1
|
Asadi Tokmedash M, Kim C, Chavda AP, Li A, Robins J, Min J. Engineering multifunctional surface topography to regulate multiple biological responses. Biomaterials 2025; 319:123136. [PMID: 39978049 PMCID: PMC11893264 DOI: 10.1016/j.biomaterials.2025.123136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 01/04/2025] [Accepted: 01/23/2025] [Indexed: 02/22/2025]
Abstract
Surface topography or curvature plays a crucial role in regulating cell behavior, influencing processes such as adhesion, proliferation, and gene expression. Recent advancements in nano- and micro-fabrication techniques have enabled the development of biomimetic systems that mimic native extracellular matrix (ECM) structures, providing new insights into cell-adhesion mechanisms, mechanotransduction, and cell-environment interactions. This review examines the diverse applications of engineered topographies across multiple domains, including antibacterial surfaces, immunomodulatory devices, tissue engineering scaffolds, and cancer therapies. It highlights how nanoscale features like nanopillars and nanospikes exhibit bactericidal properties, while many microscale patterns can direct stem cell differentiation and modulate immune cell responses. Furthermore, we discuss the interdisciplinary use of topography for combined applications, such as the simultaneous regulation of immune and tissue cells in 2D and 3D environments. Despite significant advances, key knowledge gaps remain, particularly regarding the effects of topographical cues on multicellular interactions and dynamic 3D contexts. This review summarizes current fabrication methods, explores specific and interdisciplinary applications, and proposes future research directions to enhance the design and utility of topographically patterned biomaterials in clinical and experimental settings.
Collapse
Affiliation(s)
| | - Changheon Kim
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Ajay P Chavda
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Adrian Li
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Jacob Robins
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Jouha Min
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA; Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA; Department of Macromolecular Science and Engineering, University of Michigan, Ann Arbor, MI, 48109, USA; Rogel Cancer Center, University of Michigan, Ann Arbor, MI, 48109, USA; Weil Institute for Critical Care Research and Innovation, University of Michigan, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
2
|
Alemifar A, Burnette K, Jandres B, Hurt S, Tse HM, Robinson JL. Electrospun Fiber Surface Roughness Modulates Human Monocyte-Derived Macrophage Phenotype. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.30.610568. [PMID: 39282362 PMCID: PMC11398424 DOI: 10.1101/2024.08.30.610568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
Abstract
Injuries to fibrous connective tissues have very little capacity for self-renewal and exhibit poor healing after injury. Phenotypic shifts in macrophages play a vital role in mediating the healing response, creating an opportunity to design immunomodulatory biomaterials which control macrophage polarization and promote regeneration. In this study, electrospun poly(-caprolactone) fibers with increasing surface roughness (SR) were produced by increasing relative humidity and inducing vapor-induced phase separation during the electrospinning process. The impact of surface roughness on macrophage phenotype was assessed using human monocyte-derived macrophages in vitro and in vivo using B6.Cg-Tg(Csf1r-EGFP)1Hume/J (MacGreen) mice. In vitro experiments showed that macrophages cultured on mesh with increasing SR exhibited decreased release of both pro- and anti-inflammatory cytokines potentially driven by increased protein adsorption and biophysical impacts on the cells. Further, increasing SR led to an increase in the expression of the pro-regenerative cell surface marker CD206 relative to the pro-inflammatory marker CD80. Mesh with increasing SR were implanted subcutaneously in MacGreen mice, again showing an increase in the ratio of cells expressing CD206 to those expressing CD80 visualized by immunofluorescence. SR on implanted biomaterials is sufficient to drive macrophage polarization, demonstrating a simple feature to include in biomaterial design to control innate immunity.
