1
|
Majtan T, Olsen T, Sokolova J, Krijt J, Křížková M, Ida T, Ditrói T, Hansikova H, Vit O, Petrak J, Kuchař L, Kruger WD, Nagy P, Akaike T, Kožich V. Deciphering pathophysiological mechanisms underlying cystathionine beta-synthase-deficient homocystinuria using targeted metabolomics, liver proteomics, sphingolipidomics and analysis of mitochondrial function. Redox Biol 2024; 73:103222. [PMID: 38843767 PMCID: PMC11190558 DOI: 10.1016/j.redox.2024.103222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 05/17/2024] [Accepted: 06/02/2024] [Indexed: 06/14/2024] Open
Abstract
BACKGROUND Cystathionine β-synthase (CBS)-deficient homocystinuria (HCU) is an inherited disorder of sulfur amino acid metabolism with varying severity and organ complications, and a limited knowledge about underlying pathophysiological processes. Here we aimed at getting an in-depth insight into disease mechanisms using a transgenic mouse model of HCU (I278T). METHODS We assessed metabolic, proteomic and sphingolipidomic changes, and mitochondrial function in tissues and body fluids of I278T mice and WT controls. Furthermore, we evaluated the efficacy of methionine-restricted diet (MRD) in I278T mice. RESULTS In WT mice, we observed a distinct tissue/body fluid compartmentalization of metabolites with up to six-orders of magnitude differences in concentrations among various organs. The I278T mice exhibited the anticipated metabolic imbalance with signs of an increased production of hydrogen sulfide and disturbed persulfidation of free aminothiols. HCU resulted in a significant dysregulation of liver proteome affecting biological oxidations, conjugation of compounds, and metabolism of amino acids, vitamins, cofactors and lipids. Liver sphingolipidomics indicated upregulation of the pro-proliferative sphingosine-1-phosphate signaling pathway. Liver mitochondrial function of HCU mice did not seem to be impaired compared to controls. MRD in I278T mice improved metabolic balance in all tissues and substantially reduced dysregulation of liver proteome. CONCLUSION The study highlights distinct tissue compartmentalization of sulfur-related metabolites in normal mice, extensive metabolome, proteome and sphingolipidome disruptions in I278T mice, and the efficacy of MRD to alleviate some of the HCU-related biochemical abnormalities.
Collapse
Affiliation(s)
- Tomas Majtan
- Department of Pharmacology, University of Fribourg, Faculty of Science and Medicine, Fribourg, 1700, Switzerland.
| | - Thomas Olsen
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Jitka Sokolova
- Department of Pediatrics and Inherited Metabolic Disorders, Charles University-First Faculty of Medicine, Prague, 12808, Czech Republic; Department of Pediatrics and Inherited Metabolic Disorders, General University Hospital in Prague, Prague, 12808, Czech Republic
| | - Jakub Krijt
- Department of Pediatrics and Inherited Metabolic Disorders, Charles University-First Faculty of Medicine, Prague, 12808, Czech Republic; Department of Pediatrics and Inherited Metabolic Disorders, General University Hospital in Prague, Prague, 12808, Czech Republic
| | - Michaela Křížková
- Department of Pediatrics and Inherited Metabolic Disorders, Charles University-First Faculty of Medicine, Prague, 12808, Czech Republic; Department of Pediatrics and Inherited Metabolic Disorders, General University Hospital in Prague, Prague, 12808, Czech Republic
| | - Tomoaki Ida
- Department of Environmental Medicine and Molecular Toxicology, Tohoku University Graduate School of Medicine, Sendai, 980-8575, Japan
| | - Tamás Ditrói
- Department of Molecular Immunology and Toxicology and the National Tumor Biology Laboratory, National Institute of Oncology, Budapest, 1122, Hungary
| | - Hana Hansikova
- Department of Pediatrics and Inherited Metabolic Disorders, Charles University-First Faculty of Medicine, Prague, 12808, Czech Republic; Department of Pediatrics and Inherited Metabolic Disorders, General University Hospital in Prague, Prague, 12808, Czech Republic
| | - Ondrej Vit
- BIOCEV, First Faculty of Medicine, Charles University, 252 50, Vestec, Czech Republic
| | - Jiri Petrak
- BIOCEV, First Faculty of Medicine, Charles University, 252 50, Vestec, Czech Republic
| | - Ladislav Kuchař
- Department of Pediatrics and Inherited Metabolic Disorders, Charles University-First Faculty of Medicine, Prague, 12808, Czech Republic; Department of Pediatrics and Inherited Metabolic Disorders, General University Hospital in Prague, Prague, 12808, Czech Republic
| | - Warren D Kruger
- Cancer Signaling and Microenvironment Program, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Péter Nagy
- Department of Molecular Immunology and Toxicology and the National Tumor Biology Laboratory, National Institute of Oncology, Budapest, 1122, Hungary; Department of Anatomy and Histology, HUN-REN-UVMB Laboratory of Redox Biology Research Group, University of Veterinary Medicine, 1078, Budapest, Hungary; Chemistry Institute, University of Debrecen, 4012, Debrecen, Hungary
| | - Takaaki Akaike
- Department of Environmental Medicine and Molecular Toxicology, Tohoku University Graduate School of Medicine, Sendai, 980-8575, Japan
| | - Viktor Kožich
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway; Department of Pediatrics and Inherited Metabolic Disorders, Charles University-First Faculty of Medicine, Prague, 12808, Czech Republic.
| |
Collapse
|
2
|
Inyang I, White HE, Timme K, Keating AF. Biological sex differences in hepatic response to in utero dimethylbenz(a)anthracene exposure. Reprod Toxicol 2024; 124:108553. [PMID: 38307155 DOI: 10.1016/j.reprotox.2024.108553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 01/24/2024] [Accepted: 01/26/2024] [Indexed: 02/04/2024]
Abstract
Fetal hepatic dimethylbenz(a)anthracene (DMBA) biotransformation is not defined, thus, this study investigated whether the fetal liver metabolizes DMBA and differs with biological sex. KK.Cg-a/a (lean; n = 20) or KK.Cg-Ay/J (obese; n = 20) pregnant mice were exposed to corn oil (CT) or DMBA (1 mg/kg bw/day) by intraperitoneal injection (n = 10/treatment) from gestation day 7-14. Postnatal day 2 male or female offspring livers were collected. Total RNA (n = 6) and protein (n = 6) were analyzed via a PCR-based array or LC-MS/MS, respectively. The level of Mgst3 was lower (P < 0.05) in livers of female compared to male offspring. Furthermore, in utero DMBA exposure increased (P < 0.1) Cyp2c29 and Gpx3 levels (P < 0.05) in female offspring. In male offspring, the abundance of Ahr, Comt (P < 0.1), Alox5, and Asna1 (P < 0.05) decreased due to DMBA exposure. Female and male offspring had 34 and 21 hepatic proteins altered (P < 0.05) by in utero DMBA exposure, respectively. Opposing patterns for hepatic CD81 and KRT78 occurred, being decreased in females but increased in males, while YWHAG was decreased by DMBA exposure in both. Functional KEGG pathway analysis identified enrichment of 26 and 13 hepatic metabolic proteins in male and female offspring, respectively, due to in utero DMBA exposure. In silico transcription factor analysis of differentially expressed proteins predicted involvement of female NRF1 but male AHR. Thus, hepatic biological sex differences and capacity to respond to toxicants in utero are supported.
Collapse
Affiliation(s)
| | - Hunter E White
- Department of Animal Science, Iowa State University, USA
| | - Kelsey Timme
- Department of Animal Science, Iowa State University, USA
| | | |
Collapse
|
3
|
Iizasa S, Nagao K, Tsuge K, Nagano Y, Yanagita T. Identification of genes regulated by lipids from seaweed Susabinori (Pyropia yezoensis) involved in the improvement of hepatic steatosis: Insights from RNA-Seq analysis in obese db/db mice. PLoS One 2023; 18:e0295591. [PMID: 38085726 PMCID: PMC10715663 DOI: 10.1371/journal.pone.0295591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 11/22/2023] [Indexed: 12/18/2023] Open
Abstract
Hepatic steatosis is an early stage in the progression of non-alcoholic fatty liver disease (NAFLD) and can lead to the development of non-alcoholic steatohepatitis (NASH), a major cause of liver-related morbidity and mortality. Identification of dietary components that can alleviate hepatic steatosis is crucial for developing effective therapeutic strategies for NAFLD. Recently, we demonstrated the impact of lipids extracted from the marine red alga Susabinori (Pyropia yezoensis) in a murine model of type 2-diabete (db/db). We found that Susabinori lipids (SNL), abundant in eicosapentaenoic acid (EPA)-containing polar lipids, protected against obesity-induced hepatic steatosis in db/db mice. To understand the specific genes or biological pathways underlying the effects of SNL, we conducted RNA-Seq analysis of the hepatic transcriptome. By performing comparative analysis of differentially expressed genes between normal mice and db/db mice consuming a control diet, as well as SNL-fed db/db mice, we identified the 15 SNL-dependent up-regulated genes that were down-regulated in db/db mice but up-regulated by SNL feeding. Gene ontology and pathway analysis on these 15 genes demonstrated a significant association with the metabolisms of arachidonic acid (AA) and linoleic acid (LA). Furthermore, we observed alterations in the expression levels of monoacylglycerol lipase (Magl) and fatty acid-binding protein 4 (Fabp4) in the SNL-fed db/db mice, both of which are implicated in AA and LA metabolism. Additionally, the livers of SNL-fed db/db mice exhibited reduced levels of AA and LA, but a high accumulation of EPA. In conclusion, the SNL diet might affect the metabolisms of AA and LA, which contribute to the improvement of hepatic steatosis. Our findings provide insights into the molecular mechanisms underlying the beneficial effects of SNL.
Collapse
Affiliation(s)
- Sayaka Iizasa
- Graduate School of Science and Engineering, Kagoshima University, Kagoshima, Japan
| | - Koji Nagao
- Department of Applied Biochemistry and Food Science, Saga University, Saga, Japan
| | | | - Yukio Nagano
- Analytical Research Center for Experimental Sciences, Saga University, Saga, Japan
| | - Teruyoshi Yanagita
- Department of Applied Biochemistry and Food Science, Saga University, Saga, Japan
- Department of Health and Nutrition Science, Nishikyushu University, Saga, Japan
- Saga Foods & Cosmetics Laboratory, Division of Research and Development Promotion, Saga Prefectural Regional Industry Support Center, Saga, Japan
| |
Collapse
|
4
|
Romualdo GR, Valente LC, Dos Santos ACS, Grandini NA, Camacho CRC, Vinken M, Cogliati B, Hou DX, Barbisan LF. Effects of glyphosate exposure on western diet-induced non-alcoholic fatty liver disease in mice. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2023; 104:104286. [PMID: 37805155 DOI: 10.1016/j.etap.2023.104286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 09/22/2023] [Accepted: 10/02/2023] [Indexed: 10/09/2023]
Abstract
We evaluated whether glyphosate promotes western diet (WD)-induced non-alcoholic fatty liver disease (NAFLD). Male C57BL/6J mice were fed WD and received intragastrical glyphosate (0.05, 5 or 50 mg/kg) for 6 months. Glyphosate did not promote WD-induced obesity, hypercholesterolemia, glucose intolerance, hepatic steatosis, and fibrosis. Nonetheless, the higher dose (50 mg) enhanced hepatic CD68+ macrophage density, p65, TNF-α, and IL-6 protein levels. Furthermore, this dose decreased hepatic Nrf2 levels, while enhancing lipid peroxidation in the liver and adipose tissue. Hepatic transcriptome revealed that glyphosate at 50 mg upregulated 212 genes and downregulated 731 genes. Genes associated with oxidative stress and inflammation were upregulated, while key cell cycle-related genes were downregulated. Our results indicate that glyphosate exposure - in a dose within the toxicological limits - impairs hepatic inflammation/redox dynamics in a NAFLD microenvironment.
Collapse
Affiliation(s)
- Guilherme R Romualdo
- São Paulo State University (UNESP), Botucatu Medical School, Experimental Research Unit (UNIPEX), Multimodel Drug Screening Platform - Laboratory of Chemically induced and Experimental Carcinogenesis (MDSP-LCQE), Botucatu, SP, Brazil; São Paulo State University (UNESP), Biosciences Institute, Department of Structural and Functional Biology, Botucatu, SP, Brazil.
| | - Letícia Cardoso Valente
- São Paulo State University (UNESP), Botucatu Medical School, Experimental Research Unit (UNIPEX), Multimodel Drug Screening Platform - Laboratory of Chemically induced and Experimental Carcinogenesis (MDSP-LCQE), Botucatu, SP, Brazil; São Paulo State University (UNESP), Biosciences Institute, Department of Structural and Functional Biology, Botucatu, SP, Brazil; Federal University of Grande Dourados (UFGD), Faculty of Health Sciences, Dourados, MS, Brazil
| | | | - Núbia Alves Grandini
- São Paulo State University (UNESP), Botucatu Medical School, Experimental Research Unit (UNIPEX), Botucatu, SP, Brazil
| | - Camila Renata Correa Camacho
- São Paulo State University (UNESP), Botucatu Medical School, Experimental Research Unit (UNIPEX), Botucatu, SP, Brazil
| | - Mathieu Vinken
- Vrije Universiteit Brussel. Brussels, Department of In Vitro Toxicology and Dermato-Cosmetology, Belgium
| | - Bruno Cogliati
- University of São Paulo (USP), School of Veterinary Medicine and Animal Science, Department of Pathology, São Paulo, SP, Brazil
| | - De-Xing Hou
- Kagoshima University, Faculty of Agriculture, Department of Food Science and Biotechnology, Japan
| | - Luís Fernando Barbisan
- São Paulo State University (UNESP), Botucatu Medical School, Experimental Research Unit (UNIPEX), Multimodel Drug Screening Platform - Laboratory of Chemically induced and Experimental Carcinogenesis (MDSP-LCQE), Botucatu, SP, Brazil; São Paulo State University (UNESP), Biosciences Institute, Department of Structural and Functional Biology, Botucatu, SP, Brazil.
