1
|
Yang Z, Black K, Ohman-Strickland P, Graber JM, Kipen H, Fang M, Zarbl H. Disruption of central and peripheral circadian clocks and circadian controlled estrogen receptor rhythms in night shift nurses in working environments. FASEB J 2024; 38:e23719. [PMID: 38837828 PMCID: PMC11884403 DOI: 10.1096/fj.202302261rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 05/13/2024] [Accepted: 05/21/2024] [Indexed: 06/07/2024]
Abstract
Chronic disruption of circadian rhythms by night shift work is associated with an increased breast cancer risk. However, little is known about the impact of night shift on peripheral circadian genes (CGs) and circadian-controlled genes (CCGs) associated with breast cancer. Hence, we assessed central clock markers (melatonin and cortisol) in plasma, and peripheral CGs (PER1, PER2, PER3, and BMAL1) and CCGs (ESR1 and ESR2) in peripheral blood mononuclear cells (PBMCs). In day shift nurses (n = 12), 24-h rhythms of cortisol and melatonin were aligned with day shift-oriented light/dark schedules. The mRNA expression of PER2, PER3, BMAL1, and ESR2 showed 24-h rhythms with peak values in the morning. In contrast, night shift nurses (n = 10) lost 24-h rhythmicity of cortisol with a suppressed morning surge but retained normal rhythmic patterns of melatonin, leading to misalignment between cortisol and melatonin. Moreover, night shift nurses showed disruption of rhythmic expressions of PER2, PER3, BMAL1, and ESR2 genes, resulting in an impaired inverse correlation between PER2 and BMAL1 compared to day shift nurses. The observed trends of disrupted circadian markers were recapitulated in additional day (n = 20) and night (n = 19) shift nurses by measurement at early night and midnight time points. Taken together, this study demonstrated the misalignment of cortisol and melatonin, associated disruption of PER2 and ESR2 circadian expressions, and internal misalignment in peripheral circadian network in night shift nurses. Morning plasma cortisol and PER2, BMAL1, and ESR2 expressions in PBMCs may therefore be useful biomarkers of circadian disruption in shift workers.
Collapse
Affiliation(s)
- Zhenning Yang
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey, 08854, USA
- Environmental and Occupational Health Sciences Institute, Rutgers, The State University of New Jersey, Piscataway, New Jersey, 08854, USA
| | - Kathleen Black
- Environmental and Occupational Health Sciences Institute, Rutgers, The State University of New Jersey, Piscataway, New Jersey, 08854, USA
| | - Pamela Ohman-Strickland
- Environmental and Occupational Health Sciences Institute, Rutgers, The State University of New Jersey, Piscataway, New Jersey, 08854, USA
- Department of Biostatistics and Epidemiology, School of Public Health, Rutgers, The State University of New Jersey, Piscataway, New Jersey, 08854, USA
| | - Judith M Graber
- Environmental and Occupational Health Sciences Institute, Rutgers, The State University of New Jersey, Piscataway, New Jersey, 08854, USA
- Department of Biostatistics and Epidemiology, School of Public Health, Rutgers, The State University of New Jersey, Piscataway, New Jersey, 08854, USA
| | - Howard Kipen
- Environmental and Occupational Health Sciences Institute, Rutgers, The State University of New Jersey, Piscataway, New Jersey, 08854, USA
- Department of Environmental and Occupational Health and Justice, Rutgers, The State University of New Jersey, Piscataway, New Jersey, 08854, USA
| | - Mingzhu Fang
- Environmental and Occupational Health Sciences Institute, Rutgers, The State University of New Jersey, Piscataway, New Jersey, 08854, USA
- Department of Environmental and Occupational Health and Justice, Rutgers, The State University of New Jersey, Piscataway, New Jersey, 08854, USA
- Current affiliation: Research and Early Development, Nonclinical Safety, Bristol Myers Squibb, New Brunswick, New Jersey, 08901, USA
| | - Helmut Zarbl
- Environmental and Occupational Health Sciences Institute, Rutgers, The State University of New Jersey, Piscataway, New Jersey, 08854, USA
- Department of Environmental and Occupational Health and Justice, Rutgers, The State University of New Jersey, Piscataway, New Jersey, 08854, USA
| |
Collapse
|
2
|
Aragona F, Fazio F, Piccione G, Giannetto C. Chronophysiology of domestic animals. Chronobiol Int 2024; 41:888-903. [PMID: 38832548 DOI: 10.1080/07420528.2024.2360723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Accepted: 05/19/2024] [Indexed: 06/05/2024]
Abstract
This review highlights recent findings on biological rhythms and discusses their implications for the management and production of domestic animals. Biological rhythms provide temporal coordination between organs and tissues in order to anticipate environmental changes, orchestrating biochemical, physiological and behavioural processes as the right process may occur at the right time. This allows animals to adapt their internal physiological functions, such as sleep-wake cycles, body temperature, hormone secretion, food intake and regulation of physical performance to environmental stimuli that constantly change. The study and evaluation of biological rhythms of various physiological parameters allows the assessment of the welfare status of animals. Alteration of biological rhythms represents an imbalance of the state of homeostasis that can be found in different management conditions.
Collapse
Affiliation(s)
- Francesca Aragona
- Department of Veterinary Sciences, University of Messina, Messina, Italy
| | - Francesco Fazio
- Department of Veterinary Sciences, University of Messina, Messina, Italy
| | - Giuseppe Piccione
- Department of Veterinary Sciences, University of Messina, Messina, Italy
| | - Claudia Giannetto
- Department of Veterinary Sciences, University of Messina, Messina, Italy
| |
Collapse
|
3
|
Giannetto C, Arfuso F, Rizzo M, Giudice E, Calapai F, Guercio A, Macaluso G, Giacchino I, Piccione G, Cannella V. Persistence of clock gene expression in peripheral blood in dogs maintained under different photoperiod schedules. Chronobiol Int 2024; 41:369-377. [PMID: 38326980 DOI: 10.1080/07420528.2024.2315217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 02/01/2024] [Indexed: 02/09/2024]
Abstract
Dogs are the common pets adopted by humans, and their circadian behavior and physiology are influenced by human habits. In many families, there is a change of lifestyle with respect to the natural daylight (NDL) cycle. Exposure to constant light disrupts some central and peripheral circadian rhythms. The aim of the present study was to improve the knowledge about the circadian changes of clock components in the peripheral blood in dogs housed under NDL and constant light (LL) conditions. Blood samples were collected on five female Beagle dogs (2 years old, 14 ± 0.5 kg) every 4 hours for a 24-hour period during an NDL (Sunrise 05:05 h - Sunset 20:55 h) and 24-hour period of constant light (LL). Blood samples were stored in a PAX gene Blood RNA Tube, real-time RT-quantitative polymerase chain reaction was performed to determine Clock, Per1-3, and Cry1-2 gene expression. During the NDL, all genes investigated showed robust diurnal daily rhythmicity. During the constant light, only Clock maintained its daily rhythmicity. Clock acrophase was observed close to sunrise (ZT 0) and was statistically different from the other clock genes except for Per3. Per3 daily oscillations were not statistically significant. No differences were observed among the clock genes tested in the amplitude and robustness values. Our results can be considered preliminary data to provide new insights into the adaptation mechanism of the canine peripheral circadian clock. The persistence of Clock gene expression during the LL indicated the presence of an endogenously generated signal in blood. Because peripheral blood is an easily accessible sample in dogs, the analysis of clock gene expression in this tissue could be useful to investigate the adaptive capacity of this species housed in different environmental conditions linked to the owner's lifestyle.
Collapse
Affiliation(s)
- Claudia Giannetto
- Department of Veterinary Sciences, University of Messina, Messina, Italy
| | - Francesca Arfuso
- Department of Veterinary Sciences, University of Messina, Messina, Italy
| | - Maria Rizzo
- Department of Veterinary Sciences, University of Messina, Messina, Italy
| | - Elisabetta Giudice
- Department of Veterinary Sciences, University of Messina, Messina, Italy
| | - Fabrizio Calapai
- Department of Chemical, Pharmaceutical and Environmental Scieces, University of Messina, Messina, Italy
| | - Annalisa Guercio
- Istituto Zooprofilattico Sperimentale della Sicilia "A. Mirri", Palermo, Italy
| | - Giusi Macaluso
- Istituto Zooprofilattico Sperimentale della Sicilia "A. Mirri", Palermo, Italy
| | - Ilenia Giacchino
- Istituto Zooprofilattico Sperimentale della Sicilia "A. Mirri", Palermo, Italy
| | - Giuseppe Piccione
- Department of Veterinary Sciences, University of Messina, Messina, Italy
| | - Vincenza Cannella
- Istituto Zooprofilattico Sperimentale della Sicilia "A. Mirri", Palermo, Italy
| |
Collapse
|
4
|
Bhoi JD, Goel M, Ribelayga CP, Mangel SC. Circadian clock organization in the retina: From clock components to rod and cone pathways and visual function. Prog Retin Eye Res 2023; 94:101119. [PMID: 36503722 PMCID: PMC10164718 DOI: 10.1016/j.preteyeres.2022.101119] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 08/22/2022] [Accepted: 08/25/2022] [Indexed: 12/13/2022]
Abstract
Circadian (24-h) clocks are cell-autonomous biological oscillators that orchestrate many aspects of our physiology on a daily basis. Numerous circadian rhythms in mammalian and non-mammalian retinas have been observed and the presence of an endogenous circadian clock has been demonstrated. However, how the clock and associated rhythms assemble into pathways that support and control retina function remains largely unknown. Our goal here is to review the current status of our knowledge and evaluate recent advances. We describe many previously-observed retinal rhythms, including circadian rhythms of morphology, biochemistry, physiology, and gene expression. We evaluate evidence concerning the location and molecular machinery of the retinal circadian clock, as well as consider findings that suggest the presence of multiple clocks. Our primary focus though is to describe in depth circadian rhythms in the light responses of retinal neurons with an emphasis on clock control of rod and cone pathways. We examine evidence that specific biochemical mechanisms produce these daily light response changes. We also discuss evidence for the presence of multiple circadian retinal pathways involving rhythms in neurotransmitter activity, transmitter receptors, metabolism, and pH. We focus on distinct actions of two dopamine receptor systems in the outer retina, a dopamine D4 receptor system that mediates circadian control of rod/cone gap junction coupling and a dopamine D1 receptor system that mediates non-circadian, light/dark adaptive regulation of gap junction coupling between horizontal cells. Finally, we evaluate the role of circadian rhythmicity in retinal degeneration and suggest future directions for the field of retinal circadian biology.
Collapse
Affiliation(s)
- Jacob D Bhoi
- Ruiz Department of Ophthalmology and Visual Science, McGovern Medical School, UTHEALTH-The University of Texas Health Science Center at Houston, Houston, TX, USA; Neuroscience Honors Research Program, William Marsh Rice University, Houston, TX, USA
| | - Manvi Goel
- Department of Neuroscience, Wexner Medical Center, College of Medicine, The Ohio State University, Columbus, OH, USA
| | - Christophe P Ribelayga
- Ruiz Department of Ophthalmology and Visual Science, McGovern Medical School, UTHEALTH-The University of Texas Health Science Center at Houston, Houston, TX, USA; Neuroscience Honors Research Program, William Marsh Rice University, Houston, TX, USA.
| | - Stuart C Mangel
- Department of Neuroscience, Wexner Medical Center, College of Medicine, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
5
|
Ybañez WS, Bagamasbad PD. Krüppel-like factor 9 (KLF9) links hormone dysregulation and circadian disruption to breast cancer pathogenesis. Cancer Cell Int 2023; 23:33. [PMID: 36823570 PMCID: PMC9948451 DOI: 10.1186/s12935-023-02874-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 02/14/2023] [Indexed: 02/25/2023] Open
Abstract
BACKGROUND Circadian disruption is an emerging driver of breast cancer (BCa), with epidemiological studies linking shift work and chronic jet lag to increased BCa risk. Indeed, several clock genes participate in the gating of mitotic entry, regulation of DNA damage response, and epithelial-to-mesenchymal transition, thus impacting BCa etiology. Dysregulated estrogen (17β-estradiol, E2) and glucocorticoid (GC) signaling prevalent in BCa may further contribute to clock desynchrony by directly regulating the expression and cycling dynamics of genes comprising the local breast oscillator. In this study, we investigated the tumor suppressor gene, Krüppel-like factor 9 (KLF9), as an important point of crosstalk between hormone signaling and the circadian molecular network, and further examine its functional role in BCa. METHODS Through meta-analysis of publicly available RNA- and ChIP-sequencing datasets from BCa tumor samples and cell lines, and gene expression analysis by RT-qPCR and enhancer- reporter assays, we elucidated the molecular mechanism behind the clock and hormone regulation of KLF9. Lentiviral knockdown and overexpression of KLF9 in three distinct breast epithelial cell lines (MCF10A, MCF7 and MDA-MB-231) was generated to demonstrate the role of KLF9 in orthogonal assays on breast epithelial survival, proliferation, apoptosis, and migration. RESULTS We determined that KLF9 is a direct GC receptor target in mammary epithelial cells, and that induction is likely mediated through coordinate transcriptional activation from multiple GC-responsive enhancers in the KLF9 locus. More interestingly, rhythmic expression of KLF9 in MCF10A cells was abolished in the highly aggressive MDA-MB-231 line. In turn, forced expression of KLF9 altered the baseline and GC/E2-responsive expression of several clock genes, indicating that KLF9 may function as a regulator of the core clock machinery. Characterization of the role of KLF9 using complementary cancer hallmark assays in the context of the hormone-circadian axis revealed that KLF9 plays a tumor-suppressive role in BCa regardless of molecular subtype. KLF9 potentiated the anti-tumorigenic effects of GC in E2 receptor + luminal MCF7 cells, while it restrained GC-enhanced oncogenicity in triple-negative MCF10A and MDA-MB-231 cells. CONCLUSIONS Taken together, our findings support that dysregulation of KLF9 expression and oscillation in BCa impinges on circadian network dynamics, thus ultimately affecting the BCa oncogenic landscape.
