. Some synovial fibroblastic stem cells probably derive from BM-MSCs, but some stem cells can also migrate through the bare zone area of joints, not covered by cartilage, into the synovium. BM-MSCs can also migrate in the synovium over tendons. Sub-populations of bone marrow stem cells also invade the soft tissue side of enthesis via small holes in the bone cortex. The present review aims (1) to make a focus on these two aspects and (2) to put forward the hypothesis that lasting epigenetic changes of some BM-MSCs, induced by transient infections of the bone marrow close to the synovium and/or entheses (i.e. trained immunity of BM-MSCs and/or their progeny), contribute to the pathogenesis of inflammatory rheumatisms. Such hypothesis would fit with (1) the uneven distribution and/or flares of arthritis and enthesitis observed at the individual level in RA and SpA (reminiscent of what is observed following reactive arthritis and/or in Whipple’s disease); (2) the subchondral bone marrow oedema and erosions occurring in many RA patients, in the bare zone area; and (3) the frequent relapses of RA and SpA despite bone marrow transplantation, whereas most BM-MSCs resist graft preconditioning. Conclusion Some BM-MSCs might be more the problem than the solution in inflammatory rheumatisms. Subchondral bone marrow BM-MSCs and their progeny trafficking through the bare zone area of joints or holes in the bone cortex of entheses should be thoroughly studied in RA and SpA respectively. This may be done first in animal models. Mini-arthroscopy of joints could also be used in humans to specifically sample tissues close to the bare zone and/or enthesis areas.
Collapse
Affiliation(s)
| | - Benoit Le Goff
- Centre Hospitalier Universitaire de Nantes, Nantes, France
| | - Yves Maugars
- Centre Hospitalier Universitaire de Nantes, Nantes, France
| |
Collapse
|
37
|
Rigotti G, Chirumbolo S. Biological Morphogenetic Surgery: A Minimally Invasive Procedure to Address Different Biological Mechanisms. Aesthet Surg J 2019; 39:745-755. [PMID: 30137183 DOI: 10.1093/asj/sjy198] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
We present a methodology called biological morphogenetic surgery (BMS) that can recover (enlarge or reduce) the shape/volume of anatomic structures/tissues affected by congenital or acquired malformations based on a minimally invasive procedure. This emerges as a new concept in which the main task of surgery is the biological modulation of different remodeling and repair mechanisms. When applied, for example, to a tuberous breast deformity, the "enlarging BMS" expands the retracted tissue surrounding the gland through a cutting tip of a needle being inserted through small incisions percutaneously, accounting for the biological activity of the grafted fat. The obtained spaces might be spontaneously occupied and later filled with autologous grafted fat, which promotes tissue expansion by eliciting adipogenesis and preventing fibrosis. The "reducing BMS" creates an interruption of the contact between the derma and the hypoderma of the abnormally large areola and then promotes adipocytes to induce a fibrotic reaction, leading to areola reduction. Current evidence suggests that BMS might induce a bivalent mesenchymalization of the adipocyte, which promotes either new adipogenesis and angiogenesis of local fat (expanding BMS) or the granulation tissue/fibrotic response (reducing BMS), thus leading to the physiological recovery of the affected structures/tissues to normality. Level of Evidence: 4.
Collapse
Affiliation(s)
- Gino Rigotti
- Unit Head of Reconstructive Breast and Plastic Surgery, Clinica San Francesco, Verona, Italy
| | - Salvatore Chirumbolo
- Department of Neuroscience, Biomedicine and Movement Sciences-University of Verona, Verona, Italy
| |
Collapse
|
38
|
Ward LSC, Sheriff L, Marshall JL, Manning JE, Brill A, Nash GB, McGettrick HM. Podoplanin regulates the migration of mesenchymal stromal cells and their interaction with platelets. J Cell Sci 2019; 132:jcs.222067. [PMID: 30745334 PMCID: PMC6432720 DOI: 10.1242/jcs.222067] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 01/24/2019] [Indexed: 12/18/2022] Open
Abstract
Mesenchymal stromal cells (MSCs) upregulate podoplanin at sites of infection, chronic inflammation and cancer. Here, we investigated the functional consequences of podoplanin expression on the migratory potential of MSCs and their interactions with circulating platelets. Expression of podoplanin significantly enhanced the migration of MSCs compared to MSCs lacking podoplanin. Rac-1 inhibition altered the membrane localisation of podoplanin and in turn significantly reduced MSC migration. Blocking Rac-1 activity had no effect on the migration of MSCs lacking podoplanin, indicating that it was responsible for regulation of migration through podoplanin. When podoplanin-expressing MSCs were seeded on the basal surface of a porous filter, they were able to capture platelets perfused over the uncoated apical surface and induce platelet aggregation. Similar microthrombi were observed when endothelial cells (ECs) were co-cultured on the apical surface. Confocal imaging shows podoplanin-expressing MSCs extending processes into the EC layer, and these processes could interact with circulating platelets. In both models, platelet aggregation induced by podoplanin-expressing MSCs was inhibited by treatment with recombinant soluble C-type lectin-like receptor 2 (CLEC-2; encoded by the gene Clec1b). Thus, podoplanin may enhance the migratory capacity of tissue-resident MSCs and enable novel interactions with cells expressing CLEC-2. Summary: Podoplanin enhances the migration of mesenchymal stromal cells in a Rac-1-dependent manner, enabling direct interactions of subendothelial stroma with circulating platelets.
