1
|
Dai JZ, Hsu WJ, Lin MH, Shueng PW, Lee CC, Yang CC, Lin CW. YAP-mediated DDX3X confers resistance to ferroptosis in breast cancer cells by reducing lipid peroxidation. Free Radic Biol Med 2025; 232:330-339. [PMID: 40089076 DOI: 10.1016/j.freeradbiomed.2025.03.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 03/04/2025] [Accepted: 03/13/2025] [Indexed: 03/17/2025]
Abstract
Metabolic shifts in cancer cells were found to participate in tumorigenesis, especially driving chemotherapeutic resistance. Ferroptosis is a newly discovered form of cell death induced by excessive accumulations of iron and lipid peroxidation. Susceptibility to ferroptosis can be intrinsically regulated by various cellular metabolic pathways. Therefore, inducing ferroptosis might be a promising anticancer therapeutic strategy. DEAD-box helicase 3 X-linked (DDX3X), a critical modulator of RNA metabolism, was identified as an oncogene in breast cancer and also participates in cancer metabolism and chemotherapeutic resistance. However, the molecular regulation of the association between DDX3X and ferroptosis is largely unknown. Herein, we investigated the correlation between resistance to ferroptosis and DDX3X expression in breast cancer cells. We found that elevation of DDX3X was associated with increased resistance to a ferroptosis inducer in breast cancer cells, and manipulating DDX3X expression regulated the sensitivity to the ferroptosis inducer. Importantly, DDX3X upregulated expression of the anti-ferroptotic enzyme glutathione peroxidase 4 (GPX4) gene to confer ferroptosis resistance in breast cancer cells. Moreover, DDX3X was transcriptionally upregulated by the yes-associated protein (YAP). Knockdown of YAP downregulated DDX3X mRNA expression and facilitated lipid peroxidation, but that were restored in the presence of DDX3X. Clinically, coexpression of DDX3X and YAP was found in a variety of malignancy, and their elevation conferred poor survival prognosis in patients with breast cancer. Together, our findings reveal the crucial role of DDX3X in sensitivity to ferroptosis and underscore its potential as a diagnostic marker and therapeutic target. DDX3X renders resistance to ferroptosis and plays a role in mitigating lipid peroxidation, paving the way for therapeutic vulnerability via targeting cancer metabolism.
Collapse
Affiliation(s)
- Jia-Zih Dai
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan; Department of Biochemistry and Molecular Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Wen-Jing Hsu
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan; Department of Biochemistry and Molecular Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Mei-Hsiang Lin
- Graduate Institute of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Pei-Wei Shueng
- Division of Radiation Oncology, Department of Radiology, Far Eastern Memorial Hospital, New Taipei City, Taiwan; School of Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Chi-Ching Lee
- Istanbul Sabahattin Zaim University, Faculty of Engineering and Natural Sciences, Department of Food Engineering, Istanbul, Turkey; Department of Food Technology and Nutrition, Faculty of Technologies, Klaipėda State University of Applied Sciences, Lithuania
| | - Ching-Chieh Yang
- Department of Radiation Oncology, Chi Mei Medical Center, Tainan, Taiwan; Department of Pharmacy, Chia-Nan University of Pharmacy and Science, Tainan, Taiwan; School of Medicine, College of Medicine, National Sun Yat-sen University, Kaohsiung, Taiwan.
| | - Cheng-Wei Lin
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan; Department of Biochemistry and Molecular Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan; Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung, Taiwan.
| |
Collapse
|
2
|
Xu X, Wei S. Diverse mechanisms of DDX3Y suppression by DDX3X. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.08.637260. [PMID: 39975375 PMCID: PMC11839027 DOI: 10.1101/2025.02.08.637260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
The DEAD-box RNA helicase DDX3X has important roles in development and disease. Loss of DDX3X during developmental and pathological processes such as tumorigenesis can lead to compensatory upregulation of the close paralog DDX3Y in males, which may underlie the sexual dimorphism displayed by some DDX3X-associated diseases. However, how DDX3X cross-regulates DDX3Y remains largely unknown. Here, we investigated the regulation of DDX3Y by DDX3X in two male-derived human cancer cell lines, HCT116 and U87MG. Depletion of DDX3X in HCT116 cells results in moderately increased DDX3Y mRNA and protein, in part due to stabilization of DDX3Y transcripts. Conversely, reduction of DDX3X in U87MG cells markedly upregulates DDX3Y protein without affecting its mRNA, mainly by enhancing DDX3Y protein stability. We further show that DDX3X physically interacts with DDX3Y. DDX3Y is much less stable than DDX3X in U87MG cells, and substitution of two lysine residues in DDX3Y with the corresponding arginine in DDX3X stabilizes DDX3Y. Thus, the compensatory upregulation of DDX3Y following DDX3X loss can occur at either transcript or protein level, suggesting complex and cell type-specific cross-regulation between these X- and Y-linked paralogs to keep the total DDX3 dosage in check.
Collapse
Affiliation(s)
- Xiaolu Xu
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA
| | - Shuo Wei
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA
| |
Collapse
|
3
|
Trussina IREA, Hartmann A, Desroches Altamirano C, Natarajan J, Fischer CM, Aleksejczuk M, Ausserwöger H, Knowles TPJ, Schlierf M, Franzmann TM, Alberti S. G3BP-driven RNP granules promote inhibitory RNA-RNA interactions resolved by DDX3X to regulate mRNA translatability. Mol Cell 2025; 85:585-601.e11. [PMID: 39729994 DOI: 10.1016/j.molcel.2024.11.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 10/08/2024] [Accepted: 11/27/2024] [Indexed: 12/29/2024]
Abstract
Ribonucleoprotein (RNP) granules have been linked to translation regulation and disease, but their assembly and regulatory mechanisms are not well understood. Here, we show that the RNA-binding protein G3BP1 preferentially interacts with unfolded RNA, driving the assembly of RNP granule-like condensates that establish RNA-RNA interactions. These RNA-RNA interactions limit the mobility and translatability of sequestered mRNAs and stabilize the condensates. The DEAD-box RNA helicase DDX3X attenuates RNA-RNA interactions inside RNP granule-like condensates, rendering the condensates dynamic and enabling mRNA translation. Importantly, disease-associated and catalytically inactive DDX3X variants fail to resolve such RNA-RNA interactions. Inhibiting DDX3X in cultured cells accelerates RNP granule assembly and delays their disassembly, indicating that RNA-RNA interactions contribute to RNP granule stability in cells. Our findings reveal how RNP granules generate inhibitory RNA-RNA interactions that are modulated by DEAD-box RNA helicases to ensure RNA availability and translatability.
Collapse
Affiliation(s)
- Irmela R E A Trussina
- Biotechnology Center, Center for Molecular and Cellular Bioengineering, TU Dresden, Dresden 01307 Saxony, Germany
| | - Andreas Hartmann
- B CUBE Center for Molecular Bioengineering, TU Dresden, Dresden 01307 Saxony, Germany
| | | | - Janani Natarajan
- Biotechnology Center, Center for Molecular and Cellular Bioengineering, TU Dresden, Dresden 01307 Saxony, Germany
| | - Charlotte M Fischer
- Yusuf Hamied Department of Chemistry, Centre for Misfolding Diseases, University of Cambridge, Cambridge CB2 1EW, UK
| | - Marta Aleksejczuk
- Biotechnology Center, Center for Molecular and Cellular Bioengineering, TU Dresden, Dresden 01307 Saxony, Germany
| | - Hannes Ausserwöger
- Yusuf Hamied Department of Chemistry, Centre for Misfolding Diseases, University of Cambridge, Cambridge CB2 1EW, UK
| | - Tuomas P J Knowles
- Yusuf Hamied Department of Chemistry, Centre for Misfolding Diseases, University of Cambridge, Cambridge CB2 1EW, UK
| | - Michael Schlierf
- B CUBE Center for Molecular Bioengineering, TU Dresden, Dresden 01307 Saxony, Germany; Cluster of Excellence Physics of Life, TU Dresden, Dresden 01307 Saxony, Germany
| | - Titus M Franzmann
- Biotechnology Center, Center for Molecular and Cellular Bioengineering, TU Dresden, Dresden 01307 Saxony, Germany
| | - Simon Alberti
- Biotechnology Center, Center for Molecular and Cellular Bioengineering, TU Dresden, Dresden 01307 Saxony, Germany; Cluster of Excellence Physics of Life, TU Dresden, Dresden 01307 Saxony, Germany.
| |
Collapse
|
4
|
Rengarajan S, Derks J, Bellott DW, Slavov N, Page DC. Post-transcriptional cross- and auto-regulation buffer expression of the human RNA helicases DDX3X and DDX3Y. Genome Res 2025; 35:20-30. [PMID: 39794123 PMCID: PMC11789639 DOI: 10.1101/gr.279707.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 11/26/2024] [Indexed: 01/13/2025]
Abstract
The Y-linked gene DDX3Y and its X-linked homolog DDX3X survived the evolution of the human sex chromosomes from ordinary autosomes. DDX3X encodes a multifunctional RNA helicase, with mutations causing developmental disorders and cancers. We find that, among X-linked genes with surviving Y homologs, DDX3X is extraordinarily dosage sensitive. Studying cells of individuals with sex chromosome aneuploidy, we observe that when the number of Y Chromosomes increases, DDX3X transcript levels fall; conversely, when the number of X Chromosomes increases, DDX3Y transcript levels fall. In 46,XY cells, CRISPRi knockdown of either DDX3X or DDX3Y causes transcript levels of the homologous gene to rise. In 46,XX cells, chemical inhibition of DDX3X protein activity elicits an increase in DDX3X transcript levels. Thus, perturbation of either DDX3X or DDX3Y expression is buffered: by negative cross-regulation of DDX3X and DDX3Y in 46,XY cells and by negative auto-regulation of DDX3X in 46,XX cells. DDX3X-DDX3Y cross-regulation is mediated through mRNA destabilization-as shown by metabolic labeling of newly transcribed RNA-and buffers total levels of DDX3X and DDX3Y protein in human cells. We infer that post-transcriptional auto-regulation of the ancestral (autosomal) DDX3X gene transmuted into auto- and cross-regulation of DDX3X and DDX3Y as these sex-linked genes evolved from ordinary alleles of their autosomal precursor.
Collapse
Affiliation(s)
- Shruthi Rengarajan
- Whitehead Institute, Cambridge, Massachusetts 02142, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Jason Derks
- Departments of Bioengineering, Biology, Chemistry, and Chemical Biology, Single Cell Proteomics Center, and Barnett Institute, Northeastern University, Boston, Massachusetts 02115, USA
| | | | - Nikolai Slavov
- Departments of Bioengineering, Biology, Chemistry, and Chemical Biology, Single Cell Proteomics Center, and Barnett Institute, Northeastern University, Boston, Massachusetts 02115, USA
| | - David C Page
- Whitehead Institute, Cambridge, Massachusetts 02142, USA;
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
- Howard Hughes Medical Institute, Whitehead Institute, Cambridge, Massachusetts 02142, USA
| |
Collapse
|
5
|
Jiang F, Liu W, Zhou Y, Lin S, Zhang Q, Zhang W, Xue Y, Li C, Gao A, Shao M, Liao S, Ma T, Yu X. Bortezomib induces cell apoptosis and increases the efficacy of αPD-1 in BCR::ABL T315I mutation CML by targeting UBE2Q1. Int Immunopharmacol 2024; 143:113311. [PMID: 39454411 DOI: 10.1016/j.intimp.2024.113311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 09/12/2024] [Accepted: 09/30/2024] [Indexed: 10/28/2024]
Abstract
The BCR:ABL T315I mutation presents a significant challenge in the current management of Chronic Myeloid Leukemia (CML), highlighting the need to identify novel targets and drugs. In our study, we observed the elevated expression of UBE2Q1 in KBM5-T315I cells compared to KBM5 cells, where it interacted with DDX3, regulating its ubiquitination. Furthermore, we found that Bortezomib (BTZ) targeted UBE2Q1, reducing its protein level expression. Consequently, BTZ dose-dependently inhibited the growth vitality of KBM5-T315I cells, inducing increased ROS production, mitochondrial membrane potential collapse, cytochrome C release, and expression of apoptosis-related proteins. These events collectively induced apoptosis in KBM5-T315I cells. Moreover, BTZ enhanced the therapeutic effects of anti-PD-1 treatment. In NOD/SCID mice bearing KBM5-T315I cell line xenografts, BTZ administration (2 mg/kg, ip, every other day for 4 weeks) significantly inhibited the growth of KBM5-T315Iderived xenografts and extended survival. In conclusion, our study sheds new light on the BTZ-induced apoptosis mechanism, suggesting the potential of BTZ as a promising chemo-immunotherapy agent against BCR:ABL T315I mutation CML.
Collapse
MESH Headings
- Animals
- Bortezomib/pharmacology
- Bortezomib/therapeutic use
- Humans
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics
- Apoptosis/drug effects
- Fusion Proteins, bcr-abl/genetics
- Fusion Proteins, bcr-abl/metabolism
- Mice, SCID
- Cell Line, Tumor
- Mice, Inbred NOD
- Mice
- Mutation
- Ubiquitin-Conjugating Enzymes/genetics
- Ubiquitin-Conjugating Enzymes/metabolism
- Programmed Cell Death 1 Receptor/metabolism
- Programmed Cell Death 1 Receptor/antagonists & inhibitors
- Programmed Cell Death 1 Receptor/genetics
- Xenograft Model Antitumor Assays
- Antineoplastic Agents/pharmacology
- Antineoplastic Agents/therapeutic use
- Drug Synergism
- Female
Collapse
Affiliation(s)
- Fengyu Jiang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Wenjie Liu
- Department of Hematology, the First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing 210029, PR China
| | - Yanyu Zhou
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Siwei Lin
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Qin Zhang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Wan Zhang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Yangyang Xue
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Cenming Li
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Anran Gao
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Miaomiao Shao
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Shanting Liao
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Tonghui Ma
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Xiaoxuan Yu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, PR China; State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, PR China.
| |
Collapse
|
6
|
Ruengket P, Roytrakul S, Tongthainan D, Boonnak K, Taruyanon K, Sangkharak B, Fungfuang W. Analysis of the serum proteome profile of wild stump-tailed macaques ( Macaca arctoides) seropositive for Zika virus antibodies in Thailand. Front Vet Sci 2024; 11:1463160. [PMID: 39600882 PMCID: PMC11588686 DOI: 10.3389/fvets.2024.1463160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 10/29/2024] [Indexed: 11/29/2024] Open
Abstract
Zika virus (ZIKV) is a member of the Flaviviridae virus family and poses a significant global health concern. ZIKV is transmitted by Aedes mosquitoes, and it has been implicated in various neurological conditions associated with fetal brain development. ZIKV has two transmission cycles: a sylvatic cycle in which nonhuman primates are infected via arboreal mosquito bites, and an interhuman (urban) cycle in which the virus is transmitted among primates by Aedes mosquitoes. ZIKV was first discovered in wild macaques, and the danger posed by the virus is increased due to the close proximity between humans and wild animals in modern society. However, data regarding the extent and role of infection in nonhuman primates are limited. Thus, there is an urgent need for improved surveillance, diagnostic methods, and public health interventions to effectively combat ZIKV transmission and its associated health impacts in Southeast Asia. In this study, we used a proteomics and bioinformatics approach to profile serum proteins in wild stump-tailed macaques seropositive for neutralizing antibodies against ZIKV. A total of 9,532 total proteins were identified, and 338 differentially expressed proteins were identified between naïve and seropositive animals. A total of 52 important proteins were used to construct a serum proteomic profile. These 52 important proteins were associated with immune and inflammatory responses (36.54%), neurological damage (23.08%), viral activities (21.15%), the apoptosis signaling pathway (9.61%), and other pathways (9.61%). Our proteomic profile identified proteins that inhibit the apoptosis pathway, intracellular resource competition with the virus, and neurological damage due to ZIKV and the host immune and defense responses.
