1
|
Zhang S, Yang F, Huang Y, He L, Li Y, Wan YCE, Ding Y, Chan KM, Xie T, Sun H, Wang H. ATF3 induction prevents precocious activation of skeletal muscle stem cell by regulating H2B expression. Nat Commun 2023; 14:4978. [PMID: 37591871 PMCID: PMC10435463 DOI: 10.1038/s41467-023-40465-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Accepted: 07/27/2023] [Indexed: 08/19/2023] Open
Abstract
Skeletal muscle stem cells (also called satellite cells, SCs) are important for maintaining muscle tissue homeostasis and damage-induced regeneration. However, it remains poorly understood how SCs enter cell cycle to become activated upon injury. Here we report that AP-1 family member ATF3 (Activating Transcription Factor 3) prevents SC premature activation. Atf3 is rapidly and transiently induced in SCs upon activation. Short-term deletion of Atf3 in SCs accelerates acute injury-induced regeneration, however, its long-term deletion exhausts the SC pool and thus impairs muscle regeneration. The Atf3 loss also provokes SC activation during voluntary exercise and enhances the activation during endurance exercise. Mechanistically, ATF3 directly activates the transcription of Histone 2B genes, whose reduction accelerates nucleosome displacement and gene transcription required for SC activation. Finally, the ATF3-dependent H2B expression also prevents genome instability and replicative senescence in SCs. Therefore, this study has revealed a previously unknown mechanism for preserving the SC population by actively suppressing precocious activation, in which ATF3 is a key regulator.
Collapse
Affiliation(s)
- Suyang Zhang
- Department of Orthopaedics and Traumatology, Li Ka Shing Institute of Health Sciences, Chinese University of Hong Kong, Hong Kong SAR, China
- Center for Neuromusculoskeletal Restorative Medicine, Hong Kong Science Park, New Territories, Hong Kong SAR, China
| | - Feng Yang
- Department of Chemical Pathology, Li Ka Shing Institute of Health Sciences, Chinese University of Hong Kong, Hong Kong SAR, China
| | - Yile Huang
- Department of Chemical Pathology, Li Ka Shing Institute of Health Sciences, Chinese University of Hong Kong, Hong Kong SAR, China
| | - Liangqiang He
- Center for Neuromusculoskeletal Restorative Medicine, Hong Kong Science Park, New Territories, Hong Kong SAR, China
- Department of Chemical Pathology, Li Ka Shing Institute of Health Sciences, Chinese University of Hong Kong, Hong Kong SAR, China
| | - Yuying Li
- Department of Chemical Pathology, Li Ka Shing Institute of Health Sciences, Chinese University of Hong Kong, Hong Kong SAR, China
| | - Yi Ching Esther Wan
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong SAR, China
- Key Laboratory of Biochip Technology, Biotech and Health Centre, Shenzhen Research Institute of City University of Hong Kong, Shenzhen, 518172, China
| | - Yingzhe Ding
- Department of Chemical Pathology, Li Ka Shing Institute of Health Sciences, Chinese University of Hong Kong, Hong Kong SAR, China
| | - Kui Ming Chan
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong SAR, China
- Key Laboratory of Biochip Technology, Biotech and Health Centre, Shenzhen Research Institute of City University of Hong Kong, Shenzhen, 518172, China
| | - Ting Xie
- Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Hao Sun
- Department of Chemical Pathology, Li Ka Shing Institute of Health Sciences, Chinese University of Hong Kong, Hong Kong SAR, China.
| | - Huating Wang
- Department of Orthopaedics and Traumatology, Li Ka Shing Institute of Health Sciences, Chinese University of Hong Kong, Hong Kong SAR, China.
- Center for Neuromusculoskeletal Restorative Medicine, Hong Kong Science Park, New Territories, Hong Kong SAR, China.
| |
Collapse
|
2
|
Quan L, Sun X, Wu J, Mei J, Huang L, He R, Nie L, Chen Y, Lyu Q. Learning Useful Representations of DNA Sequences From ChIP-Seq Datasets for Exploring Transcription Factor Binding Specificities. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2022; 19:998-1008. [PMID: 32976105 DOI: 10.1109/tcbb.2020.3026787] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Deep learning has been successfully applied to surprisingly different domains. Researchers and practitioners are employing trained deep learning models to enrich our knowledge. Transcription factors (TFs)are essential for regulating gene expression in all organisms by binding to specific DNA sequences. Here, we designed a deep learning model named SemanticCS (Semantic ChIP-seq)to predict TF binding specificities. We trained our learning model on an ensemble of ChIP-seq datasets (Multi-TF-cell)to learn useful intermediate features across multiple TFs and cells. To interpret these feature vectors, visualization analysis was used. Our results indicate that these learned representations can be used to train shallow machines for other tasks. Using diverse experimental data and evaluation metrics, we show that SemanticCS outperforms other popular methods. In addition, from experimental data, SemanticCS can help to identify the substitutions that cause regulatory abnormalities and to evaluate the effect of substitutions on the binding affinity for the RXR transcription factor. The online server for SemanticCS is freely available at http://qianglab.scst.suda.edu.cn/semanticCS/.
Collapse
|
3
|
Kirchner H, Sinha I, Gao H, Ruby MA, Schönke M, Lindvall JM, Barrès R, Krook A, Näslund E, Dahlman-Wright K, Zierath JR. Altered DNA methylation of glycolytic and lipogenic genes in liver from obese and type 2 diabetic patients. Mol Metab 2016; 5:171-183. [PMID: 26977391 PMCID: PMC4770265 DOI: 10.1016/j.molmet.2015.12.004] [Citation(s) in RCA: 102] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2015] [Revised: 12/23/2015] [Accepted: 12/27/2015] [Indexed: 12/13/2022] Open
Abstract
OBJECTIVE Epigenetic modifications contribute to the etiology of type 2 diabetes. METHOD We performed genome-wide methylome and transcriptome analysis in liver from severely obese men with or without type 2 diabetes and non-obese men to discover aberrant pathways underlying the development of insulin resistance. Results were validated by pyrosequencing. RESULT We identified hypomethylation of genes involved in hepatic glycolysis and insulin resistance, concomitant with increased mRNA expression and protein levels. Pyrosequencing revealed the CpG-site within ATF-motifs was hypomethylated in four of these genes in liver of severely obese non-diabetic and type 2 diabetic patients, suggesting epigenetic regulation of transcription by altered ATF-DNA binding. CONCLUSION Severely obese non-diabetic and type 2 diabetic patients have distinct alterations in the hepatic methylome and transcriptome, with hypomethylation of several genes controlling glucose metabolism within the ATF-motif regulatory site. Obesity appears to shift the epigenetic program of the liver towards increased glycolysis and lipogenesis, which may exacerbate the development of insulin resistance.
Collapse
Affiliation(s)
- Henriette Kirchner
- Section of Integrative Physiology, Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Indranil Sinha
- Department Biosciences and Nutrition, Karolinska Institutet, Stockholm, Sweden
| | - Hui Gao
- Department Biosciences and Nutrition, Karolinska Institutet, Stockholm, Sweden
| | - Maxwell A Ruby
- Section of Integrative Physiology, Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Milena Schönke
- Section of Integrative Physiology, Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Jessica M Lindvall
- Department Biosciences and Nutrition, Karolinska Institutet, Stockholm, Sweden
| | - Romain Barrès
- Section of Integrative Physiology, The Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Science, University of Copenhagen, Copenhagen, Denmark
| | - Anna Krook
- Section of Integrative Physiology, Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Erik Näslund
- Division of Surgery, Department of Clinical Sciences, Danderyd Hospital, Karolinska Institutet, Stockholm, Sweden
| | - Karin Dahlman-Wright
- Department Biosciences and Nutrition, Karolinska Institutet, Stockholm, Sweden; SciLifeLab, Science for Life Laboratory, Karolinska Institutet, Solna, Sweden
| | - Juleen R Zierath
- Section of Integrative Physiology, Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden; Section of Integrative Physiology, The Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Science, University of Copenhagen, Copenhagen, Denmark; Section of Integrative Physiology, Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
4
|
Eiselein L, Nyunt T, Lamé MW, Ng KF, Wilson DW, Rutledge JC, Aung HH. TGRL Lipolysis Products Induce Stress Protein ATF3 via the TGF-β Receptor Pathway in Human Aortic Endothelial Cells. PLoS One 2015; 10:e0145523. [PMID: 26709509 PMCID: PMC4699200 DOI: 10.1371/journal.pone.0145523] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Accepted: 12/05/2015] [Indexed: 01/24/2023] Open
Abstract
Studies have suggested a link between the transforming growth factor beta 1 (TGF-β1) signaling cascade and the stress-inducible activating transcription factor 3 (ATF3). We have demonstrated that triglyceride-rich lipoproteins (TGRL) lipolysis products activate MAP kinase stress associated JNK/c-Jun pathways resulting in up-regulation of ATF3, pro-inflammatory genes and induction of apoptosis in human aortic endothelial cells. Here we demonstrate increased release of active TGF-β at 15 min, phosphorylation of Smad2 and translocation of co-Smad4 from cytosol to nucleus after a 1.5 h treatment with lipolysis products. Activation and translocation of Smad2 and 4 was blocked by addition of SB431542 (10 μM), a specific inhibitor of TGF-β-activin receptor ALKs 4, 5, 7. Both ALK receptor inhibition and anti TGF-β1 antibody prevented lipolysis product induced up-regulation of ATF3 mRNA and protein. ALK inhibition prevented lipolysis product-induced nuclear accumulation of ATF3. ALKs 4, 5, 7 inhibition also prevented phosphorylation of c-Jun and TGRL lipolysis product-induced p53 and caspase-3 protein expression. These findings demonstrate that TGRL lipolysis products cause release of active TGF-β and lipolysis product-induced apoptosis is dependent on TGF-β signaling. Furthermore, signaling through the stress associated JNK/c-Jun pathway is dependent on TGF-β signaling suggesting that TGF-β signaling is necessary for nuclear accumulation of the ATF3/cJun transcription complex and induction of pro-inflammatory responses.
