1
|
de Sá SVM, Faria MA, Fernandes JO, Cunha SC. Investigating the individual and mixture cytotoxicity of co-occurring aflatoxin B1, enniatin B, and sterigmatocystin on gastric, intestinal, hepatic, and renal cellular models. Food Chem Toxicol 2024; 188:114640. [PMID: 38583501 DOI: 10.1016/j.fct.2024.114640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 03/29/2024] [Accepted: 04/01/2024] [Indexed: 04/09/2024]
Abstract
This study investigates the individual and combined effects of the mycotoxins, Aflatoxin B1 (AFB1), Enniatin B (ENNB) and Sterigmatocystin (STG), on the cellular viability of gastric (NCI-N87), intestinal (Caco-2), hepatic (Hep-G2) and renal (Hek-293) cells, shedding light on synergistic or antagonistic effects using a constant ratio combination design proposed by Chou-Talalay. These toxins are prevalent in cereal-based foods, frequently consumed by children which raises concerns about their exposure to these mycotoxins. This population is particularly vulnerable to the effects of these toxins due to their underdeveloped organs and incompletely structured physiological processes. Results showed that ENB was the most toxic of the three mycotoxins across all cell lines, while STG and AFB1 showed lower toxicity. The combination of ENNB + STG was found to be the most potent in terms of binary mixtures. In regard to ternary combinations, Caco-2 cells are more sensitive to the tested mycotoxins, whereas NCI-N87 cells show lower levels of cell damage. Worrying dose reduction values (>10-fold) were found for ENNB in binary and ternary combinations at low exposure levels. These findings are significant for establishing initial reference values, which play a pivotal role in estimating reference doses that are subsequently incorporated into the broader risk assessment process.
Collapse
Affiliation(s)
- Soraia V M de Sá
- LAQV-REQUIMTE, Laboratory of Bromatology and Hydrology, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal
| | - Miguel A Faria
- LAQV-REQUIMTE, Laboratory of Bromatology and Hydrology, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal.
| | - José O Fernandes
- LAQV-REQUIMTE, Laboratory of Bromatology and Hydrology, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal
| | - Sara C Cunha
- LAQV-REQUIMTE, Laboratory of Bromatology and Hydrology, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal
| |
Collapse
|
2
|
Liang WZ, Chia YY, Sun HJ, Sun GC. Exploration of beauvericin's toxic effects and mechanisms in human astrocytes and N-acetylcysteine's protective role. Toxicon 2024; 243:107734. [PMID: 38670497 DOI: 10.1016/j.toxicon.2024.107734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 04/13/2024] [Accepted: 04/22/2024] [Indexed: 04/28/2024]
Abstract
Beauvericin (BEA) is a newly identified mycotoxin produced by various Fusarium species, and its contamination in food and animal feed is widespread globally. This mycotoxin demonstrates cytotoxic effects by inducing oxidative stress in multiple models. Furthermore, evidence indicates that BEA possesses diverse toxic activities, making it a promising candidate for toxicological research. Recent studies have highlighted the ability of BEA to traverse the blood-brain barrier, suggesting its potential neurotoxicity. However, limited information is available regarding the neurotoxic effects of BEA on human astrocytes. Therefore, this study aimed to assess the neurotoxic effects of BEA on the Gibco® Human Astrocyte (GHA) cell line and elucidate the underlying mechanisms. Additionally, the study aimed to investigate the protective effects of the antioxidant N-acetylcysteine (NAC) against BEA-induced toxicity. The data show that exposure to BEA within the 2.5-15 μM concentration range resulted in concentration-dependent cytotoxicity. BEA-treated cells exhibited significantly increased levels of reactive oxygen species (ROS), while intracellular glutathione (GSH) content was significantly reduced. Western blot analysis of cells treated with BEA revealed altered protein levels of Bax, cleaved caspase-9, and caspase-3, along with an increased Bax/Bcl-2 ratio, indicating the induction of apoptosis. Additionally, BEA exposure triggered antioxidant responses, as evidenced by increased protein expression of Nrf2, HO-1, and NQO1. Significantly, pretreatment with NAC partially attenuated the significant toxic effects of BEA. In conclusion, our findings suggest that BEA-induced cytotoxicity in GHA cells involves oxidative stress-associated apoptosis. Furthermore, NAC demonstrates potential as a protective agent against BEA-induced oxidative damage.
Collapse
Affiliation(s)
- Wei-Zhe Liang
- Department of Medical Education and Research, Kaohsiung Veterans General Hospital, Kaohsiung, 81362, Taiwan; Department of Pharmacy and Master Program, College of Pharmacy and Health Care, Tajen University, Pingtung County, 90741, Taiwan
| | - Yuan-Yi Chia
- Department of Anesthesiology, Kaohsiung Veterans General Hospital, Kaohsiung, 81362, Taiwan
| | - Huai-Jhih Sun
- Department of Anesthesiology, Kaohsiung Veterans General Hospital, Kaohsiung, 81362, Taiwan
| | - Gwo-Ching Sun
- Department of Anesthesiology, Kaohsiung Veterans General Hospital, Kaohsiung, 81362, Taiwan; Department of Anesthesiology, Tri-Service General Hospital and National Defense Medical Center, Taipei, 114202, Taiwan.
| |
Collapse
|
3
|
Wang Q, Wei J, Wan B, An Q, Gao J, Zhuang G. The regulation effect of preventing soil nitrogen loss using microbial quorum sensing inhibitors. ENVIRONMENTAL RESEARCH 2024; 246:118136. [PMID: 38191039 DOI: 10.1016/j.envres.2024.118136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 01/04/2024] [Accepted: 01/05/2024] [Indexed: 01/10/2024]
Abstract
Preventing soil nitrogen (N) losses driven by microbial nitrification and denitrification contributes to improving global environmental concerns caused by NO3--N leaching and N2O emission. Quorum sensing (QS) signals regulate nitrification and denitrification of N-cycling bacteria in pure culture and water treatment systems, and mediate the composition of ammonia-oxidizing archaea (AOA) and ammonia-oxidizing bacteria (AOB) in activated sludge. However, whether disrupting QS could prevent soil N losses remains unclear. This study explored the feasibility of applying quorum sensing inhibitors (QSIs) as an innovative strategy to reduce N losses from agricultural soils. The two QSIs, penicillic acid and 4-iodo-N-[(3S)-tetrahydro-2-oxo-3-furanyl]-benzeneacetamide (4-iodo PHL), were more effective in reducing N losses than traditional inhibitors, including N-(n-butyl) thiophosphoric triamide and 3,4-dimethylpyrazole phosphate. After 36 days of aerobic incubation, penicillic acid and 4-iodo PHL inhibited nitrification by 39% and 68%, respectively. The inhibitory effects are attributed to the fact that 4-iodo PHL decreased the abundance of archaeal and bacterial amoA genes, as well as the relative abundance of Candidatus Nitrocosmicus (AOA), Candidatus Nitrososphaera (AOA), and Nitrospira (nitrite-oxidizing bacteria/comammox), while penicillic acid reduced archaeal amoA abundance and the relative abundance of Nitrosospira (AOB) and the microbes listed above. Penicillic acid also strongly inhibited denitrification (33%) and N2O emissions (61%) at the peak of N2O production (day 4 of anaerobic incubation) via decreasing nitrate reductase gene (narG) abundance and increasing N2O reductase gene (nosZ) abundance, respectively. Furthermore, the environmental risks of QSIs to microbial community structure and network stability, CO2 emissions, and soil animals were acceptable. Overall, QSIs have application potential in agriculture to reduce soil N losses and the associated effect on climate change. This study established a new method to mitigate N losses from the perspective of QS, and can serve as important basis of decreasing the environmental risks of agricultural non-point source pollution.
Collapse
Affiliation(s)
- Qiuying Wang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jing Wei
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; Department of Biosciences and Centre for Biogeochemistry in the Anthropocene, University of Oslo, Oslo, 0316, Norway
| | - Bin Wan
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qiong An
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jie Gao
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Guoqiang Zhuang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
4
|
Shen H, Cai Y, Zhu K, Wang D, Yu R, Chen X. Enniatin B1 induces damage to Leydig cells via inhibition of the Nrf2/HO-1 and JAK/STAT3 signaling pathways. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 273:116116. [PMID: 38387140 DOI: 10.1016/j.ecoenv.2024.116116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 02/12/2024] [Accepted: 02/14/2024] [Indexed: 02/24/2024]
Abstract
Enniatin B1 (ENN B1) is a mycotoxin that can be found in various foods. However, whether ENN B1 is hazardous to the reproductive system is still elusive. Leydig cells are testosterone-generating cells that reside in the interstitial compartment between seminiferous tubules. Dysfunction of Leydig cells could result in male infertility. This study aimed to examine the toxicological effects of ENN B1 against TM3 Leydig cells. ENN B1 significantly inhibited cell viability in a dose-dependent manner. ENN B1 treatment also decreased the expression of functional genes in Leydig cells. Moreover, ENN B1 induced Leydig cells apoptosis and oxidative stress. Mechanistically, ENN B1 leads to the upregulation of Bax and downregulation of Bcl-2 in Leydig cells. In addition, ENN B1 inhibited the Nrf2/HO-1 pathway, which is critical for the induction of oxidative stress. Additionally, ENN B1 treatment repressed the JAK/STAT3 signaling pathway in Leydig cells. Rescue experiments showed that activation of STAT3 resulted in alleviation of ENN B1-induced damage in Leydig cells. Collectively, our study demonstrated that ENN B1 induced Leydig cell dysfunction via multiple mechanisms.
Collapse
Affiliation(s)
- Hongping Shen
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang Province, China
| | - Yili Cai
- Department of Acupuncture, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang Province, China
| | - Keqi Zhu
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang Province, China
| | - Dong Wang
- Shanghai Houyu Medical Equiment Co., Ltd, China
| | - Rui Yu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Science, Ningbo University, China.
| | - Xueqin Chen
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang Province, China.
| |
Collapse
|
5
|
Uwineza PA, Urbaniak M, Stępień Ł, Gramza-Michałowska A, Waśkiewicz A. Lamium album Flower Extracts: A Novel Approach for Controlling Fusarium Growth and Mycotoxin Biosynthesis. Toxins (Basel) 2023; 15:651. [PMID: 37999514 PMCID: PMC10675686 DOI: 10.3390/toxins15110651] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 11/07/2023] [Accepted: 11/10/2023] [Indexed: 11/25/2023] Open
Abstract
Lamium album is a medicinal flowering plant that is rich in bioactive compounds with various biological properties. Fusarium species, known for causing significant crop losses and mycotoxin contamination, pose threats to food safety and human health. While synthetic fungicides are commonly employed for fungal management, their environmental impact prompts the ongoing development of alternative methods. This study aimed to evaluate the efficacy of L. album flower extracts in inhibiting the in vitro growth and biosynthesis of mycotoxins by Fusarium culmorum and F. proliferatum strains. The extracts were obtained by supercritical fluid extraction using CO2 (SC-CO2). The effects of various concentrations (2.5, 5, 7.5, and 10%) were assessed on a potato dextrose agar (PDA) medium using the "poisoning" technique. L. album flower extracts reduced mycelium growth by 0 to 30.59% for F. culmorum and 27.71 to 42.97% for F. proliferatum. Ergosterol content was reduced by up to 88.87% for F. culmorum and 93.17% for F. proliferatum. Similarly, the amounts of synthesized mycotoxins produced by both strains were also lower compared to control cultures. These findings are a preliminary phase for further in vivo tests planned to determine the fungistatic effect of L. album flower extracts on cereal substrates as seedlings incubated in controlled environments and under field conditions. Their phytotoxicity and biological stability, as well as the possibility of formulating a bio-preparation to protect cereals against Fusarium infections, will be evaluated.