Collapse
Affiliation(s)
- Pakorn Ruengket
- Genetic Engineering and Bioinformatics Program, Graduate School, Kasetsart University, Bangkok, Thailand
| | - Sittiruk Roytrakul
- Functional Proteomics Technology Laboratory, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency, Pathum Thani, Thailand
| | - Daraka Tongthainan
- Faculty of Veterinary Medicine, The Rajamangala University of Technology Tawan-ok, Chonburi, Thailand
| | - Kobporn Boonnak
- Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Kanokwan Taruyanon
- Wildlife Conservation Division Protected Areas Regional Office 3, Department of National Parks, Wildlife and Plant Conservation, Ratchaburi, Thailand
| | - Bencharong Sangkharak
- Wildlife Conservation Division, Department of National Parks, Wildlife and Plant Conservation, Bangkok, Thailand
| | - Wirasak Fungfuang
- Department of Zoology, Faculty of Science, Kasetsart University, Bangkok, Thailand
| |
Collapse
|
7
|
Duan W, Huang G, Sui Y, Wang K, Yu Y, Chu X, Cao X, Chen L, Liu J, Eichler EE, Xiong B. Deficiency of DDX3X results in neurogenesis defects and abnormal behaviors via dysfunction of the Notch signaling. Proc Natl Acad Sci U S A 2024; 121:e2404173121. [PMID: 39471229 PMCID: PMC11551356 DOI: 10.1073/pnas.2404173121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 09/23/2024] [Indexed: 11/01/2024] Open
Abstract
The molecular mechanisms underlying the neurodevelopmental disorders (NDDs) caused by DDX3X variants remain poorly understood. In this study, we validated that de novo DDX3X variants are enriched in female developmental delay (DD) patients and mainly affect the evolutionarily conserved amino acids based on a meta-analysis of 46,612 NDD trios. We generated a ddx3x deficient zebrafish allele, which exhibited reduced survival rate, DD, microcephaly, adaptation defects, anxiolytic behaviors, social interaction deficits, and impaired spatial recognitive memory. As revealed by single-nucleus RNA sequencing and biological validations, ddx3x deficiency leads to reduced neural stem cell pool, decreased total neuron number, and imbalanced differentiation of excitatory and inhibitory neurons, which are responsible for the behavioral defects. Indeed, the supplementation of L-glutamate or glutamate receptor agonist ly404039 could partly rescue the adaptation and social deficits. Mechanistically, we reveal that the ddx3x deficiency attenuates the stability of the crebbp mRNA, which in turn causes downregulation of Notch signaling and defects in neurogenesis. Our study sheds light on the molecular pathology underlying the abnormal neurodevelopment and behavior of NDD patients with DDX3X mutations, as well as providing potential therapeutic targets for the precision treatment.
Collapse
Affiliation(s)
- Weicheng Duan
- Department of Forensic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan430030, China
| | - Guiyang Huang
- Department of Forensic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan430030, China
- Department of Neurobiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan430030, China
| | - Yang Sui
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA98195
| | - Kang Wang
- Department of Forensic Medicine, Nanjing Medical University, Nanjing211166, China
| | - Yuxin Yu
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan430022, China
| | - Xufeng Chu
- Department of Forensic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan430030, China
| | - Xu Cao
- Department of Forensic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan430030, China
| | - Liangpei Chen
- Department of Forensic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan430030, China
| | - Jiahui Liu
- Department of Forensic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan430030, China
| | - Evan E. Eichler
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA98195
- HHMI, University of Washington, Seattle, WA98195
| | - Bo Xiong
- Department of Forensic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan430030, China
- Institute of Brain Research, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan430030, China
| |
Collapse
|
8
|
Tapescu I, Cherry S. DDX RNA helicases: key players in cellular homeostasis and innate antiviral immunity. J Virol 2024; 98:e0004024. [PMID: 39212449 PMCID: PMC11494928 DOI: 10.1128/jvi.00040-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024] Open
Abstract
RNA helicases are integral in RNA metabolism, performing important roles in cellular homeostasis and stress responses. In particular, the DExD/H-box (DDX) helicase family possesses a conserved catalytic core that binds structural features rather than specific sequences in RNA targets. DDXs have critical roles in all aspects of RNA metabolism including ribosome biogenesis, translation, RNA export, and RNA stability. Importantly, functional specialization within this family arises from divergent N and C termini and is driven at least in part by gene duplications with 18 of the 42 human helicases having paralogs. In addition to their key roles in the homeostatic control of cellular RNA, these factors have critical roles in RNA virus infection. The canonical RIG-I-like receptors (RLRs) play pivotal roles in cytoplasmic sensing of viral RNA structures, inducing antiviral gene expression. Additional RNA helicases function as viral sensors or regulators, further diversifying the innate immune defense arsenal. Moreover, some of these helicases have been coopted by viruses to facilitate their replication. Altogether, DDX helicases exhibit functional specificity, playing intricate roles in RNA metabolism and host defense. This review will discuss the mechanisms by which these RNA helicases recognize diverse RNA structures in cellular and viral RNAs, and how this impacts RNA processing and innate immune responses.
Collapse
Affiliation(s)
- Iulia Tapescu
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Biochemistry and Biophysics Graduate Group, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Sara Cherry
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
9
|
Sharma A, Raut SS, Shukla A, Gupta S, Singh A, Mishra A. DDX3X dynamics, glioblastoma's genetic landscape, therapeutic advances, and autophagic interplay. Med Oncol 2024; 41:258. [PMID: 39368002 DOI: 10.1007/s12032-024-02525-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 09/23/2024] [Indexed: 10/07/2024]
Abstract
Glioblastoma is one of the most aggressive and deadly forms of cancer, posing significant challenges for the medical community. This review focuses on key aspects of Glioblastoma, including its genetic differences between primary and secondary types. Temozolomide is a major first-line treatment for Glioblastoma, and this article explores its development, how it works, and the issue of resistance that limits its effectiveness, prompting the need for new treatment strategies. Gene expression profiling has greatly advanced cancer research by revealing the molecular mechanisms of tumors, which is essential for creating targeted therapies for Glioblastoma. One important protein in this context is DDX3X, which plays various roles in cancer, sometimes promoting it or otherwise suppressing it. Additionally, autophagy, a process that maintains cellular balance, has complex implications in cancer treatment. Understanding autophagy helps to identify resistance mechanisms and potential treatments, with Chloroquine showing promise in treating Glioblastoma. This review covers the interplay between Glioblastoma, DDX3X, and autophagy, highlighting the challenges and potential strategies in treating this severe disease.
Collapse
Affiliation(s)
- Arpit Sharma
- Biomolecular Engineering Laboratory, School of Biochemical Engineering, Indian Institute of Technology (BHU), Varanasi, 221005, India
| | - Shruti S Raut
- Biomolecular Engineering Laboratory, School of Biochemical Engineering, Indian Institute of Technology (BHU), Varanasi, 221005, India
| | - Alok Shukla
- Biomolecular Engineering Laboratory, School of Biochemical Engineering, Indian Institute of Technology (BHU), Varanasi, 221005, India
| | - Shivani Gupta
- Biomolecular Engineering Laboratory, School of Biochemical Engineering, Indian Institute of Technology (BHU), Varanasi, 221005, India
| | - Amit Singh
- Department of Pharmacology, IMS-Banaras Hindu University, Varanasi, 221005, India.
| | - Abha Mishra
- Biomolecular Engineering Laboratory, School of Biochemical Engineering, Indian Institute of Technology (BHU), Varanasi, 221005, India.
| |
Collapse
|
10
|
Mao Q, Ma S, Li S, Zhang Y, Li S, Wang W, Wang F, Guo Z, Wang C. PRRSV hijacks DDX3X protein and induces ferroptosis to facilitate viral replication. Vet Res 2024; 55:103. [PMID: 39155369 PMCID: PMC11331664 DOI: 10.1186/s13567-024-01358-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 05/16/2024] [Indexed: 08/20/2024] Open
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) is a severe disease with substantial economic consequences for the swine industry. The DEAD-box helicase 3 (DDX3X) is an RNA helicase that plays a crucial role in regulating RNA metabolism, immunological response, and even RNA virus infection. However, it is unclear whether it contributes to PRRSV infection. Recent studies have found that the expression of DDX3X considerably increases in Marc-145 cells when infected with live PRRSV strains Ch-1R and SD16; however, it was observed that inactivated viruses did not lead to any changes. By using the RK-33 inhibitor or DDX3X-specific siRNAs to reduce DDX3X expression, there was a significant decrease in the production of PRRSV progenies. In contrast, the overexpression of DDX3X in host cells substantially increased the proliferation of PRRSV. A combination of transcriptomics and metabolomics investigations revealed that in PRRSV-infected cells, DDX3X gene silencing severely affected biological processes such as ferroptosis, the FoxO signalling pathway, and glutathione metabolism. The subsequent transmission electron microscopy (TEM) imaging displayed the typical ferroptosis features in PRRSV-infected cells, such as mitochondrial shrinkage, reduction or disappearance of mitochondrial cristae, and cytoplasmic membrane rupture. Conversely, the mitochondrial morphology was unchanged in DDX3X-inhibited cells. Furthermore, silencing of the DDX3X gene changed the expression of ferroptosis-related genes and inhibited the virus proliferation, while the drug-induced ferroptosis inversely promoted PRRSV replication. In summary, these results present an updated perspective of how PRRSV infection uses DDX3X for self-replication, potentially leading to ferroptosis via various mechanisms that promote PRRSV replication.
Collapse
Affiliation(s)
- Qian Mao
- College of Veterinary Medicine, Northwest Agriculture and Forestry University, Yangling, China
| | - Shengming Ma
- Henan Joint International Research Laboratory of Veterinary Biologics Research and Application, Anyang Institute of Technology, Anyang, 455000, China
| | - Shuangyu Li
- College of Veterinary Medicine, Northwest Agriculture and Forestry University, Yangling, China
| | - Yuhua Zhang
- College of Veterinary Medicine, Northwest Agriculture and Forestry University, Yangling, China
| | - Shanshan Li
- College of Veterinary Medicine, Northwest Agriculture and Forestry University, Yangling, China
| | - Wenhui Wang
- College of Veterinary Medicine, Northwest Agriculture and Forestry University, Yangling, China
| | - Fang Wang
- College of Veterinary Medicine, Northwest Agriculture and Forestry University, Yangling, China
| | - Zekun Guo
- College of Life Science, Northwest Agriculture and Forestry University, Yangling, China.
| | - Chengbao Wang
- College of Veterinary Medicine, Northwest Agriculture and Forestry University, Yangling, China.
| |
Collapse
|
11
|
Wilkins KC, Schroeder T, Gu S, Revalde JL, Floor SN. A novel reporter for helicase activity in translation uncovers DDX3X interactions. RNA (NEW YORK, N.Y.) 2024; 30:1041-1057. [PMID: 38697667 PMCID: PMC11251518 DOI: 10.1261/rna.079837.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 04/12/2024] [Indexed: 05/05/2024]
Abstract
DDX3X regulates the translation of a subset of human transcripts containing complex 5' untranslated regions (5' UTRs). In this study, we developed the helicase activity reporter for translation (HART), which uses DDX3X-sensitive 5' UTRs to measure DDX3X-mediated translational activity in cells. To directly measure RNA structure in DDX3X-dependent mRNAs, we used SHAPE-MaP to determine the secondary structures present in DDX3X-sensitive 5' UTRs and then used HART to investigate how sequence alterations influence DDX3X sensitivity. Additionally, we identified residues 38-44 as potential mediators of DDX3X's interaction with the translational machinery. HART revealed that both DDX3X's association with the translational machinery and its helicase activity are required for its function in promoting the translation of DDX3X-sensitive 5' UTRs. These findings suggest DDX3X plays a crucial role in regulating translation through its interaction with the translational machinery during ribosome scanning and establish the HART reporter as a robust, lentivirally encoded, colorimetric measurement of DDX3X-dependent translation in cells.
Collapse
Affiliation(s)
- Kevin C Wilkins
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, California 94143, USA
- Graduate Division, University of California, San Francisco, San Francisco, California 94143, USA
| | - Till Schroeder
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, California 94143, USA
- Faculty of Chemistry and Pharmacy, Julius-Maximilians-University of Würzburg, Würzburg 97070, Germany
| | - Sohyun Gu
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, California 94143, USA
| | - Jezrael L Revalde
- Department of Pharmaceutical Chemistry, University of California, San Francisco, California 94143, USA
| | - Stephen N Floor
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, California 94143, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, California 94143, USA
| |
Collapse
|
12
|
Rengarajan S, Derks J, Bellott DW, Slavov N, Page DC. Post-transcriptional cross- and auto-regulation buffer expression of the human RNA helicases DDX3X and DDX3Y. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.08.602613. [PMID: 39026797 PMCID: PMC11257633 DOI: 10.1101/2024.07.08.602613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
The Y-linked gene DDX3Y and its X-linked homolog DDX3X survived the evolution of the human sex chromosomes from ordinary autosomes. DDX3X encodes a multi-functional RNA helicase, with mutations causing developmental disorders and cancers. We find that, among X-linked genes with surviving Y homologs, DDX3X is extraordinarily dosage-sensitive. Studying cells of individuals with sex chromosome aneuploidy, we observe that when the number of Y chromosomes increases, DDX3X transcript levels fall; conversely, when the number of X chromosomes increases, DDX3Y transcript levels fall. In 46,XY cells, CRISPRi knockdown of either DDX3X or DDX3Y causes transcript levels of the homologous gene to rise. In 46,XX cells, chemical inhibition of DDX3X protein activity elicits an increase in DDX3X transcript levels. Thus, perturbation of either DDX3X or DDX3Y expression is buffered - by negative cross-regulation of DDX3X and DDX3Y in 46,XY cells, and by negative auto-regulation of DDX3X in 46,XX cells. DDX3X-DDX3Y cross-regulation is mediated through mRNA destabilization - as shown by metabolic labeling of newly transcribed RNA - and buffers total levels of DDX3X and DDX3Y protein in human cells. We infer that post-transcriptional auto-regulation of the ancestral (autosomal) DDX3 gene transmuted into auto- and cross-regulation of DDX3X and DDX3Y as these sex-linked genes evolved from ordinary alleles of their autosomal precursor.
Collapse
Affiliation(s)
- Shruthi Rengarajan
- Whitehead Institute, Cambridge, MA 02142, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Jason Derks
- Departments of Bioengineering, Biology, Chemistry and Chemical Biology, Single Cell Proteomics Center, and Barnett Institute, Northeastern University, Boston, MA, USA
| | | | - Nikolai Slavov
- Departments of Bioengineering, Biology, Chemistry and Chemical Biology, Single Cell Proteomics Center, and Barnett Institute, Northeastern University, Boston, MA, USA
| | - David C Page
- Whitehead Institute, Cambridge, MA 02142, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Howard Hughes Medical Institute, Whitehead Institute, Cambridge, MA 02142, USA
| |
Collapse
|
13
|
Li F, Ma C, Lei S, Pan Y, Lin L, Pan C, Li Q, Geng F, Min D, Tang X. Gingipains may be one of the key virulence factors of Porphyromonas gingivalis to impair cognition and enhance blood-brain barrier permeability: An animal study. J Clin Periodontol 2024; 51:818-839. [PMID: 38414291 DOI: 10.1111/jcpe.13966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 01/24/2024] [Accepted: 02/08/2024] [Indexed: 02/29/2024]
Abstract
AIM Blood-brain barrier (BBB) disorder is one of the early findings in cognitive impairments. We have recently found that Porphyromonas gingivalis bacteraemia can cause cognitive impairment and increased BBB permeability. This study aimed to find out the possible key virulence factors of P. gingivalis contributing to the pathological process. MATERIALS AND METHODS C57/BL6 mice were infected with P. gingivalis or gingipains or P. gingivalis lipopolysaccharide (P. gingivalis LPS group) by tail vein injection for 8 weeks. The cognitive behaviour changes in mice, the histopathological changes in the hippocampus and cerebral cortex, the alternations of BBB permeability, and the changes in Mfsd2a and Cav-1 levels were measured. The mechanisms of Ddx3x-induced regulation on Mfsd2a by arginine-specific gingipain A (RgpA) in BMECs were explored. RESULTS P. gingivalis and gingipains significantly promoted mice cognitive impairment, pathological changes in the hippocampus and cerebral cortex, increased BBB permeability, inhibited Mfsd2a expression and up-regulated Cav-1 expression. After RgpA stimulation, the permeability of the BBB model in vitro increased, and the Ddx3x/Mfsd2a/Cav-1 regulatory axis was activated. CONCLUSIONS Gingipains may be one of the key virulence factors of P. gingivalis to impair cognition and enhance BBB permeability by the Ddx3x/Mfsd2a/Cav-1 axis.