Collapse
Affiliation(s)
- Aidan Alemifar
- Department of Orthopaedic Surgery and Sports Medicine, University of Washington
- Bioengineering Graduate Program, University of Kansas
| | - KaLia Burnette
- Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center
| | - Bryan Jandres
- Department of Biochemistry, University of Washington
| | - Samuel Hurt
- Department of Chemical and Petroleum Engineering, University of Kansas
| | - Hubert M Tse
- Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center
| | - Jennifer L Robinson
- Department of Orthopaedic Surgery and Sports Medicine, University of Washington
- Department of Mechanical Engineering, University of Washington
| |
Collapse
|
3
|
Sunami H, Shimizu Y, Kishimoto H. Shape of scaffold controlling the direction of cell migration. Biophys Physicobiol 2023; 21:e210004. [PMID: 38803333 PMCID: PMC11128307 DOI: 10.2142/biophysico.bppb-v21.0004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 12/27/2023] [Indexed: 05/29/2024] Open
Abstract
Cell migration plays an important role in the development and maintenance of multicellular organisms. Factors that induce cell migration and mechanisms controlling their expression are important for determining the mechanisms of factor-induced cell migration. Despite progress in the study of factor-induced cytotaxis, including chemotaxis and haptotaxis, precise control of the direction of cell migration over a wide area has not yet been achieved. Success in this area would update the cell migration assays, superior cell separation technologies, and artificial organs with high biocompatibility. The present study therefore sought to control the direction of cell migration over a wide area by adjusting the three-dimensional shape of the cell scaffold. The direction of cell migration was influenced by the shape of the cell scaffold, thereby optimizing cell adhesion and protrusion. Anisotropic arrangement of these three-dimensional shapes into a periodic structure induced unidirectional cell migration. Three factors were required for unidirectional cell migration: 1) the sizes of the anisotropic periodic structures had to be equal to or lower than the size of the spreading cells, 2) cell migration was restricted to a runway approximately the width of the cell, and 3) cells had to be prone to extension of long protrusions in one direction. Because the first two factors had been identified previously in studies of cell migration in one direction using two-dimensional shaped patterns, these three factors are likely important for the mechanism by which cell scaffold shapes regulate cell migration.
Collapse
Affiliation(s)
- Hiroshi Sunami
- Faculty of Medicine, University of the Ryukyus, Okinawa 903-0215, Japan
| | - Yusuke Shimizu
- Graduate School of Medicine, University of the Ryukyus, Okinawa 903-0215, Japan
| | - Hidehiro Kishimoto
- Graduate School of Medicine, University of the Ryukyus, Okinawa 903-0215, Japan
| |
Collapse
|
4
|
Yoon CW, Pan Y, Wang Y. The application of mechanobiotechnology for immuno-engineering and cancer immunotherapy. Front Cell Dev Biol 2022; 10:1064484. [PMID: 36483679 PMCID: PMC9725026 DOI: 10.3389/fcell.2022.1064484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Accepted: 11/08/2022] [Indexed: 11/24/2022] Open
Abstract
Immune-engineering is a rapidly emerging field in the past few years, as immunotherapy evolved from a paradigm-shifting therapeutic approach for cancer treatment to promising immuno-oncology models in clinical trials and commercial products. Linking the field of biomedical engineering with immunology, immuno-engineering applies engineering principles and utilizes synthetic biology tools to study and control the immune system for diseases treatments and interventions. Over the past decades, there has been a deeper understanding that mechanical forces play crucial roles in regulating immune cells at different stages from antigen recognition to actual killing, which suggests potential opportunities to design and tailor mechanobiology tools to novel immunotherapy. In this review, we first provide a brief introduction to recent technological and scientific advances in mechanobiology for immune cells. Different strategies for immuno-engineering are then discussed and evaluated. Furthermore, we describe the opportunities and challenges of applying mechanobiology and related technologies to study and engineer immune cells and ultimately modulate their function for immunotherapy. In summary, the synergetic integration of cutting-edge mechanical biology techniques into immune-engineering strategies can provide a powerful platform and allow new directions for the field of immunotherapy.
Collapse
Affiliation(s)
- Chi Woo Yoon
- Department of Bioengineering, Institute of Engineering in Medicine, University of California, San Diego, San Diego, CA, United States
| | - Yijia Pan
- Department of Bioengineering, Institute of Engineering in Medicine, University of California, San Diego, San Diego, CA, United States
| | - Yingxiao Wang
- Department of Bioengineering, Institute of Engineering in Medicine, University of California, San Diego, San Diego, CA, United States
| |
Collapse
|
5
|
Das P, Jana S, Kumar Nandi S. Biomaterial-Based Therapeutic Approaches to Osteoarthritis and Cartilage Repair Through Macrophage Polarization. CHEM REC 2022; 22:e202200077. [PMID: 35792527 DOI: 10.1002/tcr.202200077] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 06/15/2022] [Indexed: 11/06/2022]
Abstract
There is an ever-increasing clinical and socioeconomic burden associated with cartilage lesions & osteoarthritis (OA). Its progression, chondrocyte death & hypertrophy are all facilitated by inflamed synovium & joint environment. Due to their capacity to switch between pro- & anti-inflammatory phenotypes, macrophages are increasingly being recognized as a key player in the healing process, which has been largely overlooked in the past. A biomaterial's inertness has traditionally been a goal while developing them in order to reduce the likelihood of adverse reactions from the host organism. A better knowledge of how macrophages respond to implanted materials has made it feasible to determine the biomaterial architectural parameters that control the host response & aid in effective tissue integration. Thus, this review summarizes novel therapeutic techniques for avoiding OA or increasing cartilage repair & regeneration that might be developed using new technologies tuning macrophages into desirable functional phenotypes.
