1
|
Ebert B, Orellana A. Nucleotide Sugar Transporters: Orchestrating Luminal Glycosylation in Plants. ANNUAL REVIEW OF PLANT BIOLOGY 2025; 76:53-83. [PMID: 40036786 DOI: 10.1146/annurev-arplant-083123-075017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/06/2025]
Abstract
Eukaryotic glycobiology revolves around nucleotide sugar transporters (NSTs), which are critical for glycan biosynthesis in the Golgi apparatus and endoplasmic reticulum. In plants, NSTs share similarities with triose phosphate translocators (TPTs) and together form the NST/TPT superfamily. Major research efforts over the last decades have led to the biochemical characterization of several of these transporters and addressed their role in cell wall polysaccharide and glycoconjugate biosynthesis, revealing precise substrate specificity and function. While recent insights gained from NST and TPT crystal structures promise to unravel the molecular mechanisms governing these membrane proteins, their regulation and dynamic behavior remain enigmatic. Likewise, many uncharacterized and orphan NSTs pose exciting questions about the biology of the endomembrane system. We discuss the progress in this active research area and stimulate consideration for the intriguing outstanding questions with a view to establish a foundation for applications in plant engineering and biopolymer production.
Collapse
Affiliation(s)
- Berit Ebert
- Faculty of Biology and Biotechnology, Ruhr University Bochum, Bochum, Germany;
- School of Biosciences, University of Melbourne, Melbourne, Victoria, Australia
| | - Ariel Orellana
- Centro de Biotecnología Vegetal, Facultad de Ciencias de la Vida, Instituto Milenio Centro de Regulación del Genoma, Universidad Andrés Bello, Santiago, Chile
| |
Collapse
|
2
|
Gong X, Zhou Y, Qin Q, Wang B, Wang L, Jin C, Fang W. Nitrate assimilation compensates for cell wall biosynthesis in the absence of Aspergillus fumigatus phosphoglucose isomerase. Appl Environ Microbiol 2024; 90:e0113824. [PMID: 39158312 PMCID: PMC11412302 DOI: 10.1128/aem.01138-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 07/20/2024] [Indexed: 08/20/2024] Open
Abstract
Phosphoglucose isomerase (PGI) links glycolysis, the pentose phosphate pathway (PPP), and the synthesis of cell wall precursors in fungi by facilitating the reversible conversion between glucose-6-phosphate (Glc6p) and fructose-6-phosphate (Fru6P). In a previous study, we established the essential role of PGI in cell wall biosynthesis in the opportunistic human fungal pathogen Aspergillus fumigatus, highlighting its potential as a therapeutic target. In this study, we conducted transcriptomic analysis and discovered that the Δpgi mutant exhibited enhanced glycolysis, reduced PPP, and an upregulation of cell wall precursor biosynthesis pathways. Phenotypic analysis revealed defective protein N-glycosylation in the mutant, notably the absence of glycosylated virulence factors DPP V and catalase 1. Interestingly, the cell wall defects in the mutant were not accompanied by activation of the MpkA-dependent cell wall integrity (CWI) signaling pathway. Instead, nitrate assimilation was activated in the Δpgi mutant, stimulating glutamine synthesis and providing amino donors for chitin precursor biosynthesis. Blocking the nitrate assimilation pathway severely impaired the growth of the Δpgi mutant, highlighting the crucial role of nitrate assimilation in rescuing cell wall defects. This study unveils the connection between nitrogen assimilation and cell wall compensation in A. fumigatus.IMPORTANCEAspergillus fumigatus is a common and serious human fungal pathogen that causes a variety of diseases. Given the limited availability of antifungal drugs and increasing drug resistance, it is imperative to understand the fungus' survival mechanisms for effective control of fungal infections. Our previous study highlighted the essential role of A. fumigatus PGI in maintaining cell wall integrity, phosphate sugar homeostasis, and virulence. The present study further illuminates the involvement of PGI in protein N-glycosylation. Furthermore, this research reveals that the nitrogen assimilation pathway, rather than the canonical MpkA-dependent CWI pathway, compensates for cell wall deficiencies in the mutant. These findings offer valuable insights into a novel adaptation mechanism of A. fumigatus to address cell wall defects, which could hold promise for the treatment of infections.
Collapse
Affiliation(s)
- Xiufang Gong
- Institute of
Biological Sciences and Technology, Guangxi Academy of
Sciences, Nanning,
Guangxi, China
- State Key Laboratory
of Mycology, Institute of Microbiology, Chinese Academy of
Sciences, Beijing,
China
| | - Yao Zhou
- Institute of
Biological Sciences and Technology, Guangxi Academy of
Sciences, Nanning,
Guangxi, China
| | - Qijian Qin
- Institute of
Biological Sciences and Technology, Guangxi Academy of
Sciences, Nanning,
Guangxi, China
| | - Bin Wang
- Institute of
Biological Sciences and Technology, Guangxi Academy of
Sciences, Nanning,
Guangxi, China
| | - Linqi Wang
- State Key Laboratory
of Mycology, Institute of Microbiology, Chinese Academy of
Sciences, Beijing,
China
| | - Cheng Jin
- Institute of
Biological Sciences and Technology, Guangxi Academy of
Sciences, Nanning,
Guangxi, China
- State Key Laboratory
of Mycology, Institute of Microbiology, Chinese Academy of
Sciences, Beijing,
China
| | - Wenxia Fang
- Institute of
Biological Sciences and Technology, Guangxi Academy of
Sciences, Nanning,
Guangxi, China
| |
Collapse
|
3
|
Agarwal M, Bhaskar A, Singha B, Mukhopadhyay S, Pahuja I, Singh A, Chaturvedi S, Agarwal N, Dwivedi VP, Nandicoori VK. Depletion of essential mycobacterial gene glmM reduces pathogen survival and induces host-protective immune responses against tuberculosis. Commun Biol 2024; 7:949. [PMID: 39107377 PMCID: PMC11303689 DOI: 10.1038/s42003-024-06620-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 07/23/2024] [Indexed: 08/10/2024] Open
Abstract
The limitations of TB treatment are the long duration and immune-dampening effects of anti-tuberculosis therapy. The Cell wall plays a crucial role in survival and virulence; hence, enzymes involved in its biosynthesis are good therapeutic targets. Here, we identify Mycobacterium tuberculosis (Mtb) GlmM, (GlmMMtb) engaged in the UDP-GlcNAc synthesis pathway as an essential enzyme. We generated a conditional knockdown strain, Rv-glmMkD using the CRISPR interference-mediated gene silencing approach. Depletion of GlmMMtb affects the morphology and thickness of the cell wall. The Rv-glmMkD strain attenuated Mtb survival in vitro, in the host macrophages (ex vivo), and in a murine mice infection model (in vivo). Results suggest that the depletion of GlmMMtb induces M1 macrophage polarization, prompting a pro-inflammatory cytokine response, apparent from the upregulation of activation markers, including IFNɣ and IL-17 that resists the growth of Mtb. These observations provide a rationale for exploring GlmMMtb as a potential therapeutic target.
Collapse
Affiliation(s)
- Meetu Agarwal
- Signal Transduction Laboratory, National Institute of Immunology, New Delhi, India.
- Department of Molecular Medicine, Jamia Hamdard University, New Delhi, India.
| | - Ashima Bhaskar
- Immunobiology Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Biplab Singha
- Signal Transduction Laboratory, National Institute of Immunology, New Delhi, India
| | - Suparba Mukhopadhyay
- Immunobiology Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Isha Pahuja
- Immunobiology Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Archna Singh
- CSIR - Institute of Genomics and Integrative Biology, Mall Road, Delhi, India
| | - Shivam Chaturvedi
- Immunobiology Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Nisheeth Agarwal
- Translational Health Science and Technology Institute (THSTI), Faridabad, India
| | - Ved Prakash Dwivedi
- Immunobiology Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Vinay Kumar Nandicoori
- Signal Transduction Laboratory, National Institute of Immunology, New Delhi, India.
- CSIR-Centre for Cellular and Molecular Biology, Habsiguda, Hyderabad, Telangana, India.
| |
Collapse
|
4
|
Zhang LB, Yang WWJ, Yang ZH, Guan Y. N-acetylglucosamine kinase (BbHxk1) has pleiotropic effects on vegetative growth, cell wall integrity, morphological transition, cuticle infection, and metabolic modulation in the biological pesticide Beauveria bassiana. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2024; 203:106015. [PMID: 39084806 DOI: 10.1016/j.pestbp.2024.106015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 06/20/2024] [Accepted: 07/02/2024] [Indexed: 08/02/2024]
Abstract
Beauveria bassiana is a popular and eco-friendly biopesticide. During its pathogen-pest interaction, both N-acetylglucosamine (GlcNAc) catabolism and anabolism are crucial for nutrient supply and cell-wall construction. The initiation of GlcNAc metabolism relies on the catalysis of GlcNAc kinase, which has been extensively studied in the human pathogen Candida albicans. However, the physiological function of GlcNAc kinase remains poorly understood in entomopathogenic fungi. In the present study, a GlcNAc kinase homolog was identified and designated as BbHxk1 in B. bassiana. Deletion of BbHxk1 resulted in viable but reduced vegetative growth on various carbon sources. ΔBbHxk1 mutants displayed severe defects in cell wall integrity, making them more susceptible to cell wall stress cues. Furthermore, the absence of BbHxk1 resulted in an increase in conidial yield and blastospore production, and a faster rate of germination and filamentation, potentially attributed to higher intracellular ATP levels. BbHxk1 deficiency led to a reduction in the activities of cuticle-degrading enzymes, which might contribute to the attenuated pathogenicity specifically through cuticle penetration rather than hemocoel infection towards Galleria mellonella larvae. Being different from C. albicans Hxk1, which facultatively acts as a catalyzing enzyme and transcriptional regulator, BbHxk1 primarily acts as a catalyzing enzyme and metabolic regulator. The altered metabolomic profiling correlated with the phenotypic defects in ΔBbHxk1 mutants, further implicating a potential metabolism-dependent mechanism of BbHxk1 in mediating physiologies of B. bassiana. These findings not only unveil a novel role for GlcNAc kinase in B. bassiana, but also provide a solid theoretical basis to guide metabolic reprogramming in order to maintain or even enhance the efficiency of fungi for practical applications.
Collapse
Affiliation(s)
- Long-Bin Zhang
- College of Biological Science and Engineering, Fuzhou University, Fujian, China; The Key Laboratory of Marine Enzyme Engineering of Fujian Province, Fuzhou University, Fujian, China.
| | - Wu-Wei-Jie Yang
- College of Biological Science and Engineering, Fuzhou University, Fujian, China; The Key Laboratory of Marine Enzyme Engineering of Fujian Province, Fuzhou University, Fujian, China
| | - Zhi-Hao Yang
- College of Biological Science and Engineering, Fuzhou University, Fujian, China; The Key Laboratory of Marine Enzyme Engineering of Fujian Province, Fuzhou University, Fujian, China
| | - Yi Guan
- College of Biological Science and Engineering, Fuzhou University, Fujian, China; The Key Laboratory of Marine Enzyme Engineering of Fujian Province, Fuzhou University, Fujian, China.
| |
Collapse
|
5
|
Nishikawa A, Karita S, Umekawa M. Ngk1 kinase-mediated N-acetylglucosamine metabolism promotes UDP-GlcNAc biosynthesis in Saccharomyces cerevisiae. FEBS Lett 2024; 598:1644-1654. [PMID: 38622055 DOI: 10.1002/1873-3468.14881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 02/07/2024] [Accepted: 03/25/2024] [Indexed: 04/17/2024]
Abstract
N-acetylglucosamine (GlcNAc) is an important structural component of the cell wall chitin, N-glycans, glycolipids, and GPI-anchors in eukaryotes. GlcNAc kinase phosphorylates GlcNAc into GlcNAc-6-phosphate, a precursor of uridine diphosphate N-acetylglucosamine (UDP-GlcNAc) that serves as a substrate for glycan synthesis. Although GlcNAc kinase is found widely in organisms ranging from microorganisms to mammals, it has never been found in the model yeast Saccharomyces cerevisiae. Here, we demonstrate the presence of GlcNAc metabolism for UDP-GlcNAc biosynthesis in S. cerevisiae through Ngk1, a GlcNAc kinase we discovered previously. The overexpression or deletion of Ngk1 in the presence of GlcNAc affected the amount of both UDP-GlcNAc and chitin, suggesting that GlcNAc metabolism via Ngk1 promotes UDP-GlcNAc synthesis. Our data suggest that the Ngk1-mediated GlcNAc metabolism compensates for the hexosamine pathway, a known pathway for UDP-GlcNAc synthesis.