Collapse
Affiliation(s)
- Weand S. Ybañez
- grid.11134.360000 0004 0636 6193National Institute of Molecular Biology and Biotechnology, University of the Philippines Diliman, Quezon City, Metro Manila 1101 Philippines
| | - Pia D. Bagamasbad
- grid.11134.360000 0004 0636 6193National Institute of Molecular Biology and Biotechnology, University of the Philippines Diliman, Quezon City, Metro Manila 1101 Philippines
| |
Collapse
|
6
|
Wong SD, Wright KP, Spencer RL, Vetter C, Hicks LM, Jenni OG, LeBourgeois MK. Development of the circadian system in early life: maternal and environmental factors. J Physiol Anthropol 2022; 41:22. [PMID: 35578354 PMCID: PMC9109407 DOI: 10.1186/s40101-022-00294-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Accepted: 05/01/2022] [Indexed: 12/25/2022] Open
Abstract
In humans, an adaptable internal biological system generates circadian rhythms that maintain synchronicity of behavior and physiology with the changing demands of the 24-h environment. Development of the circadian system begins in utero and continues throughout the first few years of life. Maturation of the clock can be measured through sleep/wake patterns and hormone secretion. Circadian rhythms, by definition, can persist in the absence of environmental input; however, their ability to adjust to external time cues is vital for adaptation and entrainment to the environment. The significance of these external factors that influence the emergence of a stable circadian clock in the first years of life remain poorly understood. Infants raised in our post-modern world face adverse external circadian signals, such as artificial light and mistimed hormonal cues via breast milk, which may increase interference with the physiological mechanisms that promote circadian synchronization. This review describes the very early developmental stages of the clock and common circadian misalignment scenarios that make the developing circadian system more susceptible to conflicting time cues and temporal disorder between the maternal, fetal, infant, and peripheral clocks.
Collapse
|
7
|
Li L, Zhang M, Zhao C, Cheng Y, Liu C, Shi M. Circadian clock gene Clock-Bmal1 regulates cellular senescence in Chronic obstructive pulmonary disease. BMC Pulm Med 2022; 22:435. [PMID: 36419003 PMCID: PMC9682805 DOI: 10.1186/s12890-022-02237-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 11/11/2022] [Indexed: 11/24/2022] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is a progressive respiratory disease. COPD is associated with accelerated lung aging. Circadian clock is believed to play important roles in COPD. Although the circadian molecular clock regulates cellular senescence, there is no information available regarding the impact of COPD. The aim of this study is to investigate the role of the circadian clock protein BMAL1 and CLOCK in cellular senescence in order to understand the cellular mechanisms of accelerated aging of COPD. Bmal1 and Clock levels were assessed in the plasma samples of non-smokers, smokers, and patients with COPD. The regulation of ciracadian clock expression and cell senescence by cigarette smoke extract (CSE) was studied in vitro, and small interfering RNA (siRNA) and overexpression of Bmal1 or Clock were employed to investigate the role of circadian clock on cell senescence. Herein, patients with COPD showed lower Bmal1 and Clock expression in the plasma. Interestingly, CSE exposure contributed to the increased cell senescence, decreased Clock and Bmal1 in human bronchial epithelial cells (Beas-2B cells). We found that knockdown of Clock or Bmal1 lead to upregulation of cell senescence in Beas-2B cells, while overexpression of Clock or Bmal1 inhibited cell senescence in Beas-2B cells, which is through the MAPK pathways. Therefore, our findings indicated that Bmal1 or Clock deficiency may be a significant factor to increase cellular senescence of the lung to develop COPD.
Collapse
Affiliation(s)
- Lingling Li
- grid.452666.50000 0004 1762 8363Department of Pulmonary and Critical Care Medicine, The Second Affiliated Hospital of Soochow University, Suzhou, China ,grid.452929.10000 0004 8513 0241Department of Pulmonary and Critical Care Medicine, Yijishan Hospital, Wannan Medical College, Wuhu, China
| | - Min Zhang
- grid.443626.10000 0004 1798 4069Department of Emergency, Yijishan Hospital, Wannan Medical College, Wuhu, China
| | - Chunyang Zhao
- grid.452929.10000 0004 8513 0241Department of Pulmonary and Critical Care Medicine, Yijishan Hospital, Wannan Medical College, Wuhu, China
| | - Yusheng Cheng
- grid.452929.10000 0004 8513 0241Department of Pulmonary and Critical Care Medicine, Yijishan Hospital, Wannan Medical College, Wuhu, China
| | - Chuanmei Liu
- grid.452929.10000 0004 8513 0241Department of Pulmonary and Critical Care Medicine, Yijishan Hospital, Wannan Medical College, Wuhu, China
| | - Minhua Shi
- grid.452666.50000 0004 1762 8363Department of Pulmonary and Critical Care Medicine, The Second Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
8
|
Bryant AJ, Ebrahimi E, Nguyen A, Wolff CA, Gumz ML, Liu AC, Esser KA. A wrinkle in time: circadian biology in pulmonary vascular health and disease. Am J Physiol Lung Cell Mol Physiol 2022; 322:L84-L101. [PMID: 34850650 PMCID: PMC8759967 DOI: 10.1152/ajplung.00037.2021] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
An often overlooked element of pulmonary vascular disease is time. Cellular responses to time, which are regulated directly by the core circadian clock, have only recently been elucidated. Despite an extensive collection of data regarding the role of rhythmic contribution to disease pathogenesis (such as systemic hypertension, coronary artery, and renal disease), the roles of key circadian transcription factors in pulmonary hypertension remain understudied. This is despite a large degree of overlap in the pulmonary hypertension and circadian rhythm fields, not only including shared signaling pathways, but also cell-specific effects of the core clock that are known to result in both protective and adverse lung vessel changes. Therefore, the goal of this review is to summarize the current dialogue regarding common pathways in circadian biology, with a specific emphasis on its implications in the progression of pulmonary hypertension. In this work, we emphasize specific proteins involved in the regulation of the core molecular clock while noting the circadian cell-specific changes relevant to vascular remodeling. Finally, we apply this knowledge to the optimization of medical therapy, with a focus on sleep hygiene and the role of chronopharmacology in patients with this disease. In dissecting the unique relationship between time and cellular biology, we aim to provide valuable insight into the practical implications of considering time as a therapeutic variable. Armed with this information, physicians will be positioned to more efficiently use the full four dimensions of patient care, resulting in improved morbidity and mortality of pulmonary hypertension patients.
Collapse
Affiliation(s)
- Andrew J. Bryant
- 1Department of Medicine, University of Florida College of Medicine, Gainesville, Florida
| | - Elnaz Ebrahimi
- 1Department of Medicine, University of Florida College of Medicine, Gainesville, Florida
| | - Amy Nguyen
- 1Department of Medicine, University of Florida College of Medicine, Gainesville, Florida
| | - Christopher A. Wolff
- 2Department of Physiology, University of Florida College of Medicine, Gainesville, Florida
| | - Michelle L. Gumz
- 2Department of Physiology, University of Florida College of Medicine, Gainesville, Florida
| | - Andrew C. Liu
- 2Department of Physiology, University of Florida College of Medicine, Gainesville, Florida
| | - Karyn A. Esser
- 2Department of Physiology, University of Florida College of Medicine, Gainesville, Florida
| |
Collapse
|
9
|
Shiraishi R, Morita S, Goto Y, Mizoguchi Y, Nakamura W, Nakamura TJ. Diurnal variations of triglyceride accumulation in mouse and bovine adipocyte-derived cell lines. Anim Sci J 2022; 93:e13802. [PMID: 36562279 DOI: 10.1111/asj.13802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 11/04/2022] [Accepted: 11/17/2022] [Indexed: 12/24/2022]
Abstract
Several studies have suggested a strong interaction between the circadian clock and lipid metabolism in mammals. The circadian clock is driven by endogenous cyclic gene expression patterns, commonly referred to as clock genes, and transcription-translation negative feedback loops. Clock genes regulate the transcription of some lipid metabolism-related genes; however, the relationship between the circadian clock and triglyceride (TG) accumulation at the cellular level remains unclear. Here, we evaluated rhythms of intracellular TG accumulation levels as well as the expression of clock genes and lipid metabolism-related genes for 54 h in mouse and bovine adipose-derived cell cultures. To the best of our knowledge, this study represents the first report demonstrating that TG accumulation exhibits diurnal variations, with the pattern differing among cell types. Furthermore, we found that expression of clock genes and corresponding lipid metabolism-related genes exhibited circadian rhythms. Our results suggest that the cellular clock regulates lipid metabolism-related genes to relate circadian rhythms of TG accumulation in each cell type. We anticipate that the amount of fat stored depends on the timing of the supply of glucose-the precursor of fat. The findings of this study will contribute to the advancement of chrono-nutrition.
Collapse
Affiliation(s)
- Rena Shiraishi
- Laboratory of Animal Physiology, School of Agriculture, Meiji University, Kawasaki, Japan
| | - Satomi Morita
- Laboratory of Animal Physiology, School of Agriculture, Meiji University, Kawasaki, Japan
| | - Yoshikuni Goto
- Faculty of Pharmaceutical Sciences, Teikyo Heisei University, Tokyo, Japan
| | - Yasushi Mizoguchi
- Laboratory of Animal Genetics, School of Agriculture, Meiji University, Kawasaki, Japan
| | - Wataru Nakamura
- Department of Oral-Chrono Physiology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Takahiro J Nakamura
- Laboratory of Animal Physiology, School of Agriculture, Meiji University, Kawasaki, Japan
| |
Collapse
|
10
|
Logan RW, Xue X, Ketchesin KD, Hoffman G, Roussos P, Tseng G, McClung CA, Seney ML. Sex Differences in Molecular Rhythms in the Human Cortex. Biol Psychiatry 2022; 91:152-162. [PMID: 33934884 PMCID: PMC8423868 DOI: 10.1016/j.biopsych.2021.03.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 03/02/2021] [Accepted: 03/03/2021] [Indexed: 01/03/2023]
Abstract
BACKGROUND Diurnal rhythms in gene expression have been detected in the human brain. Previous studies found that males and females exhibit 24-hour rhythms in known circadian genes, with earlier peak expression in females. Whether there are sex differences in large-scale transcriptional rhythms in the cortex that align with observed sex differences in physiological and behavioral rhythms is currently unknown. METHODS Diurnal rhythmicity of gene expression was determined for males and females using RNA sequencing data from human postmortem dorsolateral prefrontal cortex (DLPFC) and anterior cingulate cortex (ACC). Sex differences among rhythmic genes were determined using significance cutoffs, threshold-free analyses, and R2 difference. Phase concordance was assessed across the DLPFC and ACC for males and females. Pathway and transcription factor analyses were also conducted on significantly rhythmic genes. RESULTS Canonical circadian genes had diurnal rhythms in both sexes with similar amplitude and phase. When analyses were expanded to the entire transcriptome, significant sex differences in transcriptional rhythms emerged. There were nearly twice as many rhythmic transcripts in the DLPFC in males and nearly 4 times as many rhythmic transcripts in the ACC in females. Results suggest a diurnal rhythm in synaptic transmission specific to the ACC in females (e.g., GABAergic [gamma-aminobutyric acidergic] and cholinergic neurotransmission). For males, there was phase concordance between the DLPFC and ACC, while phase asynchrony was found in females. CONCLUSIONS There are robust sex differences in molecular rhythms of genes in the DLPFC and ACC, providing potential mechanistic insights into how neurotransmission and synaptic function are modulated in a circadian-dependent and sex-specific manner.
Collapse
Affiliation(s)
- Ryan W Logan
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, Massachusetts; Center for Systems Neurogenetics of Addiction, The Jackson Laboratory, Bar Harbor, Maine
| | - Xiangning Xue
- Department of Biostatistics, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Kyle D Ketchesin
- Department of Psychiatry, University of Pittsburgh Medical School, Pittsburgh, Pennsylvania; Translational Neuroscience Program, University of Pittsburgh Medical School, Pittsburgh, Pennsylvania
| | - Gabriel Hoffman
- Pamela Sklar Division of Psychiatric Genomics, Icahn School of Medicine at Mount Sinai, New York; Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York; Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York
| | - Panos Roussos
- Pamela Sklar Division of Psychiatric Genomics, Icahn School of Medicine at Mount Sinai, New York; Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York; Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York; Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York; Mental Illness Research, Education, and Clinical Center, James J. Peters VA Medical Center, Bronx, New York
| | - George Tseng
- Department of Biostatistics, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Colleen A McClung
- Center for Systems Neurogenetics of Addiction, The Jackson Laboratory, Bar Harbor, Maine; Department of Psychiatry, University of Pittsburgh Medical School, Pittsburgh, Pennsylvania; Translational Neuroscience Program, University of Pittsburgh Medical School, Pittsburgh, Pennsylvania
| | - Marianne L Seney
- Department of Psychiatry, University of Pittsburgh Medical School, Pittsburgh, Pennsylvania; Translational Neuroscience Program, University of Pittsburgh Medical School, Pittsburgh, Pennsylvania.
| |
Collapse
|
11
|
Han Q, Bagi Z, Rudic RD. Review: Circadian clocks and rhythms in the vascular tree. Curr Opin Pharmacol 2021; 59:52-60. [PMID: 34111736 DOI: 10.1016/j.coph.2021.04.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 04/23/2021] [Accepted: 04/28/2021] [Indexed: 12/17/2022]
Abstract
The progression of vascular disease is influenced by many factors including aging, gender, diet, hypertension, and poor sleep. The intrinsic vascular circadian clock and the timing it imparts on the vasculature both conditions and is conditioned by all these variables. Circadian rhythms and their molecular components are rhythmically cycling in each endothelial cell, smooth muscle cell, in each artery, arteriole, vein, venule, and capillary. New research continues to tackle how circadian clocks act in the vasculature, describing influences in experimental and human disease, identifying potential target genes, compensatory molecules, that ultimately reveal a complexity that is vascular-bed-specific, cell-type-specific, and even single-cell-specific. Though we are yet to achieve a complete understanding, here we survey recent observations that are shedding more light on the nature of the interaction between circadian rhythms and the vascular system with implications for blood vessel disease.
