1
|
Lu T, Ma P, Fang H, Chen A, Xu J, Kuang X, Wang M, Su L, Wang S, Zhang Y, Wang J, Yang B, Shi DL, Zhou Y, Gong Q, Liu X, Mao B, Shao M. Prkra dimer senses double-stranded RNAs to dictate global translation efficiency. Mol Cell 2025; 85:2032-2047.e9. [PMID: 40280134 DOI: 10.1016/j.molcel.2025.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 02/27/2025] [Accepted: 04/02/2025] [Indexed: 04/29/2025]
Abstract
Double-stranded RNAs (dsRNAs), known as conserved pathogen-associated molecular patterns, activate the integrated stress response via interferon-induced protein kinase R (PKR), leading to global translation inhibition. However, the interferon system is inactive in pluripotent cells, leaving the mechanisms of dsRNA sensing and translational control unclear. In this study, we utilized early zebrafish embryos as a model of pluripotent cells and discovered a PKR-independent blockage of translation initiation by dsRNA stimulation. Prkra dimer was identified as the genuine dsRNA sensor. Upon dsRNA binding, the dimerized dsRNA-binding domain 3 of Prkra becomes activated to sequester the eIF2 complexes from the translation machinery, inhibiting global protein synthesis. This distinctive embryonic stress response restricts RNA virus replication in zebrafish embryos, is conserved in mouse embryonic stem cells, and compensates PKR function in differentiated cells. Therefore, the Prkra-mediated dsRNA sensing and translation control may serve as a common strategy for cells to adapt to environmental stresses.
Collapse
Affiliation(s)
- Tong Lu
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology, School of Life Sciences and Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao 266237, China
| | - Pengcheng Ma
- State Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650201, China; National Resource Center for Non-Human Primates, and National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650107, China
| | - Hailing Fang
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology, School of Life Sciences and Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao 266237, China
| | - Aijun Chen
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology, School of Life Sciences and Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao 266237, China
| | - Jianlin Xu
- State Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650201, China
| | - Xi Kuang
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology, School of Life Sciences and Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao 266237, China
| | - Mingyu Wang
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Qingdao 266237, China
| | - Ling Su
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology, School of Life Sciences and Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao 266237, China
| | - Sen Wang
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Qingdao 266237, China
| | - Yizhuang Zhang
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology, School of Life Sciences and Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao 266237, China
| | - Jiasheng Wang
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology, School of Life Sciences and Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao 266237, China
| | - Boya Yang
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology, School of Life Sciences and Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao 266237, China
| | - De-Li Shi
- Sorbonne Université, Institut de Biologie Paris-Seine (IBPS), UMR CNRS 8263, INSERM U1345, Development, Adaptation, and Ageing, Paris, France; Fang Zongxi Center, Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Yong Zhou
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China
| | - Qianqian Gong
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology, School of Life Sciences and Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao 266237, China
| | - Xiangguo Liu
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology, School of Life Sciences and Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao 266237, China; Shandong University, Yuanchen Joint Biomedical Technology Laboratory, Qingdao 266237, China.
| | - Bingyu Mao
- State Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650201, China; National Resource Center for Non-Human Primates, and National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650107, China.
| | - Ming Shao
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology, School of Life Sciences and Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao 266237, China; Key Laboratory for Experimental Teratology of the Ministry of Education, Shandong University, Qingdao 266237, China; Shandong University, Yuanchen Joint Biomedical Technology Laboratory, Qingdao 266237, China.
| |
Collapse
|
2
|
Vaughn LS, Frederick K, Burnett SB, Sharma N, Bragg DC, Camargos S, Cardoso F, Patel RC. DYT- PRKRA Mutation P222L Enhances PACT's Stimulatory Activity on Type I Interferon Induction. Biomolecules 2022; 12:713. [PMID: 35625640 PMCID: PMC9138762 DOI: 10.3390/biom12050713] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 05/10/2022] [Accepted: 05/13/2022] [Indexed: 12/10/2022] Open
Abstract
DYT-PRKRA (dystonia 16 or DYT-PRKRA) is caused by mutations in the PRKRA gene that encodes PACT, the protein activator of interferon (IFN)-induced double-stranded (ds) RNA-activated protein kinase (PKR). PACT participates in several cellular pathways, of which its role as a PKR activator protein during integrated stress response (ISR) is the best characterized. Previously, we have established that the DYT-PRKRA mutations cause enhanced activation of PKR during ISR to sensitize DYT-PRKRA cells to apoptosis. In this study, we evaluate if the most prevalent substitution mutation reported in DYT-PRKRA patients alters PACT's functional role in induction of type I IFNs via the retinoic acid-inducible gene I (RIG-I) signaling. Our results indicate that the P222L mutation augments PACT's ability to induce IFN β in response to dsRNA and the basal expression of IFN β and IFN-stimulated genes (ISGs) is higher in DYT-PRKRA patient cells compared to cells from the unaffected controls. Additionally, IFN β and ISGs are also induced at higher levels in DYT-PRKRA cells in response to dsRNA. These results offer a new avenue for investigations directed towards understanding the underlying molecular pathomechanisms in DYT-PRKRA.
Collapse
Affiliation(s)
- Lauren S. Vaughn
- Department of Biological Sciences, University of South Carolina, 700 Sumter Street, Columbia, SC 29208, USA; (L.S.V.); (K.F.); (S.B.B.)
| | - Kenneth Frederick
- Department of Biological Sciences, University of South Carolina, 700 Sumter Street, Columbia, SC 29208, USA; (L.S.V.); (K.F.); (S.B.B.)
| | - Samuel B. Burnett
- Department of Biological Sciences, University of South Carolina, 700 Sumter Street, Columbia, SC 29208, USA; (L.S.V.); (K.F.); (S.B.B.)
| | - Nutan Sharma
- Department of Neurology, Massachusetts General Hospital, Charlestown, MA 02129, USA; (N.S.); (D.C.B.)
| | - D. Cristopher Bragg
- Department of Neurology, Massachusetts General Hospital, Charlestown, MA 02129, USA; (N.S.); (D.C.B.)
| | - Sarah Camargos
- Department of Internal Medicine, Federal University of Minas Gerais, Belo Horizonte 31270-901, Brazil; (S.C.); (F.C.)
| | - Francisco Cardoso
- Department of Internal Medicine, Federal University of Minas Gerais, Belo Horizonte 31270-901, Brazil; (S.C.); (F.C.)
| | - Rekha C. Patel
- Department of Biological Sciences, University of South Carolina, 700 Sumter Street, Columbia, SC 29208, USA; (L.S.V.); (K.F.); (S.B.B.)
| |
Collapse
|
3
|
Chan CP, Jin DY. Cytoplasmic RNA sensors and their interplay with RNA-binding partners in innate antiviral response: theme and variations. RNA (NEW YORK, N.Y.) 2022; 28:449-477. [PMID: 35031583 PMCID: PMC8925969 DOI: 10.1261/rna.079016.121] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Sensing of pathogen-associated molecular patterns including viral RNA by innate immunity represents the first line of defense against viral infection. In addition to RIG-I-like receptors and NOD-like receptors, several other RNA sensors are known to mediate innate antiviral response in the cytoplasm. Double-stranded RNA-binding protein PACT interacts with prototypic RNA sensor RIG-I to facilitate its recognition of viral RNA and induction of host interferon response, but variations of this theme are seen when the functions of RNA sensors are modulated by other RNA-binding proteins to impinge on antiviral defense, proinflammatory cytokine production and cell death programs. Their discrete and coordinated actions are crucial to protect the host from infection. In this review, we will focus on cytoplasmic RNA sensors with an emphasis on their interplay with RNA-binding partners. Classical sensors such as RIG-I will be briefly reviewed. More attention will be brought to new insights on how RNA-binding partners of RNA sensors modulate innate RNA sensing and how viruses perturb the functions of RNA-binding partners.
Collapse
Affiliation(s)
- Chi-Ping Chan
- School of Biomedical Sciences and State Key Laboratory of Liver Research, Faculty of Medicine Building, Pokfulam, Hong Kong
| | - Dong-Yan Jin
- School of Biomedical Sciences and State Key Laboratory of Liver Research, Faculty of Medicine Building, Pokfulam, Hong Kong
| |
Collapse
|
4
|
Chukwurah E, Farabaugh KT, Guan BJ, Ramakrishnan P, Hatzoglou M. A tale of two proteins: PACT and PKR and their roles in inflammation. FEBS J 2021; 288:6365-6391. [PMID: 33387379 PMCID: PMC9248962 DOI: 10.1111/febs.15691] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 12/14/2020] [Accepted: 12/29/2020] [Indexed: 12/12/2022]
Abstract
Inflammation is a pathological hallmark associated with bacterial and viral infections, autoimmune diseases, genetic disorders, obesity and diabetes, as well as environmental stresses including physical and chemical trauma. Among numerous proteins regulating proinflammatory signaling, very few such as Protein kinase R (PKR), have been shown to play an all-pervading role in inflammation induced by varied stimuli. PKR was initially characterized as an interferon-inducible gene activated by viral double-stranded RNA with a role in protein translation inhibition. However, it has become increasingly clear that PKR is involved in multiple pathways that promote inflammation in response to stress activation, both dependent on and independent of its cellular protein activator of PKR (PACT). In this review, we discuss the signaling pathways that contribute to the initiation of inflammation, including Toll-like receptor, interferon, and RIG-I-like receptor signaling, as well as inflammasome activation. We go on to discuss the specific roles that PKR and PACT play in such proinflammatory signaling, as well as in metabolic syndrome- and environmental stress-induced inflammation.