Collapse
Affiliation(s)
| | - Shuichi Karita
- Graduate School of Bioresources, Mie University, Tsu, Japan
| | - Midori Umekawa
- Graduate School of Bioresources, Mie University, Tsu, Japan
| |
Collapse
|
6
|
Chen YH, Cheng WH. Hexosamine biosynthesis and related pathways, protein N-glycosylation and O-GlcNAcylation: their interconnection and role in plants. FRONTIERS IN PLANT SCIENCE 2024; 15:1349064. [PMID: 38510444 PMCID: PMC10951099 DOI: 10.3389/fpls.2024.1349064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 02/05/2024] [Indexed: 03/22/2024]
Abstract
N-Acetylglucosamine (GlcNAc), a fundamental amino sugar moiety, is essential for protein glycosylation, glycolipid, GPI-anchor protein, and cell wall components. Uridine diphosphate-GlcNAc (UDP-GlcNAc), an active form of GlcNAc, is synthesized through the hexosamine biosynthesis pathway (HBP). Although HBP is highly conserved across organisms, the enzymes involved perform subtly distinct functions among microbes, mammals, and plants. A complete block of HBP normally causes lethality in any life form, reflecting the pivotal role of HBP in the normal growth and development of organisms. Although HBP is mainly composed of four biochemical reactions, HBP is exquisitely regulated to maintain the homeostasis of UDP-GlcNAc content. As HBP utilizes substrates including fructose-6-P, glutamine, acetyl-CoA, and UTP, endogenous nutrient/energy metabolites may be integrated to better suit internal growth and development, and external environmental stimuli. Although the genes encoding HBP enzymes are well characterized in microbes and mammals, they were less understood in higher plants in the past. As the HBP-related genes/enzymes have largely been characterized in higher plants in recent years, in this review we update the latest advances in the functions of the HBP-related genes in higher plants. In addition, HBP's salvage pathway and GlcNAc-mediated two major co- or post-translational modifications, N-glycosylation and O-GlcNAcylation, are also included in this review. Further knowledge on the function of HBP and its product conjugates, and the mechanisms underlying their response to deleterious environments might provide an alternative strategy for agricultural biofortification in the future.
Collapse
Affiliation(s)
| | - Wan-Hsing Cheng
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
7
|
Oliva RL, Vogt C, Bublitz TA, Camenzind T, Dyckmans J, Joergensen RG. Galactosamine and mannosamine are integral parts of bacterial and fungal extracellular polymeric substances. ISME COMMUNICATIONS 2024; 4:ycae038. [PMID: 38616925 PMCID: PMC11014887 DOI: 10.1093/ismeco/ycae038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/19/2023] [Accepted: 03/18/2024] [Indexed: 04/16/2024]
Abstract
Extracellular polymeric substances (EPS) are produced by microorganisms and interact to form a complex matrix called biofilm. In soils, EPS are important contributors to the microbial necromass and, thus, to soil organic carbon (SOC). Amino sugars (AS) are used as indicators for microbial necromass in soil, although the origin of galactosamine and mannosamine is largely unknown. However, indications exist that they are part of EPS. In this study, two bacteria and two fungi were grown in starch medium either with or without a quartz matrix to induce EPS production. Each culture was separated in two fractions: one that directly underwent AS extraction (containing AS from both biomass and EPS), and another that first had EPS extracted, followed then by AS determination (exclusively containing AS from EPS). We did not observe a general effect of the quartz matrix neither of microbial type on AS production. The quantified amounts of galactosamine and mannosamine in the EPS fraction represented on average 100% of the total amounts of these two AS quantified in cell cultures, revealing they are integral parts of the biofilm. In contrast, muramic acid and glucosamine were also quantified in the EPS, but with much lower contribution rates to total AS production, of 18% and 33%, respectively, indicating they are not necessarily part of EPS. Our results allow a meaningful ecological interpretation of mannosamine and galactosamine data in the future as indicators of microbial EPS, and also attract interest of future studies to investigate the role of EPS to SOC and its dynamics.
Collapse
Affiliation(s)
- Rebeca Leme Oliva
- Soil Biology and Plant Nutrition, University of Kassel, 37213 Witzenhausen, Germany
| | - Carla Vogt
- Soil Biology and Plant Nutrition, University of Kassel, 37213 Witzenhausen, Germany
| | - Tábata Aline Bublitz
- Soil Biology and Plant Nutrition, University of Kassel, 37213 Witzenhausen, Germany
| | - Tessa Camenzind
- Institute of Biology, Department of Plant Ecology, Freie Universität Berlin, 14195 Berlin, Germany
| | - Jens Dyckmans
- Centre for Stable Isotope Research Analysis, University of Göttingen, 37077 Göttingen, Germany
| | | |
Collapse
|
8
|
Fernando LD, Pérez-Llano Y, Dickwella Widanage MC, Jacob A, Martínez-Ávila L, Lipton AS, Gunde-Cimerman N, Latgé JP, Batista-García RA, Wang T. Structural adaptation of fungal cell wall in hypersaline environment. Nat Commun 2023; 14:7082. [PMID: 37925437 PMCID: PMC10625518 DOI: 10.1038/s41467-023-42693-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 10/18/2023] [Indexed: 11/06/2023] Open
Abstract
Halophilic fungi thrive in hypersaline habitats and face a range of extreme conditions. These fungal species have gained considerable attention due to their potential applications in harsh industrial processes, such as bioremediation and fermentation under unfavorable conditions of hypersalinity, low water activity, and extreme pH. However, the role of the cell wall in surviving these environmental conditions remains unclear. Here we employ solid-state NMR spectroscopy to compare the cell wall architecture of Aspergillus sydowii across salinity gradients. Analyses of intact cells reveal that A. sydowii cell walls contain a rigid core comprising chitin, β-glucan, and chitosan, shielded by a surface shell composed of galactomannan and galactosaminogalactan. When exposed to hypersaline conditions, A. sydowii enhances chitin biosynthesis and incorporates α-glucan to create thick, stiff, and hydrophobic cell walls. Such structural rearrangements enable the fungus to adapt to both hypersaline and salt-deprived conditions, providing a robust mechanism for withstanding external stress. These molecular principles can aid in the optimization of halophilic strains for biotechnology applications.
Collapse
Affiliation(s)
- Liyanage D Fernando
- Department of Chemistry, Michigan State University, East Lansing, MI, USA
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, 30602, USA
| | - Yordanis Pérez-Llano
- Centro de Investigación en Dinámica Celular, Universidad Autónoma del Estado de Morelos, Cuernavaca, Mexico
| | - Malitha C Dickwella Widanage
- Department of Chemistry, Michigan State University, East Lansing, MI, USA
- Department of Chemistry, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Anand Jacob
- Department of Chemistry, Michigan State University, East Lansing, MI, USA
| | - Liliana Martínez-Ávila
- Centro de Investigación en Dinámica Celular, Universidad Autónoma del Estado de Morelos, Cuernavaca, Mexico
| | - Andrew S Lipton
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA, USA
| | | | - Jean-Paul Latgé
- Institute of Molecular Biology and Biotechnology, University of Crete, Heraklion, Greece
- Fungal Respiratory Infections Research Unit, University of Angers, Angers, France
| | | | - Tuo Wang
- Department of Chemistry, Michigan State University, East Lansing, MI, USA.
| |
Collapse
|
9
|
Clark SA, Vazquez A, Furiya K, Splattstoesser MK, Bashmail AK, Schwartz H, Russell M, Bhark SJ, Moreno OK, McGovern M, Owsley ER, Nelson TA, Sanchez EL, Delgado T. Rewiring of the Host Cell Metabolome and Lipidome during Lytic Gammaherpesvirus Infection Is Essential for Infectious-Virus Production. J Virol 2023; 97:e0050623. [PMID: 37191529 PMCID: PMC10308918 DOI: 10.1128/jvi.00506-23] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 04/20/2023] [Indexed: 05/17/2023] Open
Abstract
Oncogenic virus infections are estimated to cause ~15% of all cancers. Two prevalent human oncogenic viruses are members of the gammaherpesvirus family: Epstein-Barr virus (EBV) and Kaposi's sarcoma herpesvirus (KSHV). We use murine herpesvirus 68 (MHV-68), which shares significant homology with KSHV and EBV, as a model system to study gammaherpesvirus lytic replication. Viruses implement distinct metabolic programs to support their life cycle, such as increasing the supply of lipids, amino acids, and nucleotide materials necessary to replicate. Our data define the global changes in the host cell metabolome and lipidome during gammaherpesvirus lytic replication. Our metabolomics analysis found that MHV-68 lytic infection induces glycolysis, glutaminolysis, lipid metabolism, and nucleotide metabolism. We additionally observed an increase in glutamine consumption and glutamine dehydrogenase protein expression. While both glucose and glutamine starvation of host cells decreased viral titers, glutamine starvation led to a greater loss in virion production. Our lipidomics analysis revealed a peak in triacylglycerides early during infection and an increase in free fatty acids and diacylglyceride later in the viral life cycle. Furthermore, we observed an increase in the protein expression of multiple lipogenic enzymes during infection. Interestingly, pharmacological inhibitors of glycolysis or lipogenesis resulted in decreased infectious virus production. Taken together, these results illustrate the global alterations in host cell metabolism during lytic gammaherpesvirus infection, establish essential pathways for viral production, and recommend targeted mechanisms to block viral spread and treat viral induced tumors. IMPORTANCE Viruses are intracellular parasites which lack their own metabolism, so they must hijack host cell metabolic machinery in order to increase the production of energy, proteins, fats, and genetic material necessary to replicate. Using murine herpesvirus 68 (MHV-68) as a model system to understand how similar human gammaherpesviruses cause cancer, we profiled the metabolic changes that occur during lytic MHV-68 infection and replication. We found that MHV-68 infection of host cells increases glucose, glutamine, lipid, and nucleotide metabolic pathways. We also showed inhibition or starvation of glucose, glutamine, or lipid metabolic pathways results in an inhibition of virus production. Ultimately, targeting changes in host cell metabolism due to viral infection can be used to treat gammaherpesvirus-induced cancers and infections in humans.
Collapse
Affiliation(s)
- Sarah A. Clark
- Northwest University, Department of Biology, Kirkland, Washington, USA
| | - Angie Vazquez
- Seattle Pacific University, Department of Biology, Seattle, Washington, USA
| | - Kelsey Furiya
- Seattle Pacific University, Department of Biology, Seattle, Washington, USA
| | | | | | - Haleigh Schwartz
- Northwest University, Department of Biology, Kirkland, Washington, USA
| | - Makaiya Russell
- Seattle Pacific University, Department of Biology, Seattle, Washington, USA
| | - Shun-Je Bhark
- Seattle Pacific University, Department of Biology, Seattle, Washington, USA
| | - Osvaldo K. Moreno
- San Francisco State University, Department of Biology, San Francisco, California, USA
| | - Morgan McGovern
- Seattle Pacific University, Department of Biology, Seattle, Washington, USA
| | - Eric R. Owsley
- Seattle Pacific University, Department of Biology, Seattle, Washington, USA
| | - Timothy A. Nelson
- Seattle Pacific University, Department of Biology, Seattle, Washington, USA
| | - Erica L. Sanchez
- San Francisco State University, Department of Biology, San Francisco, California, USA
- University of Texas at Dallas, Department of Biological Sciences, Richardson, Texas, USA
| | - Tracie Delgado
- Seattle Pacific University, Department of Biology, Seattle, Washington, USA
- Northwest University, Department of Biology, Kirkland, Washington, USA
| |
Collapse
|
10
|
Soni V, Rosenn EH, Venkataraman R. Insights into the central role of N-acetyl-glucosamine-1-phosphate uridyltransferase (GlmU) in peptidoglycan metabolism and its potential as a therapeutic target. Biochem J 2023; 480:1147-1164. [PMID: 37498748 DOI: 10.1042/bcj20230173] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 07/07/2023] [Accepted: 07/14/2023] [Indexed: 07/29/2023]
Abstract
Several decades after the discovery of the first antibiotic (penicillin) microbes have evolved novel mechanisms of resistance; endangering not only our abilities to combat future bacterial pandemics but many other clinical challenges such as acquired infections during surgeries. Antimicrobial resistance (AMR) is attributed to the mismanagement and overuse of these medications and is complicated by a slower rate of the discovery of novel drugs and targets. Bacterial peptidoglycan (PG), a three-dimensional mesh of glycan units, is the foundation of the cell wall that protects bacteria against environmental insults. A significant percentage of drugs target PG, however, these have been rendered ineffective due to growing drug resistance. Identifying novel druggable targets is, therefore, imperative. Uridine diphosphate N-acetylglucosamine (UDP-GlcNAc) is one of the key building blocks in PG production, biosynthesized by the bifunctional enzyme N-acetyl-glucosamine-1-phosphate uridyltransferase (GlmU). UDP-GlcNAc metabolism has been studied in many organisms, but it holds some distinctive features in bacteria, especially regarding the bacterial GlmU enzyme. In this review, we provide an overview of different steps in PG biogenesis, discuss the biochemistry of GlmU, and summarize the characteristic structural elements of bacterial GlmU vital to its catalytic function. Finally, we will discuss various studies on the development of GlmU inhibitors and their significance in aiding future drug discoveries.