Collapse
Affiliation(s)
- Qimei Han
- Department of Pharmacology & Toxicology, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Zsolt Bagi
- Department of Physiology, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Raducu Daniel Rudic
- Department of Pharmacology & Toxicology, Medical College of Georgia, Augusta University, Augusta, GA, USA.
| |
Collapse
|
12
|
Circadian Deregulation as Possible New Player in Pollution-Induced Tissue Damage. ATMOSPHERE 2021. [DOI: 10.3390/atmos12010116] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Circadian rhythms are 24-h oscillations driven by a hypothalamic master oscillator that entrains peripheral clocks in almost all cells, tissues and organs. Circadian misalignment, triggered by industrialization and modern lifestyles, has been linked to several pathological conditions, with possible impairment of the quality or even the very existence of life. Living organisms are continuously exposed to air pollutants, and among them, ozone or particulate matters (PMs) are considered to be among the most toxic to human health. In particular, exposure to environmental stressors may result not only in pulmonary and cardiovascular diseases, but, as it has been demonstrated in the last two decades, the skin can also be affected by pollution. In this context, we hypothesize that chronodistruption can exacerbate cell vulnerability to exogenous damaging agents, and we suggest a possible common mechanism of action in deregulation of the homeostasis of the pulmonary, cardiovascular and cutaneous tissues and in its involvement in the development of pathological conditions.
Collapse
|
13
|
Wang X, Wang M, Chen S, Wei B, Gao Y, Huang L, Liu C, Huang T, Yu M, Zhao SH, Li X. Ammonia exposure causes lung injuries and disturbs pulmonary circadian clock gene network in a pig study. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 205:111050. [PMID: 32827960 DOI: 10.1016/j.ecoenv.2020.111050] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 07/13/2020] [Accepted: 07/17/2020] [Indexed: 06/11/2023]
Abstract
Ammonia toxicity to respiratory system in pig faming is of particular concern, but the molecular mechanism remains still unclear. The present study was devoted to assess the impacts of the ammonia exposure on the lung tissues based on a pig study using 80 ppm ammonia exposing to piglets for different days. The histology analysis revealed ammonia exposure induced lung injury and inflammatory response, as indicated by epithelial-mesenchymal transition (EMT), significant thickening of alveolar septa, infiltration of inflammatory cells and excessive mucus production. The transcriptome analysis revealed many more up-regulated genes in exposure groups when compared with the control group, and these genes were significantly enriched in the GO term of extracellular exosome, proteolysis, and regulation of circadian rhythm. The study discovered the induction of seven genes (CRY2, CIART, CREM, NR1D1, NR1D2, PER1 and PER3) that encode repressors of circadian clock. One gene (ARNTL) that encodes activator of circadian clock was down-regulated after ammonia exposure. The results of this study suggest that ammonia exposure disturbed the pulmonary circadian clock gene expression, which may establish new evidence for further understanding the toxicity of ammonia to lungs.
Collapse
Affiliation(s)
- Xiaotong Wang
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, 430070, China
| | - Mengyao Wang
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, 430070, China
| | - Shuangzhao Chen
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, 430070, China
| | - Baoxin Wei
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yun Gao
- College of Engineering, The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, 430070, China
| | - Longhui Huang
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, 430070, China
| | - Chun Liu
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, 430070, China
| | - Tao Huang
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, 430070, China
| | - Mei Yu
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, 430070, China
| | - Shu-Hong Zhao
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xiaoping Li
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
14
|
Staehle MM, O’Sullivan S, Vadigepalli R, Kernan KF, Gonye GE, Ogunnaike BA, Schwaber JS. Diurnal Patterns of Gene Expression in the Dorsal Vagal Complex and the Central Nucleus of the Amygdala - Non-rhythm-generating Brain Regions. Front Neurosci 2020; 14:375. [PMID: 32477043 PMCID: PMC7233260 DOI: 10.3389/fnins.2020.00375] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Accepted: 03/27/2020] [Indexed: 11/13/2022] Open
Abstract
Genes that establish the circadian clock have differential expression with respect to solar time in central and peripheral tissues. Here, we find circadian-time-induced differential expression in a large number of genes not associated with circadian rhythms in two brain regions lacking overt circadian function: the dorsal vagal complex (DVC) and the central nucleus of the amygdala (CeA). These regions primarily engage in autonomic, homeostatic, and emotional regulation. However, we find striking diurnal shifts in gene expression in these regions of male Sprague Dawley rats with no obvious patterns that could be attributed to function or region. These findings have implications for the design of gene expression studies as well as for the potential effects of xenobiotics on these regions that regulate autonomic and emotional states.
Collapse
Affiliation(s)
- Mary M. Staehle
- Department of Biomedical Engineering, Rowan University, Glassboro, NJ, United States
- Department of Pathology, Anatomy, and Cell Biology, Daniel Baugh Institute for Functional Genomics and Computational Biology, Thomas Jefferson University, Philadelphia, PA, United States
- Department of Chemical Engineering, University of Delaware, Newark, DE, United States
| | - Sean O’Sullivan
- Department of Pathology, Anatomy, and Cell Biology, Daniel Baugh Institute for Functional Genomics and Computational Biology, Thomas Jefferson University, Philadelphia, PA, United States
| | - Rajanikanth Vadigepalli
- Department of Pathology, Anatomy, and Cell Biology, Daniel Baugh Institute for Functional Genomics and Computational Biology, Thomas Jefferson University, Philadelphia, PA, United States
| | - Kate F. Kernan
- Department of Pathology, Anatomy, and Cell Biology, Daniel Baugh Institute for Functional Genomics and Computational Biology, Thomas Jefferson University, Philadelphia, PA, United States
| | - Gregory E. Gonye
- Department of Pathology, Anatomy, and Cell Biology, Daniel Baugh Institute for Functional Genomics and Computational Biology, Thomas Jefferson University, Philadelphia, PA, United States
| | | | - James S. Schwaber
- Department of Pathology, Anatomy, and Cell Biology, Daniel Baugh Institute for Functional Genomics and Computational Biology, Thomas Jefferson University, Philadelphia, PA, United States
| |
Collapse
|
15
|
Zhang S, Dai M, Wang X, Jiang SH, Hu LP, Zhang XL, Zhang ZG. Signalling entrains the peripheral circadian clock. Cell Signal 2020; 69:109433. [PMID: 31982551 DOI: 10.1016/j.cellsig.2019.109433] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 09/29/2019] [Accepted: 09/29/2019] [Indexed: 12/18/2022]
Abstract
In mammals, 24-h rhythms of behaviour and physiology are regulated by the circadian clock. The circadian clock is controlled by a central clock in the brain's suprachiasmatic nucleus (SCN) that synchronizes peripheral clocks in peripheral tissues. Clock genes in the SCN are primarily entrained by light. Increasing evidence has shown that peripheral clocks are also regulated by light and hormones independent of the SCN. How the peripheral clocks deal with internal signals is dependent on the relevance of a specific cue to a specific tissue. In different tissues, most genes that are under circadian control are not overlapping, revealing the tissue-specific control of peripheral clocks. We will discuss how different signals control the peripheral clocks in different peripheral tissues, such as the liver, gastrointestinal tract, and pancreas, and discuss the organ-to-organ communication between the peripheral clocks at the molecular level.
Collapse
Affiliation(s)
- Shan Zhang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Miao Dai
- Department of Gynecologic Oncology, Hunan Cancer Hospital, the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan Province, China
| | - Xu Wang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Shu-Heng Jiang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Li-Peng Hu
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xue-Li Zhang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| | - Zhi-Gang Zhang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
16
|
Zhou S, Dai YM, Zeng XF, Chen HZ. Circadian Clock and Sirtuins in Diabetic Lung: A Mechanistic Perspective. Front Endocrinol (Lausanne) 2020; 11:173. [PMID: 32308644 PMCID: PMC7145977 DOI: 10.3389/fendo.2020.00173] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Accepted: 03/10/2020] [Indexed: 12/16/2022] Open
Abstract
Diabetes-induced tissue injuries in target organs such as the kidney, heart, eye, liver, skin, and nervous system contribute significantly to the morbidity and mortality of diabetes. However, whether the lung should be considered a diabetic target organ has been discussed for decades. Accumulating evidence shows that both pulmonary histological changes and functional abnormalities have been observed in diabetic patients, suggesting that the lung is a diabetic target organ. Mechanisms underlying diabetic lung are unclear, however, oxidative stress, systemic inflammation, and premature aging convincingly contribute to them. Circadian system and Sirtuins have been well-documented to play important roles in above mechanisms. Circadian rhythms are intrinsic mammalian biological oscillations with a period of near 24 h driven by the circadian clock system. This system plays an important role in the regulation of energy metabolism, oxidative stress, inflammation, cellular proliferation and senescence, thus impacting metabolism-related diseases, chronic airway diseases and cancers. Sirtuins, a family of adenine dinucleotide (NAD+)-dependent histone deacetylases, have been demonstrated to regulate a series of physiological processes and affect diseases such as obesity, insulin resistance, type 2 diabetes (T2DM), heart disease, cancer, and aging. In this review, we summarize recent advances in the understanding of the roles of the circadian clock and Sirtuins in regulating cellular processes and highlight the potential interactions of the circadian clock and Sirtuins in the context of diabetic lung.
Collapse
Affiliation(s)
- Shuang Zhou
- Department of Rheumatology, National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- *Correspondence: Shuang Zhou
| | - Yi-Min Dai
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiao-Feng Zeng
- Department of Rheumatology, National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Hou-Zao Chen
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Hou-Zao Chen ;
| |
Collapse
|
17
|
Giannetto C, Fazio F, Alberghina D, Giudice E, Piccione G. Clock Genes Expression in Peripheral Leukocytes and Plasma Melatonin Daily Rhythm in Horses. J Equine Vet Sci 2019; 84:102856. [PMID: 31864454 DOI: 10.1016/j.jevs.2019.102856] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 08/01/2019] [Accepted: 11/08/2019] [Indexed: 11/24/2022]
Abstract
In mammals, behavioral and physiological processes display 24-hour rhythms that are regulated by the circadian system. In the present study, we investigated clock gene expression in peripheral leukocytes in horses. For this purpose, 10 Italian Saddle gelding horses (9-11 years old; 475 ± 28 Kg) were housed in individual boxes under natural photoperiod and natural environmental temperature. Blood samples were collected at 4-hour intervals over a 48-hour period. The day before the start of sampling, left jugular furrow of each horse was cannulated for the blood sample collection performed in heparinized tubes, for the assessment of melatonin concentration by means of radioimmunoassay and into PAX gene Blood RNA Tube for the assessment of clock genes by real-time RT-quantitative polymerase chain reaction (RTqPCR). Well-established melatonin showed a daily rhythm with nocturnal acrophase (day 1-21:30; day 2-21:40). All genes tested (Bmal1, Cry 1, Per 1, Per 2, and Per 3) except Clock showed daily rhythmicity of their expression in peripheral blood. Oscillations of Bmal1 and Per 2 were correlated with the oscillation of melatonin, which anticipated the acrophase of Bmal1 (day 1-01:29; day 2-01:00) and Per 2 (day 1-01:00; day 2-00:32) of about 3 hours. Our results support the presence of a cyclic transcription of clock genes in peripheral leukocytes in horses.
Collapse
Affiliation(s)
- Claudia Giannetto
- Department of Veterinary Sciences, University of Messina, Polo Universitario dell'Annunziata, Messina, Italy
| | - Francesco Fazio
- Department of Veterinary Sciences, University of Messina, Polo Universitario dell'Annunziata, Messina, Italy
| | - Daniela Alberghina
- Department of Veterinary Sciences, University of Messina, Polo Universitario dell'Annunziata, Messina, Italy
| | - Elisabetta Giudice
- Department of Veterinary Sciences, University of Messina, Polo Universitario dell'Annunziata, Messina, Italy
| | - Giuseppe Piccione
- Department of Veterinary Sciences, University of Messina, Polo Universitario dell'Annunziata, Messina, Italy.
| |
Collapse
|
18
|
The Period 2 Enhancer Nobiletin as Novel Therapy in Murine Models of Circadian Disruption Resembling Delirium. Crit Care Med 2019; 46:e600-e608. [PMID: 29489460 DOI: 10.1097/ccm.0000000000003077] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
OBJECTIVES Delirium occurs in approximately 30% of critically ill patients, and the risk of dying during admission doubles in those patients. Molecular mechanisms causing delirium are largely unknown. However, critical illness and the ICU environment consistently disrupt circadian rhythms, and circadian disruptions are strongly associated with delirium. Exposure to benzodiazepines and constant light are suspected risk factors for the development of delirium. Thus, we tested the functional role of the circadian rhythm protein Period 2 (PER2) in different mouse models resembling delirium. DESIGN Animal study. SETTING University experimental laboratory. SUBJECTS Wildtype, Per2 mice. INTERVENTIONS Midazolam, lipopolysaccharide (lipopolysaccharide), constant light, nobiletin, or sham-treated animals. MEASUREMENTS AND MAIN RESULTS Midazolam significantly reduced the expression of PER2 in the suprachiasmatic nucleus and the hippocampus of wild-type mice. Behavioral tests following midazolam exposure revealed a robust phenotype including executive dysfunction and memory impairment suggestive of delirium. These findings indicated a critical role of hippocampal expressed PER2. Similar results were obtained in mice exposed to lipopolysaccharide or constant light. Subsequent studies in Per2 mice confirmed a functional role of PER2 in a midazolam-induced delirium-like phenotype. Using the small molecule nobiletin to enhance PER2 function, the cognitive deficits induced by midazolam or constant light were attenuated in wild-type mice. CONCLUSIONS These experiments identify a novel role for PER2 during a midazolam- or constant light-induced delirium-like state, highlight the importance of hippocampal PER2 expression for cognitive function, and suggest the PER2 enhancer nobiletin as potential therapy in delirium-like conditions associated with circadian disruption.