Collapse
Affiliation(s)
- Fulong Li
- Department of Periodontics, School and Hospital of Stomatology, Liaoning Provincial Key Laboratory of Oral Disease, China Medical University, Shenyang, China
- Center of Implantology, School and Hospital of Stomatology, Liaoning Provincial Key Laboratory of Oral Disease, China Medical University, Shenyang, China
| | - Chunliang Ma
- Department of Periodontics, School and Hospital of Stomatology, Liaoning Provincial Key Laboratory of Oral Disease, China Medical University, Shenyang, China
| | - Shuang Lei
- Department of Pediatric Dentistry, School and Hospital of Stomatology, Liaoning Provincial Key Laboratory of Oral Disease, China Medical University, Shenyang, China
| | - Yaping Pan
- Department of Periodontics, School and Hospital of Stomatology, Liaoning Provincial Key Laboratory of Oral Disease, China Medical University, Shenyang, China
| | - Li Lin
- Department of Periodontics, School and Hospital of Stomatology, Liaoning Provincial Key Laboratory of Oral Disease, China Medical University, Shenyang, China
| | - Chunling Pan
- Department of Periodontics, School and Hospital of Stomatology, Liaoning Provincial Key Laboratory of Oral Disease, China Medical University, Shenyang, China
| | - Qian Li
- Department of Periodontics, School and Hospital of Stomatology, Liaoning Provincial Key Laboratory of Oral Disease, China Medical University, Shenyang, China
| | - Fengxue Geng
- Department of Periodontics, School and Hospital of Stomatology, Liaoning Provincial Key Laboratory of Oral Disease, China Medical University, Shenyang, China
| | - Dongyu Min
- Traditional Chinese Medicine Experimental Center, Affiliated Hospital of Liaoning University of Traditional Chinese Medicine, Shenyang, China
- Key Laboratory of Ministry of Education for TCM Viscera State Theory and Applications, Liaoning University of Traditional Chinese Medicine, Shenyang, China
| | - Xiaolin Tang
- Department of Periodontics, School and Hospital of Stomatology, Liaoning Provincial Key Laboratory of Oral Disease, China Medical University, Shenyang, China
| |
Collapse
|
14
|
Yeter-Alat H, Belgareh-Touzé N, Le Saux A, Huvelle E, Mokdadi M, Banroques J, Tanner NK. The RNA Helicase Ded1 from Yeast Is Associated with the Signal Recognition Particle and Is Regulated by SRP21. Molecules 2024; 29:2944. [PMID: 38931009 PMCID: PMC11206880 DOI: 10.3390/molecules29122944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 06/12/2024] [Accepted: 06/18/2024] [Indexed: 06/28/2024] Open
Abstract
The DEAD-box RNA helicase Ded1 is an essential yeast protein involved in translation initiation that belongs to the DDX3 subfamily. The purified Ded1 protein is an ATP-dependent RNA-binding protein and an RNA-dependent ATPase, but it was previously found to lack substrate specificity and enzymatic regulation. Here we demonstrate through yeast genetics, yeast extract pull-down experiments, in situ localization, and in vitro biochemical approaches that Ded1 is associated with, and regulated by, the signal recognition particle (SRP), which is a universally conserved ribonucleoprotein complex required for the co-translational translocation of polypeptides into the endoplasmic reticulum lumen and membrane. Ded1 is physically associated with SRP components in vivo and in vitro. Ded1 is genetically linked with SRP proteins. Finally, the enzymatic activity of Ded1 is inhibited by SRP21 in the presence of SCR1 RNA. We propose a model where Ded1 actively participates in the translocation of proteins during translation. Our results provide a new understanding of the role of Ded1 during translation.
Collapse
Affiliation(s)
- Hilal Yeter-Alat
- Expression Génétique Microbienne, UMR8261 CNRS, Université de Paris, 13 rue Pierre et Marie Curie, 75005 Paris, France; (H.Y.-A.); (A.L.S.); (E.H.); (M.M.); (J.B.)
- Expression Génétique Microbienne, Institut de Biologie Physico-Chimique, Paris Sciences et Lettres University, 75005 Paris, France
| | - Naïma Belgareh-Touzé
- Laboratoire de Biologie Moléculaire et Cellulaire des Eucaryotes, UMR8226 CNRS, Sorbonne Université, 13 rue Pierre et Marie Curie, 75005 Paris, France;
| | - Agnès Le Saux
- Expression Génétique Microbienne, UMR8261 CNRS, Université de Paris, 13 rue Pierre et Marie Curie, 75005 Paris, France; (H.Y.-A.); (A.L.S.); (E.H.); (M.M.); (J.B.)
- Expression Génétique Microbienne, Institut de Biologie Physico-Chimique, Paris Sciences et Lettres University, 75005 Paris, France
| | - Emmeline Huvelle
- Expression Génétique Microbienne, UMR8261 CNRS, Université de Paris, 13 rue Pierre et Marie Curie, 75005 Paris, France; (H.Y.-A.); (A.L.S.); (E.H.); (M.M.); (J.B.)
- Expression Génétique Microbienne, Institut de Biologie Physico-Chimique, Paris Sciences et Lettres University, 75005 Paris, France
| | - Molka Mokdadi
- Expression Génétique Microbienne, UMR8261 CNRS, Université de Paris, 13 rue Pierre et Marie Curie, 75005 Paris, France; (H.Y.-A.); (A.L.S.); (E.H.); (M.M.); (J.B.)
- Expression Génétique Microbienne, Institut de Biologie Physico-Chimique, Paris Sciences et Lettres University, 75005 Paris, France
- Laboratory of Molecular Epidemiology and Experimental Pathology, LR16IPT04, Institut Pasteur de Tunis, Université de Tunis El Manar, Tunis 1002, Tunisia
- Institut National des Sciences Appliquées et Technologies, Université de Carthage, Tunis 1080, Tunisia
| | - Josette Banroques
- Expression Génétique Microbienne, UMR8261 CNRS, Université de Paris, 13 rue Pierre et Marie Curie, 75005 Paris, France; (H.Y.-A.); (A.L.S.); (E.H.); (M.M.); (J.B.)
- Expression Génétique Microbienne, Institut de Biologie Physico-Chimique, Paris Sciences et Lettres University, 75005 Paris, France
| | - N. Kyle Tanner
- Expression Génétique Microbienne, UMR8261 CNRS, Université de Paris, 13 rue Pierre et Marie Curie, 75005 Paris, France; (H.Y.-A.); (A.L.S.); (E.H.); (M.M.); (J.B.)
- Expression Génétique Microbienne, Institut de Biologie Physico-Chimique, Paris Sciences et Lettres University, 75005 Paris, France
| |
Collapse
|
15
|
Verma SK, Kuyumcu-Martinez MN. RNA binding proteins in cardiovascular development and disease. Curr Top Dev Biol 2024; 156:51-119. [PMID: 38556427 PMCID: PMC11896630 DOI: 10.1016/bs.ctdb.2024.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2024]
Abstract
Congenital heart disease (CHD) is the most common birth defect affecting>1.35 million newborn babies worldwide. CHD can lead to prenatal, neonatal, postnatal lethality or life-long cardiac complications. RNA binding protein (RBP) mutations or variants are emerging as contributors to CHDs. RBPs are wizards of gene regulation and are major contributors to mRNA and protein landscape. However, not much is known about RBPs in the developing heart and their contributions to CHD. In this chapter, we will discuss our current knowledge about specific RBPs implicated in CHDs. We are in an exciting era to study RBPs using the currently available and highly successful RNA-based therapies and methodologies. Understanding how RBPs shape the developing heart will unveil their contributions to CHD. Identifying their target RNAs in the embryonic heart will ultimately lead to RNA-based treatments for congenital heart disease.
Collapse
Affiliation(s)
- Sunil K Verma
- Department of Molecular Physiology and Biological Physics, University of Virginia School of Medicine Charlottesville, VA, United States.
| | - Muge N Kuyumcu-Martinez
- Department of Molecular Physiology and Biological Physics, University of Virginia School of Medicine Charlottesville, VA, United States; Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA, United States; University of Virginia Cancer Center, Charlottesville, VA, United States.
| |
Collapse
|
16
|
Zhang H, Mañán-Mejías PM, Miles HN, Putnam AA, MacGillivray LR, Ricke WA. DDX3X and Stress Granules: Emerging Players in Cancer and Drug Resistance. Cancers (Basel) 2024; 16:1131. [PMID: 38539466 PMCID: PMC10968774 DOI: 10.3390/cancers16061131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 03/09/2024] [Accepted: 03/11/2024] [Indexed: 05/02/2024] Open
Abstract
The DEAD (Asp-Glu-Ala-Asp)-box helicase 3 X-linked (DDX3X) protein participates in many aspects of mRNA metabolism and stress granule (SG) formation. DDX3X has also been associated with signal transduction and cell cycle regulation that are important in maintaining cellular homeostasis. Malfunctions of DDX3X have been implicated in multiple cancers, including brain cancer, leukemia, prostate cancer, and head and neck cancer. Recently, literature has reported SG-associated cancer drug resistance, which correlates with a negative disease prognosis. Based on the connections between DDX3X, SG formation, and cancer pathology, targeting DDX3X may be a promising direction for cancer therapeutics development. In this review, we describe the biological functions of DDX3X in terms of mRNA metabolism, signal transduction, and cell cycle regulation. Furthermore, we summarize the contributions of DDX3X in SG formation and cellular stress adaptation. Finally, we discuss the relationships of DDX3X, SG, and cancer drug resistance, and discuss the current research progress of several DDX3X inhibitors for cancer treatment.
Collapse
Affiliation(s)
- Han Zhang
- Division of Pharmaceutical Sciences, School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Paula M. Mañán-Mejías
- Division of Pharmaceutical Sciences, School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Hannah N. Miles
- Division of Pharmaceutical Sciences, School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Andrea A. Putnam
- Department of Biomolecular Chemistry, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA
| | | | - William A. Ricke
- Division of Pharmaceutical Sciences, School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, USA
- Department of Urology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA
- George M. O’Brien Urology Research Center of Excellence, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA
| |
Collapse
|
17
|
Sato S, Ishii M, Tachibana K, Furukawa Y, Toyota T, Kinoshita S, Azusawa Y, Ando J, Ando M. Establishment of ganglioside GD2-expressing extranodal NK/T-cell lymphoma cell line with scRNA-seq analysis. Exp Hematol 2024; 130:104132. [PMID: 38029851 DOI: 10.1016/j.exphem.2023.11.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 11/14/2023] [Accepted: 11/19/2023] [Indexed: 12/01/2023]
Abstract
Extranodal natural killer (NK)/T-cell lymphoma, nasal type (ENKL), is characterized by Epstein-Barr virus infection and poor prognosis. We established a novel cell line, ENKL-J1, from bone marrow cells of an ENKL patient. We found that ENKL-J1 cells express the ganglioside GD2 (GD2) and that GD2-directed chimeric antigen receptor T cells exhibit cytotoxicity against ENKL-J1 cells, indicating that GD2 would be a suitable target of GD2-expressing ENKL cells. Targeted next-generation sequencing revealed TP53 and TET2 variants in ENKL-J1 cells. Furthermore, single-cell RNA sequencing in ENKL-J1 cells showed high gene-expression levels in the oncogenic signaling pathways JAK-STAT, NF-κB, and MAPK. Genes related to multidrug resistance (ABCC1), tumor suppression (ATG5, CRYBG1, FOXO3, TP53, MGA), anti-apoptosis (BCL2, BCL2L1), immune checkpoints (CD274, CD47), and epigenetic regulation (DDX3X, EZH2, HDAC2/3) also were expressed at high levels. The molecular targeting agents eprenetapopt, tazemetostat, and vorinostat efficiently induced apoptosis in ENKL-J1 cells in vitro. Furthermore, GD2-directed chimeric antigen receptor T cells showed cytotoxicity against ENKL-J1 cells in vivo. These findings not only contribute to understanding the molecular and genomic characteristics of ENKL; they also suggest new treatment options for patients with advanced or relapsed ENKL.
Collapse
Affiliation(s)
- Shoko Sato
- Department of Hematology, Juntendo University School of Medicine, Bunkyo-ku, Tokyo, Japan
| | - Midori Ishii
- Department of Hematology, Juntendo University School of Medicine, Bunkyo-ku, Tokyo, Japan
| | - Kota Tachibana
- Division of Cell Therapy & Blood Transfusion Medicine, Juntendo University School of Medicine, Tokyo, Japan
| | - Yoshiki Furukawa
- Department of Hematology, Juntendo University School of Medicine, Bunkyo-ku, Tokyo, Japan
| | - Tokuko Toyota
- Department of Hematology, Juntendo University School of Medicine, Bunkyo-ku, Tokyo, Japan
| | - Shintaro Kinoshita
- Department of Hematology, Juntendo University School of Medicine, Bunkyo-ku, Tokyo, Japan
| | - Yoko Azusawa
- Division of Cell Therapy & Blood Transfusion Medicine, Juntendo University School of Medicine, Tokyo, Japan
| | - Jun Ando
- Department of Hematology, Juntendo University School of Medicine, Bunkyo-ku, Tokyo, Japan; Division of Cell Therapy & Blood Transfusion Medicine, Juntendo University School of Medicine, Tokyo, Japan
| | - Miki Ando
- Department of Hematology, Juntendo University School of Medicine, Bunkyo-ku, Tokyo, Japan.
| |
Collapse
|
18
|
Huang L, Liang Y, Hou H, Tang M, Liu X, Ma YN, Liang S. Prokaryotic Expression and Affinity Purification of DDX3 Protein. Protein Pept Lett 2024; 31:236-246. [PMID: 38303525 DOI: 10.2174/0109298665285625231222075700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 12/03/2023] [Accepted: 12/08/2023] [Indexed: 02/03/2024]
Abstract
BACKGROUND DDX3 is a protein with RNA helicase activity that is involved in a variety of biological processes, and it is an important protein target for the development of broad-spectrum antiviral drugs, multiple cancers and chronic inflammation. OBJECTIVES The objective of this study is to establish a simple and efficient method to express and purify DDX3 protein in E. coli, and the recombinant DDX3 should maintain helicase activity for further tailor-made screening and biochemical function validation. METHODS DDX3 cDNA was simultaneously cloned into pET28a-TEV and pNIC28-Bsa4 vectors and transfected into E. coli BL21 (DE3) to compare one suitable prokaryotic expression system. The 6×His-tag was fused to the C-terminus of DDX3 to form a His-tagging DDX3 fusion protein for subsequent purification. Protein dissolution buffer and purification washing conditions were optimized. The His-tagged DDX3 protein would bind with the Ni-NTA agarose by chelation and collected by affinity purification. The 6×His-tag fused with N-terminal DDX3 was eliminated from DDX3 by TEV digestion. A fine purification of DDX3 was performed by gel filtration chromatography. RESULTS The recombinant plasmid pNIC28-DDX3, which contained a 6×His-tag and one TEV cleavage site at the N terminal of DDX3 sequence, was constructed for DDX3 prokaryotic expression and affinity purification based on considering the good solubility of the recombinant His-tagging DDX3, especially under 0.5 mM IPTG incubation at 18°C for 18 h to obtain more soluble DDX3 protein. Finally, the exogenous recombinant DDX3 protein was obtained with more than 95% purity by affinity purification on the Ni-NTA column and removal of miscellaneous through gel filtration chromatography. The finely-purified DDX3 still retained its ATPase activity. CONCLUSION A prokaryotic expression pNIC28-DDX3 system is constructed for efficient expression and affinity purification of bioactive DDX3 protein in E. coli BL21(DE3), which provides an important high-throughput screening and validation of drugs targeting DDX3.
Collapse
Affiliation(s)
- Lan Huang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, No.17, Section 3 of Renmin South Road, Chengdu, Sichuan, 610041, P.R. China
| | - Yue Liang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, No.17, Section 3 of Renmin South Road, Chengdu, Sichuan, 610041, P.R. China
| | - Huijin Hou
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, No.17, Section 3 of Renmin South Road, Chengdu, Sichuan, 610041, P.R. China
| | - Min Tang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, No.17, Section 3 of Renmin South Road, Chengdu, Sichuan, 610041, P.R. China
| | - Xinpeng Liu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, No.17, Section 3 of Renmin South Road, Chengdu, Sichuan, 610041, P.R. China
| | - Yan-Ni Ma
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, No.17, Section 3 of Renmin South Road, Chengdu, Sichuan, 610041, P.R. China
| | - Shufang Liang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, No.17, Section 3 of Renmin South Road, Chengdu, Sichuan, 610041, P.R. China
| |
Collapse
|
19
|
Wilkins KC, Schroeder T, Gu S, Revalde JL, Floor SN. Determinants of DDX3X sensitivity uncovered using a helicase activity in translation reporter. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.14.557805. [PMID: 37745530 PMCID: PMC10515938 DOI: 10.1101/2023.09.14.557805] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
DDX3X regulates the translation of a subset of human transcripts containing complex 5' untranslated regions (5' UTRs). In this study we developed the helicase activity reporter for translation (HART) which uses DDX3X-sensitive 5' UTRs to measure DDX3X mediated translational activity in cells. To dissect the structural underpinnings of DDX3X dependent translation, we first used SHAPE-MaP to determine the secondary structures present in DDX3X-sensitive 5' UTRs and then employed HART to investigate how their perturbation impacts DDX3X-sensitivity. Additionally, we identified residues 38-44 as potential mediators of DDX3X's interaction with the translational machinery. HART revealed that both DDX3X's association with the ribosome complex as well as its helicase activity are required for its function in promoting the translation of DDX3X-sensitive 5' UTRs. These findings suggest DDX3X plays a crucial role regulating translation through its interaction with the translational machinery during ribosome scanning, and establish the HART reporter as a robust, lentivirally encoded measurement of DDX3X-dependent translation in cells.