Collapse
Affiliation(s)
- Vijay Soni
- Division of Infectious Diseases, Weill Department of Medicine, Weill Cornell Medicine, New York, NY 10065, U.S.A
| | - Eric H Rosenn
- Tel Aviv University School of Medicine, Tel Aviv 6997801, Israel
| | - Ramya Venkataraman
- Laboratory of Innate Immunity, National Institute of Immunology, New Delhi 110067, India
| |
Collapse
|
11
|
Jia X, Zhang H, Qin H, Li K, Liu X, Wang W, Ye M, Yin H. Protein O-GlcNAcylation impairment caused by N-acetylglucosamine phosphate mutase deficiency leads to growth variations in Arabidopsis thaliana. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 114:613-635. [PMID: 36799458 DOI: 10.1111/tpj.16156] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 02/06/2023] [Accepted: 02/13/2023] [Indexed: 05/10/2023]
Abstract
As an essential enzyme in the uridine diphosphate (UDP)-GlcNAc biosynthesis pathway, the significant role of N-acetylglucosamine phosphate mutase (AGM) remains unknown in plants. In the present study, a functional plant AGM (AtAGM) was identified from Arabidopsis thaliana. AtAGM catalyzes the isomerization of GlcNAc-1-P and GlcNAc-6-P, and has broad catalytic activity on different phosphohexoses. UDP-GlcNAc contents were significantly decreased in AtAGM T-DNA insertional mutants, which caused temperature-dependent growth defects in seedlings and vigorous growth in adult plants. Further analysis revealed that protein O-GlcNAcylation but not N-glycosylation was dramatically impaired in Atagm mutants due to UDP-GlcNAc shortage. Combined with the results from O-GlcNAcylation or N-glycosylation deficient mutants, and O-GlcNAcase inhibitor all suggested that protein O-GlcNAcylation impairment mainly leads to the phenotypic variations of Atagm plants. In conclusion, based on the essential role in UDP-GlcNAc biosynthesis, AtAGM is important for plant growth mainly via protein O-GlcNAcylation-level regulation.
Collapse
Affiliation(s)
- Xiaochen Jia
- Dalian Engineering Research Center for Carbohydrate Agricultural Preparations, Liaoning Provincial Key Laboratory of Carbohydrates, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 116023, Dalian, China
| | - Hongyan Zhang
- Dalian Engineering Research Center for Carbohydrate Agricultural Preparations, Liaoning Provincial Key Laboratory of Carbohydrates, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 116023, Dalian, China
| | - Hongqiang Qin
- Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic R & A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Kuikui Li
- Dalian Engineering Research Center for Carbohydrate Agricultural Preparations, Liaoning Provincial Key Laboratory of Carbohydrates, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 116023, Dalian, China
| | - Xiaoyan Liu
- Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic R & A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Wenxia Wang
- Dalian Engineering Research Center for Carbohydrate Agricultural Preparations, Liaoning Provincial Key Laboratory of Carbohydrates, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 116023, Dalian, China
| | - Mingliang Ye
- Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic R & A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Heng Yin
- Dalian Engineering Research Center for Carbohydrate Agricultural Preparations, Liaoning Provincial Key Laboratory of Carbohydrates, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 116023, Dalian, China
| |
Collapse
|
12
|
Roy S, Vivoli Vega M, Ames JR, Britten N, Kent A, Evans K, Isupov MN, Harmer NJ. The ROK kinase N-acetylglucosamine kinase uses a sequential random enzyme mechanism with successive conformational changes upon each substrate binding. J Biol Chem 2023; 299:103033. [PMID: 36806680 PMCID: PMC10031466 DOI: 10.1016/j.jbc.2023.103033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 02/10/2023] [Accepted: 02/11/2023] [Indexed: 02/18/2023] Open
Abstract
N-acetyl-d-glucosamine (GlcNAc) is a major component of bacterial cell walls. Many organisms recycle GlcNAc from the cell wall or metabolize environmental GlcNAc. The first step in GlcNAc metabolism is phosphorylation to GlcNAc-6-phosphate. In bacteria, the ROK family kinase N-acetylglucosamine kinase (NagK) performs this activity. Although ROK kinases have been studied extensively, no ternary complex showing the two substrates has yet been observed. Here, we solved the structure of NagK from the human pathogen Plesiomonas shigelloides in complex with GlcNAc and the ATP analog AMP-PNP. Surprisingly, PsNagK showed distinct conformational changes associated with the binding of each substrate. Consistent with this, the enzyme showed a sequential random enzyme mechanism. This indicates that the enzyme acts as a coordinated unit responding to each interaction. Our molecular dynamics modeling of catalytic ion binding confirmed the location of the essential catalytic metal. Additionally, site-directed mutagenesis confirmed the catalytic base and that the metal-coordinating residue is essential. Together, this study provides the most comprehensive insight into the activity of a ROK kinase.
Collapse
Affiliation(s)
| | | | | | | | - Amy Kent
- Living Systems Institute, Exeter, UK
| | - Kim Evans
- Living Systems Institute, Exeter, UK
| | - Michail N Isupov
- Henry Wellcome Building for Biocatalysis, Biosciences, Exeter, UK
| | | |
Collapse
|
13
|
Shahi G, Kumar M, Skwarecki AS, Edmondson M, Banerjee A, Usher J, Gow NA, Milewski S, Prasad R. Fluconazole resistant Candida auris clinical isolates have increased levels of cell wall chitin and increased susceptibility to a glucosamine-6-phosphate synthase inhibitor. Cell Surf 2022; 8:100076. [PMID: 35252632 PMCID: PMC8891998 DOI: 10.1016/j.tcsw.2022.100076] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 02/23/2022] [Accepted: 02/23/2022] [Indexed: 11/22/2022] Open
Abstract
In 2009 Candida auris was first isolated as fungal pathogen of human disease from ear canal of a patient in Japan. In less than a decade, this pathogen has rapidly spread around the world and has now become a major health challenge that is of particular concern because many strains are resistant to multiple class of antifungal drugs. The lack of available antifungals and rapid increase of this fungal pathogen provides an incentive for the development of new and more potent anticandidal drugs and drug combinatorial treatments. Here we have explored the growth inhibitory activity against C. auris of a synthetic dipeptide glutamine analogue, L-norvalyl-N 3-(4-methoxyfumaroyl)-L-2,3- diaminopropanoic acid (Nva-FMDP), that acts as an inhibitor of glucosamine-6-phosphate (GlcN-6-P) synthase - a key enzyme in the synthesis of cell wall chitin. We observed that in contrast to FLC susceptible isolates of C. auris, FLC resistant isolates had elevated cell wall chitin and were susceptible to inhibition by Nva-FMDP. The growth kinetics of C. auris in RPMI-1640 medium revealed that the growth of FLC resistant isolates were 50-60% more inhibited by Nva-FMDP (8 μ g/ml) compared to a FLC susceptible isolate. Fluconazole resistant strains displayed increased transcription of CHS1, CHS2 and CHS3, and the chitin content of the fluconazole resistant strains was reduced following the Nva-FMDP treatment. Therefore, the higher chitin content in FLC resistant C. auris isolates may make the strain more susceptible to inhibition of the antifungal activity of the Nva-FMDP peptide conjugate.
Collapse
Affiliation(s)
- Garima Shahi
- Amity Institute of Integrative Science and Health and Amity Institute of Biotechnology, Amity University Gurgaon, Haryana 122413, India
| | - Mohit Kumar
- Amity Institute of Integrative Science and Health and Amity Institute of Biotechnology, Amity University Gurgaon, Haryana 122413, India
| | - Andrzej S. Skwarecki
- Department of Pharmaceutical Technology and Biochemistry, Gdansk University of Technology, 11/12 Narutowicza Street, 80-952 Gdansk, Poland
| | - Matt Edmondson
- Medical Research Council Centre for Medical Mycology at the University of Exeter, Geoffrey Pope Building, Stocker Road, Exeter EX4 4QD, UK
| | - Atanu Banerjee
- Amity Institute of Integrative Science and Health and Amity Institute of Biotechnology, Amity University Gurgaon, Haryana 122413, India
| | - Jane Usher
- Medical Research Council Centre for Medical Mycology at the University of Exeter, Geoffrey Pope Building, Stocker Road, Exeter EX4 4QD, UK
| | - Neil A.R. Gow
- Medical Research Council Centre for Medical Mycology at the University of Exeter, Geoffrey Pope Building, Stocker Road, Exeter EX4 4QD, UK
| | - Sławomir Milewski
- Department of Pharmaceutical Technology and Biochemistry, Gdansk University of Technology, 11/12 Narutowicza Street, 80-952 Gdansk, Poland
| | - Rajendra Prasad
- Amity Institute of Integrative Science and Health and Amity Institute of Biotechnology, Amity University Gurgaon, Haryana 122413, India
| |
Collapse
|
14
|
Identification and biochemical characterization of a novel N-acetylglucosamine kinase in Saccharomyces cerevisiae. Sci Rep 2022; 12:16991. [PMID: 36216916 PMCID: PMC9550789 DOI: 10.1038/s41598-022-21400-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 09/27/2022] [Indexed: 12/29/2022] Open
Abstract
N-acetylglucosamine (GlcNAc) is a key component of glycans such as glycoprotein and the cell wall. GlcNAc kinase is an enzyme that transfers a phosphate onto GlcNAc to generate GlcNAc-6-phosphate, which can be a precursor for glycan synthesis. GlcNAc kinases have been found in a broad range of organisms, including pathogenic yeast, human and bacteria. However, this enzyme has never been discovered in Saccharomyces cerevisiae, a eukaryotic model. In this study, the first GlcNAc kinase from S. cerevisiae was identified and named Ngk1. The Km values of Ngk1 for GlcNAc and glucose were 0.11 mM and 71 mM, respectively, suggesting that Ngk1 possesses a high affinity for GlcNAc, unlike hexokinases. Ngk1 showed the GlcNAc phosphorylation activity with various nucleoside triphosphates, namely ATP, CTP, GTP, ITP, and UTP, as phosphoryl donors. Ngk1 is phylogenetically distant from known enzymes, as the amino acid sequence identity with others is only about 20% or less. The physiological role of Ngk1 in S. cerevisiae is also discussed.
Collapse
|
15
|
Ortiz-Ramírez JA, Cuéllar-Cruz M, López-Romero E. Cell compensatory responses of fungi to damage of the cell wall induced by Calcofluor White and Congo Red with emphasis on Sporothrix schenckii and Sporothrix globosa. A review. Front Cell Infect Microbiol 2022; 12:976924. [PMID: 36211971 PMCID: PMC9539796 DOI: 10.3389/fcimb.2022.976924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 09/05/2022] [Indexed: 12/01/2022] Open
Abstract
The cell wall (CW) of fungi exhibits a complex structure and a characteristic chemical composition consisting almost entirely of interacting crystalline and amorphous polysaccharides. These are synthesized by a number of sugar polymerases and depolymerases encoded by a high proportion of the fungal genome (for instance, 20% in Saccharomyces cerevisiae). These enzymes act in an exquisitely coordinated process to assemble the tridimensional and the functional structure of the wall. Apart from playing a critical role in morphogenesis, cell protection, viability and pathogenesis, the CW represents a potential target for antifungals as most of its constituents do not exist in humans. Chitin, β-glucans and cellulose are the most frequent crystalline polymers found in the fungal CW. The hexosamine biosynthesis pathway (HBP) is critical for CW elaboration. Also known as the Leloir pathway, this pathway ends with the formation of UDP-N-GlcNAc after four enzymatic steps that start with fructose-6-phosphate and L-glutamine in a short deviation of glycolysis. This activated aminosugar is used for the synthesis of a large variety of biomacromolecules in a vast number of organisms including bacteria, fungi, insects, crustaceans and mammalian cells. The first reaction of the HBP is catalyzed by GlcN-6-P synthase (L-glutamine:D-fructose-6-phosphate amidotransferase; EC 2.6.1.16), a critical enzyme that has been considered as a potential target for antifungals. The enzyme regulates the amount of cell UDP-N-GlcNAc and in eukaryotes is feedback inhibited by the activated aminosugar and other factors. The native and recombinant forms of GlcN-6-P synthase has been purified and characterized from both prokaryotic and eukaryotic organisms and demonstrated its critical role in CW remodeling and morphogenesis after exposure of some fungi to agents that stress the cell surface by interacting with wall polymers. This review deals with some of the cell compensatory responses of fungi to wall damage induced by Congo Red and Calcofluor White.