Collapse
|
19
|
Park S, Lee ES, Park NH, Hwang K, Cho EG. Circadian Expression of TIMP3 Is Disrupted by UVB Irradiation and Recovered by Green Tea Extracts. Int J Mol Sci 2019; 20:ijms20040862. [PMID: 30781538 PMCID: PMC6412890 DOI: 10.3390/ijms20040862] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 01/29/2019] [Accepted: 02/12/2019] [Indexed: 12/18/2022] Open
Abstract
The human skin is the outermost physical barrier and has its own circadian machinery that works either cooperatively with the central clock, or autonomously. Circadian rhythms have been observed in many functions related to epidermal homeostasis including hydration and inflammation, and this functional oscillation is disturbed by ultraviolet radiation (UVR), which is a strong environmental cue. Among the genes estimated to show circadian expression in the skin, metalloproteinase inhibitor 3 (TIMP3), has a rhythmic expression in synchronized human keratinocytes similar to that of the core clock gene PER1 and an epidermal circadian regulatory gene, aquaporin 3 (AQP3) but was antiphase to the core clock gene BMAL1. Tumor necrosis factor-α (TNF-α), the regulatory target of TIMP3 via a disintegrin and metalloproteinase domain 17 (ADAM17), was inversely regulated when TIMP3 expression was downregulated by ultraviolet B (UVB) treatment. When synthetic TIMP3 peptides were applied to the cells, the secretion of TNF-α did not increase following the UVB treatment. Similar to TIMP3 peptides, Camellia sinensis leaf-derived extracts showed a distinguishing efficacy in recovering TIMP3 expression, downregulated by UVB treatment. Together, our results suggest that TIMP3 reversely mediates UVR-induced inflammation by being highly expressed during the daytime; therefore, recovering the circadian expression of TIMP3 using synthetic TIMP3 peptides or bioactive natural ingredients could at least in part inhibit the UVR-induced cellular phenomena.
Collapse
Affiliation(s)
- Sunyoung Park
- Basic Research & Innovation Division, R&D Unit, AmorePacific Corporation, 1920 Yonggu-daero, Giheung-gu, Yongin-si, Gyeonggi-do 17074, Korea.
| | - Eun-Soo Lee
- Basic Research & Innovation Division, R&D Unit, AmorePacific Corporation, 1920 Yonggu-daero, Giheung-gu, Yongin-si, Gyeonggi-do 17074, Korea.
| | - Nok-Hyun Park
- Basic Research & Innovation Division, R&D Unit, AmorePacific Corporation, 1920 Yonggu-daero, Giheung-gu, Yongin-si, Gyeonggi-do 17074, Korea.
| | - Kyeonghwan Hwang
- Basic Research & Innovation Division, R&D Unit, AmorePacific Corporation, 1920 Yonggu-daero, Giheung-gu, Yongin-si, Gyeonggi-do 17074, Korea.
| | - Eun-Gyung Cho
- Basic Research & Innovation Division, R&D Unit, AmorePacific Corporation, 1920 Yonggu-daero, Giheung-gu, Yongin-si, Gyeonggi-do 17074, Korea.
| |
Collapse
|
20
|
Renthlei Z, Gurumayum T, Borah BK, Trivedi AK. Daily expression of clock genes in central and peripheral tissues of tree sparrow (Passer montanus). Chronobiol Int 2018; 36:110-121. [DOI: 10.1080/07420528.2018.1523185] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
21
|
Sundar IK, Sellix MT, Rahman I. Redox regulation of circadian molecular clock in chronic airway diseases. Free Radic Biol Med 2018; 119:121-128. [PMID: 29097215 PMCID: PMC5910271 DOI: 10.1016/j.freeradbiomed.2017.10.383] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 10/12/2017] [Accepted: 10/25/2017] [Indexed: 12/21/2022]
Abstract
At the cellular level, circadian timing is maintained by the molecular clock, a family of interacting clock gene transcription factors, nuclear receptors and kinases called clock genes. Daily rhythms in pulmonary function are dictated by the circadian timing system, including rhythmic susceptibility to the harmful effects of airborne pollutants, exacerbations in patients with chronic airway disease and the immune-inflammatory response to infection. Further, evidence strongly suggests that the circadian molecular clock has a robust reciprocal interaction with redox signaling and plays a considerable role in the response to oxidative/carbonyl stress. Disruption of the circadian timing system, particularly in airway cells, impairs pulmonary rhythms and lung function, enhances oxidative stress due to airway inhaled pollutants like cigarette smoke and airborne particulate matter and leads to enhanced inflammosenescence, inflammasome activation, DNA damage and fibrosis. Herein, we briefly review recent evidence supporting the role of the lung molecular clock and redox signaling in regulating inflammation, oxidative stress, and DNA damage responses in lung diseases and their exacerbations. We further describe the potential for clock genes as novel biomarkers and therapeutic targets for the treatment of chronic lung diseases.
Collapse
Affiliation(s)
- Isaac K Sundar
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY, USA
| | - Michael T Sellix
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, University of Rochester Medical Center, Rochester, NY, USA
| | - Irfan Rahman
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY, USA.
| |
Collapse
|
22
|
de Assis LVM, Moraes MN, Magalhães-Marques KK, Kinker GS, da Silveira Cruz-Machado S, Castrucci AMDL. Non-Metastatic Cutaneous Melanoma Induces Chronodisruption in Central and Peripheral Circadian Clocks. Int J Mol Sci 2018; 19:E1065. [PMID: 29614021 PMCID: PMC5979525 DOI: 10.3390/ijms19041065] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 03/27/2018] [Accepted: 03/29/2018] [Indexed: 12/11/2022] Open
Abstract
The biological clock has received increasing interest due to its key role in regulating body homeostasis in a time-dependent manner. Cancer development and progression has been linked to a disrupted molecular clock; however, in melanoma, the role of the biological clock is largely unknown. We investigated the effects of the tumor on its micro- (TME) and macro-environments (TMaE) in a non-metastatic melanoma model. C57BL/6J mice were inoculated with murine B16-F10 melanoma cells and 2 weeks later the animals were euthanized every 6 h during 24 h. The presence of a localized tumor significantly impaired the biological clock of tumor-adjacent skin and affected the oscillatory expression of genes involved in light- and thermo-reception, proliferation, melanogenesis, and DNA repair. The expression of tumor molecular clock was significantly reduced compared to healthy skin but still displayed an oscillatory profile. We were able to cluster the affected genes using a human database and distinguish between primary melanoma and healthy skin. The molecular clocks of lungs and liver (common sites of metastasis), and the suprachiasmatic nucleus (SCN) were significantly affected by tumor presence, leading to chronodisruption in each organ. Taken altogether, the presence of non-metastatic melanoma significantly impairs the organism's biological clocks. We suggest that the clock alterations found in TME and TMaE could impact development, progression, and metastasis of melanoma; thus, making the molecular clock an interesting pharmacological target.
Collapse
Affiliation(s)
- Leonardo Vinícius Monteiro de Assis
- Laboratory of Comparative Physiology of Pigmentation, Department of Physiology, Institute of Biosciences, University of São Paulo, São Paulo 05508-900, Brazil.
| | - Maria Nathália Moraes
- Laboratory of Comparative Physiology of Pigmentation, Department of Physiology, Institute of Biosciences, University of São Paulo, São Paulo 05508-900, Brazil.
| | - Keila Karoline Magalhães-Marques
- Laboratory of Comparative Physiology of Pigmentation, Department of Physiology, Institute of Biosciences, University of São Paulo, São Paulo 05508-900, Brazil.
| | - Gabriela Sarti Kinker
- Laboratory of Chronopharmacology, Department of Physiology, Institute of Biosciences, University of São Paulo, São Paulo 05508-900, Brazil.
| | - Sanseray da Silveira Cruz-Machado
- Laboratory of Chronopharmacology, Department of Physiology, Institute of Biosciences, University of São Paulo, São Paulo 05508-900, Brazil.
| | - Ana Maria de Lauro Castrucci
- Laboratory of Comparative Physiology of Pigmentation, Department of Physiology, Institute of Biosciences, University of São Paulo, São Paulo 05508-900, Brazil.
- Department of Biology, University of Virginia, Charlottesville, VA 22904, USA.
| |
Collapse
|
23
|
Chun LE, Christensen J, Woodruff ER, Morton SJ, Hinds LR, Spencer RL. Adrenal-dependent and -independent stress-induced Per1 mRNA in hypothalamic paraventricular nucleus and prefrontal cortex of male and female rats. Stress 2018; 21:69-83. [PMID: 29165002 DOI: 10.1080/10253890.2017.1404571] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Oscillating clock gene expression gives rise to a molecular clock that is present not only in the body's master circadian pacemaker, the hypothalamic suprachiasmatic nucleus (SCN), but also in extra-SCN brain regions. These extra-SCN molecular clocks depend on the SCN for entrainment to a light:dark cycle. The SCN has limited neural efferents, so it may entrain extra-SCN molecular clocks through its well-established circadian control of glucocorticoid hormone secretion. Glucocorticoids can regulate the normal rhythmic expression of clock genes in some extra-SCN tissues. Untimely stress-induced glucocorticoid secretion may compromise extra-SCN molecular clock function. We examined whether acute restraint stress during the rat's inactive phase can rapidly (within 30 min) alter clock gene (Per1, Per2, Bmal1) and cFos mRNA (in situ hybridization) in the SCN, hypothalamic paraventricular nucleus (PVN), and prefrontal cortex (PFC) of male and female rats (6 rats per treatment group). Restraint stress increased Per1 and cFos mRNA in the PVN and PFC of both sexes. Stress also increased cFos mRNA in the SCN of male rats, but not when subsequently tested during their active phase. We also examined in male rats whether endogenous glucocorticoids are necessary for stress-induced Per1 mRNA (6-7 rats per treatment group). Adrenalectomy attenuated stress-induced Per1 mRNA in the PVN and ventral orbital cortex, but not in the medial PFC. These data indicate that increased Per1 mRNA may be a means by which extra-SCN molecular clocks adapt to environmental stimuli (e.g. stress), and in the PFC this effect is largely independent of glucocorticoids.
Collapse
Affiliation(s)
- Lauren E Chun
- a Department of Psychology and Neuroscience , Center for Neuroscience, University of Colorado Boulder , Boulder , CO , USA
| | - Jenny Christensen
- a Department of Psychology and Neuroscience , Center for Neuroscience, University of Colorado Boulder , Boulder , CO , USA
| | - Elizabeth R Woodruff
- a Department of Psychology and Neuroscience , Center for Neuroscience, University of Colorado Boulder , Boulder , CO , USA
| | - Sarah J Morton
- a Department of Psychology and Neuroscience , Center for Neuroscience, University of Colorado Boulder , Boulder , CO , USA
| | - Laura R Hinds
- a Department of Psychology and Neuroscience , Center for Neuroscience, University of Colorado Boulder , Boulder , CO , USA
| | - Robert L Spencer
- a Department of Psychology and Neuroscience , Center for Neuroscience, University of Colorado Boulder , Boulder , CO , USA
| |
Collapse
|
24
|
Sato F, Kohsaka A, Takahashi K, Otao S, Kitada Y, Iwasaki Y, Muragaki Y. Smad3 and Bmal1 regulate p21 and S100A4 expression in myocardial stromal fibroblasts via TNF-α. Histochem Cell Biol 2017; 148:617-624. [PMID: 28721450 DOI: 10.1007/s00418-017-1597-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/11/2017] [Indexed: 12/16/2022]
Abstract
Bmal1, a clock gene, is associated with depression, hypertrophy, metabolic syndrome and diabetes. Smad3, which is involved in the TGF-β signaling pathway, plays an important role in the regulation of tumor progression, fibrosis, obesity and diabetes. Our previous report showed that Smad3 has circadian expression in mouse livers. In the current study, we focused on the heart, especially on the myocardial stromal fibroblasts because the roles of Bmal1 and Smad3 in this tissue are poorly understood. Bmal1 and Smad3 have circadian expression in mouse hearts, and their circadian expression patterns were similar. Bmal1 expression decreased in the hearts of whole-body Smad3 knockout mice, whereas Smad3 expression had little effect on heart-specific Bmal1 knockout mice. Both Smad3 knockout and heart-specific Bmal1 knockout mice showed increases in p21, S100A4, CD206 and TNF-α expression in the myocardial stromal fibroblasts and macrophage compared to control mice. We also examined Smad3, Bmal1 and Dec1 expression in human tissue from old myocardial infarctions. Expression of Smad3, Bmal1 and Dec1 decreased in the stromal fibroblasts of tissue from old myocardial infarctions compared to control cases. On the other hand, p21, S100A4 and TNF-α increased in the stromal fibroblasts of tissue from old myocardial infarctions. Furthermore, expression of Smad3, Bmal1 and Dec1 decreased in TNF-α treated-NIH3T3 cells but expression of p21 and S100A4 increased. This new evidence suggests that Smad3 and Bmal1 regulate p21 and S100A4 expression in myocardial stromal fibroblasts through TNF-α.