Collapse
Affiliation(s)
- Pascaline Aimee Uwineza
- Department of Chemistry, Poznań University of Life Sciences, Wojska Polskiego 75, 60-625 Poznań, Poland;
| | - Monika Urbaniak
- Pathogen Genetics and Plant Resistance Department, Institute of Plant Genetics, Polish Academy of Sciences, 60-479 Poznań, Poland; (M.U.); (Ł.S.)
| | - Łukasz Stępień
- Pathogen Genetics and Plant Resistance Department, Institute of Plant Genetics, Polish Academy of Sciences, 60-479 Poznań, Poland; (M.U.); (Ł.S.)
| | - Anna Gramza-Michałowska
- Department of Gastronomy Science and Functional Foods, Poznań University of Life Sciences, Wojska Polskiego 31, 60-624 Poznań, Poland;
| | - Agnieszka Waśkiewicz
- Department of Chemistry, Poznań University of Life Sciences, Wojska Polskiego 75, 60-625 Poznań, Poland;
| |
Collapse
|
6
|
Wang G, Qiao Y, Zhao Y, Song Y, Li M, Jin M, Yang D, Yin J, Li J, Liu W. Beauvericin exerts an anti-tumor effect on hepatocellular carcinoma by inducing PI3K/AKT-mediated apoptosis. Arch Biochem Biophys 2023; 745:109720. [PMID: 37611353 DOI: 10.1016/j.abb.2023.109720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 08/15/2023] [Accepted: 08/19/2023] [Indexed: 08/25/2023]
Abstract
Beauvericin is a world-spread mycotoxin isolated from the traditional Chinese medicine, Bombyx batryticatus (BB), which has been widely used to treat various neoplastic diseases. This study investigated the anti-hepatocellular carcinoma (HCC) activity of beauvericin and its potential mechanism. In this study, H22-bearing mice were intraperitoneally injected with 3, 5, 7 mg/kg of beauvericin once per-week over a three-week period. TUNEL staining determined the extent of tumor apoptosis induced by beauvericin. ELISA kits detected the level of IL-2, Perforin, and TNF-α, IFN-γ level in the serum. H22 hepatoma cells were exposed to beauvericin (5, 10, and 20 μmol/L) to investigate the underlying pathway. CCK-8 assay was used to observe the influence of beauvericin on the growth of H22 cells. Flow cytometry was used to detect the cell apoptosis and ROS level. Western blotting was performed to detect apoptotic and PI3K/AKT pathway protein production. The results showed that beauvericin could remarkably inhibit the growth of HCC in mice, combined with elevated TNF-α and IL-2. In vitro, beauvericin significantly promoted the generation of ROS, up-regulated Bax/Bcl-2 ratio and cleaved caspase-9, cleaved caspase-3 levels, down-regulated p-PI3K/PI3K ratio, p-AKT/AKT ratio, promoted the apoptosis of H22 cells, and inhibited the growth of H22 cells. Remarkably, treatment with PI3K/AKT activator (740Y-P and SC79) could prevent beauvericin-induced H22 cell apoptosis. These findings collectively indicate that beauvericin inhibits HCC growth by inducing apoptosis via the PI3K/AKT pathway.
Collapse
Affiliation(s)
- Gui Wang
- Tianjin Institute of Environmental and Operational Medicine, Tianjin, 300050, China.
| | - Yamei Qiao
- Tianjin Institute of Environmental and Operational Medicine, Tianjin, 300050, China.
| | - Yunyan Zhao
- Tianjin Institute of Environmental and Operational Medicine, Tianjin, 300050, China.
| | - Yuanyuan Song
- Tianjin Institute of Environmental and Operational Medicine, Tianjin, 300050, China.
| | - Mengyang Li
- Tianjin Institute of Environmental and Operational Medicine, Tianjin, 300050, China.
| | - Min Jin
- Tianjin Institute of Environmental and Operational Medicine, Tianjin, 300050, China.
| | - Dong Yang
- Tianjin Institute of Environmental and Operational Medicine, Tianjin, 300050, China.
| | - Jing Yin
- Tianjin Institute of Environmental and Operational Medicine, Tianjin, 300050, China.
| | - Junwen Li
- Tianjin Institute of Environmental and Operational Medicine, Tianjin, 300050, China.
| | - Weili Liu
- Tianjin Institute of Environmental and Operational Medicine, Tianjin, 300050, China.
| |
Collapse
|
7
|
Sun D, Chasseur C, Mathieu F, Lechanteur J, Van Antwerpen P, Rasschaert J, Fontaine V, Delporte C. Untargeted Metabolomics Approach Correlated Enniatin B Mycotoxin Presence in Cereals with Kashin-Beck Disease Endemic Regions of China. Toxins (Basel) 2023; 15:533. [PMID: 37755959 PMCID: PMC10537395 DOI: 10.3390/toxins15090533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 08/16/2023] [Accepted: 08/23/2023] [Indexed: 09/28/2023] Open
Abstract
Kashin-Beck disease (KBD) is a multifactorial endemic disease that only occurs in specific Asian areas. Mycotoxin contamination, especially from the Fusarium spp., has been considered as one of the environmental risk factors that could provoke chondrocyte and cartilage damage. This study aimed to investigate whether new mycotoxins could be identified in KBD-endemic regions as a potential KBD risk factor. This was investigated on 292 barley samples collected in Tibet during 2009-2016 and 19 wheat samples collected in Inner Mongolia in 2006, as control, from KBD-endemic and non-endemic areas. The LC-HRMS(/MS) data, obtained by a general mycotoxin extraction technic, were interpreted by both untargeted metabolomics and molecular networks, allowing us to identify a discriminating compound, enniatin B, a mycotoxin produced by some Fusarium spp. The presence of Fusarium spp. DNA was detected in KBD-endemic area barley samples. Further studies are required to investigate the role of this mycotoxin in KBD development in vivo.
Collapse
Affiliation(s)
- Danlei Sun
- Unit of Microbiology, Bioorganic and Macromolecular Chemistry, Faculty of Pharmacy, Université libre de Bruxelles (ULB), 1050 Brussels, Belgium (V.F.)
- Unit of Pharmacognosy, Bioanalysis and Drug Discovery Unit & Analytical Platform of the Faculty of Pharmacy (APFP), Faculty of Pharmacy, Université libre de Bruxelles (ULB), 1050 Brussels, Belgium;
| | - Camille Chasseur
- Unit of Microbiology, Bioorganic and Macromolecular Chemistry, Faculty of Pharmacy, Université libre de Bruxelles (ULB), 1050 Brussels, Belgium (V.F.)
| | | | - Jessica Lechanteur
- Laboratory of Bone and Metabolic Biochemistry, Faculty of Medicine, Université libre de Bruxelles (ULB), 1070 Brussels, Belgium; (J.L.); (J.R.)
| | - Pierre Van Antwerpen
- Unit of Pharmacognosy, Bioanalysis and Drug Discovery Unit & Analytical Platform of the Faculty of Pharmacy (APFP), Faculty of Pharmacy, Université libre de Bruxelles (ULB), 1050 Brussels, Belgium;
| | - Joanne Rasschaert
- Laboratory of Bone and Metabolic Biochemistry, Faculty of Medicine, Université libre de Bruxelles (ULB), 1070 Brussels, Belgium; (J.L.); (J.R.)
| | - Véronique Fontaine
- Unit of Microbiology, Bioorganic and Macromolecular Chemistry, Faculty of Pharmacy, Université libre de Bruxelles (ULB), 1050 Brussels, Belgium (V.F.)
| | - Cédric Delporte
- Unit of Pharmacognosy, Bioanalysis and Drug Discovery Unit & Analytical Platform of the Faculty of Pharmacy (APFP), Faculty of Pharmacy, Université libre de Bruxelles (ULB), 1050 Brussels, Belgium;
| |
Collapse
|
8
|
Pietruszka K, Panasiuk Ł, Jedziniak P. Survey of the enniatins and beauvericin in raw and UHT cow's milk in Poland. J Vet Res 2023; 67:259-266. [PMID: 37786432 PMCID: PMC10541658 DOI: 10.2478/jvetres-2023-0021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Accepted: 03/30/2023] [Indexed: 04/08/2023] Open
Abstract
Introduction The enniatins A, A1, B and B1 (ENNs) and beauvericin (BEA) are structurally related compounds produced by Fusarium species. They occur as contaminants in cereals, such as wheat, barley and maize. They are called "emerging mycotoxins", because they have been reported in feed and food and their toxic effects are not fully known. Data on their levels in food (especially in milk) are limited. The study aimed to evaluate the occurrence of ENNs and BEA in milk. Material and Methods A total of 103 bovine milk samples (76 of raw milk and 27 of UHT milk) were collected from different parts of Poland and analysed using liquid chromatography-tandem mass spectrometry. Results Among the 76 raw milk samples, 31 (41%) and 15 (20%) samples were contaminated with ENN B and with BEA, respectively. No contamination with other enniatins was found. The highest concentration of BEA was found in raw milk and was 6.17 μg kg-1. Out of the 27 samples of UHT milk, 16 (59%) were contaminated with ENN B at concentrations ranging from 0.157 μg kg-1 to 0.587 μg kg-1 (limit of quantification (LOQ) 0.098 μg kg-1). Beauvericin was detected in 9 UHT milk samples (33%) at concentrations ranging from 0.101 μg kg-1 to 1.934 μg kg-1 (LOQ 0.095 μg kg-1). Conclusion This study demonstrated constant but low milk contamination in Poland with ENN B and BEA. The analysis of milk samples revealed that the emerging mycotoxins ENN B and BEA were measured in trace amounts. It does not suggest any immediate risk to milk consumers; however, it is unknown whether long-term exposure to low levels of toxins may be harmful.
Collapse
Affiliation(s)
- Katarzyna Pietruszka
- Department of Pharmacology and Toxicology, National Veterinary Research Institute, 24-100Puławy, Poland
| | - Łukasz Panasiuk
- Department of Pharmacology and Toxicology, National Veterinary Research Institute, 24-100Puławy, Poland
| | - Piotr Jedziniak
- Department of Pharmacology and Toxicology, National Veterinary Research Institute, 24-100Puławy, Poland
| |
Collapse
|
9
|
Vásquez-Ocmín PG, Marti G, Gadea A, Cabanac G, Vásquez-Briones JA, Casavilca-Zambrano S, Ponts N, Jargeat P, Haddad M, Bertani S. Metabotyping of Andean pseudocereals and characterization of emerging mycotoxins. Food Chem 2023; 407:135134. [PMID: 36527946 DOI: 10.1016/j.foodchem.2022.135134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 11/26/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022]
Abstract
Pseudocereals are best known for three crops derived from the Andes: quinoa (Chenopodium quinoa), canihua (C. pallidicaule), and kiwicha (Amaranthus caudatus). Their grains are recognized for their nutritional benefits; however, there is a higher level of polyphenism. Meanwhile, the chemical food safety of pseudocereals remains poorly documented. Here, we applied untargeted and targeted metabolomics approaches by LC-MS to achieve both: i) a comprehensive chemical mapping of pseudocereal samples collected in the Andes; and ii) a quantification of their contents in emerging mycotoxins. An inventory of the fungal community was also realized to better know the fungi present in these grains. Metabotyping permitted to add new insights into the chemotaxonomy of pseudocereals, confirming the previously established phylotranscriptomic clades. Sixteen samples from Peru (out of 27) and one from France (out of one) were contaminated with Beauvericin, an emerging mycotoxin. Several mycotoxigenic fungi were detected, including Aspergillus sp., Penicillium sp., and Alternaria sp.