Collapse
Affiliation(s)
- Evelyn Chukwurah
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH 44106
| | - Kenneth T. Farabaugh
- Department of Pharmacology, Case Western Reserve University, Cleveland, OH 44106
| | - Bo-Jhih Guan
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH 44106
| | | | - Maria Hatzoglou
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH 44106
| |
Collapse
|
5
|
Onomoto K, Onoguchi K, Yoneyama M. Regulation of RIG-I-like receptor-mediated signaling: interaction between host and viral factors. Cell Mol Immunol 2021; 18:539-555. [PMID: 33462384 PMCID: PMC7812568 DOI: 10.1038/s41423-020-00602-7] [Citation(s) in RCA: 230] [Impact Index Per Article: 57.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 11/17/2020] [Indexed: 01/31/2023] Open
Abstract
Retinoic acid-inducible gene I (RIG-I)-like receptors (RLRs) are RNA sensor molecules that play essential roles in innate antiviral immunity. Among the three RLRs encoded by the human genome, RIG-I and melanoma differentiation-associated gene 5, which contain N-terminal caspase recruitment domains, are activated upon the detection of viral RNAs in the cytoplasm of virus-infected cells. Activated RLRs induce downstream signaling via their interactions with mitochondrial antiviral signaling proteins and activate the production of type I and III interferons and inflammatory cytokines. Recent studies have shown that RLR-mediated signaling is regulated by interactions with endogenous RNAs and host proteins, such as those involved in stress responses and posttranslational modifications. Since RLR-mediated cytokine production is also involved in the regulation of acquired immunity, the deregulation of RLR-mediated signaling is associated with autoimmune and autoinflammatory disorders. Moreover, RLR-mediated signaling might be involved in the aberrant cytokine production observed in coronavirus disease 2019. Since the discovery of RLRs in 2004, significant progress has been made in understanding the mechanisms underlying the activation and regulation of RLR-mediated signaling pathways. Here, we review the recent advances in the understanding of regulated RNA recognition and signal activation by RLRs, focusing on the interactions between various host and viral factors.
Collapse
Affiliation(s)
- Koji Onomoto
- Division of Molecular Immunology, Medical Mycology Research Center, Chiba University, 1-8-1, Inohana, Chuo-ku, Chiba, 260-8673, Japan
| | - Kazuhide Onoguchi
- Division of Molecular Immunology, Medical Mycology Research Center, Chiba University, 1-8-1, Inohana, Chuo-ku, Chiba, 260-8673, Japan
| | - Mitsutoshi Yoneyama
- Division of Molecular Immunology, Medical Mycology Research Center, Chiba University, 1-8-1, Inohana, Chuo-ku, Chiba, 260-8673, Japan.
| |
Collapse
|
6
|
Conservation of Structure and Immune Antagonist Functions of Filoviral VP35 Homologs Present in Microbat Genomes. Cell Rep 2020; 24:861-872.e6. [PMID: 30044983 DOI: 10.1016/j.celrep.2018.06.045] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 04/29/2018] [Accepted: 06/11/2018] [Indexed: 11/20/2022] Open
Abstract
Non-retroviral integrated RNA viral sequences (NIRVs) potentially encoding ∼280 amino acid homologs to filovirus VP35 proteins are present across the Myotis genus of bats. These are estimated to have been maintained for ∼18 million years, indicating their co-option. To address the reasons for co-option, 16 Myotis VP35s were characterized in comparison to VP35s from the extant filoviruses Ebola virus and Marburg virus, in which VP35s play critical roles in immune evasion and RNA synthesis. The Myotis VP35s demonstrated a conserved suppression of innate immune signaling, albeit with reduced potency, in either human or Myotis cells. Their attenuation reflects a lack of dsRNA binding that in the filoviral VP35s correlates with potent suppression of interferon responses. Despite divergent function, evolution has preserved in Myotis the structure of the filoviral VP35s, indicating that this structure is critical for co-opted function, possibly as a regulator of innate immune signaling.
Collapse
|
7
|
Brisse M, Ly H. Comparative Structure and Function Analysis of the RIG-I-Like Receptors: RIG-I and MDA5. Front Immunol 2019; 10:1586. [PMID: 31379819 PMCID: PMC6652118 DOI: 10.3389/fimmu.2019.01586] [Citation(s) in RCA: 247] [Impact Index Per Article: 41.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 06/25/2019] [Indexed: 12/12/2022] Open
Abstract
RIG-I (Retinoic acid-inducible gene I) and MDA5 (Melanoma Differentiation-Associated protein 5), collectively known as the RIG-I-like receptors (RLRs), are key protein sensors of the pathogen-associated molecular patterns (PAMPs) in the form of viral double-stranded RNA (dsRNA) motifs to induce expression of type 1 interferons (IFN1) (IFNα and IFNβ) and other pro-inflammatory cytokines during the early stage of viral infection. While RIG-I and MDA5 share many genetic, structural and functional similarities, there is increasing evidence that they can have significantly different strategies to recognize different pathogens, PAMPs, and in different host species. This review article discusses the similarities and differences between RIG-I and MDA5 from multiple perspectives, including their structures, evolution and functional relationships with other cellular proteins, their differential mechanisms of distinguishing between host and viral dsRNAs and interactions with host and viral protein factors, and their immunogenic signaling. A comprehensive comparative analysis can help inform future studies of RIG-I and MDA5 in order to fully understand their functions in order to optimize potential therapeutic approaches targeting them.
Collapse
Affiliation(s)
- Morgan Brisse
- Biochemistry, Molecular Biology, and Biophysics Graduate Program, University of Minnesota, Twin Cities, St. Paul, MN, United States
- Department of Veterinary & Biomedical Sciences, University of Minnesota, Twin Cities, St. Paul, MN, United States
| | - Hinh Ly
- Department of Veterinary & Biomedical Sciences, University of Minnesota, Twin Cities, St. Paul, MN, United States
| |
Collapse
|
8
|
Mechanisms of Non-segmented Negative Sense RNA Viral Antagonism of Host RIG-I-Like Receptors. J Mol Biol 2019; 431:4281-4289. [PMID: 31202887 DOI: 10.1016/j.jmb.2019.06.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2019] [Revised: 05/29/2019] [Accepted: 06/05/2019] [Indexed: 12/25/2022]
Abstract
The pattern recognition receptors RIG-I-like receptors (RLRs) are critical molecules for cytosolic viral recognition and for subsequent activation of type I interferon production. The interferon signaling pathway plays a key role in viral detection and generating antiviral responses. Among the many pathogens, the non-segmented negative sense RNA viruses target the RLR pathway using a variety of mechanisms. Here, I review the current state of knowledge on the molecular mechanisms that allow non-segmented negative sense RNA virus recognition and antagonism of RLRs.
Collapse
|
9
|
Olejnik J, Hume AJ, Leung DW, Amarasinghe GK, Basler CF, Mühlberger E. Filovirus Strategies to Escape Antiviral Responses. Curr Top Microbiol Immunol 2019; 411:293-322. [PMID: 28685291 PMCID: PMC5973841 DOI: 10.1007/82_2017_13] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
This chapter describes the various strategies filoviruses use to escape host immune responses with a focus on innate immune and cell death pathways. Since filovirus replication can be efficiently blocked by interferon (IFN), filoviruses have evolved mechanisms to counteract both type I IFN induction and IFN response signaling pathways. Intriguingly, marburg- and ebolaviruses use different strategies to inhibit IFN signaling. This chapter also summarizes what is known about the role of IFN-stimulated genes (ISGs) in filovirus infection. These fall into three categories: those that restrict filovirus replication, those whose activation is inhibited by filoviruses, and those that have no measurable effect on viral replication. In addition to innate immunity, mammalian cells have evolved strategies to counter viral infections, including the induction of cell death and stress response pathways, and we summarize our current knowledge of how filoviruses interact with these pathways. Finally, this chapter delves into the interaction of EBOV with myeloid dendritic cells and macrophages and the associated inflammatory response, which differs dramatically between these cell types when they are infected with EBOV. In summary, we highlight the multifaceted nature of the host-viral interactions during filoviral infections.
Collapse
Affiliation(s)
- Judith Olejnik
- Department of Microbiology and National Emerging Infectious Diseases Laboratories, Boston University School of Medicine, 620 Albany Street, Boston, MA, 02118, USA
| | - Adam J Hume
- Department of Microbiology and National Emerging Infectious Diseases Laboratories, Boston University School of Medicine, 620 Albany Street, Boston, MA, 02118, USA
| | - Daisy W Leung
- Department of Pathology and Immunology, Washington University School of Medicine in St. Louis, St. Louis, MO, 63110, USA
| | - Gaya K Amarasinghe
- Department of Pathology and Immunology, Washington University School of Medicine in St. Louis, St. Louis, MO, 63110, USA
| | - Christopher F Basler
- Microbial Pathogenesis, Georgia State University, Institute for Biomedical Sciences, Atlanta, GA, 30303, USA
| | - Elke Mühlberger
- Department of Microbiology and National Emerging Infectious Diseases Laboratories, Boston University School of Medicine, 620 Albany Street, Boston, MA, 02118, USA.
| |
Collapse
|
10
|
Brisse ME, Ly H. Hemorrhagic Fever-Causing Arenaviruses: Lethal Pathogens and Potent Immune Suppressors. Front Immunol 2019; 10:372. [PMID: 30918506 PMCID: PMC6424867 DOI: 10.3389/fimmu.2019.00372] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 02/14/2019] [Indexed: 12/22/2022] Open
Abstract
Hemorrhagic fevers (HF) resulting from pathogenic arenaviral infections have traditionally been neglected as tropical diseases primarily affecting African and South American regions. There are currently no FDA-approved vaccines for arenaviruses, and treatments have been limited to supportive therapy and use of non-specific nucleoside analogs, such as Ribavirin. Outbreaks of arenaviral infections have been limited to certain geographic areas that are endemic but known cases of exportation of arenaviruses from endemic regions and socioeconomic challenges for local control of rodent reservoirs raise serious concerns about the potential for larger outbreaks in the future. This review synthesizes current knowledge about arenaviral evolution, ecology, transmission patterns, life cycle, modulation of host immunity, disease pathogenesis, as well as discusses recent development of preventative and therapeutic pursuits against this group of deadly viral pathogens.