Collapse
Affiliation(s)
- Lewis S C Ward
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham B15 2TT, UK
| | - Lozan Sheriff
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Jennifer L Marshall
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham B15 2TT, UK
| | - Julia E Manning
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham B15 2TT, UK
| | - Alexander Brill
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK.,Centre of Membrane and Protein and Receptors (COMPARE), Institute for Biomedical Research, The Medical School, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK.,Department of Pathophysiology, Sechenov First Moscow State Medical University, Moscow 119048, Russia
| | - Gerard B Nash
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Helen M McGettrick
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham B15 2TT, UK
| |
Collapse
|
39
|
Poggi A, Zocchi MR. Immunomodulatory Properties of Mesenchymal Stromal Cells: Still Unresolved "Yin and Yang". Curr Stem Cell Res Ther 2019; 14:344-350. [PMID: 30516112 DOI: 10.2174/1574888x14666181205115452] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 10/30/2018] [Accepted: 10/31/2018] [Indexed: 12/18/2022]
Abstract
Mesenchymal stromal cells (MSC) are mesodermal elements characterized by the ability to differentiate into several types of cells present mainly in connective tissues. They play a key function in tissue homeostasis and repair. Furthermore, they exert a strong effect on both innate and adaptive immune response. The main current of thought considers MSC as strong inhibitors of the immune system. Indeed, the first description of MSC immunomodulation pointed out their inability to induce alloimmune responses and their veto effects on mixed lymphocyte reactions. This inhibition appears to be mediated both by direct MSC interaction with immune cells and by soluble factors. Unfortunately, evidence to support this notion comes almost exclusively from in vitro experiments. In complex experimental systems, it has been shown that MSC can exert immunosuppressive effects also in vivo, either in murine models or in transplanted patients to avoid the graft versus host disease. However, it is still debated how the small number of administered MSC can regulate efficiently a large number of host effector lymphocytes. In addition, some reports in the literature indicate that MSC can trigger rather than inhibit lymphocyte activation when a very low number of MSC are co-cultured with lymphocytes. This would imply that the ratio between the number of MSC and immune cells is a key point to forecast whether MSC will inhibit or activate the immune system. Herein, we discuss the conflicting results reported on the immunomodulatory effects of MSC to define which features are relevant to understand their behavior and cross-talk with immune cells.
Collapse
Affiliation(s)
- Alessandro Poggi
- Molecular Oncology and Angiogenesis Unit, Ospedale Policlinico San Martino, Genoa, Italy
| | - Maria R Zocchi
- Division of Immunology, Transplants and Infectious Diseases, San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
40
|
Leptin increases mitochondrial OPA1 via GSK3-mediated OMA1 ubiquitination to enhance therapeutic effects of mesenchymal stem cell transplantation. Cell Death Dis 2018; 9:556. [PMID: 29748581 PMCID: PMC5945599 DOI: 10.1038/s41419-018-0579-9] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2017] [Revised: 03/16/2018] [Accepted: 03/30/2018] [Indexed: 01/15/2023]
Abstract
Accumulating evidence revealed that mesenchymal stem cells (MSCs) confer cardioprotection against myocardial infarction (MI). However, the poor survival and engraftment rate of the transplanted cells limited their therapeutic efficacy in the heart. The enhanced leptin production associated with hypoxia preconditioning contributed to the improved MSCs survival. Mitochondrial integrity determines the cellular fate. Thus, we aimed to investigate whether leptin can enhance mitochondrial integrity of human MSCs (hMSCs) to protect against various stress. In vivo, transplantation of leptin-overexpressing hMSCs into the infarcted heart resulted in improved cell viability, leading to enhanced angiogenesis and cardiac function. In vitro, pretreatment of hMSCs with recombinant leptin (hMSCs-Leppre) displayed improved cell survival against severe ischemic condition (glucose and serum deprivation under hypoxia), which was associated with increased mitochondrial fusion. Subsequently, Optic atrophy 1 (OPA1), a mitochondrial inner membrane protein that regulates fusion and cristae structure, was significantly elevated in the hMSCs-Leppre group, and the protection of leptin was abrogated by targeting OPA1 with a selective siRNA. Furthermore, OMA1, a mitochondrial protease that cleaves OPA1, decreased in a leptin-dependent manner. Pretreatment of cells with an inhibitor of the proteasome (MG132), prevented leptin-induced OMA1 degradation, implicating the ubiquitination/proteasome system as a part of the protective leptin pathway. In addition, GSK3 inhibitor (SB216763) was also involved in the degradation of OMA1. In conclusion, in the hostile microenvironment caused by MI, (a) leptin can maintain the mitochondrial integrity and prolong the survival of hMSCs; (b) leptin-mediated mitochondrial integrity requires phosphorylation of GSK3 as a prerequisite for ubiquitination-depended degradation of OMA1 and attenuation of long-OPA1 cleavage. Thus, leptin targeting the GSK3/OMA1/OPA1 signaling pathway can optimize hMSCs therapy for cardiovascular diseases such as MI.