Collapse
Affiliation(s)
- Fuyuki Sato
- Department of Pathology, Wakayama Medical University School of Medicine, 811-1 Kimiidera, Wakayama, 641-8509, Japan.
| | - Akira Kohsaka
- Department of Physiology, Wakayama Medical University School of Medicine, Wakayama, Japan
| | - Kana Takahashi
- Department of Pathology, Wakayama Medical University School of Medicine, 811-1 Kimiidera, Wakayama, 641-8509, Japan
| | - Saki Otao
- Department of Pathology, Wakayama Medical University School of Medicine, 811-1 Kimiidera, Wakayama, 641-8509, Japan
| | - Yusuke Kitada
- Department of Pathology, Wakayama Medical University School of Medicine, 811-1 Kimiidera, Wakayama, 641-8509, Japan
| | - Yoshiyuki Iwasaki
- Department of Pathology, Wakayama Medical University School of Medicine, 811-1 Kimiidera, Wakayama, 641-8509, Japan
| | - Yasuteru Muragaki
- Department of Pathology, Wakayama Medical University School of Medicine, 811-1 Kimiidera, Wakayama, 641-8509, Japan
| |
Collapse
|
25
|
Comas M, Gordon CJ, Oliver BG, Stow NW, King G, Sharma P, Ammit AJ, Grunstein RR, Phillips CL. A circadian based inflammatory response – implications for respiratory disease and treatment. SLEEP SCIENCE AND PRACTICE 2017. [DOI: 10.1186/s41606-017-0019-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
|
26
|
Jiang N, Wang Z, Cao J, Dong Y, Chen Y. Effect of monochromatic light on circadian rhythmic expression of clock genes in the hypothalamus of chick. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2017; 173:476-484. [PMID: 28668516 DOI: 10.1016/j.jphotobiol.2017.06.027] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Revised: 05/13/2017] [Accepted: 06/21/2017] [Indexed: 11/19/2022]
Abstract
To clarify the effect of monochromatic light on circadian clock gene expression in chick hypothalamus, a total 240 newly hatched chickens were reared under blue light (BL), green light (GL), red light (RL) and white light (WL), respectively. On the post-hatched day 14, 24-h profiles of seven core clock genes (cClock, cBmal1, cBmal2, cCry1, cCry2, cPer2 and cPer3) were measured at six time points (CT 0, CT 4, CT 8, CT 12, CT 16, CT 20, circadian time). We found all these clock genes expressed with a significant rhythmicity in different light wavelength groups. Meanwhile, cClock and cBmal1 showed a high level under GL, and followed a corresponding high expression of cCry1. However, RL decreased the expression levels of these genes. Be consistent with the mRNA level, CLOCK and BMAL1 proteins also showed a high level under GL. The CLOCK-like immunoreactive neurons were observed not only in the SCN, but also in the non-SCN brain region such as the nucleus anterior medialis hypothalami, the periventricularis nucleus, the paraventricular nucleus and the median eminence. All these results are consistent with the auto-regulatory circadian feedback loop, and indicate that GL may play an important role on the circadian time generation and development in the chick hypothalamus. Our results also suggest that the circadian clock in the chick hypothalamus such as non-SCN brain region were involved in the regulation of photo information.
Collapse
Affiliation(s)
- Nan Jiang
- Laboratory of Anatomy of Domestic Animals, College of Animal Medicine, China Agricultural University, Haidian, Beijing 100193, China
| | - Zixu Wang
- Laboratory of Anatomy of Domestic Animals, College of Animal Medicine, China Agricultural University, Haidian, Beijing 100193, China
| | - Jing Cao
- Laboratory of Anatomy of Domestic Animals, College of Animal Medicine, China Agricultural University, Haidian, Beijing 100193, China
| | - Yulan Dong
- Laboratory of Anatomy of Domestic Animals, College of Animal Medicine, China Agricultural University, Haidian, Beijing 100193, China
| | - Yaoxing Chen
- Laboratory of Anatomy of Domestic Animals, College of Animal Medicine, China Agricultural University, Haidian, Beijing 100193, China.
| |
Collapse
|
27
|
Terzibasi-Tozzini E, Martinez-Nicolas A, Lucas-Sánchez A. The clock is ticking. Ageing of the circadian system: From physiology to cell cycle. Semin Cell Dev Biol 2017. [PMID: 28630025 DOI: 10.1016/j.semcdb.2017.06.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The circadian system is the responsible to organise the internal temporal order in relation to the environment of every process of the organisms producing the circadian rhythms. These rhythms have a fixed phase relationship among them and with the environment in order to optimise the available energy and resources. From a cellular level, circadian rhythms are controlled by genetic positive and negative auto-regulated transcriptional and translational feedback loops, which generate 24h rhythms in mRNA and protein levels of the clock components. It has been described about 10% of the genome is controlled by clock genes, with special relevance, due to its implications, to the cell cycle. Ageing is a deleterious process which affects all the organisms' structures including circadian system. The circadian system's ageing may produce a disorganisation among the circadian rhythms, arrhythmicity and, even, disconnection from the environment, resulting in a detrimental situation to the organism. In addition, some environmental conditions can produce circadian disruption, also called chronodisruption, which may produce many pathologies including accelerated ageing. Finally, some strategies to prevent, palliate or counteract chronodisruption effects have been proposed to enhance the circadian system, also called chronoenhancement. This review tries to gather recent advances in the chronobiology of the ageing process, including cell cycle, neurogenesis process and physiology.
Collapse
Affiliation(s)
| | - Antonio Martinez-Nicolas
- Department of Physiology, Faculty of Biology, University of Murcia, Campus Mare Nostrum, IUIE. IMIB-Arrixaca, Murcia, Spain; Ciber Fragilidad y Envejecimiento Saludable (CIBERFES), Madrid, Spain
| | - Alejandro Lucas-Sánchez
- Department of Physiology, Faculty of Biology, University of Murcia, Campus Mare Nostrum, IUIE. IMIB-Arrixaca, Murcia, Spain; Ciber Fragilidad y Envejecimiento Saludable (CIBERFES), Madrid, Spain.
| |
Collapse
|
28
|
Cho CH, Moon JH, Yoon HK, Kang SG, Geum D, Son GH, Lim JM, Kim L, Lee EI, Lee HJ. Molecular circadian rhythm shift due to bright light exposure before bedtime is related to subthreshold bipolarity. Sci Rep 2016; 6:31846. [PMID: 27545669 PMCID: PMC4992827 DOI: 10.1038/srep31846] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Accepted: 07/27/2016] [Indexed: 12/18/2022] Open
Abstract
This study examined the link between circadian rhythm changes due to bright light exposure and subthreshold bipolarity. Molecular circadian rhythms, polysomnography, and actigraphy data were studied in 25 young, healthy male subjects, divided into high and low mood disorder questionnaire (MDQ) score groups. During the first 2 days of the study, the subjects were exposed to daily-living light (150 lux) for 4 hours before bedtime. Saliva and buccal cells were collected 5 times a day for 2 consecutive days. During the subsequent 5 days, the subjects were exposed to bright light (1,000 lux), and saliva and buccal cell samples were collected in the same way. Molecular circadian rhythms were analyzed using sine regression. Circadian rhythms of cortisol (F = 16.956, p < 0.001) and relative PER1/ARNTL gene expression (F = 122.1, p < 0.001) showed a delayed acrophase in both groups after bright light exposure. The high MDQ score group showed a significant delay in acrophase compared to the low MDQ score group only in salivary cortisol (F = 8.528, p = 0.008). The high MDQ score group showed hypersensitivity in cortisol rhythm shift after bright light exposure, suggesting characteristic molecular circadian rhythm changes in the high MDQ score group may be related to biological processes downstream from core circadian clock gene expression.
Collapse
Affiliation(s)
- Chul-Hyun Cho
- Department of Psychiatry, Korea University College of Medicine, Seoul, South Korea
- Sleep-Wake Disorders Center, Korea University Anam Hospital, Seoul, South Korea
| | - Joung-Ho Moon
- Department of Biomedical Science, Korea University College of Medicine, Seoul, South Korea
| | - Ho-Kyoung Yoon
- Department of Psychiatry, Korea University College of Medicine, Seoul, South Korea
- Sleep-Wake Disorders Center, Korea University Anam Hospital, Seoul, South Korea
| | - Seung-Gul Kang
- Department of Psychiatry, Gachon University School of Medicine, Incheon, South Korea
| | - Dongho Geum
- Department of Biomedical Science, Korea University College of Medicine, Seoul, South Korea
| | - Gi-Hoon Son
- Department of Legal Medicine, Korea University College of Medicine, Seoul, South Korea
| | - Jong-Min Lim
- Department of Lighting Environment Research, Korea Institute of Lighting Technology, Seoul, South Korea
| | - Leen Kim
- Department of Psychiatry, Korea University College of Medicine, Seoul, South Korea
- Sleep-Wake Disorders Center, Korea University Anam Hospital, Seoul, South Korea
| | - Eun-Il Lee
- Department of Preventive Medicine, Korea University College of Medicine, Seoul, South Korea
| | - Heon-Jeong Lee
- Department of Psychiatry, Korea University College of Medicine, Seoul, South Korea
- Sleep-Wake Disorders Center, Korea University Anam Hospital, Seoul, South Korea
- Department of Biomedical Science, Korea University College of Medicine, Seoul, South Korea
| |
Collapse
|
29
|
Tong Y, Guo H, Brewer JM, Lee H, Lehman MN, Bittman EL. Expression of haPer1 and haBmal1 in Syrian Hamsters: Heterogeneity of Transcripts and Oscillations in the Periphery. J Biol Rhythms 2016; 19:113-25. [PMID: 15038851 DOI: 10.1177/0748730403262871] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The molecular biology of circadian rhythms has been extensively studied in mice, and the widespread expression of canonical circadian clock genes in peripheral organs is well established in this species. In contrast, much less information about the peripheral expression of haPer1, haPer2, and haBmal1 is available in Syrian hamsters despite the fact that this species is widely used for studies of circadian organization and photoperiodic responses. Furthermore, examination of oscillating expression of these genes in mouse testis has generated discrepant results, and little is known about gonadal expression of haPer1 and haBmal1 or their environmental control. To address these questions, the authors examined the pattern of haPer1 and haBmal1 in heart, kidney, liver, muscle, spleen, and testis of hamsters exposed to DD. In most organs, Northern blots suggested the existence of single transcripts of each of these messenger RNAs (mRNAs). haPer1 peaked in late subjective day and haBmal1 during the late subjective night. Closer inspection of SCN and muscle haPer1, however, revealed the existence of two major transcripts of similar size, as well as minor transcripts that varied in the 3′-untranslated region. In hamster testis, two haPer1 transcripts were found, both of which are truncated relative to the corresponding mouse transcript and both of which contain a sequence homologous to intron 18 of mPer1. Neither testis transcript contains a nuclear localization signal, and haPer1 transcripts lacked the putative C-terminal CRY1-binding domain. Furthermore, the testis deviated from the general pattern in that haPer1 and haBmal1 both peaked in the subjective night. In situ hybridization revealed that haPer1, but not haBmal1, showed a heterogeneous distribution among seminiferous tubules. Hamster testis also expresses 2 haPer2 transcripts, but no circadian variation is evident. In a second experiment, long-term exposure to DD sufficient to induce gonadal regression was found to eliminate circadian oscillations of both testicular haPer1 transcripts. In contrast, gonadal regression was accompanied by a more robust rhythm of haBmal1.
Collapse
Affiliation(s)
- Yanhong Tong
- Center for Neuroendocrine Studies, Program in Neuroscience and Behavior, and Department of Biology, University of Massachusetts, Amherst, MA 01003, USA
| | | | | | | | | | | |
Collapse
|
30
|
Sundar IK, Yao H, Sellix MT, Rahman I. Circadian clock-coupled lung cellular and molecular functions in chronic airway diseases. Am J Respir Cell Mol Biol 2015; 53:285-90. [PMID: 25938935 DOI: 10.1165/rcmb.2014-0476tr] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Airway diseases are associated with abnormal circadian rhythms of lung function, reflected in daily changes of airway caliber, airway resistance, respiratory symptoms, and abnormal immune-inflammatory responses. Circadian rhythms are generated at the cellular level by an autoregulatory feedback loop of interlocked transcription factors collectively referred to as clock genes. The molecular clock is altered by cigarette smoke, LPS, and bacterial and viral infections in mouse and human lungs and in patients with chronic airway diseases. Stress-mediated post-translational modification of molecular clock proteins, brain and muscle aryl hydrocarbon receptor nuclear translocator-like 1 (BMAL1) and PERIOD 2, is associated with a reduction in the activity/level of the deacetylase sirtuin 1 (SIRT1). Similarly, the levels of the nuclear receptor REV-ERBα and retinoic acid receptor-related orphan receptor α (ROR α), critical regulators of Bmal1 expression, are altered by environmental stresses. Molecular clock dysfunction is implicated in immune and inflammatory responses, DNA damage response, and cellular senescence. The molecular clock in the lung also regulates the timing of glucocorticoid sensitivity and phasic responsiveness to inflammation. Herein, we review our current understanding of clock-controlled cellular and molecular functions in the lungs, the impact of clock dysfunction in chronic airway disease, and the response of the pulmonary clock to different environmental perturbations. Furthermore, we discuss the evidence for candidate signaling pathways, such as the SIRT1-BMAL1-REV-ERBα axis, as novel targets for chronopharmacological management of chronic airway diseases.