Collapse
Affiliation(s)
- Larissa Eiselein
- Department of Internal Medicine, Division of Cardiovascular Medicine, School of Medicine, University of California Davis, Davis, California, 95616, United States of America
| | - Tun Nyunt
- Department of Internal Medicine, Division of Cardiovascular Medicine, School of Medicine, University of California Davis, Davis, California, 95616, United States of America
| | - Michael W. Lamé
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California Davis, Davis, California, 95616, United States of America
| | - Kit F. Ng
- Department of Internal Medicine, Division of Cardiovascular Medicine, School of Medicine, University of California Davis, Davis, California, 95616, United States of America
| | - Dennis W. Wilson
- Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine, University of California Davis, Davis, California, 95616, United States of America
| | - John C. Rutledge
- Department of Internal Medicine, Division of Cardiovascular Medicine, School of Medicine, University of California Davis, Davis, California, 95616, United States of America
| | - Hnin H. Aung
- Department of Internal Medicine, Division of Cardiovascular Medicine, School of Medicine, University of California Davis, Davis, California, 95616, United States of America
- * E-mail:
| |
Collapse
|
5
|
Park EJ, Kwon HK, Choi YM, Shin HJ, Choi S. Doxorubicin induces cytotoxicity through upregulation of pERK-dependent ATF3. PLoS One 2012; 7:e44990. [PMID: 23028726 PMCID: PMC3441731 DOI: 10.1371/journal.pone.0044990] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2012] [Accepted: 08/15/2012] [Indexed: 01/16/2023] Open
Abstract
Although doxorubicin is commonly used in the treatment of many cancer types, its use in chemotherapy has been limited, largely because of its severe side effects, including cardiotoxicity and nephrotoxicity. In this study, we aimed to identify the mechanism of doxorubicin-induced cytotoxicity by using the human kidney proximal tubule cell line HK-2. Furthermore, we investigated the role of activating transcription factor 3 (ATF3) as a mediator of doxorubicin-induced cytotoxicity by using wild-type mouse embryonic fibroblasts (MEF) cells and ATF3 knockout (KO) cells. In HK-2 cells, doxorubicin decreased cell viability in a dose-dependent manner and induced an increase in cells in the sub G1 and G2/M phases at all doses. Doxorubicin treatment showed the following dose-dependent effects: increase in the secretion of tumor necrosis factor alpha; decrease in the expression of phosphorylated protein kinase A and Bcl-2; and increase in the expression of phosphorylated signal transducer and activator of transcription 3, phosphorylated extracellular signal-regulated kinase (ERK), and ATF3. Based on these results, we suggest that doxorubicin induces cytotoxicity through an ERK-dependent pathway, and ATF3 plays a pivotal role as a transcriptional regulator in this process.
Collapse
Affiliation(s)
- Eun-Jung Park
- Department of Molecular Science and Technology, Ajou University, Suwon, Korea
| | - Hyuk-Kwon Kwon
- Department of Molecular Science and Technology, Ajou University, Suwon, Korea
| | - Yong-Min Choi
- Department of Molecular Science and Technology, Ajou University, Suwon, Korea
| | - Hyeon-Jun Shin
- Department of Molecular Science and Technology, Ajou University, Suwon, Korea
| | - Sangdun Choi
- Department of Molecular Science and Technology, Ajou University, Suwon, Korea
- * E-mail:
| |
Collapse
|
6
|
A polysaccharide from Agaricus blazei attenuates tumor cell adhesion via inhibiting E-selectin expression. Carbohydr Polym 2012. [DOI: 10.1016/j.carbpol.2012.02.015] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
7
|
Magri CJ, Gatt N, Xuereb RG, Fava S. Peroxisome proliferator-activated receptor-γ and the endothelium: implications in cardiovascular disease. Expert Rev Cardiovasc Ther 2012; 9:1279-94. [PMID: 21985541 DOI: 10.1586/erc.11.140] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Peroxisome proliferator-activated receptors-γ (PPARγs) are ligand-activated transcription factors that play a crucial regulatory role in the transcription of a large number of genes involved in lipid metabolism and inflammation. In addition to physiological ligands, synthetic ligands (the thiazoledinediones) have been developed. In spite of the much publicized adverse cardiovascular effects of one such thiazoledinedione (rosiglitazone), PPARγ activation may have beneficial cardiovascular effects. In this article we review the effects of PPARγ activation on the endothelium with special emphasis on the possible implications in cardiovascular disease. We discuss its possible role in inflammation, vasomotor function, thrombosis, angiogenesis, vascular aging and vascular rhythm. We also briefly review the clinical implications of these lines of research.
Collapse
Affiliation(s)
- Caroline Jane Magri
- Department of Cardiac Services, Mater Dei Hospital, Tal-Qroqq, Msida MSD 2090, Malta
| | | | | | | |
Collapse
|
8
|
Leonarduzzi G, Gamba P, Gargiulo S, Biasi F, Poli G. Inflammation-related gene expression by lipid oxidation-derived products in the progression of atherosclerosis. Free Radic Biol Med 2012; 52:19-34. [PMID: 22037514 DOI: 10.1016/j.freeradbiomed.2011.09.031] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2011] [Revised: 09/16/2011] [Accepted: 09/24/2011] [Indexed: 12/31/2022]
Abstract
Vascular areas of atherosclerotic development persist in a state of inflammation, and any further inflammatory stimulus in the subintimal area elicits a proatherogenic response; this alters the behavior of the artery wall cells and recruits further inflammatory cells. In association with the inflammatory response, oxidative events are also involved in the development of atherosclerotic plaques. It is now unanimously recognized that lipid oxidation-derived products are key players in the initiation and progression of atherosclerotic lesions. Oxidized lipids, derived from oxidatively modified low-density lipoproteins (LDLs), which accumulate in the intima, strongly modulate inflammation-related gene expression, through involvement of various signaling pathways. In addition, considerable evidence supports a proatherogenic role of a large group of potent bioactive lipids called eicosanoids, which derive from oxidation of arachidonic acid, a component of membrane phospholipids. Of note, LDL lipid oxidation products might regulate eicosanoid production, modulating the enzymatic degradation of arachidonic acid by cyclooxygenases and lipoxygenases; these enzymes might also directly contribute to LDL oxidation. This review provides a comprehensive overview of current knowledge on signal transduction pathways and inflammatory gene expression, modulated by lipid oxidation-derived products, in the progression of atherosclerosis.
Collapse
|
9
|
Sampath S, McLean LA, Buono C, Moulin P, Wolf A, Chibout SD, Pognan F, Busch S, Shangari N, Cruz E, Gurnani M, Patel P, Reising A. The use of rat lens explant cultures to study the mechanism of drug-induced cataractogenesis. Toxicol Sci 2011; 126:128-39. [PMID: 22193206 DOI: 10.1093/toxsci/kfr344] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Lens explant cultures were used to assess the mechanism of drug-induced cataractogenic potential of NVS001, a peroxisome proliferator-activated receptor delta (PPARδ) agonist, which resulted in cataract in all treated animals during a 13-week rat study. Ciglitazone, a PPARγ agonist and cataractogenic compound, was used as a positive control to validate this model. Rat lenses were extracted and cultured in medium supplemented with antibiotics for 24-h preincubation pretreatment. Lenses showing no signs of damage at the end of the preincubation pretreatment period were randomized into five experimental groups, (1) untreated control, (2) 0.1% dimethyl sulphoxide control, (3) 10μM NVS001, (4) 10μM ciglitazone, and (5) 10μM acetaminophen (negative control). Lenses were treated every 24 h after preincubation pretreatment for up to 48 h. Samples for viability, histology, and gene expression profiling were collected at 4, 24, and 48 h. There was a time-dependent increase in opacity, which correlated to a decrease in viability measured by adenosine triphosphate levels in NVS001 and ciglitazone-treated lenses compared with controls. NVS001 and ciglitazone had comparable cataractogenic effects after 48 h with histology showing rupture of the lens capsule, lens fiber degeneration, cortical lens vacuolation, and lens epithelial degeneration. Furthermore, no changes were seen when lenses were treated with acetaminophen. Gene expression analysis supported oxidative and osmotic stress, along with decreases in membrane and epithelial cell integrity as key factors in NVS001-induced cataracts. This study suggests that in vitro lens cultures can be used to assess cataractogenic potential of PPAR agonists and to study/understand the underlying molecular mechanism of cataractogenesis in rat.
Collapse
Affiliation(s)
- Shruthi Sampath
- Investigative Toxicology, Novartis Institutes of Biomedical Research, East Hanover, New Jersey 07936, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Cai Q, Brooks HL. Phosphorylation of eIF2α via the general control kinase, GCN2, modulates the ability of renal medullary cells to survive high urea stress. Am J Physiol Renal Physiol 2011; 301:F1202-7. [PMID: 21880833 PMCID: PMC3233868 DOI: 10.1152/ajprenal.00272.2011] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2011] [Accepted: 08/25/2011] [Indexed: 11/22/2022] Open
Abstract
The phosphorylation of the α-subunit of the eukaryotic translation initiation factor 2 (eIF2α) occurs under many stress conditions in mammalian cells and is mediated by one of four eIF2α kinases: PERK, PKR, GCN2, and HRI. Cells of the renal medulla are regularly exposed to fluctuating concentrations of urea and sodium, the extracellular solutes responsible for the high osmolality in the renal medulla, and thus the kidneys ability to concentrate the urine in times of dehydration. Urea stress is known to initiate molecular responses that diverge from those seen in response to hypertonic stress (NaCl). We show that urea-inducible GCN2 activation initiates the phosphorylation of eIF2α and the downstream increase of activating transcription factor 3 (ATF3). Loss of GCN2 sensitized cells to urea stress, increasing the expression of activated caspase-3 and decreasing cell survival. Loss of GCN2 ablated urea-induced phosphorylation of eIF2α and reduced the expression of ATF3.