Collapse
Affiliation(s)
- Morgan E Brisse
- Biochemistry, Molecular Biology, and Biophysics Graduate Program, University of Minnesota, St. Paul, MN, United States.,Department of Veterinary and Biomedical Sciences, University of Minnesota, St. Paul, MN, United States
| | - Hinh Ly
- Department of Veterinary and Biomedical Sciences, University of Minnesota, St. Paul, MN, United States
| |
Collapse
|
11
|
Ding Z, Fang L, Yuan S, Zhao L, Wang X, Long S, Wang M, Wang D, Foda MF, Xiao S. The nucleocapsid proteins of mouse hepatitis virus and severe acute respiratory syndrome coronavirus share the same IFN-β antagonizing mechanism: attenuation of PACT-mediated RIG-I/ MDA5 activation. Oncotarget 2018; 8:49655-49670. [PMID: 28591694 PMCID: PMC5564796 DOI: 10.18632/oncotarget.17912] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Accepted: 05/01/2017] [Indexed: 01/08/2023] Open
Abstract
Coronaviruses (CoVs) are a huge threat to both humans and animals and have evolved elaborate mechanisms to antagonize interferons (IFNs). Nucleocapsid (N) protein is the most abundant viral protein in CoV-infected cells, and has been identified as an innate immunity antagonist in several CoVs, including mouse hepatitis virus (MHV) and severe acute respiratory syndrome (SARS)-CoV. However, the underlying molecular mechanism(s) remain unclear. In this study, we found that MHV N protein inhibited Sendai virus and poly(I:C)-induced IFN-β production by targeting a molecule upstream of retinoic acid-induced gene I (RIG-I) and melanoma differentiation gene 5 (MDA5). Further studies showed that both MHV and SARS-CoV N proteins directly interacted with protein activator of protein kinase R (PACT), a cellular dsRNA-binding protein that can bind to RIG-I and MDA5 to activate IFN production. The N–PACT interaction sequestered the association of PACT and RIG-I/MDA5, which in turn inhibited IFN-β production. However, the N proteins from porcine epidemic diarrhea virus (PEDV) and porcine reproductive and respiratory syndrome virus (PRRSV), which are also classified in the order Nidovirales, did not interact and counteract with PACT. Taken together, our present study confirms that both MHV and SARS-CoV N proteins can perturb the function of cellular PACT to circumvent the innate antiviral response. However, this strategy does not appear to be used by all CoVs N proteins.
Collapse
Affiliation(s)
- Zhen Ding
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Liurong Fang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Shuangling Yuan
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Ling Zhao
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Xunlei Wang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Siwen Long
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Mohan Wang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Dang Wang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Mohamed Frahat Foda
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Shaobo Xiao
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| |
Collapse
|
12
|
Lui PY, Wong LYR, Ho TH, Au SWN, Chan CP, Kok KH, Jin DY. PACT Facilitates RNA-Induced Activation of MDA5 by Promoting MDA5 Oligomerization. THE JOURNAL OF IMMUNOLOGY 2017; 199:1846-1855. [PMID: 28760879 DOI: 10.4049/jimmunol.1601493] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Accepted: 06/27/2017] [Indexed: 12/24/2022]
Abstract
MDA5 is a RIG-I-like cytoplasmic sensor of dsRNA and certain RNA viruses, such as encephalomyocarditis virus, for the initiation of the IFN signaling cascade in the innate antiviral response. The affinity of MDA5 toward dsRNA is low, and its activity becomes optimal in the presence of unknown cellular coactivators. In this article, we report an essential coactivator function of dsRNA-binding protein PACT in mediating the MDA5-dependent type I IFN response. Virus-induced and polyinosinic-polycytidylic acid-induced activation of MDA5 were severely impaired in PACT-knockout cells and attenuated in PACT-knockdown cells, but they were potentiated when PACT was overexpressed. PACT augmented IRF3-dependent type I IFN production subsequent to dsRNA-induced activation of MDA5. In contrast, PACT had no influence on MDA5-mediated activation of NF-κB. PACT required dsRNA interaction for its action on MDA5 and promoted dsRNA-induced oligomerization of MDA5. PACT had little stimulatory effect on MDA5 mutants deficient for oligomerization and filament assembly. PACT colocalized with MDA5 in the cytoplasm and potentiated MDA5 recruitment to the dsRNA ligand. Taken together, these findings suggest that PACT functions as an essential cellular coactivator of RIG-I, as well as MDA5, and it facilitates RNA-induced formation of MDA5 oligomers.
Collapse
Affiliation(s)
- Pak-Yin Lui
- School of Biomedical Sciences, The University of Hong Kong, Pokfulam, Hong Kong.,Shenzhen Institute of Research and Innovation, The University of Hong Kong, Nanshan, Shenzhen, China 518057
| | - Lok-Yin Roy Wong
- School of Biomedical Sciences, The University of Hong Kong, Pokfulam, Hong Kong.,Shenzhen Institute of Research and Innovation, The University of Hong Kong, Nanshan, Shenzhen, China 518057
| | - Ting-Hin Ho
- School of Biomedical Sciences, The University of Hong Kong, Pokfulam, Hong Kong.,Shenzhen Institute of Research and Innovation, The University of Hong Kong, Nanshan, Shenzhen, China 518057
| | - Shannon Wing Ngor Au
- School of Life Sciences, Chinese University of Hong Kong, Shatin, Hong Kong; and
| | - Chi-Ping Chan
- School of Biomedical Sciences, The University of Hong Kong, Pokfulam, Hong Kong.,Shenzhen Institute of Research and Innovation, The University of Hong Kong, Nanshan, Shenzhen, China 518057
| | - Kin-Hang Kok
- Shenzhen Institute of Research and Innovation, The University of Hong Kong, Nanshan, Shenzhen, China 518057; .,Department of Microbiology, The University of Hong Kong, Pokfulam, Hong Kong
| | - Dong-Yan Jin
- School of Biomedical Sciences, The University of Hong Kong, Pokfulam, Hong Kong; .,Shenzhen Institute of Research and Innovation, The University of Hong Kong, Nanshan, Shenzhen, China 518057
| |
Collapse
|
13
|
Huang K, Qi G, Sun Z, Liu X, Xu X, Wang H, Wu Z, Wan Y, Hu C. Ctenopharyngodon idella IRF2 and ATF4 down-regulate the transcriptional level of PRKRA. FISH & SHELLFISH IMMUNOLOGY 2017; 64:155-164. [PMID: 28263879 DOI: 10.1016/j.fsi.2017.03.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2016] [Revised: 02/22/2017] [Accepted: 03/01/2017] [Indexed: 06/06/2023]
Abstract
PRKRA (interferon-inducible double-stranded RNA-dependent protein kinase activator A) is a protective protein which regulates the adaptation of cells to ER stress and virus-stimulated signaling pathways by activating PKR. In the present study, a grass carp (Ctenopharyngodon idella) PRKRA full-length cDNA (named CiPRKRA, KT891991) was cloned and identified. The full-length cDNA is comprised of a 5' UTR (36 bp), a 3' UTR (350 bp) and the longest ORF (882 bp) encoding a polypeptide of 293 amino acids. The deduced amino acid sequence of CiPRKRA contains three typical dsRNA binding motifs (dsRBM). Phylogenetic tree analysis revealed a closer evolutionary relationship of CiPRKRA with other fish PRKRA, especially with Danio rerio PRKRA. qRT-PCR showed that CiPRKRA was significantly up-regulated after stimulation with tunicamycin (Tm) and Poly I:C in C. idella kidney (CIK) cells. To further study its transcriptional regulation, the partial promoter sequence of CiPRKRA (1463 bp) containing one ISRE and one CARE was cloned by Tail-PCR. Subsequently, grass carp IRF2 (CiIRF2) and ATF4 (CiATF4) were expressed in Escherichia coli BL21 and purified by affinity chromatography with the Ni-NTA His-Bind Resin. In vitro, both CiIRF2 and CiATF4 bound to CiPRKRA promoter with high affinity by gel mobility shift assays, revealing that IRF2 and ATF4 might be potential transcriptional regulatory factors for CiPRKRA. Dual-luciferase reporter assays were applied to further investigate the transcriptional regulation of CiPRKRA in vivo. Recombinant plasmid of pGL3-PRKRAPro was constructed and transiently co-transfected into CIK cells with pcDNA3.1-CiIRF2 and pcDNA3.1-CiATF4, respectively. The results showed that both CiIRF2 and CiATF4 significantly decreased the luciferase activity of pGL3-PRKRAPro, suggesting that they play a negative role in CiPRKRA transcription.
Collapse
Affiliation(s)
- Keyi Huang
- College of Life Science, Key Lab of Aquatic Resources and Utilization of Jiangxi Province, Nanchang University, Nanchang 330031, China
| | - Guoqin Qi
- College of Life Science, Key Lab of Aquatic Resources and Utilization of Jiangxi Province, Nanchang University, Nanchang 330031, China
| | - Zhicheng Sun
- College of Life Science, Key Lab of Aquatic Resources and Utilization of Jiangxi Province, Nanchang University, Nanchang 330031, China
| | - Xiancheng Liu
- College of Life Science, Key Lab of Aquatic Resources and Utilization of Jiangxi Province, Nanchang University, Nanchang 330031, China
| | - Xiaowen Xu
- College of Life Science, Key Lab of Aquatic Resources and Utilization of Jiangxi Province, Nanchang University, Nanchang 330031, China
| | - Haizhou Wang
- College of Life Science, Key Lab of Aquatic Resources and Utilization of Jiangxi Province, Nanchang University, Nanchang 330031, China
| | - Zhen Wu
- College of Life Science, Key Lab of Aquatic Resources and Utilization of Jiangxi Province, Nanchang University, Nanchang 330031, China
| | - Yiqi Wan
- College of Life Science, Key Lab of Aquatic Resources and Utilization of Jiangxi Province, Nanchang University, Nanchang 330031, China
| | - Chengyu Hu
- College of Life Science, Key Lab of Aquatic Resources and Utilization of Jiangxi Province, Nanchang University, Nanchang 330031, China.
| |
Collapse
|
14
|
Chatterjee S, Basler CF, Amarasinghe GK, Leung DW. Molecular Mechanisms of Innate Immune Inhibition by Non-Segmented Negative-Sense RNA Viruses. J Mol Biol 2016; 428:3467-82. [PMID: 27487481 DOI: 10.1016/j.jmb.2016.07.017] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Revised: 07/25/2016] [Accepted: 07/25/2016] [Indexed: 12/25/2022]
Abstract
The host innate immune system serves as the first line of defense against viral infections. Germline-encoded pattern recognition receptors detect molecular patterns associated with pathogens and activate innate immune responses. Of particular relevance to viral infections are those pattern recognition receptors that activate type I interferon responses, which establish an antiviral state. The order Mononegavirales is composed of viruses that possess single-stranded, non-segmented negative-sense (NNS) RNA genomes and are important human pathogens that consistently antagonize signaling related to type I interferon responses. NNS viruses have limited encoding capacity compared to many DNA viruses, and as a likely consequence, most open reading frames encode multifunctional viral proteins that interact with host factors in order to evade host cell defenses while promoting viral replication. In this review, we will discuss the molecular mechanisms of innate immune evasion by select NNS viruses. A greater understanding of these interactions will be critical in facilitating the development of effective therapeutics and viral countermeasures.