Collapse
|
16
|
Wyllie JA, McKay MV, Barrow AS, Soares da Costa TP. Biosynthesis of uridine diphosphate N-Acetylglucosamine: An underexploited pathway in the search for novel antibiotics? IUBMB Life 2022; 74:1232-1252. [PMID: 35880704 PMCID: PMC10087520 DOI: 10.1002/iub.2664] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 07/04/2022] [Indexed: 11/06/2022]
Abstract
Although the prevalence of antibiotic resistance is increasing at an alarming rate, there are a dwindling number of effective antibiotics available. Thus, the development of novel antibacterial agents should be of utmost importance. Peptidoglycan biosynthesis has been and is still an attractive source for antibiotic targets; however, there are several components that remain underexploited. In this review, we examine the enzymes involved in the biosynthesis of one such component, UDP-N-acetylglucosamine, an essential building block and precursor of bacterial peptidoglycan. Furthermore, given the presence of a similar biosynthesis pathway in eukaryotes, we discuss the current knowledge on the differences and similarities between the bacterial and eukaryotic enzymes. Finally, this review also summarises the recent advances made in the development of inhibitors targeting the bacterial enzymes.
Collapse
Affiliation(s)
- Jessica A Wyllie
- School of Agriculture, Food and Wine, Waite Research Institute, University of Adelaide, Adelaide, South Australia, Australia
| | - Mirrin V McKay
- School of Agriculture, Food and Wine, Waite Research Institute, University of Adelaide, Adelaide, South Australia, Australia
| | - Andrew S Barrow
- School of Agriculture, Food and Wine, Waite Research Institute, University of Adelaide, Adelaide, South Australia, Australia
| | - Tatiana P Soares da Costa
- School of Agriculture, Food and Wine, Waite Research Institute, University of Adelaide, Adelaide, South Australia, Australia
| |
Collapse
|
17
|
Rao KH, Paul S, Natarajan K, Ghosh S. N-acetylglucosamine kinase, Hxk1is a multifaceted metabolic enzyme in model pathogenic yeast Candida albicans. Microbiol Res 2022; 263:127146. [DOI: 10.1016/j.micres.2022.127146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 07/22/2022] [Accepted: 07/22/2022] [Indexed: 10/16/2022]
|
18
|
Zhang J, Xiao K, Li M, Hu H, Zhang X, Liu J, Pan H, Zhang Y. SsAGM1-Mediated Uridine Diphosphate-N-Acetylglucosamine Synthesis Is Essential for Development, Stress Response, and Pathogenicity of Sclerotinia sclerotiorum. Front Microbiol 2022; 13:938784. [PMID: 35814696 PMCID: PMC9260252 DOI: 10.3389/fmicb.2022.938784] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Accepted: 06/06/2022] [Indexed: 11/13/2022] Open
Abstract
The necrotrophic fungus Sclerotinia sclerotiorum is a devastating pathogen. S. sclerotiorum can cause Sclerotinia stem rot in more than 600 species of plants, which results in serious economic losses every year. Chitin is one of the most important polysaccharides in fungal cell walls. Chitin and β-Glucan form a scaffold that wraps around the cell and determines the vegetative growth and pathogenicity of pathogens. UDP-GlcNAc is a direct precursor of chitin synthesis. During the synthesis of UDP-GlcNAc, the conversion of GlcNAc-6P to GlcNAc-1P that is catalyzed by AGM1 (N-acetylglucosamine-phosphate mutase) is a key step. However, the significance and role of AGM1 in phytopathogenic fungus are unclear. We identified a cytoplasm-localized SsAGM1 in S. sclerotiorum, which is homologous to AGM1 of Saccharomyces cerevisiae. We utilized RNA interference (RNAi) and overexpression to characterize the function of SsAGM1 in S. sclerotiorum. After reducing the expression of SsAGM1, the contents of chitin and UDP-GlcNAc decreased significantly. Concomitantly, the gene-silenced transformants of SsAGM1 slowed vegetative growth and, importantly, lost the ability to produce sclerotia and infection cushion; it also lost virulence, even on wounded leaves. In addition, SsAGM1 was also involved in the response to osmotic stress and inhibitors of cell wall synthesis. Our results revealed the function of SsAGM1 in the growth, development, stress response, and pathogenicity in S. sclerotiorum.
Collapse
|
19
|
Chen YH, Shen HL, Chou SJ, Sato Y, Cheng WH. Interference of Arabidopsis N-Acetylglucosamine-1-P Uridylyltransferase Expression Impairs Protein N-Glycosylation and Induces ABA-Mediated Salt Sensitivity During Seed Germination and Early Seedling Development. FRONTIERS IN PLANT SCIENCE 2022; 13:903272. [PMID: 35747876 PMCID: PMC9210984 DOI: 10.3389/fpls.2022.903272] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 05/10/2022] [Indexed: 06/15/2023]
Abstract
N-acetylglucosamine (GlcNAc) is the fundamental amino sugar moiety that is essential for protein glycosylation. UDP-GlcNAc, an active form of GlcNAc, is synthesized through the hexosamine biosynthetic pathway (HBP). Arabidopsis N-acetylglucosamine-1-P uridylyltransferases (GlcNAc1pUTs), encoded by GlcNA.UTs, catalyze the last step in the HBP pathway, but their biochemical and molecular functions are less clear. In this study, the GlcNA.UT1 expression was knocked down by the double-stranded RNA interference (dsRNAi) in the glcna.ut2 null mutant background. The RNAi transgenic plants, which are referred to as iU1, displayed the reduced UDP-GlcNAc biosynthesis, altered protein N-glycosylation and induced an unfolded protein response under salt-stressed conditions. Moreover, the iU1 transgenic plants displayed sterility and salt hypersensitivity, including delay of both seed germination and early seedling establishment, which is associated with the induction of ABA biosynthesis and signaling. These salt hypersensitive phenotypes can be rescued by exogenous fluridone, an inhibitor of ABA biosynthesis, and by introducing an ABA-deficient mutant allele nced3 into iU1 transgenic plants. Transcriptomic analyses further supported the upregulated genes that were involved in ABA biosynthesis and signaling networks, and response to salt stress in iU1 plants. Collectively, these data indicated that GlcNAc1pUTs are essential for UDP-GlcNAc biosynthesis, protein N-glycosylation, fertility, and the response of plants to salt stress through ABA signaling pathways during seed germination and early seedling development.
Collapse
Affiliation(s)
- Ya-Huei Chen
- National Defense Medical Center, Graduate Institute of Life Sciences, Taipei, Taiwan
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
| | - Hwei-Ling Shen
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
| | - Shu-Jen Chou
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
| | - Yasushi Sato
- Biology and Environmental Science, Graduate School of Science and Engineering, Ehime University, Matsuyama, Japan
| | - Wan-Hsing Cheng
- National Defense Medical Center, Graduate Institute of Life Sciences, Taipei, Taiwan
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
20
|
Abstract
Post-translational modification with O-linked β-N-acetylglucosamine (O-GlcNAc), a process referred to as O-GlcNAcylation, occurs on a vast variety of proteins. Mounting evidence in the past several decades has clearly demonstrated that O-GlcNAcylation is a unique and ubiquitous modification. Reminiscent of a code, protein O-GlcNAcylation functions as a crucial regulator of nearly all cellular processes studied. The primary aim of this review is to summarize the developments in our understanding of myriad protein substrates modified by O-GlcNAcylation from a systems perspective. Specifically, we provide a comprehensive survey of O-GlcNAcylation in multiple species studied, including eukaryotes (e.g., protists, fungi, plants, Caenorhabditis elegans, Drosophila melanogaster, murine, and human), prokaryotes, and some viruses. We evaluate features (e.g., structural properties and sequence motifs) of O-GlcNAc modification on proteins across species. Given that O-GlcNAcylation functions in a species-, tissue-/cell-, protein-, and site-specific manner, we discuss the functional roles of O-GlcNAcylation on human proteins. We focus particularly on several classes of relatively well-characterized human proteins (including transcription factors, protein kinases, protein phosphatases, and E3 ubiquitin-ligases), with representative O-GlcNAc site-specific functions presented. We hope the systems view of the great endeavor in the past 35 years will help demystify the O-GlcNAc code and lead to more fascinating studies in the years to come.
Collapse
Affiliation(s)
- Junfeng Ma
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Georgetown University, Washington, DC 20057, United States
| | - Chunyan Hou
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Georgetown University, Washington, DC 20057, United States
| | - Ci Wu
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Georgetown University, Washington, DC 20057, United States
| |
Collapse
|
21
|
Vigueras-Meneses LG, Escalera-Fanjul X, El-Hafidi M, Montalvo-Arredondo J, Gomez-Hernandez N, Colón M, Granados E, Campero-Basaldua C, Riego-Ruiz L, Scazzocchio C, González A, Quezada H. Two alpha isopropylmalate synthase isozymes with similar kinetic properties are extant in the yeast Lachancea kluyveri. FEMS Yeast Res 2022; 22:6546212. [PMID: 35266531 DOI: 10.1093/femsyr/foac016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 02/22/2022] [Accepted: 03/08/2022] [Indexed: 11/13/2022] Open
Abstract
The first committed step in the leucine biosynthetic pathway is catalyzed by α-isopropylmalate synthase (α-IPMS, EC 2.3.3.13), which in the Saccaromycotina subphylum of Ascomycete yeasts is frequently encoded by duplicated genes. Following a gene duplication event, the two copies may be preserved presumably because the encoded proteins diverge in either functional properties and/or cellular localization. The genome of the petite-negative budding yeast Lachancea kluyveri includes two SAKL0E10472 (LkLEU4) and SAKL0F05170g (LKLEU4BIS) paralogous genes, which are homologous to other yeast α-IPMS sequences. Here, we investigate whether these paralogous genes encode functional α-IPMS isozymes and whether their functions have diverged. Molecular phylogeny suggested that the LkLeu4 isozyme is located in the mitochondria and LkLeu4BIS in the cytosol. Comparison of growth rates, leucine intracellular pools and mRNA levels, indicate that the LkLeu4 isozyme is the predominant α-IPMS enzyme during growth on glucose as carbon source. Determination of the kinetic parameters indicates that the isozymes have similar affinities for the substrates and for the feedback inhibitor leucine. Thus, the diversification of the physiological roles of the genes LkLEU4 and LKLEU4BIS involves preferential transcription of the LkLEU4 gene during growth on glucose and different subcellular localization, although ligand interactions have not diverged.
Collapse
Affiliation(s)
- Liliana Guadalupe Vigueras-Meneses
- Departamento de Bioquímica y Biología Estructural, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Ximena Escalera-Fanjul
- Departamento de Bioquímica y Biología Estructural, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Mohammed El-Hafidi
- Departamento de Biomedicina Cardiovascular, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City, Mexico
| | - Javier Montalvo-Arredondo
- División de Biología Molecular, Instituto Potosino de Investigación Científica y Tecnológica (IPICYT), San Luis Potosí, Mexico
| | - Nicolás Gomez-Hernandez
- División de Biología Molecular, Instituto Potosino de Investigación Científica y Tecnológica (IPICYT), San Luis Potosí, Mexico
| | - Maritrini Colón
- Departamento de Bioquímica y Biología Estructural, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Estefany Granados
- Departamento de Bioquímica y Biología Estructural, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Carlos Campero-Basaldua
- Departamento de Bioquímica y Biología Estructural, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Lina Riego-Ruiz
- División de Biología Molecular, Instituto Potosino de Investigación Científica y Tecnológica (IPICYT), San Luis Potosí, Mexico
| | - Claudio Scazzocchio
- Department of Microbiology, Imperial College London, London, United Kingdom.,Institut de Biologie Intégrative de la Cellule (I2BC), Gif-sur-Yvette, France
| | - Alicia González
- Departamento de Bioquímica y Biología Estructural, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Héctor Quezada
- Laboratorio de Investigación en Inmunología y Proteómica, Hospital Infantil de México Federico Gómez, Mexico City, Mexico
| |
Collapse
|
22
|
Mi J, Gong W, Wu X. Advances in Key Drug Target Identification and New Drug Development for Tuberculosis. BIOMED RESEARCH INTERNATIONAL 2022; 2022:5099312. [PMID: 35252448 PMCID: PMC8896939 DOI: 10.1155/2022/5099312] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Accepted: 02/14/2022] [Indexed: 12/15/2022]
Abstract
Tuberculosis (TB) is a severe infectious disease worldwide. The increasing emergence of drug-resistant Mycobacterium tuberculosis (Mtb) has markedly hampered TB control. Therefore, there is an urgent need to develop new anti-TB drugs to treat drug-resistant TB and shorten the standard therapy. The discovery of targets of drug action will lay a theoretical foundation for new drug development. With the development of molecular biology and the success of Mtb genome sequencing, great progress has been made in the discovery of new targets and their relevant inhibitors. In this review, we summarized 45 important drug targets and 15 new drugs that are currently being tested in clinical stages and several prospective molecules that are still at the level of preclinical studies. A comprehensive understanding of the drug targets of Mtb can provide extensive insights into the development of safer and more efficient drugs and may contribute new ideas for TB control and treatment.