Collapse
Affiliation(s)
- Qi Cai
- Dept. of Physiology, College of Medicine, University of Arizona, 1656 E. Mabel St., Tucson, AZ 85724, USA
| | | |
Collapse
|
11
|
El Kochairi I, Montagner A, Rando G, Lohmann C, Matter CM, Wahli W. Beneficial effects of combinatorial micronutrition on body fat and atherosclerosis in mice. Cardiovasc Res 2011; 91:732-41. [PMID: 21622975 PMCID: PMC3156909 DOI: 10.1093/cvr/cvr146] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
AIMS More than two billion people worldwide are deficient in key micronutrients. Single micronutrients have been used at high doses to prevent and treat dietary insufficiencies. Yet the impact of combinations of micronutrients in small doses aiming to improve lipid disorders and the corresponding metabolic pathways remains incompletely understood. Thus, we investigated whether a combination of micronutrients would reduce fat accumulation and atherosclerosis in mice. METHODS AND RESULTS Lipoprotein receptor-null mice fed with an original combination of micronutrients incorporated into the daily chow showed reduced weight gain, body fat, plasma triglycerides, and increased oxygen consumption. These effects were achieved through enhanced lipid utilization and reduced lipid accumulation in metabolic organs and were mediated, in part, by the nuclear receptor PPARα. Moreover, the micronutrients partially prevented atherogenesis when administered early in life to apolipoprotein E-null mice. When the micronutrient treatment was started before conception, the anti-atherosclerotic effect was stronger in the progeny. This finding correlated with decreased post-prandial triglyceridaemia and vascular inflammation, two major atherogenic factors. CONCLUSION Our data indicate beneficial effects of a combination of micronutritients on body weight gain, hypertriglyceridaemia, liver steatosis, and atherosclerosis in mice, and thus our findings suggest a novel cost-effective combinatorial micronutrient-based strategy worthy of being tested in humans.
Collapse
Affiliation(s)
- Ilhem El Kochairi
- Center for Integrative Genomics, National Research Center Frontiers in Genetics, University of Lausanne, CH 1015 Lausanne, Switzerland
| | | | | | | | | | | |
Collapse
|
12
|
Cheng CF, Lin H. Acute kidney injury and the potential for ATF3-regulated epigenetic therapy. Toxicol Mech Methods 2011; 21:362-6. [DOI: 10.3109/15376516.2011.557876] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
13
|
Celinski K, Dworzanski T, Korolczuk A, Slomka M, Radej S, Cichoz-Lach H, Madro A. Activated and inactivated PPARs-γ modulate experimentally induced colitis in rats. Med Sci Monit 2011; 17:BR116-BR124. [PMID: 21455100 PMCID: PMC3539512 DOI: 10.12659/msm.881712] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2010] [Accepted: 05/27/2010] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND This study sought to define the mechanism by which PPAR-γ ligands affect the course of experimentally induced colitis in rats. MATERIAL/METHODS Inflammation was induced in Wistar rats by a single rectal administration of 2,4,6,-trinitrobenzene sulfonic acid (TNBS). The antagonist of PPARγ antagonist, bisphenol A diglycidyl ether (BADGE), was administrated intraperitoneally 120 mg/kg 4 times every other day. Rosiglitazone 8 mg/kg was administrated by gastric tube 4 times. Body weight was measured daily. After killing, the large intestinal tissue was weighed and collected for histopathologic and immunoenzymatic tests. Levels of IL-6, IL-10, and myeloperoxidase (MPO) were determined in serum and in intestinal homogenates. RESULTS Rats receiving rosiglitazone had higher body weight, whereas large intestine weight/length ratio was lower; histology showed fewer inflammatory markers. Rats receiving TNBS and TNBS along with BADGE had more intensive inflammatory changes. Rosiglitazone alone decreased expression of IL-6; used with TNBS it decreased expression of MPO in intestinal tissue, yet did not increase the expression of IL-10. Decreased levels of MPO indicate reduced neutrophil-dependent immune response. The antagonist of PPAR-γ increased IL-6 in serum and decreased IL-10 in intestinal homogenates. Bisphenol A diglycidyl ether administrated to healthy animals increases serum IL-6 levels. CONCLUSIONS Rosiglitazone inhibits experimental inflammation; administration of its selective antagonist abolishes this protective influence. Rosiglitazone inhibits expression of proinflammatory IL-6 and does not affect IL-10. Agonists of PPARs-γ are possibilities for inflammatory bowel disease prevention. Exogenous substances blocking PPARs-γ may contribute to development or relapse of nonspecific inflammatory bowel diseases.
Collapse
Affiliation(s)
- Krzysztof Celinski
- Department of Gastroenterology, Medical University of Lublin, Lublin, Poland.
| | | | | | | | | | | | | |
Collapse
|
14
|
Kaddatz K, Adhikary T, Finkernagel F, Meissner W, Müller-Brüsselbach S, Müller R. Transcriptional profiling identifies functional interactions of TGF β and PPAR β/δ signaling: synergistic induction of ANGPTL4 transcription. J Biol Chem 2010; 285:29469-79. [PMID: 20595396 DOI: 10.1074/jbc.m110.142018] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Peroxisome proliferator-activated receptors (PPARs) not only play a key role in regulating metabolic pathways but also modulate inflammatory processes, pointing to a functional interaction between PPAR and cytokine signaling pathways. In this study, we show by genome-wide transcriptional profiling that PPARβ/δ and transforming growth factor-β (TGFβ) pathways functionally interact in human myofibroblasts and that a subset of these genes is cooperatively activated by TGFβ and PPARβ/δ. Using the angiopoietin-like 4 (ANGPTL4) gene as a model, we demonstrate that two enhancer regions cooperate to mediate the observed synergistic response. A TGFβ-responsive enhancer located ∼8 kb upstream of the transcriptional start site is regulated by a mechanism involving SMAD3, ETS1, RUNX, and AP-1 transcription factors that interact with multiple contiguous binding sites. A second enhancer (PPAR-E) consisting of three juxtaposed PPAR response elements is located in the third intron ∼3.5 kb downstream of the transcriptional start site. The PPAR-E is strongly activated by all three PPAR subtypes, with a novel type of PPAR response element motif playing a central role. Although the PPAR-E is not regulated by TGFβ, it interacts with SMAD3, ETS1, RUNX2, and AP-1 in vivo, providing a possible mechanistic explanation for the observed synergism.
Collapse
Affiliation(s)
- Kerstin Kaddatz
- Institute of Molecular Biology and Tumor Research, Philipps-University, Emil-Mannkopff-Strasse 2, 35032 Marburg, Germany
| | | | | | | | | | | |
Collapse
|
15
|
D'Acunto C, Gurioli C, Neri I. Plaque stage mycosis fungoides treated with bexarotene at low dosage and UVB-NB. J DERMATOL TREAT 2010; 21:45-8. [DOI: 10.3109/09546630903103980] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
16
|
Abstract
Peroxisome proliferator-activated receptors (PPARs) belong to the nuclear hormone-receptor superfamily. Originally cloned in 1990, PPARs were found to be mediators of pharmacologic agents that induce hepatocyte peroxisome proliferation. PPARs also are expressed in cells of the cardiovascular system. PPAR gamma appears to be highly expressed during atherosclerotic lesion formation, suggesting that increased PPAR gamma expression may be a vascular compensatory response. Also, ligand-activated PPAR gamma decreases the inflammatory response in cardiovascular cells, particularly in endothelial cells. PPAR alpha, similar to PPAR gamma, also has pleiotropic effects in the cardiovascular system, including antiinflammatory and antiatherosclerotic properties. PPAR alpha activation inhibits vascular smooth muscle proinflammatory responses, attenuating the development of atherosclerosis. However, PPAR delta overexpression may lead to elevated macrophage inflammation and atherosclerosis. Conversely, PPAR delta ligands are shown to attenuate the pathogenesis of atherosclerosis by improving endothelial cell proliferation and survival while decreasing endothelial cell inflammation and vascular smooth muscle cell proliferation. Furthermore, the administration of PPAR ligands in the form of TZDs and fibrates has been disappointing in terms of markedly reducing cardiovascular events in the clinical setting. Therefore, a better understanding of PPAR-dependent and -independent signaling will provide the foundation for future research on the role of PPARs in human cardiovascular biology.
Collapse
Affiliation(s)
- Milton Hamblin
- Cardiovascular Center, Department of Internal Medicine, University of Michigan Medical Center, Ann Arbor, Michigan 48109, USA
| | | | | | | | | |
Collapse
|
17
|
Nieto-Rementería N, Pérez-Yarza G, Boyano M, Apraiz A, Izu R, Díaz-Pérez J, Asumendi A. Bexarotene activates the p53/p73 pathway in human cutaneous T-cell lymphoma. Br J Dermatol 2009; 160:519-26. [DOI: 10.1111/j.1365-2133.2008.08931.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
18
|
Kawai M, Jin M, Nishimura J, Dewa Y, Saegusa Y, Matsumoto S, Taniai E, Shibutani M, Mitsumori K. Hepatocarcinogenic Susceptibility of Fenofibrate and Its Possible Mechanism of Carcinogenicity in a Two-Stage Hepatocarcinogenesis Model of rasH2 Mice. Toxicol Pathol 2008; 36:950-7. [DOI: 10.1177/0192623308327118] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Fenofibrate (FF) has previously been shown to induce hepatocellular neoplasia in a conventional mouse bioassay (NDA 1993), but there has been no report to examine the carcinogenic susceptibility of rasH2 mice to this chemical. In the present study, male rasH2 mice were subjected to a two-thirds partial hepatectomy (PH), followed by an N-diethylnitrosamine (DEN) initiation twenty-four hours after PH, and given a diet containing 0, 1200, or 2400 ppm FF for seven weeks. The incidences of preneoplastic foci were significantly increased in mice from the FF-treated groups. Immunohistochemistry revealed that significant increases in proliferating cell nuclear antigen (PCNA)-positive cells and cytokeratin 8/18 positive foci were observed in FF-treated groups. In addition, the transgene and several downstream molecules such as c- myc, c- jun, activating transcription factor 3 (ATF3), and cyclin D1 were overexpressed in these groups. These results suggest that the hepatocarcinogenic activity of rasH2 mice to FF can be detected in this hepatocarcinogenesis model and that up-regulation of genes for the ras/MAPK pathway and cell cycle was probably involved in the hepatocarcinogenic mechanism of rasH2 mice.