Collapse
Affiliation(s)
- Srirupa Chatterjee
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Christopher F Basler
- Center of Microbial Pathogenesis, Georgia State University, Atlanta, GA 30303, USA.
| | - Gaya K Amarasinghe
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA.
| | - Daisy W Leung
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|
15
|
Nakamura M, Kanda T, Sasaki R, Haga Y, Jiang X, Wu S, Nakamoto S, Yokosuka O. MicroRNA-122 Inhibits the Production of Inflammatory Cytokines by Targeting the PKR Activator PACT in Human Hepatic Stellate Cells. PLoS One 2015; 10:e0144295. [PMID: 26636761 PMCID: PMC4670168 DOI: 10.1371/journal.pone.0144295] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Accepted: 11/16/2015] [Indexed: 12/11/2022] Open
Abstract
MicroRNA-122 (miR-122) is one of the most abundant miRs in the liver. Previous studies have demonstrated that miR-122 plays a role in inflammation in the liver and functions in hepatic stellate cells (HSCs), which reside in the space of Disse. Here, we showed that the transient inhibition of PKR-activating protein (PACT) expression, by miR-122 or siRNA targeting of PACT, suppressed the production of proinflammatory cytokines, such as interleukin (IL)-6, monocyte chemoattractant protein-1 (MCP-1) and IL-1β, in human HSC LX-2. Sequence and functional analyses confirmed that miR-122 directly targeted the 3'-untranslated region of PACT. Immunofluorescence analysis revealed that miR-122 blocked NF-κB-nuclear translocation in LX-2 cells. We also showed that conditioned medium from miR-122-transfected LX-2 cells suppressed human monocyte-derived THP-1 cell migration. Taken together, our study indicates that miR-122 may downregulate cytokine production in HSCs and macrophage chemotaxis and that the targeting of miR-122 may have therapeutic potential for preventing the progression of liver diseases.
Collapse
Affiliation(s)
- Masato Nakamura
- Department of Gastroenterology and Nephrology, Chiba University, Graduate School of Medicine, Chiba, 260–8677, Japan
| | - Tatsuo Kanda
- Department of Gastroenterology and Nephrology, Chiba University, Graduate School of Medicine, Chiba, 260–8677, Japan
| | - Reina Sasaki
- Department of Gastroenterology and Nephrology, Chiba University, Graduate School of Medicine, Chiba, 260–8677, Japan
| | - Yuki Haga
- Department of Gastroenterology and Nephrology, Chiba University, Graduate School of Medicine, Chiba, 260–8677, Japan
| | - Xia Jiang
- Department of Gastroenterology and Nephrology, Chiba University, Graduate School of Medicine, Chiba, 260–8677, Japan
| | - Shuang Wu
- Department of Gastroenterology and Nephrology, Chiba University, Graduate School of Medicine, Chiba, 260–8677, Japan
| | - Shingo Nakamoto
- Department of Gastroenterology and Nephrology, Chiba University, Graduate School of Medicine, Chiba, 260–8677, Japan
- Department of Molecular Virology, Chiba University, Graduate School of Medicine, Chiba, 260–8677, Japan
| | - Osamu Yokosuka
- Department of Gastroenterology and Nephrology, Chiba University, Graduate School of Medicine, Chiba, 260–8677, Japan
| |
Collapse
|
16
|
Heyam A, Lagos D, Plevin M. Dissecting the roles of TRBP and PACT in double-stranded RNA recognition and processing of noncoding RNAs. WILEY INTERDISCIPLINARY REVIEWS. RNA 2015; 6:271-89. [PMID: 25630541 PMCID: PMC7169789 DOI: 10.1002/wrna.1272] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Revised: 10/08/2014] [Accepted: 10/09/2014] [Indexed: 12/27/2022]
Abstract
HIV TAR RNA-binding protein (TRBP) and Protein Activator of PKR (PACT) are double-stranded (ds) RNA-binding proteins that participate in both small regulatory RNA biogenesis and the response to viral dsRNA. Despite considerable progress toward understanding the structure-function relationship of TRBP and PACT, their specific roles in these seemingly distinct cellular pathways remain unclear. Both proteins are composed of three copies of the double-stranded RNA-binding domain, two of which interact with dsRNA, while the C-terminal copy mediates protein-protein interactions. PACT and TRBP are found in a complex with the endonuclease Dicer and facilitate processing of immature microRNAs. Their precise contribution to the Dicing step has not yet been defined: possibilities include precursor recruitment, rearrangement of dsRNA within the complex, loading the processed microRNA into the RNA-induced silencing complex, and distinguishing different classes of small dsRNA. TRBP and PACT also interact with the viral dsRNA sensors retinoic acid-inducible gene I (RIG-I) and double-stranded RNA-activated protein kinase (PKR). Current models suggest that PACT enables RIG-I to detect a wider range of viral dsRNAs, while TRBP and PACT exert opposing regulatory effects on PKR. Here, the evidence that implicates TRBP and PACT in regulatory RNA processing and viral dsRNA sensing is reviewed and discussed in the context of their molecular structure. The broader implications of a link between microRNA biogenesis and the innate antiviral response pathway are also considered.
Collapse
MESH Headings
- Amino Acid Sequence
- Carboxypeptidases/chemistry
- Carboxypeptidases/metabolism
- Carboxypeptidases/physiology
- Models, Genetic
- Models, Molecular
- Molecular Sequence Data
- Protein Structure, Tertiary
- RNA, Double-Stranded/chemistry
- RNA, Double-Stranded/immunology
- RNA, Double-Stranded/metabolism
- RNA, Untranslated/metabolism
- RNA, Viral/chemistry
- RNA, Viral/immunology
- RNA, Viral/metabolism
- RNA-Binding Proteins/chemistry
- RNA-Binding Proteins/metabolism
- RNA-Binding Proteins/physiology
- Ribonuclease III/chemistry
- Ribonuclease III/metabolism
- Ribonuclease III/physiology
- Structure-Activity Relationship
Collapse
Affiliation(s)
- Alex Heyam
- Department of Biology, University of York, York, UK
| | | | | |
Collapse
|
17
|
Motani K, Ito S, Nagata S. DNA-Mediated Cyclic GMP-AMP Synthase-Dependent and -Independent Regulation of Innate Immune Responses. THE JOURNAL OF IMMUNOLOGY 2015; 194:4914-23. [PMID: 25855353 DOI: 10.4049/jimmunol.1402705] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Accepted: 03/11/2015] [Indexed: 01/08/2023]
Abstract
Cytoplasmic DNA activates cyclic GMP-AMP synthase (cGAS) to produce cyclic 2'-5'3'-5'GMP-AMP dinucleotide (2'5 'cGAMP). The binding of 2'5'cGAMP to an adaptor protein, stimulator of IFN genes (STING), activates a transcription factor, IFN regulatory factor 3, leading to the induction of IFN and chemokine gene expression. In this study, we found that the 2'5'cGAMP-dependent STING activation induced highly upregulated CXCL10 gene expression. Formation of a distinct STING dimer, which was detected by native PAGE, was induced by 2'5'cGAMP, but not 3'-5'3'-5'cGAMP. Analysis of DNase II(-/-) mice, which constitutively produce IFN-β and CXCL10, showed the accumulation of 2'5'cGAMP in their fetal livers and spleens, suggesting that the undigested DNA accumulating in DNase II(-/-) cells may have leaked from the lysosomes into the cytoplasm. The DNase II(-/-) mouse embryonic fibroblasts produced 2'5'cGAMP in a cGAS-dependent manner during apoptotic cell engulfment. However, cGAS deficiency did not impair the STING-dependent upregulation of CXCL10 in DNase II(-/-) mouse embryonic fibroblasts that was induced by apoptotic cell engulfment or DNA lipofection. These results suggest the involvement of a cGAS-independent additional DNA sensor(s) that induces the STING-dependent activation of innate immunity.
Collapse
Affiliation(s)
- Kou Motani
- Department of Medical Chemistry, Graduate School of Medicine, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan; Division of Cell Signaling, Fujii Memorial Institute of Medical Sciences, University of Tokushima, Tokushima 770-8503, Japan; and
| | - Shinji Ito
- Medical Research Support Center, Graduate School of Medicine, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Shigekazu Nagata
- Department of Medical Chemistry, Graduate School of Medicine, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan;
| |
Collapse
|
18
|
Luthra P, Ramanan P, Mire CE, Weisend C, Tsuda Y, Yen B, Liu G, Leung DW, Geisbert TW, Ebihara H, Amarasinghe GK, Basler CF. Mutual antagonism between the Ebola virus VP35 protein and the RIG-I activator PACT determines infection outcome. Cell Host Microbe 2013; 14:74-84. [PMID: 23870315 PMCID: PMC3875338 DOI: 10.1016/j.chom.2013.06.010] [Citation(s) in RCA: 145] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2013] [Revised: 05/04/2013] [Accepted: 06/24/2013] [Indexed: 11/21/2022]
Abstract
The cytoplasmic pattern recognition receptor RIG-I is activated by viral RNA and induces type I IFN responses to control viral replication. The cellular dsRNA binding protein PACT can also activate RIG-I. To counteract innate antiviral responses, some viruses, including Ebola virus (EBOV), encode proteins that antagonize RIG-I signaling. Here, we show that EBOV VP35 inhibits PACT-induced RIG-I ATPase activity in a dose-dependent manner. The interaction of PACT with RIG-I is disrupted by wild-type VP35, but not by VP35 mutants that are unable to bind PACT. In addition, PACT-VP35 interaction impairs the association between VP35 and the viral polymerase, thereby diminishing viral RNA synthesis and modulating EBOV replication. PACT-deficient cells are defective in IFN induction and are insensitive to VP35 function. These data support a model in which the VP35-PACT interaction is mutually antagonistic and plays a fundamental role in determining the outcome of EBOV infection.