Collapse
Affiliation(s)
- Pedro G Vásquez-Ocmín
- UMR 152 PHARMADEV, IRD, UPS, Université de Toulouse, Toulouse, France; International Joint Laboratory of Molecular Anthropological Oncology, IRD, INEN, Lima, Peru.
| | - Guillaume Marti
- Laboratoire de Recherche en Sciences Végétales (UMR 5546), CNRS, Université de Toulouse, Toulouse, France; MetaboHUB, National Infrastructure of Metabolomics and Fluxomics, Toulouse, France
| | - Alice Gadea
- UMR 152 PHARMADEV, IRD, UPS, Université de Toulouse, Toulouse, France
| | - Guillaume Cabanac
- UMR 5505 IRIT, CNRS, INP, UPS, Université de Toulouse, Toulouse 31400, France
| | | | - Sandro Casavilca-Zambrano
- International Joint Laboratory of Molecular Anthropological Oncology, IRD, INEN, Lima, Peru; Faculdad de Ciencias de la Salud, Universidad de Huánuco, Huánuco, Peru; Banco de Tejidos Tumorales, Instituto Nacional de Enfermedades Neoplásicas, Lima, Peru
| | - Nadia Ponts
- International Joint Laboratory of Molecular Anthropological Oncology, IRD, INEN, Lima, Peru; UR 1264 MYCSA, INRAE, Villenave d'Ornon, France
| | - Patricia Jargeat
- UMR 5174 EDB, CNRS, IRD, UPS, Université de Toulouse, 31062 Toulouse, France
| | - Mohamed Haddad
- UMR 152 PHARMADEV, IRD, UPS, Université de Toulouse, Toulouse, France; International Joint Laboratory of Molecular Anthropological Oncology, IRD, INEN, Lima, Peru
| | - Stéphane Bertani
- UMR 152 PHARMADEV, IRD, UPS, Université de Toulouse, Toulouse, France; International Joint Laboratory of Molecular Anthropological Oncology, IRD, INEN, Lima, Peru.
| |
Collapse
|
10
|
Valenti I, Tini F, Sevarika M, Agazzi A, Beccari G, Bellezza I, Ederli L, Grottelli S, Pasquali M, Romani R, Saracchi M, Covarelli L. Impact of Enniatin and Deoxynivalenol Co-Occurrence on Plant, Microbial, Insect, Animal and Human Systems: Current Knowledge and Future Perspectives. Toxins (Basel) 2023; 15:271. [PMID: 37104209 PMCID: PMC10144843 DOI: 10.3390/toxins15040271] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 03/30/2023] [Accepted: 03/31/2023] [Indexed: 04/08/2023] Open
Abstract
Fusarium mycotoxins commonly contaminate agricultural products resulting in a serious threat to both animal and human health. The co-occurrence of different mycotoxins in the same cereal field is very common, so the risks as well as the functional and ecological effects of mycotoxins cannot always be predicted by focusing only on the effect of the single contaminants. Enniatins (ENNs) are among the most frequently detected emerging mycotoxins, while deoxynivalenol (DON) is probably the most common contaminant of cereal grains worldwide. The purpose of this review is to provide an overview of the simultaneous exposure to these mycotoxins, with emphasis on the combined effects in multiple organisms. Our literature analysis shows that just a few studies on ENN-DON toxicity are available, suggesting the complexity of mycotoxin interactions, which include synergistic, antagonistic, and additive effects. Both ENNs and DON modulate drug efflux transporters, therefore this specific ability deserves to be explored to better understand their complex biological role. Additionally, future studies should investigate the interaction mechanisms of mycotoxin co-occurrence on different model organisms, using concentrations closer to real exposures.
Collapse
Affiliation(s)
- Irene Valenti
- Department of Food, Environmental and Nutritional Sciences, University of Milan, 20133 Milan, Italy; (I.V.); (M.P.); (M.S.)
| | - Francesco Tini
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, 06121 Perugia, Italy; (M.S.); (G.B.); (L.E.); (R.R.); (L.C.)
| | - Milos Sevarika
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, 06121 Perugia, Italy; (M.S.); (G.B.); (L.E.); (R.R.); (L.C.)
| | - Alessandro Agazzi
- Department of Veterinary Medicine and Animal Sciences, University of Milan, 26900 Lodi, Italy;
| | - Giovanni Beccari
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, 06121 Perugia, Italy; (M.S.); (G.B.); (L.E.); (R.R.); (L.C.)
| | - Ilaria Bellezza
- Department of Medicine and Surgery, University of Perugia, 06132 Perugia, Italy; (I.B.); (S.G.)
| | - Luisa Ederli
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, 06121 Perugia, Italy; (M.S.); (G.B.); (L.E.); (R.R.); (L.C.)
| | - Silvia Grottelli
- Department of Medicine and Surgery, University of Perugia, 06132 Perugia, Italy; (I.B.); (S.G.)
| | - Matias Pasquali
- Department of Food, Environmental and Nutritional Sciences, University of Milan, 20133 Milan, Italy; (I.V.); (M.P.); (M.S.)
| | - Roberto Romani
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, 06121 Perugia, Italy; (M.S.); (G.B.); (L.E.); (R.R.); (L.C.)
| | - Marco Saracchi
- Department of Food, Environmental and Nutritional Sciences, University of Milan, 20133 Milan, Italy; (I.V.); (M.P.); (M.S.)
| | - Lorenzo Covarelli
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, 06121 Perugia, Italy; (M.S.); (G.B.); (L.E.); (R.R.); (L.C.)
| |
Collapse
|
11
|
Siri-anusornsak W, Kolawole O, Mahakarnchanakul W, Greer B, Petchkongkaew A, Meneely J, Elliott C, Vangnai K. The Occurrence and Co-Occurrence of Regulated, Emerging, and Masked Mycotoxins in Rice Bran and Maize from Southeast Asia. Toxins (Basel) 2022; 14:toxins14080567. [PMID: 36006229 PMCID: PMC9412313 DOI: 10.3390/toxins14080567] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/14/2022] [Accepted: 08/16/2022] [Indexed: 11/25/2022] Open
Abstract
Raw feed materials are often contaminated with mycotoxins, and co-occurrence of mycotoxins occurs frequently. A total of 250 samples i.e., rice bran and maize from Cambodia, Laos, Myanmar, and Thailand were analysed using state-of-the-art liquid chromatography-mass spectrometry (LC-MS/MS) for monitoring the occurrence of regulated, emerging, and masked mycotoxins. Seven regulated mycotoxins – aflatoxins, ochratoxin A, fumonisin B1, deoxynivalenol, zearalenone, HT-2, and T-2 toxin were detected as well as some emerging mycotoxins, such as beauvericin, enniatin type B, stachybotrylactam, sterigmatocystin, and masked mycotoxins, specifically zearalenone-14-glucoside, and zearalenone-16-glucoside. Aspergillus and Fusarium mycotoxins were the most prevalent compounds identified, especially aflatoxins and fumonisin B1 in 100% and 95% of samples, respectively. Of the emerging toxins, beauvericin and enniatin type B showed high occurrences, with more than 90% of rice bran and maize contaminated, whereas zearalenone-14-glucoside and zearalenone-16-glucoside were found in rice bran in the range of 56–60%. Regulated mycotoxins (DON and ZEN) were the most frequent mycotoxin combination with emerging mycotoxins (BEA and ENN type B) in rice bran and maize. This study indicates that mycotoxin occurrence and co-occurrence are common in raw feed materials, and it is critical to monitor mycotoxin levels in ASEAN’s feedstuffs so that mitigation strategies can be developed and implemented.
Collapse
Affiliation(s)
- Wipada Siri-anusornsak
- Department of Food Science and Technology, Faculty of Agro-Industry, Kasetsart University, Bangkok 10900, Thailand
| | - Oluwatobi Kolawole
- Institute for Global Food Security, School of Biological Science, Queen’s University, Belfast BT9 5DL, UK
- The International Joint Research Center on Food Security, 113 Thailand Science Park, Phahonyothin Road, Pathum Thani 12120, Thailand
| | - Warapa Mahakarnchanakul
- Department of Food Science and Technology, Faculty of Agro-Industry, Kasetsart University, Bangkok 10900, Thailand
| | - Brett Greer
- Institute for Global Food Security, School of Biological Science, Queen’s University, Belfast BT9 5DL, UK
- The International Joint Research Center on Food Security, 113 Thailand Science Park, Phahonyothin Road, Pathum Thani 12120, Thailand
| | - Awanwee Petchkongkaew
- Institute for Global Food Security, School of Biological Science, Queen’s University, Belfast BT9 5DL, UK
- The International Joint Research Center on Food Security, 113 Thailand Science Park, Phahonyothin Road, Pathum Thani 12120, Thailand
- School of Food Science and Technology, Faculty of Science and Technology, Thammasat University, Pathum Thani 12120, Thailand
- Center of Excellence in Food Science and Innovation, Thammasat University, Pathum Thani 12120, Thailand
| | - Julie Meneely
- Institute for Global Food Security, School of Biological Science, Queen’s University, Belfast BT9 5DL, UK
- The International Joint Research Center on Food Security, 113 Thailand Science Park, Phahonyothin Road, Pathum Thani 12120, Thailand
| | - Christopher Elliott
- Institute for Global Food Security, School of Biological Science, Queen’s University, Belfast BT9 5DL, UK
- The International Joint Research Center on Food Security, 113 Thailand Science Park, Phahonyothin Road, Pathum Thani 12120, Thailand
- School of Food Science and Technology, Faculty of Science and Technology, Thammasat University, Pathum Thani 12120, Thailand
| | - Kanithaporn Vangnai
- Department of Food Science and Technology, Faculty of Agro-Industry, Kasetsart University, Bangkok 10900, Thailand
- Correspondence: ; Tel.: +66-2562-5037
| |
Collapse
|
12
|
Fate of enniatins in the Ale beer production stages analyzed by a validated method based on matrix-matched calibration and LC-QToF-MS. Food Chem 2022; 384:132484. [DOI: 10.1016/j.foodchem.2022.132484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 01/14/2022] [Accepted: 02/14/2022] [Indexed: 11/24/2022]
|
13
|
Laraba I, Busman M, Geiser DM, O'Donnell K. Phylogenetic Diversity and Mycotoxin Potential of Emergent Phytopathogens Within the Fusarium tricinctum Species Complex. PHYTOPATHOLOGY 2022; 112:1284-1298. [PMID: 34989594 DOI: 10.1094/phyto-09-21-0394-r] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Recent studies on multiple continents indicate members of the Fusarium tricinctum species complex (FTSC) are emerging as prevalent pathogens of small-grain cereals, pulses, and other economically important crops. These understudied fusaria produce structurally diverse mycotoxins, among which enniatins (ENNs) and moniliformin (MON) are the most frequent and of greatest concern to food and feed safety. Herein a large survey of fusaria in the Fusarium Research Center and Agricultural Research Service culture collections was undertaken to assess species diversity and mycotoxin potential within the FTSC. A 151-strain collection originating from diverse hosts and substrates from different agroclimatic regions throughout the world was selected from 460 FTSC strains to represent the breadth of FTSC phylogenetic diversity. Evolutionary relationships inferred from a five-locus dataset, using maximum likelihood and parsimony, resolved the 151 strains as 24 phylogenetically distinct species, including nine that are new to science. Of the five genes analyzed, nearly full-length phosphate permease sequences contained the most phylogenetically informative characters, establishing its suitability for species-level phylogenetics within the FTSC. Fifteen of the species produced ENNs, MON, the sphingosine analog 2-amino-14,16-dimethyloctadecan-3-ol (AOD), and the toxic pigment aurofusarin (AUR) on a cracked corn kernel substrate. Interestingly, the five earliest diverging species in the FTSC phylogeny (i.e., F. iranicum, F. flocciferum, F. torulosum, and Fusarium spp. FTSC 8 and 24) failed to produce AOD and MON, but synthesized ENNs and/or AUR. Moreover, our reassessment of nine published phylogenetic studies on the FTSC identified 11 additional novel taxa, suggesting this complex comprises at least 36 species.