Collapse
Affiliation(s)
- Kevin C. Wilkins
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, California, 94143, USA
- Graduate Division, University of California, San Francisco, San Francisco, CA, United States
| | - Till Schroeder
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, California, 94143, USA
- Julius-Maximilians-University of Würzburg, Würzburg, 97070, Germany
| | - Sohyun Gu
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, California, 94143, USA
| | - Jezrael L. Revalde
- Department of Pharmaceutical Chemistry, University of California, 600 16th Street, San Francisco, California 94143, United States
| | - Stephen N. Floor
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, California, 94143, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, California, 94143, USA
| |
Collapse
|
20
|
Yeter-Alat H, Belgareh-Touzé N, Huvelle E, Banroques J, Tanner NK. The DEAD-Box RNA Helicase Ded1 Is Associated with Translating Ribosomes. Genes (Basel) 2023; 14:1566. [PMID: 37628617 PMCID: PMC10454743 DOI: 10.3390/genes14081566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/21/2023] [Accepted: 07/26/2023] [Indexed: 08/27/2023] Open
Abstract
DEAD-box RNA helicases are ATP-dependent RNA binding proteins and RNA-dependent ATPases that possess weak, nonprocessive unwinding activity in vitro, but they can form long-lived complexes on RNAs when the ATPase activity is inhibited. Ded1 is a yeast DEAD-box protein, the functional ortholog of mammalian DDX3, that is considered important for the scanning efficiency of the 48S pre-initiation complex ribosomes to the AUG start codon. We used a modified PAR-CLIP technique, which we call quicktime PAR-CLIP (qtPAR-CLIP), to crosslink Ded1 to 4-thiouridine-incorporated RNAs in vivo using UV light centered at 365 nm. The irradiation conditions are largely benign to the yeast cells and to Ded1, and we are able to obtain a high efficiency of crosslinking under physiological conditions. We find that Ded1 forms crosslinks on the open reading frames of many different mRNAs, but it forms the most extensive interactions on relatively few mRNAs, and particularly on mRNAs encoding certain ribosomal proteins and translation factors. Under glucose-depletion conditions, the crosslinking pattern shifts to mRNAs encoding metabolic and stress-related proteins, which reflects the altered translation. These data are consistent with Ded1 functioning in the regulation of translation elongation, perhaps by pausing or stabilizing the ribosomes through its ATP-dependent binding.
Collapse
Affiliation(s)
- Hilal Yeter-Alat
- Expression Génétique Microbienne, Université de Paris Cité & CNRS, IBPC, 13 Rue Pierre et Marie Curie, 75005 Paris, France; (H.Y.-A.); (E.H.); (J.B.)
- Institut de Biologie Physico-Chimique, Paris Sciences et Lettres University, CNRS UMR8261, EGM, 75005 Paris, France
| | - Naïma Belgareh-Touzé
- Laboratoire de Biologie Moléculaire et Cellulaire des Eucaryotes, UMR8226 CNRS, Institut de Biologie Physico-Chimique, Sorbonne Université, 13 Rue Pierre et Marie Curie, 75005 Paris, France;
| | - Emmeline Huvelle
- Expression Génétique Microbienne, Université de Paris Cité & CNRS, IBPC, 13 Rue Pierre et Marie Curie, 75005 Paris, France; (H.Y.-A.); (E.H.); (J.B.)
- Institut de Biologie Physico-Chimique, Paris Sciences et Lettres University, CNRS UMR8261, EGM, 75005 Paris, France
| | - Josette Banroques
- Expression Génétique Microbienne, Université de Paris Cité & CNRS, IBPC, 13 Rue Pierre et Marie Curie, 75005 Paris, France; (H.Y.-A.); (E.H.); (J.B.)
- Institut de Biologie Physico-Chimique, Paris Sciences et Lettres University, CNRS UMR8261, EGM, 75005 Paris, France
| | - N. Kyle Tanner
- Expression Génétique Microbienne, Université de Paris Cité & CNRS, IBPC, 13 Rue Pierre et Marie Curie, 75005 Paris, France; (H.Y.-A.); (E.H.); (J.B.)
- Institut de Biologie Physico-Chimique, Paris Sciences et Lettres University, CNRS UMR8261, EGM, 75005 Paris, France
| |
Collapse
|
21
|
Kumar D, Kumar H, Kumar V, Deep A, Sharma A, Marwaha MG, Marwaha RK. Mechanism-based approaches of 1,3,4 thiadiazole scaffolds as potent enzyme inhibitors for cytotoxicity and antiviral activity. MEDICINE IN DRUG DISCOVERY 2023. [DOI: 10.1016/j.medidd.2022.100150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
|
22
|
Lacroix M, Beauchemin H, Khandanpour C, Möröy T. The RNA helicase DDX3 and its role in c-MYC driven germinal center-derived B-cell lymphoma. Front Oncol 2023; 13:1148936. [PMID: 37035206 PMCID: PMC10081492 DOI: 10.3389/fonc.2023.1148936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 03/06/2023] [Indexed: 04/11/2023] Open
Abstract
DDX3X is an RNA helicase with many functions in RNA metabolism such as mRNA translation, alternative pre-mRNA splicing and mRNA stability, but also plays a role as a regulator of transcription as well as in the Wnt/beta-catenin- and Nf-κB signaling pathways. The gene encoding DDX3X is located on the X-chromosome, but escapes X-inactivation. Hence females have two active copies and males only one. However, the Y chromosome contains the gene for the male DDX3 homologue, called DDX3Y, which has a very high sequence similarity and functional redundancy with DDX3X, but shows a more restricted protein expression pattern than DDX3X. High throughput sequencing of germinal center (GC)-derived B-cell malignancies such as Burkitt Lymphoma (BL) and Diffuse large B-cell lymphoma (DLBCL) samples showed a high frequency of loss-of-function (LOF) mutations in the DDX3X gene revealing several features that distinguish this gene from others. First, DDX3X mutations occur with high frequency particularly in those GC-derived B-cell lymphomas that also show translocations of the c-MYC proto-oncogene, which occurs in almost all BL and a subset of DLBCL. Second, DDX3X LOF mutations occur almost exclusively in males and is very rarely found in females. Third, mutations in the male homologue DDX3Y have never been found in any type of malignancy. Studies with human primary GC B cells from male donors showed that a loss of DDX3X function helps the initial process of B-cell lymphomagenesis by buffering the proteotoxic stress induced by c-MYC activation. However, full lymphomagenesis requires DDX3 activity since an upregulation of DDX3Y expression is invariably found in GC derived B-cell lymphoma with DDX3X LOF mutation. Other studies with male transgenic mice that lack Ddx3x, but constitutively express activated c-Myc transgenes in B cells and are therefore prone to develop B-cell malignancies, also showed upregulation of the DDX3Y protein expression during the process of lymphomagenesis. Since DDX3Y is not expressed in normal human cells, these data suggest that DDX3Y may represent a new cancer cell specific target to develop adjuvant therapies for male patients with BL and DLBCL and LOF mutations in the DDX3X gene.
Collapse
Affiliation(s)
- Marion Lacroix
- Institut de Recherches Cliniques de Montréal, IRCM, Montréal, QC, Canada
- Division of Experimental Medicine, McGill University, Montréal, QC, Canada
| | - Hugues Beauchemin
- Institut de Recherches Cliniques de Montréal, IRCM, Montréal, QC, Canada
| | - Cyrus Khandanpour
- Klinik für Hämatologie und Onkologie, University Hospital Schleswig Holstein, University Lübeck, Lübeck, Germany
- *Correspondence: Tarik Möröy, ; Cyrus Khandanpour,
| | - Tarik Möröy
- Institut de Recherches Cliniques de Montréal, IRCM, Montréal, QC, Canada
- Division of Experimental Medicine, McGill University, Montréal, QC, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, QC, Canada
- *Correspondence: Tarik Möröy, ; Cyrus Khandanpour,
| |
Collapse
|
23
|
Chen M, Li M, Budai MM, Rice AP, Kimata JT, Mohan M, Wang J. Clearance of HIV-1 or SIV reservoirs by promotion of apoptosis and inhibition of autophagy: Targeting intracellular molecules in cure-directed strategies. J Leukoc Biol 2022; 112:1245-1259. [PMID: 35362118 PMCID: PMC9522917 DOI: 10.1002/jlb.4mr0222-606] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 03/15/2022] [Indexed: 12/24/2022] Open
Abstract
The reservoirs of the HIV display cellular properties resembling long-lived immune memory cells that could be exploited for viral clearance. Our interest in developing a cure for HIV stems from the studies of immunologic memory against infections. We and others have found that long-lived immune memory cells employ prosurvival autophagy and antiapoptotic mechanisms to protect their longevity. Here, we describe the rationale for the development of an approach to clear HIV-1 by selective elimination of host cells harboring replication-competent HIV (SECH). While reactivation of HIV-1 in the host cells with latency reversing agents (LRAs) induces viral gene expression leading to cell death, LRAs also simultaneously up-regulate prosurvival antiapoptotic molecules and autophagy. Mechanistically, transcription factors that promote HIV-1 LTR-directed gene expression, such as NF-κB, AP-1, and Hif-1α, can also enhance the expression of cellular genes essential for cell survival and metabolic regulation, including Bcl-xL, Mcl-1, and autophagy genes. In the SECH approach, we inhibit the prosurvival antiapoptotic molecules and autophagy induced by LRAs, thereby allowing maximum killing of host cells by the induced HIV-1 proteins. SECH treatments cleared HIV-1 infections in humanized mice in vivo and in HIV-1 patient PBMCs ex vivo. SECH also cleared infections by the SIV in rhesus macaque PBMCs ex vivo. Research efforts are underway to improve the efficacy and safety of SECH and to facilitate the development of SECH as a therapeutic approach for treating people with HIV.
Collapse
Affiliation(s)
- Min Chen
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas, USA
| | - Min Li
- Immunobiology and Transplant Science Center, Department of Surgery, Houston Methodist Research Institute, Houston, Texas, USA
| | - Marietta M. Budai
- Immunobiology and Transplant Science Center, Department of Surgery, Houston Methodist Research Institute, Houston, Texas, USA
| | - Andrew P. Rice
- Department of Molecular Virology & Microbiology, Baylor College of Medicine, Houston, Texas, USA
| | - Jason T. Kimata
- Department of Molecular Virology & Microbiology, Baylor College of Medicine, Houston, Texas, USA
| | - Mahesh Mohan
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, Texas, USA
| | - Jin Wang
- Immunobiology and Transplant Science Center, Department of Surgery, Houston Methodist Research Institute, Houston, Texas, USA
- Department of Surgery, Weill Cornell Medical College, Cornell University, New York, New York, USA
| |
Collapse
|
24
|
Cheng H, Chen L, Huang M, Hou J, Chen Z, Yang X. Hunting down NLRP3 inflammasome: An executioner of radiation-induced injury. Front Immunol 2022; 13:967989. [PMID: 36353625 PMCID: PMC9637992 DOI: 10.3389/fimmu.2022.967989] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 10/05/2022] [Indexed: 11/13/2022] Open
Abstract
Radiotherapy is one of the mainstream treatment modalities for several malignancies. However, radiation-induced injury to surrounding normal tissues limits its efficacy. The NLRP3 inflammasome is an essential mechanism of innate immunity that reacts to challenges from endogenous danger signals and pathological microbes. A growing body of evidence has demonstrated a key role of NLRP3 inflammasome in the pathogenesis of radiation-induced tissue injury. Despite accumulating evidence, the potential value of the NLRP3 inflammasome in the management of radiation-induced tissue injury is not adequately recognized. We conducted a literature review to characterize the relationship between NLRP3 inflammasome and radiation injury. By analyzing recent evidence, we identify NLRP3 inflammasome as one of the executioners of radiation-induced injury, since it responds to the challenges of radiation, induces cell pyroptosis and tissue dysfunction, and initiates non-resolving inflammation and fibrosis. Based on these concepts, we propose early intervention/prevention strategies targeting NLRP3 inflammasome in a radiation context, which may help resolve imperative clinical problems.
Collapse
Affiliation(s)
- Han Cheng
- First School of Clinical Medicine, Southern Medical University, Guangzhou, China,Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Lingling Chen
- First School of Clinical Medicine, Southern Medical University, Guangzhou, China,Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Minchun Huang
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jin Hou
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Zhifeng Chen
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, China,*Correspondence: Xiaojun Yang, ; Zhifeng Chen,
| | - Xiaojun Yang
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, China,*Correspondence: Xiaojun Yang, ; Zhifeng Chen,
| |
Collapse
|
25
|
Nilius-Eliliwi V, Tembrink M, Gerding WM, Lubieniecki KP, Lubieniecka JM, Kankel S, Liehr T, Mika T, Dimopoulos F, Döhner K, Schroers R, Nguyen HHP, Vangala DB. Broad genomic workup including optical genome mapping uncovers a DDX3X: MLLT10 gene fusion in acute myeloid leukemia. Front Oncol 2022; 12:959243. [PMID: 36158701 PMCID: PMC9501710 DOI: 10.3389/fonc.2022.959243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 08/12/2022] [Indexed: 11/24/2022] Open
Abstract
In acute myeloid leukemia (AML), treatment decisions are currently made according to the risk classification of the European LeukemiaNet (ELN), which is based on genetic alterations. Recently, optical genome mapping (OGM) as a novel method proved to yield a genome-wide and detailed cytogenetic characterization at the time of diagnosis. A young female patient suffered from a rather unexpected aggressive disease course under FLT3 targeted therapy in combination with induction chemotherapy. By applying a “next-generation diagnostic workup“ strategy with OGM and whole-exome sequencing (WES), a DDX3X: MLLT10 gene fusion could be detected, otherwise missed by routine diagnostics. Furthermore, several aspects of lineage ambiguity not shown by standard diagnostics were unraveled such as deletions of SUZ12 and ARPP21, as well as T-cell receptor recombination. In summary, the detection of this particular gene fusion DDX3X: MLLT10 in a female AML patient and the findings of lineage ambiguity are potential explanations for the aggressive course of disease. Our study demonstrates that OGM can yield novel clinically significant results, including additional information helpful in disease monitoring and disease biology.