Collapse
Affiliation(s)
- Jie Mi
- Tuberculosis Prevention and Control Key Laboratory/Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Senior Department of Tuberculosis, The 8th Medical Center of PLA General Hospital, Beijing 100091, China
| | - Wenping Gong
- Tuberculosis Prevention and Control Key Laboratory/Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Senior Department of Tuberculosis, The 8th Medical Center of PLA General Hospital, Beijing 100091, China
| | - Xueqiong Wu
- Tuberculosis Prevention and Control Key Laboratory/Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Senior Department of Tuberculosis, The 8th Medical Center of PLA General Hospital, Beijing 100091, China
| |
Collapse
|
23
|
Zhang X, Zhang C, Zhou M, Xia Q, Fan L, Zhao L. Enhanced bioproduction of chitin in engineered Pichia pastoris. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.101606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
24
|
Fotsing MCD, Njamen D, Tanee Fomum Z, Ndinteh DT. Synthesis of biologically active heterocyclic compounds from allenic and acetylenic nitriles and related compounds. PHYSICAL SCIENCES REVIEWS 2021. [DOI: 10.1515/psr-2020-0210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Cyclic and polycyclic compounds containing moieties such as imidazole, pyrazole, isoxazole, thiazoline, oxazine, indole, benzothiazole and benzoxazole benzimidazole are prized molecules because of the various pharmaceutical properties that they display. This led Prof. Landor and co-workers to engage in the synthesis of several of them such as alkylimidazolenes, oxazolines, thiazolines, pyrimidopyrimidines, pyridylpyrazoles, benzoxazines, quinolines, pyrimidobenzimidazoles and pyrimidobenzothiazolones. This review covers the synthesis of biologically active heterocyclic compounds by the Michael addition and the double Michael addition of various amines and diamines on allenic nitriles, acetylenic nitriles, hydroxyacetylenic nitriles, acetylenic acids and acetylenic aldehydes. The heterocycles were obtained in one step reaction and in most cases, did not give side products. A brief discussion on the biological activities of some heterocycles is also provided.
Collapse
Affiliation(s)
- Marthe Carine Djuidje Fotsing
- Department of Chemical Sciences , University of Johannesburg , Doornfontein Campus, P.O. BOX 17011 , Johannesburg , 2028 , South Africa
| | - Dieudonné Njamen
- Department of Animal Biology and Physiology, Laboratory of Animal Physiology , University of Yaoundé I, Faculty of Sciences , P.O. Box , 812 Yaoundé , Yaoundé , Cameroon
| | - Zacharias Tanee Fomum
- Department of Organic Chemistry , University of Yaoundé I, Faculty of Sciences , P.O. Box , 812 Yaoundé , Yaoundé , Cameroon
| | - Derek Tantoh Ndinteh
- Department of Chemical Sciences , University of Johannesburg , Doornfontein Campus, P.O. BOX 17011 , Johannesburg , 2028 , South Africa
| |
Collapse
|
25
|
Zhang X, Alshakhshir N, Zhao L. Glycolytic Metabolism, Brain Resilience, and Alzheimer's Disease. Front Neurosci 2021; 15:662242. [PMID: 33994936 PMCID: PMC8113697 DOI: 10.3389/fnins.2021.662242] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 04/06/2021] [Indexed: 12/12/2022] Open
Abstract
Alzheimer's disease (AD) is the most common form of age-related dementia. Despite decades of research, the etiology and pathogenesis of AD are not well understood. Brain glucose hypometabolism has long been recognized as a prominent anomaly that occurs in the preclinical stage of AD. Recent studies suggest that glycolytic metabolism, the cytoplasmic pathway of the breakdown of glucose, may play a critical role in the development of AD. Glycolysis is essential for a variety of neural activities in the brain, including energy production, synaptic transmission, and redox homeostasis. Decreased glycolytic flux has been shown to correlate with the severity of amyloid and tau pathology in both preclinical and clinical AD patients. Moreover, increased glucose accumulation found in the brains of AD patients supports the hypothesis that glycolytic deficit may be a contributor to the development of this phenotype. Brain hyperglycemia also provides a plausible explanation for the well-documented link between AD and diabetes. Humans possess three primary variants of the apolipoprotein E (ApoE) gene - ApoE∗ϵ2, ApoE∗ϵ3, and ApoE∗ϵ4 - that confer differential susceptibility to AD. Recent findings indicate that neuronal glycolysis is significantly affected by human ApoE isoforms and glycolytic robustness may serve as a major mechanism that renders an ApoE2-bearing brain more resistant against the neurodegenerative risks for AD. In addition to AD, glycolytic dysfunction has been observed in other neurodegenerative diseases, including Parkinson's disease, Huntington's disease, and amyotrophic lateral sclerosis, strengthening the concept of glycolytic dysfunction as a common pathway leading to neurodegeneration. Taken together, these advances highlight a promising translational opportunity that involves targeting glycolysis to bolster brain metabolic resilience and by such to alter the course of brain aging or disease development to prevent or reduce the risks for not only AD but also other neurodegenerative diseases.
Collapse
Affiliation(s)
- Xin Zhang
- Department of Pharmacology and Toxicology, School of Pharmacy, University of Kansas, Lawrence, KS, United States
| | - Nadine Alshakhshir
- Department of Pharmacology and Toxicology, School of Pharmacy, University of Kansas, Lawrence, KS, United States
| | - Liqin Zhao
- Department of Pharmacology and Toxicology, School of Pharmacy, University of Kansas, Lawrence, KS, United States
- Neuroscience Graduate Program, University of Kansas, Lawrence, KS, United States
| |
Collapse
|
26
|
Zhu H, Zhang J, Gao Q, Pang G, Sun T, Li R, Yu Z, Shen Q. A new atypical short-chain dehydrogenase is required for interfungal combat and conidiation in Trichoderma guizhouense. Environ Microbiol 2021; 23:5784-5801. [PMID: 33788384 DOI: 10.1111/1462-2920.15493] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 03/27/2021] [Indexed: 12/15/2022]
Abstract
Hypocrealean Trichoderma are the most extensively studied facultative mycoparasites against phytopathogenic fungi. Aerial hyphae of Trichoderma guizhouense can rapidly proliferate over Fusarium oxysporum hyphae, cause sporadic cell death and arrest the growth of the host. The results of the present study demonstrated that a unique short-chain dehydrogenase/reductase (SDR), designated as TgSDR1, was expressed at a high level in T. guizhouense challenged by the hosts. Similar to other SDRs family members, the TgSDR1 protein contains a cofactor-binding motif and a catalytic site. The subcellular localization assay revealed that the TgSDR1::GFP fusion protein translocated to lipid droplets in mycelia and conidia. The data obtained using reverse genetic approach indicated that TgSDR1 is associated with antifungal ability, plays an important role in providing reducing equivalents in the form of NADPH and regulates the amino sugar and nucleotide sugar metabolism in T. guizhouense upon encountering a host. Moreover, the TgSDR1 deletion mutant was defective in conidiation. Thus, TgSDR1 functions as a key metabolic enzyme in T. guizhouense to regulate mycotrophic interactions, defence against other fungi, such as F. oxysporum, and conidiation.
Collapse
Affiliation(s)
- Hong Zhu
- Jiangsu Provincial Key Laboratory for Organic Solid Waste Utilization, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China.,National Engineering Research Center for Organic-Based Fertilizers, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China.,Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Jian Zhang
- Jiangsu Provincial Key Laboratory for Organic Solid Waste Utilization, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China.,National Engineering Research Center for Organic-Based Fertilizers, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China.,Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Qi Gao
- Jiangsu Provincial Key Laboratory for Organic Solid Waste Utilization, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China.,National Engineering Research Center for Organic-Based Fertilizers, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China.,Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Guan Pang
- Key Laboratory of Plant Immunity, Jiangsu Provincial Key Laboratory of Solid Organic Waste Utilization, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Tingting Sun
- Jiangsu Provincial Key Laboratory for Organic Solid Waste Utilization, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China.,National Engineering Research Center for Organic-Based Fertilizers, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China.,Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Rong Li
- Jiangsu Provincial Key Laboratory for Organic Solid Waste Utilization, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China.,National Engineering Research Center for Organic-Based Fertilizers, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China.,Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China.,Key Laboratory of Plant Immunity, Jiangsu Provincial Key Laboratory of Solid Organic Waste Utilization, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Zhenzhong Yu
- Jiangsu Provincial Key Laboratory for Organic Solid Waste Utilization, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China.,National Engineering Research Center for Organic-Based Fertilizers, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China.,Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Qirong Shen
- Jiangsu Provincial Key Laboratory for Organic Solid Waste Utilization, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China.,National Engineering Research Center for Organic-Based Fertilizers, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China.,Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China.,Key Laboratory of Plant Immunity, Jiangsu Provincial Key Laboratory of Solid Organic Waste Utilization, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| |
Collapse
|
27
|
Metabolic Changes by Wine Flor-Yeasts with Gluconic Acid as the Sole Carbon Source. Metabolites 2021; 11:metabo11030150. [PMID: 33800958 PMCID: PMC8001445 DOI: 10.3390/metabo11030150] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 03/02/2021] [Accepted: 03/05/2021] [Indexed: 11/30/2022] Open
Abstract
Gluconic acid consumption under controlled conditions by a Saccharomyces cerevisiae flor yeast was studied in artificial media. Gluconic acid was the sole carbon source and the compounds derived from this metabolism were tracked by endo-metabolomic analysis using a Gas Chromatography-Mass Spectrometry (GC-MSD) coupled methodology. After 6 days, about 30% of gluconic acid (1.5 g/L) had been consumed and 34 endo-metabolites were identified. Metabolomic pathway analysis showed the TCA cycle, glyoxylate-dicarboxylate, glycine-serine-threonine, and glycerolipid metabolic pathway were significantly affected. These results contribute to the knowledge of intracellular metabolomic fluctuations in flor yeasts during gluconic acid uptake, opening possibilities for future experiments to improve their applications to control gluconic acid contents during the production of fermented beverages.
Collapse
|
28
|
Hanumantha Rao K, Paul S, Ghosh S. N-acetylglucosamine Signaling: Transcriptional Dynamics of a Novel Sugar Sensing Cascade in a Model Pathogenic Yeast, Candida albicans. J Fungi (Basel) 2021; 7:65. [PMID: 33477740 PMCID: PMC7832408 DOI: 10.3390/jof7010065] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 11/02/2020] [Accepted: 11/03/2020] [Indexed: 11/17/2022] Open
Abstract
The amino sugar, N-acetylglucosamine (GlcNAc), has emerged as an attractive messenger of signaling in the pathogenic yeast Candida albicans, given its multifaceted role in cellular processes, including GlcNAc scavenging, import and metabolism, morphogenesis (yeast to hyphae and white to opaque switch), virulence, GlcNAc induced cell death (GICD), etc. During signaling, the exogenous GlcNAc appears to adopt a simple mechanism of gene regulation by directly activating Ngs1, a novel GlcNAc sensor and transducer, at the chromatin level, to activate transcriptional response through the promoter acetylation. Ngs1 acts as a master regulator in GlcNAc signaling by regulating GlcNAc catabolic gene expression and filamentation. Ndt80-family transcriptional factor Rep1 appears to be involved in the recruitment of Ngs1 to GlcNAc catabolic gene promoters. For promoting filamentation, GlcNAc adopts a little modified strategy by utilizing a recently evolved transcriptional loop. Here, Biofilm regulator Brg1 takes up the key role, getting up-regulated by Ngs1, and simultaneously induces Hyphal Specific Genes (HSGs) expression by down-regulating NRG1 expression. GlcNAc kinase Hxk1 appears to play a prominent role in signaling. Recent developments in GlcNAc signaling have made C. albicans a model system to understand its role in other eukaryotes as well. The knowledge thus gained would assist in designing therapeutic interventions for the control of candidiasis and other fungal diseases.