| |
Collapse
|
5
|
Nayeem MA, Geldenhuys WJ, Hanif A. Role of cytochrome P450-epoxygenase and soluble epoxide hydrolase in the regulation of vascular response. ADVANCES IN PHARMACOLOGY 2023; 97:37-131. [DOI: 10.1016/bs.apha.2022.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
6
|
Nayeem MA, Hanif A, Geldenhuys WJ, Agba S. Crosstalk between adenosine receptors and CYP450-derived oxylipins in the modulation of cardiovascular, including coronary reactive hyperemic response. Pharmacol Ther 2022; 240:108213. [PMID: 35597366 DOI: 10.1016/j.pharmthera.2022.108213] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 05/11/2022] [Accepted: 05/12/2022] [Indexed: 12/14/2022]
Abstract
Adenosine is a ubiquitous endogenous nucleoside or autacoid that affects the cardiovascular system through the activation of four G-protein coupled receptors: adenosine A1 receptor (A1AR), adenosine A2A receptor (A2AAR), adenosine A2B receptor (A2BAR), and adenosine A3 receptor (A3AR). With the rapid generation of this nucleoside from cellular metabolism and the widespread distribution of its four G-protein coupled receptors in almost all organs and tissues of the body, this autacoid induces multiple physiological as well as pathological effects, not only regulating the cardiovascular system but also the central nervous system, peripheral vascular system, and immune system. Mounting evidence shows the role of CYP450-enzymes in cardiovascular physiology and pathology, and the genetic polymorphisms in CYP450s can increase susceptibility to cardiovascular diseases (CVDs). One of the most important physiological roles of CYP450-epoxygenases (CYP450-2C & CYP2J2) is the metabolism of arachidonic acid (AA) and linoleic acid (LA) into epoxyeicosatrienoic acids (EETs) and epoxyoctadecaenoic acid (EpOMEs) which generally involve in vasodilation. Like an increase in coronary reactive hyperemia (CRH), an increase in anti-inflammation, and cardioprotective effects. Moreover, the genetic polymorphisms in CYP450-epoxygenases will change the beneficial cardiovascular effects of metabolites or oxylipins into detrimental effects. The soluble epoxide hydrolase (sEH) is another crucial enzyme ubiquitously expressed in all living organisms and almost all organs and tissues. However, in contrast to CYP450-epoxygenases, sEH converts EETs into dihydroxyeicosatrienoic acid (DHETs), EpOMEs into dihydroxyoctadecaenoic acid (DiHOMEs), and others and reverses the beneficial effects of epoxy-fatty acids leading to vasoconstriction, reducing CRH, increase in pro-inflammation, increase in pro-thrombotic and become less cardioprotective. Therefore, polymorphisms in the sEH gene (Ephx2) cause the enzyme to become overactive, making it more vulnerable to CVDs, including hypertension. Besides the sEH, ω-hydroxylases (CYP450-4A11 & CYP450-4F2) derived metabolites from AA, ω terminal-hydroxyeicosatetraenoic acids (19-, 20-HETE), lipoxygenase-derived mid-chain hydroxyeicosatetraenoic acids (5-, 11-, 12-, 15-HETEs), and the cyclooxygenase-derived prostanoids (prostaglandins: PGD2, PGF2α; thromboxane: Txs, oxylipins) are involved in vasoconstriction, hypertension, reduction in CRH, pro-inflammation and cardiac toxicity. Interestingly, the interactions of adenosine receptors (A2AAR, A1AR) with CYP450-epoxygenases, ω-hydroxylases, sEH, and their derived metabolites or oxygenated polyunsaturated fatty acids (PUFAs or oxylipins) is shown in the regulation of the cardiovascular functions. In addition, much evidence demonstrates polymorphisms in CYP450-epoxygenases, ω-hydroxylases, and sEH genes (Ephx2) and adenosine receptor genes (ADORA1 & ADORA2) in the human population with the susceptibility to CVDs, including hypertension. CVDs are the number one cause of death globally, coronary artery disease (CAD) was the leading cause of death in the US in 2019, and hypertension is one of the most potent causes of CVDs. This review summarizes the articles related to the crosstalk between adenosine receptors and CYP450-derived oxylipins in vascular, including the CRH response in regular salt-diet fed and high salt-diet fed mice with the correlation of heart perfusate/plasma oxylipins. By using A2AAR-/-, A1AR-/-, eNOS-/-, sEH-/- or Ephx2-/-, vascular sEH-overexpressed (Tie2-sEH Tr), vascular CYP2J2-overexpressed (Tie2-CYP2J2 Tr), and wild-type (WT) mice. This review article also summarizes the role of pro-and anti-inflammatory oxylipins in cardiovascular function/dysfunction in mice and humans. Therefore, more studies are needed better to understand the crosstalk between the adenosine receptors and eicosanoids to develop diagnostic and therapeutic tools by using plasma oxylipins profiles in CVDs, including hypertensive cases in the future.
Collapse
Affiliation(s)
- Mohammed A Nayeem
- Faculties of the Department of Pharmaceutical Sciences, School of Pharmacy, West Virginia University, Morgantown, WV, USA.
| | - Ahmad Hanif
- Faculties of the Department of Pharmaceutical Sciences, School of Pharmacy, West Virginia University, Morgantown, WV, USA
| | - Werner J Geldenhuys
- Faculties of the Department of Pharmaceutical Sciences, School of Pharmacy, West Virginia University, Morgantown, WV, USA
| | - Stephanie Agba
- Graduate student, Department of Pharmaceutical Sciences, School of Pharmacy, West Virginia University, Morgantown, WV, USA
| |
Collapse
|
7
|
Yao J, Wu J, Jia S, Shao J, Zhang X, Xu Z, Zhang H, Li H, Yao X. Effects of bicyclol on hepatic sinusoidal obstruction syndrome induced by Gynura segetum. J Clin Lab Anal 2022; 36:e24793. [PMID: 36447383 PMCID: PMC9757000 DOI: 10.1002/jcla.24793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 10/28/2022] [Accepted: 11/15/2022] [Indexed: 12/05/2022] Open
Abstract
BACKGROUND The intake of Gynura segetum, a traditional Chinese medicine, may be induce hepatic sinusoidal obstruction syndrome (HSOS). It has a high mortality rate based on the severity of the disease and the absence of therapeutic effectiveness. Therefore, the current study was designed to investigate the effects of bicyclol on HSOS induced by Gynura segetum and the potential molecular mechanisms. METHODS Gynura segetum (30 g/kg) was administered for 4 weeks in the model group, while the bicyclol pretreatment group received bicyclol (200 mg/kg) administration. Serum alanine aminotransferase (ALT), aspartate aminotransferase (AST), cholesterol (CHO), triglyceride (TG), and liver histological assays were detected to assess HSOS. The gene expressions of cytochrome P450 (CYP450) isozymes were quantified by real-time PCR. Moreover, hepatocellular apoptosis was detected using the terminal deoxynucleotidyl transferase dUTP nick-end labeling (TUNEL) assay, then apoptosis and autophagy-related markers were determined using Western blot. RESULTS As a result, bicyclol pretreatment is notably protected against Gynura segetum-induced HSOS, as observed by reducing serum ALT levels, inhibiting the reduction in CHO and TG levels, and alleviating the histopathological changes. Bicyclol pretreatment inhibited the changes in mRNA levels of CYP450 isozymes (including the increase in CYP2a5 and decrease in CYP2b10, 2c29, 2c37, 3a11, and 7b1). In addition, the upregulation of Bcl-2 and the downregulation of LC3-II/LC3-I proteins expression in HSOS were inhibited with bicyclol pretreatment. CONCLUSION Bicyclol exerted a protective effect against HSOS induced by Gynura segetum, which could be attributed to the regulated expressions of CYP450 isozymes and alleviated the downregulation of autophagy.
Collapse
Affiliation(s)
- Jianzuo Yao
- Department of Hepatobiliary and Pancreatic SurgeryLi Huili Hospital Affiliated to Ningbo UniversityNingboChina
| | - Jingyi Wu
- Faculty of PharmacyZhejiang Pharmaceutical UniversityNingboChina
| | - Shu Jia
- Faculty of PharmacyZhejiang Pharmaceutical UniversityNingboChina
| | - Jingping Shao
- Faculty of PharmacyZhejiang Pharmaceutical UniversityNingboChina
| | - Xie Zhang
- Department of PharmacyThe affiliated hospital of Ningbo university, LiHuiLi HospitalNingboChina
| | - Zeping Xu
- Department of PharmacyThe affiliated hospital of Ningbo university, LiHuiLi HospitalNingboChina
| | - Hui Zhang
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical UniversityWenzhou Medical UniversityWenzhouChina
| | - Hong Li
- Department of Hepatobiliary and Pancreatic SurgeryLi Huili Hospital Affiliated to Ningbo UniversityNingboChina
| | - Xiaomin Yao
- Faculty of PharmacyZhejiang Pharmaceutical UniversityNingboChina
| |
Collapse
|
8
|
Cheng D, Zinker BA, Luo Y, Shipkova P, De Oliveira CH, Krishna G, Brown EA, Boehm SL, Tirucherai GS, Gu H, Ma Z, Chu CH, Onorato JM, Kopcho LM, Ammar R, Smith J, Devasthale P, Lawrence RM, Stryker SA, Dierks EA, Azzara AV, Carayannopoulos L, Charles ED, Lentz KA, Gordon DA. MGAT2 inhibitor decreases liver fibrosis and inflammation in murine NASH models and reduces body weight in human adults with obesity. Cell Metab 2022; 34:1732-1748.e5. [PMID: 36323235 DOI: 10.1016/j.cmet.2022.10.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 06/14/2022] [Accepted: 10/12/2022] [Indexed: 11/07/2022]
Abstract
Monoacylglycerol acyltransferase 2 (MGAT2) is an important enzyme highly expressed in the human small intestine and liver for the regulation of triglyceride absorption and homeostasis. We report that treatment with BMS-963272, a potent and selective MGAT2 inhibitor, decreased inflammation and fibrosis in CDAHFD and STAM, two murine nonalcoholic steatohepatitis (NASH) models. In high-fat-diet-treated cynomolgus monkeys, in contrast to a selective diacylglycerol acyltransferase 1 (DGAT1) inhibitor, BMS-963272 did not cause diarrhea. In a Phase 1 multiple-dose trial of healthy human adults with obesity (NCT04116632), BMS-963272 was safe and well tolerated with no treatment discontinuations due to adverse events. Consistent with the findings in rodent models, BMS-963272 elevated plasma long-chain dicarboxylic acid, indicating robust pharmacodynamic biomarker modulation; increased gut hormones GLP-1 and PYY; and decreased body weight in human subjects. These data suggest MGAT2 inhibition is a promising therapeutic opportunity for NASH, a disease with high unmet medical needs.
Collapse
Affiliation(s)
- Dong Cheng
- Departments of Discovery Biology Cardiovascular and Fibrosis, Bristol Myers Squibb, Princeton, NJ 08543, USA.
| | - Bradley A Zinker
- Departments of Discovery Biology Cardiovascular and Fibrosis, Bristol Myers Squibb, Princeton, NJ 08543, USA
| | - Yi Luo
- Translational Medicine, Bristol Myers Squibb, Lawrenceville, NJ 08543, USA
| | - Petia Shipkova
- Pharmaceutical Candidate Optimization, Bristol Myers Squibb, Princeton, NJ 08543, USA
| | | | - Gopal Krishna
- ICF Early Clinical Development, Bristol Myers Squibb, Summit, NJ 07901, USA
| | - Elizabeth A Brown
- Translational Bioinformatics, Bristol Myers Squibb, Princeton, NJ 08543, USA
| | - Stephanie L Boehm
- Departments of Discovery Biology Cardiovascular and Fibrosis, Bristol Myers Squibb, Princeton, NJ 08543, USA
| | | | - Huidong Gu
- Translational Medicine, Bristol Myers Squibb, Lawrenceville, NJ 08543, USA
| | - Zhengping Ma
- Departments of Discovery Biology Cardiovascular and Fibrosis, Bristol Myers Squibb, Princeton, NJ 08543, USA
| | - Ching-Hsuen Chu
- Departments of Discovery Biology Cardiovascular and Fibrosis, Bristol Myers Squibb, Princeton, NJ 08543, USA
| | - Joelle M Onorato
- Pharmaceutical Candidate Optimization, Bristol Myers Squibb, Princeton, NJ 08543, USA
| | - Lisa M Kopcho
- Leads Discovery and Optimization, Bristol Myers Squibb, Princeton, NJ 08543, USA
| | - Ron Ammar
- Translational Bioinformatics, Bristol Myers Squibb, Princeton, NJ 08543, USA
| | - Julia Smith
- Departments of Discovery Biology Cardiovascular and Fibrosis, Bristol Myers Squibb, Princeton, NJ 08543, USA
| | - Pratik Devasthale
- Small Molecule Drug Discovery, Bristol Myers Squibb, Princeton, NJ 08543, USA
| | - R Michael Lawrence
- Small Molecule Drug Discovery, Bristol Myers Squibb, Princeton, NJ 08543, USA
| | - Steven A Stryker
- Pharmaceutical Candidate Optimization, Bristol Myers Squibb, Princeton, NJ 08543, USA
| | - Elizabeth A Dierks
- Pharmaceutical Candidate Optimization, Bristol Myers Squibb, Princeton, NJ 08543, USA
| | - Anthony V Azzara
- Departments of Discovery Biology Cardiovascular and Fibrosis, Bristol Myers Squibb, Princeton, NJ 08543, USA
| | | | - Edgar D Charles
- Global Drug Development, Bristol Myers Squibb, Lawrenceville, NJ 08543, USA
| | - Kimberley A Lentz
- Pharmaceutical Candidate Optimization, Bristol Myers Squibb, Princeton, NJ 08543, USA
| | - David A Gordon
- Departments of Discovery Biology Cardiovascular and Fibrosis, Bristol Myers Squibb, Princeton, NJ 08543, USA
| |
Collapse
|
9
|
Kawamura T, Ichikawa M, Hatogai J, Koyama Y, Tachibana M, Kuwahara M, Negishi K, Matsumoto M, Miyazaki M, Ochiai W. Mouse Cyp2c expression and zonation structure in the liver begins in the early neonatal stage. Biopharm Drug Dispos 2022; 43:130-139. [PMID: 35748067 DOI: 10.1002/bdd.2324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 05/22/2022] [Accepted: 06/03/2022] [Indexed: 11/08/2022]
Abstract
In the adult liver, drug-metabolizing enzymes such as cytochrome P450 (CYP) efficiently metabolize drugs by forming an expression pattern called "Zonation" structure around central veins. However, most previous studies on CYPs have focused on the expression levels of CYP mRNA and proteins in the whole liver. In this study, we analyzed not only the expression levels of Cyp2c family mRNAs and proteins in mice during fetal liver development, but also the relationship with their localization. In the whole fetal liver, Cyp2c mRNA and protein were hardly expressed. On the other hand, zonation analysis results showed that only some cells around the central vein of the fetal liver expressed Cyp2c. In addition, the protein expression level of Cyp2c in the whole liver during the neonatal period starts from postnatal day (P) 7 in both males and females, while the zonation is weakly formed from P5. This study suggested that fetal liver cannot metabolize Cyp2c substrate drugs transferred from mother to fetus due to low expression of Cyp2c and unformed zonation. The expression level of Cyp2c protein in neonates was lower than that in adult liver, and the zonation structure was not clear, suggesting that drug metabolism was not sufficient. Furthermore, this study revealed that the expression level of Cyp2c does not correlate with the formation of zonation structures, because Cyp2c expression is found in hepatocytes near the central vein even in the fetal and neonatal stages, when Cyp2c protein expression is hardly detectable in the whole liver. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Taisuke Kawamura
- Department of Pharmacokinetics, School of Pharmacy and Pharmaceutical Sciences, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo, 142-8501, Japan
| | - Mako Ichikawa
- Department of Pharmacokinetics, School of Pharmacy and Pharmaceutical Sciences, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo, 142-8501, Japan
| | - Jo Hatogai
- Department of Pharmacokinetics, School of Pharmacy and Pharmaceutical Sciences, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo, 142-8501, Japan
| | - Yuya Koyama
- Department of Pharmacokinetics, School of Pharmacy and Pharmaceutical Sciences, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo, 142-8501, Japan
| | - Misa Tachibana
- Department of Pharmacokinetics, School of Pharmacy and Pharmaceutical Sciences, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo, 142-8501, Japan
| | - Misaki Kuwahara
- Department of Pharmacokinetics, School of Pharmacy and Pharmaceutical Sciences, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo, 142-8501, Japan
| | - Keita Negishi
- Department of Pharmacokinetics, School of Pharmacy and Pharmaceutical Sciences, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo, 142-8501, Japan
| | - Miyu Matsumoto
- Department of Pharmacokinetics, School of Pharmacy and Pharmaceutical Sciences, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo, 142-8501, Japan
| | - Masafumi Miyazaki
- Department of Pharmacokinetics, School of Pharmacy and Pharmaceutical Sciences, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo, 142-8501, Japan
| | - Wataru Ochiai
- Department of Pharmacokinetics, School of Pharmacy and Pharmaceutical Sciences, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo, 142-8501, Japan
| |
Collapse
|
10
|
Gerges SH, El-Kadi AOS. Sex differences in eicosanoid formation and metabolism: A possible mediator of sex discrepancies in cardiovascular diseases. Pharmacol Ther 2021; 234:108046. [PMID: 34808133 DOI: 10.1016/j.pharmthera.2021.108046] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 11/07/2021] [Accepted: 11/16/2021] [Indexed: 12/14/2022]
Abstract
Arachidonic acid is metabolized by cyclooxygenase, lipoxygenase, and cytochrome P450 enzymes to produce prostaglandins, leukotrienes, epoxyeicosatrienoic acids (EETs), and hydroxyeicosatetraenoic acids (HETEs), along with other eicosanoids. Eicosanoids have important physiological and pathological roles in the body, including the cardiovascular system. Evidence from several experimental and clinical studies indicates differences in eicosanoid levels, as well as in the activity or expression levels of their synthesizing and metabolizing enzymes between males and females. In addition, there is a clear state of gender specificity in cardiovascular diseases (CVD), which tend to be more common in men compared to women, and their risk increases significantly in postmenopausal women compared to younger women. This could be largely attributed to sex hormones, as androgens exert detrimental effects on the heart and blood vessels, whereas estrogen exhibits cardioprotective effects. Many of androgen and estrogen effects on the cardiovascular system are mediated by eicosanoids. For example, androgens increase the levels of cardiotoxic eicosanoids like 20-HETE, while estrogens increase the levels of cardioprotective EETs. Thus, sex differences in eicosanoid levels in the cardiovascular system could be an important underlying mechanism for the different effects of sex hormones and the differences in CVD between males and females. Understanding the role of eicosanoids in these differences can help improve the management of CVD.