Collapse
Affiliation(s)
- Imane Laraba
- ORISE Fellow, National Center for Agricultural Utilization Research, Mycotoxin Prevention and Applied Microbiology Research Unit (MPM), Peoria, IL 61604
| | - Mark Busman
- USDA, Agricultural Research Service, National Center for Agricultural Utilization Research, Mycotoxin Prevention and Applied Microbiology Research Unit (MPM), Peoria, IL 61604
| | - David M Geiser
- Department of Plant Pathology and Environmental Microbiology, Pennsylvania State University, University Park, PA 16802
| | - Kerry O'Donnell
- USDA, Agricultural Research Service, National Center for Agricultural Utilization Research, Mycotoxin Prevention and Applied Microbiology Research Unit (MPM), Peoria, IL 61604
| |
Collapse
|
14
|
Zhao S, Zhang J, Sun X, Yangzom C, Shang P. Mitochondrial calcium uniporter involved in foodborne mycotoxin-induced hepatotoxicity. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 237:113535. [PMID: 35461028 DOI: 10.1016/j.ecoenv.2022.113535] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 03/28/2022] [Accepted: 04/14/2022] [Indexed: 06/14/2023]
Abstract
Foodborne mycotoxins are toxic metabolites that are produced by fungi. The widespread contamination of food and its by-products by mycotoxins is a global food safety problem that potentially threatens public health and other exposed animals. Most foodborne mycotoxins induce hepatotoxicity. However, only few studies have investigated the regulatory mechanisms of mitochondrial calcium transport monomers in mycotoxin-induced hepatotoxicity. Therefore, according to relevant studies and reports, this review suggests that intracellular Ca(2 +) homeostasis and mitochondrial Ca(2 +) uniporter are involved in the regulation of mycotoxin-induced hepatotoxicity. This review provides some ideas for future research involving mitochondrial Ca(2 +) uniporter in the molecular targets of mycotoxin-induced hepatotoxicity, as well as a reference for the research and development of related drugs and the treatment of related diseases.
Collapse
Affiliation(s)
- Shunwang Zhao
- College of Animal Science, Tibet Agriculture and Animal Husbandry College, Linzhi, Tibet, People's Republic of China; The Provincial and Ministerial co-founded collaborative innovation center for R & D in Tibet characteristic Agricultural and Animal Husbandry resources, People's Republic of China
| | - Jian Zhang
- College of Animal Science, Tibet Agriculture and Animal Husbandry College, Linzhi, Tibet, People's Republic of China; The Provincial and Ministerial co-founded collaborative innovation center for R & D in Tibet characteristic Agricultural and Animal Husbandry resources, People's Republic of China
| | - Xueqian Sun
- College of Animal Science, Tibet Agriculture and Animal Husbandry College, Linzhi, Tibet, People's Republic of China; The Provincial and Ministerial co-founded collaborative innovation center for R & D in Tibet characteristic Agricultural and Animal Husbandry resources, People's Republic of China
| | - Chamba Yangzom
- College of Animal Science, Tibet Agriculture and Animal Husbandry College, Linzhi, Tibet, People's Republic of China; The Provincial and Ministerial co-founded collaborative innovation center for R & D in Tibet characteristic Agricultural and Animal Husbandry resources, People's Republic of China
| | - Peng Shang
- College of Animal Science, Tibet Agriculture and Animal Husbandry College, Linzhi, Tibet, People's Republic of China; The Provincial and Ministerial co-founded collaborative innovation center for R & D in Tibet characteristic Agricultural and Animal Husbandry resources, People's Republic of China.
| |
Collapse
|
15
|
Shi J, Wang Y, Xu W, Cai G, Zou H, Yuan Y, Gu J, Liu Z, Bian J. Role of Nrf2 Nucleus Translocation in Beauvericin-Induced Cell Damage in Rat Hepatocytes. Toxins (Basel) 2022; 14:toxins14060367. [PMID: 35737028 PMCID: PMC9229947 DOI: 10.3390/toxins14060367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 05/22/2022] [Accepted: 05/23/2022] [Indexed: 11/29/2022] Open
Abstract
Beauvericin (BEA), a food-borne mycotoxin metabolite derived from the fungus Beauveria Bassiana, is proven to exhibit high hepatotoxicity. However, the molecular mechanism underlying BEA-induced liver damage is not fully understood. Herein, the effect of Nrf2 nuclear translocation-induced by BEA in hepatocytes was investigated. CCK8 solution was used to determine the appropriate concentrations of BEA (0, 1, 1.5 and 2 μmol/L), and BRL3A cells were then exposed to different concentrations of BEA for 12 h. Our results reveal that BEA exposure is associated with high cytotoxicity, lowered cell viability, damaged cellular morphology, and increased apoptosis rate. BEA could lead to oxidative damage through the overproduction of ROS and unbalanced redox, trigger the activation of Nrf2 signaling pathway and Nrf2 nuclear translocation for transcriptional activation of downstream antioxidative genes. Additionally, BEA treatment upregulated the expression of autophagy-related proteins (LC3, p62, Beclin1, and ATG5) indicating a correlation between Nrf2 activation and autophagy, which warrants further studies. Furthermore, ML385, an Nrf2 inhibitor, partially ameliorated BEA-induced cell injury while CDDO, an Nrf2 activator, aggravated liver damage. The present study emphasizes the role of Nrf2 nuclear translocation in BEA-induced oxidative stress associated with the hepatotoxic nature of BEA.
Collapse
Affiliation(s)
- Jiabin Shi
- College of Veterinary Medicine, Yangzhou University, 12 Wenhui East Road, Yangzhou 225009, China; (J.S.); (Y.W.); (W.X.); (G.C.); (H.Z.); (Y.Y.); (J.G.); (Z.L.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Yaling Wang
- College of Veterinary Medicine, Yangzhou University, 12 Wenhui East Road, Yangzhou 225009, China; (J.S.); (Y.W.); (W.X.); (G.C.); (H.Z.); (Y.Y.); (J.G.); (Z.L.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
| | - Wenlin Xu
- College of Veterinary Medicine, Yangzhou University, 12 Wenhui East Road, Yangzhou 225009, China; (J.S.); (Y.W.); (W.X.); (G.C.); (H.Z.); (Y.Y.); (J.G.); (Z.L.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
| | - Guodong Cai
- College of Veterinary Medicine, Yangzhou University, 12 Wenhui East Road, Yangzhou 225009, China; (J.S.); (Y.W.); (W.X.); (G.C.); (H.Z.); (Y.Y.); (J.G.); (Z.L.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
| | - Hui Zou
- College of Veterinary Medicine, Yangzhou University, 12 Wenhui East Road, Yangzhou 225009, China; (J.S.); (Y.W.); (W.X.); (G.C.); (H.Z.); (Y.Y.); (J.G.); (Z.L.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
| | - Yan Yuan
- College of Veterinary Medicine, Yangzhou University, 12 Wenhui East Road, Yangzhou 225009, China; (J.S.); (Y.W.); (W.X.); (G.C.); (H.Z.); (Y.Y.); (J.G.); (Z.L.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
| | - Jianhong Gu
- College of Veterinary Medicine, Yangzhou University, 12 Wenhui East Road, Yangzhou 225009, China; (J.S.); (Y.W.); (W.X.); (G.C.); (H.Z.); (Y.Y.); (J.G.); (Z.L.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
| | - Zongping Liu
- College of Veterinary Medicine, Yangzhou University, 12 Wenhui East Road, Yangzhou 225009, China; (J.S.); (Y.W.); (W.X.); (G.C.); (H.Z.); (Y.Y.); (J.G.); (Z.L.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Jianchun Bian
- College of Veterinary Medicine, Yangzhou University, 12 Wenhui East Road, Yangzhou 225009, China; (J.S.); (Y.W.); (W.X.); (G.C.); (H.Z.); (Y.Y.); (J.G.); (Z.L.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
- Correspondence:
| |
Collapse
|
16
|
Cereulide and Deoxynivalenol Increase LC3 Protein Levels in HepG2 Liver Cells. Toxins (Basel) 2022; 14:toxins14020151. [PMID: 35202179 PMCID: PMC8880806 DOI: 10.3390/toxins14020151] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 02/14/2022] [Indexed: 02/05/2023] Open
Abstract
Food contaminants of bacterial or fungal origin frequently contaminate staple foods to various extents. Among others, the bacterial toxin cereulide (CER) and the mycotoxin deoxynivalenol (DON) co-occur in a mixed diet and are absorbed by the human body. Both toxins exert dis-tinctive mitotoxic potential. As damaged mitochondria are removed via autophagy, mitochondrial and lysosomal toxicity were assessed by applying low doses of single and combined toxins (CER 0.1-50 ng/mL; DON 0.01-5 µg/mL) to HepG2 liver cells. In addition to cytotoxicity assays, RT-qPCR was performed to investigate genes involved in lysosomal biogenesis and autophagy. CER and DON caused significant cytotoxicity on HepG2 cells after 5 and 24 h over a broad concentration range. CER, alone and in combination with DON, increased the transcription of the autophagy related genes coding for the microtubule associated protein 1A/1B light chain 3 (LC3) and sequestome 1 (SQSTM1) as well as LC3 protein expression which was determined using immunocytochemistry. DON increased LC3 protein expression without induction of gene transcription, hence it seems plausible that CER and DON act on different pathways. The results support the hypothesis that CER induces autophagy via the LC3 pathway and damaged mitochondria are therefore eliminated.
Collapse
|
17
|
Sá SVMD, Monteiro C, Fernandes JO, Pinto E, Faria MA, Cunha SC. Emerging mycotoxins in infant and children foods: A review. Crit Rev Food Sci Nutr 2021; 63:1707-1721. [PMID: 34486889 DOI: 10.1080/10408398.2021.1967282] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
A proper nutrition is crucial for children's healthy development. Regardless of the usual recommendations to follow a varied diet, some foods can be a source of toxic natural contaminants such as mycotoxins, potent secondary metabolites produced by filamentous fungi. In addition to the most well-known mycotoxins, many of which are subject to tight regulation regarding the maximum levels allowed in different types of food, there is a large group of mycotoxins, the so-called emerging mycotoxins, about which less knowledge has already been acquired, which have gradually been the target of interest from the scientific community due to their prevalence in most foodstuffs, particularly in cereals and cereal-based products. Alternariol and his metabolite alternariol mono-methyl ether, beauvericin, citrinin, culmorin, enniatins, ergot alkaloids, fusaproliferin, kojic acid, moniliformin, sterigmatocystin, tentoxin and tenuazonic acid are the most representative of them. The current review gathered the information of the last ten years that have been published on the levels of emerging mycotoxins in food products dedicated for infants and children. European Union countries are responsible for most of the reported studies, which showed levels that can reach hundreds of mg/kg.