Collapse
Affiliation(s)
- Isaac K Sundar
- Departments of 1 Environmental Medicine, Lung Biology and Disease Program, and
| | - Hongwei Yao
- Departments of 1 Environmental Medicine, Lung Biology and Disease Program, and
| | - Michael T Sellix
- 2 Medicine, Division of Endocrinology, Diabetes and Metabolism, University of Rochester Medical Center, Rochester, New York
| | - Irfan Rahman
- Departments of 1 Environmental Medicine, Lung Biology and Disease Program, and
| |
Collapse
|
31
|
Santos EADS, Marques TEBS, Matos HDC, Leite JP, Garcia-Cairasco N, Paçó-Larson ML, Gitaí DLG. Diurnal Variation Has Effect on Differential Gene Expression Analysis in the Hippocampus of the Pilocarpine-Induced Model of Mesial Temporal Lobe Epilepsy. PLoS One 2015; 10:e0141121. [PMID: 26473354 PMCID: PMC4608695 DOI: 10.1371/journal.pone.0141121] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Accepted: 10/05/2015] [Indexed: 12/31/2022] Open
Abstract
The molecular mechanisms underlying epileptogenesis have been widely investigated by differential gene expression approach, especially RT-qPCR methodology. However, controversial findings highlight the occurrence of unpredictable sources of variance in the experimental designs. Here, we investigated if diurnal rhythms of transcript's levels may impact on differential gene expression analysis in hippocampus of rats with experimental epilepsy. For this, we have selected six core clock genes (Per1, Per3, Bmal1, Clock, Cry1 and Cry2), whose rhythmic expression pattern in hippocampus had been previously reported. Initially, we identified Tubb2a/Rplp1 and Tubb2a/Ppia as suitable normalizers for circadian studies in hippocampus of rats maintained to 12:12 hour light:dark (LD) cycle. Next, we confirmed the temporal profiling of Per1, Per3, Bmal1, Cry1 and Cry2 mRNA levels in the hippocampus of naive rats by both Acrophase and CircWave statistical tests for circadian analysis. Finally, we showed that temporal differences of sampling can change experimental results for Per1, Per3, Bmal1, Cry1 and Cry2, but not for Clock, which was consistently decreased in rats with epilepsy in all comparison to the naive group. In conclusion, our study demonstrates it is mandatory to consider diurnal oscillations, in order to avoid erroneous conclusions in gene expression analysis in hippocampus of rats with epilepsy. Investigators, therefore, should be aware that genes with circadian expression could be out of phase in different animals of experimental and control groups. Moreover, our results indicate that a sub-expression of Clock may be involved in epileptogenicity, although the functional significance of this remains to be investigated.
Collapse
Affiliation(s)
- Evelin Antonieli da Silva Santos
- Department of Cellular and Molecular Biology, Institute of Biological Sciences and Health, Federal University of Alagoas, Maceio, Alagoas, Brazil
| | | | - Heloísa de Carvalho Matos
- Department of Cellular and Molecular Biology, Institute of Biological Sciences and Health, Federal University of Alagoas, Maceio, Alagoas, Brazil
| | - João Pereira Leite
- Department of Neurology, Ribeirão Preto School of Medicine, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Norberto Garcia-Cairasco
- Department of Physiology, Ribeirão Preto School of Medicine, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Maria Luisa Paçó-Larson
- Department of Cellular and Molecular Biology, Ribeirão Preto School of Medicine, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Daniel Leite Góes Gitaí
- Department of Cellular and Molecular Biology, Institute of Biological Sciences and Health, Federal University of Alagoas, Maceio, Alagoas, Brazil
- * E-mail:
| |
Collapse
|
32
|
Malik A, Kondratov RV, Jamasbi RJ, Geusz ME. Circadian Clock Genes Are Essential for Normal Adult Neurogenesis, Differentiation, and Fate Determination. PLoS One 2015; 10:e0139655. [PMID: 26439128 PMCID: PMC4595423 DOI: 10.1371/journal.pone.0139655] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Accepted: 08/15/2015] [Indexed: 02/01/2023] Open
Abstract
Adult neurogenesis creates new neurons and glia from stem cells in the human brain throughout life. It is best understood in the dentate gyrus (DG) of the hippocampus and the subventricular zone (SVZ). Circadian rhythms have been identified in the hippocampus, but the role of any endogenous circadian oscillator cells in hippocampal neurogenesis and their importance in learning or memory remains unclear. Any study of stem cell regulation by intrinsic circadian timing within the DG is complicated by modulation from circadian clocks elsewhere in the brain. To examine circadian oscillators in greater isolation, neurosphere cultures were prepared from the DG of two knockout mouse lines that lack a functional circadian clock and from mPer1::luc mice to identify circadian oscillations in gene expression. Circadian mPer1 gene activity rhythms were recorded in neurospheres maintained in a culture medium that induces neurogenesis but not in one that maintains the stem cell state. Although the differentiating neural stem progenitor cells of spheres were rhythmic, evidence of any mature neurons was extremely sparse. The circadian timing signal originated in undifferentiated cells within the neurosphere. This conclusion was supported by immunocytochemistry for mPER1 protein that was localized to the inner, more stem cell-like neurosphere core. To test for effects of the circadian clock on neurogenesis, media conditions were altered to induce neurospheres from BMAL1 knockout mice to differentiate. These cultures displayed unusually high differentiation into glia rather than neurons according to GFAP and NeuN expression, respectively, and very few BetaIII tubulin-positive, immature neurons were observed. The knockout neurospheres also displayed areas visibly devoid of cells and had overall higher cell death. Neurospheres from arrhythmic mice lacking two other core clock genes, Cry1 and Cry2, showed significantly reduced growth and increased astrocyte proliferation during differentiation, but they generated normal percentages of neuronal cells. Neuronal fate commitment therefore appears to be controlled through a non-clock function of BMAL1. This study provides insight into how cell autonomous circadian clocks and clock genes regulate adult neural stem cells with implications for treating neurodegenerative disorders and impaired brain functions by manipulating neurogenesis.
Collapse
Affiliation(s)
- Astha Malik
- Department of Biology, Bowling Green State University, Bowling Green, Ohio, United States of America
| | - Roman V. Kondratov
- Department of Biological, Geological, and Environmental Sciences, Cleveland State University, Cleveland, Ohio, United States of America
| | - Roudabeh J. Jamasbi
- Department of Biology, Bowling Green State University, Bowling Green, Ohio, United States of America
- Department of Public and Allied Health, Bowling Green State University, Bowling Green, Ohio, United States of America
| | - Michael E. Geusz
- Department of Biology, Bowling Green State University, Bowling Green, Ohio, United States of America
| |
Collapse
|
33
|
Sundar IK, Yao H, Sellix MT, Rahman I. Circadian molecular clock in lung pathophysiology. Am J Physiol Lung Cell Mol Physiol 2015; 309:L1056-75. [PMID: 26361874 DOI: 10.1152/ajplung.00152.2015] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Accepted: 09/08/2015] [Indexed: 02/06/2023] Open
Abstract
Disrupted daily or circadian rhythms of lung function and inflammatory responses are common features of chronic airway diseases. At the molecular level these circadian rhythms depend on the activity of an autoregulatory feedback loop oscillator of clock gene transcription factors, including the BMAL1:CLOCK activator complex and the repressors PERIOD and CRYPTOCHROME. The key nuclear receptors and transcription factors REV-ERBα and RORα regulate Bmal1 expression and provide stability to the oscillator. Circadian clock dysfunction is implicated in both immune and inflammatory responses to environmental, inflammatory, and infectious agents. Molecular clock function is altered by exposomes, tobacco smoke, lipopolysaccharide, hyperoxia, allergens, bleomycin, as well as bacterial and viral infections. The deacetylase Sirtuin 1 (SIRT1) regulates the timing of the clock through acetylation of BMAL1 and PER2 and controls the clock-dependent functions, which can also be affected by environmental stressors. Environmental agents and redox modulation may alter the levels of REV-ERBα and RORα in lung tissue in association with a heightened DNA damage response, cellular senescence, and inflammation. A reciprocal relationship exists between the molecular clock and immune/inflammatory responses in the lungs. Molecular clock function in lung cells may be used as a biomarker of disease severity and exacerbations or for assessing the efficacy of chronotherapy for disease management. Here, we provide a comprehensive overview of clock-controlled cellular and molecular functions in the lungs and highlight the repercussions of clock disruption on the pathophysiology of chronic airway diseases and their exacerbations. Furthermore, we highlight the potential for the molecular clock as a novel chronopharmacological target for the management of lung pathophysiology.
Collapse
Affiliation(s)
- Isaac K Sundar
- Department of Environmental Medicine, Lung Biology and Disease Program, University of Rochester Medical Center, Rochester, New York; and
| | - Hongwei Yao
- Department of Environmental Medicine, Lung Biology and Disease Program, University of Rochester Medical Center, Rochester, New York; and
| | - Michael T Sellix
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, University of Rochester Medical Center, Rochester, New York
| | - Irfan Rahman
- Department of Environmental Medicine, Lung Biology and Disease Program, University of Rochester Medical Center, Rochester, New York; and
| |
Collapse
|
34
|
Cadenas C, van de Sandt L, Edlund K, Lohr M, Hellwig B, Marchan R, Schmidt M, Rahnenführer J, Oster H, Hengstler JG. Loss of circadian clock gene expression is associated with tumor progression in breast cancer. Cell Cycle 2015; 13:3282-91. [PMID: 25485508 PMCID: PMC4613905 DOI: 10.4161/15384101.2014.954454] [Citation(s) in RCA: 164] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Several studies suggest a link between circadian rhythm disturbances and tumorigenesis. However, the association between circadian clock genes and prognosis in breast cancer has not been systematically studied. Therefore, we examined the expression of 17 clock components in tumors from 766 node-negative breast cancer patients that were untreated in both neoadjuvant and adjuvant settings. In addition, their association with metastasis-free survival (MFS) and correlation to clinicopathological parameters were investigated. Aiming to estimate functionality of the clockwork, we studied clock gene expression relationships by correlation analysis. Higher expression of several clock genes (e.g., CLOCK, PER1, PER2, PER3, CRY2, NPAS2 and RORC) was found to be associated with longer MFS in univariate Cox regression analyses (HR<1 and FDR-adjusted P < 0.05). Stratification according to molecular subtype revealed prognostic relevance for PER1, PER3, CRY2 and NFIL3 in the ER+/HER2- subgroup, CLOCK and NPAS2 in the ER-/HER2- subtype, and ARNTL2 in HER2+ breast cancer. In the multivariate Cox model, only PER3 (HR = 0.66; P = 0.016) and RORC (HR = 0.42; P = 0.003) were found to be associated with survival outcome independent of established clinicopathological parameters. Pairwise correlations between functionally-related clock genes (e.g., PER2-PER3 and CRY2-PER3) were stronger in ER+, HER2- and low-grade carcinomas; whereas, weaker correlation coefficients were observed in ER- and HER2+ tumors, high-grade tumors and tumors that progressed to metastatic disease. In conclusion, loss of clock genes is associated with worse prognosis in breast cancer. Coordinated co-expression of clock genes, indicative of a functional circadian clock, is maintained in ER+, HER2-, low grade and non-metastasizing tumors but is compromised in more aggressive carcinomas.
Collapse
Key Words
- ARNTL/2, aryl hydrocarbon receptor nuclear translocator-like/2
- BHLHE40/41, basic helix-loop-helix family, member e
- CLOCK, circadian locomotor output cycles kaput
- CRY1/2, cryptochrome circadian clock 1/2
- DBP, D site of albumin promoter (albumin D-box) binding protein
- DFS, disease-free survival
- ER, estrogen receptor
- HER2, human epidermal growth factor receptor 2
- HR, hazard ratio
- MFS, metastasis-free survival
- NFIL3, nuclear factor, interleukin 3 regulated
- NPAS2, neuronal PAS domain protein 2
- NR1D2, nuclear receptor subfamily 1, group D, member 2
- PER1/2/3, period circadian clock 1/2/3
- RORA/B/C, RAR-related orphan receptor alpha/beta/gamma
- SCN, suprachiasmatic nucleus
- breast cancer
- circadian clock
- clock genes
- estrogen receptor
- metastasis-free survival
- tumor progression
Collapse
Affiliation(s)
- Cristina Cadenas
- a Leibniz Research Centre for Working Environment an Human Factors (ifADo) at the TU Dortmund University ; Dortmund , Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Yang SC, Chen CL, Yi CH, Liu TT, Shieh KR. Changes in Gene Expression Patterns of Circadian-Clock, Transient Receptor Potential Vanilloid-1 and Nerve Growth Factor in Inflamed Human Esophagus. Sci Rep 2015; 5:13602. [PMID: 26337663 PMCID: PMC4559770 DOI: 10.1038/srep13602] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Accepted: 07/13/2015] [Indexed: 12/13/2022] Open
Abstract
Circadian rhythm is driven by the molecular circadian-clock system and regulates many physiological functions. Diurnal rhythms in the gastrointestinal tract are known to be related to feeding pattern, but whether these rhythms are also related to the gastrointestinal damage or injuries; for example, gastroesophageal reflux disease (GERD), is unclear. This study was conducted to determine whether expression of circadian-clock genes or factors involved in vagal stimulation or sensitization were altered in the esophagus of GERD patients. Diurnal patterns of PER1, PER2, BMAL1, CRY2, TRPV1, and NGF mRNA expression were found in patient controls, and these patterns were altered and significantly correlated to the GERD severity in GERD patients. Although levels of CRY1, TIM, CB1, NHE3, GDNF, and TAC1 mRNA expression did not show diurnal patterns, they were elevated and also correlated with GERD severity in GERD patients. Finally, strong correlations among PER1, TRPV1, NGF and CRY2 mRNA expression, and among PER2, TRPV1 and CRY2 expression were found. Expression levels of CRY1 mRNA highly correlated with levels of TIM, CB1, NHE3, GDNF and TAC1. This study suggests that the circadian rhythm in the esophagus may be important for the mediation of and/or the response to erosive damage in GERD patients.