Collapse
Affiliation(s)
- Verena Nilius-Eliliwi
- Department of Medicine, Hematology and Oncology, Knappschaftskrankenhaus, Ruhr-University Bochum, Bochum, Germany
| | | | | | | | | | - Stefanie Kankel
- Jena University Hospital, Friedrich Schiller University, Institute of Human Genetics, Jena, Germany
| | - Thomas Liehr
- Jena University Hospital, Friedrich Schiller University, Institute of Human Genetics, Jena, Germany
| | - Thomas Mika
- Department of Medicine, Hematology and Oncology, Knappschaftskrankenhaus, Ruhr-University Bochum, Bochum, Germany
| | - Fotios Dimopoulos
- Department of Medicine, Hematology and Oncology, Knappschaftskrankenhaus, Ruhr-University Bochum, Bochum, Germany
| | - Konstanze Döhner
- Department of Internal Medicine III, University Hospital Ulm, Ulm, Germany
| | - Roland Schroers
- Department of Medicine, Hematology and Oncology, Knappschaftskrankenhaus, Ruhr-University Bochum, Bochum, Germany
| | | | - Deepak Ben Vangala
- Department of Medicine, Hematology and Oncology, Knappschaftskrankenhaus, Ruhr-University Bochum, Bochum, Germany
- *Correspondence: Deepak Ben Vangala,
| |
Collapse
|
26
|
Doneti R, Pasha A, Botlagunta M, Heena SK, Mutyala VVVP, Pawar SC. Molecular docking, synthesis, and biological evaluation of 7-azaindole-derivative (7AID) as novel anti-cancer agent and potent DDX3 inhibitor:-an in silico and in vitro approach. MEDICAL ONCOLOGY (NORTHWOOD, LONDON, ENGLAND) 2022; 39:179. [PMID: 36048256 DOI: 10.1007/s12032-022-01826-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 08/15/2022] [Indexed: 11/30/2022]
Abstract
The DEAD-box helicase family member DDX3 is involved in many diseases, such as viral infection, inflammation, and cancer. Many studies in the last decade have revealed the role of DDX3 in tumorigenesis and metastasis. DDX3 has both tumour suppressor and oncogenic effect, in the present study we have evaluated the expression levels of DDX3 in cervical squamous cell carcinoma at mRNA level via real-time PCR and protein level via Immunohistochemistry. DDX3 has become a molecule of interest in cancer biology that promotes drug resistance by adaptive response inevitably leading to treatment failure. One approach to avoid the development of resistant to disease is to create novel drugs that target the overexpressed proteins, we designed and synthesized a novel 7-azaindole derivative (7-AID) compound, {5-[1H-pyrrolo (2, 3-b) pyridin-5-yl] pyridin-2-ol]} that could lodge within the adenosine-binding pocket of the DDX3 (PDB ID: 2I4I). The binding efficacy of 7-AID compound with DDX3 was analysed by molecular docking studies. 7-AID was found to interact with the key residues Tyr200 and Arg202 from the Q-motif rendered by π-interactions and hydrogen bonds within the binding pocket with good docking score - 7.99 kcal/mol. The cytotoxicity effect of 7-AID compound was evaluated using MTT assay on human cervical carcinoma cells (HeLa) and breast cancer cells (MCF-7 and MDA MB-231) and the compound shown effective inhibitory concentration (IC50) on Hela cells 16.96 µM/ml and 14.12 and 12.69 µM/ml on MCF-7 and MDA MB-231, respectively. Further, the in-vitro, in-vivo anti-cancer and anti-angiogenic assessment of 7-AID compound was evaluated on Hela cells using scratch wound-healing assay, DAPI staining, cell cycle analysis, immunoblotting, and chorioallontoic membrane assay. Furthermore, the inhibitory effect of derivative compound on DDX3 was investigated in HeLa, MCF-7, and MDA MB-231 cells at the mRNA and protein levels. The results showed that the 7-AID compound effectively inhibited DDX3 in a dose-dependent manner, and the findings suggest that the compound could be used as a potential DDX3 inhibitor.
Collapse
Affiliation(s)
- Ravinder Doneti
- Department of Genetics & Biotechnology, Osmania University, Hyderabad, Telangana, 500 007, India
| | - Akbar Pasha
- Department of Genetics & Biotechnology, Osmania University, Hyderabad, Telangana, 500 007, India
| | - Mahendran Botlagunta
- School of Biosciences Engineering and Technology, VIT Bhopal University, Bhopal, Madhya Pradesh, 466114, India
| | - S K Heena
- Department of Pathology, Osmania Medical College, Hyderabad, Telangana, 500095, India
| | | | - Smita C Pawar
- Department of Genetics & Biotechnology, Osmania University, Hyderabad, Telangana, 500 007, India.
| |
Collapse
|
27
|
Vesuna F, Akhrymuk I, Smith A, Winnard PT, Lin SC, Panny L, Scharpf R, Kehn-Hall K, Raman V. RK-33, a small molecule inhibitor of host RNA helicase DDX3, suppresses multiple variants of SARS-CoV-2. Front Microbiol 2022; 13:959577. [PMID: 36090095 PMCID: PMC9453862 DOI: 10.3389/fmicb.2022.959577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 07/27/2022] [Indexed: 12/03/2022] Open
Abstract
SARS-CoV-2, the virus behind the deadly COVID-19 pandemic, continues to spread globally even as vaccine strategies are proving effective in preventing hospitalizations and deaths. However, evolving variants of the virus appear to be more transmissive and vaccine efficacy toward them is waning. As a result, SARS-CoV-2 will continue to have a deadly impact on public health into the foreseeable future. One strategy to bypass the continuing problem of newer variants is to target host proteins required for viral replication. We have used this host-targeted antiviral (HTA) strategy that targets DDX3X (DDX3), a host DEAD-box RNA helicase that is usurped by SARS-CoV-2 for virus production. We demonstrated that targeting DDX3 with RK-33, a small molecule inhibitor, reduced the viral load in four isolates of SARS-CoV-2 (Lineage A, and Lineage B Alpha, Beta, and Delta variants) by one to three log orders in Calu-3 cells. Furthermore, proteomics and RNA-seq analyses indicated that most SARS-CoV-2 genes were downregulated by RK-33 treatment. Also, we show that the use of RK-33 decreases TMPRSS2 expression, which may be due to DDX3s ability to unwind G-quadraplex structures present in the TMPRSS2 promoter. The data presented support the use of RK-33 as an HTA strategy to control SARS-CoV-2 infection, irrespective of its mutational status, in humans.
Collapse
Affiliation(s)
- Farhad Vesuna
- Division of Cancer Imaging Research, Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Ivan Akhrymuk
- Department of Biomedical Science and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
| | - Amy Smith
- Department of Biomedical Science and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
| | - Paul T Winnard
- Division of Cancer Imaging Research, Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Shih-Chao Lin
- Bachelor Degree Program in Marine Biotechnology, College of Life Sciences, National Taiwan Ocean University, Keelung, Taiwan
| | - Lauren Panny
- Department of Biomedical Science and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
| | - Robert Scharpf
- Division of Biostatistics and Bioinformatics, Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Kylene Kehn-Hall
- Department of Biomedical Science and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
- Center for Zoonotic and Arthropod-borne Pathogens, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
| | - Venu Raman
- Division of Cancer Imaging Research, Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Departments of Oncology, Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Department of Pathology, University Medical Center Utrecht, Utrecht, Netherlands
| |
Collapse
|
28
|
Dong G, Liu X, Wang L, Yin W, Bouska A, Gong Q, Shetty K, Chen L, Sharma S, Zhang J, Lome-Maldonado C, Quintanilla-Martinez L, Li Y, Song JY, Zhang W, Shi Y, Wang J, Kong L, Wu X, Wang J, Liu HG, Kong L, Sun W, Liu W, Wang L, McKeithan TW, Iqbal J, Chan WC. Genomic profiling identifies distinct genetic subtypes in extra-nodal natural killer/T-cell lymphoma. Leukemia 2022; 36:2064-2075. [PMID: 35697790 PMCID: PMC10499270 DOI: 10.1038/s41375-022-01623-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 05/22/2022] [Accepted: 05/27/2022] [Indexed: 02/05/2023]
Abstract
Extra-nodal NK/T-cell lymphoma, nasal type (ENKTCL) is a highly aggressive Epstein-Barr virus associated lymphoma, typically presenting in the nasal and paranasal areas. We assembled a large series of ENKTCL (n = 209) for comprehensive genomic analysis and correlative clinical study. The International Lymphoma Prognostic Index (IPI), site of disease, stage, lymphadenopathy, and hepatomegaly were associated with overall survival. Genetic analysis revealed frequent oncogenic activation of the JAK/STAT3 pathway and alterations in tumor suppressor genes (TSGs) and genes associated with epigenomic regulation. Integrated genomic analysis including recurrent mutations and genomic copy number alterations using consensus clustering identified seven distinct genetic clusters that were associated with different clinical outcomes, thus constituting previously unrecognized risk groups. The genetic profiles of ENTKCLs from Asian and Hispanic ethnic groups showed striking similarity, indicating shared pathogenetic mechanism and tumor evolution. Interestingly, we discovered a novel functional cooperation between activating STAT3 mutations and loss of the TSG, PRDM1, in promoting NK-cell growth and survival. This study provides a genetic roadmap for further analysis and facilitates investigation of actionable therapeutic opportunities in this aggressive lymphoma.
Collapse
Affiliation(s)
- Gehong Dong
- Department of Pathology, City of Hope National Medical Center, Duarte, CA, 91010, USA
- Department of Pathology, Beijing Tongren Hospital, Capital Medical University, 100730, Beijing, China
- Department of Pathology, Beijing Tiantan Hospital, Capital Medical University, 100070, Beijing, China
| | - Xuxiang Liu
- Department of Pathology, City of Hope National Medical Center, Duarte, CA, 91010, USA
| | - Lifu Wang
- Department of Pathology, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Henan University People's Hospital, Zhengzhou, 450003, China
| | - Wenjuan Yin
- Department of Pathology, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou, 310022, China
- Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, 310018, China
| | - Alyssa Bouska
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Qiang Gong
- Department of Pathology, City of Hope National Medical Center, Duarte, CA, 91010, USA
| | - Kunal Shetty
- Department of Pathology, City of Hope National Medical Center, Duarte, CA, 91010, USA
| | - Lu Chen
- Department of Computational and Quantitative Medicine, City of Hope, Duarte, CA, 91010, USA
| | - Sunandini Sharma
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Jibin Zhang
- Department of Pathology, City of Hope National Medical Center, Duarte, CA, 91010, USA
| | - Carmen Lome-Maldonado
- Departamento de Patologia, Instituto Nacional de Cancerologia, 14080, Ciudad de México, Mexico
| | - Leticia Quintanilla-Martinez
- Institute of Pathology and Neuropathology, Eberhard Karls University of Tübingen and Comprehensive Cancer Center, University Hospital Tübingen, 72076, Tübingen, Germany
| | - Yuping Li
- Department of Pathology, City of Hope National Medical Center, Duarte, CA, 91010, USA
| | - Joo Y Song
- Department of Pathology, City of Hope National Medical Center, Duarte, CA, 91010, USA
| | - Wenyan Zhang
- Department of Pathology, West China Hospital, Chengdu, 610041, China
| | - Yunfei Shi
- Department of Pathology, City of Hope National Medical Center, Duarte, CA, 91010, USA
- Department of Pathology, Peking University Cancer Hospital and Institute, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), 100142, Beijing, China
| | - Jinhui Wang
- Integrative Genomics Core, City of Hope, Duarte, CA, 91010, USA
| | - Lingbo Kong
- Department of Pathology, City of Hope National Medical Center, Duarte, CA, 91010, USA
| | - Xiwei Wu
- Integrative Genomics Core, City of Hope, Duarte, CA, 91010, USA
| | - Jingwen Wang
- Department of Hematology, Beijing Tongren Hospital, Capital Medical University, 100730, Beijing, China
| | - Hong-Gang Liu
- Department of Pathology, Beijing Tiantan Hospital, Capital Medical University, 100070, Beijing, China
| | - Lingfei Kong
- Department of Pathology, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Henan University People's Hospital, Zhengzhou, 450003, China
| | - Wenyong Sun
- Department of Pathology, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou, 310022, China
- Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, 310018, China
| | - Weiping Liu
- Department of Pathology, West China Hospital, Chengdu, 610041, China
| | - Lili Wang
- Department of Systems Biology, Beckman Research Institute, City of Hope, Monrovia, CA, 91016, USA
| | - Timothy W McKeithan
- Department of Pathology, City of Hope National Medical Center, Duarte, CA, 91010, USA
| | - Javeed Iqbal
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, 68198, USA.
| | - Wing C Chan
- Department of Pathology, City of Hope National Medical Center, Duarte, CA, 91010, USA.
| |
Collapse
|
29
|
Bonaventure B, Goujon C. DExH/D-box helicases at the frontline of intrinsic and innate immunity against viral infections. J Gen Virol 2022; 103. [PMID: 36006669 DOI: 10.1099/jgv.0.001766] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022] Open
Abstract
DExH/D-box helicases are essential nucleic acid and ribonucleoprotein remodelers involved in all aspects of nucleic acid metabolism including replication, gene expression and post-transcriptional modifications. In parallel to their importance in basic cellular functions, DExH/D-box helicases play multiple roles in viral life cycles, with some of them highjacked by viruses or negatively regulating innate immune activation. However, other DExH/D-box helicases have recurrently been highlighted as direct antiviral effectors or as positive regulators of innate immune activation. Innate immunity relies on the ability of Pathogen Recognition Receptors to recognize viral signatures and trigger the production of interferons (IFNs) and pro-inflammatory cytokines. Secreted IFNs interact with their receptors to establish antiviral cellular reprogramming via expression regulation of the interferon-stimulated genes (ISGs). Several DExH/D-box helicases have been reported to act as viral sensors (DDX3, DDX41, DHX9, DDX1/DDX21/DHX36 complex), and others to play roles in innate immune activation (DDX60, DDX60L, DDX23). In contrast, the DDX39A, DDX46, DDX5 and DDX24 helicases act as negative regulators and impede IFN production upon viral infection. Beyond their role in viral sensing, the ISGs DDX60 and DDX60L act as viral inhibitors. Interestingly, the constitutively expressed DEAD-box helicases DDX56, DDX17, DDX42 intrinsically restrict viral replication. Hence, DExH/D-box helicases appear to form a multilayer network of primary and secondary factors involved in both intrinsic and innate antiviral immunity. In this review, we highlight recent findings on the extent of antiviral defences played by helicases and emphasize the need to better understand their immune functions as well as their complex interplay.
Collapse
Affiliation(s)
- Boris Bonaventure
- IRIM, CNRS, Montpellier University, France.,Present address: Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | |
Collapse
|
30
|
Brai A, Trivisani CI, Poggialini F, Pasqualini C, Vagaggini C, Dreassi E. DEAD-Box Helicase DDX3X as a Host Target against Emerging Viruses: New Insights for Medicinal Chemical Approaches. J Med Chem 2022; 65:10195-10216. [PMID: 35899912 DOI: 10.1021/acs.jmedchem.2c00755] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In recent years, globalization, global warming, and population aging have contributed to the spread of emerging viruses, such as coronaviruses (COVs), West Nile (WNV), Dengue (DENV), and Zika (ZIKV). The number of reported infections is increasing, and considering the high viral mutation rate, it is conceivable that it will increase significantly in the coming years. The risk caused by viruses is now more evident due to the COVID-19 pandemic, which highlighted the need to find new broad-spectrum antiviral agents able to tackle the present pandemic and future epidemics. DDX3X helicase is a host factor required for viral replication. Selective inhibitors have been identified and developed into broad-spectrum antivirals active against emerging pathogens, including SARS-CoV-2 and most importantly against drug-resistant strains. This perspective describes the inhibitors identified in the last years, highlighting their therapeutic potential as innovative broad-spectrum antivirals.
Collapse
Affiliation(s)
- Annalaura Brai
- Department of Biotechnology, Chemistry & Pharmacy, University of Siena, I-53100 Siena Italy
| | | | - Federica Poggialini
- Department of Biotechnology, Chemistry & Pharmacy, University of Siena, I-53100 Siena Italy
| | - Claudia Pasqualini
- Department of Biotechnology, Chemistry & Pharmacy, University of Siena, I-53100 Siena Italy
| | - Chiara Vagaggini
- Department of Biotechnology, Chemistry & Pharmacy, University of Siena, I-53100 Siena Italy
| | - Elena Dreassi
- Department of Biotechnology, Chemistry & Pharmacy, University of Siena, I-53100 Siena Italy
| |
Collapse
|
31
|
Loh D, Reiter RJ. Melatonin: Regulation of Viral Phase Separation and Epitranscriptomics in Post-Acute Sequelae of COVID-19. Int J Mol Sci 2022; 23:8122. [PMID: 35897696 PMCID: PMC9368024 DOI: 10.3390/ijms23158122] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 07/09/2022] [Accepted: 07/20/2022] [Indexed: 01/27/2023] Open
Abstract
The relentless, protracted evolution of the SARS-CoV-2 virus imposes tremendous pressure on herd immunity and demands versatile adaptations by the human host genome to counter transcriptomic and epitranscriptomic alterations associated with a wide range of short- and long-term manifestations during acute infection and post-acute recovery, respectively. To promote viral replication during active infection and viral persistence, the SARS-CoV-2 envelope protein regulates host cell microenvironment including pH and ion concentrations to maintain a high oxidative environment that supports template switching, causing extensive mitochondrial damage and activation of pro-inflammatory cytokine signaling cascades. Oxidative stress and mitochondrial distress induce dynamic changes to both the host and viral RNA m6A methylome, and can trigger the derepression of long interspersed nuclear element 1 (LINE1), resulting in global hypomethylation, epigenetic changes, and genomic instability. The timely application of melatonin during early infection enhances host innate antiviral immune responses by preventing the formation of "viral factories" by nucleocapsid liquid-liquid phase separation that effectively blockades viral genome transcription and packaging, the disassembly of stress granules, and the sequestration of DEAD-box RNA helicases, including DDX3X, vital to immune signaling. Melatonin prevents membrane depolarization and protects cristae morphology to suppress glycolysis via antioxidant-dependent and -independent mechanisms. By restraining the derepression of LINE1 via multifaceted strategies, and maintaining the balance in m6A RNA modifications, melatonin could be the quintessential ancient molecule that significantly influences the outcome of the constant struggle between virus and host to gain transcriptomic and epitranscriptomic dominance over the host genome during acute infection and PASC.