Collapse
Affiliation(s)
- Masaomi Kawai
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, Fuchu, Tokyo 183-8509, Japan
- Pathogenetic Veterinary Science, United Graduate School of Veterinary Sciences, Gifu University, Gifu, Gifu 501-1193, Japan
| | - Meilan Jin
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, Fuchu, Tokyo 183-8509, Japan
- Department of Applied Biological Science, United Graduate School of Agricultural Sciences, Tokyo University of Agriculture and Technology, Fuchu, Tokyo 183-8509, Japan
| | - Jihei Nishimura
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, Fuchu, Tokyo 183-8509, Japan
- Pathogenetic Veterinary Science, United Graduate School of Veterinary Sciences, Gifu University, Gifu, Gifu 501-1193, Japan
| | - Yasuaki Dewa
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, Fuchu, Tokyo 183-8509, Japan
- Pathogenetic Veterinary Science, United Graduate School of Veterinary Sciences, Gifu University, Gifu, Gifu 501-1193, Japan
| | - Yukie Saegusa
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, Fuchu, Tokyo 183-8509, Japan
- Pathogenetic Veterinary Science, United Graduate School of Veterinary Sciences, Gifu University, Gifu, Gifu 501-1193, Japan
| | - Sayaka Matsumoto
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, Fuchu, Tokyo 183-8509, Japan
- Pathogenetic Veterinary Science, United Graduate School of Veterinary Sciences, Gifu University, Gifu, Gifu 501-1193, Japan
| | - Eriko Taniai
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, Fuchu, Tokyo 183-8509, Japan
| | - Makoto Shibutani
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, Fuchu, Tokyo 183-8509, Japan
| | - Kunitoshi Mitsumori
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, Fuchu, Tokyo 183-8509, Japan
| |
Collapse
|
19
|
Dandona P, Ghanim H, Chaudhuri A, Mohanty P. Thiazolidinediones-improving endothelial function and potential long-term benefits on cardiovascular disease in subjects with type 2 diabetes. J Diabetes Complications 2008; 22:62-75. [PMID: 18191079 DOI: 10.1016/j.jdiacomp.2006.10.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2006] [Revised: 10/12/2006] [Accepted: 10/26/2006] [Indexed: 12/18/2022]
Abstract
Endothelial dysfunction, which leads to impaired vasodilation, is an early event in the development of atherosclerosis. A number of mechanisms involving, for example, cell adhesion molecules, chemokines, and cytokines, contribute to this inflammatory disease, and insulin resistance plays a cardinal role in accelerating these processes. Hyperglycemia and other metabolic abnormalities that are commonly associated with insulin resistance also contribute to impaired endothelial function. In addition, the important role of the endothelium in damage repair following a cardiovascular event is emerging. The combination of proatherogenic factors in patients with type 2 diabetes results in blunted endothelial function and an increased risk of cardiovascular disease. Insulin-sensitizing agents such as thiazolidinediones have demonstrated a number of clinical benefits, including anti-inflammatory and antithrombotic properties, which may impact on the course of atherosclerosis. Recent studies have demonstrated that thiazolidinediones improve endothelial function in subjects with and without type 2 diabetes.
Collapse
Affiliation(s)
- Paresh Dandona
- Division of Endocrinology, Diabetes and Metabolism, State University of New York at Buffalo and Kaleida Health, 3 Gates Circle, Buffalo, NY 14209, USA.
| | | | | | | |
Collapse
|
20
|
Edwards MR, Hewson CA, Laza-Stanca V, Lau HTH, Mukaida N, Hershenson MB, Johnston SL. Protein kinase R, IkappaB kinase-beta and NF-kappaB are required for human rhinovirus induced pro-inflammatory cytokine production in bronchial epithelial cells. Mol Immunol 2007; 44:1587-1597. [PMID: 16989899 DOI: 10.1016/j.molimm.2006.08.006] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2006] [Accepted: 08/11/2006] [Indexed: 11/21/2022]
Abstract
Rhinovirus infections cause the majority of acute exacerbations of airway diseases such as asthma and chronic obstructive pulmonary disease, with increased pro-inflammatory cytokine production by infected bronchial epithelial cells contributing to disease pathogenesis. Theses diseases are a huge cause of morbidity worldwide, and contribute a major economic burden to healthcare costs. Current steroid based treatments are only partially efficient at controlling virus induced inflammation, which remains an unmet therapeutic goal. Although NF-kappaB has been implicated, the precise mechanisms of rhinovirus induction of pro-inflammatory gene expression in bronchial epithelial cells are unclear. We hypothesised that rhinovirus replication and generation of dsRNA was an important process of pro-inflammatory cytokine induction. Using pharmalogical (2-aminopurine and a new small molecule inhibitor) and genetic inhibition of the dsRNA binding kinase protein kinase R, striking inhibition of dsRNA (polyrIC) and rhinovirus induced CCL5, CXCL8 and IL-6 protein was observed. Using confocal microscopy, rhinovirus induced protein kinase R phosphorylation co-located with NF-kappaB p65 nuclear translocation. Focusing on CXCL8, both rhinovirus infection and dsRNA treatment required IkappaB kinase-beta for induction of CXCL8. Analysis of cis-acting sites in the CXCL8 promoter revealed that both rhinovirus infection and dsRNA treatment upregulated CXCL8 promoter activation via NF-kappaB and NF-IL6 binding sites. Together, the results demonstrate the importance of dsRNA in induction of pro-inflammatory cytokines by rhinoviruses, and suggest that protein kinase R is involved in NF-kappaB mediated gene transcription of pro-inflammatory cytokines via IkappaB kinase-beta. These molecules regulating rhinovirus induction of inflammation represent therapeutic targets.
Collapse
Affiliation(s)
- Michael R Edwards
- Department of Respiratory Medicine, National Heart Lung Institute and Wright Fleming Institute of Infection and Immunity, Imperial College London, Norfolk Place, London W2 1PG, UK.
| | | | | | | | | | | | | |
Collapse
|
21
|
Bandyopadhyay S, Wang Y, Zhan R, Pai SK, Watabe M, Iiizumi M, Furuta E, Mohinta S, Liu W, Hirota S, Hosobe S, Tsukada T, Miura K, Takano Y, Saito K, Commes T, Piquemal D, Hai T, Watabe K. The tumor metastasis suppressor gene Drg-1 down-regulates the expression of activating transcription factor 3 in prostate cancer. Cancer Res 2006; 66:11983-90. [PMID: 17178897 DOI: 10.1158/0008-5472.can-06-0943] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The tumor metastasis suppressor gene Drg-1 has been shown to suppress metastasis without affecting tumorigenicity in immunodeficient mouse models of prostate and colon cancer. Expression of Drg-1 has also been found to have a significant inverse correlation with metastasis or invasiveness in various types of human cancer. However, how Drg-1 exerts its metastasis suppressor function remains unknown. In the present study, to elucidate the mechanism of action of the Drg-1 gene, we did a microarray analysis and found that induction of Drg-1 significantly inhibited the expression of activating transcription factor (ATF) 3, a member of the ATF/cyclic AMP-responsive element binding protein family of transcription factors. We also showed that Drg-1 attenuated the endogenous level of ATF3 mRNA and protein in prostate cancer cells, whereas Drg-1 small interfering RNA up-regulated the ATF3 expression. Furthermore, Drg-1 suppressed the promoter activity of the ATF3 gene, indicating that Drg-1 regulates ATF3 expression at the transcriptional level. Our immunohistochemical analysis on prostate cancer specimens revealed that nuclear expression of ATF3 was inversely correlated to Drg-1 expression and positively correlated to metastases. Consistently, we have found that ATF3 overexpression promoted invasiveness of prostate tumor cells in vitro, whereas Drg-1 suppressed the invasive ability of these cells. More importantly, overexpression of ATF3 in prostate cancer cells significantly enhanced spontaneous lung metastasis of these cells without affecting primary tumorigenicity in a severe combined immunodeficient mouse model. Taken together, our results strongly suggest that Drg-1 suppresses metastasis of prostate tumor cells, at least in part, by inhibiting the invasive ability of the cells via down-regulation of the expression of the ATF3 gene.
Collapse
Affiliation(s)
- Sucharita Bandyopadhyay
- Department of Medical Microbiology and Immunology, Southern Illinois University School of Medicine, Springfield, Illinois 62794, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Kim HB, Kong M, Kim TM, Suh YH, Kim WH, Lim JH, Song JH, Jung MH. NFATc4 and ATF3 negatively regulate adiponectin gene expression in 3T3-L1 adipocytes. Diabetes 2006; 55:1342-52. [PMID: 16644691 DOI: 10.2337/db05-1507] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Expression of adiponectin decreases with obesity and insulin resistance. At present, the mechanisms responsible for negatively regulating adiponectin expression in adipocytes are poorly understood. In this investigation, we analyzed the effects of 5' serial deletion constructs on the murine adiponectin promoter. Here, we identified the repressor region located between -472 and -313 bp of the promoter. Removal of the putative nuclear factor of activated T-cells (NFATs) binding site increased the promoter activity, and overexpression of NFATc4 reduced the promoter activity. Treatment with the calcium ionophore A23187, an activator of NFAT, reduced mRNA as well as promoter activity. The binding of NFATc4 to the promoter was associated with increased recruitment of histone deacetylase 1 and reduced acetylation of histone H3 at the promoter site. In addition, binding of activating transcription factor 3 (ATF3) to the putative activator protein-1 site located adjacent to the NFAT binding site also repressed the promoter activity. Treatment with thapsigargin, an inducer of ATF3, reduced both mRNA and promoter activity. Importantly, the binding activities of NFATc4 and ATF3, increased significantly in white adipose tissues of ob/ob and db/db mice compared with controls. Taken together, this study demonstrates for the first time that NFATc4 and ATF3 function as negative regulators of adiponectin gene expression, which may play critical roles in downregulating adiponectin expression in obesity and type 2 diabetes.
Collapse
Affiliation(s)
- Hyun Bae Kim
- Division of Metabolic Diseases, Center for Biomedical Science, National Institute of Health, 5 Nokbun-dong, Eunpyung-gu, Seoul 122-701, Korea
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Ito K, Kiyosawa N, Kumagai K, Manabe S, Matsunuma N, Yamoto T. Molecular mechanism investigation of cycloheximide-induced hepatocyte apoptosis in rat livers by morphological and microarray analysis. Toxicology 2006; 219:175-86. [PMID: 16368179 DOI: 10.1016/j.tox.2005.11.017] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2005] [Revised: 11/15/2005] [Accepted: 11/15/2005] [Indexed: 12/31/2022]
Abstract
Male F344 rats were intravenously treated with 6 mg/kg cycloheximide (CHX), and microarray analysis was conducted on their livers 1, 2 and 6h after the CHX treatment. The histopathological examination and serum chemistry results indicated a mild hepatic cell death 2 and 6h after the CHX treatment, respectively. Multi-focal hepatocellular necrosis with slight neutrophil infiltration was observed 6h after the CHX treatment. The TUNEL staining results showed that the number of apoptotic hepatocytes was the highest 2h after the CHX treatment. Dramatic increases in the mRNA levels of ATF3 and CHOP genes, both of which were reported to play roles in the ER stress-mediated apoptosis pathway, were observed from 1h after the CHX treatment. In addition, increase of GADD45, p21 and p53 mRNA levels also suggested a time course-related stimulation of hepatocellular apoptotic signals. These results suggest that the hepatocyte apoptosis induced by the CHX treatment is triggered by ER stress. The hepatic mRNA levels of proinflammatory genes, such as TNFalpha, IL-1alpha and beta, were also increased 1 and 2h after the CHX treatment, supposedly mediated by the activated Kupffer cells engulfing the apoptotic hepatocytes.