Collapse
Affiliation(s)
- Soraia V M de Sá
- LAQV-REQUIMTE, Laboratory of Bromatology and Hydrology, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Carolina Monteiro
- LAQV-REQUIMTE, Laboratory of Bromatology and Hydrology, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - José O Fernandes
- LAQV-REQUIMTE, Laboratory of Bromatology and Hydrology, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Eugénia Pinto
- Laboratory of Microbiology, Biological Sciences Department, Faculty of Pharmacy, University of Porto, Porto, Portugal.,Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR), University of Porto, Matosinhos, Portugal
| | - Miguel A Faria
- LAQV-REQUIMTE, Laboratory of Bromatology and Hydrology, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Sara C Cunha
- LAQV-REQUIMTE, Laboratory of Bromatology and Hydrology, Faculty of Pharmacy, University of Porto, Porto, Portugal
| |
Collapse
|
18
|
Serra V, Salvatori G, Pastorelli G. Pilot Study: Does Contamination with Enniatin B and Beauvericin Affect the Antioxidant Capacity of Cereals Commonly Used in Animal Feeding? PLANTS (BASEL, SWITZERLAND) 2021; 10:1835. [PMID: 34579368 PMCID: PMC8469406 DOI: 10.3390/plants10091835] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 08/31/2021] [Accepted: 09/02/2021] [Indexed: 12/15/2022]
Abstract
Increasing consumption of cereals has been associated with reduced risk of several chronic diseases, as they contain phytochemicals that combat oxidative stress. Cereal contamination by the "emerging mycotoxins" beauvericin (BEA) and enniatins (ENs) is a worldwide health problem that has not yet received adequate scientific attention. Their presence in feeds represents a risk for animals and a potential risk for humans because of their carry-over to animal-derived products. This preliminary study aimed to investigate if the total antioxidant capacity (TAC) of corn, barley, and wheat flours could be influenced by contamination with increasing levels of BEA and ENN B. The highest TAC value was observed in barley compared with wheat and corn (p < 0.001) before and after contamination. No effect of mycotoxin or mycotoxin level was found, whereas cereal x mycotoxin exhibited a significant effect (p < 0.001), showing a lower TAC value in wheat contaminated by ENN B and in barley contaminated by BEA. In conclusion, barley is confirmed as a source of natural antioxidants with antiradical potentials. Additional studies with a larger sample size are necessary to confirm the obtained results, and investigations of the toxic effects of these emergent mycotoxins on animals and humans should be deepened.
Collapse
Affiliation(s)
- Valentina Serra
- Department of Veterinary Medicine, University of Milano, Via dell’Università 6, 26900 Lodi, Italy
| | - Giancarlo Salvatori
- Department of Medicine and Science for Health “V. Tiberio”, University of Molise, Via Francesco De Sanctis 1, 86100 Campobasso, Italy;
| | - Grazia Pastorelli
- Department of Veterinary Medicine, University of Milano, Via dell’Università 6, 26900 Lodi, Italy
| |
Collapse
|
19
|
De Colli L, De Ruyck K, Abdallah MF, Finnan J, Mullins E, Kildea S, Spink J, Elliott C, Danaher M. Natural Co-Occurrence of Multiple Mycotoxins in Unprocessed Oats Grown in Ireland with Various Production Systems. Toxins (Basel) 2021; 13:toxins13030188. [PMID: 33806558 PMCID: PMC7998419 DOI: 10.3390/toxins13030188] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 02/28/2021] [Accepted: 03/02/2021] [Indexed: 11/16/2022] Open
Abstract
The natural co-occurrence of 42 mycotoxins was investigated in unprocessed oat grains grown in Ireland. The sample set included a total of 208 oat crops harvested during 2015–2016 and produced using conventional, organic, or gluten free farming systems. A range of different toxins was identified, including the major type A (neosolaniol, HT-2 and T-2 toxins, T-2 triol, and T-2-glucoside, co-occurring in 21 samples) and B trichothecenes (deoxynivalenol, nivalenol, and deoxynivalenol-3-glucoside), enniatins (B1, B, and A1, co-occurring in 12 samples), as well as beauvericin, alternariol, mycophenolic acid, and sterigmatocystin. The influences of sowing season, year, and production system were investigated, eventually indicating that the latter factor may have a higher impact than others on the production of certain mycotoxins in oats. The most frequently quantified compounds were HT-2 (51%) and T-2 (41%) toxins, with gluten free oats containing significantly lower concentrations of HT-2 compared to conventionally produced oats. Although the prevalence and concentrations of mycotoxin found in oat samples in this study should be substantially reduced by processing. However, as mycotoxin occurrence is clearly influenced by multiple factors, controlled field trials should be carried out to define optimal agronomic practices and mitigate mycotoxin production. Furthermore, this work highlights the need for regularly testing cereal-based foods with multi-residue analytical methods with wider specificities than the traditionally screened and regulated toxins, to generate knowledge on the occurrence of several mycotoxins that are, to date, rarely investigated.
Collapse
Affiliation(s)
- Lorenzo De Colli
- Institute for Global Food Security, School of Biological Sciences, Queen’s University Belfast, Belfast BT9 5DL, UK;
- Food Safety Department, Teagasc Food Research Centre, Ashtown, Dublin 15, Ireland; (K.D.R.); (M.D.)
- Correspondence:
| | - Karl De Ruyck
- Food Safety Department, Teagasc Food Research Centre, Ashtown, Dublin 15, Ireland; (K.D.R.); (M.D.)
| | - Mohamed F. Abdallah
- Department of Food Technology, Faculty of Bioscience Engineering, Coupure Links 653, 9000 Gent, Belgium;
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Assiut University, Assiut 71515, Egypt
| | - John Finnan
- Crops Science Department, Teagasc, Oak Park, Carlow R93 XE12, Ireland; (J.F.); (E.M.); (S.K.); (J.S.)
| | - Ewen Mullins
- Crops Science Department, Teagasc, Oak Park, Carlow R93 XE12, Ireland; (J.F.); (E.M.); (S.K.); (J.S.)
| | - Steven Kildea
- Crops Science Department, Teagasc, Oak Park, Carlow R93 XE12, Ireland; (J.F.); (E.M.); (S.K.); (J.S.)
| | - John Spink
- Crops Science Department, Teagasc, Oak Park, Carlow R93 XE12, Ireland; (J.F.); (E.M.); (S.K.); (J.S.)
| | - Christopher Elliott
- Institute for Global Food Security, School of Biological Sciences, Queen’s University Belfast, Belfast BT9 5DL, UK;
| | - Martin Danaher
- Food Safety Department, Teagasc Food Research Centre, Ashtown, Dublin 15, Ireland; (K.D.R.); (M.D.)
| |
Collapse
|
20
|
Křížová L, Dadáková K, Dvořáčková M, Kašparovský T. Feedborne Mycotoxins Beauvericin and Enniatins and Livestock Animals. Toxins (Basel) 2021; 13:32. [PMID: 33466409 PMCID: PMC7824875 DOI: 10.3390/toxins13010032] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 12/28/2020] [Accepted: 12/30/2020] [Indexed: 12/13/2022] Open
Abstract
Mycotoxins are secondary metabolites produced by several species of fungi, including the Fusarium, Aspergillus, and Penicillium species. Currently, more than 300 structurally diverse mycotoxins are known, including a group called minor mycotoxins, namely enniatins, beauvericin, and fusaproliferin. Beauvericin and enniatins possess a variety of biological activities. Their antimicrobial, antibiotic, or ionoforic activities have been proven and according to various bioassays, they are believed to be toxic. They are mainly found in cereal grains and their products, but they have also been detected in forage feedstuff. Mycotoxins in feedstuffs of livestock animals are of dual concern. First one relates to the safety of animal-derived food. Based on the available data, the carry-over of minor mycotoxins from feed to edible animal tissues is possible. The second concern relates to detrimental effects of mycotoxins on animal health and performance. This review aims to summarize current knowledge on the relation of minor mycotoxins to livestock animals.
Collapse
Affiliation(s)
- Ludmila Křížová
- Department of Animal Breeding, Animal Nutrition and Biochemistry, Faculty of Veterinary Hygiene and Ecology, University of Veterinary and Pharmaceutical Sciences, 61242 Brno, Czech Republic;
| | - Kateřina Dadáková
- Department of Biochemistry, Faculty of Science, Masaryk University, 61137 Brno, Czech Republic; (K.D.); (M.D.)
| | - Michaela Dvořáčková
- Department of Biochemistry, Faculty of Science, Masaryk University, 61137 Brno, Czech Republic; (K.D.); (M.D.)
| | - Tomáš Kašparovský
- Department of Biochemistry, Faculty of Science, Masaryk University, 61137 Brno, Czech Republic; (K.D.); (M.D.)
| |
Collapse
|
21
|
Donato MT, Tolosa L. Application of high-content screening for the study of hepatotoxicity: Focus on food toxicology. Food Chem Toxicol 2020; 147:111872. [PMID: 33220391 DOI: 10.1016/j.fct.2020.111872] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 10/12/2020] [Accepted: 11/15/2020] [Indexed: 01/17/2023]
Abstract
Safety evaluation of thousands of chemicals that are directly added to or come in contact with food is needed. Due to the central role of the liver in intermediary and energy metabolism and in the biotransformation of foreign compounds, the hepatotoxicity assessment is essential. New approach methodologies have been proposed for the safety evaluation of compounds with the idea of rapidly gaining insight into effects on biochemical mechanisms and cellular processes and screening large number of compounds. In this sense, high-content screening (HCS) is the application of automated microscopy and image analysis for better understanding of complex biological functions and mechanisms of toxicity. HCS multiparametric measurements have been shown to be a useful tool in early toxicity testing during drug development, but also in assessing the impact from food chemicals and environmental toxicants. Reviewing the use of cellular imaging technology in the safety evaluation of food-relevant chemicals offers evidence about the impact of this technology in safety assessment.
Collapse
Affiliation(s)
- M Teresa Donato
- Unidad de Hepatología Experimental, Instituto de Investigación Sanitaria La Fe, Valencia, 46026, Spain; Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad de Valencia, Valencia, 46010, Spain.
| | - Laia Tolosa
- Unidad de Hepatología Experimental, Instituto de Investigación Sanitaria La Fe, Valencia, 46026, Spain.
| |
Collapse
|
22
|
Beauvericin and Enniatins: In Vitro Intestinal Effects. Toxins (Basel) 2020; 12:toxins12110686. [PMID: 33138307 PMCID: PMC7693699 DOI: 10.3390/toxins12110686] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 10/26/2020] [Accepted: 10/28/2020] [Indexed: 01/05/2023] Open
Abstract
Food and feed contamination by emerging mycotoxins beauvericin and enniatins is a worldwide health problem and a matter of great concern nowadays, and data on their toxicological behavior are still scarce. As ingestion is the major route of exposure to mycotoxins in food and feed, the gastrointestinal tract represents the first barrier encountered by these natural contaminants and the first structure that could be affected by their potential detrimental effects. In order to perform a complete and reliable toxicological evaluation, this fundamental site cannot be disregarded. Several in vitro intestinal models able to recreate the different traits of the intestinal environment have been applied to investigate the various aspects related to the intestinal toxicity of emerging mycotoxins. This review aims to depict an overall and comprehensive representation of the in vitro intestinal effects of beauvericin and enniatins in humans from a species-specific perspective. Moreover, information on the occurrence in food and feed and notions on the regulatory aspects will be provided.
Collapse
|
23
|
Emmanuel K T, Els VP, Bart H, Evelyne D, Els VH, Els D. Carry-over of some Fusarium mycotoxins in tissues and eggs of chickens fed experimentally mycotoxin-contaminated diets. Food Chem Toxicol 2020; 145:111715. [PMID: 32871192 DOI: 10.1016/j.fct.2020.111715] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 08/20/2020] [Accepted: 08/26/2020] [Indexed: 02/04/2023]
Abstract
Fusarium mycotoxins are fungal contaminants found in different crops intended for human and animal consumption. Due to the co-occurrence of several of mycotoxins, the present study aimed at examining the transfer of these toxins into tissues of broiler chickens and eggs of laying hens fed contaminated diets. After an adaptation period, the chickens were fed contaminated diets containing mg/kg levels of deoxynivalenol (DON), enniatins (ENN A, A1, B, B1) and beauvericin (BEA) and high μg/kg levels of HT-2 toxin (HT-2), T-2 toxin (T-2) and zearalenone (ZEN) during a repletion period of two weeks, followed by a depletion period of two weeks. DON, ZEN, T-2 and HT-2 were not carried out into the skin and the liver of broiler chickens. ENN B (20.5 ± 6.6 μg/kg) and BEA (162 ± 55 μg/kg) were found in the liver, while in the skin their respective concentrations were 50 ± 17 μg/kg and 120 ± 16 μg/kg during the first week of the repletion period. Carry-over rates into liver and skin were higher for BEA (1.6% and 1.2%, respectively) than for ENNs (0.1 and 0.4%, respectively). During the depletion period, ENNs and BEA were eliminated from the skin and the liver. ENN B, ENN B1 and BEA were carried over into eggs at 0.1%, 0.05% and 0.44% upon 2-3 days of feeding the contaminated diet, respectively. These transfers were fully eliminated 9-10 days after feeding the control diet again. These results indicate the transfer of ENN B, ENN B1 and BEA from feed to chicken offal, meat products and eggs at a very low degree, thus marginally contribute to the total dietary intake of these fusariotoxins for consumers. Nevertheless, taking precautionary measures in the field, harvest, transport and storage of the raw materials is required to keep the mycotoxin concentration in feed below the safe levels.