Collapse
Affiliation(s)
- Doris Loh
- Independent Researcher, Marble Falls, TX 78654, USA;
| | - Russel J. Reiter
- Department of Cell Systems and Anatomy, UT Health San Antonio, San Antonio, TX 78229, USA
| |
Collapse
|
32
|
Lacroix M, Beauchemin H, Fraszczak J, Ross J, Shooshtarizadeh P, Chen R, Moroy T. The X-linked helicase DDX3X is required for lymphoid differentiation and MYC-driven lymphomagenesis. Cancer Res 2022; 82:3172-3186. [PMID: 35815807 DOI: 10.1158/0008-5472.can-21-2454] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 03/29/2022] [Accepted: 06/29/2022] [Indexed: 11/16/2022]
Abstract
The X-linked gene DDX3X encodes an RNA helicase that is mutated at high frequencies in several types of human B-cell lymphoma. Females have two active DDX3X alleles and males carry a DDX3Y homolog on the Y chromosome. We show here that pan-hematopoietic, homozygous deletion of Ddx3x in female mice perturbs erythropoiesis, causing early developmental arrest. However, both hemizygous male and heterozygous female embryos develop normally, suggesting that one Ddx3x allele is sufficient for fetal hematopoietic development in females and that the Ddx3y allele can compensate for the loss of Ddx3x in males. In adult mice, DDX3X deficiency altered hematopoietic progenitors, early lymphoid development, marginal zone and germinal center B-cells, and lymphomagenesis in a sex-dependent manner. Loss of both Ddx3x alleles abrogated MYC-driven lymphomagenesis in females, while Ddx3x-deletion in males did not affect the formation of B-cell lymphoma in both mouse models. Moreover, tumors that appeared in male mice lacking DDX3X showed upregulated expression of DDX3Y, indicating a critical requirement for DDX3 activity for lymphomagenesis. These data reveal sex-specific roles of DDX3X in erythro- and lymphopoiesis as well as in MYC-driven lymphomagenesis.
Collapse
Affiliation(s)
- Marion Lacroix
- IRCM (Institut de Recherches Cliniques de Montr�al), Montreal, Quebec, Canada
| | | | | | - Julie Ross
- Montreal Clinical Research Institute, Montreal, Quebec, Canada
| | | | | | - Tarik Moroy
- Institut de recherches cliniques de Montr�al, Montreal, Canada
| |
Collapse
|
33
|
Lahiri V, Metur SP, Hu Z, Song X, Mari M, Hawkins WD, Bhattarai J, Delorme-Axford E, Reggiori F, Tang D, Dengjel J, Klionsky DJ. Post-transcriptional regulation of ATG1 is a critical node that modulates autophagy during distinct nutrient stresses. Autophagy 2022; 18:1694-1714. [PMID: 34836487 PMCID: PMC9298455 DOI: 10.1080/15548627.2021.1997305] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 10/21/2021] [Indexed: 01/18/2023] Open
Abstract
Macroautophagy/autophagy is a highly conserved nutrient-recycling pathway that eukaryotes utilize to combat diverse stresses including nutrient depletion. Dysregulation of autophagy disrupts cellular homeostasis leading to starvation susceptibility in yeast and disease development in humans. In yeast, the robust autophagy response to starvation is controlled by the upregulation of ATG genes, via regulatory processes involving multiple levels of gene expression. Despite the identification of several regulators through genetic studies, the predominant mechanism of regulation modulating the autophagy response to subtle differences in nutrient status remains undefined. Here, we report the unexpected finding that subtle changes in nutrient availability can cause large differences in autophagy flux, governed by hitherto unknown post-transcriptional regulatory mechanisms affecting the expression of the key autophagyinducing kinase Atg1 (ULK1/ULK2 in mammals). We have identified two novel post-transcriptional regulators of ATG1 expression, the kinase Rad53 and the RNA-binding protein Ded1 (DDX3 in mammals). Furthermore, we show that DDX3 regulates ULK1 expression post-transcriptionally, establishing mechanistic conservation and highlighting the power of yeast biology in uncovering regulatory mechanisms that can inform therapeutic approaches.
Collapse
Affiliation(s)
- Vikramjit Lahiri
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Shree Padma Metur
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Zehan Hu
- Department of Biology, University of Fribourg, FribourgSwitzerland
| | - Xinxin Song
- Department of Surgery, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Muriel Mari
- Department of Biomedical Sciences of Cells and Systems, University of Groningen, University Medical Center Groningen, GroningenThe Netherlands
| | - Wayne D. Hawkins
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Janakraj Bhattarai
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | | | - Fulvio Reggiori
- Department of Biomedical Sciences of Cells and Systems, University of Groningen, University Medical Center Groningen, GroningenThe Netherlands
| | - Daolin Tang
- Department of Surgery, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Joern Dengjel
- Department of Biology, University of Fribourg, FribourgSwitzerland
| | - Daniel J. Klionsky
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
34
|
Lacerda JT, Gomes PRL, Zanetti G, Mezzalira N, Lima OG, de Assis LVM, Guler A, Castrucci AM, Moraes MN. Lack of TRPV1 Channel Modulates Mouse Gene Expression and Liver Proteome with Glucose Metabolism Changes. Int J Mol Sci 2022; 23:ijms23137014. [PMID: 35806020 PMCID: PMC9266899 DOI: 10.3390/ijms23137014] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 06/18/2022] [Accepted: 06/20/2022] [Indexed: 02/04/2023] Open
Abstract
To investigate the role of the transient receptor potential channel vanilloid type 1 (TRPV1) in hepatic glucose metabolism, we analyzed genes related to the clock system and glucose/lipid metabolism and performed glycogen measurements at ZT8 and ZT20 in the liver of C57Bl/6J (WT) and Trpv1 KO mice. To identify molecular clues associated with metabolic changes, we performed proteomics analysis at ZT8. Liver from Trpv1 KO mice exhibited reduced Per1 expression and increased Pparα, Pparγ, Glut2, G6pc1 (G6pase), Pck1 (Pepck), Akt, and Gsk3b expression at ZT8. Liver from Trpv1 KO mice also showed reduced glycogen storage at ZT8 but not at ZT20 and significant proteomics changes consistent with enhanced glycogenolysis, as well as increased gluconeogenesis and inflammatory features. The network propagation approach evidenced that the TRPV1 channel is an intrinsic component of the glucagon signaling pathway, and its loss seems to be associated with increased gluconeogenesis through PKA signaling. In this sense, the differentially identified kinases and phosphatases in WT and Trpv1 KO liver proteomes show that the PP2A phosphatase complex and PKA may be major players in glycogenolysis in Trpv1 KO mice.
Collapse
Affiliation(s)
- José Thalles Lacerda
- Laboratory of Comparative Physiology of Pigmentation, Department of Physiology, Institute of Biosciences, University of São Paulo, São Paulo 05508-090, Brazil; (J.T.L.); (G.Z.); (N.M.); (O.G.L.); (L.V.M.d.A.); (A.M.C.)
| | - Patrícia R. L. Gomes
- Laboratory of Neurobiology, Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-000, Brazil;
| | - Giovanna Zanetti
- Laboratory of Comparative Physiology of Pigmentation, Department of Physiology, Institute of Biosciences, University of São Paulo, São Paulo 05508-090, Brazil; (J.T.L.); (G.Z.); (N.M.); (O.G.L.); (L.V.M.d.A.); (A.M.C.)
| | - Nathana Mezzalira
- Laboratory of Comparative Physiology of Pigmentation, Department of Physiology, Institute of Biosciences, University of São Paulo, São Paulo 05508-090, Brazil; (J.T.L.); (G.Z.); (N.M.); (O.G.L.); (L.V.M.d.A.); (A.M.C.)
| | - Otoniel G. Lima
- Laboratory of Comparative Physiology of Pigmentation, Department of Physiology, Institute of Biosciences, University of São Paulo, São Paulo 05508-090, Brazil; (J.T.L.); (G.Z.); (N.M.); (O.G.L.); (L.V.M.d.A.); (A.M.C.)
| | - Leonardo V. M. de Assis
- Laboratory of Comparative Physiology of Pigmentation, Department of Physiology, Institute of Biosciences, University of São Paulo, São Paulo 05508-090, Brazil; (J.T.L.); (G.Z.); (N.M.); (O.G.L.); (L.V.M.d.A.); (A.M.C.)
- Institute of Neurobiology, University of Lübeck, 23562 Lübeck, Germany
| | - Ali Guler
- Department of Biology, University of Virginia, Charlottesville, VA 22904, USA;
| | - Ana Maria Castrucci
- Laboratory of Comparative Physiology of Pigmentation, Department of Physiology, Institute of Biosciences, University of São Paulo, São Paulo 05508-090, Brazil; (J.T.L.); (G.Z.); (N.M.); (O.G.L.); (L.V.M.d.A.); (A.M.C.)
- Department of Biology, University of Virginia, Charlottesville, VA 22904, USA;
| | - Maria Nathália Moraes
- Laboratory of Comparative Physiology of Pigmentation, Department of Physiology, Institute of Biosciences, University of São Paulo, São Paulo 05508-090, Brazil; (J.T.L.); (G.Z.); (N.M.); (O.G.L.); (L.V.M.d.A.); (A.M.C.)
- Laboratory of Neurobiology, Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-000, Brazil;
- Correspondence:
| |
Collapse
|
35
|
Rao S, Mahmoudi T. DEAD-ly Affairs: The Roles of DEAD-Box Proteins on HIV-1 Viral RNA Metabolism. Front Cell Dev Biol 2022; 10:917599. [PMID: 35769258 PMCID: PMC9234453 DOI: 10.3389/fcell.2022.917599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 05/23/2022] [Indexed: 11/13/2022] Open
Abstract
In order to ensure viral gene expression, Human Immunodeficiency virus type-1 (HIV-1) recruits numerous host proteins that promote optimal RNA metabolism of the HIV-1 viral RNAs (vRNAs), such as the proteins of the DEAD-box family. The DEAD-box family of RNA helicases regulates multiple steps of RNA metabolism and processing, including transcription, splicing, nucleocytoplasmic export, trafficking, translation and turnover, mediated by their ATP-dependent RNA unwinding ability. In this review, we provide an overview of the functions and role of all DEAD-box family protein members thus far described to influence various aspects of HIV-1 vRNA metabolism. We describe the molecular mechanisms by which HIV-1 hijacks these host proteins to promote its gene expression and we discuss the implications of these interactions during viral infection, their possible roles in the maintenance of viral latency and in inducing cell death. We also speculate on the emerging potential of pharmacological inhibitors of DEAD-box proteins as novel therapeutics to control the HIV-1 pandemic.
Collapse
Affiliation(s)
- Shringar Rao
- Department of Biochemistry, Erasmus University Medical Centre, Rotterdam, Netherlands
| | - Tokameh Mahmoudi
- Department of Biochemistry, Erasmus University Medical Centre, Rotterdam, Netherlands
- Department of Pathology, Erasmus University Medical Centre, Rotterdam, Netherlands
- Department of Urology, Erasmus University Medical Centre, Rotterdam, Netherlands
| |
Collapse
|
36
|
Vogt PH, Rauschendorf MA, Zimmer J, Drummer C, Behr R. AZFa Y gene, DDX3Y, evolved novel testis transcript variants in primates with proximal 3´UTR polyadenylation for germ cell specific translation. Sci Rep 2022; 12:8954. [PMID: 35624115 PMCID: PMC9142519 DOI: 10.1038/s41598-022-12474-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 03/31/2022] [Indexed: 01/15/2023] Open
Abstract
Translational control is a major level of gene expression regulation in the male germ line. DDX3Y located in the AZFa region of the human Y chromosome encodes a conserved RNA helicase important for translational control at the G1-S phase of the cell cycle. In human, DDX3Y protein is expressed only in premeiotic male germ cells. In primates, DDX3Y evolved a second promoter producing novel testis-specific transcripts. Here, we show primate species-specific use of alternative polyadenylation (APA) sites for these testis-specific DDX3Y transcript variants. They have evolved subsequently in the 3´UTRs of the primates´ DDX3Y transcripts. Whereas a distal APA site (PAS4) is still used for polyadenylation of most DDX3Y testis transcripts in Callithrix jacchus; two proximal APAs (PAS1; PAS2) are used predominantly in Macaca mulatta, in Pan trogloydates and in human. This shift corresponds with a significant increase of DDX3Y protein expression in the macaque testis tissue. In chimpanzee and human, shift to predominant use of the most proximal APA site (PAS1) is associated with translation of these DDX3Y transcripts in only premeiotic male germ cells. We therefore assume evolution of a positive selection process for functional DDX3Y testis transcripts in these primates which increase their stability and translation efficiency to promote its cell cycle balancing function in the human male germ line.
Collapse
Affiliation(s)
- P. H. Vogt
- Division of Reproduction Genetics, Department of Gynecological Endocrinology and Fertility Disorders, University Women Hospital, Im Neuenheimer Feld 440, D-69120 Heidelberg, Germany
| | - M-A. Rauschendorf
- Molecular Health GmbH, Kurfürsten-Anlage 21, D-69115 Heidelberg, Germany
| | - J. Zimmer
- Division of Reproduction Genetics, Department of Gynecological Endocrinology and Fertility Disorders, University Women Hospital, Im Neuenheimer Feld 440, D-69120 Heidelberg, Germany
| | - C. Drummer
- grid.418215.b0000 0000 8502 7018Platform Degenerative Diseases, German Primate Center, Leibniz Institute for Primate Research, Kellnerweg 4, D-37077 Göttingen, Germany
| | - R. Behr
- grid.418215.b0000 0000 8502 7018Platform Degenerative Diseases, German Primate Center, Leibniz Institute for Primate Research, Kellnerweg 4, D-37077 Göttingen, Germany
| |
Collapse
|
37
|
Hernández G. The versatile relationships between eIF4E and eIF4E-interacting proteins. Trends Genet 2022; 38:801-804. [PMID: 35568601 DOI: 10.1016/j.tig.2022.04.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 04/10/2022] [Accepted: 04/11/2022] [Indexed: 11/18/2022]
Abstract
RNA metabolism and gene expression lie at the core of cellular life. eIF4E has emerged as a central interface in both processes as it plays critical roles in mRNA processing, transport, translation, and storage. Crucially, eIF4E depends on its association with a universe of proteins to form biologically meaningful complexes.
Collapse
Affiliation(s)
- Greco Hernández
- Translation and Cancer Laboratory, Unit of Biomedical Research on Cancer, National Institute of Cancer (Instituto Nacional de Cancerología, INCan). 22 San Fernando Avenue, Tlalpan, 14080-Mexico City, Mexico.
| |
Collapse
|
38
|
Abstract
Continuously renewing the proteome, translation is exquisitely controlled by a number of dedicated factors that interact with the ribosome. The RNA helicase DDX3 belonging to the DEAD box family has emerged as one of the critical regulators of translation, the failure of which is frequently observed in a wide range of proliferative, degenerative, and infectious diseases in humans. DDX3 unwinds double-stranded RNA molecules with coupled ATP hydrolysis and thereby remodels complex RNA structures present in various protein-coding and noncoding RNAs. By interacting with specific features on messenger RNAs (mRNAs) and 18S ribosomal RNA (rRNA), DDX3 facilitates translation, while repressing it under certain conditions. We review recent findings underlying these properties of DDX3 in diverse modes of translation, such as cap-dependent and cap-independent translation initiation, usage of upstream open reading frames, and stress-induced ribonucleoprotein granule formation. We further discuss how disease-associated DDX3 variants alter the translation landscape in the cell.