Collapse
Affiliation(s)
- Kazumi Ito
- Medicinal Safety Research Laboratories, Sankyo Co., Ltd., 717 Horikoshi, Fukuroi, Shizuoka 437-0065, Japan. ,jp
| | | | | | | | | | | |
Collapse
|
24
|
Xu JQ, Deng JL, Wu YS, Fu HY, Wang RH, Zhang J, Lu F, Zhao ZL. Construction and activity assay of the activating transcription factor 3 reporter vector pATF/CRE-luc. Acta Biochim Biophys Sin (Shanghai) 2006; 38:58-62. [PMID: 16395528 DOI: 10.1111/j.1745-7270.2006.00122.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Activating transcription factor 3 (ATF3), a member of the activating transcription factor/cAMP responsive element binding protein (ATF/CREB) family of transcription factors, is induced by many physiological stresses. To investigate the activity of ATF/CREB in cells with physiological stresses, we developed a practical reporter vector, the plasmid pATF/CRE-luc, bearing activating transcription factor/cAMP responsive element (ATF/CRE) binding sites. This plasmid was constructed by inserting three repeats of the ATF/CRE binding element into the plasmid pG5luc, replacing the GAL-4 binding sites. The plasmids pACT/ATF3 and pATF/CRE-luc were transfected into HeLa and NIH3T3 cells, respectively, and the results showed that the expression of luciferase was increased in a dose-dependent manner on plasmid pACT/ATF3. The data suggested that the plasmid pATF/CRE-luc could be used as a sensitive and convenient reporter system of ATF3 activity.
Collapse
Affiliation(s)
- Jun-Qing Xu
- Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an 710032, China
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Harper EG, Alvares SM, Carter WG. Wounding activates p38 map kinase and activation transcription factor 3 in leading keratinocytes. J Cell Sci 2005; 118:3471-85. [PMID: 16079289 DOI: 10.1242/jcs.02475] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Quiescent epidermis anchors to laminin 5 in the basement membrane via integrin alpha6beta4. Wounding elevates expression of laminin 5, generating leading keratinocytes (LKs) that migrate via beta1 integrins. Laminin 5 was evaluated as a regulator of cell signaling, and mRNA and protein expression in LKs. An in vitro wound model was developed based on suspension and re-adhesion of quiescent human keratinocytes (HKs). DNA microarrays identified multiple mRNAs elevated 1.5 hours after suspension and re-adhesion including activation transcription factor 3 (ATF3). In vitro and in vivo, levels of ATF3 protein elevate in nuclei of LKs, but not in nuclei of the following cells, 2 hours after suspension or wounding but decline by 12-18 hours post injury. Significantly, null defects in laminin 5 or integrin beta4 that inhibit anchorage chronically elevate ATF3 in vivo. This suggests that adhesion to laminin 5, but not other ligands, suppresses activation. On suspension, ATF3 and other transcripts in the microarrays are elevated by phosphorylated p38 mitogen-activated protein kinase (P-p38), a stress kinase that regulates mRNA and cell motility. Inhibition of P-p38 with SB203580 prevents phosphorylation of ATF2, a transcription factor for ATF3 in LKs. Re-adhesion to laminin 5 via alpha6beta4 dephosphorylates P-p38 and suppresses ATF3 protein relative to cells in suspension. Thus, wounding of quiescent HKs disrupts laminin 5 adhesion to activate p38, generating mRNA transcripts that define LKs. Adhesion to deposits of laminin 5 via alpha6beta4 suppresses P-p38 and activation mRNAs including ATF3. Defects in laminin 5 and alpha6beta4 sustain P-p38 with probable pathological effects on transcription and migration.
Collapse
Affiliation(s)
- Erin G Harper
- Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue, Seattle, WA 98109, USA
| | | | | |
Collapse
|
26
|
Brennand S, Sutton VR, Biagi J, Trapani JA, Westerman D, McCormack CJ, Seymour JF, Kennedy G, Prince HM. Lack of apoptosis of Sezary cells in the circulation following oral bexarotene therapy. Br J Dermatol 2005; 152:1199-205. [PMID: 15948982 DOI: 10.1111/j.1365-2133.2005.06539.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
BACKGROUND Apoptosis of malignant cells has been suggested as an important mechanism of the action of bexarotene in the treatment of cutaneous T-cell lymphoma (CTCL). OBJECTIVES Our purpose was to examine the in vivo and in vitro responses of patients with Sézary syndrome treated with oral bexarotene and assess them for apoptosis of the Sézary cells. METHODS Six patients with CTCL with circulating Sézary cells, participating in a clinical trial of oral bexarotene (300 mg m(-2) daily) were included in the study. Peripheral blood from the patients was analysed for in vivo and in vitro apoptosis. RESULTS None of the six patients demonstrated in vivo apoptosis. In vitro apoptosis of Sézary cells was demonstrated in one patient following exogenous bexarotene. CONCLUSIONS Apoptosis is not detectable in the circulation of patients with Sézary syndrome treated with bexarotene.
Collapse
Affiliation(s)
- S Brennand
- Division of Haematology and Medical Oncology, Peter MacCallum Cancer Centre, University of Melbourne, Australia
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Bottone FG, Moon Y, Kim JS, Alston-Mills B, Ishibashi M, Eling TE. The anti-invasive activity of cyclooxygenase inhibitors is regulated by the transcription factor ATF3 (activating transcription factor 3). Mol Cancer Ther 2005; 4:693-703. [PMID: 15897233 DOI: 10.1158/1535-7163.mct-04-0337] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
We previously showed that nonsteroidal anti-inflammatory drugs (NSAID) such as sulindac sulfide, which has chemopreventive activity, modulate the expression of several genes detected by microarray analysis. Activating transcription factor 3 (ATF3) was selected for further study because it is a transcription factor involved in cell proliferation, apoptosis, and invasion, and its expression is repressed in human colorectal tumors as compared with normal adjacent tissue. In this report, we show that ATF3 mRNA and protein expression are up-regulated in HCT-116 human colorectal cancer cells following treatment with NSAIDs, troglitazone, diallyl disulfide, and resveratrol. To ascertain the biological significance of ATF3, we overexpressed full-length ATF3 protein in the sense and antisense orientations. Overexpression of ATF3 in the sense orientation decreased focus formation in vitro and reduced the size of mouse tumor xenografts by 54% in vivo. Conversely, overexpression of antisense ATF3 was protumorigenic in vitro, however, not in vivo. ATF3 in the sense orientation did not modulate apoptosis, indicating another mechanism is involved. With microarray analysis, several genes relating to invasion and metastasis were identified by ATF3 overexpression and were confirmed by real-time reverse transcription-PCR, and several of these genes were modulated by sulindac sulfide, which inhibited invasion in these cells. Furthermore, overexpression of ATF3 inhibited invasion to a similar degree as sulindac sulfide treatment, whereas antisense ATF3 increased invasion. In conclusion, ATF3 represents a novel mechanism in which NSAIDs exert their anti-invasive activity, thereby linking ATF3 and its gene regulatory activity to the biological activity of these compounds.
Collapse
Affiliation(s)
- Frank G Bottone
- Laboratory of Molecular Carcinogenesis, National Institute of Environmental Health Sciences, NIH, P.O. Box 12233, 111 T.W. Alexander Drive, Research Triangle Park, NC 27709, USA
| | | | | | | | | | | |
Collapse
|
28
|
Campbell G, Hutchins K, Winterbottom J, Grenningloh G, Lieberman AR, Anderson PN. Upregulation of activating transcription factor 3 (ATF3) by intrinsic CNS neurons regenerating axons into peripheral nerve grafts. Exp Neurol 2005; 192:340-7. [PMID: 15755551 DOI: 10.1016/j.expneurol.2004.11.026] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2003] [Revised: 08/24/2004] [Accepted: 11/08/2004] [Indexed: 10/25/2022]
Abstract
The expression of the transcription factor ATF3 in the brain was examined by immunohistochemistry during axonal regeneration induced by the implantation of pieces of peripheral nerve into the thalamus of adult rats. After 3 days, ATF3 immunoreactivity was present in many cells within approximately 500 mum of the graft. In addition, ATF3-positive cell nuclei were found in the thalamic reticular nucleus (TRN) and medial geniculate nuclear complex (MGN), from which most regenerating axons originate. CNS cells with ATF3-positive nuclei were predominantly neurons and did not show signs of apoptosis. The number of ATF3-positive cells had declined by 7 days and further by 1 month after grafting when most ATF3-positive cells were found in the TRN and MGN. 14 days or more after grafting, some ATF3-positive nuclei were distorted and may have been apoptotic. In some experiments of 1 month duration, neurons which had regenerated axons to the distal ends of grafts were retrogradely labeled with DiAsp. ATF3-positive neurons in these animals were located in regions of the TRN and MGN containing retrogradely labeled neurons and the great majority were also labeled with DiAsp. SCG10 and c-Jun were found in neurons in the same regions as retrogradely labeled and ATF3-positive cells. Thus, ATF3 is transiently upregulated by injured CNS neurons, but prolonged expression is part of the pattern of gene expression associated with axonal regeneration. The co-expression of ATF3 with c-jun suggests that interactions between these transcription factors may be important for controlling the program of gene expression necessary for regeneration.