Collapse
Affiliation(s)
- Tangni Emmanuel K
- Sciensano, Physical and Chemical Health Risks, Organic Contaminants and Additives, Leuvensesteenweg 17, 3080, Tervuren, Belgium.
| | - Van Pamel Els
- Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Technology and Food Science Unit, Brusselsesteenweg 370, 9090, Melle, Belgium
| | - Huybrechts Bart
- Sciensano, Physical and Chemical Health Risks, Organic Contaminants and Additives, Leuvensesteenweg 17, 3080, Tervuren, Belgium
| | - Delezie Evelyne
- ILVO, Animal Sciences Unit, Scheldeweg 68, 9090, Melle, Belgium
| | - Van Hoeck Els
- Sciensano, Physical and Chemical Health Risks, Organic Contaminants and Additives, Leuvensesteenweg 17, 3080, Tervuren, Belgium
| | - Daeseleire Els
- Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Technology and Food Science Unit, Brusselsesteenweg 370, 9090, Melle, Belgium
| |
Collapse
|
24
|
Polišenská I, Jirsa O, Vaculová K, Pospíchalová M, Wawroszova S, Frydrych J. Fusarium Mycotoxins in Two Hulless Oat and Barley Cultivars Used for Food Purposes. Foods 2020; 9:foods9081037. [PMID: 32752230 PMCID: PMC7466365 DOI: 10.3390/foods9081037] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 07/27/2020] [Accepted: 07/28/2020] [Indexed: 11/16/2022] Open
Abstract
Hulless oats and hulless barley are highly valued for their excellent nutritional attributes and are increasingly being promoted in human nutrition. However, special attention should be paid to the risk of their contamination by Fusarium mycotoxins, as the rate of mycotoxin reduction during processing could be much lower than that for hulled cereals. In the present study, mycotoxin contamination of two cultivars, each of hulless oats and barley suitable for food purposes were studied in a 3-year field trial established in two contrasting environments. The contents of the mycotoxins regulated by law (deoxynivalenol and zearalenone) were low, and the present legal limits for their maximum content in unprocessed cereals were far from being exceeded. The mycotoxins most frequently occurring in hulless barley were enniatins (enniatin B, enniatin B1 and enniatin A1), beauvericin and nivalenol; hulless oats most frequently contained the HT-2 and T-2 toxins, beauvericin and enniatin B. The contents of enniatins and nivalenol were higher in barley than in oats. Close, positive relationships between the contents of the individual enniatins and between enniatins, beauvericin and nivalenol were observed, which implies that co-exposure could enhance the toxic potential of these mycotoxins through synergistic effects. The results highlight the need to pay more attention to the occurrence of enniatins, beauvericine and nivalenol in hulless oats and barley used for food purposes.
Collapse
Affiliation(s)
- Ivana Polišenská
- Agrotest Fyto, Ltd., Havlíčkova 2787, 767 01 Kroměříž, Czech Republic; (O.J.); (K.V.)
- Correspondence: ; Tel.: +42-0604-124-018
| | - Ondřej Jirsa
- Agrotest Fyto, Ltd., Havlíčkova 2787, 767 01 Kroměříž, Czech Republic; (O.J.); (K.V.)
| | - Kateřina Vaculová
- Agrotest Fyto, Ltd., Havlíčkova 2787, 767 01 Kroměříž, Czech Republic; (O.J.); (K.V.)
| | - Markéta Pospíchalová
- Central Institute for Supervising and Testing in Agriculture, Hroznová 2, 656 06 Brno, Czech Republic; (M.P.); (S.W.)
| | - Simona Wawroszova
- Central Institute for Supervising and Testing in Agriculture, Hroznová 2, 656 06 Brno, Czech Republic; (M.P.); (S.W.)
| | - Jan Frydrych
- OSEVA Development and Research, Ltd., Hamerská 698, 756 54 Zubří, Czech Republic;
| |
Collapse
|
25
|
Iwase CHT, Piacentini KC, Giomo PP, Čumová M, Wawroszová S, Běláková S, Minella E, Rocha LO. Characterization of the Fusarium sambucinum species complex and detection of multiple mycotoxins in Brazilian barley samples. Food Res Int 2020; 136:109336. [PMID: 32846534 DOI: 10.1016/j.foodres.2020.109336] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 05/09/2020] [Accepted: 05/16/2020] [Indexed: 10/24/2022]
Abstract
This study investigated the fungal diversity in Brazilian barley samples, focusing on the Fusarium sambucinum species complex and the presence of multiple mycotoxins: aflatoxins B1, B2, G1, G2 beauvericin (BEA), enniatins (ENNs) A, A1, B, and B1, deoxynivalenol (DON), fumonisins (FB) B1 and B2, HT-2 and T-2 toxins, nivalenol (NIV) and ochratoxin A (OTA) from two different regions, São Paulo (SP) and Rio Grande do Sul (RS). The majority of the isolates belonged to the Fusarium sambucinum species complex (FSAMSC), with F. graminearum s.s. characterized as the major contaminant. F. meridionale and F. poae were the second most frequent fungi isolated from SP and RS, respectively. All of the F. graminearum s.s. isolates demonstrated 15-ADON genotype, whereas F. poae and F. meridionale were all NIV. The majority of the F. cortaderiae isolates were NIV, with only one 3-ADON genotype. Mycotoxin analysis revealed that none of the samples were contaminated by aflatoxins, OTA, FB2 and type A trichothecenes, however, all of the samples were contaminated with at least one Fusarium toxin. Contamination by DON, ZEA, ENNB and ENNB1 levels were significantly higher in RS. Co-contamination of BEA, DON, ENNs, NIV and ZEA in 18.5% and 24.2% of the analyzed samples was observed, from SP and RS respectively. More than 20% of the samples from RS presented DON and ZEA levels above the regulations established by Europe and Brazil. The results provide further information on the FSAMSC from South America and detected multiple Fusarium toxins in barley samples. This highlights the importance for further studies on the possible interactions of these mycotoxins in order to determine potential risks to animal health.
Collapse
Affiliation(s)
- Caio H T Iwase
- Department of Food Science, Food Engineering Faculty, University of Campinas - UNICAMP, SP, Brazil
| | - Karim C Piacentini
- Department of Food Science, Food Engineering Faculty, University of Campinas - UNICAMP, SP, Brazil
| | - Patrícia P Giomo
- Department of Food Science, Food Engineering Faculty, University of Campinas - UNICAMP, SP, Brazil
| | - Martina Čumová
- Central Institute for Supervising and Testing in Agriculture, National Reference Laboratory, Regional Department Brno, Czech Republic
| | - Simona Wawroszová
- Central Institute for Supervising and Testing in Agriculture, National Reference Laboratory, Regional Department Brno, Czech Republic
| | - Sylvie Běláková
- Research Institute of Brewing and Malting, Malting Institute Brno, Czech Republic
| | | | - Liliana O Rocha
- Department of Food Science, Food Engineering Faculty, University of Campinas - UNICAMP, SP, Brazil.
| |
Collapse
|
26
|
Ponts N, Gautier C, Gouzy J, Pinson-Gadais L, Foulongne-Oriol M, Ducos C, Richard-Forget F, Savoie JM, Zhao C, Barroso G. Evolution of Fusarium tricinctum and Fusarium avenaceum mitochondrial genomes is driven by mobility of introns and of a new type of palindromic microsatellite repeats. BMC Genomics 2020; 21:358. [PMID: 32397981 PMCID: PMC7218506 DOI: 10.1186/s12864-020-6770-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 05/04/2020] [Indexed: 12/13/2022] Open
Abstract
Background Increased contamination of European and Asian wheat and barley crops with “emerging” mycotoxins such as enniatins or beauvericin, produced by Fusarium avenaceum and Fusarium tricinctum, suggest that these phylogenetically close species could be involved in future food-safety crises. Results The mitochondrial genomes of F. tricinctum strain INRA104 and F. avenaceum strain FaLH27 have been annotated. A comparative analysis was carried out then extended to a set of 25 wild strains. Results show that they constitute two distinct species, easily distinguished by their mitochondrial sequences. The mitochondrial genetic variability is mainly located within the intergenic regions. Marks of variations show they have evolved (i) by Single Nucleotide Polymorphisms (SNPs), (ii) by length variations mediated by insertion/deletion sequences (Indels), and (iii) by length mutations generated by DNA sliding events occurring in mononucleotide (A)n or (T)n microsatellite type sequences arranged in a peculiar palindromic organization. The optionality of these palindromes between both species argues for their mobility. The presence of Indels and SNPs in palindrome neighbouring regions suggests their involvement in these observed variations. Moreover, the intraspecific and interspecific variations in the presence/absence of group I introns suggest a high mobility, resulting from several events of gain and loss during short evolution periods. Phylogenetic analyses of intron orthologous sequences suggest that most introns could have originated from lateral transfers from phylogenetically close or distant species belonging to various Ascomycota genera and even to the Basidiomycota fungal division. Conclusions Mitochondrial genome evolution between F. tricinctum and F. avenaceum is mostly driven by two types of mobile genetic elements, implicated in genome polymorphism. The first one is represented by group I introns. Indeed, both genomes harbour optional (inter- or intra-specifically) group I introns, all carrying putatively functional hegs, arguing for a high mobility of these introns during short evolution periods. The gain events were shown to involve, for most of them, lateral transfers between phylogenetically distant species. This study has also revealed a new type of mobile genetic element constituted by a palindromic arrangement of (A) n and (T) n microsatellite sequences whose presence was related to occurrence of SNPs and Indels in the neighbouring regions.
Collapse
Affiliation(s)
- Nadia Ponts
- INRAE, MycSA, F-33882, Villenave d'Ornon, France
| | | | - Jérôme Gouzy
- LIPM, Université de Toulouse, INRAE, CNRS, Castanet-Tolosan, France
| | | | | | | | | | | | - Chen Zhao
- Academy of National Food and Strategic Reserves Administration, Beijing, China
| | - Gérard Barroso
- INRAE, MycSA, F-33882, Villenave d'Ornon, France. .,University of Bordeaux, INRAE, MycSA, F-33882, Villenave d'Ornon, France.
| |
Collapse
|
27
|
Gautier C, Pinson-Gadais L, Richard-Forget F. Fusarium Mycotoxins Enniatins: An Updated Review of Their Occurrence, the Producing Fusarium Species, and the Abiotic Determinants of Their Accumulation in Crop Harvests. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:4788-4798. [PMID: 32243758 DOI: 10.1021/acs.jafc.0c00411] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Cereal grains and their processed food products are frequently contaminated with mycotoxins produced by the Fusarium genus. Enniatins (ENNs), which belong to the so-called "emerging mycotoxins" family, are among the most frequently found in small grain cereals. Health hazards induced by a chronic exposure to ENNs or an association of ENNs with other major mycotoxins is a risk that cannot be excluded given the current toxicological data. Thus, efforts must be pursued to define efficient control strategies to mitigate their presence in cereal grains. A key condition for achieving this aim is to gain deep and comprehensive knowledge of the factors promoting the appearance of ENNs in crop harvests. After an update of ENN occurrence data, this review surveys the scientific literature on the Fusarium species responsible for ENN contamination and covers the recent advances concerning the abiotic determinants and the genetic regulation of ENN biosynthesis.