Collapse
Affiliation(s)
- Kongara Hanumantha Rao
- National Institute of Plant Genome Research, Jawaharlal Nehru University Campus, New Delhi 110067, India
- Central Instrumentation Facility, Division of Research and Development, Lovely Professional University, Phagwara, Punjab 144411, India
| | - Soumita Paul
- Department of Molecular Biology and Biotechnology, University of Kalyani, Kalyani, West Bengal 741235, India; (S.P.); (S.G.)
| | - Swagata Ghosh
- Department of Molecular Biology and Biotechnology, University of Kalyani, Kalyani, West Bengal 741235, India; (S.P.); (S.G.)
| |
Collapse
|
29
|
Chen X, Raimi OG, Ferenbach AT, van Aalten DM. A missense mutation in a patient with developmental delay affects the activity and structure of the hexosamine biosynthetic pathway enzyme AGX1. FEBS Lett 2021; 595:110-122. [PMID: 33098688 PMCID: PMC7839538 DOI: 10.1002/1873-3468.13968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 09/23/2020] [Accepted: 10/15/2020] [Indexed: 11/21/2022]
Abstract
O-GlcNAcylation is a post-translational modification catalysed by O-GlcNAc transferase (OGT). Missense mutations in OGT have been associated with developmental disorders, OGT-linked congenital disorder of glycosylation (OGT-CDG), which are characterized by intellectual disability. OGT relies on the hexosamine biosynthetic pathway (HBP) for provision of its UDP-GlcNAc donor. We considered whether mutations in UDP-N-acetylhexosamine pyrophosphorylase (UAP1), which catalyses the final step in the HBP, would phenocopy OGT-CDG mutations. A de novo mutation in UAP1 (NM_001324114:c.G685A:p.A229T) was reported in a patient with intellectual disability. We show that this mutation is pathogenic and decreases the stability and activity of the UAP1 isoform AGX1 in vitro. X-ray crystallography reveals a structural shift proximal to the mutation, leading to a conformational change of the N-terminal domain. These data suggest that the UAP1A229T missense mutation could be a contributory factor to the patient phenotype.
Collapse
Affiliation(s)
- Xiping Chen
- Division of Gene Regulation and ExpressionSchool of Life SciencesUniversity of DundeeDundeeUK
| | - Olawale G. Raimi
- Division of Gene Regulation and ExpressionSchool of Life SciencesUniversity of DundeeDundeeUK
| | - Andrew T. Ferenbach
- Division of Gene Regulation and ExpressionSchool of Life SciencesUniversity of DundeeDundeeUK
| | - Daan M.F. van Aalten
- Division of Gene Regulation and ExpressionSchool of Life SciencesUniversity of DundeeDundeeUK
| |
Collapse
|
30
|
Plasmodium falciparum Apicomplexan-Specific Glucosamine-6-Phosphate N-Acetyltransferase Is Key for Amino Sugar Metabolism and Asexual Blood Stage Development. mBio 2020; 11:mBio.02045-20. [PMID: 33082260 PMCID: PMC7587441 DOI: 10.1128/mbio.02045-20] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Apicomplexan parasites cause a major burden on global health and economy. The absence of treatments, the emergence of resistances against available therapies, and the parasite’s ability to manipulate host cells and evade immune systems highlight the urgent need to characterize new drug targets to treat infections caused by these parasites. We demonstrate that glucosamine-6-phosphate N-acetyltransferase (GNA1), required for the biosynthesis of UDP-N-acetylglucosamine (UDP-GlcNAc), is essential for P. falciparum asexual blood stage development and that the disruption of the gene encoding this enzyme quickly causes the death of the parasite within a life cycle. The high-resolution crystal structure of the GNA1 ortholog from the apicomplexan parasite C. parvum, used here as a surrogate, highlights significant differences from human GNA1. These divergences can be exploited for the design of specific inhibitors against the malaria parasite. UDP-N-acetylglucosamine (UDP-GlcNAc), the main product of the hexosamine biosynthetic pathway, is an important metabolite in protozoan parasites since its sugar moiety is incorporated into glycosylphosphatidylinositol (GPI) glycolipids and N- and O-linked glycans. Apicomplexan parasites have a hexosamine pathway comparable to other eukaryotic organisms, with the exception of the glucosamine-phosphate N-acetyltransferase (GNA1) enzymatic step that has an independent evolutionary origin and significant differences from nonapicomplexan GNA1s. By using conditional genetic engineering, we demonstrate the requirement of GNA1 for the generation of a pool of UDP-GlcNAc and for the development of intraerythrocytic asexual Plasmodium falciparum parasites. Furthermore, we present the 1.95 Å resolution structure of the GNA1 ortholog from Cryptosporidium parvum, an apicomplexan parasite which is a leading cause of diarrhea in developing countries, as a surrogate for P. falciparum GNA1. The in-depth analysis of the crystal shows the presence of specific residues relevant for GNA1 enzymatic activity that are further investigated by the creation of site-specific mutants. The experiments reveal distinct features in apicomplexan GNA1 enzymes that could be exploitable for the generation of selective inhibitors against these parasites, by targeting the hexosamine pathway. This work underscores the potential of apicomplexan GNA1 as a drug target against malaria.
Collapse
|
31
|
Alme EB, Toczyski DP. Redundant targeting of Isr1 by two CDKs in mitotic cells. Curr Genet 2020; 67:79-83. [PMID: 33063175 DOI: 10.1007/s00294-020-01110-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Revised: 09/13/2020] [Accepted: 09/17/2020] [Indexed: 11/28/2022]
Abstract
Protein phosphorylation is an essential regulatory mechanism that controls most cellular processes, integrating a variety of environmental signals to drive cellular growth. Isr1 is a negative regulator of the hexosamine biosynthesis pathway (HBP), which produces UDP-GlcNAc, an essential carbohydrate that is the building block of N-glycosylation, GPI anchors and chitin. Isr1 was recently shown to be regulated by phosphorylation by the nutrient-responsive CDK kinase Pho85, allowing it to be targeted for degradation by the SCFCDC4. Here, we show that while deletion of PHO85 stabilizes Isr1 in asynchronous cells, Isr1 is still unstable in mitotically arrested cells in a pho85∆ strain. We provide evidence to suggest that this is through phosphorylation by CDK1. Redundant targeting of Isr1 by two distinct kinases may allow for tight regulation of the HBP in response to different cellular signals.
Collapse
Affiliation(s)
- Emma B Alme
- Department of Biochemistry, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA, USA
| | - David P Toczyski
- Department of Biochemistry, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA, USA.
| |
Collapse
|
32
|
Muñoz J, Akhavan NS, Mullins AP, Arjmandi BH. Macrophage Polarization and Osteoporosis: A Review. Nutrients 2020; 12:nu12102999. [PMID: 33007863 PMCID: PMC7601854 DOI: 10.3390/nu12102999] [Citation(s) in RCA: 231] [Impact Index Per Article: 46.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 09/22/2020] [Accepted: 09/28/2020] [Indexed: 12/11/2022] Open
Abstract
Over 200 million people suffer from osteoporosis worldwide. Individuals with osteoporosis have increased rates of bone resorption while simultaneously having impaired osteogenesis. Most current treatments for osteoporosis focus on anti-resorptive methods to prevent further bone loss. However, it is important to identify safe and cost-efficient treatments that not only inhibit bone resorption, but also stimulate anabolic mechanisms to upregulate osteogenesis. Recent data suggest that macrophage polarization may contribute to osteoblast differentiation and increased osteogenesis as well as bone mineralization. Macrophages exist in two major polarization states, classically activated macrophages (M1) and alternatively activated macrophage (M2) macrophages. The polarization state of macrophages is dependent on molecules in the microenvironment including several cytokines and chemokines. Mechanistically, M2 macrophages secrete osteogenic factors that stimulate the differentiation and activation of pre-osteoblastic cells, such as mesenchymal stem cells (MSC’s), and subsequently increase bone mineralization. In this review, we cover the mechanisms by which M2 macrophages contribute to osteogenesis and postulate the hypothesis that regulating macrophage polarization states may be a potential treatment for the treatment of osteoporosis.
Collapse
|
33
|
Lockhart DEA, Stanley M, Raimi OG, Robinson DA, Boldovjakova D, Squair DR, Ferenbach AT, Fang W, van Aalten DMF. Targeting a critical step in fungal hexosamine biosynthesis. J Biol Chem 2020; 295:8678-8691. [PMID: 32341126 PMCID: PMC7324522 DOI: 10.1074/jbc.ra120.012985] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 04/22/2020] [Indexed: 01/06/2023] Open
Abstract
Aspergillus fumigatus is a human opportunistic fungal pathogen whose cell wall protects it from the extracellular environment including host defenses. Chitin, an essential component of the fungal cell wall, is synthesized from UDP-GlcNAc produced in the hexosamine biosynthetic pathway. As this pathway is critical for fungal cell wall integrity, the hexosamine biosynthesis enzymes represent potential targets of antifungal drugs. Here, we provide genetic and chemical evidence that glucosamine 6-phosphate N-acetyltransferase (Gna1), a key enzyme in this pathway, is an exploitable antifungal drug target. GNA1 deletion resulted in loss of fungal viability and disruption of the cell wall, phenotypes that could be rescued by exogenous GlcNAc, the product of the Gna1 enzyme. In a murine model of aspergillosis, the Δgna1 mutant strain exhibited attenuated virulence. Using a fragment-based approach, we discovered a small heterocyclic scaffold that binds proximal to the Gna1 active site and can be optimized to a selective submicromolar binder. Taken together, we have provided genetic, structural, and chemical evidence that Gna1 is an antifungal target in A. fumigatus.
Collapse
Affiliation(s)
- Deborah E A Lockhart
- School of Life Sciences, University of Dundee, Dundee, United Kingdom; Institute of Medical Sciences, Foresterhill, University of Aberdeen, Aberdeen, United Kingdom.
| | - Mathew Stanley
- School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Olawale G Raimi
- School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - David A Robinson
- Drug Discovery Unit, Wellcome Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Dominika Boldovjakova
- Institute of Medical Sciences, Foresterhill, University of Aberdeen, Aberdeen, United Kingdom
| | - Daniel R Squair
- School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | | | - Wenxia Fang
- School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | | |
Collapse
|
34
|
Alme EB, Stevenson E, Krogan NJ, Swaney DL, Toczyski DP. The kinase Isr1 negatively regulates hexosamine biosynthesis in S. cerevisiae. PLoS Genet 2020; 16:e1008840. [PMID: 32579556 PMCID: PMC7340321 DOI: 10.1371/journal.pgen.1008840] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 07/07/2020] [Accepted: 05/08/2020] [Indexed: 11/18/2022] Open
Abstract
The S. cerevisiae ISR1 gene encodes a putative kinase with no ascribed function. Here, we show that Isr1 acts as a negative regulator of the highly-conserved hexosamine biosynthesis pathway (HBP), which converts glucose into uridine diphosphate N-acetylglucosamine (UDP-GlcNAc), the carbohydrate precursor to protein glycosylation, GPI-anchor formation, and chitin biosynthesis. Overexpression of ISR1 is lethal and, at lower levels, causes sensitivity to tunicamycin and resistance to calcofluor white, implying impaired protein glycosylation and reduced chitin deposition. Gfa1 is the first enzyme in the HBP and is conserved from bacteria and yeast to humans. The lethality caused by ISR1 overexpression is rescued by co-overexpression of GFA1 or exogenous glucosamine, which bypasses GFA1's essential function. Gfa1 is phosphorylated in an Isr1-dependent fashion and mutation of Isr1-dependent sites ameliorates the lethality associated with ISR1 overexpression. Isr1 contains a phosphodegron that is phosphorylated by Pho85 and subsequently ubiquitinated by the SCF-Cdc4 complex, largely confining Isr1 protein levels to the time of bud emergence. Mutation of this phosphodegron stabilizes Isr1 and recapitulates the overexpression phenotypes. As Pho85 is a cell cycle and nutrient responsive kinase, this tight regulation of Isr1 may serve to dynamically regulate flux through the HBP and modulate how the cell's energy resources are converted into structural carbohydrates in response to changing cellular needs.