Collapse
Affiliation(s)
- Samar H Gerges
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Ayman O S El-Kadi
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada.
| |
Collapse
|
11
|
Gethings LA, Gray N, Plumb RS, Wilson ID. Proteomic consequences of the deletion of cytochrome P450 (CYP450) reductase in mice. J Chromatogr B Analyt Technol Biomed Life Sci 2021; 1179:122803. [PMID: 34218094 DOI: 10.1016/j.jchromb.2021.122803] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 04/19/2021] [Accepted: 05/23/2021] [Indexed: 11/16/2022]
Abstract
Microsomal cytochrome P450 (CYP450) reductase enzymes play a major role in drug and xenobiotic metabolism. Mice which are deficient in hepatic CYP450 reductase serve as excellent models in understanding CYP450 drug metabolism and alterations in the underlying biology and function of these enzymes. A reversed-phase nano-bore UPLC-MS-based proteomic analysis, using an untargeted data independent approach (DIA), has been utilized for liver tissue extracts to evaluate differences between the proteomes of C57Bl6 wild type (WT) and hepatic P450 reductase mice (HRN™). Statistically curated, differentially expressed protein groups highlighted a variety of molecular and biological functions, including binding and catalytic related activities. Thus, elevations were seen for a number of CYP450 enzymes (Cyp2a5; Cyp2b10; Cyp2b19; Cyp2d26; Cyp2a5, Cyp2e1) in the liver extracts of HRN animals. In addition, the major urinary protein 2 (Mup2) was found to be present only in the livers of the HRN group, whilst enoyl-CoA hydratase domain-containing protein 2 (Echdc2) was similarly unique to the the WT livers. Pathway enrichment analysis of the WT liver data indicated perturbations of lipid and energy related pathways, which included bile acid biosynthesis, fatty acid omega oxidation and tricarboxylic acid (TCA) cycle as examples.
Collapse
Affiliation(s)
- Lee A Gethings
- Waters Corporation, Wilmslow, UK; Manchester Institute of Biotechnology, Division of Infection, Immunity and Respiratory Medicine, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK.
| | - Nicola Gray
- Australian National Phenome Centre, Health Futures Institute, Murdoch University, Perth, WA 6150, Australia; Centre for Computational and Systems Medicine, Health Futures Institute, Murdoch University, Perth, WA 6150, Australia; Division of Computational and Systems Medicine, Dept. of Metabolism, Digestion and Reproduction, Imperial College, London SW7 2AZ, UK
| | | | - Ian D Wilson
- Division of Computational and Systems Medicine, Dept. of Metabolism, Digestion and Reproduction, Imperial College, London SW7 2AZ, UK.
| |
Collapse
|
12
|
Gautam M, Thapa G. Cytochrome P450-mediated estrogen catabolism therapeutic avenues in epilepsy. Acta Neurol Belg 2021; 121:603-612. [PMID: 32743748 DOI: 10.1007/s13760-020-01454-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Accepted: 07/23/2020] [Indexed: 01/11/2023]
Abstract
Epilepsy is a neuropsychiatric disorder, which does not have any identifiable cause. However, experimental and clinical results have asserted that the sex hormone estrogen level and endocrine system function influence the seizure and epileptic episodes. There are available drugs to control epilepsy, which passes through the metabolism process. Cytochrome P-450 family 1 (CYP1A1) is a heme-containing mono-oxygenase that are induced several folds in most of the tissues and cells contributing to their differential expression, which regulates various metabolic processes upon administration of therapeutics. CYP1A1 gene family has been found to metabolize estrogen, a female sex hormone, which plays a central role in maintaining the health of brain altering the level of estrogen active neuropsychiatric disorder like epilepsy. Hence, in this article, we endeavor to provide an opinion of estrogen, its effects on epilepsy and catamenial epilepsy, their metabolism by CYP1A1 and new way forward to differential diagnosis and clinical management of epilepsy in future.
Collapse
Affiliation(s)
- Megha Gautam
- Department of Biological Science, Faculty of Science and Engineering, Health Research Institute, University of Limerick, Limerick, V94 T9PX, Ireland
| | - Ganesh Thapa
- Department of Biological Science, Faculty of Science and Engineering, Health Research Institute, University of Limerick, Limerick, V94 T9PX, Ireland.
- Biohazards and Biosafety, Estates and Facilities, Trinity College of Dublin, The University of Dublin, College Green, Dublin 2, D02 PN40, Ireland.
| |
Collapse
|
13
|
Sakuta H, Lin CH, Yamada M, Kita Y, Tokuoka SM, Shimizu T, Noda M. Nax-positive glial cells in the organum vasculosum laminae terminalis produce epoxyeicosatrienoic acids to induce water intake in response to increases in [Na+] in body fluids. Neurosci Res 2020; 154:45-51. [DOI: 10.1016/j.neures.2019.05.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 04/24/2019] [Accepted: 05/27/2019] [Indexed: 01/06/2023]
|
14
|
Arachidonic Acid Metabolism and Kidney Inflammation. Int J Mol Sci 2019; 20:ijms20153683. [PMID: 31357612 PMCID: PMC6695795 DOI: 10.3390/ijms20153683] [Citation(s) in RCA: 211] [Impact Index Per Article: 35.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 07/19/2019] [Accepted: 07/20/2019] [Indexed: 12/17/2022] Open
Abstract
As a major component of cell membrane lipids, Arachidonic acid (AA), being a major component of the cell membrane lipid content, is mainly metabolized by three kinds of enzymes: cyclooxygenase (COX), lipoxygenase (LOX), and cytochrome P450 (CYP450) enzymes. Based on these three metabolic pathways, AA could be converted into various metabolites that trigger different inflammatory responses. In the kidney, prostaglandins (PG), thromboxane (Tx), leukotrienes (LTs) and hydroxyeicosatetraenoic acids (HETEs) are the major metabolites generated from AA. An increased level of prostaglandins (PGs), TxA2 and leukotriene B4 (LTB4) results in inflammatory damage to the kidney. Moreover, the LTB4-leukotriene B4 receptor 1 (BLT1) axis participates in the acute kidney injury via mediating the recruitment of renal neutrophils. In addition, AA can regulate renal ion transport through 19-hydroxystilbenetetraenoic acid (19-HETE) and 20-HETE, both of which are produced by cytochrome P450 monooxygenase. Epoxyeicosatrienoic acids (EETs) generated by the CYP450 enzyme also plays a paramount role in the kidney damage during the inflammation process. For example, 14 and 15-EET mitigated ischemia/reperfusion-caused renal tubular epithelial cell damage. Many drug candidates that target the AA metabolism pathways are being developed to treat kidney inflammation. These observations support an extraordinary interest in a wide range of studies on drug interventions aiming to control AA metabolism and kidney inflammation.
Collapse
|
15
|
Subterminal hydroxyeicosatetraenoic acids: Crucial lipid mediators in normal physiology and disease states. Chem Biol Interact 2018; 299:140-150. [PMID: 30543782 DOI: 10.1016/j.cbi.2018.12.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 11/26/2018] [Accepted: 12/07/2018] [Indexed: 02/08/2023]
Abstract
Cytochrome P450 (P450) enzymes are superfamily of monooxygenases that hold the utmost diversity of substrate structures and catalytic reaction forms amongst all other enzymes. P450 enzymes metabolize arachidonic acid (AA) to a wide array of biologically active lipid mediators. P450-mediated AA metabolites have a significant role in normal physiological and pathophysiological conditions, hence they could be promising therapeutic targets in different disease states. P450 monooxygenases mediate the (ω-n)-hydroxylation reactions, which involve the introduction of a hydroxyl group to the carbon skeleton of AA, forming subterminal hydroxyeicosatetraenoic acids (HETEs). In the current review, we specified different P450 isozymes implicated in the formation of subterminal HETEs in varied tissues. In addition, we focused on the role of subterminal HETEs namely 19-HETE, 16-HETE, 17-HETE and 18-HETE in different organs, importantly the kidneys, heart, liver and brain. Furthermore, we highlighted their role in hypertension, acute coronary syndrome, diabetic retinopathy, non-alcoholic fatty liver disease, ischemic stroke as well as inflammatory diseases. Since each member of subterminal HETEs exist as R and S enantiomer, we addressed the issue of stereoselectivity related to the formation and differential effects of these enantiomers. In conclusion, elucidation of different roles of subterminal HETEs in normal and disease states leads to identification of novel therapeutic targets and development of new therapeutic modalities in different disease states.
Collapse
|
16
|
Damiri B, Baldwin WS. Cyp2b-Knockdown Mice Poorly Metabolize Corn Oil and Are Age-Dependent Obese. Lipids 2018; 53:871-884. [PMID: 30421529 DOI: 10.1002/lipd.12095] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 09/23/2018] [Accepted: 09/24/2018] [Indexed: 01/04/2023]
Abstract
We previously made a RNAi-based cytochrome P450 2b (Cyp2b)-knockdown (Cyp2b-KD) mouse to determine the in vivo role of the Cyp2b subfamily in xenobiotic detoxification. Further studies reported here indicate a role for Cyp2b in unsaturated fatty-acid (UFA) metabolism and in turn obesity. Mice were treated intraperitoneally (i.p.) with 100 μL corn oil as a carrier or the potent Cyp2b-inducer 3,3',5,5'-Tetrachloro-1,4-bis(pyridyloxy)benzene (TCPOBOP (TC)) dissolved in corn oil. Surprisingly, female Cyp2b-KD mice but not male mice showed increased liver lipid accumulation. Male Cyp2b-KD mice had higher serum triacylglycerols, cholesterol, very low-density lipoprotein (VLDL), low-density lipoprotein (LDL), and high-density lipoprotein (HDL) than wildtype (WT) mice; females had higher cholesterol, LDL, and HDL. Thus, Cyp2b-KD mice are unable to clear a high bolus dose of corn oil, potentially because the Cyp2b-KD mice were unable to metabolize the UFA in the corn oil. Therefore, WT and Cyp2b-KD mice were housed for 35 weeks and necropsies performed to test whether Cyp2b-KD mice develop age onset obesity. Cyp2b-KD mice exhibited a significant increase in body weight caused by an increase in white adipose tissue deposition relative to WT mice. Serum cholesterol, triacylglycerol, LDL, and VLDL were significantly greater in 35-week-old Cyp2b-KD males compared to WT males; only serum triacylglycerol and LDL were higher in females. In conclusion, changes in Cyp2b expression led to perturbation in lipid metabolism and depuration in Cyp2b-KD mice. This suggests that Cyp2b is more than a detoxification enzyme, but also involved in the metabolism of UFA, as Cyp2b-KD mice have increased the body weight, fat deposition, and serum lipids.
Collapse
Affiliation(s)
- Basma Damiri
- Medicine and Health Sciences Faculty, Drugs and Toxicology Division, An-Najah National University, Omar Ibn Al-Khattab St., PO Box 7, Nablus, West Bank, Palestinian Territories
| | - William S Baldwin
- Biological Sciences, Clemson University, 132 Long Hall St., Clemson, SC 29634, USA.,Environmental Toxicology Program, 132 Long Hall St., Clemson University, Clemson, SC 29634, USA
| |
Collapse
|
17
|
Maayah ZH, Abdelhamid G, Elshenawy OH, El-Sherbeni AA, Althurwi HN, McGinn E, Dawood D, Alammari AH, El-Kadi AOS. The Role of Soluble Epoxide Hydrolase Enzyme on Daunorubicin-Mediated Cardiotoxicity. Cardiovasc Toxicol 2017; 18:268-283. [DOI: 10.1007/s12012-017-9437-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
18
|
Jamieson KL, Endo T, Darwesh AM, Samokhvalov V, Seubert JM. Cytochrome P450-derived eicosanoids and heart function. Pharmacol Ther 2017; 179:47-83. [PMID: 28551025 DOI: 10.1016/j.pharmthera.2017.05.005] [Citation(s) in RCA: 95] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
19
|
Mule NK, Orjuela Leon AC, Falck JR, Arand M, Marowsky A. 11,12 -Epoxyeicosatrienoic acid (11,12 EET) reduces excitability and excitatory transmission in the hippocampus. Neuropharmacology 2017; 123:310-321. [DOI: 10.1016/j.neuropharm.2017.05.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Revised: 04/25/2017] [Accepted: 05/13/2017] [Indexed: 12/19/2022]
|
20
|
Graves JP, Gruzdev A, Bradbury JA, DeGraff LM, Edin ML, Zeldin DC. Characterization of the Tissue Distribution of the Mouse Cyp2c Subfamily by Quantitative PCR Analysis. Drug Metab Dispos 2017; 45:807-816. [PMID: 28450579 PMCID: PMC5478903 DOI: 10.1124/dmd.117.075697] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 04/25/2017] [Indexed: 01/08/2023] Open
Abstract
The CYP2C subfamily of the cytochrome P450 gene superfamily encodes heme-thiolate proteins that have a myriad of biologic functions. CYP2C proteins detoxify xenobiotics and metabolize endogenous lipids such as arachidonic acid to bioactive eicosanoids. We report new methods and results for the quantitative polymerase reaction (qPCR) analysis for the 15 members of the mouse Cyp2c subfamily (Cyp2c29, Cyp2c37, Cyp2c38, Cyp2c39, Cyp2c40, Cyp2c44, Cyp2c50, Cyp2c54, Cyp2c55, Cyp2c65, Cyp2c66, Cyp2c67, Cyp2c68, Cyp2c69, and Cyp2c70). Commercially available TaqMan primer/probe assays were compared with developed SYBR Green primer sets for specificity toward the mouse Cyp2c cDNAs and analysis of their tissue distribution. TaqMan primer/probe assays for 10 of the mouse Cyp2c isoforms were shown to be specific for their intended mouse Cyp2c cDNA; however, there were no TaqMan primer/probe assays specific for the mouse Cyp2c29, Cyp2c40, Cyp2c67, Cyp2c68, or Cyp2c69 transcripts. Each of the SYBR Green primer sets was specific for its intended mouse Cyp2c cDNA. The two qPCR methods confirmed similar patterns of Cyp2c tissue expression: Cyp2c37, Cyp2c38, Cyp2c39, Cyp2c44, Cyp2c50, Cyp2c54, and Cyp2c70 were most highly expressed in liver; Cyp2c55 was highly expressed in large intestine; Cyp2c65 was highly expressed in stomach, duodenum, and large intestine; and Cyp2c66 was highly expressed in both duodenum and jejunum. For isoforms without specific TaqMan primer/probe assays, the SYBR Green primer sets detected high level expression of Cyp2c29, Cyp2c40, Cyp2c67, Cyp2c68, and Cyp2c69 in the liver. Lower expression levels of the mouse Cyp2cs were also detected in other tissues.