Collapse
Affiliation(s)
- Joon Tae Park
- Division of Life Sciences, Incheon National University, Incheon 22012, Korea
| | - Sekyung Oh
- Department of Medical Science, Catholic Kwandong University College of Medicine, Incheon 22711, Korea
| |
Collapse
|
39
|
Vesuna F, Akhrymuk I, Smith A, Winnard PT, Lin SC, Scharpf R, Kehn-Hall K, Raman V. RK-33, a small molecule inhibitor of host RNA helicase DDX3, suppresses multiple variants of SARS-CoV-2. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2022:2022.02.28.482334. [PMID: 35262079 PMCID: PMC8902879 DOI: 10.1101/2022.02.28.482334] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
SARS-CoV-2, the virus behind the deadly COVID-19 pandemic, continues to spread globally even as vaccine strategies are proving effective in preventing hospitalizations and deaths. However, evolving variants of the virus appear to be more transmissive and vaccine efficacy towards them is waning. As a result, SARS-CoV-2 will continue to have a deadly impact on public health into the foreseeable future. One strategy to bypass the continuing problem of newer variants is to target host proteins required for viral replication. We have used this host-targeted antiviral (HTA) strategy that targets DDX3, a host DEAD-box RNA helicase that is usurped by SARS-CoV-2 for virus production. We demonstrated that targeting DDX3 with RK-33, a small molecule inhibitor, reduced the viral load in four isolates of SARS-CoV-2 (Lineage A, and Lineage B Alpha, Beta, and Delta variants) by one to three log orders in Calu-3 cells. Furthermore, proteomics and RNA-seq analyses indicated that most SARS-CoV-2 genes were downregulated by RK-33 treatment. Also, we show that the use of RK-33 decreases TMPRSS2 expression, which may be due to DDX3s ability to unwind G-quadraplex structures present in the TMPRSS2 promoter. The data presented supports the use of RK-33 as an HTA strategy to control SARS-CoV-2 infection, irrespective of its mutational status, in humans.
Collapse
|
40
|
Pardeshi J, McCormack N, Gu L, Ryan CS, Schröder M. DDX3X functionally and physically interacts with Estrogen Receptor-alpha. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2022; 1865:194787. [PMID: 35121200 DOI: 10.1016/j.bbagrm.2022.194787] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 01/19/2022] [Accepted: 01/20/2022] [Indexed: 11/19/2022]
Abstract
DEAD-box protein 3X (DDX3X) is a human DEAD-box protein with conventional roles in RNA metabolism and unconventional functions in signalling pathways that do not require its enzymatic activity. For example, DDX3X acts as a multifunctional adaptor molecule in anti-viral innate immune signalling pathways, where it interacts with and regulates the kinase IKB-kinase-epsilon (IIKKε). Interestingly, both DDX3X and IKKɛ have also independently been shown to act as breast cancer oncogenes. IKKɛ's oncogenic functions are likely multifactorial, but it was suggested to phosphorylate the transcription factor Estrogen receptor alpha (ERα) at Serine 167, which drives expression of Erα target genes in an estrogen-independent manner. In this study, we identified a novel physical interaction between DDX3X and ERα that positively regulates ERα activation. DDX3X knockdown in ER+ breast cancer cell lines resulted in reduced ERα phosphorylation, reduced Estrogen Response Element (ERE)-controlled reporter gene expression, decreased expression of ERα target genes, and decreased cell proliferation. Vice versa, overexpression of DDX3X resulted in enhanced ERα phosphorylation and activity. Furthermore, we provide evidence that DDX3X physically binds to ERα from co-immunoprecipitation and pulldown experiments. Based on our data, we propose that DDX3X acts as an adaptor to facilitate IKKε-mediated ERα activation, akin to the mechanism we previously elucidated for IKKε-mediated Interferon Regulatory factor 3 (IRF3) activation in innate immune signalling. In conclusion, our research provides a novel molecular mechanism that might contribute to the oncogenic effect of DDX3X in breast cancer, potentially linking it to the development of resistance against endocrine therapy.
Collapse
Affiliation(s)
- Jyotsna Pardeshi
- Biology Department, Kathleen Lonsdale Institute for Human Health Research, Maynooth University, Maynooth, Co. Kildare, Ireland
| | - Niamh McCormack
- Biology Department, Kathleen Lonsdale Institute for Human Health Research, Maynooth University, Maynooth, Co. Kildare, Ireland
| | - Lili Gu
- Biology Department, Kathleen Lonsdale Institute for Human Health Research, Maynooth University, Maynooth, Co. Kildare, Ireland
| | - Cathal S Ryan
- Biology Department, Kathleen Lonsdale Institute for Human Health Research, Maynooth University, Maynooth, Co. Kildare, Ireland
| | - Martina Schröder
- Biology Department, Kathleen Lonsdale Institute for Human Health Research, Maynooth University, Maynooth, Co. Kildare, Ireland.
| |
Collapse
|
41
|
Castelli LM, Benson BC, Huang WP, Lin YH, Hautbergue GM. RNA Helicases in Microsatellite Repeat Expansion Disorders and Neurodegeneration. Front Genet 2022; 13:886563. [PMID: 35646086 PMCID: PMC9133428 DOI: 10.3389/fgene.2022.886563] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 04/25/2022] [Indexed: 11/17/2022] Open
Abstract
Short repeated sequences of 3-6 nucleotides are causing a growing number of over 50 microsatellite expansion disorders, which mainly present with neurodegenerative features. Although considered rare diseases in relation to the relatively low number of cases, these primarily adult-onset conditions, often debilitating and fatal in absence of a cure, collectively pose a large burden on healthcare systems in an ageing world population. The pathological mechanisms driving disease onset are complex implicating several non-exclusive mechanisms of neuronal injury linked to RNA and protein toxic gain- and loss- of functions. Adding to the complexity of pathogenesis, microsatellite repeat expansions are polymorphic and found in coding as well as in non-coding regions of genes. They form secondary and tertiary structures involving G-quadruplexes and atypical helices in repeated GC-rich sequences. Unwinding of these structures by RNA helicases plays multiple roles in the expression of genes including repeat-associated non-AUG (RAN) translation of polymeric-repeat proteins with aggregating and cytotoxic properties. Here, we will briefly review the pathogenic mechanisms mediated by microsatellite repeat expansions prior to focus on the RNA helicases eIF4A, DDX3X and DHX36 which act as modifiers of RAN translation in C9ORF72-linked amyotrophic lateral sclerosis/frontotemporal dementia (C9ORF72-ALS/FTD) and Fragile X-associated tremor/ataxia syndrome (FXTAS). We will further review the RNA helicases DDX5/17, DHX9, Dicer and UPF1 which play additional roles in the dysregulation of RNA metabolism in repeat expansion disorders. In addition, we will contrast these with the roles of other RNA helicases such as DDX19/20, senataxin and others which have been associated with neurodegeneration independently of microsatellite repeat expansions. Finally, we will discuss the challenges and potential opportunities that are associated with the targeting of RNA helicases for the development of future therapeutic approaches.
Collapse
Affiliation(s)
- Lydia M Castelli
- Sheffield Institute for Translational Neuroscience (SITraN), Department of Neuroscience, University of Sheffield, Sheffield, United Kingdom
| | - Bridget C Benson
- Sheffield Institute for Translational Neuroscience (SITraN), Department of Neuroscience, University of Sheffield, Sheffield, United Kingdom
| | - Wan-Ping Huang
- Sheffield Institute for Translational Neuroscience (SITraN), Department of Neuroscience, University of Sheffield, Sheffield, United Kingdom
| | - Ya-Hui Lin
- Sheffield Institute for Translational Neuroscience (SITraN), Department of Neuroscience, University of Sheffield, Sheffield, United Kingdom
| | - Guillaume M Hautbergue
- Sheffield Institute for Translational Neuroscience (SITraN), Department of Neuroscience, University of Sheffield, Sheffield, United Kingdom.,Neuroscience Institute, University of Sheffield, Sheffield, United Kingdom.,Healthy Lifespan Institute (HELSI), University of Sheffield, Sheffield, United Kingdom
| |
Collapse
|
42
|
Schneider-Lunitz V, Ruiz-Orera J, Hubner N, van Heesch S. Multifunctional RNA-binding proteins influence mRNA abundance and translational efficiency of distinct sets of target genes. PLoS Comput Biol 2021; 17:e1009658. [PMID: 34879078 PMCID: PMC8687540 DOI: 10.1371/journal.pcbi.1009658] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 12/20/2021] [Accepted: 11/18/2021] [Indexed: 12/12/2022] Open
Abstract
RNA-binding proteins (RBPs) can regulate more than a single aspect of RNA metabolism. We searched for such previously undiscovered multifunctionality within a set of 143 RBPs, by defining the predictive value of RBP abundance for the transcription and translation levels of known RBP target genes across 80 human hearts. This led us to newly associate 27 RBPs with cardiac translational regulation in vivo. Of these, 21 impacted both RNA expression and translation, albeit for virtually independent sets of target genes. We highlight a subset of these, including G3BP1, PUM1, UCHL5, and DDX3X, where dual regulation is achieved through differential affinity for target length, by which separate biological processes are controlled. Like the RNA helicase DDX3X, the known splicing factors EFTUD2 and PRPF8—all identified as multifunctional RBPs by our analysis—selectively influence target translation rates depending on 5’ UTR structure. Our analyses identify dozens of RBPs as being multifunctional and pinpoint potential novel regulators of translation, postulating unanticipated complexity of protein-RNA interactions at consecutive stages of gene expression. The lifecycle of an RNA molecule is controlled by hundreds of proteins that can bind RNA, also known as RNA-binding proteins (RBPs). These proteins recognize landing sites within the RNA and guide the RNA’s transcription from DNA, its processing into a mature messenger RNA, its translation into protein, or its degradation once the RNA is no longer needed. Although we now mechanistically understand how certain RBPs regulate these processes, for many RBP-target interactions the consequences imposed by RNA binding are not well understood. For 143 RBPs with known RNA binding positions, the authors of the current study investigated how RNA molecules responded to fluctuations in the expression levels of these RBPs, across each of 80 human hearts. Using statistical approaches, they could show that many RBPs influenced stages of the RNA lifecycle that they were not known to be involved in. Some RBPs turned out to be true "all-rounders" of RNA metabolism: they controlled the RNA transcript levels of some genes, whereas they influenced the translation rates of others. This unexpected multifunctionality unveiled previously hidden aspects of the everyday RNA-binding protein working life.
Collapse
Affiliation(s)
- Valentin Schneider-Lunitz
- Cardiovascular and Metabolic Sciences, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Jorge Ruiz-Orera
- Cardiovascular and Metabolic Sciences, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Norbert Hubner
- Cardiovascular and Metabolic Sciences, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
- Charité-Universitätsmedizin, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Berlin, Germany
- * E-mail: (NH); (SvH)
| | - Sebastiaan van Heesch
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
- * E-mail: (NH); (SvH)
| |
Collapse
|
43
|
Targeting DDX3X Helicase Activity with BA103 Shows Promising Therapeutic Effects in Preclinical Glioblastoma Models. Cancers (Basel) 2021; 13:cancers13215569. [PMID: 34771731 PMCID: PMC8582824 DOI: 10.3390/cancers13215569] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 10/29/2021] [Accepted: 10/30/2021] [Indexed: 01/16/2023] Open
Abstract
Simple Summary In the last ten years, the human helicase protein DDX3X turned out to be an extremely interesting target for the development of potential anticancer drugs. Herein, we discovered BA103, a novel specific inhibitor of the helicase binding site of DDX3X, which is characterized by broad-spectrum anticancer activity. BA103 revealed promising tolerability in fibroblasts and good pharmacokinetic properties. Furthermore, BA103 was able to decrease the expression of β-catenin and to reduce tumor migration. Its capability to pass the blood–brain barrier led us to investigate its potential against glioblastoma, which is a high refractory disease with poor prognosis. High efficacy was proven in both xenograft and orthotopic animal models. Abstract DDX3X is an ATP-dependent RNA helicase that has recently attracted interest for its involvement in viral replication and oncogenic progression. Starting from hit compounds previously identified by our group, we have designed and synthesized a new series of DDX3X inhibitors that effectively blocked its helicase activity. These new compounds were able to inhibit the proliferation of cell lines from different cancer types, also in DDX3X low-expressing cancer cell lines. According to the absorption, distribution, metabolism, elimination properties, and antitumoral activity, compound BA103 was chosen to be further investigated in glioblastoma models. BA103 determined a significant reduction in the proliferation and migration of U87 and U251 cells, downregulating the oncogenic protein β-catenin. An in vivo evaluation demonstrated that BA103 was able to reach the brain and reduce the tumor growth in xenograft and orthotopic models without evident side effects. This study represents the first demonstration that DDX3X-targeted small molecules are feasible and promising drugs also in glioblastoma.
Collapse
|
44
|
Zheng Y, Xu B, Zhao Y, Yang S, Wang S, Ma L, Dong L. DEAD-Box Helicase 3 X-Linked Promotes Metastasis by Inducing Epithelial-Mesenchymal Transition via p62/Sequestosome-1. Dig Dis Sci 2021; 66:3893-3902. [PMID: 33386519 DOI: 10.1007/s10620-020-06735-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 11/18/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND DEAD-Box Helicase 3 X-Linked (DDX3X) is a member of the DEAD-box helicases that play a crucial role in RNA metabolism. Although DDX3X has been shown to contribute to tumorigenesis, the detailed mechanisms by which DDX3X functions in pancreatic ductal adenocarcinoma (PDAC) biogenesis remain poorly understood. AIMS The goal of the present study was to elucidate the molecular mechanisms by which DDX3X contributes to tumorigenesis in PDAC. METHODS Kaplan-Meier curves, the log-rank test, t test and Cox regression were used to analyze the relationship between DDX3X expression and the clinicopathological features of PDAC patients. DDX3X and p62 expression in human PDAC tissues was analyzed by immunohistochemistry. Monolayer scratch healing assays, cell migration assays and nude mouse lung metastasis models were used to evaluate the effect of DDX3X on metastasis in vitro and in vivo. Western blot analysis was used to assess the expression of proteins in the signaling pathway. RESULTS We authenticated high DDX3X expression was associated with a poor prognosis in PDAC. The loss of DDX3X attenuated the migratory capacity of PDAC cells in vitro and in vivo. DDX3X was shown to facilitate epithelial-mesenchymal transition (EMT) and the phosphorylation of p65 and eIF2α. Moreover, DDX3X displayed oncogenic activity by promoting p62 accumulation. CONCLUSIONS Our results demonstrated that DDX3X activates NF-κB and promotes metastasis by inducing EMT via p62.
Collapse
Affiliation(s)
- Ying Zheng
- Department of Digestive Disease and Gastrointestinal Motility Research Room, The Second Affiliated Hospital of Xi'an Jiaotong University, No. 157 Xi Wu Road, Xi'an, 710004, Shaanxi Province, MI, China
| | - Bing Xu
- State Key Laboratory of Cancer Biology and Institute of Digestive Diseases, Xijing Hospital, The Fourth Military Medical University, Xi'an, 710032, Shaanxi, MI, China
| | - Yitong Zhao
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, MI, China
| | - Suzhen Yang
- Department of Digestive Disease and Gastrointestinal Motility Research Room, The Second Affiliated Hospital of Xi'an Jiaotong University, No. 157 Xi Wu Road, Xi'an, 710004, Shaanxi Province, MI, China
| | - Shuhui Wang
- Department of Digestive Disease and Gastrointestinal Motility Research Room, The Second Affiliated Hospital of Xi'an Jiaotong University, No. 157 Xi Wu Road, Xi'an, 710004, Shaanxi Province, MI, China
| | - Lin Ma
- Department of Digestive Disease and Gastrointestinal Motility Research Room, The Second Affiliated Hospital of Xi'an Jiaotong University, No. 157 Xi Wu Road, Xi'an, 710004, Shaanxi Province, MI, China
| | - Lei Dong
- Department of Digestive Disease and Gastrointestinal Motility Research Room, The Second Affiliated Hospital of Xi'an Jiaotong University, No. 157 Xi Wu Road, Xi'an, 710004, Shaanxi Province, MI, China.
| |
Collapse
|
45
|
Gong C, Krupka JA, Gao J, Grigoropoulos NF, Giotopoulos G, Asby R, Screen M, Usheva Z, Cucco F, Barrans S, Painter D, Zaini NBM, Haupl B, Bornelöv S, Ruiz De Los Mozos I, Meng W, Zhou P, Blain AE, Forde S, Matthews J, Khim Tan MG, Burke GAA, Sze SK, Beer P, Burton C, Campbell P, Rand V, Turner SD, Ule J, Roman E, Tooze R, Oellerich T, Huntly BJ, Turner M, Du MQ, Samarajiwa SA, Hodson DJ. Sequential inverse dysregulation of the RNA helicases DDX3X and DDX3Y facilitates MYC-driven lymphomagenesis. Mol Cell 2021; 81:4059-4075.e11. [PMID: 34437837 DOI: 10.1016/j.molcel.2021.07.041] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 05/17/2021] [Accepted: 07/28/2021] [Indexed: 12/23/2022]
Abstract
DDX3X is a ubiquitously expressed RNA helicase involved in multiple stages of RNA biogenesis. DDX3X is frequently mutated in Burkitt lymphoma, but the functional basis for this is unknown. Here, we show that loss-of-function DDX3X mutations are also enriched in MYC-translocated diffuse large B cell lymphoma and reveal functional cooperation between mutant DDX3X and MYC. DDX3X promotes the translation of mRNA encoding components of the core translational machinery, thereby driving global protein synthesis. Loss-of-function DDX3X mutations moderate MYC-driven global protein synthesis, thereby buffering MYC-induced proteotoxic stress during early lymphomagenesis. Established lymphoma cells restore full protein synthetic capacity by aberrant expression of DDX3Y, a Y chromosome homolog, the expression of which is normally restricted to the testis. These findings show that DDX3X loss of function can buffer MYC-driven proteotoxic stress and highlight the capacity of male B cell lymphomas to then compensate for this loss by ectopic DDX3Y expression.