Collapse
Affiliation(s)
- Emma B. Alme
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, California, United States of America
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, California, United States of America
| | - Erica Stevenson
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, California, United States of America
- California Institute for Quantitative Biosciences, University of California San Francisco, San Francisco, California, United States of America
- J. David Gladstone Institutes, San Francisco, California, United States of America
| | - Nevan J. Krogan
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, California, United States of America
- California Institute for Quantitative Biosciences, University of California San Francisco, San Francisco, California, United States of America
- J. David Gladstone Institutes, San Francisco, California, United States of America
| | - Danielle L. Swaney
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, California, United States of America
- California Institute for Quantitative Biosciences, University of California San Francisco, San Francisco, California, United States of America
- J. David Gladstone Institutes, San Francisco, California, United States of America
| | - David P. Toczyski
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, California, United States of America
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, California, United States of America
| |
Collapse
|
35
|
Coussement P, Bauwens D, Peters G, Maertens J, De Mey M. Mapping and refactoring pathway control through metabolic and protein engineering: The hexosamine biosynthesis pathway. Biotechnol Adv 2020; 40:107512. [DOI: 10.1016/j.biotechadv.2020.107512] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 08/07/2019] [Accepted: 09/30/2019] [Indexed: 01/14/2023]
|
36
|
Qi J, Liu S, Liu W, Cai G, Liao G. Identification of UAP1L1 as tumor promotor in gastric cancer through regulation of CDK6. Aging (Albany NY) 2020; 12:6904-6927. [PMID: 32310823 PMCID: PMC7202507 DOI: 10.18632/aging.103050] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Accepted: 02/25/2020] [Indexed: 12/15/2022]
Abstract
Gastric cancer (GC) is one of the most commonly diagnosed malignancies in digestive tract and its underlying molecular mechanism is still not clear, so we aimed to reveal the relationship between GC and UDP-GlcNAc pyrophosphorylase-1 like 1 (UAP1L1). The detection of UAP1L1 expression in GC tumor and normal tissues was accomplished by immunohistochemistry and demonstrated the upregulation of UAP1L1 in GC, which was statistically associated with tumor grade. GC cell models constructed via transfection of UAP1L1-silencing/overexpressing lentiviruses were employed for evaluating the effects of UAP1L1 knockdown/overexpression on GC in vitro and in vivo. The results indicated that UAP1L1 played important role in development of GC through regulating cell proliferation, colony formation, cell apoptosis and cell migration. Subsequently, CDK6 was identified as a potential target in UAP1L1 induced regulation of GC, downregulation of which exhibited similar inhibition effects on GC with UAP1L1. Moreover, it was demonstrated that the promotion of GC by UAP1L1 overexpression could be significantly attenuated or even reversed by simultaneously silencing CDK6. In conclusion, UAP1L1 was reported to be a tumor promotor in the development and progression of GC which may exert its role through regulating CDK6 and may act as a candidate of therapeutic target in treatment.
Collapse
Affiliation(s)
- Jing Qi
- Department of Gastrointestinal Surgery, Xiangya Hospital Central South University, Changsha 410008, Hunan, China
| | - Sheng Liu
- Department of Gastrointestinal Surgery, Xiangya Hospital Central South University, Changsha 410008, Hunan, China
| | - Weihang Liu
- Department of Gastrointestinal Surgery, Xiangya Hospital Central South University, Changsha 410008, Hunan, China
| | - Gaoqiang Cai
- Department of Gastrointestinal Surgery, Xiangya Hospital Central South University, Changsha 410008, Hunan, China
| | - Guoqing Liao
- Department of Gastrointestinal Surgery, Xiangya Hospital Central South University, Changsha 410008, Hunan, China
| |
Collapse
|
37
|
Effects of 5'-3' Exonuclease Xrn1 on Cell Size, Proliferation and Division, and mRNA Levels of Periodic Genes in Cryptococcus neoformans. Genes (Basel) 2020; 11:genes11040430. [PMID: 32316250 PMCID: PMC7230856 DOI: 10.3390/genes11040430] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 04/10/2020] [Accepted: 04/13/2020] [Indexed: 11/17/2022] Open
Abstract
Cell size affects almost all biosynthetic processes by controlling the size of organelles and disrupting the nutrient uptake process. Yeast cells must reach a critical size to be able to enter a new cell cycle stage. Abnormal changes in cell size are often observed under pathological conditions such as cancer disease. Thus, cell size must be strictly controlled during cell cycle progression. Here, we reported that the highly conserved 5′-3′ exonuclease Xrn1 could regulate the gene expression involved in the cell cycle pathway of Cryptococcus neoformans. Chromosomal deletion of XRN1 caused an increase in cell size, defects in cell growth and altered DNA content at 37 °C. RNA-sequencing results showed that the difference was significantly enriched in genes involved in membrane components, DNA metabolism, integration and recombination, DNA polymerase activity, meiotic cell cycle, nuclear division, organelle fission, microtubule-based process and reproduction. In addition, the proportion of the differentially expressed periodic genes was up to 19.8% when XRN1 was deleted, including cell cycle-related genes, chitin synthase genes and transcription factors, indicating the important role of Xrn1 in the control of cell cycle. This work provides insights into the roles of RNA decay factor Xrn1 in maintaining appropriate cell size, DNA content and cell cycle progression.
Collapse
|
38
|
Raimi OG, Hurtado-Guerrero R, Borodkin V, Ferenbach A, Urbaniak MD, Ferguson MAJ, van Aalten DMF. A mechanism-inspired UDP- N-acetylglucosamine pyrophosphorylase inhibitor. RSC Chem Biol 2020; 1:13-25. [PMID: 34458745 PMCID: PMC8386105 DOI: 10.1039/c9cb00017h] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Accepted: 02/13/2020] [Indexed: 11/21/2022] Open
Abstract
UDP-N-acetylglucosamine pyrophosphorylase (UAP1) catalyses the last step in eukaryotic biosynthesis of uridine diphosphate-N-acetylglucosamine (UDP-GlcNAc), converting UTP and GlcNAc-1P to the sugar nucleotide. Gene disruption studies have shown that this gene is essential in eukaryotes and a possible antifungal target, yet no inhibitors of fungal UAP1 have so far been reported. Here we describe the crystal structures of substrate/product complexes of UAP1 from Aspergillus fumigatus that together provide snapshots of catalysis. A structure with UDP-GlcNAc, pyrophosphate and Mg2+ provides the first Michaelis complex trapped for this class of enzyme, revealing the structural basis of the previously reported Mg2+ dependence and direct observation of pyrophosphorolysis. We also show that a highly conserved lysine mimics the role of a second metal observed in structures of bacterial orthologues. A mechanism-inspired UTP α,β-methylenebisphosphonate analogue (meUTP) was designed and synthesized and was shown to be a micromolar inhibitor of the enzyme. The mechanistic insights and inhibitor described here will facilitate future studies towards the discovery of small molecule inhibitors of this currently unexploited potential antifungal drug target. UDP-N-acetylglucosamine pyrophosphorylase (UAP1) catalyses the last step in eukaryotic biosynthesis of uridine diphosphate-N-acetylglucosamine (UDP-GlcNAc), converting UTP and GlcNAc-1P to the sugar nucleotide.![]()
Collapse
Affiliation(s)
- Olawale G Raimi
- Division of Gene Regulation and Expression, School of Life Sciences, University of Dundee Dow Street DD1 5EH Dundee UK
| | - Ramon Hurtado-Guerrero
- Division of Gene Regulation and Expression, School of Life Sciences, University of Dundee Dow Street DD1 5EH Dundee UK
| | - Vladimir Borodkin
- Division of Gene Regulation and Expression, School of Life Sciences, University of Dundee Dow Street DD1 5EH Dundee UK
| | - Andrew Ferenbach
- Division of Gene Regulation and Expression, School of Life Sciences, University of Dundee Dow Street DD1 5EH Dundee UK
| | - Michael D Urbaniak
- Wellcome Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee Dow Street DD1 5EH Dundee UK
| | - Michael A J Ferguson
- Wellcome Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee Dow Street DD1 5EH Dundee UK
| | - Daan M F van Aalten
- Division of Gene Regulation and Expression, School of Life Sciences, University of Dundee Dow Street DD1 5EH Dundee UK
| |
Collapse
|
39
|
Chen X, Zhang Z, Chen Z, Li Y, Su S, Sun S. Potential Antifungal Targets Based on Glucose Metabolism Pathways of Candida albicans. Front Microbiol 2020; 11:296. [PMID: 32256459 PMCID: PMC7093590 DOI: 10.3389/fmicb.2020.00296] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 02/10/2020] [Indexed: 01/04/2023] Open
Abstract
In recent years, fungal infections have become a serious health problem. Candida albicans are considered as the fourth most common isolates associated with approximately 40% mortality in bloodstream infections among hospitalized patients. Due to various limitations of classical antifungals used currently, such as limited kinds of drugs, inevitable toxicities, and high price, there is an urgent need to explore new antifungal agents based on novel targets. Generally, nutrient metabolism is involved with fungal virulence, and glucose is one of the important nutrients in C. albicans. C. albicans can obtain and metabolize glucose through a variety of pathways; in theory, many enzymes in these pathways can be potential targets for developing new antifungal agents, and several studies have confirmed that compounds which interfere with alpha-glucosidase, acid trehalase, trehalose-6-phosphate synthase, class II fructose bisphosphate aldolases, and glucosamine-6-phosphate synthase in these pathways do have antifungal activities. In this review, the glucose metabolism pathways in C. albicans, the potential antifungal targets based on these pathways, and some compounds which have antifungal activities by inhibiting several enzymes in these pathways are summarized. We believe that our review will be helpful to the exploration of new antifungal drugs with novel antifungal targets.
Collapse
Affiliation(s)
- Xueqi Chen
- Department of Pharmacy, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, China
- School of Pharmaceutical Sciences, Shandong University, Jinan, China
| | - Zewen Zhang
- Department of Imaging Medicine and Nuclear Medicine, Qilu Medical College, Shandong University, Jinan, China
| | - Zuozhong Chen
- Department of Pharmacy, Zibo Central Hospital, Zibo, China
| | - Yiman Li
- School of Pharmaceutical Sciences, Shandong University, Jinan, China
| | - Shan Su
- School of Pharmaceutical Sciences, Shandong University, Jinan, China
| | - Shujuan Sun
- Department of Clinical Pharmacy, The First Affiliated Hospital of Shandong First Medical University, Jinan, China
| |
Collapse
|
40
|
Min K, Naseem S, Konopka JB. N-Acetylglucosamine Regulates Morphogenesis and Virulence Pathways in Fungi. J Fungi (Basel) 2019; 6:jof6010008. [PMID: 31878148 PMCID: PMC7151181 DOI: 10.3390/jof6010008] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 12/17/2019] [Accepted: 12/19/2019] [Indexed: 12/17/2022] Open
Abstract
N-acetylglucosamine (GlcNAc) is being increasingly recognized for its ability to stimulate cell signaling. This amino sugar is best known as a component of cell wall peptidoglycan in bacteria, cell wall chitin in fungi and parasites, exoskeletons of arthropods, and the extracellular matrix of animal cells. In addition to these structural roles, GlcNAc is now known to stimulate morphological and stress responses in a wide range of organisms. In fungi, the model organisms Saccharomyces cerevisiae and Schizosaccharomyces pombe lack the ability to respond to GlcNAc or catabolize it, so studies with the human pathogen Candida albicans have been providing new insights into the ability of GlcNAc to stimulate cellular responses. GlcNAc potently induces C. albicans to transition from budding to filamentous hyphal growth. It also promotes an epigenetic switch from White to Opaque cells, which differ in morphology, metabolism, and virulence properties. These studies have led to new discoveries, such as the identification of the first eukaryotic GlcNAc transporter. Other results have shown that GlcNAc can induce signaling in C. albicans in two ways. One is to act as a signaling molecule independent of its catabolism, and the other is that its catabolism can cause the alkalinization of the extracellular environment, which provides an additional stimulus to form hyphae. GlcNAc also induces the expression of virulence genes in the C. albicans, indicating it can influence pathogenesis. Therefore, this review will describe the recent advances in understanding the role of GlcNAc signaling pathways in regulating C. albicans morphogenesis and virulence.
Collapse
|
41
|
Anti-proliferative bioactivity against HT-29 colon cancer cells of a withanolides-rich extract from golden berry (Physalis peruviana L.) calyx investigated by Foodomics. J Funct Foods 2019. [DOI: 10.1016/j.jff.2019.103567] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
42
|
Han X, Chen C, Yan Q, Jia L, Taj A, Ma Y. Action of Dicumarol on Glucosamine-1-Phosphate Acetyltransferase of GlmU and Mycobacterium tuberculosis. Front Microbiol 2019; 10:1799. [PMID: 31481936 PMCID: PMC6710349 DOI: 10.3389/fmicb.2019.01799] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 07/22/2019] [Indexed: 11/13/2022] Open
Abstract
Mycobacterium tuberculosis is one of most pathogenic microorganisms in the world. Previously, the bifunctional enzyme GlmU with glucosamine-1-phosphate acetyltransferase activity and N-acetylglucosamine-1-phosphate uridyltransferase activity has been suggested as a potential drug target; therefore, discovering compounds targeting GlmU acetyltransferase is necessary. The natural products were tested for inhibition of GlmU acetyltransferase activity. We found that dicumarol exhibited inhibitory effects on GlmU acetyltransferase, with a concentration achieving a 50% inhibition (IC50) value of 4.608 μg/ml (13.7 μM). The inhibition kinetics indicated that dicumarol uncompetitively inhibited acetyl CoA and showed mixed-type inhibition for glucosamine-1-phosphate (GlcN-1-P). The activity of dicumarol against M. tuberculosis H37Ra was evaluated with a minimum inhibitory concentration (MIC) value of 6.25 μg/ml (18.55 μM) in the Alamar blue assay. Dicumarol also exhibited inhibitory effects on several clinically sensitive M. tuberculosis strains and drug-resistant strains, with a range of MIC value of 6.25 to >100 μg/ml. Dicumarol increased the sensitivity of anti-tuberculosis drugs (isoniazid and rifampicin) when dicumarol was present at a low concentration. The transcriptome and proteome data of M. tuberculosis H37Ra treated by dicumarol showed that the affected genes were associated with cell wall synthesis, DNA damage and repair, metabolic processes, and signal transduction. These results provided the mechanism of dicumarol inhibition against GlmU acetyltransferase and M. tuberculosis and also suggested that dicumarol is a potential candidate for TB treatment.