Collapse
Affiliation(s)
- Priya Luthra
- Department of Microbiology, Icahn School of Medicine at Mount Sinai School, New York, NY 10029, USA
| | - Parameshwaran Ramanan
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
- Biochemistry Graduate Program, Roy J. Carver Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, IA 50011, USA
| | - Chad E. Mire
- Department of Microbiology and Immunology, Galveston National Laboratory, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Carla Weisend
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MO 59840, USA
| | - Yoshimi Tsuda
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MO 59840, USA
| | - Benjamin Yen
- Department of Microbiology, Icahn School of Medicine at Mount Sinai School, New York, NY 10029, USA
| | - Gai Liu
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Daisy W. Leung
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Thomas W. Geisbert
- Department of Microbiology and Immunology, Galveston National Laboratory, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Hideki Ebihara
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MO 59840, USA
| | - Gaya K. Amarasinghe
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Christopher F. Basler
- Department of Microbiology, Icahn School of Medicine at Mount Sinai School, New York, NY 10029, USA
| |
Collapse
|
19
|
Zhang L, Alter HJ, Wang H, Jia S, Wang E, Marincola FM, Shih JWK, Wang RY. The modulation of hepatitis C virus 1a replication by PKR is dependent on NF-kB mediated interferon beta response in Huh7.5.1 cells. Virology 2013; 438:28-36. [PMID: 23399035 DOI: 10.1016/j.virol.2013.01.015] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2012] [Revised: 11/20/2012] [Accepted: 01/18/2013] [Indexed: 12/24/2022]
Abstract
Protein kinase R (PKR), a sensor of double-stranded RNA, plays an important role in the host response to viral infection. Hepatitis C genotype 2a virus (HCV2a) has been shown to induce PKR activation to suppress the translation of antiviral interferon stimulated genes (ISGs), suggesting that PKR inhibitor can be beneficial for treating chronically HCV-infected patients in conjunction with interferon alpha and ribavirin. However, in this study, we found that PKR inhibition using siRNA PKR, shRNA PKR or PKR inhibitor enhanced HCV 1a replication and rendered Huh7.5.1 cells more susceptible to HCV1a infection. Additionally, PKR silencing suppressed NF-kB activation and NF-kB mediated STAT1 phosphorylation in Huh7.5.1 cells and HCV1a persistently infected Huh7.5.1 cells (2HDD4). These effects were accompanied by a reduction of interferon beta response and thereby enhanced HCV1a replication in Huh7.5.1 cells. We conclude that host cells can employ PKR activation to restrict HCV1a replication through regulation of NF-kB expression.
Collapse
Affiliation(s)
- Lumin Zhang
- Infectious Disease and Immunogenetics Section, Department of Transfusion Medicine, Clinical Center, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Kok KH, Lui PY, Ng MHJ, Siu KL, Au SWN, Jin DY. The double-stranded RNA-binding protein PACT functions as a cellular activator of RIG-I to facilitate innate antiviral response. Cell Host Microbe 2011; 9:299-309. [PMID: 21501829 DOI: 10.1016/j.chom.2011.03.007] [Citation(s) in RCA: 145] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2010] [Revised: 12/14/2010] [Accepted: 03/04/2011] [Indexed: 12/19/2022]
Abstract
RIG-I, a virus sensor that triggers innate antiviral response, is a DExD/H box RNA helicase bearing structural similarity with Dicer, an RNase III-type nuclease that mediates RNA interference. Dicer requires double-stranded RNA-binding protein partners, such as PACT, for optimal activity. Here we show that PACT physically binds to the C-terminal repression domain of RIG-I and potently stimulates RIG-I-induced type I interferon production. PACT potentiates the activation of RIG-I by poly(I:C) of intermediate length. PACT also cooperates with RIG-I to sustain the activation of antiviral defense. Depletion of PACT substantially attenuates viral induction of interferons. The activation of RIG-I by PACT does not require double-stranded RNA-dependent protein kinase or Dicer, but is mediated by a direct interaction that leads to stimulation of its ATPase activity. Our findings reveal PACT as an important component in initiating and sustaining the RIG-I-dependent antiviral response.
Collapse
Affiliation(s)
- Kin-Hang Kok
- Department of Biochemistry and State Key Laboratory for Liver Research, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong
| | | | | | | | | | | |
Collapse
|
21
|
Broquet AH, Hirata Y, McAllister CS, Kagnoff MF. RIG-I/MDA5/MAVS are required to signal a protective IFN response in rotavirus-infected intestinal epithelium. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2011; 186:1618-26. [PMID: 21187438 DOI: 10.4049/jimmunol.1002862] [Citation(s) in RCA: 170] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Rotavirus is a dsRNA virus that infects epithelial cells that line the surface of the small intestine. It causes severe diarrheal illness in children and ∼500,000 deaths per year worldwide. We studied the mechanisms by which intestinal epithelial cells (IECs) sense rotavirus infection and signal IFN-β production, and investigated the importance of IFN-β production by IECs for controlling rotavirus production by intestinal epithelium and virus excretion in the feces. In contrast with most RNA viruses, which interact with either retinoic acid-inducible gene I (RIG-I) or melanoma differentiation-associated gene 5 (MDA5) inside cells, rotavirus was sensed by both RIG-I and MDA5, alone and in combination. Rotavirus did not signal IFN-β through either of the dsRNA sensors TLR3 or dsRNA-activated protein kinase (PKR). Silencing RIG-I or MDA5, or their common adaptor protein mitochondrial antiviral signaling protein (MAVS), significantly decreased IFN-β production and increased rotavirus titers in infected IECs. Overexpression of laboratory of genetics and physiology 2, a RIG-I-like receptor that interacts with viral RNA but lacks the caspase activation and recruitment domains required for signaling through MAVS, significantly decreased IFN-β production and increased rotavirus titers in infected IECs. Rotavirus-infected mice lacking MAVS, but not those lacking TLR3, TRIF, or PKR, produced significantly less IFN-β and increased amounts of virus in the intestinal epithelium, and shed increased quantities of virus in the feces. We conclude that RIG-I or MDA5 signaling through MAVS is required for the activation of IFN-β production by rotavirus-infected IECs and has a functionally important role in determining the magnitude of rotavirus replication in the intestinal epithelium.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing/deficiency
- Adaptor Proteins, Signal Transducing/physiology
- Animals
- Cell Line
- Chlorocebus aethiops
- DEAD Box Protein 58
- DEAD-box RNA Helicases/deficiency
- DEAD-box RNA Helicases/physiology
- HT29 Cells
- Humans
- Interferon-Induced Helicase, IFIH1
- Interferon-beta/biosynthesis
- Interferon-beta/physiology
- Intestinal Mucosa/enzymology
- Intestinal Mucosa/immunology
- Intestinal Mucosa/virology
- Membrane Proteins/deficiency
- Membrane Proteins/physiology
- Mice
- Mice, 129 Strain
- Mice, Inbred C57BL
- Mice, Knockout
- Nerve Tissue Proteins/deficiency
- Nerve Tissue Proteins/physiology
- RNA Helicases/genetics
- RNA Helicases/physiology
- RNA, Viral/biosynthesis
- RNA, Viral/genetics
- Receptors, Cell Surface
- Receptors, Immunologic
- Response Elements/immunology
- Rotavirus/genetics
- Rotavirus/immunology
- Signal Transduction/genetics
- Signal Transduction/immunology
- Virus Replication/genetics
- Virus Replication/immunology
Collapse
Affiliation(s)
- Alexis H Broquet
- Laboratory of Mucosal Immunology, Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | | | | | | |
Collapse
|
22
|
Smith AJ, Li Q, Wietgrefe SW, Schacker TW, Reilly CS, Haase AT. Host genes associated with HIV-1 replication in lymphatic tissue. THE JOURNAL OF IMMUNOLOGY 2010; 185:5417-24. [PMID: 20935203 DOI: 10.4049/jimmunol.1002197] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Much effort has been spent recently in identifying host factors required for HIV-1 to effectively replicate in cultured human cells. However, much less is known about the genetic factors in vivo that impact viral replication in lymphatic tissue, the primary anatomical site of virus-host interactions where the bulk of viral replication and pathogenesis occurs. To identify genetic determinants in lymphatic tissue that critically affect HIV-1 replication, we used microarrays to transcriptionally profile and identify host genes expressed in inguinal lymph nodes that were associated determinants of viral load. Strikingly, ∼95% of the transcripts (558) in this data set (592 transcripts total) were negatively associated with HIV-1 replication. Genes in this subset 1) inhibit cellular activation/proliferation (e.g., TCFL5, SOCS5 and SCOS7, KLF10), 2) promote heterochromatin formation (e.g., HIC2, CREBZF, ZNF148/ZBP-89), 3) increase collagen synthesis (e.g., PLOD2, POSTN, CRTAP), and 4) reduce cellular transcription and translation. Potential anti-HIV-1 restriction factors were also identified (e.g., NR3C1, HNRNPU, PACT). Only ∼5% of the transcripts (34) were positively associated with HIV-1 replication. Paradoxically, nearly all of these genes function in innate and adaptive immunity, particularly highlighting heightened gene expression in the IFN system. We conclude that this conventional host response cannot contain HIV-1 replication and, in fact, could well contribute to increased replication through immune activation. More importantly, genes that have a negative association with virus replication point to target cell availability and potentially new viral restriction factors as principal determinants of viral load.