Collapse
|
41
|
Silva MDA, Leite YKDC, de Carvalho CES, Feitosa MLT, Alves MMDM, Carvalho FADA, Neto BCV, Miglino MA, Jozala AF, de Carvalho MAM. Behavior and biocompatibility of rabbit bone marrow mesenchymal stem cells with bacterial cellulose membrane. PeerJ 2018; 6:e4656. [PMID: 29736332 PMCID: PMC5933324 DOI: 10.7717/peerj.4656] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Accepted: 04/01/2018] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Tissue engineering has been shown to exhibit great potential for the creation of biomaterials capable of developing into functional tissues. Cellular expansion and integration depends on the quality and surface-determinant factors of the scaffold, which are required for successful biological implants. The objective of this research was to characterize and evaluate the in vitro characteristics of rabbit bone marrow mesenchymal stem cells (BM-MSCs) associated with a bacterial cellulose membrane (BCM). We assessed the adhesion, expansion, and integration of the biomaterial as well as its ability to induce macrophage activation. Finally, we evaluated the cytotoxicity and toxicity of the BCM. METHODS Samples of rabbit bone marrow were collected. Mesenchymal stem cells were isolated from medullary aspirates to establish fibroblast colony-forming unit assay. Osteogenic, chondrogenic, and adipogenic differentiation was performed. Integration with the BCM was assessed by scanning electron microscopy at 1, 7, and 14 days. Cytotoxicity was assessed via the production of nitric oxide, and BCM toxicity was assessed with the MTT assay; phagocytic activity was also determined. RESULTS The fibroblastoid colony-forming unit (CFU-F) assay showed cells with a fibroblastoid morphology organized into colonies, and distributed across the culture area surface. In the growth curve, two distinct phases, lag and log phase, were observed at 15 days. Multipotentiality of the cells was evident after induction of osteogenic, chondrogenic, and adipogenic lineages. Regarding the BM-MSCs' bioelectrical integration with the BCM, BM-MSCs were anchored in the BCM in the first 24 h. On day 7 of culture, the cytoplasm was scattered, and on day 14, the cells were fully integrated with the biomaterial. We also observed significant macrophage activation; analysis of the MTT assay and the concentration of nitric oxide revealed no cytotoxicity of the biomaterial. CONCLUSION The BCM allowed the expansion and biointegration of bone marrow progenitor cells with a stable cytotoxic profile, thus presenting itself as a biomaterial with potential for tissue engineering.
Collapse
Affiliation(s)
- Marcello de Alencar Silva
- Integrated Nucleus of Morphology and Stem Cell Research, Federal University of Piauí, Teresina, Piauí, Brazil
| | | | | | - Matheus Levi Tajra Feitosa
- Integrated Nucleus of Morphology and Stem Cell Research, Federal University of Piauí, Teresina, Piauí, Brazil
| | | | | | - Bartolomeu Cruz Viana Neto
- Department of Physics/Advanced Microscopy Multiuser Laboratory/Laboratory of Physics Material, Federal University of Piauí, Teresina, Piauí, Brazil
| | - Maria Angélica Miglino
- Departament of Surgery, Faculty of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil
| | - Angela Faustino Jozala
- Laboratory of Industrial Microbiology and Fermentation Process, University of Sorocaba, Sorocaba, São Paulo, Brazil
| | | |
Collapse
|
42
|
Munir H, Ward LSC, McGettrick HM. Mesenchymal Stem Cells as Endogenous Regulators of Inflammation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1060:73-98. [PMID: 30155623 DOI: 10.1007/978-3-319-78127-3_5] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
This chapter discusses the regulatory role of endogenous mesenchymal stem cells (MSC) during an inflammatory response. MSC are a heterogeneous population of multipotent cells that normally contribute towards tissue maintenance and repair but have garnered significant scientific interest for their potent immunomodulatory potential. It is through these physicochemical interactions that MSC are able to exert an anti-inflammatory response on neighbouring stromal and haematopoietic cells. However, the impact of the chronic inflammatory environment on MSC function remains to be determined. Understanding the relationship of MSC between resolution of inflammation and autoimmunity will both offer new insights in the use of MSC as a therapeutic, and also their involvement in the pathogenesis of inflammatory disorders.