Collapse
Affiliation(s)
- G Campbell
- Department of Anatomy and Developmental Biology, University College London, Gower Street, London WC1E 6BT, UK.
| | | | | | | | | | | |
Collapse
|
29
|
MASSA PE, LI X, HANIDU A, SIAMAS J, PARIALI M, PAREJA J, SAVITT AG, Catron KM, LI J, MARCU KB. Gene expression profiling in conjunction with physiological rescues of IKKalpha-null cells with wild type or mutant IKKalpha reveals distinct classes of IKKalpha/NF-kappaB-dependent genes. J Biol Chem 2005; 280:14057-69. [PMID: 15695520 PMCID: PMC1226413 DOI: 10.1074/jbc.m414401200] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cellular responses to stress-like stimuli require the IkappaB kinase (IKK) signalsome (IKKalpha, IKKbeta, and NEMO/IKKgamma) to activate NF-kappaB-dependent genes. IKKbeta and NEMO/IKKgamma are required to release NF-kappaB p65/p50 heterodimers from IkappaBalpha, resulting in their nuclear migration and sequence-specific DNA binding; but IKKalpha was found to be dispensable for this initial phase of canonical NF-kappaB activation. Nevertheless, IKKalpha-/- mouse embryonic fibroblasts (MEFs) fail to express NF-kappaB targets in response to proinflammatory stimuli, uncovering a nuclear role for IKKalpha in NF-kappaB activation. However, it remains unknown whether the global defect in NF-kappaB-dependent gene expression of IKKalpha-/- cells is caused by the absence of IKKalpha kinase activity. We show by gene expression profiling that rescue of near physiological levels of wild type IKKalpha in IKKalpha-/- MEFs globally restores expression of their canonical NF-kappaB target genes. To prove that the kinase activity of IKKalpha was required on a genomic scale, the same physiological rescue was performed with a kinase-dead, ATP binding domain IKKalpha mutant (IKKalpha(K44M)). Remarkably, the IKKalpha(K44M) protein rescued approximately 28% of these genes, albeit in a largely stimulus-independent manner with the notable exception of several genes that also acquired tumor necrosis factor-alpha responsiveness. Thus the IKKalpha-containing signalsome unexpectedly functions in the presence and absence of extracellular signals in both kinase-dependent and -independent modes to differentially modulate the expression of five distinct classes of IKKalpha/NF-kappaB-dependent genes.
Collapse
Affiliation(s)
- Paul E. MASSA
- Genetics Graduate Program
- Depts of Biochemistry and Cell Biology and
- Center for Applied Biomedical Research, San Orsola Hospital, University of Bologna, Via Massarenti 9, Bologna 40138, Italy
| | - Xiang LI
- Department of Immunology and Inflammation, Boehringer Ingelheim Pharmaceuticals, 900 Ridgebury Rd., P.O. Box 368, Ridgefield, CT 06877-0368
| | - Adedayo HANIDU
- Department of Immunology and Inflammation, Boehringer Ingelheim Pharmaceuticals, 900 Ridgebury Rd., P.O. Box 368, Ridgefield, CT 06877-0368
| | | | - Milena PARIALI
- Center for Applied Biomedical Research, San Orsola Hospital, University of Bologna, Via Massarenti 9, Bologna 40138, Italy
| | - Jessica PAREJA
- Microbiology, Institute for Cell and Developmental Biology, SUNY @ Stony Brook, Stony Brook, NY 11794-5215
| | - Anne G. SAVITT
- Microbiology, Institute for Cell and Developmental Biology, SUNY @ Stony Brook, Stony Brook, NY 11794-5215
| | - Katrina M. Catron
- Department of Immunology and Inflammation, Boehringer Ingelheim Pharmaceuticals, 900 Ridgebury Rd., P.O. Box 368, Ridgefield, CT 06877-0368
| | - Jun LI
- Department of Immunology and Inflammation, Boehringer Ingelheim Pharmaceuticals, 900 Ridgebury Rd., P.O. Box 368, Ridgefield, CT 06877-0368
| | - Kenneth B. MARCU
- Genetics Graduate Program
- Depts of Biochemistry and Cell Biology and
- Microbiology, Institute for Cell and Developmental Biology, SUNY @ Stony Brook, Stony Brook, NY 11794-5215
- Center for Applied Biomedical Research, San Orsola Hospital, University of Bologna, Via Massarenti 9, Bologna 40138, Italy
| |
Collapse
|
30
|
Migita H, Morser J. 15-Deoxy-Δ12,14-Prostaglandin J2(15d-PGJ2) Signals Through Retinoic Acid Receptor–Related Orphan Receptor-α but Not Peroxisome Proliferator–Activated Receptor-γ in Human Vascular Endothelial Cells. Arterioscler Thromb Vasc Biol 2005; 25:710-6. [PMID: 15662020 DOI: 10.1161/01.atv.0000156482.76228.d1] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE 15-deoxy-Delta12,14-prostaglandin J2 (15d-PGJ2), a natural ligand of the peroxisome proliferator-activated receptor-gamma (PPARgamma), has been shown to inhibit proinflammatory gene expression, but the signaling mechanisms involved remain unclear. Because retinoic acid receptor-related orphan receptor-alpha (RORalpha) has been reported to suppress tumor necrosis factor-alpha (TNF-alpha)-induced expression of proinflammatory genes, we hypothesized that 15d-PGJ2 may induce RORalpha expression resulting in inhibition of proinflammatory gene expression. METHODS AND RESULTS We demonstrate that 15d-PGJ2 induced RORalpha1 and RORalpha4 expression and inhibited TNF-alpha-induced vascular cell adhesion molecule-1 (VCAM-1) and intercellular adhesion molecule-1 (ICAM-1) expression in human umbilical vein endothelial cells (HUVECs). In contrast, the synthetic PPARgamma ligand pioglitazone weakly induced RORalpha4 expression but did not affect RORalpha1 expression or TNF-alpha-induced gene expression. Biphenol A diglycidyl ether, a PPARgamma antagonist, did not block the effect of 15d-PGJ2 on RORalpha expression. Adenovirus-mediated overexpression of RORalpha1 inhibited TNF-alpha-induced VCAM-1 and ICAM-1 expression, and overexpression of a mutant form of RORalpha1 (RORalpha1Delta), which inhibited transcriptional activity of RORalpha1 and RORalpha4, attenuated its inhibition. Furthermore, we found that RORalpha1Delta attenuated the inhibitory actions of 15d-PGJ2 on TNF-alpha-induced VCAM-1 and ICAM-1 expression. CONCLUSIONS These results suggest that 15d-PGJ2 inhibits TNF-alpha-induced expression of proinflammatory genes mediated in part via induction of RORalpha in HUVECs. This mechanism provides a novel insight into PPARgamma-independent actions of 15d-PGJ2.
Collapse
Affiliation(s)
- Hideyuki Migita
- Department of Pharmacology, Berlex Biosciences, Richmond, CA 94806, USA.
| | | |
Collapse
|
31
|
Abstract
Cardiovascular disease is significantly increased in patients with metabolic syndrome and type 2 diabetes. Several factors such as chronic hyperglycemia, lipId abnormalities, endothelium dysfunction, inflammation, oxIdative stress, increased thrombosis and decreased fibrinolysis are likely to promote cardiovascular events in these patients. Because of positive effects on glucose homeostasis, lipId metabolism, proteins involved in all stages of atherogenesis, endothelium function, inflammation, thrombosis and fibrinolysis, PPARS alpha (fibrates) and PPARs gamma (glitazones) agonists are good candIdates to reduce cardiovascular disease, more precisely in subjects with metabolic syndrome or type 2 diabetes. PPARS alpha agonists (fibrates) are potent hypolipIdemic agents increasing plasma HDL-cholesterol and reducing free fatty acIds, triglycerIdes, LDL-cholesterol and the number of small dense LDL pArticles. Moreover, they reduce vascular inflammation and thrombosis, promote fibrinolysis and inhibit the production of the vasoconstrictor factor, endothelin-1, by the endothelium. They have been shown, in clinical trials, to reduce cardiovascular disease, more particularly in patients displaying lipId abnormalities typical of metabolic syndrome and type 2 diabetes (high triglycerIdes, low HDL-cholesterol). PPARS gamma agonists (glitazones) have not only beneficial effects on glucose homeostasis, by increasing insulin sensitivity and reducing blood glucose level but also on lipId metabolism by elevating plasma HDL-cholesterol, decreasing free fatty acIds and the number of small dense LDL pArticles, and for pioglitazone by reducing plasma triglycerIdes. Furthermore, they diminish vascular inflammation and vasoconstriction, inhibit monocyte chemotaxis, proliferation and migration of smooth muscle cells, in the vascular wall and decrease the production of adhesion molecules and metalloproteinases. PPARs gamma agonists (glitazones) have been shown to reduce the development of atherosclerotic lesions in rats. The potential clinical benefit of PPARs gamma agonists on the reduction of cardiovascular disease, in type 2 diabetic patients, will be specified by the ongoing intervention studies.
Collapse
Affiliation(s)
- B Vergès
- Service d'Endocrinologie, Diabétologie et Maladies Métaboliques, hôpital du Bocage, CHU de Dijon, France.
| |
Collapse
|
32
|
McGinnis KS, Junkins-Hopkins JM, Crawford G, Shapiro M, Rook AH, Vittorio CC. Low-dose oral bexarotene in combination with low-dose interferon alfa in the treatment of cutaneous T-cell lymphoma: clinical synergism and possible immunologic mechanisms. J Am Acad Dermatol 2004; 50:375-9. [PMID: 14988678 DOI: 10.1016/j.jaad.2003.10.669] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
BACKGROUND For nearly 2 decades clinicians have been treating cutaneous T-cell lymphoma (CTCL) with regimens that combine interferon alfa with retinoid compounds. In December 1999 a new retinoid, bexarotene, was approved by the US Food and Drug Administration for the treatment of CTCL. At the manufacturer's recommended dose of bexarotene (300 mg/m(2) of body surface area), it has proven to be a highly effective therapy for all stages of CTCL. Nevertheless, this dose is typically associated with adverse effects including severe hyperlipidemia. Furthermore, there appears to be no standardization of dosing among physicians who treat CTCL. OBSERVATIONS We present 3 representative patients, 2 with erythrodermic CTCL and 1 with follicular mycosis fungoides, who experienced the rapid clearing of skin disease while being treated with a combination of low-dose bexarotene and low-dose recombinant interferon alfa. CONCLUSIONS Combining low-dose bexarotene with low-dose interferon alfa was well tolerated and led to rapid improvement in our patients. We review the clinical and biologic basis for this approach.