Collapse
Affiliation(s)
- Anthony J Smith
- Department of Microbiology, Medical School, University of Minnesota, Minneapolis, MN 55455, USA
| | | | | | | | | | | |
Collapse
|
23
|
Virus-infection or 5'ppp-RNA activates antiviral signal through redistribution of IPS-1 mediated by MFN1. PLoS Pathog 2010; 6:e1001012. [PMID: 20661427 PMCID: PMC2908619 DOI: 10.1371/journal.ppat.1001012] [Citation(s) in RCA: 151] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2010] [Accepted: 06/18/2010] [Indexed: 12/25/2022] Open
Abstract
In virus-infected cells, RIG-I-like receptor (RLR) recognizes cytoplasmic viral RNA and triggers innate immune responses including production of type I and III interferon (IFN) and the subsequent expression of IFN-inducible genes. Interferon-β promoter stimulator 1 (IPS-1, also known as MAVS, VISA and Cardif) is a downstream molecule of RLR and is expressed on the outer membrane of mitochondria. While it is known that the location of IPS-1 is essential to its function, its underlying mechanism is unknown. Our aim in this study was to delineate the function of mitochondria so as to identify more precisely its role in innate immunity. In doing so we discovered that viral infection as well as transfection with 5′ppp-RNA resulted in the redistribution of IPS-1 to form speckle-like aggregates in cells. We further found that Mitofusin 1 (MFN1), a key regulator of mitochondrial fusion and a protein associated with IPS-1 on the outer membrane of mitochondria, positively regulates RLR-mediated innate antiviral responses. Conversely, specific knockdown of MFN1 abrogates both the virus-induced redistribution of IPS-1 and IFN production. Our study suggests that mitochondria participate in the segregation of IPS-1 through their fusion processes. Virus-infections, such as influenza and chronic hepatitis C, are prominent diseases and outbreaks of newly emerging viruses are serious problems for modern society. Higher animals, including humans, are genetically equipped with mechanisms, collectively known as innate immunity, to counteract viral infections. RIG-I-like receptor (RLR), a cytoplasmic sensor, contributes to immune regulation by detecting infections by RNA viruses and triggering a series of responses which results in the activation of innate antiviral genes. Furthermore, it has been demonstrated that IPS-1, the adaptor protein of RLR, is expressed on mitochondrial outer membrane. Mitochondrion is an organelle of prokaryotic cell origin; it regulates energy production, and is involved in cell growth and cell death. Why IPS-1 is located on the mitochondrial outer membrane and how mitochondria are involved in antiviral signaling are yet to be explained clearly. In this report, we discovered that mitochondrial fusion protein MFN1 plays a novel function to mediate IPS-1 redistribution, which appears to be a critical step in RLR signaling.
Collapse
|
24
|
Homma Y, Cao S, Shi X, Ma X. The Th2 transcription factor c-Maf inhibits IL-12p35 gene expression in activated macrophages by targeting NF-kappaB nuclear translocation. J Interferon Cytokine Res 2007; 28:469-76. [PMID: 17892401 DOI: 10.1089/jir.2007.0006] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The inflammatory response of macrophages to infectious agents is a highly dynamic and orchestrated process involving the release of a variety of inflammatory mediators, including interleukin-12 (IL-12), as a consequence of the recognition of the pathogens. Regulation of IL-12 gene expression by the anti-inflammatory cytokine IL-10 represents a major homeostatic process underlying host-pathogen and host-self interactions. Our group first reported that the Th2-specific transcription factor c-Maf is expressed also in macrophages treated with lipopolysaccharide (LPS) and IL-10. When overexpressed, c-Maf can potently suppress IL-12 production. However, c-Maf does not appear to be a physiologic regulator of IL-12p40 gene transcription because p40 production is not dysregulated in c-Maf-deficient macrophages. In this study, we investigated the role of c-Maf in regulation of the transcription of the p35 gene, which encodes the chain that is rate limiting in the synthesis of the heterodimeric IL-12. We report that c-Maf is a physiologic modulator of IL-12p35 gene expression and IL-12p70 production. We identify a novel NF-kappaB element within the proximal p35 promoter and show that c-Maf inhibits p35 transcription by antagonizing the effects of NF-kappaB, especially c-Rel, on p35 activation. It does so not by directly interacting with the target DNA but by interfering with the nuclear localization of NF-kappaB c-Rel. This study contributes to our understanding of the molecular basis of the homeostatic regulation of IL-12 production by c-Maf, which plays a dual role both in the function of antigen-presenting cells (APCs) and in T helper cell differentiation.
Collapse
Affiliation(s)
- Yoichiro Homma
- Department of Microbiology and Immunology, Weill Medical College of Cornell University, New York, NY 10021, USA
| | | | | | | |
Collapse
|
25
|
Hirata Y, Broquet AH, Menchén L, Kagnoff MF. Activation of innate immune defense mechanisms by signaling through RIG-I/IPS-1 in intestinal epithelial cells. THE JOURNAL OF IMMUNOLOGY 2007; 179:5425-32. [PMID: 17911629 DOI: 10.4049/jimmunol.179.8.5425] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Intestinal epithelial cells (IECs) are a first line of defense against microbial pathogens that enter the host through the intestinal tract. Moreover, viral pathogens that infect the host via the intestinal epithelium are an important cause of morbidity and mortality. However, the mechanisms by which viral pathogens activate antiviral defense mechanisms in IECs are largely unknown. The synthetic dsRNA analog polyinosinic-polycytidylic acid and infection with live virus were used to probe the molecules that are activated and the mechanisms of signaling in virus-infected human IECs. Polyinosinic-polycytidylic acid activated IFN regulatory factor 3 dimerization and phosphorylation, increased activity of the IFN-stimulated response element, induced a significant increase in IFN-beta mRNA transcripts and IFN-beta secretion, and up-regulated the expression of IFN-regulated genes in IECs. Those responses were dependent upon activation of the dsRNA binding protein retinoic acid inducible gene I (RIG-I) and the RIG-I interacting protein IFN promoter stimulator-1, but not on dsRNA-activated protein kinase or TLR3, which also were expressed by IECs. Virus replication and virus-induced cell death increased in IECs in which RIG-I was silenced, consistent with the importance of the RIG-I signaling pathway in IEC antiviral innate immune defense mechanisms.
Collapse
Affiliation(s)
- Yoshihiro Hirata
- Department of Medicine, University of California at San Diego, La Jolla, CA 92093, USA
| | | | | | | |
Collapse
|
26
|
Human immunodeficiency virus-1/surface glycoprotein 120 induces apoptosis through RNA-activated protein kinase signaling in neurons. J Neurosci 2007; 27:11047-55. [PMID: 17928446 DOI: 10.1523/jneurosci.2733-07.2007] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Previous work has demonstrated that the surface glycoprotein (gp120) of human immunodeficiency virus-1 (HIV-1) can induce damage and apoptosis of neurons both in vitro and in vivo. In this report, we provide evidence that double-stranded RNA-activated protein kinase (PKR), a stress kinase, is involved in HIV/gp120-associated neurodegeneration. In cultures of mixed cortical cells, HIV/gp120 increased the protein level of PKR. Additionally, PKR was phosphorylated in neurons but not glia after exposure to gp120. The use of two independent pharmacological inhibitors of PKR activity abrogated neuronal cell death induced by gp120. Cortical neurons from PKR knock-out mice were significantly protected from neurotoxicity induced by gp120, further validating the pivotal proapoptotic function of PKR. gp120-induced phosphorylated PKR localized prominently to neuronal nuclei; PKR inhibition or the NMDA receptor antagonist MK-801 [(+)-5-methyl-10,11-dihydro-5H-dibenzo [a,d] cyclohepten-5,10-imine maleate] abrogated this effect. PKR inactivation also inhibited gp120-induced caspase-3 activation, consistent with its neuroprotective effect. Finally, brain tissue from individuals diagnosed with HIV-associated dementia (HAD), but not HIV infection alone, contained the activated form of PKR, which localized predominantly to neuronal nuclei. Together, these results identify PKR as a critical mediator of gp120 neurotoxicity, suggesting that activation of PKR contributes to the neuronal injury and cell death observed in HAD.
Collapse
|
27
|
García MA, Gil J, Ventoso I, Guerra S, Domingo E, Rivas C, Esteban M. Impact of protein kinase PKR in cell biology: from antiviral to antiproliferative action. Microbiol Mol Biol Rev 2007; 70:1032-60. [PMID: 17158706 PMCID: PMC1698511 DOI: 10.1128/mmbr.00027-06] [Citation(s) in RCA: 614] [Impact Index Per Article: 34.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The double-stranded RNA-dependent protein kinase PKR is a critical mediator of the antiproliferative and antiviral effects exerted by interferons. Not only is PKR an effector molecule on the cellular response to double-stranded RNA, but it also integrates signals in response to Toll-like receptor activation, growth factors, and diverse cellular stresses. In this review, we provide a detailed picture on how signaling downstream of PKR unfolds and what are the ultimate consequences for the cell fate. PKR activation affects both transcription and translation. PKR phosphorylation of the alpha subunit of eukaryotic initiation factor 2 results in a blockade on translation initiation. However, PKR cannot avoid the translation of some cellular and viral mRNAs bearing special features in their 5' untranslated regions. In addition, PKR affects diverse transcriptional factors such as interferon regulatory factor 1, STATs, p53, activating transcription factor 3, and NF-kappaB. In particular, how PKR triggers a cascade of events involving IKK phosphorylation of IkappaB and NF-kappaB nuclear translocation has been intensively studied. At the cellular and organism levels PKR exerts antiproliferative effects, and it is a key antiviral agent. A point of convergence in both effects is that PKR activation results in apoptosis induction. The extent and strength of the antiviral action of PKR are clearly understood by the findings that unrelated viral proteins of animal viruses have evolved to inhibit PKR action by using diverse strategies. The case for the pathological consequences of the antiproliferative action of PKR is less understood, but therapeutic strategies aimed at targeting PKR are beginning to offer promising results.
Collapse
Affiliation(s)
- M A García
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología, Ciudad Universitaria Cantoblanco, 28049 Madrid, Spain
| | | | | | | | | | | | | |
Collapse
|
28
|
Yoneyama M, Kikuchi M, Matsumoto K, Imaizumi T, Miyagishi M, Taira K, Foy E, Loo YM, Gale M, Akira S, Yonehara S, Kato A, Fujita T. Shared and unique functions of the DExD/H-box helicases RIG-I, MDA5, and LGP2 in antiviral innate immunity. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2005; 175:2851-8. [PMID: 16116171 DOI: 10.4049/jimmunol.175.5.2851] [Citation(s) in RCA: 1271] [Impact Index Per Article: 63.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The cellular protein retinoic acid-inducible gene I (RIG-I) senses intracellular viral infection and triggers a signal for innate antiviral responses including the production of type I IFN. RIG-I contains a domain that belongs to a DExD/H-box helicase family and exhibits an N-terminal caspase recruitment domain (CARD) homology. There are three genes encoding RIG-I-related proteins in human and mouse genomes. Melanoma differentiation associated gene 5 (MDA5), which consists of CARD and a helicase domain, functions as a positive regulator, similarly to RIG-I. Both proteins sense viral RNA with a helicase domain and transmit a signal downstream by CARD; thus, these proteins share overlapping functions. Another protein, LGP2, lacks the CARD homology and functions as a negative regulator by interfering with the recognition of viral RNA by RIG-I and MDA5. The nonstructural protein 3/4A protein of hepatitis C virus blocks the signaling by RIG-I and MDA5; however, the V protein of the Sendai virus selectively abrogates the MDA5 function. These results highlight ingenious mechanisms for initiating antiviral innate immune responses and the action of virus-encoded inhibitors.