Collapse
Affiliation(s)
- Shu-Chuan Yang
- General Education Center, Tzu Chi College of Technology, Hualien, Taiwan
| | - Chien-Lin Chen
- Department of Medicine, Buddhist Tzu Chi General Hospital, Hualien, Taiwan.,School of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Chih-Hsun Yi
- Department of Medicine, Buddhist Tzu Chi General Hospital, Hualien, Taiwan
| | - Tso-Tsai Liu
- Department of Medicine, Buddhist Tzu Chi General Hospital, Hualien, Taiwan
| | - Kun-Ruey Shieh
- School of Medicine, Tzu Chi University, Hualien, Taiwan.,Department of Physiology, Tzu Chi University, Hualien, Taiwan.,Institute of Physiological and Anatomical Medicine, Tzu Chi University, Hualien, Taiwan
| |
Collapse
|
36
|
Tseng HL, Yang SC, Yang SH, Shieh KR. Hepatic circadian-clock system altered by insulin resistance, diabetes and insulin sensitizer in mice. PLoS One 2015; 10:e0120380. [PMID: 25799429 PMCID: PMC4370469 DOI: 10.1371/journal.pone.0120380] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Accepted: 01/21/2015] [Indexed: 01/20/2023] Open
Abstract
Circadian rhythms are intrinsic rhythms that are coordinated with the rotation of the Earth and are also generated by a set of circadian-clock genes at the intracellular level. Growing evidence suggests a strong link between circadian rhythms and energy metabolism; however, the fundamental mechanisms remain unclear. In the present study, neonatal streptozotocin (STZ)-treated mice were used to model the molecular and physiological progress from insulin resistance to diabetes. Two-day-old male C57BL/6 mice received a single injection of STZ and were tested for non-obese, hyperglycemic and hyperinsulinemic conditions in the early stage, insulin resistance in the middle stage, and diabetes in the late stage. Gene expression levels of the hepatic circadian-clock system were examined by real-time quantitative PCR. Most of the components of the hepatic circadian-clock gene expression system, such as the mRNAs of Bmal1 (brain and muscle Arnt-like protein-1), Per2 (period 2) and Cry1 (cryptochrome 1), were elevated, and circadian patterns were retained in the early and middle stages of insulin-resistant conditions. The insulin sensitizer, rosiglitazone, returns the physiological and molecular changes associated with the diabetic phenotype to normal levels through peroxisome proliferator-activated receptor γ (PPARγ) rather than PPARα. Early and chronic treatment with rosiglitazone has been shown to be effective to counter the diabetic condition. Over time, this effect acts to attenuate the increased gene expression levels of the hepatic circadian-clock system and delay the severity of diabetic conditions. Together, these results support an essential role for the hepatic circadian-clock system in the coordinated regulation and/or response of metabolic pathways.
Collapse
Affiliation(s)
- Huey-Ling Tseng
- Institute of Medical Sciences, School of Medicine, Tzu Chi University, Hualien, Taiwan
- Department of Physiology, School of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Shu-Chuan Yang
- General Education Center, Tzu Chi College of Technology, Hualien, Taiwan
| | - Shih-Hsien Yang
- Institute of Medical Sciences, School of Medicine, Tzu Chi University, Hualien, Taiwan
- Department of Physiology, School of Medicine, Tzu Chi University, Hualien, Taiwan
- Department of Rehabilitation Medicine, Buddhist Tzu Chi General Hospital, Hualien, Taiwan
| | - Kun-Ruey Shieh
- Institute of Medical Sciences, School of Medicine, Tzu Chi University, Hualien, Taiwan
- Department of Physiology, School of Medicine, Tzu Chi University, Hualien, Taiwan
- * E-mail:
| |
Collapse
|
37
|
Manzella N, Bracci M, Ciarapica V, Staffolani S, Strafella E, Rapisarda V, Valentino M, Amati M, Copertaro A, Santarelli L. Circadian gene expression and extremely low-frequency magnetic fields: an in vitro study. Bioelectromagnetics 2015; 36:294-301. [PMID: 25808738 DOI: 10.1002/bem.21915] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2013] [Accepted: 03/06/2015] [Indexed: 12/31/2022]
Abstract
It is well known that circadian clocks are mainly regulated by light targeting signaling pathways in the hypothalamic suprachiasmatic nucleus. However, an entrainment mediated by non-photic sensory stimuli was also suggested for peripheral clocks. Exposure to extremely low frequency (ELF) electromagnetic fields might affect circadian rhythmicity. The goal of this research was to investigate effects of ELF magnetic fields (ELF-MF) on circadian clock genes in a human fibroblast cell line. We found that an ELF-MF (0.1 mT, 50 Hz) exposure was capable of entraining expression of clock genes BMAL1, PER2, PER3, CRY1, and CRY2. Moreover, ELF-MF treatment induced an alteration in circadian clock gene expression previously entrained by serum shock stimulation. These results support the hypothesis that ELF-MF may be able to drive circadian physiologic processes by modulating peripheral clock gene expression.
Collapse
Affiliation(s)
- Nicola Manzella
- Occupational Medicine, Department of Clinical and Molecular Sciences, Polytechnic University of Marche, Ancona, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Murphy BA, Blake CM, Brown JA, Martin AM, Forde N, Sweeney LM, Evans ACO. Evidence of a molecular clock in the ovine ovary and the influence of photoperiod. Theriogenology 2015; 84:208-16. [PMID: 25892340 DOI: 10.1016/j.theriogenology.2015.03.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Revised: 03/06/2015] [Accepted: 03/09/2015] [Indexed: 10/23/2022]
Abstract
The influence of the central circadian clock on reproductive timing is well established. Much less is known about the role of peripheral oscillators such as those in the ovary. We investigated the influence of photoperiod and timing of the LH surge on expression of circadian clock genes and genes involved in steroidogenesis in ovine ovarian stroma. Seventy-two Suffolk cross ewes were divided into two groups, and their estrous cycles were synchronized. Progestagen sponge removal was staggered by 12 hours between the groups such that expected LH peak would occur midway through either the light or dark phase of the photoperiodic cycle. Four animals from each group were killed, and their ovaries were harvested beginning 36 hours after sponge removal, at 6-hour intervals for 48 hours. Blood was sampled every 3 hours for the period 24 to 48 hours after sponge removal to detect the LH surge. The interval to peak LH did not differ between the groups (36.2 ± 1.2 and 35.6 ± 1.1 hours, respectively). There was an interaction between group and the time of sponge removal on the expression of the core clock genes ARNTL, PER1, CRY1, CLOCK, and DBP (P < 0.01, P < 0.05, P < 0.01, P < 0.01, and P < 0.01, respectively). As no significant interaction between group and time of day was detected, the datasets were combined. Statistically significant rhythmic oscillation was observed for ARNTL, CLOCK, CRY1 (P < 0.01, respectively), PTGS2, DBP, PTGER2, and CYP17A1 (P < 0.05, respectively), confirming the existence of a time-sensitive functionality within the ovary, which may influence steroidogenesis and is independent of the ovulatory cycle.
Collapse
Affiliation(s)
- B A Murphy
- School of Agriculture and Food Science, University College Dublin, Belfield, Dublin, Ireland
| | - C M Blake
- School of Agriculture and Food Science, University College Dublin, Belfield, Dublin, Ireland
| | - J A Brown
- School of Agriculture and Food Science, University College Dublin, Belfield, Dublin, Ireland
| | - A-M Martin
- School of Agriculture and Food Science, University College Dublin, Belfield, Dublin, Ireland
| | - N Forde
- School of Agriculture and Food Science, University College Dublin, Belfield, Dublin, Ireland
| | - L M Sweeney
- School of Agriculture and Food Science, University College Dublin, Belfield, Dublin, Ireland.
| | - A C O Evans
- School of Agriculture and Food Science, University College Dublin, Belfield, Dublin, Ireland
| |
Collapse
|
39
|
Disrupted light–dark cycle abolishes circadian expression of peripheral clock genes without inducing behavioral arrhythmicity in mice. Biochem Biophys Res Commun 2015; 458:256-61. [DOI: 10.1016/j.bbrc.2015.01.095] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Accepted: 01/21/2015] [Indexed: 11/20/2022]
|
40
|
Chakir I, Dumont S, Pévet P, Ouarour A, Challet E, Vuillez P. The circadian gene Clock oscillates in the suprachiasmatic nuclei of the diurnal rodent Barbary striped grass mouse, Lemniscomys barbarus: a general feature of diurnality? Brain Res 2014; 1594:165-72. [PMID: 25449886 DOI: 10.1016/j.brainres.2014.10.063] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2014] [Revised: 10/21/2014] [Accepted: 10/28/2014] [Indexed: 10/24/2022]
Abstract
A major challenge in the field of circadian rhythms is to understand the neural mechanisms controlling the oppositely phased temporal organization of physiology and behaviour between night- and day-active animals. Most identified components of the master clock in the suprachiasmatic nuclei (SCN), called circadian genes, display similar oscillations according to the time of day, independent of the temporal niche. This has led to the predominant view that the switch between night- and day-active animals occurs downstream of the master clock, likely also involving differential feedback of behavioral cues onto the SCN. The Barbary striped grass mouse, Lemniscomys barbarus is known as a day-active Muridae. Here we show that this rodent, when housed in constant darkness, displays a temporal rhythmicity of metabolism matching its diurnal behaviour (i.e., high levels of plasma leptin and hepatic glycogen during subjective midday and dusk, respectively). Regarding clockwork in their SCN, these mice show peaks in the mRNA profiles of the circadian gene Period1 (Per1) and the clock-controlled gene Vasopressin (Avp), which occur during the middle and late subjective day, respectively, in accordance with many observations in both diurnal and nocturnal species. Strikingly, expression of the circadian gene Clock in the SCN of the Barbary striped grass mouse was not constitutive as in nocturnal rodents, but it was rhythmic. As this is also the case for the other diurnal species investigated in the literature (sheep, marmoset, and quail), a hypothesis is that the transcriptional control of Clock within the SCN participates in the mechanisms underlying diurnality and nocturnality.
Collapse
Affiliation(s)
- Ibtissam Chakir
- Faculty of Science, Laboratory of Biology and Health, Abdelmalek Essaâdi University, BP2121, Tetouan 93002, Morocco; Regulation of Circadian Clocks Team, Institute for Cellular and Integrative Neurosciences, UPR3212, CNRS and University of Strasbourg, Strasbourg, France
| | - Stéphanie Dumont
- Regulation of Circadian Clocks Team, Institute for Cellular and Integrative Neurosciences, UPR3212, CNRS and University of Strasbourg, Strasbourg, France
| | - Paul Pévet
- Regulation of Circadian Clocks Team, Institute for Cellular and Integrative Neurosciences, UPR3212, CNRS and University of Strasbourg, Strasbourg, France
| | - Ali Ouarour
- Faculty of Science, Laboratory of Biology and Health, Abdelmalek Essaâdi University, BP2121, Tetouan 93002, Morocco
| | - Etienne Challet
- Regulation of Circadian Clocks Team, Institute for Cellular and Integrative Neurosciences, UPR3212, CNRS and University of Strasbourg, Strasbourg, France
| | - Patrick Vuillez
- Regulation of Circadian Clocks Team, Institute for Cellular and Integrative Neurosciences, UPR3212, CNRS and University of Strasbourg, Strasbourg, France.
| |
Collapse
|
41
|
Piccione G, Cannella V, Monteverde V, Bertolucci C, Frigato E, Congiu F, Guercio A. Circadian gene expression in peripheral blood of Bos taurus under different experimental condition. J Appl Biomed 2014. [DOI: 10.1016/j.jab.2014.07.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
42
|
Su Y, van der Spek R, Foppen E, Kwakkel J, Fliers E, Kalsbeek A. Effects of adrenalectomy on daily gene expression rhythms in the rat suprachiasmatic and paraventricular hypothalamic nuclei and in white adipose tissue. Chronobiol Int 2014; 32:211-24. [DOI: 10.3109/07420528.2014.963198] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
43
|
Markova EP, Shimada T, Takeda M. Daily Expression Patterns ofCycleandClockGenes in the Head of the Silkworm,Bombyx Mori. BIOTECHNOL BIOTEC EQ 2014. [DOI: 10.1080/13102818.2004.10819234] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
|
44
|
Markova-Car EP, Jurišić D, Ilić N, Kraljević Pavelić S. Running for time: circadian rhythms and melanoma. Tumour Biol 2014; 35:8359-68. [PMID: 24729125 DOI: 10.1007/s13277-014-1904-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Accepted: 03/27/2014] [Indexed: 12/22/2022] Open
Abstract
Circadian timing system includes an input pathway transmitting environmental signals to a core oscillator that generates circadian signals responsible for the peripheral physiological or behavioural events. Circadian 24-h rhythms regulate diverse physiologic processes. Deregulation of these rhythms is associated with a number of pathogenic conditions including depression, diabetes, metabolic syndrome and cancer. Melanoma is a less common type of skin cancer yet more aggressive often with a lethal ending. However, little is known about circadian control in melanoma and exact functional associations between core clock genes and development of melanoma skin cancer. This paper, therefore, comprehensively analyses current literature data on the involvement of circadian clock components in melanoma development. In particular, the role of circadian rhythm deregulation is discussed in the context of DNA repair mechanisms and influence of UV radiation and artificial light exposure on cancer development. The role of arylalkylamine N-acetyltransferase (AANAT) enzyme and impact of melatonin, as a major output factor of circadian rhythm, and its protective role in melanoma are discussed in details. We hypothesise that further understanding of clock genes' involvement and circadian regulation might foster discoveries in the field of melanoma diagnostics and treatment.