Collapse
Affiliation(s)
- Karen S McGinnis
- Department of Dermatology, University of Pennsylvania School of Medicine, 3600 Spruce Street, Philadelphia, PA 19104-4283, USA
| | | | | | | | | | | |
Collapse
|
33
|
Wang J, Cao Y, Steiner DF. Regulation of proglucagon transcription by activated transcription factor (ATF) 3 and a novel isoform, ATF3b, through the cAMP-response element/ATF site of the proglucagon gene promoter. J Biol Chem 2003; 278:32899-904. [PMID: 12815047 DOI: 10.1074/jbc.m305456200] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Glucagon, the second major glucose-regulated hormone in the control of glucose homeostasis, functions as a counter-regulator to insulin and is specifically produced by the pancreatic alpha cells. Its excessive biosynthesis and secretion is associated with diabetes mellitus. The expression of the proglucagon gene has been demonstrated to be regulated by a cAMP-dependent pathway through cAMP-response element-binding protein (CREB) and possibly other transcription factors bound to its cAMP-response element (CRE)/activated transcription factor (ATF) site. Elsewhere we have shown that ATF3, a member of the ATF/CREB subfamily of the basic leucine zipper domain proteins, is expressed predominantly in the alpha cells of the pancreatic islets. In our attempts to further dissect the role of ATF3 proteins in alpha cells, we have identified and characterized a novel alternatively spliced form, ATF3b, and have compared the specific binding ability of ATF3 and ATF3b on the CRE/ATF motif of the proglucagon promoter. Our findings indicate the existence of a novel mechanism by which the transcription of the proglucagon gene is regulated in response to cAMP signals, in addition to CREB and in relation to glucose fluctuations in pancreatic alpha cells.
Collapse
Affiliation(s)
- Jie Wang
- Department of Biochemistry and Molecular Biology, University of Chicago, Illinois 60637, USA
| | | | | |
Collapse
|
34
|
Chen YE, Fu M, Zhang J, Zhu X, Lin Y, Akinbami MA, Song Q. Peroxisome proliferator-activated receptors and the cardiovascular system. VITAMINS AND HORMONES 2003; 66:157-88. [PMID: 12852255 DOI: 10.1016/s0083-6729(03)01005-7] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Insulin resistance syndrome (also called syndrome X) includes obesity, diabetes, hypertension, and dyslipidemia and is a complex phenotype of metabolic abnormalities. The disorder poses a major public health problem by predisposing individuals to coronary heart disease and stroke, the leading causes of mortality in Western countries. Given that hypertension, diabetes, dyslipidemia, and obesity exhibit a substantial heritable component, it is postulated that certain genes may predispose some individuals to this cluster of cardiovascular risk factors. Emerging data suggest that peroxisome proliferator-activated receptors (PPARs), including alpha, gamma, and delta, are important determinants that may provide a functional link between obesity, hypertension, and diabetes. It has been well documented that hypolipidemic fibrates and antidiabetic thiazolidinediones are synthetic ligands for PPAR alpha and PPAR gamma, respectively. In addition, PPAR natural ligands, such as leukotriene B4 for PPAR alpha, 15-deoxy-delta 12,14-prostaglandin J2 for PPAR gamma, and prostacyclin for PPAR delta, are known to be eicosanoids and fatty acids. Studies have documented that PPARs are present in all critical vascular cells: endothelial cells, vascular smooth muscle cells, and monocyte-macrophages. These observations suggest that PPARs not only control lipid metabolism but also regulate vascular diseases such as atherosclerosis and hypertension. In this review, we present structure and tissue distribution of PPAR nuclear receptors, discuss the mechanisms of action and regulation, and summarize the rapid progress made in this area of study and its impact on the cardiovascular system.
Collapse
Affiliation(s)
- Yuqing E Chen
- Cardiovascular Research Institute, Morehouse School of Medicine, Atlanta, Georgia 30310, USA
| | | | | | | | | | | | | |
Collapse
|
35
|
Chiba T, Nakazawa T, Yui K, Kaneko E, Shimokado K. VLDL induces adipocyte differentiation in ApoE-dependent manner. Arterioscler Thromb Vasc Biol 2003; 23:1423-9. [PMID: 12842848 DOI: 10.1161/01.atv.0000085040.58340.36] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE To clarify the role of very low density lipoprotein (VLDL) and apolipoprotein E (apoE) in adipogenesis, we studied newly developed hyperlipidemic obese (ob/ob;apoE-/-) mice. Because hydrolysis of VLDL is believed to be the major source of adipogenic free fatty acids, a higher plasma level of VLDL in these mice should exaggerate obesity. METHODS AND RESULTS When fed a high-fat, high-cholesterol diet, ob/ob;apoE-/- mice did not show increased body weight or an increased amount of adipose tissue in spite of increased plasma VLDL levels, whereas ob/ob mice showed an increased body weight and amount of adipose tissue, suggesting that there is a novel apoE-dependent pathway for adipogenesis. In vitro experiments using bone marrow stromal cells and 3T3-L1 cells confirmed this notion. ApoE-deficient VLDL did not induce adipogenesis, whereas normal VLDL induced adipogenesis in these cells. The incubation of apoE-deficient VLDL with recombinant human apoE restored its adipogenic activity. Tetrahydrolipstatin, a lipoprotein lipase inhibitor, did not affect the adipogenic activity of VLDL, suggesting that hydrolysis of VLDL did not play a major role in its effects. In fact, lipid components of VLDL or free fatty acids induced only partial adipogenesis. CONCLUSIONS Our findings indicate that VLDL induces adipogenesis in an apoE-dependent manner both in vitro and in vivo.
Collapse
Affiliation(s)
- Tsuyoshi Chiba
- Tokyo Medical and Dental University Graduate School, Vascular Medicine and Geriatrics, Tokyo, Japan
| | | | | | | | | |
Collapse
|
36
|
Nobori K, Ito H, Tamamori-Adachi M, Adachi S, Ono Y, Kawauchi J, Kitajima S, Marumo F, Isobe M. ATF3 inhibits doxorubicin-induced apoptosis in cardiac myocytes: a novel cardioprotective role of ATF3. J Mol Cell Cardiol 2002; 34:1387-97. [PMID: 12392999 DOI: 10.1006/jmcc.2002.2091] [Citation(s) in RCA: 103] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Activating transcription factor (ATF) 3, a member of the ATF/cyclic adenosine monophosphate (cAMP)-responsive element binding protein (ATF/CREB) family of transcription factors, is induced by a wide range of stress stimuli. Although the ATF3 homodimer is known to repress transcription of several genes, its precise biological roles are still unclear. In this study, we investigated the functional role of ATF3 in doxorubicin (DOX=adriamycin)-treated neonatal rat cardiac myocytes. DOX rapidly activated JNK and c-Jun and induced ATF3 at both mRNA and protein level. Adenovirus-mediated expression of ATF3 protected cardiomyocytes from DOX-induced apoptosis, as determined by flow cytometry, cell viability, and TUNEL assay. It was further shown that p53, one of the apoptosis-inducing transcription factors, was downregulated in the ATF3-overexpressing cardiomyocytes. These results strongly suggest that ATF3 may function as a cytoprotective transcription factor in DOX-treated cardiac myocytes, at least in part, owing to downregulation of p53. ATF3 may be a novel therapeutic target that protects cardiac myocytes from DOX-induced apoptosis.
Collapse
Affiliation(s)
- Kiyoshi Nobori
- Department of Cardiovascular Medicine, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8519, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Abstract
Valproic acid (VPA, 2-propylpentanoic acid) is an established drug in the long-term therapy of epilepsy. During the past years, it has become evident that VPA is also associated with anti-cancer activity. VPA not only suppresses tumor growth and metastasis, but also induces tumor differentiation in vitro and in vivo. Several modes of action might be relevant for the biological activity of VPA: (1) VPA increases the DNA binding of activating protein-1 (AP-1) transcription factor, and the expression of genes regulated by the extracellular-regulated kinase (ERK)-AP-1 pathway; (2) VPA downregulates protein kinase C (PKC) activity; (3) VPA inhibits glycogen synthase kinase-3beta (GSK-3beta), a negative regulator of the Wnt signaling pathway; (4) VPA activates the peroxisome proliferator-activated receptors PPARgamma and delta; (5) VPA blocks HDAC (histone deacetylase), causing hyperacetylation. The findings elucidate an important role of VPA for cancer therapy. VPA might also be useful as low toxicity agent given over long time periods for chemoprevention and/or for control of residual minimal disease.
Collapse
Affiliation(s)
- Roman A Blaheta
- Zentrum der Hygiene, Institut für Medizinische Virologie, Interdisziplinäres Labor für Tumor- und Virus for schung, Klinikum der J. W. Goethe-Universität, Frankfurt am Main, Germany
| | | |
Collapse
|
38
|
Hashimoto Y, Zhang C, Kawauchi J, Imoto I, Adachi MT, Inazawa J, Amagasa T, Hai T, Kitajima S. An alternatively spliced isoform of transcriptional repressor ATF3 and its induction by stress stimuli. Nucleic Acids Res 2002; 30:2398-406. [PMID: 12034827 PMCID: PMC117192 DOI: 10.1093/nar/30.11.2398] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Activating transcription factor 3 (ATF3) is a member of the ATF/CREB family of transcription factors and its expression is increased by various pathophysiological conditions and in several cancer cells. In this study, we describe two alternatively spliced ATF3DeltaZip mRNAs: ATF3DeltaZip2a and ATF3DeltaZip2b. Both variants encoded the same truncated protein of 135 amino acids, which lacked the leucine zipper domain and was incapable of binding to the ATF/CRE motif. The ATF3DeltaZip2 protein was shown to be localized in the nuclei and counteracted the transcriptional repression by the full-length ATF3. Western blot analysis showed that ATF3DeltaZip2 was expressed in cells exposed to A23187. Further study showed that, similar to the full-length ATF3, the expression of ATF3DeltaZip2 was induced by a wide range of stress stimuli. However, its expression was not detectable in cancer cells that constitutively over-expressed ATF3. Taken together, our results suggest that ATF3DeltaZip2, a protein derived from alternatively spliced mRNAs, is induced by various stress signals and may modulate the activity of the full-length ATF3 protein during stress response.