Collapse
Affiliation(s)
- Mitsutoshi Yoneyama
- Antiviral Innate Immunity Project, Tokyo Metropolitan Institute of Medical Science, Tokyo Metropolitan Organization for Medical Research, Honkomagome, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Sekine Y, Yamamoto T, Yumioka T, Sugiyama K, Tsuji S, Oritani K, Shimoda K, Minoguchi M, Yoshimura A, Matsuda T. Physical and Functional Interactions between STAP-2/BKS and STAT5. J Biol Chem 2005; 280:8188-96. [PMID: 15611091 DOI: 10.1074/jbc.m411692200] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Signal-transducing adaptor protein family of proteins (STAPs), which currently contains two members, are proposed to be adaptor molecules because of their pleckstrin homology (PH) and Src-homology 2 (SH2)-like domains. STAP-1 has been shown to interact with STAT5 and the tyrosine kinase Tec. With regard to STAP-2/BKS functions, immunoprecipitation experiments and intracellular stainings revealed STAP-2/BKS binds STAT5 in several types of cells. Mutational studies revealed that the PH- and SH2-like domains of STAP-2/BKS interacted with the C-terminal region of STAT5. STAP-2/BKS and STAT5 were found to constitutively co-localize in the cytoplasm of resting cells, but STAP-2/BKS was found to dissociate upon STAT5 phosphorylation, suggesting a role in regulating signaling of STAT5. The physiological role of these interactions is not fully understood, but in studies of overexpression of STAP-2/BKS, cytokine-induced tyrosine phosphorylation and transcriptional activation of STAT5 was diminished. In addition, thymocytes from STAP-2/BKS-deficient mice showed the enhanced interleukin-2-dependent cell growth. Taken together, STAP-2/BKS is an additional modulator of STAT5-mediated signaling.
Collapse
Affiliation(s)
- Yuichi Sekine
- Department of Immunology, Graduate School of Pharmaceutical Sciences Hokkaido University, Sapporo 060-0812 Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Zare F, Bokarewa M, Nenonen N, Bergström T, Alexopoulou L, Flavell RA, Tarkowski A. Arthritogenic properties of double-stranded (viral) RNA. THE JOURNAL OF IMMUNOLOGY 2004; 172:5656-63. [PMID: 15100310 DOI: 10.4049/jimmunol.172.9.5656] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Viral infections often lead to arthralgias and overt arthritic states. The inflammatogenic compound of the viruses giving rise to such an outcome has to date not been identified. Because expression of dsRNA is a common feature of all viruses, we decided to analyze whether this property leads to the induction of arthritis. Histological signs of arthritis were evident already on day 3 following intra-articular administration of dsRNA. Arthritis was characterized by infiltration of macrophages into synovial tissue. It was not dependent on acquired immune responses because SCID mice also raised joint inflammation. NF-kappa B was activated upon in vitro exposure to dsRNA, indicating its role in the induction/progression of arthritis. Importantly, we found that dsRNA arthritis was triggered through IL-1R signaling because mice being deficient for this molecule were unable to develop joint inflammation. Although dsRNA is typically recognized by Toll-like receptor 3, Toll-like receptor 3 knockout mice developed arthritis, indicating that some other receptors are instrumental in the inducing of inflammation. Our results from in vitro experiments indicate that proinflammatory cytokines and chemokines stimulating monocyte influx were readily triggered in response to stimulation with dsRNA. These findings demonstrate that viral dsRNA is clearly arthritogenic. Importantly, macrophages and their products play an important role in the development of arthritis triggered by dsRNA.
Collapse
MESH Headings
- Animals
- Arthritis, Experimental/immunology
- Arthritis, Experimental/pathology
- Arthritis, Experimental/virology
- Cells, Cultured
- Chemokines/biosynthesis
- Cytokines/biosynthesis
- Female
- Injections, Intra-Articular
- Interleukin-6/blood
- Leukopenia/chemically induced
- Leukopenia/immunology
- Macrophages/drug effects
- Membrane Glycoproteins/physiology
- Mice
- Mice, Inbred BALB C
- Mice, Inbred C3H
- Mice, Inbred C57BL
- Mice, Knockout
- Mice, SCID
- Monocytes/drug effects
- NF-kappa B/physiology
- Poly I-C/administration & dosage
- Poly I-C/toxicity
- RNA, Double-Stranded/administration & dosage
- RNA, Double-Stranded/chemical synthesis
- RNA, Double-Stranded/toxicity
- RNA, Viral/administration & dosage
- RNA, Viral/chemical synthesis
- RNA, Viral/toxicity
- Receptors, Cell Surface/physiology
- Rotavirus/chemistry
- Toll-Like Receptor 3
- Toll-Like Receptors
Collapse
Affiliation(s)
- Fariba Zare
- Department of Rheumatology and Inflammation Research, University of Göteborg, Gothenburg, Sweden.
| | | | | | | | | | | | | |
Collapse
|
31
|
Li S, Sen GC. PACT-mediated enhancement of reporter gene expression at the translational level. J Interferon Cytokine Res 2004; 23:689-97. [PMID: 14769145 DOI: 10.1089/107999003772084806] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The cellular protein, PACT, can directly activate protein kinase (PKR) in vitro by the interaction of PACT domain 3 with PKR. In contrast, in vivo, PACT-mediated PKR activation and concomitant inhibition of protein synthesis require additional cellular stresses. We observed that without such stresses, cotransfection of a PACT expression vector with various reporter genes enhances their levels of expression. This effect was promoter and inducer-independent and PACT specific and mediated by PACT domains 1 and 2. PACT did not increase the level of the reporter mRNA but enhanced its translation by suppressing phosphorylation of eukaryotic initiation factor 2alpha (eIF2alpha) caused by the transfection process. To further examine the phenomenon, we generated cell lines expressing a PACT mutant containing only domains 1 and 2. Reporter gene expression was higher and eIF2alpha phosphorylation was lower in such cell lines compared with the corresponding control cells. Thus, different domains of PACT can either promote or inhibit translation by appropriately modulating the status of eIF2alpha phosphorylation.
Collapse
Affiliation(s)
- Shoudong Li
- Department of Molecular Biology, The Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195, USA
| | | |
Collapse
|
32
|
Schirrmacher V, Feuerer M, Fournier P, Ahlert T, Umansky V, Beckhove P. T-cell priming in bone marrow: the potential for long-lasting protective anti-tumor immunity. Trends Mol Med 2004; 9:526-34. [PMID: 14659467 DOI: 10.1016/j.molmed.2003.10.001] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Volker Schirrmacher
- German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany.
| | | | | | | | | | | |
Collapse
|
33
|
Yoneyama M, Kikuchi M, Natsukawa T, Shinobu N, Imaizumi T, Miyagishi M, Taira K, Akira S, Fujita T. The RNA helicase RIG-I has an essential function in double-stranded RNA-induced innate antiviral responses. Nat Immunol 2004; 5:730-7. [PMID: 15208624 DOI: 10.1038/ni1087] [Citation(s) in RCA: 3102] [Impact Index Per Article: 147.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2004] [Accepted: 05/05/2004] [Indexed: 12/12/2022]
Abstract
Intracellular double-stranded RNA (dsRNA) is a chief sign of replication for many viruses. Host mechanisms detect the dsRNA and initiate antiviral responses. In this report, we identify retinoic acid inducible gene I (RIG-I), which encodes a DExD/H box RNA helicase that contains a caspase recruitment domain, as an essential regulator for dsRNA-induced signaling, as assessed by functional screening and assays. A helicase domain with intact ATPase activity was responsible for the dsRNA-mediated signaling. The caspase recruitment domain transmitted 'downstream' signals, resulting in the activation of transcription factors NF-kappaB and IRF-3. Subsequent gene activation by these factors induced antiviral functions, including type I interferon production. Thus, RIG-I is key in the detection and subsequent eradication of the replicating viral genomes.
Collapse
MESH Headings
- Animals
- Cell Line, Tumor
- Cells, Cultured
- DNA-Binding Proteins/metabolism
- Gene Expression Regulation
- Genes, Reporter/genetics
- Humans
- Interferon Regulatory Factor-3
- Interferons/biosynthesis
- Interferons/genetics
- Interferons/immunology
- Mice
- NF-kappa B/metabolism
- Promoter Regions, Genetic/genetics
- Protein Structure, Tertiary
- Proteins/chemistry
- Proteins/genetics
- Proteins/metabolism
- RNA Helicases/chemistry
- RNA Helicases/genetics
- RNA Helicases/metabolism
- RNA, Double-Stranded/genetics
- RNA, Double-Stranded/physiology
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA, Small Interfering/genetics
- RNA, Small Interfering/metabolism
- Sequence Deletion
- Signal Transduction
- Trans-Activators
- Transcription Factors/metabolism
- Transcriptional Activation
- Viruses/growth & development
- Viruses/immunology
Collapse
Affiliation(s)
- Mitsutoshi Yoneyama
- Department of Tumor Cell Biology, Tokyo Metropolitan Institute of Medical Science, Tokyo Metropolitan Organization for Medical Research, 3-18-22 Honkomagome, Bunkyo-ku, Tokyo 113-8613, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Bose S, Banerjee AK. Innate immune response against nonsegmented negative strand RNA viruses. J Interferon Cytokine Res 2004; 23:401-12. [PMID: 13678428 DOI: 10.1089/107999003322277810] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Innate immune response represents the hallmark of host defense against foreign pathogens, including viruses. Not only does this response combat viruses during initial stages of infection, but it shapes the adaptive immune response as well. This review focuses on this critical host defense mechanism, the innate immune response, in the context of infection by nonsegmented negative strand RNA viruses of the Paramyxoviridae family. We specifically focus on the two critical transcription factors, nuclear factor-kappaB (NF-kappaB) and interferon (IFN) regulatory factor-3 (IRF-3), that play an important role in establishing an innate antiviral state. The antiviral cytokine IFN-alpha/beta (IFN type I) produced following viral infection as a result of activation of NF-kappaB or IRF-3 or both exerts an antiviral state by inducing the Janus kinases/signal transducer and activator (Jak-Stat) pathway. In that context, our review discusses various strategies adopted by these viruses to counteract and evade the antiviral action of IFN I for replicative advantages, especially after modulation of the Jak-Stat antiviral pathway. Understanding this interplay between the innate immune response and viral replication is fundamental to probing into the molecular basis of host-virus interaction.