Collapse
Affiliation(s)
- Charlotte Gautier
- INRAE, UR 1264, Unité MycSA, 71 Avenue Edouard Bourlaux, 33883 Villenave d'Ornon, France
| | - Laetitia Pinson-Gadais
- INRAE, UR 1264, Unité MycSA, 71 Avenue Edouard Bourlaux, 33883 Villenave d'Ornon, France
| | | |
Collapse
|
28
|
Arroyo-Manzanares N, Hamed AM, García-Campaña AM, Gámiz-Gracia L. Plant-based milks: unexplored source of emerging mycotoxins. A proposal for the control of enniatins and beauvericin using UHPLC-MS/MS. FOOD ADDITIVES & CONTAMINANTS PART B-SURVEILLANCE 2019; 12:296-302. [PMID: 31791225 DOI: 10.1080/19393210.2019.1663276] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Mycotoxins have become one of the most common contaminants reported worldwide. Current legislation has established maximum levels only for some well-known mycotoxins; however, there are many other "emerging mycotoxins" for which there is no regulation, as enniatins and beauvericin. An analytical method based on salting-out assisted liquid-liquid extraction followed by ultra-high performance liquid chromatography tandem mass spectrometry is proposed for determination of enniatin A, A1, B, B1, and beauvericin in different plant-based milks, as a possible source of these contaminants, is proposed. The method showed good precision and trueness (RSD <8% and recoveries between 84-97%) with a moderate matrix effect. From a total of 32 samples of plant-based milks of different compositions (including 8 rice milks, 8 oat milks and 16 soy milks), 3 samples were contaminated with the five mycotoxins, while 5 samples were contaminated with four of them, being oat milk the most susceptible for contamination.
Collapse
Affiliation(s)
- Natalia Arroyo-Manzanares
- Department Analytical Chemistry, Faculty of Sciences, University of Granada, Granada, Spain.,Department Analytical Chemistry, Faculty of Chemistry, Regional Campus of International Excellence "Campus Mare Nostrum", University of Murcia, Murcia, Spain
| | - Ahmed M Hamed
- Department Dairy Science, Faculty of Agriculture, Cairo University, Giza, Egypt
| | - Ana M García-Campaña
- Department Analytical Chemistry, Faculty of Sciences, University of Granada, Granada, Spain
| | - Laura Gámiz-Gracia
- Department Analytical Chemistry, Faculty of Sciences, University of Granada, Granada, Spain
| |
Collapse
|
29
|
Fenclova M, Novakova A, Viktorova J, Jonatova P, Dzuman Z, Ruml T, Kren V, Hajslova J, Vitek L, Stranska-Zachariasova M. Poor chemical and microbiological quality of the commercial milk thistle-based dietary supplements may account for their reported unsatisfactory and non-reproducible clinical outcomes. Sci Rep 2019; 9:11118. [PMID: 31366891 PMCID: PMC6668463 DOI: 10.1038/s41598-019-47250-0] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Accepted: 07/04/2019] [Indexed: 12/31/2022] Open
Abstract
Herbal-based dietary supplements have become increasingly popular. The extract from milk thistle (Silybum marianum), is often used for the treatment of liver diseases. However, serious concerns exist regarding the efficacy, composition, as well as the safety of these over-the-counter preparations. Therefore, the aim of the present study was to investigate the composition as well as chemical and biological safety of 26 milk thistle-based dietary supplements purchased from both the U.S. and Czech markets between 2016 and 2017. The study was focused on a determination of the composition of active ingredients, as well as analyses of possible contaminants including: mycotoxins, plant alkaloids, and pesticide residues, as well as the microbial purity. High-throughput analyses were performed using advanced U-HPLC-HRMS techniques. Large differences in the silymarin content were observed among individual milk thistle preparations, often in contrast with the information provided by the manufacturers. In addition, substantial inter-batch differences in silymarin content were also demonstrated. In all milk thistle preparations tested, large numbers and high concentrations of mycotoxins and several pesticides, as well as the substantial presence of microbiological contamination were detected, pointing to serious safety issues. In conclusion, our results strongly indicate the need for strict controls of the composition, chemical contaminants, as well as the microbiological purity of commercial milk thistle extracts used for the treatment of liver diseases. Poor definition of these preparations together with contamination by biologically active substances may not only account for the inconsistency of clinical observations, but also be responsible for possible herbal-based dietary supplements-induced liver injury.
Collapse
Affiliation(s)
- Marie Fenclova
- Department of Food Analysis and Nutrition, University of Chemistry and Technology, Technicka 3, 16628, Prague 6, Czech Republic
| | - Alena Novakova
- Department of Food Analysis and Nutrition, University of Chemistry and Technology, Technicka 3, 16628, Prague 6, Czech Republic
| | - Jitka Viktorova
- Department of Biochemistry and Microbiology, University of Chemistry and Technology, Technicka 3, 16628, Prague 6, Czech Republic
| | - Petra Jonatova
- Department of Food Analysis and Nutrition, University of Chemistry and Technology, Technicka 3, 16628, Prague 6, Czech Republic
| | - Zbynek Dzuman
- Department of Food Analysis and Nutrition, University of Chemistry and Technology, Technicka 3, 16628, Prague 6, Czech Republic
| | - Tomas Ruml
- Department of Biochemistry and Microbiology, University of Chemistry and Technology, Technicka 3, 16628, Prague 6, Czech Republic
| | - Vladimir Kren
- Laboratory of Biotransformation, Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1082, 14000, Prague 6, Czech Republic
| | - Jana Hajslova
- Department of Food Analysis and Nutrition, University of Chemistry and Technology, Technicka 3, 16628, Prague 6, Czech Republic
| | - Libor Vitek
- Institute of Medical Biochemistry and Laboratory Diagnostics and 4th Department of Internal Medicine, 1st Faculty of Medicine, Charles University, Katerinska 32, 12108, Prague 2, Czech Republic.
| | - Milena Stranska-Zachariasova
- Department of Food Analysis and Nutrition, University of Chemistry and Technology, Technicka 3, 16628, Prague 6, Czech Republic.
| |
Collapse
|
30
|
Fusarium species and enniatin mycotoxins in wheat, durum wheat, triticale and barley harvested in France. Mycotoxin Res 2019; 35:369-380. [DOI: 10.1007/s12550-019-00363-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 04/30/2019] [Accepted: 05/06/2019] [Indexed: 02/04/2023]
|
31
|
Decleer M, Landschoot S, De Saeger S, Rajkovic A, Audenaert K. Impact of fungicides and weather on cyclodepsipeptide-producing Fusarium spp. and beauvericin and enniatin levels in wheat grains. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2019; 99:253-262. [PMID: 29851099 DOI: 10.1002/jsfa.9167] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 05/22/2018] [Accepted: 05/24/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND Fusarium head blight (FHB) is a well-known disease of wheat caused by a complex of Fusarium species. In this research, an extensive study on the occurrence of the emerging Fusarium cyclodepsipeptide mycotoxins beauvericin and enniatins was conducted in Belgian wheat grains harvested in 2015 and 2016. To assess the link between Fusarium species and their mycotoxin production, ultra-performance liquid chromatography-tandem mass spectrometry was used to quantify the cyclodepsipeptide mycotoxins, while quantitative polymerase chain reaction was applied to quantify the presence of Fusarium species. RESULTS It was shown that enniatins were mainly associated with the presence of F. avenaceum, while beauvericin, despite its low incidence, correlated significantly with F. poae. The application of fungicides resulted in a species shift and in the occurring mycotoxins. Concerning the effect of weather conditions, it was seen that levels of enniatins were positively correlated with the rainfall in May and June, while a negative correlation was observed with rainfall in the first half of July. CONCLUSION Our study provides new insights into the occurrence of the emerging cyclodepsipeptide mycotoxins in an agro-ecosystem in which fungicides are the main control measure against FHB. It seems that beauvericin and enniatin levels are affected by different parameters and behave differently upon application of fungicides. © 2018 Society of Chemical Industry.
Collapse
Affiliation(s)
- Marlies Decleer
- Department of Bioanalysis, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
- Department of Food Safety and Food Quality, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Sofie Landschoot
- Department of Data Analysis and Mathematical Modelling, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Sarah De Saeger
- Department of Bioanalysis, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
| | - Andrea Rajkovic
- Department of Food Safety and Food Quality, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Kris Audenaert
- Department of Plants and Crops, Faculty of Bioscience Engineering, Laboratory of Applied Mycology and Phenomics, Ghent University, Ghent, Belgium
| |
Collapse
|
32
|
Wu Q, Patocka J, Kuca K. Beauvericin, A Fusarium Mycotoxin: Anticancer Activity, Mechanisms, and Human Exposure Risk Assessment. Mini Rev Med Chem 2019; 19:206-214. [DOI: 10.2174/1389557518666180928161808] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2017] [Revised: 04/19/2018] [Accepted: 04/22/2018] [Indexed: 12/28/2022]
Abstract
Beauvericin (BEA) is a cyclic hexadepsipeptide, which derives from Cordyceps cicadae. It is also produced by Fusarium species, which are parasitic to maize, wheat, rice and other important commodities. BEA increases ion permeability in biological membranes by forming a complex with essential cations, which may affect ionic homeostasis. Its ion-complexing capability allows BEA to transport alkaline earth metal and alkali metal ions across cell membranes. Importantly, increasing lines of evidence show that BEA has an anticancer effect and can be potentially used in cancer therapeutics. Normally, BEA performs the anticancer effect due to the induced cancer cell apoptosis via a reactive oxygen species-dependent pathway. Moreover, BEA increases the intracellular Ca2+ levels and subsequently regulates the activity of a series of signalling pathways including MAPK, JAK/STAT, and NF-κB, and finally causes cancer cell apoptosis. In vivo studies further show that BEA reduces tumour volumes and weights. BEA especially targets differentiated and invasive cancer types. Currently, the anticancer activity of BEA is a hot topic; however, there is no review article to discuss the anticancer activity of BEA. Therefore, in this review, we have mainly summarized the anticancer activity of BEA and thoroughly discussed its underlying mechanisms. In addition, the human exposure risk assessment of BEA is also discussed. We hope that this review will provide further information for understanding the anticancer mechanisms of BEA.
Collapse
Affiliation(s)
- Qinghua Wu
- College of Life Science, Institute of Biomedicine, Yangtze University, Jingzhou 434025, China
| | - Jiri Patocka
- Institute of Radiology, Toxicology and Civil Protection, Faculty of Health and Social Studies, University of South Bohemia in Ceske Budejovice, Ceske Budejovice, Czech Republic
| | - Kamil Kuca
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, Czech Republic
| |
Collapse
|
33
|
Wu Q, Patocka J, Nepovimova E, Kuca K. A Review on the Synthesis and Bioactivity Aspects of Beauvericin, a Fusarium Mycotoxin. Front Pharmacol 2018; 9:1338. [PMID: 30515098 PMCID: PMC6256083 DOI: 10.3389/fphar.2018.01338] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2018] [Accepted: 10/30/2018] [Indexed: 11/30/2022] Open
Abstract
Beauvericin (BEA) is an emerging Fusarium mycotoxin that contaminates food and feeds globally. BEA biosynthesis is rapidly catalyzed by BEA synthetase through a nonribosomal, thiol-templated mechanism. This mycotoxin has cytotoxicity and is capable of increasing oxidative stress to induce cell apoptosis. Recently, large evidence further shows that this mycotoxin has a variety of biological activities and is being considered a potential candidate for medicinal and pesticide research. It is noteworthy that BEA is a potential anticancer agent since it can increase the intracellular Ca2+ levels and induce the cancer cell death through oxidative stress and apoptosis. BEA has exhibited effective antibacterial activities against both pathogenic Gram-positive and Gram-negative bacteria. Importantly, BEA exhibits an effective capacity to inhibit the human immunodeficiency virus type-1 integrase. Moreover, BEA can simultaneously target drug resistance and morphogenesis which provides a promising strategy to combat life-threatening fungal infections. Thus, in this review, the synthesis and the biological activities of BEA, as well as, the underlying mechanisms, are fully analyzed. The risk assessment of BEA in food and feed are also discussed. We hope this review will help to further understand the biological activities of BEA and cast some new light on drug discovery.