Collapse
Affiliation(s)
- Elitza P Markova-Car
- Department of Biotechnology, University of Rijeka, Radmile Matejčić 2, 51000, Rijeka, Croatia,
| | | | | | | |
Collapse
|
45
|
Circadian Clocks and Inflammation: Reciprocal Regulation and Shared Mediators. Arch Immunol Ther Exp (Warsz) 2014; 62:303-18. [DOI: 10.1007/s00005-014-0286-x] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2013] [Accepted: 01/22/2014] [Indexed: 02/06/2023]
|
46
|
Bonaconsa M, Malpeli G, Montaruli A, Carandente F, Grassi-Zucconi G, Bentivoglio M. Differential modulation of clock gene expression in the suprachiasmatic nucleus, liver and heart of aged mice. Exp Gerontol 2014; 55:70-9. [PMID: 24674978 DOI: 10.1016/j.exger.2014.03.011] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Revised: 02/24/2014] [Accepted: 03/17/2014] [Indexed: 11/30/2022]
Abstract
Studies on the molecular clockwork during aging have been hitherto addressed to core clock genes. These previous investigations indicate that circadian profiles of core clock gene expression at an advanced age are relatively preserved in the master circadian pacemaker and the hypothalamic suprachiasmatic nucleus (SCN), and relatively impaired in peripheral tissues. It remains to be clarified whether the effects of aging are confined to the primary loop of core clock genes, or also involve secondary clock loop components, including Rev-erbα and the clock-controlled genes Dbp and Dec1. Using quantitative real-time RT-PCR, we here report a comparative analysis of the circadian expression of canonical core clock genes (Per1, Per2, Cry1, Cry2, Clock and Bmal1) and non-core clock genes (Rev-erbα, Dbp and Dec1) in the SCN, liver, and heart of 3month-old vs 22month-old mice. The results indicate that circadian clock gene expression is significantly modified in the SCN and peripheral oscillators of aged mice. These changes are not only highly tissue-specific, but also involve different clock gene loops. In particular, we here report changes of secondary clock loop components in the SCN, changes of the primary clock loop in the liver, and minor changes of clock gene expression in the heart of aged mice. The present findings outline a track to further understanding of the role of primary and secondary clock loop components and their crosstalk in the impairment of circadian output which characterizes aging.
Collapse
Affiliation(s)
- Marta Bonaconsa
- Department of Neurological and Movement Sciences, University of Verona, Verona, Italy.
| | - Giorgio Malpeli
- Department of Pathology and Diagnostics, University of Verona, Verona, Italy
| | - Angela Montaruli
- Department of Biomedical Sciences for Health, University of Milan, Milan, Italy
| | - Franca Carandente
- Department of Biomedical Sciences for Health, University of Milan, Milan, Italy
| | | | - Marina Bentivoglio
- Department of Neurological and Movement Sciences, University of Verona, Verona, Italy
| |
Collapse
|
47
|
Vilches N, Spichiger C, Mendez N, Abarzua-Catalan L, Galdames HA, Hazlerigg DG, Richter HG, Torres-Farfan C. Gestational chronodisruption impairs hippocampal expression of NMDA receptor subunits Grin1b/Grin3a and spatial memory in the adult offspring. PLoS One 2014; 9:e91313. [PMID: 24663672 PMCID: PMC3963867 DOI: 10.1371/journal.pone.0091313] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2013] [Accepted: 02/10/2014] [Indexed: 11/18/2022] Open
Abstract
Epidemiological and experimental evidence correlates adverse intrauterine conditions with the onset of disease later in life. For a fetus to achieve a successful transition to extrauterine life, a myriad of temporally integrated humoral/biophysical signals must be accurately provided by the mother. We and others have shown the existence of daily rhythms in the fetus, with peripheral clocks being entrained by maternal cues, such as transplacental melatonin signaling. Among developing tissues, the fetal hippocampus is a key structure for learning and memory processing that may be anticipated as a sensitive target of gestational chronodisruption. Here, we used pregnant rats exposed to constant light treated with or without melatonin as a model of gestational chronodisruption, to investigate effects on the putative fetal hippocampus clock, as well as on adult offspring’s rhythms, endocrine and spatial memory outcomes. The hippocampus of fetuses gestated under light:dark photoperiod (12:12 LD) displayed daily oscillatory expression of the clock genes Bmal1 and Per2, clock-controlled genes Mtnr1b, Slc2a4, Nr3c1 and NMDA receptor subunits 1B-3A-3B. In contrast, in the hippocampus of fetuses gestated under constant light (LL), these oscillations were suppressed. In the adult LL offspring (reared in LD during postpartum), we observed complete lack of day/night differences in plasma melatonin and decreased day/night differences in plasma corticosterone. In the adult LL offspring, overall hippocampal day/night difference of gene expression was decreased, which was accompanied by a significant deficit of spatial memory. Notably, maternal melatonin replacement to dams subjected to gestational chronodisruption prevented the effects observed in both, LL fetuses and adult LL offspring. Collectively, the present data point to adverse effects of gestational chronodisruption on long-term cognitive function; raising challenging questions about the consequences of shift work during pregnancy. The present study also supports that developmental plasticity in response to photoperiodic cues may be modulated by maternal melatonin.
Collapse
Affiliation(s)
- Nelson Vilches
- Laboratorio de Cronobiologia del Desarrollo, Instituto de Anatomia, Histologia y Patologia, Facultad de Medicina, Universidad Austral de Chile, Valdivia, Chile
| | - Carlos Spichiger
- Laboratorio de Cronobiologia del Desarrollo, Instituto de Anatomia, Histologia y Patologia, Facultad de Medicina, Universidad Austral de Chile, Valdivia, Chile
| | - Natalia Mendez
- Laboratorio de Cronobiologia del Desarrollo, Instituto de Anatomia, Histologia y Patologia, Facultad de Medicina, Universidad Austral de Chile, Valdivia, Chile
| | - Lorena Abarzua-Catalan
- Laboratorio de Cronobiologia del Desarrollo, Instituto de Anatomia, Histologia y Patologia, Facultad de Medicina, Universidad Austral de Chile, Valdivia, Chile
| | - Hugo A. Galdames
- Laboratorio de Cronobiologia del Desarrollo, Instituto de Anatomia, Histologia y Patologia, Facultad de Medicina, Universidad Austral de Chile, Valdivia, Chile
| | - David G. Hazlerigg
- Institute of Biological and Environmental Sciences, Zoology Building, Tillydrone Avenue, University of Aberdeen, Aberdeen, United Kingdom
| | - Hans G. Richter
- Laboratorio de Cronobiologia del Desarrollo, Instituto de Anatomia, Histologia y Patologia, Facultad de Medicina, Universidad Austral de Chile, Valdivia, Chile
| | - Claudia Torres-Farfan
- Laboratorio de Cronobiologia del Desarrollo, Instituto de Anatomia, Histologia y Patologia, Facultad de Medicina, Universidad Austral de Chile, Valdivia, Chile
- * E-mail:
| |
Collapse
|
48
|
Polidarová L, Olejníková L, Paušlyová L, Sládek M, Soták M, Pácha J, Sumová A. Development and entrainment of the colonic circadian clock during ontogenesis. Am J Physiol Gastrointest Liver Physiol 2014; 306:G346-56. [PMID: 24337008 DOI: 10.1152/ajpgi.00340.2013] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Colonic morphology and function change significantly during ontogenesis. In mammals, many colonic physiological functions are temporally controlled by the circadian clock in the colon, which is entrained by the central circadian clock in the suprachiasmatic nuclei (SCN). The aim of this present study was to ascertain when and how the circadian clock in the colon develops during the perinatal period and whether maternal cues and/or the developing pup SCN may influence the ontogenesis of the colonic clock. Daily profiles of clock genes Per1, Per2, Cry1, Cry2, Rev-erbα, Bmal1, and Clock expression in the colon underwent significant modifications since embryonic day 20 (E20) through postnatal days (P) 2, 10, 20, and 30 via changes in the mutual phasing among the individual clock gene expression rhythms, their relative phasing to the light-dark regime, and their amplitudes. An adult-like state was achieved around P20. The foster study revealed that during the prenatal period, the maternal circadian phase may partially modulate development of the colonic clock. Postnatally, the absence and/or presence of rhythmic maternal care affected the phasing of the clock gene expression profiles in pups at P10 and P20. A reversal in the colonic clock phase between P10 and P20 occurred in the absence of rhythmic signals from the pup SCN. The data demonstrate ontogenetic maturation of the colonic clock and stress the importance of prenatal and postnatal maternal rhythmic signals for its development. These data may contribute to the understanding of colonic function-related diseases in newborn children.
Collapse
Affiliation(s)
- Lenka Polidarová
- Department of Neurohumoral Regulations, Institute of Physiology, Academy of Science of the Czech Republic, Prague, Czech Republic; and
| | | | | | | | | | | | | |
Collapse
|
49
|
Singh D, Rani S, Kumar V. Daily expression of six clock genes in central and peripheral tissues of a night-migratory songbird: evidence for tissue-specific circadian timing. Chronobiol Int 2013; 30:1208-17. [PMID: 23971885 DOI: 10.3109/07420528.2013.810632] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
In birds, independent circadian clocks reside in the retina, pineal, and hypothalamus, which interact with each other and produce circadian time at the functional level. However, less is known of the molecular clockwork, and of the integration between central and peripheral clocks in birds. The present study investigated this, by monitoring the timed expression of five core clock genes (Per2. Cry1. Cry2. Bmal1, and Clock) and one clock-controlled gene (E4bp4) in a night-migratory songbird, the redheaded bunting (rb; Emberiza bruniceps). The authors first partially cloned these six genes, and then measured their 24-h profiles in central (retina, hypothalamus) and peripheral (liver, heart, stomach, gut, testes) tissues, collected at six times (zeitgeber time 2 [ZT2], ZT6, ZT11, ZT13, ZT18, and ZT23; ZT0 = lights on) from birds (n = 5 per ZT) on 12 h:12 h light-dark cycle. rbPer2. rbCry1. rbBmal1, and rbClock were expressed with a significant rhythm in all the tissues, except in the retina (only rbClock) and testes. rbCry2, however, had tissue-specific expression pattern: a significant rhythm in the hypothalamus, heart, and gut, but not in the retina, liver, stomach, and testes. rbE4bp4 had a significant mRNA rhythm in all the tissues, except retina. Further, rbPer2 mRNA peak was phase aligned with lights on, whereas rbCry1. rbBmal1, and rbE4bp4 mRNA peaks were phase aligned with lights off. rbCry2 and rbClock had tissue-specific scattered peaks. For example, both rbCry2 and rbClock peaks were close to rbCry1 and rbBmal1 peaks, respectively, in the hypothalamus, but not in other tissues. The results are consistent with the autoregulatory circadian feedback loop, and indicate a conserved tissue-level circadian time generation in buntings. Variable phase relationships between gene pairs forming positive and negative limbs of the feedback loop may suggest the tissue-specific contribution of individual core circadian genes in the circadian time generation.
Collapse
Affiliation(s)
- Devraj Singh
- DST-IRHPA Center for Excellence in Biological Rhythms Research, Department of Zoology, University of Delhi , Delhi , India and
| | | | | |
Collapse
|
50
|
Mahoney CE, McKinley Brewer J, Bittman EL. Central control of circadian phase in arousal-promoting neurons. PLoS One 2013; 8:e67173. [PMID: 23826226 PMCID: PMC3691112 DOI: 10.1371/journal.pone.0067173] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2012] [Accepted: 05/14/2013] [Indexed: 11/18/2022] Open
Abstract
Cells of the dorsomedial/lateral hypothalamus (DMH/LH) that produce hypocretin (HCRT) promote arousal in part by activation of cells of the locus coeruleus (LC) which express tyrosine hydroxylase (TH). The suprachiasmatic nucleus (SCN) drives endogenous daily rhythms, including those of sleep and wakefulness. These circadian oscillations are generated by a transcriptional-translational feedback loop in which the Period (Per) genes constitute critical components. This cell-autonomous molecular clock operates not only within the SCN but also in neurons of other brain regions. However, the phenotype of such neurons and the nature of the phase controlling signal from the pacemaker are largely unknown. We used dual fluorescent in situ hybridization to assess clock function in vasopressin, HCRT and TH cells of the SCN, DMH/LH and LC, respectively, of male Syrian hamsters. In the first experiment, we found that Per1 expression in HCRT and TH oscillated in animals held in constant darkness with a peak phase that lagged that in AVP cells of the SCN by several hours. In the second experiment, hamsters induced to split their locomotor rhythms by exposure to constant light had asymmetric Per1 expression within cells of the middle SCN at 6 h before activity onset (AO) and in HCRT cells 9 h before and at AO. We did not observe evidence of lateralization of Per1 expression in the LC. We conclude that the SCN communicates circadian phase to HCRT cells via lateralized neural projections, and suggests that Per1 expression in the LC may be regulated by signals of a global or bilateral nature.
Collapse
Affiliation(s)
- Carrie E. Mahoney
- Neuroscience and Behavior Program, University of Massachusetts, Amherst, Massachusetts, United States of America
| | - Judy McKinley Brewer
- Neuroscience and Behavior Program, University of Massachusetts, Amherst, Massachusetts, United States of America
- Department of Biology, University of Massachusetts, Amherst, Massachusetts, United States of America
| | - Eric L. Bittman
- Neuroscience and Behavior Program, University of Massachusetts, Amherst, Massachusetts, United States of America
- Department of Biology, University of Massachusetts, Amherst, Massachusetts, United States of America
| |
Collapse
|