Collapse
Affiliation(s)
- Joan P Graves
- Immunity, Inflammation, and Disease Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina
| | - Artiom Gruzdev
- Immunity, Inflammation, and Disease Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina
| | - J Alyce Bradbury
- Immunity, Inflammation, and Disease Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina
| | - Laura M DeGraff
- Immunity, Inflammation, and Disease Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina
| | - Matthew L Edin
- Immunity, Inflammation, and Disease Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina
| | - Darryl C Zeldin
- Immunity, Inflammation, and Disease Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina
| |
Collapse
|
21
|
Chen X, DuBois DC, Almon RR, Jusko WJ. Characterization and Interspecies Scaling of rhTNF- α Pharmacokinetics with Minimal Physiologically Based Pharmacokinetic Models. Drug Metab Dispos 2017; 45:798-806. [PMID: 28411279 PMCID: PMC5469399 DOI: 10.1124/dmd.116.074799] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Accepted: 04/12/2017] [Indexed: 01/26/2023] Open
Abstract
Tumor necrosis factor-α (TNF-α) is a soluble cytokine and target of specific monoclonal antibodies (mAbs) and other biologic agents used in the treatment of inflammatory diseases. These biologics exert their pharmacological effects through binding and neutralizing TNF-α, and thus they prevent TNF-α from interacting with its cell surface receptors. The magnitude of the pharmacological effects is governed not only by the pharmacokinetics (PK) of mAbs, but also by the kinetic fate of TNF-α We have examined the pharmacokinetics of recombinant human TNF-α (rhTNF-α) in rats at low doses and quantitatively characterized its pharmacokinetic features with a minimal physiologically based pharmacokinetic model. Our experimental and literature-digitalized PK data of rhTNF-α in rats across a wide range of doses were applied to global model fitting. rhTNF-α exhibits permeability rate-limited tissue distribution and its elimination is comprised of a saturable clearance pathway mediated by tumor necrosis factor receptor binding and disposition and renal filtration. The resulting model integrated with classic allometry was further used for interspecies PK scaling and resulted in model predictions that agreed well with experimental measurements in monkeys. In addition, a semimechanistic model was proposed and applied to explore the absorption kinetics of rhTNF-α following s.c. and other routes of administration. The model suggests substantial presystemic degradation of rhTNF-α for s.c. and i.m. routes and considerable lymph uptake contributing to the overall systemic absorption through the stomach wall and gastrointestinal wall routes of dosing. This report provides comprehensive modeling and key insights into the complexities of absorption and disposition of a major cytokine.
Collapse
Affiliation(s)
- Xi Chen
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences (X.C., D.C.D, R.R.A, W.J.J.), and Department of Biological Sciences (D.C.D, R.R.A), State University of New York at Buffalo, Buffalo, New York
| | - Debra C DuBois
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences (X.C., D.C.D, R.R.A, W.J.J.), and Department of Biological Sciences (D.C.D, R.R.A), State University of New York at Buffalo, Buffalo, New York
| | - Richard R Almon
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences (X.C., D.C.D, R.R.A, W.J.J.), and Department of Biological Sciences (D.C.D, R.R.A), State University of New York at Buffalo, Buffalo, New York
| | - William J Jusko
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences (X.C., D.C.D, R.R.A, W.J.J.), and Department of Biological Sciences (D.C.D, R.R.A), State University of New York at Buffalo, Buffalo, New York
| |
Collapse
|
22
|
Burkina V, Rasmussen MK, Pilipenko N, Zamaratskaia G. Comparison of xenobiotic-metabolising human, porcine, rodent, and piscine cytochrome P450. Toxicology 2017; 375:10-27. [DOI: 10.1016/j.tox.2016.11.014] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Revised: 11/16/2016] [Accepted: 11/20/2016] [Indexed: 12/25/2022]
|
23
|
Kieffer DA, Piccolo BD, Marco ML, Kim EB, Goodson ML, Keenan MJ, Dunn TN, Knudsen KEB, Martin RJ, Adams SH. Mice Fed a High-Fat Diet Supplemented with Resistant Starch Display Marked Shifts in the Liver Metabolome Concurrent with Altered Gut Bacteria. J Nutr 2016; 146:2476-2490. [PMID: 27807042 PMCID: PMC5118768 DOI: 10.3945/jn.116.238931] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Revised: 09/09/2016] [Accepted: 09/27/2016] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND High-amylose-maize resistant starch type 2 (HAMRS2) is a fermentable dietary fiber known to alter the gut milieu, including the gut microbiota, which may explain the reported effects of resistant starch to ameliorate obesity-associated metabolic dysfunction. OBJECTIVE Our working hypothesis was that HAMRS2-induced microbiome changes alter gut-derived signals (i.e., xenometabolites) reaching the liver via the portal circulation, in turn altering liver metabolism by regulating gene expression and other pathways. METHODS We used a multi-omics systems biology approach to characterize HAMRS2-driven shifts to the cecal microbiome, liver metabolome, and transcriptome, identifying correlates between microbial changes and liver metabolites under obesogenic conditions that, to our knowledge, have not previously been recognized. Five-week-old male C57BL/6J mice were fed an energy-dense 45% lard-based-fat diet for 10 wk supplemented with either 20% HAMRS2 by weight (n = 14) or rapidly digestible starch (control diet; n = 15). RESULTS Despite no differences in food intake, body weight, glucose tolerance, fasting plasma insulin, or liver triglycerides, the HAMRS2 mice showed a 15-58% reduction in all measured liver amino acids, except for Gln, compared with control mice. These metabolites were equivalent in the plasma of HAMRS2 mice compared with controls, and transcripts encoding key amino acid transporters were not different in the small intestine or liver, suggesting that HAMRS2 effects were not simply due to lower hepatocyte exposure to systemic amino acids. Instead, alterations in gut microbial metabolism could have affected host nitrogen and amino acid homeostasis: HAMRS2 mice showed a 62% increase (P < 0.0001) in 48-h fecal output and a 41% increase (P < 0.0001) in fecal nitrogen compared with control mice. Beyond amino acid metabolism, liver transcriptomics revealed pathways related to lipid and xenobiotic metabolism; and pathways related to cell proliferation, differentiation, and growth were affected by HAMRS2 feeding. CONCLUSION Together, these differences indicate that HAMRS2 dramatically alters hepatic metabolism and gene expression concurrent with shifts in specific gut bacteria in C57BL/6J mice.
Collapse
Affiliation(s)
- Dorothy A Kieffer
- Graduate Group in Nutritional Biology and
- Department of Nutrition
- Obesity and Metabolism Research Unit, USDA-Agricultural Research Service Western Human Nutrition Research Center, Davis, CA
| | - Brian D Piccolo
- Arkansas Children's Nutrition Center and
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR
| | | | - Eun Bae Kim
- Food Science and Technology Department, and
- Department of Animal Life Science, College of Animal Life Sciences, Kangwon National University, Chuncheon, Gangwon-do, Republic of Korea
| | | | | | - Tamara N Dunn
- Graduate Group in Nutritional Biology and
- Department of Nutrition
- Obesity and Metabolism Research Unit, USDA-Agricultural Research Service Western Human Nutrition Research Center, Davis, CA
| | | | - Roy J Martin
- Graduate Group in Nutritional Biology and
- Department of Nutrition
- Obesity and Metabolism Research Unit, USDA-Agricultural Research Service Western Human Nutrition Research Center, Davis, CA
| | - Sean H Adams
- Graduate Group in Nutritional Biology and
- Department of Nutrition
- Arkansas Children's Nutrition Center and
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR
| |
Collapse
|
24
|
Zhang B, Lai G, Liu X, Zhao Y. Alteration of epoxyeicosatrienoic acids in the liver and kidney of cytochrome P450 4F2 transgenic mice. Mol Med Rep 2016; 14:5739-5745. [PMID: 27878278 DOI: 10.3892/mmr.2016.5962] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Accepted: 09/26/2016] [Indexed: 11/05/2022] Open
Abstract
Arachidonic acid (AA) can be metabolized into 20-hydroxyeicosatetraenoic acid (20-HETE) by ω-hydroxylases, and epoxyeicosatrienoic acids (EETs) by epoxygenases. The effects of EETs in cardiovascular physiology are vasodilatory, anti-inflammatory and anti‑apoptotic, which are opposite to the function to 20‑HETE. However, EETs are not stable in vivo, and are rapidly degraded to the biologically less active metabolites, dihydroxyeicosatrienoic acids, via soluble epoxide hydrolase (sEH). Western blotting, reverse transcription‑quantitative polymerase chain reaction and liquid chromatography tandem mass spectrometry were performed in order to determine target RNA and protein expression levels. In the present study, it was demonstrated that the disturbed renal 20‑HETE/EET ratio in the hypertensive cytochrome P450 4F2 transgenic mice was caused by the activation of sEH and the repression of epoxygenase activity. In addition, 20‑HETE showed an opposite regulatory effect on the endogenous epoxygenases in the liver and kidney. Given that 20‑HETE and EETs have opposite effects in multiple disease, the regulation of their formation and degradation may yield therapeutic benefits.
Collapse
Affiliation(s)
- Bijun Zhang
- Department of Clinical Genetics, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Guangrui Lai
- Department of Clinical Genetics, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Xiaoliang Liu
- Department of Clinical Genetics, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Yanyan Zhao
- Department of Clinical Genetics, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| |
Collapse
|
25
|
Ward WO, Delker DA, Hester SD, Thai SF, Wolf DC, Allen JW, Nesnow S. Transcriptional Profiles in Liver from Mice Treated with Hepatotumorigenic and Nonhepatotumorigenic Triazole Conazole Fungicides: Propiconazole, Triadimefon, and Myclobutanil. Toxicol Pathol 2016; 34:863-78. [PMID: 17178688 DOI: 10.1080/01926230601047832] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Conazoles are environmental and pharmaceutical fungicides. The present study relates the toxicological effects of conazoles to alterations of gene and pathway transcription and identifies potential modes of tumorigenic action. In a companion study employing conventional toxicological bioassays ( Allen et al., 2006 ), male CD-1 mice were fed triadimefon, propiconazole, or myclobutanil in a continuous oral-dose regimen for 4, 30, or 90 days. These conazoles were found to induce hepatomegaly, to induce high levels of hepatic pentoxyresorufin-O-dealkylase activity, to increase hepatic cell proliferation, to decrease serum cholesterol, and to increase serum triglycerides. Differentially expressed genes and pathways were identified using Affymetrix GeneChips. Gene-pathway associations were obtained from the Kyoto Encyclopedia of Genes and Genomes, Biocarta, and MetaCore compendia. The pathway profiles of each conazole were different at each time point. In general, the number of altered metabolism, signaling, and growth pathways increased with time and dose and were greatest with propiconazole. All conazoles had effects on nuclear receptors as evidenced by increased expression and enzymatic activities of a series of related cytochrome P450s (CYP). A subset of altered genes and pathways distinguished the three conazoles from each other. Triadimefon and propiconazole both altered apoptosis, cell cycle, adherens junction, calcium signaling, and EGFR signaling pathways. Triadimefon produced greater changes in cholesterol biosynthesis and retinoic acid metabolism genes and in selected signaling pathways. Propiconazole had greater effects on genes responding to oxidative stress and on the IGF/P13K/AKt/PTEN/mTor and Wnt-β-catenin pathways. In conclusion, while triadimefon, propiconazole, and myclobutanil had similar effects in mouse liver on hepatomegaly, histology, CYP activities, cell proliferation, and serum cholesterol, genomic analyses revealed major differences in their gene expression profiles.
Collapse
Affiliation(s)
- William O Ward
- Environmental Carcinogenesis Division, National Health and Environmental Effects Research Laboratory, Office of Research and Development, US Environmental Protection Agency, Research Triangle Park, North Carolina 27711, USA.
| | | | | | | | | | | | | |
Collapse
|
26
|
Roche C, Guerrot D, Harouki N, Duflot T, Besnier M, Rémy-Jouet I, Renet S, Dumesnil A, Lejeune A, Morisseau C, Richard V, Bellien J. Impact of soluble epoxide hydrolase inhibition on early kidney damage in hyperglycemic overweight mice. Prostaglandins Other Lipid Mediat 2015; 120:148-54. [PMID: 26022136 DOI: 10.1016/j.prostaglandins.2015.04.011] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Revised: 04/02/2015] [Accepted: 04/28/2015] [Indexed: 12/21/2022]
Abstract
This study addressed the hypothesis that inhibition of the EETs degrading enzyme soluble epoxide hydrolase affords renal protection in the early stage of diabetic nephropathy. The renal effects of the sEH inhibitor t-AUCB (10mg/l in drinking water) were compared to those of the sulfonylurea glibenclamide (80mg/l), both administered for 8 weeks in FVB mice subjected to a high-fat diet (HFD, 60% fat) for 16 weeks. Mice on control chow diet (10% fat) and non-treated HFD mice served as controls. Compared with non-treated HFD mice, HFD mice treated with t-AUCB had a decreased EET degradation, as shown by their higher plasma EETs-to-DHETs ratio, and an increased EET production, as shown by the increase in EETs+DHETs levels, which was associated with induction of CYP450 epoxygenase expression. Both agents similarly reduced fasting glycemia but only t-AUCB prevented the increase in the urinary albumine-to-creatinine ratio in HFD mice. Histopathological analysis showed that t-AUCB reduced renal inflammation, which was associated with an increased mRNA expression of the NFκB inhibitor Iκ≡ and related decrease in MCP-1, COX2 and VCAM-1 expressions. Finally, there was a marginally significant increase in reactive oxygen species production in HFD mice, together with an enhanced NOX2 expression. Both agents did not modify these parameters but t-AUCB increased the expression of the antioxidant enzyme superoxide dismutase 1. These results demonstrate that, independently from its glucose-lowering effect, sEH inhibition prevents microalbuminuria and renal inflammation in overweight hyperglycemic mice, suggesting that this pharmacological strategy could be useful in the management of diabetic nephropathy.
Collapse
Affiliation(s)
- Clothilde Roche
- Institut National de la Santé et de la Recherche Médicale (INSERM) U1096, Rouen, France; University of Rouen, Institute for Research and Innovation in Biomedicine (IRIB), Rouen, France
| | - Dominique Guerrot
- Institut National de la Santé et de la Recherche Médicale (INSERM) U1096, Rouen, France; University of Rouen, Institute for Research and Innovation in Biomedicine (IRIB), Rouen, France; Department of Nephrology, Rouen University Hospital, Rouen, France
| | - Najah Harouki
- Institut National de la Santé et de la Recherche Médicale (INSERM) U1096, Rouen, France; University of Rouen, Institute for Research and Innovation in Biomedicine (IRIB), Rouen, France
| | - Thomas Duflot
- Institut National de la Santé et de la Recherche Médicale (INSERM) U1096, Rouen, France; University of Rouen, Institute for Research and Innovation in Biomedicine (IRIB), Rouen, France; Department of Pharmacology, Rouen University Hospital, Rouen, France
| | - Marie Besnier
- Institut National de la Santé et de la Recherche Médicale (INSERM) U1096, Rouen, France; University of Rouen, Institute for Research and Innovation in Biomedicine (IRIB), Rouen, France
| | - Isabelle Rémy-Jouet
- Institut National de la Santé et de la Recherche Médicale (INSERM) U1096, Rouen, France; University of Rouen, Institute for Research and Innovation in Biomedicine (IRIB), Rouen, France
| | - Sylvanie Renet
- Institut National de la Santé et de la Recherche Médicale (INSERM) U1096, Rouen, France; University of Rouen, Institute for Research and Innovation in Biomedicine (IRIB), Rouen, France
| | - Anaïs Dumesnil
- Institut National de la Santé et de la Recherche Médicale (INSERM) U1096, Rouen, France; University of Rouen, Institute for Research and Innovation in Biomedicine (IRIB), Rouen, France
| | - Annie Lejeune
- Institut National de la Santé et de la Recherche Médicale (INSERM) U1096, Rouen, France; University of Rouen, Institute for Research and Innovation in Biomedicine (IRIB), Rouen, France
| | - Christophe Morisseau
- Department of Entomology and Nematology, and UCD Comprehensive Cancer Center, University of California, Davis, CA, United States
| | - Vincent Richard
- Institut National de la Santé et de la Recherche Médicale (INSERM) U1096, Rouen, France; University of Rouen, Institute for Research and Innovation in Biomedicine (IRIB), Rouen, France; Department of Pharmacology, Rouen University Hospital, Rouen, France
| | - Jeremy Bellien
- Institut National de la Santé et de la Recherche Médicale (INSERM) U1096, Rouen, France; University of Rouen, Institute for Research and Innovation in Biomedicine (IRIB), Rouen, France; Department of Pharmacology, Rouen University Hospital, Rouen, France.
| |
Collapse
|
27
|
Booth Depaz IM, Toselli F, Wilce PA, Gillam EMJ. Differential expression of cytochrome P450 enzymes from the CYP2C subfamily in the human brain. Drug Metab Dispos 2015; 43:353-7. [PMID: 25504503 PMCID: PMC6067382 DOI: 10.1124/dmd.114.061242] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Accepted: 12/11/2014] [Indexed: 11/22/2022] Open
Abstract
Cytochrome P450 enzymes from the CYP2C subfamily play a prominent role in the metabolic clearance of many drugs. CYP2C enzymes have also been implicated in the metabolism of arachidonic acid to vasoactive epoxyeicosatrienoic acids. CYP2C8, CYP2C9, and CYP2C19 are expressed in the adult liver at significant levels; however, the expression of CYP2C enzymes in extrahepatic tissues such as the brain is less well characterized. Form-specific antibodies to CYP2C9 and CYP2C19 were prepared by affinity purification of antibodies raised to unique peptides. CYP2C9 and CYP2C19 were located in microsomal fractions of all five human brain regions examined, namely the frontal cortex, hippocampus, basal ganglia, amygdala, and cerebellum. Both CYP2C9 and CYP2C19 were detected predominantly within the neuronal soma but with expression extending down axons and dendrites in certain regions. Finally, a comparison of cortex samples from alcoholics and age-matched controls suggested that CYP2C9 expression was increased in alcoholics.