Collapse
Affiliation(s)
- Hafsa Munir
- MRC Cancer Unit/Hutchison, University of Cambridge, Cambridge, UK
| | | | - Helen M McGettrick
- Rheumatology Research Group, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK.
| |
Collapse
|
43
|
Wu Y, Wang Y, Ji Y, Ou Y, Xia H, Zhang B, Zhao Y. C4orf7 modulates osteogenesis and adipogenesis of human periodontal ligament cells. Am J Transl Res 2017; 9:5708-5718. [PMID: 29312523 PMCID: PMC5752921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Accepted: 11/17/2017] [Indexed: 06/07/2023]
Abstract
Periodontal ligament cells (PDLCs), which have potential for multilineage differentiation, are candidates for use in regeneration of periodontal tissue defects; however, our understanding of the mechanisms underlying the lineage commitment of PDLCs remains limited. C4orf7, which is specifically expressed in the periodontal ligament (PDL) tissue, may be crucial in deciding the fate of PDLCs and regulating the periodontal bone balance. In this study, we examined the expression of C4orf7 in PDL tissue, using immunohistochemical staining. We transfected PDLCs with lentiviral vectors expressing C4orf7 and examined the effect of C4orf7 on the balance of PDLC osteogenic and osteoclastogenic differentiation. Osteogenic induction resulted in the downregulation of mRNA and protein expression levels of the osteogenic/cementoblastic markers: ALP, RUNX2, COL1, OPN, OPG, OSX, IBSP, CAP, and CEMP1. Transfected cells also exhibited an increased RANKL/OPG ratio, which is an indicator of osteoclastogenic differentiation. ALP activity assays and Alizarin red staining confirmed the negative effect of C4orf7 on PDLC osteogenic differentiation. Finally, we investigated the effect of C4orf7 on the lineage commitment of PDLCs to adipocytes. We observed increased expression levels of PPARγ2, GLUT4, ZFP423, FABP4, and LPL mRNAs, as well as a gradual accumulation of lipid droplets in the C4orf7-overexpressing group compared with controls. In summary, our data confirm that C4orf7 has an important role in the regulation of periodontal bone remodeling through promotion of the adipogenic/osteoclastogenic, and inhibition of the osteogenic/cementoblastic, differentiation of PDLCs. Therefore, C4orf7 is a potential therapeutic target for the treatment of periodontal disease and other bone metabolic disorders.
Collapse
Affiliation(s)
- Yun Wu
- Key Laboratory for Oral Biomedical Engineering Ministry of Education, School & Hospital of Stomatology, Wuhan UniversityWuhan 430079, PR China
| | - Yining Wang
- Key Laboratory for Oral Biomedical Engineering Ministry of Education, School & Hospital of Stomatology, Wuhan UniversityWuhan 430079, PR China
| | - Yaoting Ji
- Key Laboratory for Oral Biomedical Engineering Ministry of Education, School & Hospital of Stomatology, Wuhan UniversityWuhan 430079, PR China
| | - Yanjing Ou
- Key Laboratory for Oral Biomedical Engineering Ministry of Education, School & Hospital of Stomatology, Wuhan UniversityWuhan 430079, PR China
| | - Haibin Xia
- Key Laboratory for Oral Biomedical Engineering Ministry of Education, School & Hospital of Stomatology, Wuhan UniversityWuhan 430079, PR China
| | - Bi Zhang
- Key Laboratory for Oral Biomedical Engineering Ministry of Education, School & Hospital of Stomatology, Wuhan UniversityWuhan 430079, PR China
| | - Yan Zhao
- Key Laboratory for Oral Biomedical Engineering Ministry of Education, School & Hospital of Stomatology, Wuhan UniversityWuhan 430079, PR China
| |
Collapse
|
44
|
Nolta JA. Research Leads to Approved Therapies in the New Era of Living Medicine. Stem Cells 2017; 36:1-3. [PMID: 29210150 DOI: 10.1002/stem.2748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 11/28/2017] [Indexed: 11/08/2022]
|