Collapse
Affiliation(s)
- Yoshinori Hashimoto
- Department of Biochemical Genetics, Medical Research Institute and Graduate School, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo-ku, Tokyo 113-8510, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Nawa T, Nawa MT, Adachi MT, Uchimura I, Shimokawa R, Fujisawa K, Tanaka A, Numano F, Kitajima S. Expression of transcriptional repressor ATF3/LRF1 in human atherosclerosis: colocalization and possible involvement in cell death of vascular endothelial cells. Atherosclerosis 2002; 161:281-91. [PMID: 11888510 DOI: 10.1016/s0021-9150(01)00639-6] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Vascular endothelial cell death contributes to the progression of atherosclerotic lesion, and several transcriptional regulators are involved in the process. Activating transcription factor 3/liver regenerating factor-1 (ATF3/LRF-1), a stress-inducible transcriptional repressor, was shown to be highly expressed in vascular endothelial cells and macrophages of human atherosclerotic lesions by immunohistological assay. The expression was colocalized in these cells which were positive for TdT-mediated dUTP nick-end labeling (TUNEL) and annexin V. Treatment of human umbilical vein endothelial cells (HUVECs) by tumor necrosis factor (TNF)-alpha, oxidized low density lipoprotein (oxLDL), and lysophosphatidylcholine (LPC) rapidly induced ATF3/LRF-1, which showed an increased DNA binding to the consensus ATF/CRE sequence by supershift of gel shift assay. Flow cytometry analysis and immunostaining analysis with TUNEL assay showed that ATF3/LRF-1 was highly expressed in cell death induced by these agents. Moreover, antisense ATF3/LRF-1 cDNA partly suppressed the cell death induced by TNF-alpha, oxLDL, and LPC. From these results, it is indicated that ATF3/LRF-1 is one of the immediate early response genes in vascular endothelial cells in response to atherogenic stimuli, and may play a role in the endothelial cell death associated with atherogenesis.
Collapse
Affiliation(s)
- Tigre Nawa
- Department of Biochemical Genetics, Medical Research Institute, Tokyo Medical and Dental University Graduate School, 1-5-45, Yushima, Bunkyo-ku, Tokyo 113-8510, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Yan C, Wang H, Boyd DD. ATF3 represses 72-kDa type IV collagenase (MMP-2) expression by antagonizing p53-dependent trans-activation of the collagenase promoter. J Biol Chem 2002; 277:10804-12. [PMID: 11792711 DOI: 10.1074/jbc.m112069200] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The murine homologue of the ATF3 transcription factor increases tumor metastases but, surprisingly, represses 72-kDa type IV metalloproteinase (MMP-2) expression. The current study describes a novel mechanism by which ATF3 regulates transcription. Progressive deletions of the MMP-2 promoter indicated a 38-base pair region (-1659/-1622) necessary for the ATF3-mediated repression. This region lacked CREB/AP-1 motifs but contained a consensus p53 motif shown previously to regulate MMP-2 expression. The activity of a p53 response element-driven luciferase reporter was reduced in ATF3-expressing HT1080 clones. Although MMP-2 promoter activity was not repressed by ATF3 in p53-deficient Saos-2 cells, p53 re-expression increased MMP-2 promoter activity and restored the sensitivity to ATF3. The activity of a GAL4-driven reporter in HT1080 cells co-expressing the full-length p53 sequence fused to the GAL4 DNA binding domain was diminished by ATF3. p53-ATF3 protein-protein interactions were demonstrated both in vivo and in vitro. Cell cycle analysis, performed as an independent assay of p53 function, revealed that gamma-irradiation-induced slowed G(2)/M cell cycle progression (attributable to p53) was countered by ATF3. Thus, ATF3 represses MMP-2 expression by decreasing the trans-activation of this gene by p53.
Collapse
Affiliation(s)
- Chunhong Yan
- Department of Cancer Biology, M. D. Anderson Cancer Center, Houston, Texas 77030
| | | | | |
Collapse
|
41
|
Schinner S, Dellas C, Schroder M, Heinlein CA, Chang C, Fischer J, Knepel W. Repression of glucagon gene transcription by peroxisome proliferator-activated receptor gamma through inhibition of Pax6 transcriptional activity. J Biol Chem 2002; 277:1941-8. [PMID: 11707457 DOI: 10.1074/jbc.m109718200] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The nuclear receptor peroxisome proliferator-activated receptor gamma (PPARgamma) is involved in glucose homeostasis and synthetic PPARgamma ligands, the thiazolidinediones, a new class of antidiabetic agents that reduce insulin resistance and, as a secondary effect, reduce hepatic glucose output. PPARgamma is highly expressed in normal human pancreatic islet alpha-cells that produce glucagon. This peptide hormone is a functional antagonist of insulin stimulating hepatic glucose output. Therefore, the effect of PPARgamma and thiazolidinediones on glucagon gene transcription was investigated. After transient transfection of a glucagon-reporter fusion gene into a glucagon-producing pancreatic islet cell line, thiazolidinediones inhibited glucagon gene transcription when PPARgamma was coexpressed. They also reduced glucagon secretion and glucagon tissue levels in primary pancreatic islets. A 5'/3'-deletion and internal mutation analysis indicated that a pancreatic islet cell-specific enhancer sequence (PISCES) motif within the proximal glucagon promoter element G1 was required for PPARgamma responsiveness. This sequence motif binds the paired domain transcription factor Pax6. When the PISCES motif within G1 was mutated into a GAL4 binding site, the expression of GAL4-Pax6 restored glucagon promoter activity and PPARgamma responsiveness. GAL4-Pax6 transcriptional activity was inhibited by PPARgamma in response to thiazolidinedione treatment also at a minimal viral promoter. These results suggest that PPARgamma in a ligand-dependent but DNA binding-independent manner inhibits Pax6 transcriptional activity, resulting in inhibition of glucagon gene transcription. These data thereby define Pax6 as a novel functional target of PPARgamma and suggest that inhibition of glucagon gene expression may be among the multiple mechanisms through which thiazolidinediones improve glycemic control in diabetic subjects.
Collapse
Affiliation(s)
- Sven Schinner
- Department of Molecular Pharmacology, University of Göttingen, D-37075 Göttingen, Germany
| | | | | | | | | | | | | |
Collapse
|
42
|
Chiba Y, Ogita T, Ando K, Fujita T. PPARgamma ligands inhibit TNF-alpha-induced LOX-1 expression in cultured endothelial cells. Biochem Biophys Res Commun 2001; 286:541-6. [PMID: 11511093 DOI: 10.1006/bbrc.2001.5361] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Endothelial dysfunction or activation, elicited by oxidized low-density lipoprotein (OxLDL), has been implicated in the initiation and progression of atherosclerosis. We elucidated whether tumor necrosis factor-alpha (TNF-alpha)-induced endothelial OxLDL receptor, lectin-like OxLDL receptor-1 (LOX-1), mRNA expression is modified by peroxisome proliferator-activated receptor (PPAR) activators in cultured bovine aortic endothelial cells (BAEC). We confirmed that both PPARalpha and PPARgamma were expressed in BAEC by reverse transcription-polymerase chain reaction analysis. Natural PPARgamma ligand 15-deoxy-Delta(12,14)-prostaglandin J(2) (15d-PGJ(2)) and the thiazolidinediones, pioglitazone and troglitazone, decreased TNF-alpha-induced LOX-1 mRNA expression in BAEC. LOX-1 expression induced by phorbol 12-myristrate 13-acetate was also inhibited by 15d-PGJ(2). In contrast, PPARalpha ligands, Wy14643 and fenofibric acid, did not alter TNF-alpha-induced LOX-1 expression. TNF-alpha-induced immunohistochemical staining of LOX-1 was suppressed by 15d-PGJ(2) but not Wy14643. Taken together, PPARgamma activators inhibit TNF-alpha-induced LOX-1 expression in cultured BAEC, which may beneficially influence inflammatory responses in atherosclerosis.
Collapse
Affiliation(s)
- Y Chiba
- Department of Internal Medicine, University of Tokyo School of Medicine, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | | | | | | |
Collapse
|
43
|
Hai T, Hartman MG. The molecular biology and nomenclature of the activating transcription factor/cAMP responsive element binding family of transcription factors: activating transcription factor proteins and homeostasis. Gene 2001; 273:1-11. [PMID: 11483355 DOI: 10.1016/s0378-1119(01)00551-0] [Citation(s) in RCA: 648] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The mammalian ATF/CREB family of transcription factors represents a large group of basic region-leucine zipper (bZip) proteins which was originally defined in the late 1980s by their ability to bind to the consensus ATF/CRE site 'TGACGTCA'. Over the past decade, cDNA clones encoding identical or homologous proteins have been isolated by different laboratories and given different names. These proteins can be grouped into subgroups according to their amino acid similarity. In this review, we will briefly describe the classification of these proteins with a historical perspective of their nomenclature. We will then review three members of the ATF/CREB family of proteins: ATF3, ATF4 and ATF6. We will address four issues for each protein: (a) homologous proteins and alternative names, (b) dimer formation with other bZip proteins, (c) transcriptional activity, and (d) potential physiological functions. Although the name Activating Transcription Factor (ATF) implies that they are transcriptional activators, some of these proteins are transcriptional repressors. ATF3 homodimer is a transcriptional repressor and ATF4 has been reported to be either an activator or a repressor. We will review the reports on the transcriptional activities of ATF4, and propose potential explanations for the discrepancy. Although the physiological functions of these proteins are not well understood, some clues can be gained from studies with different approaches. When the data are available, we will address the following questions. (a) How is the expression (at the mRNA level or protein level) regulated? (b) How are the transcriptional activities regulated? (c) What are the interacting proteins (other than bZip partners)? (d) What are the consequences of ectopically expressing the gene (gain-of-function) or deleting the gene (loss-of-function)? Although answers to these questions are far from being complete, together they provide clues to the functions of these ATF proteins. Despite the diversity in the potential functions of these proteins, one common theme is their involvement in cellular responses to extracellular signals, indicating a role for these ATF proteins in homeostasis.
Collapse
Affiliation(s)
- T Hai
- Department of Molecular and Cellular Biochemistry, Neurobiotechnology Center, Ohio State University, Columbus, OH 43210, USA.
| | | |
Collapse
|