Collapse
Affiliation(s)
- Xiuyan Han
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Changming Chen
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Qiulong Yan
- Department of Microbiology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Liqiu Jia
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Ayaz Taj
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Yufang Ma
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China.,Department of Microbiology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| |
Collapse
|
43
|
Judge MT, Wu Y, Tayyari F, Hattori A, Glushka J, Ito T, Arnold J, Edison AS. Continuous in vivo Metabolism by NMR. Front Mol Biosci 2019; 6:26. [PMID: 31114791 PMCID: PMC6502900 DOI: 10.3389/fmolb.2019.00026] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2019] [Accepted: 04/04/2019] [Indexed: 01/10/2023] Open
Abstract
Dense time-series metabolomics data are essential for unraveling the underlying dynamic properties of metabolism. Here we extend high-resolution-magic angle spinning (HR-MAS) to enable continuous in vivo monitoring of metabolism by NMR (CIVM-NMR) and provide analysis tools for these data. First, we reproduced a result in human chronic lymphoid leukemia cells by using isotope-edited CIVM-NMR to rapidly and unambiguously demonstrate unidirectional flux in branched-chain amino acid metabolism. We then collected untargeted CIVM-NMR datasets for Neurospora crassa, a classic multicellular model organism, and uncovered dynamics between central carbon metabolism, amino acid metabolism, energy storage molecules, and lipid and cell wall precursors. Virtually no sample preparation was required to yield a dynamic metabolic fingerprint over hours to days at ~4-min temporal resolution with little noise. CIVM-NMR is simple and readily adapted to different types of cells and microorganisms, offering an experimental complement to kinetic models of metabolism for diverse biological systems.
Collapse
Affiliation(s)
- Michael T. Judge
- Department of Genetics, University of Georgia, Athens, GA, United States
| | - Yue Wu
- Institute of Bioinformatics, University of Georgia, Athens, GA, United States
| | - Fariba Tayyari
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, United States
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, United States
| | - Ayuna Hattori
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, United States
- Division of Hematological Malignancy, National Cancer Center Research Institute, Tokyo, Japan
| | - John Glushka
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, United States
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, United States
| | - Takahiro Ito
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, United States
| | - Jonathan Arnold
- Department of Genetics, University of Georgia, Athens, GA, United States
- Institute of Bioinformatics, University of Georgia, Athens, GA, United States
| | - Arthur S. Edison
- Department of Genetics, University of Georgia, Athens, GA, United States
- Institute of Bioinformatics, University of Georgia, Athens, GA, United States
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, United States
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, United States
| |
Collapse
|
44
|
Orlean P, Funai D. Priming and elongation of chitin chains: Implications for chitin synthase mechanism. ACTA ACUST UNITED AC 2018; 5:100017. [PMID: 32743134 PMCID: PMC7389259 DOI: 10.1016/j.tcsw.2018.100017] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 12/16/2018] [Accepted: 12/18/2018] [Indexed: 11/18/2022]
Abstract
Most fungi have multiple chitin synthases (CSs) that may make chitin at different sites on the cell surface, at different times during growth, and in response to cell wall stress. The structure-based model for CS function is for transfer of GlcNAc from UDP-GlcNAc at the cytoplasmic face of the plasma membrane to the non-reducing end of a growing chitin chain, which is concomitantly translocated through a transmembrane channel formed by the synthase. Two aspects of CS mechanism are investigated: how chains might be initiated, and what governs how long they can get. First, it is shown that CSs incorporate free GlcNAc into di-N-acetylchitobiose and into insoluble chitin in a UDP-GlcNAc-dependent manner, and therefore that GlcNAc primes chitin synthesis. Second, average lengths of insoluble chitin chains were measured by determining the molar ratio of priming GlcNAc to chain-extending, UDP-GlcNAc-derived GlcNAc, and showed dependence on UDP-GlcNAc concentration, approaching a maximum at higher concentrations of substrate. These results, together with previous findings that 2-acylamido GlcN analogues prime formation of chitin oligosaccharides and stimulate chitin synthesis are discussed in the context of the structure-based model, and lead to the following proposals. 1) CSs may "self-prime" by hydrolyzing UDP-GlcNAc to yield GlcNAc. 2) A CS's active site is not continuously occupied by a nascent chitin chain, rather, CSs can release chitin chains, then re-initiate, and therefore synthesize chitin chains in bursts. 3) The length of chitin chains made by a given CS will impact that CS's contribution to construction of the fungal cell wall.
Collapse
Affiliation(s)
- Peter Orlean
- Corresponding author at: Department of Microbiology, University of Illinois at Urbana-Champaign, B-213 Chemical and Life Sciences Laboratory, 601 South Goodwin Avenue, Urbana, IL 61801, USA.
| | | |
Collapse
|
45
|
Elkanzi NAA, Bakr RB, Ghoneim AA. Design, Synthesis, Molecular Modeling Study, and Antimicrobial Activity of Some Novel Pyrano[2,3‐
b
]pyridine and Pyrrolo[2,3‐
b
]pyrano[2.3‐
d
]pyridine Derivatives. J Heterocycl Chem 2018. [DOI: 10.1002/jhet.3412] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Nadia A. A. Elkanzi
- Chemistry DepartmentCollege of Science, Jouf University P.O. Box, 2014 Sakakah Saudi Arabia
- Chemistry DepartmentFaculty of Science, Aswan University P.O. Box, 81528 Aswan Egypt
| | - Rania B. Bakr
- Department of Pharmaceutical ChemistryCollege of Pharmacy, Jouf University Sakakah Aljouf 2014 Saudi Arabia
- Department of Pharmaceutical Organic ChemistryFaculty of Pharmacy, Beni‐Suef University Beni‐Suef 62514 Egypt
| | - Amira A. Ghoneim
- Chemistry DepartmentCollege of Science, Jouf University P.O. Box, 2014 Sakakah Saudi Arabia
- Department of Chemistry, Faculty of ScienceZagazig University Zagazig Egypt
| |
Collapse
|
46
|
Kwiatkowska-Semrau K, Wojciechowski M, Gabriel I, Crucho S, Milewski S. Modification of quaternary structure of Candida albicans GlcN-6-P synthase and its desensitization to inhibition by UDP-GlcNAc by site-directed mutagenesis. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2018; 1866:1181-1189. [DOI: 10.1016/j.bbapap.2018.08.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 08/15/2018] [Indexed: 02/02/2023]
|
47
|
Ebert B, Rautengarten C, McFarlane HE, Rupasinghe T, Zeng W, Ford K, Scheller HV, Bacic A, Roessner U, Persson S, Heazlewood JL. A Golgi UDP-GlcNAc transporter delivers substrates for N-linked glycans and sphingolipids. NATURE PLANTS 2018; 4:792-801. [PMID: 30224661 DOI: 10.1038/s41477-018-0235-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2017] [Accepted: 07/26/2018] [Indexed: 05/20/2023]
Abstract
Glycosylation requires activated glycosyl donors in the form of nucleotide sugars to drive processes such as post-translational protein modifications and glycolipid and polysaccharide biosynthesis. Most of these reactions occur in the Golgi, requiring cytosolic-derived nucleotide sugars, which need to be actively transferred into the Golgi lumen by nucleotide sugar transporters. We identified a Golgi-localized nucleotide sugar transporter from Arabidopsis thaliana with affinity for UDP-N-acetyl-D-glucosamine (UDP-GlcNAc) and assigned it UDP-GlcNAc transporter 1 (UGNT1). Profiles of N-glycopeptides revealed that plants carrying the ugnt1 loss-of-function allele are virtually devoid of complex and hybrid N-glycans. Instead, the N-glycopeptide population from these alleles exhibited high-mannose structures, representing structures prior to the addition of the first GlcNAc in the Golgi. Concomitantly, sphingolipid profiling revealed that the biosynthesis of GlcNAc-containing glycosyl inositol phosphorylceramides (GIPCs) is also reliant on this transporter. By contrast, plants carrying the loss-of-function alleles affecting ROCK1, which has been reported to transport UDP-GlcNAc and UDP-N-acetylgalactosamine, exhibit no changes in N-glycan or GIPC profiles. Our findings reveal that plants contain a single UDP-GlcNAc transporter that delivers an essential substrate for the maturation of N-glycans and the GIPC class of sphingolipids.
Collapse
Affiliation(s)
- Berit Ebert
- School of Biosciences, University of Melbourne, Melbourne, Victoria, Australia
| | | | - Heather E McFarlane
- School of Biosciences, University of Melbourne, Melbourne, Victoria, Australia
| | - Thusitha Rupasinghe
- Metabolomics Australia, School of Biosciences, University of Melbourne, Melbourne, Victoria, Australia
| | - Wei Zeng
- School of Biosciences, University of Melbourne, Melbourne, Victoria, Australia
- ARC Centre of Excellence in Plant Cell Walls, School of Biosciences, University of Melbourne, Melbourne, Victoria, Australia
| | - Kristina Ford
- School of Biosciences, University of Melbourne, Melbourne, Victoria, Australia
- ARC Centre of Excellence in Plant Cell Walls, School of Biosciences, University of Melbourne, Melbourne, Victoria, Australia
| | - Henrik V Scheller
- Joint BioEnergy Institute and Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, USA
| | - Antony Bacic
- School of Biosciences, University of Melbourne, Melbourne, Victoria, Australia
- ARC Centre of Excellence in Plant Cell Walls, School of Biosciences, University of Melbourne, Melbourne, Victoria, Australia
| | - Ute Roessner
- Metabolomics Australia, School of Biosciences, University of Melbourne, Melbourne, Victoria, Australia
| | - Staffan Persson
- School of Biosciences, University of Melbourne, Melbourne, Victoria, Australia
| | - Joshua L Heazlewood
- School of Biosciences, University of Melbourne, Melbourne, Victoria, Australia.
| |
Collapse
|
48
|
Evidence for substrate-assisted catalysis in N-acetylphosphoglucosamine mutase. Biochem J 2018; 475:2547-2557. [PMID: 29967067 PMCID: PMC6096347 DOI: 10.1042/bcj20180172] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2018] [Revised: 07/02/2018] [Accepted: 07/02/2018] [Indexed: 11/17/2022]
Abstract
N-acetylphosphoglucosamine mutase (AGM1) is a key component of the hexosamine biosynthetic pathway that produces UDP-GlcNAc, an essential precursor for a wide range of glycans in eukaryotes. AGM belongs to the α-d-phosphohexomutase metalloenzyme superfamily and catalyzes the interconversion of N-acetylglucosamine-6-phosphate (GlcNAc-6P) to N-acetylglucosamine-1-phosphate (GlcNAc-1P) through N-acetylglucosamine-1,6-bisphosphate (GlcNAc-1,6-bisP) as the catalytic intermediate. Although there is an understanding of the phosphoserine-dependent catalytic mechanism at enzymatic and structural level, the identity of the requisite catalytic base in AGM1/phosphoglucomutases is as yet unknown. Here, we present crystal structures of a Michaelis complex of AGM1 with GlcNAc-6P and Mg2+, and a complex of the inactive Ser69Ala mutant together with glucose-1,6-bisphosphate (Glc-1,6-bisP) that represents key snapshots along the reaction co-ordinate. Together with mutagenesis, these structures reveal that the phosphate group of the hexose-1,6-bisP intermediate may act as the catalytic base.
Collapse
|
49
|
Liu N, Tu J, Dong G, Wang Y, Sheng C. Emerging New Targets for the Treatment of Resistant Fungal Infections. J Med Chem 2018; 61:5484-5511. [DOI: 10.1021/acs.jmedchem.7b01413] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Na Liu
- School of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai 200433, People’s Republic of China
| | - Jie Tu
- School of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai 200433, People’s Republic of China
| | - Guoqiang Dong
- School of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai 200433, People’s Republic of China
| | - Yan Wang
- School of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai 200433, People’s Republic of China
| | - Chunquan Sheng
- School of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai 200433, People’s Republic of China
| |
Collapse
|
50
|
B. Bakr R, A. A. Elkanzi N, A. Ghoneim A, M. N. Moustafa S. Synhesis, Molecular Docking Studies and in vitro Antimicrobial Evaluation of Novel Pyrimido[1,2-a]quinoxaline and Triazino[4,3-a]quinoxaline Derivatives. HETEROCYCLES 2018. [DOI: 10.3987/com-18-13955] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|