Collapse
Affiliation(s)
- Iris M Booth Depaz
- Schools of Biomedical Sciences (I.M.B.D.) and Chemistry and Molecular Biosciences (F.T., P.A.W., E.M.J.G.), University of Queensland, Brisbane, Australia
| | - Francesca Toselli
- Schools of Biomedical Sciences (I.M.B.D.) and Chemistry and Molecular Biosciences (F.T., P.A.W., E.M.J.G.), University of Queensland, Brisbane, Australia
| | - Peter A Wilce
- Schools of Biomedical Sciences (I.M.B.D.) and Chemistry and Molecular Biosciences (F.T., P.A.W., E.M.J.G.), University of Queensland, Brisbane, Australia
| | - Elizabeth M J Gillam
- Schools of Biomedical Sciences (I.M.B.D.) and Chemistry and Molecular Biosciences (F.T., P.A.W., E.M.J.G.), University of Queensland, Brisbane, Australia
| |
Collapse
|
28
|
Yuan D, Zou Q, Yu T, Song C, Huang S, Chen S, Ren Z, Xu A. Ancestral genetic complexity of arachidonic acid metabolism in Metazoa. BIOCHIMICA ET BIOPHYSICA ACTA 2014; 1841:1272-1284. [PMID: 24801744 DOI: 10.1016/j.bbalip.2014.04.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2013] [Revised: 04/23/2014] [Accepted: 04/28/2014] [Indexed: 01/09/2023]
Abstract
Eicosanoids play an important role in inducing complex and crucial physiological processes in animals. Eicosanoid biosynthesis in animals is widely reported; however, eicosanoid production in invertebrate tissue is remarkably different to vertebrates and in certain respects remains elusive. We, for the first time, compared the orthologs involved in arachidonic acid (AA) metabolism in 14 species of invertebrates and 3 species of vertebrates. Based on parsimony, a complex AA-metabolic system may have existed in the common ancestor of the Metazoa, and then expanded and diversified through invertebrate lineages. A primary vertebrate-like AA-metabolic system via cyclooxygenase (COX), lipoxygenase (LOX), and cytochrome P450 (CYP) pathways was further identified in the basal chordate, amphioxus. The expression profiling of AA-metabolic enzymes and lipidomic analysis of eicosanoid production in the tissues of amphioxus supported our supposition. Thus, we proposed that the ancestral complexity of AA-metabolic network diversified with the different lineages of invertebrates, adapting with the diversity of body plans and ecological opportunity, and arriving at the vertebrate-like pattern in the basal chordate, amphioxus.
Collapse
Affiliation(s)
- Dongjuan Yuan
- Department of Biochemistry, College of Life Sciences, State Key Laboratory of Biocontrol, National Engineering Research Center of South China Sea Marine Biotechnology, Sun Yat-sen University, Guangzhou, 510275, People's Republic of China
| | - Qiuqiong Zou
- Department of Biochemistry, College of Life Sciences, State Key Laboratory of Biocontrol, National Engineering Research Center of South China Sea Marine Biotechnology, Sun Yat-sen University, Guangzhou, 510275, People's Republic of China
| | - Ting Yu
- Department of Biochemistry, College of Life Sciences, State Key Laboratory of Biocontrol, National Engineering Research Center of South China Sea Marine Biotechnology, Sun Yat-sen University, Guangzhou, 510275, People's Republic of China
| | - Cuikai Song
- Department of Biochemistry, College of Life Sciences, State Key Laboratory of Biocontrol, National Engineering Research Center of South China Sea Marine Biotechnology, Sun Yat-sen University, Guangzhou, 510275, People's Republic of China
| | - Shengfeng Huang
- Department of Biochemistry, College of Life Sciences, State Key Laboratory of Biocontrol, National Engineering Research Center of South China Sea Marine Biotechnology, Sun Yat-sen University, Guangzhou, 510275, People's Republic of China
| | - Shangwu Chen
- Department of Biochemistry, College of Life Sciences, State Key Laboratory of Biocontrol, National Engineering Research Center of South China Sea Marine Biotechnology, Sun Yat-sen University, Guangzhou, 510275, People's Republic of China
| | - Zhenghua Ren
- Department of Biochemistry, College of Life Sciences, State Key Laboratory of Biocontrol, National Engineering Research Center of South China Sea Marine Biotechnology, Sun Yat-sen University, Guangzhou, 510275, People's Republic of China
| | - Anlong Xu
- Department of Biochemistry, College of Life Sciences, State Key Laboratory of Biocontrol, National Engineering Research Center of South China Sea Marine Biotechnology, Sun Yat-sen University, Guangzhou, 510275, People's Republic of China; Beijing University of Chinese Medicine, 11 Bei San Huang Dong Road, Chao-yang District, Beijing, 100029, People's Republic of China.
| |
Collapse
|
29
|
Anwar-Mohamed A, Elshenawy OH, El-Sherbeni AA, Abdelrady M, El-Kadi AO. Acute arsenic treatment alters arachidonic acid and its associated metabolite levels in the brain of C57Bl/6 mice. Can J Physiol Pharmacol 2014; 92:693-702. [DOI: 10.1139/cjpp-2014-0136] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The toxic effects of arsenic on the whole brain, as well as the discrete regions, has been previously reported for mice. We investigated the effects of acute arsenite (As(III)) on brain levels of arachidonic acid (AA) and its associated metabolites generated through cytochrome P450 (CYP), cyclooxygenase (COX), and lipoxygenase (LOX) pathways. Our results demonstrated that acute As(III) treatment (12.5 mg·(kg body mass)−1) decreases cytosolic phospholipase A2 (cPLA2) with a subsequent decrease in its catalytic activity and brain AA levels. In addition, As(III) differentially altered CYP epoxygenases and CYP ω-hydroxylases, but it did not affect brain Ephx2 mRNA or sEH catalytic activity levels. As(III)-mediated effects on Cyps caused an increase in brain 5,6-epoxyeicosatrienoic acid (5,6-EET) and 16/17-hydroxyeicosatetreinoic acid (16/17-HETE) levels, and a decrease in 18- and 20-HETE levels. Furthermore, As(III) increased cyclooxygenase-2 (COX-2) mRNA while decreasing prostaglandins F2α (PGF2α) and PGJ2. As(III) also increased brain 5-lipoxygenase (5-LOX) and 15-LOX mRNA, but decreased 12-LOX mRNA. These changes in LOX mRNA were associated with a decrease in 8/12-HETE levels only. In conclusion, this is the first demonstration that As(III) decreases AA levels coinciding with alterations to EET, HETE, and PG levels, which affects brain development and neurochemistry.
Collapse
Affiliation(s)
- Anwar Anwar-Mohamed
- Faculty of Pharmacy and Pharmaceutical Sciences, 2142J Katz Group-Rexall Centre for Pharmacy and Health Research, University of Alberta, Edmonton, AB T6G 2E1, Canada
| | - Osama H. Elshenawy
- Faculty of Pharmacy and Pharmaceutical Sciences, 2142J Katz Group-Rexall Centre for Pharmacy and Health Research, University of Alberta, Edmonton, AB T6G 2E1, Canada
| | - Ahmed A. El-Sherbeni
- Faculty of Pharmacy and Pharmaceutical Sciences, 2142J Katz Group-Rexall Centre for Pharmacy and Health Research, University of Alberta, Edmonton, AB T6G 2E1, Canada
| | - Mohamed Abdelrady
- Faculty of Pharmacy and Pharmaceutical Sciences, 2142J Katz Group-Rexall Centre for Pharmacy and Health Research, University of Alberta, Edmonton, AB T6G 2E1, Canada
| | - Ayman O.S. El-Kadi
- Faculty of Pharmacy and Pharmaceutical Sciences, 2142J Katz Group-Rexall Centre for Pharmacy and Health Research, University of Alberta, Edmonton, AB T6G 2E1, Canada
| |
Collapse
|
30
|
Chang Q, Berdyshev E, Cao D, Bogaard JD, White JJ, Chen S, Shah R, Mu W, Grantner R, Bettis S, Grassi MA. Cytochrome P450 2C epoxygenases mediate photochemical stress-induced death of photoreceptors. J Biol Chem 2014; 289:8337-52. [PMID: 24519941 DOI: 10.1074/jbc.m113.507152] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Degenerative loss of photoreceptors occurs in inherited and age-related retinal degenerative diseases. A chemical screen facilitates development of new testing routes for neuroprotection and mechanistic investigation. Herein, we conducted a mouse-derived photoreceptor (661W cell)-based high throughput screen of the Food and Drug Administration-approved Prestwick drug library to identify putative cytoprotective compounds against light-induced, synthetic visual chromophore-precipitated cell death. Different classes of hit compounds were identified, some of which target known genes or pathways pathologically associated with retinitis pigmentosa. Sulfaphenazole (SFZ), a selective inhibitor of human cytochrome P450 (CYP) 2C9 isozyme, was identified as a novel and leading cytoprotective compound. Expression of CYP2C proteins was induced by light. Gene-targeted knockdown of CYP2C55, the homologous gene of CYP2C9, demonstrated viability rescue to light-induced cell death, whereas stable expression of functional CYP2C9-GFP fusion protein further exacerbated light-induced cell death. Mechanistically, SFZ inhibited light-induced necrosis and mitochondrial stress-initiated apoptosis. Light elicited calcium influx, which was mitigated by SFZ. Light provoked the release of arachidonic acid from membrane phospholipids and production of non-epoxyeicosatrienoic acid metabolites. Administration of SFZ further stimulated the production of non-epoxyeicosatrienoic acid metabolites, suggesting a metabolic shift of arachidonic acid under inhibition of the CYP2C pathway. Together, our findings indicate that CYP2C genes play a direct causative role in photochemical stress-induced death of photoreceptors and suggest that the CYP monooxygenase system is a risk factor for retinal photodamage, especially in individuals with Stargardt disease and age-related macular degeneration that deposit condensation products of retinoids.
Collapse
Affiliation(s)
- Qing Chang
- From the Departments of Ophthalmology and Visual Sciences and
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Alsaad AMS, Zordoky BNM, Tse MMY, El-Kadi AOS. Role of cytochrome P450-mediated arachidonic acid metabolites in the pathogenesis of cardiac hypertrophy. Drug Metab Rev 2013; 45:173-95. [PMID: 23600686 DOI: 10.3109/03602532.2012.754460] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
A plethora of studies have demonstrated the expression of cytochrome P450 (CYP) and soluble epoxide hydrolase (sEH) enzymes in the heart and other cardiovascular tissues. In addition, the expression of these enzymes is altered during several cardiovascular diseases (CVDs), including cardiac hypertrophy (CH). The alteration in CYP and sEH expression results in derailed CYP-mediated arachidonic acid (AA) metabolism. In animal models of CH, it has been reported that there is an increase in 20-hydroxyeicosatetraenoic acid (20-HETE) and a decrease in epoxyeicosatrienoic acids (EETs). Further, inhibiting 20-HETE production by CYP ω-hydroxylase inhibitors and increasing EET stability by sEH inhibitors have been proven to protect against CH as well as other CVDs. Therefore, CYP-mediated AA metabolites 20-HETE and EETs are potential key players in the pathogenesis of CH. Some studies have investigated the molecular mechanisms by which these metabolites mediate their effects on cardiomyocytes and vasculature leading to pathological CH. Activation of several intracellular signaling cascades, such as nuclear factor of activated T cells, nuclear factor kappa B, mitogen-activated protein kinases, Rho-kinases, Gp130/signal transducer and activator of transcription, extracellular matrix degradation, apoptotic cascades, inflammatory cytokines, and oxidative stress, has been linked to the pathogenesis of CH. In this review, we discuss how 20-HETE and EETs can affect these signaling pathways to result in, or protect from, CH, respectively. However, further understanding of these metabolites and their effects on intracellular cascades will be required to assess their potential translation to therapeutic approaches for the prevention and/or treatment of CH and heart failure.
Collapse
Affiliation(s)
- Abdulaziz M S Alsaad
- Faculty of Pharmacy and Pharmaceutical Sciences, 2142J Katz Group-Rexall Center for Pharmacy and Health Research, University of Alberta, Edmonton, Alberta, Canada T6G 2E1
| | | | | | | |
Collapse
|
32
|
Graves JP, Edin ML, Bradbury JA, Gruzdev A, Cheng J, Lih FB, Masinde TA, Qu W, Clayton NP, Morrison JP, Tomer KB, Zeldin DC. Characterization of four new mouse cytochrome P450 enzymes of the CYP2J subfamily. Drug Metab Dispos 2013; 41:763-73. [PMID: 23315644 PMCID: PMC3608456 DOI: 10.1124/dmd.112.049429] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2012] [Accepted: 01/11/2013] [Indexed: 01/08/2023] Open
Abstract
The cytochrome P450 superfamily encompasses a diverse group of enzymes that catalyze the oxidation of various substrates. The mouse CYP2J subfamily includes members that have wide tissue distribution and are active in the metabolism of arachidonic acid (AA), linoleic acid (LA), and other lipids and xenobiotics. The mouse Cyp2j locus contains seven genes and three pseudogenes located in a contiguous 0.62 megabase cluster on chromosome 4. We describe four new mouse CYP2J isoforms (designated CYP2J8, CYP2J11, CYP2J12, and CYP2J13). The four cDNAs contain open reading frames that encode polypeptides with 62-84% identity with the three previously identified mouse CYP2Js. All four new CYP2J proteins were expressed in Sf21 insect cells. Each recombinant protein metabolized AA and LA to epoxides and hydroxy derivatives. Specific antibodies, mRNA probes, and polymerase chain reaction primer sets were developed for each mouse CYP2J to examine their tissue distribution. CYP2J8 transcripts were found in the kidney, liver, and brain, and protein expression was confirmed in the kidney and brain (neuropil). CYP2J11 transcripts were most abundant in the kidney and heart, with protein detected primarily in the kidney (proximal convoluted tubules), liver, and heart (cardiomyocytes). CYP2J12 transcripts were prominently present in the brain, and CYP2J13 transcripts were detected in multiple tissues, with the highest expression in the kidney. CYP2J12 and CYP2J13 protein expression could not be determined because the antibodies developed were not immunospecific. We conclude that the four new CYP2J isoforms might be involved in the metabolism of AA and LA to bioactive lipids in mouse hepatic and extrahepatic tissues.