Collapse
Affiliation(s)
- Qinghua Wu
- College of Life Science, Yangtze University, Jingzhou, China.,Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, Czechia
| | - Jiri Patocka
- Toxicology and Civil Protection, Faculty of Health and Social Studies, Institute of Radiology, University of South Bohemia České Budějovice, České Budějovice, Czechia.,Biomedical Research Centre, University Hospital, Hradec Kralove, Czechia
| | - Eugenie Nepovimova
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, Czechia
| | - Kamil Kuca
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, Czechia
| |
Collapse
|
34
|
Fraeyman S, Meyer E, Devreese M, Antonissen G, Demeyere K, Haesebrouck F, Croubels S. Comparative in vitro cytotoxicity of the emerging Fusarium mycotoxins beauvericin and enniatins to porcine intestinal epithelial cells. Food Chem Toxicol 2018; 121:566-572. [PMID: 30266312 DOI: 10.1016/j.fct.2018.09.053] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 09/21/2018] [Accepted: 09/23/2018] [Indexed: 02/06/2023]
Abstract
The emerging Fusarium mycotoxins beauvericin (BEA) and enniatin (ENN) A, ENN A1, ENN B and ENN B1 gain increasing interest due to their highly prevalent contamination of cereals and cereal products. After oral intake, the gastro-intestinal tract is the first possible site of interaction. In the present in vitro study, the relative cytotoxicity of these mycotoxins towards proliferating and differentiated intestinal porcine epithelial cells of the jejunum (IPEC-J2) was evaluated using flow cytometric viability analysis. IPEC-J2 cells showed the highest sensitivity to BEA and ENN A. In proliferating cells, incubation for 24h with 10 μM BEA caused complete disruption, while the viability percentage declined to 32% after 24h of incubation with 10 μM ENN A. ENN A1 and ENN B1 were less cytotoxic with 87% and 93% viable cells after 24h of incubation with 10 μM ENN A1 and B1, respectively. ENN B was the least cytotoxic since incubation at concentrations up to 100 μM resulted in 83% viable proliferating cells. The same trend was observed for differentiated cells. The limited in vitro cytotoxic effect of ENN B on intestinal cells corroborates previous in vivo findings in broiler chicken in which dietary ENN B had minimal effect on intestinal morphometry.
Collapse
Affiliation(s)
- Sophie Fraeyman
- Department of Pharmacology, Toxicology and Biochemistry, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820, Merelbeke, Belgium.
| | - Evelyne Meyer
- Department of Pharmacology, Toxicology and Biochemistry, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820, Merelbeke, Belgium.
| | - Mathias Devreese
- Department of Pharmacology, Toxicology and Biochemistry, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820, Merelbeke, Belgium.
| | - Gunther Antonissen
- Department of Pharmacology, Toxicology and Biochemistry, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820, Merelbeke, Belgium; Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820, Merelbeke, Belgium.
| | - Kristel Demeyere
- Department of Pharmacology, Toxicology and Biochemistry, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820, Merelbeke, Belgium.
| | - Freddy Haesebrouck
- Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820, Merelbeke, Belgium.
| | - Siska Croubels
- Department of Pharmacology, Toxicology and Biochemistry, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820, Merelbeke, Belgium.
| |
Collapse
|
35
|
Genome Sequence of the Emerging Mycotoxin-Producing Filamentous Fungus Fusarium tricinctum Strain INRA104. GENOME ANNOUNCEMENTS 2018; 6:6/25/e00509-18. [PMID: 29930037 PMCID: PMC6013609 DOI: 10.1128/genomea.00509-18] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The genome of the phytopathogenic fungus Fusarium tricinctum strain INRA104 was sequenced at a fold-coverage of more than 500×. This led to 23 scaffolds, including one scaffold for the mitochondrial genome, for a total genome size of 42.8 Mb, with an average GC content of 45% and 13,387 predicted genes. The genome of the phytopathogenic fungus Fusarium tricinctum strain INRA104 was sequenced at a fold-coverage of more than 500×. This led to 23 scaffolds, including one scaffold for the mitochondrial genome, for a total genome size of 42.8 Mb, with an average GC content of 45% and 13,387 predicted genes.
Collapse
|
36
|
Chronic Dietary Intake of Enniatin B in Broiler Chickens Has Low Impact on Intestinal Morphometry and Hepatic Histology, and Shows Limited Transfer to Liver Tissue. Toxins (Basel) 2018; 10:toxins10010045. [PMID: 29346316 PMCID: PMC5793132 DOI: 10.3390/toxins10010045] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Revised: 01/09/2018] [Accepted: 01/15/2018] [Indexed: 11/17/2022] Open
Abstract
The Fusarium mycotoxin enniatin B (ENN B) is a so-called emerging mycotoxin frequently contaminating poultry feed. To investigate the impact of chronic ENN B exposure on animal health, broiler chickens were fed either a diet naturally contaminated with ENN B (2352 µg/kg) or a control diet (135 µg/kg) for 2, 7, 14, or 21 days. ENN B concentrations were determined in plasma and liver using a validated ultra-high performance liquid chromatography—tandem mass spectrometry UHPLC-MS/MS method. Liver was evaluated histologically, and the villus length and crypt depth of the duodenum, jejunum, and ileum were measured. Histopathology of the livers did not reveal major abnormalities. Feeding an ENN B-contaminated diet could possibly inhibit the proliferation of enterocytes in the duodenal crypts, but did not affect villus length, crypt depth, or villus length-crypt depth ratio of the jejunum and ileum. ENN B levels in plasma and liver were significantly higher in the ENN B-fed group and ranged between <25–264 pg/mL and <0.05–0.85 ng/g, respectively. ENN B carry-over rates from feed to liver tissue were 0.005–0.014% and 0.034–0.109% in the ENN B and control group, respectively. Carry-over rates were low and indicated a limited contribution of poultry tissue-derived products to the total dietary ENN B intake for humans. The above results support the opinion of the European Food Safety Authority stating that adverse health effects from ENN B in broiler chickens are unlikely.
Collapse
|
37
|
In vitro mechanisms of Beauvericin toxicity: A review. Food Chem Toxicol 2017; 111:537-545. [PMID: 29154952 DOI: 10.1016/j.fct.2017.11.019] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Revised: 11/02/2017] [Accepted: 11/14/2017] [Indexed: 11/21/2022]
Abstract
Beauvericin (BEA) is a mycotoxin produced by many species of fungus Fusarium and by Beauveria bassiana; BEA is a natural contaminant of cereals and cereals based products and possesses a wide variety of biological properties. The mechanism of action seems to be related to its ionophoric activity, that increases ion permeability in biological membranes. As a consequence, BEA causes cytotoxicity in several cell lines and is capable to produce oxidative stress at molecular level. Moreover, BEA is genotoxic (produces DNA fragmentation, chromosomal aberrations and micronucleus) and causes apoptosis with the involvement of mitochondrial pathway. However, several antioxidant mechanisms protect cells against oxidative stress produced by BEA. Despite its strong cytotoxicity, no risk assessment have been still carried out by authorities due to a lack of toxicity data, so research on BEA toxicological impact is still going on. This review reports information available regarding BEA mechanistic toxicology with the aim of updating information regarding last researches on this mycotoxin.
Collapse
|
38
|
Prosperini A, Berrada H, Ruiz MJ, Caloni F, Coccini T, Spicer LJ, Perego MC, Lafranconi A. A Review of the Mycotoxin Enniatin B. Front Public Health 2017; 5:304. [PMID: 29201864 PMCID: PMC5697211 DOI: 10.3389/fpubh.2017.00304] [Citation(s) in RCA: 99] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Accepted: 11/02/2017] [Indexed: 12/29/2022] Open
Abstract
Mycotoxin enniatin B (ENN B) is a secondary metabolism product by Fusarium fungi. It is a well-known antibacterial, antihelmintic, antifungal, herbicidal, and insecticidal compound. It has been found as a contaminant in several food commodities, particularly in cereal grains, co-occurring also with other mycotoxins. The primary mechanism of action of ENN B is mainly due to its ionophoric characteristics, but the exact mechanism is still unclear. In the last two decades, it has been a topic of great interest since its potent mammalian cytotoxic activity was demonstrated in several mammalian cell lines. Moreover, the co-exposure in vitro with other mycotoxins enhances its toxic potential through synergic effects, depending on the concentrations tested. Despite its clear cytotoxic effect, European Food Safety Authority stated that acute exposure to ENNs, such as ENN B, does not indicate concern for human health, but a concern might be the chronic exposure. However, given the lack of relevant toxicity data, no firm conclusion could be drawn and a risk assessment was not possible. In fact, very few studies have been carried out in vivo and, in these studies, no adverse effects were observed. So, research on toxicological effects induced by ENN B is still on-going. Recently, some studies are dealing with new advances regarding ENN B. This review summarizes the information on biochemical and biological activity of ENN B, focusing on toxicological aspects and on the latest advances in research on ENN B.
Collapse
Affiliation(s)
- Alessandra Prosperini
- Laboratory of Toxicology, Faculty of Pharmacy, University of Valencia, Valencia, Spain
| | - Houda Berrada
- Laboratory of Toxicology, Faculty of Pharmacy, University of Valencia, Valencia, Spain
| | - María José Ruiz
- Laboratory of Toxicology, Faculty of Pharmacy, University of Valencia, Valencia, Spain
| | - Francesca Caloni
- Department of Veterinary Medicine (DIMEVET), Università degli Studi di Milano, Milan, Italy
| | - Teresa Coccini
- Laboratory of Clinical and Experimental Toxicology, Toxicology Unit, Maugeri Clinical Scientific Institutes SpA-BS, IRCCS Pavia, Pavia, Italy
| | - Leon J Spicer
- Department of Animal Science, Oklahoma State University, Stillwater, OK, United States
| | - Maria Chiara Perego
- Department of Animal Science, Oklahoma State University, Stillwater, OK, United States
| | - Alessandra Lafranconi
- Centro di Studio e Ricerca sulla Sanità Pubblica (CESP), Università Milano Bicocca, Milan, Italy.,Department of International Health, FHML, CAPHRI, Maastricht University, Maastricht, Netherlands
| |
Collapse
|
39
|
Forthcoming Challenges in Mycotoxins Toxicology Research for Safer Food-A Need for Multi-Omics Approach. Toxins (Basel) 2017; 9:toxins9010018. [PMID: 28054977 PMCID: PMC5308250 DOI: 10.3390/toxins9010018] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Revised: 12/29/2016] [Accepted: 01/02/2017] [Indexed: 01/18/2023] Open
Abstract
The presence of mycotoxins in food represents a severe threat for public health and welfare, and poses relevant research challenges in the food toxicology field. Nowadays, food toxicologists have to provide answers to food-related toxicological issues, but at the same time they should provide the appropriate knowledge in background to effectively support the evidence-based decision-making in food safety. Therefore, keeping in mind that regulatory actions should be based on sound scientific findings, the present opinion addresses the main challenges in providing reliable data for supporting the risk assessment of foodborne mycotoxins.
Collapse
|