Collapse
Affiliation(s)
- Chun Gong
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Puddicombe Way, Cambridge CB2 0AW, UK; Department of Haematology, University of Cambridge, Cambridge CB2 0AW, UK
| | - Joanna A Krupka
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Puddicombe Way, Cambridge CB2 0AW, UK; Department of Haematology, University of Cambridge, Cambridge CB2 0AW, UK; MRC Cancer Unit, University of Cambridge, Hutchison/MRC Research Centre, Cambridge CB2 0XZ, UK
| | - Jie Gao
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Puddicombe Way, Cambridge CB2 0AW, UK; Department of Haematology, University of Cambridge, Cambridge CB2 0AW, UK
| | | | - George Giotopoulos
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Puddicombe Way, Cambridge CB2 0AW, UK; Department of Haematology, University of Cambridge, Cambridge CB2 0AW, UK
| | - Ryan Asby
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Puddicombe Way, Cambridge CB2 0AW, UK; Department of Haematology, University of Cambridge, Cambridge CB2 0AW, UK
| | - Michael Screen
- Immunology Programme, The Babraham Institute, Cambridge CB22 3AT, UK
| | - Zelvera Usheva
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Puddicombe Way, Cambridge CB2 0AW, UK; Department of Haematology, University of Cambridge, Cambridge CB2 0AW, UK
| | - Francesco Cucco
- Division of Cellular and Molecular Pathology, Department of Pathology, University of Cambridge, Cambridge CB20QQ, UK
| | - Sharon Barrans
- Haematological Malignancy Diagnostic Service, St. James's Institute of Oncology, Leeds LS9 7TF, UK
| | - Daniel Painter
- Epidemiology and Cancer Statistics Group, Department of Health Sciences, University of York, York YO10 5DD, UK
| | | | - Björn Haupl
- Department of Medicine II, Hematology/Oncology, Goethe University, Theodor-Stern-Kai 7, 60590 Frankfurt, Germany; German Cancer Research Center and German Cancer Consortium, Heidelberg, Germany; Frankfurt Cancer Institute, Goethe University Frankfurt, 60596 Frankfurt, Germany
| | - Susanne Bornelöv
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Puddicombe Way, Cambridge CB2 0AW, UK
| | - Igor Ruiz De Los Mozos
- The Francis Crick Institute, London NW1 1AT, UK; Department for Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
| | - Wei Meng
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore, Singapore
| | - Peixun Zhou
- National Horizons Centre, Teesside University, 38 John Dixon Lane, Darlington DL1 1HG, UK; School of Health & Life Sciences, Teesside University, Middlesbrough TS1 3BA, UK
| | - Alex E Blain
- National Horizons Centre, Teesside University, 38 John Dixon Lane, Darlington DL1 1HG, UK; Wolfson Childhood Cancer Research Centre, Northern Institute for Cancer Research, Newcastle University, Newcastle upon Tyne, UK; School of Health & Life Sciences, Teesside University, Middlesbrough TS1 3BA, UK
| | - Sorcha Forde
- Division of Cellular and Molecular Pathology, Department of Pathology, University of Cambridge, Cambridge CB20QQ, UK
| | - Jamie Matthews
- Division of Cellular and Molecular Pathology, Department of Pathology, University of Cambridge, Cambridge CB20QQ, UK
| | - Michelle Guet Khim Tan
- Department of Clinical Translational Research, Singapore General Hospital, Outram Road, Singapore 169856, Singapore
| | - G A Amos Burke
- Department of Paediatric Oncology, Addenbrooke's Hospital, Cambridge, UK
| | - Siu Kwan Sze
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore, Singapore
| | - Philip Beer
- Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1SA, UK
| | - Cathy Burton
- Haematological Malignancy Diagnostic Service, St. James's Institute of Oncology, Leeds LS9 7TF, UK
| | - Peter Campbell
- Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1SA, UK
| | - Vikki Rand
- National Horizons Centre, Teesside University, 38 John Dixon Lane, Darlington DL1 1HG, UK; School of Health & Life Sciences, Teesside University, Middlesbrough TS1 3BA, UK
| | - Suzanne D Turner
- Division of Cellular and Molecular Pathology, Department of Pathology, University of Cambridge, Cambridge CB20QQ, UK; CEITEC, Masaryk University, Brno, Czech Republic
| | - Jernej Ule
- The Francis Crick Institute, London NW1 1AT, UK; Department for Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
| | - Eve Roman
- Epidemiology and Cancer Statistics Group, Department of Health Sciences, University of York, York YO10 5DD, UK
| | - Reuben Tooze
- Haematological Malignancy Diagnostic Service, St. James's Institute of Oncology, Leeds LS9 7TF, UK; Section of Experimental Haematology, Leeds Institute of Molecular Medicine, University of Leeds, Leeds LS2 9JT, UK
| | - Thomas Oellerich
- Department of Medicine II, Hematology/Oncology, Goethe University, Theodor-Stern-Kai 7, 60590 Frankfurt, Germany; German Cancer Research Center and German Cancer Consortium, Heidelberg, Germany; Frankfurt Cancer Institute, Goethe University Frankfurt, 60596 Frankfurt, Germany
| | - Brian J Huntly
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Puddicombe Way, Cambridge CB2 0AW, UK; Department of Haematology, University of Cambridge, Cambridge CB2 0AW, UK
| | - Martin Turner
- Immunology Programme, The Babraham Institute, Cambridge CB22 3AT, UK
| | - Ming-Qing Du
- Division of Cellular and Molecular Pathology, Department of Pathology, University of Cambridge, Cambridge CB20QQ, UK
| | - Shamith A Samarajiwa
- MRC Cancer Unit, University of Cambridge, Hutchison/MRC Research Centre, Cambridge CB2 0XZ, UK
| | - Daniel J Hodson
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Puddicombe Way, Cambridge CB2 0AW, UK; Department of Haematology, University of Cambridge, Cambridge CB2 0AW, UK.
| |
Collapse
|
46
|
Abstract
Herculean efforts by the Wellcome Sanger Institute, the National Cancer Institute, and the National Human Genome Research Institute to sequence thousands of tumors representing all major cancer types have yielded more than 700 genes that contribute to neoplastic growth when mutated, amplified, or deleted. While some of these genes (now included in the COSMIC Cancer Gene Census) encode proteins previously identified in hypothesis-driven experiments (oncogenic transcription factors, protein kinases, etc.), additional classes of cancer drivers have emerged, perhaps none more surprisingly than RNA-binding proteins (RBPs). Over 40 RBPs responsible for virtually all aspects of RNA metabolism, from synthesis to degradation, are recurrently mutated in cancer, and just over a dozen are considered major cancer drivers. This Review investigates whether and how their RNA-binding activities pertain to their oncogenic functions. Focusing on several well-characterized steps in RNA metabolism, we demonstrate that for virtually all cancer-driving RBPs, RNA processing activities are either abolished (the loss-of-function phenotype) or carried out with low fidelity (the LoFi phenotype). Conceptually, this suggests that in normal cells, RBPs act as gatekeepers maintaining proper RNA metabolism and the "balanced" proteome. From the practical standpoint, at least some LoFi phenotypes create therapeutic vulnerabilities, which are beginning to be exploited in the clinic.
Collapse
|
47
|
RNA Helicase DDX3: A Double-Edged Sword for Viral Replication and Immune Signaling. Microorganisms 2021; 9:microorganisms9061206. [PMID: 34204859 PMCID: PMC8227550 DOI: 10.3390/microorganisms9061206] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 05/20/2021] [Accepted: 05/21/2021] [Indexed: 12/19/2022] Open
Abstract
DDX3 is a cellular ATP-dependent RNA helicase involved in different aspects of RNA metabolism ranging from transcription to translation and therefore, DDX3 participates in the regulation of key cellular processes including cell cycle progression, apoptosis, cancer and the antiviral immune response leading to type-I interferon production. DDX3 has also been described as an essential cellular factor for the replication of different viruses, including important human threats such HIV-1 or HCV, and different small molecules targeting DDX3 activity have been developed. Indeed, increasing evidence suggests that DDX3 can be considered not only a promising but also a viable target for anticancer and antiviral treatments. In this review, we summarize distinct functional aspects of DDX3 focusing on its participation as a double-edged sword in the host immune response and in the replication cycle of different viruses.
Collapse
|
48
|
Tang L, Levy T, Guillory S, Halpern D, Zweifach J, Giserman-Kiss I, Foss-Feig JH, Frank Y, Lozano R, Belani P, Layton C, Lerman B, Frowner E, Breen MS, De Rubeis S, Kostic A, Kolevzon A, Buxbaum JD, Siper PM, Grice DE. Prospective and detailed behavioral phenotyping in DDX3X syndrome. Mol Autism 2021; 12:36. [PMID: 33993884 PMCID: PMC8127248 DOI: 10.1186/s13229-021-00431-z] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 03/01/2021] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND DDX3X syndrome is a recently identified genetic disorder that accounts for 1-3% of cases of unexplained developmental delay and/or intellectual disability (ID) in females, and is associated with motor and language delays, and autism spectrum disorder (ASD). To date, the published phenotypic characterization of this syndrome has primarily relied on medical record review; in addition, the behavioral dimensions of the syndrome have not been fully explored. METHODS We carried out multi-day, prospective, detailed phenotyping of DDX3X syndrome in 14 females and 1 male, focusing on behavioral, psychological, and neurological measures. Three participants in this cohort were previously reported with limited phenotype information and were re-evaluated for this study. We compared results against population norms and contrasted phenotypes between individuals harboring either (1) protein-truncating variants or (2) missense variants or in-frame deletions. RESULTS Eighty percent (80%) of individuals met criteria for ID, 60% for ASD and 53% for attention-deficit/hyperactivity disorder (ADHD). Motor and language delays were common as were sensory processing abnormalities. The cohort included 5 missense, 3 intronic/splice-site, 2 nonsense, 2 frameshift, 2 in-frame deletions, and one initiation codon variant. Genotype-phenotype correlations indicated that, on average, missense variants/in-frame deletions were associated with more severe language, motor, and adaptive deficits in comparison to protein-truncating variants. LIMITATIONS Sample size is modest, however, DDX3X syndrome is a rare and underdiagnosed disorder. CONCLUSION This study, representing a first, prospective, detailed characterization of DDX3X syndrome, extends our understanding of the neurobehavioral phenotype. Gold-standard diagnostic approaches demonstrated high rates of ID, ASD, and ADHD. In addition, sensory deficits were observed to be a key part of the syndrome. Even with a modest sample, we observe evidence for genotype-phenotype correlations with missense variants/in-frame deletions generally associated with more severe phenotypes.
Collapse
Affiliation(s)
- Lara Tang
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, 1425 Madison Avenue, Box 1230, New York, NY 10029 USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029 USA
| | - Tess Levy
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, 1425 Madison Avenue, Box 1230, New York, NY 10029 USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029 USA
| | - Sylvia Guillory
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, 1425 Madison Avenue, Box 1230, New York, NY 10029 USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029 USA
| | - Danielle Halpern
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, 1425 Madison Avenue, Box 1230, New York, NY 10029 USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029 USA
| | - Jessica Zweifach
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, 1425 Madison Avenue, Box 1230, New York, NY 10029 USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029 USA
| | - Ivy Giserman-Kiss
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, 1425 Madison Avenue, Box 1230, New York, NY 10029 USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029 USA
| | - Jennifer H. Foss-Feig
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, 1425 Madison Avenue, Box 1230, New York, NY 10029 USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029 USA
| | - Yitzchak Frank
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, 1425 Madison Avenue, Box 1230, New York, NY 10029 USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029 USA
| | - Reymundo Lozano
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, 1425 Madison Avenue, Box 1230, New York, NY 10029 USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029 USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029 USA
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY 10029 USA
| | - Puneet Belani
- Department of Radiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029 USA
| | - Christina Layton
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, 1425 Madison Avenue, Box 1230, New York, NY 10029 USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029 USA
| | - Bonnie Lerman
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, 1425 Madison Avenue, Box 1230, New York, NY 10029 USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029 USA
| | - Emanuel Frowner
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, 1425 Madison Avenue, Box 1230, New York, NY 10029 USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029 USA
| | - Michael S. Breen
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, 1425 Madison Avenue, Box 1230, New York, NY 10029 USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029 USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029 USA
- Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY 10029 USA
- Pamela Sklar Division of Psychiatric Genomics, Icahn School of Medicine at Mount Sinai, New York, NY 10029 USA
| | - Silvia De Rubeis
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, 1425 Madison Avenue, Box 1230, New York, NY 10029 USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029 USA
- The Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029 USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY USA
| | - Ana Kostic
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, 1425 Madison Avenue, Box 1230, New York, NY 10029 USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029 USA
| | - Alexander Kolevzon
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, 1425 Madison Avenue, Box 1230, New York, NY 10029 USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029 USA
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY 10029 USA
- The Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029 USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY USA
| | - Joseph D. Buxbaum
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, 1425 Madison Avenue, Box 1230, New York, NY 10029 USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029 USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029 USA
- The Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029 USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY USA
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029 USA
| | - Paige M. Siper
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, 1425 Madison Avenue, Box 1230, New York, NY 10029 USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029 USA
- The Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029 USA
| | - Dorothy E. Grice
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, 1425 Madison Avenue, Box 1230, New York, NY 10029 USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029 USA
- The Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029 USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY USA
- Division of Tics, OCD, and Related Disorders, Icahn School of Medicine at Mount Sinai, New York, NY 10029 USA
| |
Collapse
|
49
|
Selective cell death in HIV-1-infected cells by DDX3 inhibitors leads to depletion of the inducible reservoir. Nat Commun 2021; 12:2475. [PMID: 33931637 PMCID: PMC8087668 DOI: 10.1038/s41467-021-22608-z] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 03/15/2021] [Indexed: 02/02/2023] Open
Abstract
An innovative approach to eliminate HIV-1-infected cells emerging out of latency, the major hurdle to HIV-1 cure, is to pharmacologically reactivate viral expression and concomitantly trigger intracellular pro-apoptotic pathways in order to selectively induce cell death (ICD) of infected cells, without reliance on the extracellular immune system. In this work, we demonstrate the effect of DDX3 inhibitors on selectively inducing cell death in latent HIV-1-infected cell lines, primary CD4+ T cells and in CD4+ T cells from cART-suppressed people living with HIV-1 (PLWHIV). We used single-cell FISH-Flow technology to characterise the contribution of viral RNA to inducing cell death. The pharmacological targeting of DDX3 induced HIV-1 RNA expression, resulting in phosphorylation of IRF3 and upregulation of IFNβ. DDX3 inhibition also resulted in the downregulation of BIRC5, critical to cell survival during HIV-1 infection, and selectively induced apoptosis in viral RNA-expressing CD4+ T cells but not bystander cells. DDX3 inhibitor treatment of CD4+ T cells from PLWHIV resulted in an approximately 50% reduction of the inducible latent HIV-1 reservoir by quantitation of HIV-1 RNA, by FISH-Flow, RT-qPCR and TILDA. This study provides proof of concept for pharmacological reversal of latency coupled to induction of apoptosis towards the elimination of the inducible reservoir.
Collapse
|
50
|
Abstract
The DEAD-box helicase family member DDX3X (DBX, DDX3) functions in nearly all stages of RNA metabolism and participates in the progression of many diseases, including virus infection, inflammation, intellectual disabilities and cancer. Over two decades, many studies have gradually unveiled the role of DDX3X in tumorigenesis and tumour progression. In fact, DDX3X possesses numerous functions in cancer biology and is closely related to many well-known molecules. In this review, we describe the function of DDX3X in RNA metabolism, cellular stress response, innate immune response, metabolic stress response in pancreatic β cells and embryo development. Then, we focused on the role of DDX3X in cancer biology and systematically demonstrated its functions in various aspects of tumorigenesis and development. To provide a more intuitive understanding of the role of DDX3X in cancer, we summarized its functions and specific mechanisms in various types of cancer and presented its involvement in cancer-related signalling pathways.
Collapse
|