Collapse
Affiliation(s)
- Joan P Graves
- Laboratory of Respiratory Biology, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina 27709, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Murali G, Milne GL, Webb CD, Stewart AB, McMillan RP, Lyle BC, Hulver MW, Saraswathi V. Fish oil and indomethacin in combination potently reduce dyslipidemia and hepatic steatosis in LDLR(-/-) mice. J Lipid Res 2012; 53:2186-2197. [PMID: 22847176 PMCID: PMC3435551 DOI: 10.1194/jlr.m029843] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2012] [Revised: 07/24/2012] [Indexed: 01/12/2023] Open
Abstract
Fish oil (FO) is a potent anti-inflammatory and lipid-lowering agent. Because inflammation can modulate lipid metabolism and vice versa, we hypothesized that combining FO with cyclooxygenase inhibitors (COXIBs), well-known anti-inflammatory drugs, can enhance the anti-inflammatory and lipid-lowering effect of FO. LDLR(-/-) mice were fed a high-fat diet supplemented with 6% olive oil or FO for 12 wk in the presence or absence of indomethacin (Indo, 6 mg/l drinking water). FO reduced plasma total cholesterol by 30% but, in combination with Indo, exerted a greater decrease (44%). The reduction of liver cholesterol ester (CE) and triglycerides (TG) by FO (63% and 41%, respectively) was enhanced by Indo (80% in CE and 64% in TG). FO + Indo greatly increased the expression of genes modulating lipid metabolism and reduced the expression of inflammatory genes compared with control. The mRNA and/or protein expression of pregnane X receptor (PXR) and cytochrome P450 isoforms that alter inflammation and/or lipid metabolism are increased to a greater extent in mice that received FO + Indo. Moroever, the nuclear level of PXR is significantly increased in FO + Indo group. Combining FO with COXIBs may exert their beneficial effects on inflammation and lipid metabolism via PXR and cytochrome P450.
Collapse
Affiliation(s)
- Ganesan Murali
- Division of Diabetes, Endocrinology and Metabolism, University of Nebraska Medical Center and the VA Nebraska Western Iowa Health Care System, Omaha, NE
| | - Ginger L Milne
- Department of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, TN
| | - Corey D Webb
- Department of Molecular Physiology and Biophysics, Vanderbilt University Medical Center, Nashville, TN; and
| | - Ann B Stewart
- Department of Molecular Physiology and Biophysics, Vanderbilt University Medical Center, Nashville, TN; and
| | - Ryan P McMillan
- Department of Human Nutrition, Foods, and Exercise and The Virginia Tech Metabolic Phenotyping Core, Virginia Polytechnic Institute and State University, Blacksburg, VA
| | - Brandon C Lyle
- Department of Molecular Physiology and Biophysics, Vanderbilt University Medical Center, Nashville, TN; and
| | - Matthew W Hulver
- Department of Human Nutrition, Foods, and Exercise and The Virginia Tech Metabolic Phenotyping Core, Virginia Polytechnic Institute and State University, Blacksburg, VA
| | - Viswanathan Saraswathi
- Department of Molecular Physiology and Biophysics, Vanderbilt University Medical Center, Nashville, TN; and.
| |
Collapse
|
34
|
Boeglin WE, Brash AR. Cytochrome P450-type hydroxylation and epoxidation in a tyrosine-liganded hemoprotein, catalase-related allene oxide synthase. J Biol Chem 2012; 287:24139-47. [PMID: 22628547 DOI: 10.1074/jbc.m112.364216] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The ability of hemoproteins to catalyze epoxidation or hydroxylation reactions is usually associated with a cysteine as the proximal ligand to the heme, as in cytochrome P450 or nitric oxide synthase. Catalase-related allene oxide synthase (cAOS) from the coral Plexaura homomalla, like catalase itself, has tyrosine as the proximal heme ligand. Its natural reaction is to convert 8R-hydroperoxy-eicosatetraenoic acid (8R-HPETE) to an allene epoxide, a reaction activated by the ferric heme, forming product via the Fe(IV)-OH intermediate, Compound II. Here we oxidized cAOS to Compound I (Fe(V)=O) using the oxygen donor iodosylbenzene and investigated the catalytic competence of the enzyme. 8R-hydroxyeicosatetraenoic acid (8R-HETE), the hydroxy analog of the natural substrate, normally unreactive with cAOS, was thereby epoxidized stereospecifically on the 9,10 double bond to form 8R-hydroxy-9R,10R-trans-epoxy-eicosa-5Z,11Z,14Z-trienoic acid as the predominant product; the turnover was 1/s using 100 μm iodosylbenzene. The enantiomer, 8S-HETE, was epoxidized stereospecifically, although with less regiospecificity, and was hydroxylated on the 13- and 16-carbons. Arachidonic acid was converted to two major products, 8R-HETE and 8R,9S-eicosatrienoic acid (8R,9S-EET), plus other chiral monoepoxides and bis-allylic 10S-HETE. Linoleic acid was epoxidized, whereas stearic acid was not metabolized. We conclude that when cAOS is charged with an oxygen donor, it can act as a stereospecific monooxygenase. Our results indicate that in the tyrosine-liganded cAOS, a catalase-related hemoprotein in which a polyunsaturated fatty acid can enter the active site, the enzyme has the potential to mimic the activities of typical P450 epoxygenases and some capabilities of P450 hydroxylases.
Collapse
Affiliation(s)
- William E Boeglin
- Department of Pharmacology and the Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, Tennessee 37232, USA
| | | |
Collapse
|
35
|
Jacobson PA, Schladt D, Israni A, Oetting WS, Lin YC, Leduc R, Guan W, Lamba V, Matas AJ. Genetic and clinical determinants of early, acute calcineurin inhibitor-related nephrotoxicity: results from a kidney transplant consortium. Transplantation 2012; 93:624-31. [PMID: 22334041 DOI: 10.1097/tp.0b013e3182461288] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
BACKGROUND Calcineurin inhibitor (CNI)-related acute nephrotoxicity is a common complication of transplantation. Clinical factors and elevated CNI levels are associated with nephrotoxicity; however, they do not fully explain the risk. Genetic factors may also predispose individuals to nephrotoxicity. METHODS We enrolled 945 kidney recipients into a multicenter, prospective study. DNA was genotyped for 2724 single-nucleotide polymorphisms (SNPs) using a customized chip. Cox models, unadjusted and adjusted for clinical factors, examined the association between SNPs and time to early CNI-related acute nephrotoxicity in the first 6 months posttransplant. RESULTS Cyclosporine was associated with a 1.49 hazard (95% confidence interval, 1.04-2.14) of acute nephrotoxicity relative to tacrolimus. Acute nephrotoxicity occurred in 22.6% of cyclosporine and 19.8% of tacrolimus recipients. The median (interquartile range) daily dose and trough concentration at time of nephrotoxicity were 400 mg (400-500 mg) and 228 ng/mL (190-272 ng/mL) in the cyclosporine group, and 6 mg (4-8 mg) and 12.6 ng/mL (10.2-15.9 ng/mL) in the tacrolimus group, respectively. In single-SNP adjusted analysis, nine SNPs in the XPC, CYP2C9, PAX4, MTRR, and GAN genes were associated with cyclosporine nephrotoxicity. In a multi-SNP analysis, SNPs from the same genes remained significant after adjusting for the clinical factors, showing that the SNPs are jointly and independently predictive of cyclosporine nephrotoxicity. No SNPs were associated with tacrolimus nephrotoxicity. CONCLUSION We identified SNPs that were potentially associated with early, acute cyclosporine-related nephrotoxicity. Identifying risk SNPs before transplantation provides an opportunity for personalization of immunosuppression by identifying those who may benefit from CNI-avoidance or minimization, or assist in selecting CNI type. These SNPs require independent validation.
Collapse
Affiliation(s)
- Pamala A Jacobson
- Department of Experimental and Clinical Pharmacology, College of Pharmacy, University of Minnesota, Minneapolis, MN 55455, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
D'Ambrosio DN, Walewski JL, Clugston RD, Berk PD, Rippe RA, Blaner WS. Distinct populations of hepatic stellate cells in the mouse liver have different capacities for retinoid and lipid storage. PLoS One 2011; 6:e24993. [PMID: 21949825 PMCID: PMC3174979 DOI: 10.1371/journal.pone.0024993] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2011] [Accepted: 08/22/2011] [Indexed: 01/18/2023] Open
Abstract
Hepatic stellate cell (HSC) lipid droplets are specialized organelles for the storage of retinoid, accounting for 50–60% of all retinoid present in the body. When HSCs activate, retinyl ester levels progressively decrease and the lipid droplets are lost. The objective of this study was to determine if the HSC population in a healthy, uninjured liver demonstrates heterogeneity in its capacity for retinoid and lipid storage in lipid droplets. To this end, we utilized two methods of HSC isolation, which leverage distinct properties of these cells, including their vitamin A content and collagen expression. HSCs were isolated either from wild type (WT) mice in the C57BL/6 genetic background by flotation in a Nycodenz density gradient, followed by fluorescence activated cell sorting (FACS) based on vitamin A autofluorescence, or from collagen-green fluorescent protein (GFP) mice by FACS based on GFP expression from a GFP transgene driven by the collagen I promoter. We show that GFP-HSCs have: (i) increased expression of typical markers of HSC activation; (ii) decreased retinyl ester levels, accompanied by reduced expression of the enzyme needed for hepatic retinyl ester synthesis (LRAT); (iii) decreased triglyceride levels; (iv) increased expression of genes associated with lipid catabolism; and (v) an increase in expression of the retinoid-catabolizing cytochrome, CYP2S1. Conclusion: Our observations suggest that the HSC population in a healthy, uninjured liver is heterogeneous. One subset of the total HSC population, which expresses early markers of HSC activation, may be “primed” and ready for rapid response to acute liver injury.
Collapse
Affiliation(s)
- Diana N. D'Ambrosio
- Department of Medicine, College of Physicians and Surgeons, Columbia University, New York, New York, United States of America
- Institute of Human Nutrition, College of Physicians and Surgeons, Columbia University, New York, New York, United States of America
| | - José L. Walewski
- Department of Medicine, College of Physicians and Surgeons, Columbia University, New York, New York, United States of America
| | - Robin D. Clugston
- Department of Medicine, College of Physicians and Surgeons, Columbia University, New York, New York, United States of America
| | - Paul D. Berk
- Department of Medicine, College of Physicians and Surgeons, Columbia University, New York, New York, United States of America
| | - Richard A. Rippe
- Division of Gastroenterology and Hepatology, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - William S. Blaner
- Department of Medicine, College of Physicians and Surgeons, Columbia University, New York, New York, United States of America
- Institute of Human Nutrition, College of Physicians and Surgeons, Columbia University, New York, New York, United States of America
- * E-mail:
| |
Collapse
|
37
|
Amunom I, Dieter LJ, Tamasi V, Cai J, Conklin DJ, Srivastava S, Martin MV, Guengerich FP, Prough RA. Cytochromes P450 catalyze the reduction of α,β-unsaturated aldehydes. Chem Res Toxicol 2011; 24:1223-30. [PMID: 21766881 DOI: 10.1021/tx200080b] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The metabolism of α,β-unsaturated aldehydes, e.g., 4-hydroxynonenal, involves oxidation to carboxylic acids, reduction to alcohols, and glutathionylation to eventually form mercapturide conjugates. Recently, we demonstrated that P450s can oxidize aldehydes to carboxylic acids, a reaction previously thought to involve aldehyde dehydrogenase. When recombinant cytochrome P450 3A4 was incubated with 4-hydroxynonenal, O(2), and NADPH, several products were produced, including 1,4-dihydroxynonene (DHN), 4-hydroxy-2-nonenoic acid (HNA), and an unknown metabolite. Several P450s catalyzed the reduction reaction in the order (human) P450 2B6 ≅ P450 3A4 > P450 1A2 > P450 2J2 > (mouse) P450 2c29. Other P450s did not catalyze the reduction reaction (human P450 2E1 and rabbit P450 2B4). Metabolism by isolated rat hepatocytes showed that HNA formation was inhibited by cyanamide, while DHN formation was not affected. Troleandomycin increased HNA production 1.6-fold while inhibiting DHN formation, suggesting that P450 3A11 is a major enzyme involved in rat hepatic clearance of 4-HNE. A fluorescent assay was developed using 9-anthracenealdehyde to measure both reactions. Feeding mice a diet containing t-butylated hydroxyanisole increased the level of both activities with hepatic microsomal fractions but not proportionally. Miconazole (0.5 mM) was a potent inhibitor of these microsomal reduction reactions, while phenytoin and α-naphthoflavone (both at 0.5 mM) were partial inhibitors, suggesting the role of multiple P450 enzymes. The oxidative metabolism of these aldehydes was inhibited >90% in an Ar or CO atmosphere, while the reductive reactions were not greatly affected. These results suggest that P450s are significant catalysts of the reduction of α,β-unsaturated aldehydes in the liver.
Collapse
Affiliation(s)
- Immaculate Amunom
- Department of Biochemistry and Molecular Biology, The University of Louisville School of Medicine , Louisville, KY 40292, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Kim SK, Kim J, Ko E, Kim H, Hwang DS, Lee S, Baek Y, Min BI, Nam S, Bae H. Gene Expression Profile of the Hypothalamus in DNP-KLH Immunized Mice Following Electroacupuncture Stimulation. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2011; 2011:508689. [PMID: 21799680 PMCID: PMC3136536 DOI: 10.1093/ecam/nep222] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2009] [Accepted: 11/25/2009] [Indexed: 12/12/2022]
Abstract
Clinical evidence indicates that electroacupuncture (EA) is effective for allergic disorder. Recent animal studies have shown that EA treatment reduces levels of IgE and Th2 cytokines in BALB/c mice immunized with 2,4-dinitrophenylated keyhole limpet protein (DNP-KLH). The hypothalamus, a brain center of the neural-immune system, is known to be activated by EA stimulation. This study was performed to identify and characterize the differentially expressed genes in the hypothalamus of DNP-KLH immunized mice that were stimulated with EA or only restrained. To this aim, we conducted a microarray analysis to evaluate the global gene expression profiles, using the hypothalamic RNA samples taken from three groups of mice: (i) normal control group (no treatments); (ii) IMH group (DNP-KLH immunization + restraint); and (iii) IMEA group (immunization + EA stimulation). The microarray analysis revealed that total 39 genes were altered in their expression levels by EA treatment. Ten genes, including T-cell receptor alpha variable region family 13 subfamily 1 (Tcra-V13.1), heat shock protein 1B (Hspa1b) and 2′–5′ oligoadenylate synthetase 1F (Oas1f), were up-regulated in the IMEA group when compared with the IMH group. In contrast, 29 genes, including decay accelerating factor 2 (Daf2), NAD(P)H dehydrogenase, quinone 1 (Nqo1) and programmed cell death 1 ligand 2 (Pdcd1lg2) were down-regulated in the IMEA group as compared with the IMH group. These results suggest that EA treatment can modulate immune response in DNP-KLH immunized mice by regulating expression levels of genes that are associated with innate immune, cellular defense and/or other kinds of immune system in the hypothalamus.