Collapse
Affiliation(s)
- Santanu Bose
- Department of Virology, Lerner Research Institute, The Cleveland Clinic Foundation, Cleveland, OH 44195, USA
| | | |
Collapse
|
35
|
Bossert B, Marozin S, Conzelmann KK. Nonstructural proteins NS1 and NS2 of bovine respiratory syncytial virus block activation of interferon regulatory factor 3. J Virol 2003; 77:8661-8. [PMID: 12885884 PMCID: PMC167228 DOI: 10.1128/jvi.77.16.8661-8668.2003] [Citation(s) in RCA: 136] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We have previously shown that the nonstructural (NS) proteins NS1 and NS2 of bovine respiratory syncytial virus (BRSV) mediate resistance to the alpha/beta interferon (IFN)-mediated antiviral response. Here, we show that they, in addition, are able to prevent the induction of beta IFN (IFN-beta) after virus infection or double-stranded RNA stimulation. In BRSV-infected MDBK cells upregulation of IFN-stimulated genes (ISGs) such as MxA did not occur, although IFN signaling via JAK/STAT was found intact. In contrast, infection with recombinant BRSVs lacking either or both NS genes resulted in efficient upregulation of ISGs. Biological IFN activity and IFN-beta were detected only in supernatants of cells infected with the NS deletion mutants but not with wild-type (wt) BRSV. Subsequent analyses of IFN-beta promoter activity showed that infection of cells with the double deletion mutant BRSV DeltaNS1/2, but not with BRSV wt, resulted in a significant increase in IFN-beta gene promoter activity. Induction of the IFN-beta promoter depends on the activation of three distinct transcription factors, NF-kappaB, ATF-2/c-Jun, and IFN regulatory factor 3 (IRF-3). Whereas NF-kappaB and ATF-2/c-Jun activities were readily detectable and comparable in both wt BRSV- and BRSV DeltaNS1/2-infected cells, phosphorylation and transcriptional activity of IRF-3, however, were observed only after BRSV DeltaNS1/2 infection. NS protein-mediated inhibition of IRF-3 activation and IFN induction should have considerable impact on the pathogenesis and immunogenicity of BRSV.
Collapse
Affiliation(s)
- Birgit Bossert
- Max von Pettenkofer Institute and Gene Center, Ludwig Maximilians University Munich, D-81377 Munich, Germany
| | | | | |
Collapse
|
36
|
Abstract
The dsRNA binding proteins (DRBPs) comprise a growing family of eukaryotic, prokaryotic, and viral-encoded products that share a common evolutionarily conserved motif specifically facilitating interaction with dsRNA. Proteins harboring dsRNA binding domains (DRBDs) have been reported to interact with as little as 11 bp of dsRNA, an event that is independent of nucleotide sequence arrangement. More than 20 DRBPs have been identified and reportedly function in a diverse range of critically important roles in the cell. Examples include the dsRNA-dependent protein kinase PKR that functions in dsRNA signaling and host defense against virus infection and DICER, which is implicated in RNA interference (RNAi) -mediated gene silencing. Other DRBPs such as Staufen, adenosine deaminase acting on RNA (ADAR), and spermatid perinuclear RNA binding protein (SPNR) are known to play essential roles in development, translation, RNA editing, and stability. In many cases, homozygous and even heterozygous disruption of DRBPs in animal models results in embryonic lethality. These results implicate the recognition of dsRNA as an evolutionarily conserved mechanism important in the regulation of gene expression and in host defense and underscore the diversity of essential biological tasks performed by dsRNA-related processes in the cell.
Collapse
Affiliation(s)
- Laura R Saunders
- Department of Microbiology and Immunology and Sylvester Comprehensive Cancer Center, University of Miami School of Medicine, Miami, Florida, USA
| | | |
Collapse
|
37
|
Servant MJ, Grandvaux N, Hiscott J. Multiple signaling pathways leading to the activation of interferon regulatory factor 3. Biochem Pharmacol 2002; 64:985-92. [PMID: 12213596 DOI: 10.1016/s0006-2952(02)01165-6] [Citation(s) in RCA: 132] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Virus infection of susceptible cells activates multiple signaling pathways that orchestrate the activation of genes, such as cytokines, involved in the antiviral and innate immune response. Among the kinases induced are the mitogen-activated protein (MAP) kinases, Jun-amino terminal kinases (JNK) and p38, the IkappaB kinase (IKK) and DNA-PK. In addition, virus infection also activates an uncharacterized VAK responsible for the C-terminal phosphorylation and subsequent activation of interferon regulatory factor 3 (IRF-3). Virus-mediated activation of IRF-3 through VAK is dependent on viral entry and transcription, since replication deficient virus failed to induce IRF-3 activity. The pathways leading to VAK activation are not well characterized, but IRF-3 appears to represent a novel cellular detection pathway that recognizes viral nucleocapsid (N) structure. Recently, the range of inducers responsible for IRF-3 activation has increased. In addition to virus infection, recognition of bacterial infection mediated through lipopolysaccharide by Toll-like receptor 4 has also been reported. Furthermore, MAP kinase kinase kinase (MAP KKK)-related pathways and DNA-PK induce N-terminal phosphorylation of IRF-3. This review summarizes recent observations in the identification of novel signaling pathways leading to IRF-3 activation.
Collapse
Affiliation(s)
- Marc J Servant
- Terry Fox Molecular Oncology Group, Lady Davis Institute-Jewish General Hospital, McGill University, 3755 Cote Ste., Catherine Montreal, Que., Canada
| | | | | |
Collapse
|
38
|
Grandvaux N, tenOever BR, Servant MJ, Hiscott J. The interferon antiviral response: from viral invasion to evasion. Curr Opin Infect Dis 2002; 15:259-67. [PMID: 12015460 DOI: 10.1097/00001432-200206000-00008] [Citation(s) in RCA: 169] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
One of the initial responses of an organism to infection by pathogenic viruses is the synthesis of antiviral cytokines such as the type I interferons (interferon-alpha/beta), interleukins, and other proinflammatory cytokines and chemokines. Interferons provide a first line of defence against virus infections by generating an intracellular environment that restricts virus replication and signals the presence of a viral pathogen to the adaptive arm of the immune response. Interferons stimulate cells in the local environment to activate a network of interferon-stimulated genes, which encode proteins that have antiviral, antiproliferative and immunomodulatory activities. The present review focuses on recent reports that describe the activation of multiple signalling pathways following virus infection, new candidate genes that are implicated in the establishment of the antiviral state, and the strategies used by viruses and their specific viral products to antagonize and evade the host antiviral response.
Collapse
Affiliation(s)
- Nathalie Grandvaux
- Terry Fox Molecular Oncology Group, Lady Davis Institute for Medical Research and Department of Medicine, McGill University, Montreal, Quebec, Canada
| | | | | | | |
Collapse
|
39
|
Zeng J, Fournier P, Schirrmacher V. Induction of interferon-alpha and tumor necrosis factor-related apoptosis-inducing ligand in human blood mononuclear cells by hemagglutinin-neuraminidase but not F protein of Newcastle disease virus. Virology 2002; 297:19-30. [PMID: 12083832 DOI: 10.1006/viro.2002.1413] [Citation(s) in RCA: 89] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
To determine molecular viral components which can induce innate immune responses in human peripheral blood mononuclear cells (PBMC), we investigated the anti-neoplastic agent Newcastle disease virus (NDV) and its two spike proteins hemagglutinin-neuraminidase (HN) and fusion protein (F). NDV was an excellent inducer in PBMC of IFN-alpha production and capable of inducing upregulation of plasma membrane expression of tumor necrosis factor related apoptosis inducing ligand (TRAIL). Viral replication was not required for these responses because NDV inactivated for 5 min by UV was as good as live NDV. NDV-modified and paraformaldehyde-fixed BHK cells could also trigger IFN-alpha and TRAIL induction, indicating that contacts of responder cells with NDV-modified cell surfaces are sufficient to induce these activities in PBMC. Antibodies against HN but not F were able to block these responses. Finally we could show that HN but not F induced IFN-alpha and TRAIL in PBMC. This was possible through the use of respective gene transfectants generated with the help of Semliki Forest virus (SFV) replicase-based DNA recombinant expression systems. Upon contact with BHK cells expressing HN but not F at their cell surface, human PBMC produced IFN-alpha and some cells, including monocytes and T lymphocytes, upregulated cell surface TRAIL expression.
Collapse
Affiliation(s)
- Jinyang Zeng
- German Cancer Research Center, Division of Cellular Immunology, 69120 Heidelberg, Germany
| | | | | |
Collapse
|
40
|
Servant MJ, Tenoever B, Lin R. Overlapping and distinct mechanisms regulating IRF-3 and IRF-7 function. J Interferon Cytokine Res 2002; 22:49-58. [PMID: 11846975 DOI: 10.1089/107999002753452656] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Recent molecular, biochemical, and gene disruption studies have demonstrated the essential role of interferon (IFN) regulatory factor-3, (IRF-3) and IRF-7 in the activation of type I IFN gene expression and the induction of the antiviral state. Both transcription factors share structural and functional properties, as well as a common mechanism of activation through C-terminal phosphorylation. The purpose of this review is to summarize recent investigations indicating that similar signalling pathways are likely involved in the activation of IRF-3 and IRF-7. Moreover, unique biochemical events, such as coactivator association and differential recognition of cis-acting elements, also illustrate the capacity of IRF-3 and IRF-7 to selectively regulate type I IFN and IFN-stimulated gene (ISG) expression.
Collapse
Affiliation(s)
- Marc J Servant
- Terry Fox Molecular Oncology Group, Lady Davis Institute for Medical Research, and Departments of Medicine, McGill University, Montreal, Canada
| | | | | |
Collapse
|