Collapse
Affiliation(s)
- Sun Kwang Kim
- Department of Physiology, College of Oriental Medicine, Kyung Hee University, #1 Hoegi-dong, Dongdaemoon-gu, Seoul 130-701, Republic of Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Theken KN, Deng Y, Kannon MA, Miller TM, Poloyac SM, Lee CR. Activation of the acute inflammatory response alters cytochrome P450 expression and eicosanoid metabolism. Drug Metab Dispos 2011; 39:22-9. [PMID: 20947618 PMCID: PMC3014271 DOI: 10.1124/dmd.110.035287] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2010] [Accepted: 10/13/2010] [Indexed: 12/21/2022] Open
Abstract
Cytochrome P450 (P450)-mediated metabolism of arachidonic acid regulates inflammation in hepatic and extrahepatic tissue. CYP2C/CYP2J-derived epoxyeicosatrienoic and dihydroxyeicosatrienoic acids (EET+DHET) elicit anti-inflammatory effects, whereas CYP4A/CYP4F-derived 20-hydroxyeicosatetraenoic acid (20-HETE) is proinflammatory. Because the impact of inflammation on P450-mediated formation of endogenous eicosanoids is unclear, we evaluated P450 mRNA levels and P450 epoxygenase (EET+DHET) and ω-hydroxylase (20-HETE) metabolic activity in liver, kidney, lung, and heart in mice 3, 6, 24, and 48 h after intraperitoneal lipopolysaccharide (LPS) (1 mg/kg) or saline administration. Hepatic Cyp2c29, Cyp2c44, and Cyp2j5 mRNA levels and EET+DHET formation were significantly lower 24 and 48 h after LPS administration. Hepatic Cyp4a12a, Cyp4a12b, and Cyp4f13 mRNA levels and 20-HETE formation were also significantly lower at 24 h, but recovered to baseline at 48 h, resulting in a significantly higher 20-HETE/EET+DHET formation rate ratio compared with that for saline-treated mice. Renal P450 mRNA levels and P450-mediated eicosanoid metabolism were similarly suppressed 24 h after LPS treatment. Pulmonary EET+DHET formation was lower at all time points after LPS administration, whereas 20-HETE formation was suppressed in a time-dependent manner, with the lowest formation rate observed at 24 h. No differences in EET+DHET or 20-HETE formation were observed in heart. Collectively, these data demonstrate that acute activation of the innate immune response alters P450 expression and eicosanoid metabolism in mice in an isoform-, tissue-, and time-dependent manner. Further study is necessary to determine whether therapeutic restoration of the functional balance between the P450 epoxygenase and ω-hydroxylase pathways is an effective anti-inflammatory strategy.
Collapse
Affiliation(s)
- Katherine N Theken
- Division of Pharmacotherapy and Experimental Therapeutics, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina, USA
| | | | | | | | | | | |
Collapse
|
40
|
Ross AC, Cifelli CJ, Zolfaghari R, Li NQ. Multiple cytochrome P-450 genes are concomitantly regulated by vitamin A under steady-state conditions and by retinoic acid during hepatic first-pass metabolism. Physiol Genomics 2010; 43:57-67. [PMID: 21045116 DOI: 10.1152/physiolgenomics.00182.2010] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Vitamin A (retinol) is an essential precursor for the production of retinoic acid (RA), which in turn is a major regulator of gene expression, affecting cell differentiation throughout the body. Understanding how vitamin A nutritional status, as well as therapeutic retinoid treatment, regulates the expression of retinoid homeostatic genes is important for improvement of dietary recommendations and therapeutic strategies using retinoids. This study investigated genes central to processes of retinoid uptake and storage, release to plasma, and oxidation in the liver of rats under steady-state conditions after different exposures to dietary vitamin A (deficient, marginal, adequate, and supplemented) and acutely after administration of a therapeutic dose of all-trans-RA. Over a very wide range of dietary vitamin A, lecithin:retinol acyltransferase (LRAT) as well as multiple cytochrome P-450s (CYP26A1, CYP26B1, and CYP2C22) differed by diet and were highly correlated with one another and with vitamin A status assessed by liver retinol concentration (all correlations, P < 0.05). After acute treatment with RA, the same genes were rapidly and concomitantly induced, preceding retinoic acid receptor (RAR)β, a classical direct target of RA. CYP26A1 mRNA exhibited the greatest dynamic range (change of log 2(6) in 3 h). Moreover, CYP26A1 increased more rapidly in the liver of RA-primed rats than naive rats, evidenced by increased CYP26A1 gene expression and increased conversion of [(3)H]RA to polar metabolites. By in situ hybridization, CYP26A1 mRNA was strongly regulated within hepatocytes, closely resembling retinol-binding protein (RBP)4 in location. Overall, whether RA is produced endogenously from retinol or administered exogenously, changes in retinoid homeostatic gene expression simultaneously favor both retinol esterification and RA oxidation, with CYP26A1 exhibiting the greatest dynamic change.
Collapse
Affiliation(s)
- A Catharine Ross
- Department of Nutritional Sciences, Pennsylvania State University,University Park, Pennsylvania 16802, USA.
| | | | | | | |
Collapse
|
41
|
Konno Y, Kamino H, Moore R, Lih F, Tomer KB, Zeldin DC, Goldstein JA, Negishi M. The nuclear receptors constitutive active/androstane receptor and pregnane x receptor activate the Cyp2c55 gene in mouse liver. Drug Metab Dispos 2010; 38:1177-82. [PMID: 20371638 PMCID: PMC2908984 DOI: 10.1124/dmd.110.032334] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2010] [Accepted: 04/06/2010] [Indexed: 12/15/2022] Open
Abstract
Mouse CYP2C55 has been characterized as an enzyme that catalyzes synthesis of 19-hydroxyeicosatetraenoic acid (19-HETE), an arachidonic acid metabolite known to have important physiological functions such as regulation of renal vascular tone and ion transport. We have now found that CYP2C55 is induced by phenobarbital (PB) and pregnenolone 16alpha-carbonitrile (PCN) in both mouse kidney and liver. The nuclear xenobiotic receptors constitutive active/androstane receptor (CAR) and pregnane X receptor (PXR) regulate these drug inductions: CYP2C55 mRNA was increased 25-fold in PB-treated Car(+/+) but not in Car(-/-) mice and was induced in Pxr(+/+) but not Pxr(-/-) mice after PCN treatment. Cell-based promoter analysis and gel shift assays identified the DNA sequence (-1679)TGAACCCAGTTGAACT(-1664) as a DR4 motif that regulates CAR- and PXR-mediated transcription of the Cyp2c55 gene. Chronic PB treatment increased hepatic microsomal CYP2C55 protein and serum 19-HETE levels. These findings indicate that CAR and PXR may play a role in regulation of drug-induced synthesis of 19-HETE in the mouse.
Collapse
MESH Headings
- Animals
- Base Sequence
- Constitutive Androstane Receptor
- Cytochrome P-450 Enzyme System/biosynthesis
- Cytochrome P-450 Enzyme System/genetics
- Cytochrome P450 Family 2
- Gene Expression Regulation, Enzymologic/drug effects
- Hydroxyeicosatetraenoic Acids/blood
- Kidney/metabolism
- Mice
- Mice, Inbred Strains
- Mice, Knockout
- Microsomes, Liver/metabolism
- Phenobarbital/pharmacology
- Pregnane X Receptor
- Pregnenolone Carbonitrile/pharmacology
- Random Allocation
- Receptors, Cytoplasmic and Nuclear/agonists
- Receptors, Cytoplasmic and Nuclear/genetics
- Receptors, Cytoplasmic and Nuclear/metabolism
- Receptors, Steroid/agonists
- Receptors, Steroid/genetics
- Receptors, Steroid/metabolism
- Sequence Analysis, DNA
- Transcription Factors/genetics
- Transcriptional Activation/drug effects
Collapse
Affiliation(s)
- Yoshihiro Konno
- Pharmacogenetics Section, Laboratory of Reproductive and Developmental Toxicology, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina 27709, USA
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Sun D, Yang YM, Jiang H, Wu H, Ojaimi C, Kaley G, Huang A. Roles of CYP2C29 and RXR gamma in vascular EET synthesis of female mice. Am J Physiol Regul Integr Comp Physiol 2010; 298:R862-9. [PMID: 20130225 DOI: 10.1152/ajpregu.00575.2009] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We aimed to identify which cytochrome P-450 (CYP) family/subfamily, as well as related transcription factor(s), is responsible for the estrogen-dependent synthesis of epoxyeicosatrienoic acids (EETs) to initiate shear stress-induced vasodilation. Microarray analysis indicated a significant upregulation of CYP2C29 and retinoid X receptor gamma (RXRgamma) in isolated mesenteric arteries/arterioles of female endothelial nitric oxide synthase-knockout mice, a result that was validated by real-time RT-PCR. The cannulated vessels were then perfused with 2 and 10 dyn/cm(2) shear stress, followed by collection of the perfusate to determine EET concentrations and isoforms. Shear stress dose-dependently stimulated the release of EETs into the perfusate, associated with an EET-mediated vasodilation, in which predominantly 14,15-EET and 11,12-EET contributed to the responses ( approximately 87.4% of total EETs). Transfection of vessels with CYP2C29 siRNA eliminated the release of EETs into the perfusate, which was evidenced by an abolished vasodilation, and confirmed by RT-PCR and Western blot analyses. Knockdown of RXRgamma in these vessels significantly inhibited the production of EETs, parallel to a reduced vasodilation. RXRgamma siRNA not only silenced the vascular RXRgamma expression, but synchronously downregulated CYP2C29 expression, leading to a reduced EET synthesis. In conclusion, our data provide the first evidence for a specific signaling cascade, by which estrogen potentially activates the CYP2C29 gene in the absence of nitric oxide, to synthesize EETs in response to shear stress, via an RXRgamma-related regulatory mechanism.
Collapse
Affiliation(s)
- Dong Sun
- Department of Physiology, New York Medical College, Valhalla, NY 10595, USA
| | | | | | | | | | | | | |
Collapse
|
43
|
Iliff JJ, Jia J, Nelson J, Goyagi T, Klaus J, Alkayed NJ. Epoxyeicosanoid signaling in CNS function and disease. Prostaglandins Other Lipid Mediat 2009; 91:68-84. [PMID: 19545642 DOI: 10.1016/j.prostaglandins.2009.06.004] [Citation(s) in RCA: 111] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2009] [Revised: 06/09/2009] [Accepted: 06/10/2009] [Indexed: 10/20/2022]
Abstract
Epoxyeicosatrienoic acids (EETs) are arachidonic acid metabolites of cytochrome P450 epoxygenase enzymes recognized as key players in vascular function and disease, primarily attributed to their potent vasodilator, anti-inflammatory and pro-angiogenic effects. Although EETs' actions in the central nervous system (CNS) appear to parallel those in peripheral tissue, accumulating evidence suggests that epoxyeicosanoid signaling plays different roles in neural tissue compared to peripheral tissue; roles that reflect distinct CNS functions, cellular makeup and intercellular relationships. This is exhibited at many levels including the expression of EETs-synthetic and -metabolic enzymes in central neurons and glial cells, EETs' role in neuro-glio-vascular coupling during cortical functional activation, the capacity for interaction between epoxyeicosanoid and neuroactive endocannabinoid signaling pathways, and the regulation of neurohormone and neuropeptide release by endogenous EETs. The ability of several CNS cell types to produce and respond to EETs suggests that epoxyeicosanoid signaling is a key integrator of cell-cell communication in the CNS, coordinating cellular responses across different cell types. Under pathophysiological conditions, such as cerebral ischemia, EETs protect neurons, astroglia and vascular endothelium, thus preserving the integrity of cellular networks unique to and essential for proper CNS function. Recognition of EETs' intimate involvement in CNS function in addition to their multi-cellular protective profile has inspired the development of therapeutic strategies against CNS diseases such as cerebral ischemia, tumors, and neural pain and inflammation that are based on targeting the cellular actions of EETs or their biosynthetic and metabolizing enzymes. Based upon the emerging importance of epoxyeicosanoids in cellular function and disease unique to neural systems, we propose that the actions of "neuroactive EETs" are best considered separately, and not in aggregate with all other peripheral EETs functions.
Collapse
Affiliation(s)
- Jeffrey J Iliff
- Department of Anesthesiology and Perioperative Medicine, Oregon Health & Science University, Portland, OR, USA
| | | | | | | | | | | |
Collapse
|
44
|
Nayeem MA, Ponnoth DS, Boegehold MA, Zeldin DC, Falck JR, Mustafa SJ. High-salt diet enhances mouse aortic relaxation through adenosine A2A receptor via CYP epoxygenases. Am J Physiol Regul Integr Comp Physiol 2008; 296:R567-74. [PMID: 19109366 DOI: 10.1152/ajpregu.90798.2008] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We hypothesize that A(2A) adenosine receptors (A(2A) AR) promote aortic relaxation in mice through cytochrome P450 (CYP)-epoxygenases and help to avoid salt sensitivity. Aortas from male mice maintained on a high-salt (HS; 7% NaCl) or normal-salt (NS; 0.45% NaCl) diet for 4-5 wks were used. Concentration-response curves (10(-11)-10(-5) M) for 5'-N-ethylcarboxamidoadenosine (NECA; a nonselective adenosine analog) and CGS 21680 (A(2A) AR agonist) were obtained with different antagonists including ZM 241385 (A(2A) AR antagonist; 10(-6) M), SCH 58261 (A(2A) AR antagonist; 10(-6) M), N(omega)-nitro-l-arginine methyl ester (l-NAME; endothelial nitric oxide synthase inhibitor; 10(-4) M) and inhibitors including methylsulfonyl-propargyloxyphenylhexanamide (MS-PPOH; CYP epoxygenases inhibitor; 10(-5)M), 14,15-epoxyeicosa-5(z)-enoic acid (14,15-EEZE; EET antagonist; 10(-5)M), dibromo-dodecenyl-methylsulfimide (DDMS; CYP4A inhibitor; 10(-5)M), and HET0016 (20-HETE inhibitor; 10(-5)M). At 10(-7) M of NECA, significant relaxation in HS (+22.58 +/- 3.12%) was observed compared with contraction in NS (-10.62 +/- 6.27%, P < 0.05). ZM 241385 changed the NECA response to contraction (P < 0.05) in HS. At 10(-7) M of CGS 21680, significant relaxation in HS (+32.04 +/- 3.08%) was observed compared with NS (+10.45 +/- 1.34%, P < 0.05). SCH 58261, l-NAME, MS-PPOH, and 14,15-EEZE changed the CGS 21680-induced relaxation to contraction (P < 0.05) in HS. Interestingly, DDMS and HET0016 changed CGS 21680 response to relaxation (P < 0.05) in NS; however, there was no significant difference found between DDMS, HET0016-treated HS and NS vs. nontreated HS group (P > 0.05). CYP2C29 protein was 55% and 74% upregulated in HS vs. NS (P < 0.05) mice aorta and kidney, respectively. CYP4A protein was 30.30% and 35.70% upregulated in NS vs. HS (P < 0.05) mice aorta and kidneys, respectively. A(1) AR was downregulated, whereas A(2A) AR was upregulated in HS compared with NS. These data suggest that HS may activate CYP2C29 via A(2A) AR, causing relaxation, whereas NS may contribute to the upregulation of CYP4A causing contraction.
Collapse
Affiliation(s)
- Mohammed A Nayeem
- Dept. of Physiology and Pharmacology, Center for Interdisciplinary Research in Cardiovascular Sciences, Health Science Center-North, 1 Morgantown, WV 26506, USA.
| | | | | | | | | | | |
Collapse
|
45
|
Löfgren S, Ekman S, Terelius Y, Fransson-Steen R. Few alterations in clinical pathology and histopathology observed in a CYP2C18&19 humanized mice model. Acta Vet Scand 2008; 50:47. [PMID: 19038035 PMCID: PMC2607276 DOI: 10.1186/1751-0147-50-47] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2008] [Accepted: 11/27/2008] [Indexed: 11/17/2022] Open
Abstract
Background This study was performed to characterize a gene-addition transgenic mouse containing a BAC (bacterial artificial chromosome) clone spanning the human CYP2C18&19 genes (tg-CYP2C18&19). Methods Hemizygous tg-CYP2C18&19, 11 week old mice were compared with wild-type littermates to obtain information regarding clinical status, clinical pathology and anatomical pathology. After one week of clinical observations, blood samples were collected, organs weighed, and tissues collected for histopathology. Results In males, the tissue weights were lower in tg-CYP2C18&19 than in wild-type mice for brain (p ≤ 0.05), adrenal glands (p ≤ 0.05) and brown fat deposits (p ≤ 0.001) while the heart weight was higher (p ≤ 0.001). In female tg-CYP2C18&19, the tissue weights were lower for brain (p ≤ 0.001) and spleen (p ≤ 0.001) compared to wild-type females. Male tg-CYP2C18&19 had increased blood glucose levels (p ≤ 0.01) while females had decreased blood triglyceride levels (p ≤ 0.01). Conclusion Despite the observed alterations, tg-CYP2C18&19 did not show any macroscopic or microscopic pathology at the examined age. Hence, these hemizygous transgenic mice were considered to be viable and healthy animals.
Collapse
|
46
|
Mu Y, Klamerus MM, Miller TM, Rohan LC, Graham SH, Poloyac SM. Intravenous formulation of N-hydroxy-N'-(4-n-butyl-2-methylphenyl)formamidine (HET0016) for inhibition of rat brain 20-hydroxyeicosatetraenoic acid formation. Drug Metab Dispos 2008; 36:2324-30. [PMID: 18725506 PMCID: PMC2659781 DOI: 10.1124/dmd.108.023150] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
N-hydroxy-N'-(4-n-butyl-2-methylphenyl)formamidine (HET0016) is a potent inhibitor of 20-hydroxyeicosatetraenoic acid (20-HETE) formation by specific cytochrome P450 isoforms. Previous studies have demonstrated that administration of HET0016 inhibits brain formation of 20-HETE and reduces brain damage in a rat model of thromboembolic stroke. Delineation of the dose, concentration, and neuroprotective effect relationship of HET0016 has been hampered by the relative insolubility of HET0016 in aqueous solutions and the lack of information concerning the mechanism and duration of HET0016 inhibition of brain 20-HETE formation. Therefore, it was the purpose of this study to develop a water-soluble formulation of HET0016 suitable for intravenous (i.v.) administration and to determine the time course and mechanism of brain 20-HETE inhibition after in vivo dosing. In this study we report that HET0016 is a noncompetitive inhibitor of rat brain 20-HETE formation, which demonstrates a tissue concentration range for brain inhibition. In addition, we demonstrate that complexation of HET0016 with hydroxypropyl-beta-cyclodextrin results in increased aqueous solubility of HET0016 from 34.2 +/- 31.2 to 452.7 +/- 63.3 microg/ml. Administration of the complex as a single HET0016 i.v. dose (1 mg/kg) rapidly reduced rat brain 20-HETE concentrations from 289 to 91 pmol/g. Collectively, these data demonstrate that the i.v. formulation of HET0016 rapidly penetrates the rat brain and significantly inhibits 20-HETE tissue concentrations. These results will enable future studies to determine biopharmaceutics of HET0016 for inhibition of 20-HETE after cerebral ischemia.
Collapse
Affiliation(s)
- Ying Mu
- Department of Pharmaceutical Sciences, University of Pittsburgh School of Pharmacy, Pittsburgh, Pennsylvania 15261, USA
| | | | | | | | | | | |
Collapse
|
47
|
Nayeem MA, Poloyac SM, Falck JR, Zeldin DC, Ledent C, Ponnoth DS, Ansari HR, Mustafa SJ. Role of CYP epoxygenases in A2A AR-mediated relaxation using A2A AR-null and wild-type mice. Am J Physiol Heart Circ Physiol 2008; 295:H2068-78. [PMID: 18805895 DOI: 10.1152/ajpheart.01333.2007] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We hypothesized that A2A adenosine receptor (A2A AR) activation causes vasorelaxation through cytochrome P-450 (CYP) epoxygenases and endothelium-derived hyperpolarizing factors, whereas lack of A2A AR activation promotes vasoconstriction through Cyp4a in the mouse aorta. Adenosine 5'-N-ethylcarboxamide (NECA; 10(-6) M), an adenosine analog, caused relaxation in wild-type A2A AR (A2A AR+/+; +33.99 +/- 4.70%, P < 0.05) versus contraction in A2A AR knockout (A2A AR(-/-); -27.52 +/- 4.11%) mouse aortae. An A2A AR-specific antagonist (SCH-58261; 1 microM) changed the NECA (10(-6) M) relaxation response to contraction (-35.82 +/- 4.69%, P < 0.05) in A2A AR+/+ aortae, whereas no effect was noted in A2A AR(-/-) aortae. Significant contraction was seen in the absence of the endothelium in A2A AR+/+ (-2.58 +/- 2.25%) aortae compared with endothelium-intact aortae. An endothelial nitric oxide synthase inhibitor (N-nitro-L-arginine methyl ester; 100 microM) and a cyclooxygenase inhibitor (indomethacin; 10 microM) failed to block NECA-induced relaxation in A2A AR+/+ aortae. A selective inhibitor of CYP epoxygenases (methylsulfonyl-propargyloxyphenylhexanamide; 10 microM) changed NECA-mediated relaxation (-22.74 +/- 5.11% at 10(-6) M) and CGS-21680-mediated relaxation (-18.54 +/- 6.06% at 10(-6) M) to contraction in A2A AR+/+ aortae, whereas no response was noted in A2A AR(-/-) aortae. Furthermore, an epoxyeicosatrienoic acid (EET) antagonist [14,15-epoxyeicosa-5(Z)-enoic acid; 10 microM] was able to block NECA-induced relaxation in A2A AR+/+ aortae, whereas omega-hydroxylase inhibitors (10 microM dibromo-dodecenyl-methylsulfimide and 10 microM HET-0016) changed contraction into relaxation in A2A AR(-/-) aorta. Cyp2c29 protein was upregulated in A2A AR+/+ aortae, whereas Cyp4a was upregulated in A2A AR(-/-) aortae. Higher levels of dihydroxyeicosatrienoic acids (DHETs; 14,15-DHET, 11,12-DHET, and 8,9-DHET, P < 0.05) were found in A2A AR+/+ versus A2A AR(-/-) aortae. EET levels were not significantly different between A2A AR+/+ and A2A AR(-/-) aortae. It is concluded that CYP epoxygenases play an important role in A2A AR-mediated relaxation, and the deletion of the A2A AR leads to contraction through Cyp4a.
Collapse
Affiliation(s)
- Mohammed A Nayeem
- Department of Physiology and Pharmacology, Center for Interdisciplinary Research in Cardiovascular Sciences, West Virginia University, Morgantown, WV 26506, USA
| | | | | | | | | | | | | | | |
Collapse
|
48
|
van Waterschoot RAB, van Herwaarden AE, Lagas JS, Sparidans RW, Wagenaar E, van der Kruijssen CMM, Goldstein JA, Zeldin DC, Beijnen JH, Schinkel AH. Midazolam metabolism in cytochrome P450 3A knockout mice can be attributed to up-regulated CYP2C enzymes. Mol Pharmacol 2008; 73:1029-36. [PMID: 18156313 PMCID: PMC2391091 DOI: 10.1124/mol.107.043869] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
The cytochrome P450 3A (CYP3A) enzymes represent one of the most important drug-metabolizing systems in humans. Recently, our group has generated cytochrome P450 3A knockout mice to study this drug-handling system in vivo. In the present study, we have characterized the Cyp3a knockout mice by studying the metabolism of midazolam, one of the most widely used probes to assess CYP3A activity. We expected that the midazolam metabolism would be severely reduced in the absence of CYP3A enzymes. We used hepatic and intestinal microsomal preparations from Cyp3a knockout and wild-type mice to assess the midazolam metabolism in vitro. In addition, in vivo metabolite formation was determined after intravenous administration of midazolam. We were surprised to find that our results demonstrated that there is still marked midazolam metabolism in hepatic (but not intestinal) microsomes from Cyp3a knockout mice. Accordingly, we found comparable amounts of midazolam as well as its major metabolites in plasma after intravenous administration in Cyp3a knockout mice compared with wild-type mice. These data suggested that other hepatic cytochrome P450 enzymes could take over the midazolam metabolism in Cyp3a knockout mice. We provide evidence that CYP2C enzymes, which were found to be up-regulated in Cyp3a knockout mice, are primarily responsible for this metabolism and that several but not all murine CYP2C enzymes are capable of metabolizing midazolam to its 1'-OH and/or 4-OH derivatives. These data illustrate interesting compensatory changes that may occur in Cyp3a knockout mice. Such flexible compensatory interplay between functionally related detoxifying systems is probably essential to their biological role in xenobiotic protection.
Collapse
Affiliation(s)
- Robert A B van Waterschoot
- Division of Experimental Therapy, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Amunom I, Stephens LJ, Tamasi V, Cai J, Conklin DJ, Bhatnagar A, Srivastava S, Martin MV, Guengerich FP, Prough RA. Cytochromes P450 catalyze oxidation of alpha,beta-unsaturated aldehydes. Arch Biochem Biophys 2007; 464:187-96. [PMID: 17599801 PMCID: PMC1994811 DOI: 10.1016/j.abb.2007.05.019] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2007] [Revised: 05/22/2007] [Accepted: 05/24/2007] [Indexed: 11/19/2022]
Abstract
We sought to establish whether heme-thiolate monooxygenases oxidize, alpha,beta-unsaturated aldehydes generated during lipid peroxidation. Several recombinant P450s co-expressed with NADPH:P450 oxidoreductase were surveyed for aldehyde oxidation activity with anthracene-9-carboxaldehyde and 4-hydroxy-trans-2-nonenal (HNE). Murine P4502c29, human P4503A4, human P4502B6, and rabbit P4502B4 were good catalysts of aldehyde oxidation to carboxylic acids. Other P450s (e.g., P4501A2, 2E1, and 2J2) did not oxidize these aldehydes. P4502c29 and P4503A4 displayed K(m)/S(0.5) values of approx. 1-20microM. The product measured by HPLC that co-migrates with authentic 4-hydroxynonenoic acid (HNA) had a mass spectrum identical to the standard. Using P4502c29, HNE was a mixed-competitive inhibitor of anthracene-9-carboxaldehyde oxidation, suggesting that both aldehydes are substrates for P4502c29. Specific inhibitors of aldehyde dehydrogenases and P450 were used to assess their role in the metabolism of HNE in primary rat hepatocytes. Inhibitors of aldehyde dehydrogenase (cyanamide) inhibited HNA formation by 60% and together cyanamide and miconazole (P450) caused over 85% inhibition of HNA formation. P450s are significant participants in metabolism of endogenous and exogenous unsaturated aldehydes in primary rat hepatocytes.
Collapse
Affiliation(s)
- Immaculate Amunom
- Departments of Biochemistry & Molecular Biology University of Louisville School of Medicine, Louisville, KY 40292 and Department of Biochemistry & Center in Molecular Toxicology, Vanderbilt University School of Medicine, Nashville, TN 37232
| | - Laura J. Stephens
- Departments of Biochemistry & Molecular Biology University of Louisville School of Medicine, Louisville, KY 40292 and Department of Biochemistry & Center in Molecular Toxicology, Vanderbilt University School of Medicine, Nashville, TN 37232
| | - Viola Tamasi
- Departments of Biochemistry & Molecular Biology University of Louisville School of Medicine, Louisville, KY 40292 and Department of Biochemistry & Center in Molecular Toxicology, Vanderbilt University School of Medicine, Nashville, TN 37232
| | - Jian Cai
- Departments of Pharmacology & Toxicology University of Louisville School of Medicine, Louisville, KY 40292 and Department of Biochemistry & Center in Molecular Toxicology, Vanderbilt University School of Medicine, Nashville, TN 37232
| | - Daniel J. Conklin
- Departments of Cardiology/Medicine University of Louisville School of Medicine, Louisville, KY 40292 and Department of Biochemistry & Center in Molecular Toxicology, Vanderbilt University School of Medicine, Nashville, TN 37232
| | - Aruni Bhatnagar
- Departments of Cardiology/Medicine University of Louisville School of Medicine, Louisville, KY 40292 and Department of Biochemistry & Center in Molecular Toxicology, Vanderbilt University School of Medicine, Nashville, TN 37232
| | - S. Srivastava
- Departments of Cardiology/Medicine University of Louisville School of Medicine, Louisville, KY 40292 and Department of Biochemistry & Center in Molecular Toxicology, Vanderbilt University School of Medicine, Nashville, TN 37232
| | - Martha V. Martin
- Departments of Cardiology/Medicine University of Louisville School of Medicine, Louisville, KY 40292 and Department of Biochemistry & Center in Molecular Toxicology, Vanderbilt University School of Medicine, Nashville, TN 37232
| | - F. Peter Guengerich
- Departments of Cardiology/Medicine University of Louisville School of Medicine, Louisville, KY 40292 and Department of Biochemistry & Center in Molecular Toxicology, Vanderbilt University School of Medicine, Nashville, TN 37232
| | - Russell A. Prough
- Departments of Biochemistry & Molecular Biology University of Louisville School of Medicine, Louisville, KY 40292 and Department of Biochemistry & Center in Molecular Toxicology, Vanderbilt University School of Medicine, Nashville, TN 37232
| |
Collapse
|
50
|
Nüsing RM, Schweer H, Fleming I, Zeldin DC, Wegmann M. Epoxyeicosatrienoic acids affect electrolyte transport in renal tubular epithelial cells: dependence on cyclooxygenase and cell polarity. Am J Physiol Renal Physiol 2007; 293:F288-98. [PMID: 17494091 PMCID: PMC2077090 DOI: 10.1152/ajprenal.00171.2006] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We investigated the effects of epoxyeicosatrienoic acids (EETs) on ion transport in the polarized renal distal tubular cell line, Madin-Darby canine kidney (MDCK) C7. Of the four EET regioisomers (5,6-EET, 8,9-EET, 11,12-EET, and 14,15-EET) studied, only apical, but not basolateral, application of 5,6-EET increased short-circuit current (I(sc)) with kinetics similar to those of arachidonic acid. The ion transport was blocked by preincubation with the cyclooxygenase inhibitor indomethacin or with the chloride channel blocker NPPB. Furthermore, both a Cl(-)-free bath solution and the Ca(2+) antagonist verapamil blocked 5,6-EET-induced ion transport. Although the presence of the PGE(2) receptors EP2, EP3, and EP4 was demonstrated, apically added PGE(2) was ineffective and basolaterally added PGE(2) caused a different kinetics in ion transport compared with 5,6-EET. Moreover, PGE(2) synthesis in MDCK C7 cells was unaffected by 5,6-EET treatment. GC/MS/MS analysis of cell supernatants revealed the presence of the biologically inactive 5,6-dihydroxy-PGE(1) in 5,6-EET-treated cells, but not in control cells. Indomethacin suppressed the formation of 5,6-dihydroxy-PGE(1). 5,6-Epoxy-PGE(1), the precursor of 5,6-dihydroxy-PGE(1), caused a similar ion transport as 5,6-EET. Cytochrome P-450 enzymes homolog to human CYP2C8, CYP2C9, and CYP2J2 protein were detected immunologically in the MDCK C7 cells. Our findings suggest that 5,6-EET affects Cl(-) transport in renal distal tubular cells independent of PGE(2) but by a mechanism, dependent on its conversion to 5,6-epoxy-PGE(1) by cyclooxygenase. We suggest a role for this P450 epoxygenase product in the regulation of electrolyte transport, especially as a saluretic compound acting from the luminal side of tubular cells in the mammalian kidney.
Collapse
MESH Headings
- 8,11,14-Eicosatrienoic Acid/pharmacology
- Alprostadil/analogs & derivatives
- Alprostadil/chemical synthesis
- Alprostadil/pharmacology
- Animals
- Biological Transport, Active/drug effects
- Blotting, Western
- Cell Line
- Cell Polarity/physiology
- Chlorides/metabolism
- Chromatography, Liquid
- Diffusion Chambers, Culture
- Dinoprostone/pharmacology
- Dogs
- Electrolytes/metabolism
- Electrophysiology
- Epithelial Cells/drug effects
- Epithelial Cells/metabolism
- Epoxide Hydrolases/metabolism
- Gas Chromatography-Mass Spectrometry
- Immunohistochemistry
- Isomerism
- Kidney Tubules/drug effects
- Kidney Tubules/metabolism
- Kidney Tubules, Collecting/drug effects
- Kidney Tubules, Collecting/metabolism
- Prostaglandin-Endoperoxide Synthases/metabolism
- RNA, Messenger/biosynthesis
- RNA, Messenger/genetics
- Reverse Transcriptase Polymerase Chain Reaction
Collapse
Affiliation(s)
- Rolf M Nüsing
- Institute of Clinical Pharmacology, Johann Wolfgang Goethe University, Theodor Stern Kai 7, 60590 Frankfurt am Main, Germany.
| | | | | | | | | |
Collapse
|