Collapse
Affiliation(s)
- Piyali Das
- Department of Microbiology, School of Life Science and Biotechnology, Adamas University, Kolkata, 700126, India
| | - Sonali Jana
- Department of Veterinary Physiology, West Bengal University of Animal and Fishery Sciences, 700037, Kolkata, India
| | - Samit Kumar Nandi
- Department of Veterinary Surgery and Radiology, West Bengal University of Animal and Fishery Sciences, 700037, Kolkata, India
| |
Collapse
|
6
|
Poyraz Ş, Altınışık Z, Çakmak AS, Şimşek M, Gümüşderelioğlu M. RANDOM/ALIGNED ELECTROSPUN PCL FIBROUS MATRICES WITH MODIFIED SURFACE TEXTURES: CHARACTERIZATION AND INTERACTIONS WITH DERMAL FIBROBLASTS AND KERATINOCYTES. Colloids Surf B Biointerfaces 2022; 218:112724. [DOI: 10.1016/j.colsurfb.2022.112724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 07/15/2022] [Accepted: 07/23/2022] [Indexed: 11/25/2022]
|
7
|
|
8
|
Biocompatibility and Mechanical Stability of Nanopatterned Titanium Films on Stainless Steel Vascular Stents. Int J Mol Sci 2022; 23:ijms23094595. [PMID: 35562988 PMCID: PMC9099593 DOI: 10.3390/ijms23094595] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 04/16/2022] [Accepted: 04/18/2022] [Indexed: 01/27/2023] Open
Abstract
Nanoporous ceramic coatings such as titania are promoted to produce drug-free cardiovascular stents with a low risk of in-stent restenosis (ISR) because of their selectivity towards vascular cell proliferation. The brittle coatings applied on stents are prone to cracking because they are subjected to plastic deformation during implantation. This study aims to overcome this problem by using a unique process without refraining from biocompatibility. Accordingly, a titanium film with 1 µm thickness was deposited on 316 LVM stainless-steel sheets using magnetron sputtering. Then, the samples were anodized to produce nanoporous oxide. The nanoporous oxide was removed by ultrasonication, leaving an approximately 500 nm metallic titanium layer with a nanopatterned surface. XPS studies revealed the presence of a 5 nm-thick TiO2 surface layer with a trace amount of fluorinated titanium on nanopatterned surfaces. Oxygen plasma treatment of the nanopatterned surface produced an additional 5 nm-thick fluoride-free oxide layer. The samples did not exhibit any cracking or spallation during plastic deformation. Cell viability studies showed that nanopatterned surfaces stimulate endothelial cell proliferation while reducing the proliferation of smooth muscle cells. Plasma treatment further accelerated the proliferation of endothelial cells. Activation of blood platelets did not occur on oxygen plasma-treated, fluoride-free nanopatterned surfaces. The presented surface treatment method can also be applied to other stent materials such as CoCr, nitinol, and orthopedic implants.
Collapse
|
9
|
Antmen E, Vrana NE, Hasirci V. The role of biomaterials and scaffolds in immune responses in regenerative medicine: macrophage phenotype modulation by biomaterial properties and scaffold architectures. Biomater Sci 2021; 9:8090-8110. [PMID: 34762077 DOI: 10.1039/d1bm00840d] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Scaffolds are an integral part of the regenerative medicine field. The contact of biomaterials with tissue, as was clearly observed over the years, induces immune reactions in a material and patient specific manner, where both surface and bulk properties of scaffolds, together with their 3D architecture, have a significant influence on the outcome. This review presents an overview of the reactions to the biomaterials with a specific focus on clinical complications with the implants in the context of immune reactions and an overview of the studies involving biomaterial properties and interactions with innate immune system cells. We emphasize the impact of these studies on scaffold selection and upscaling of microenvironments created by biomaterials from 2D to 3D using immune cell encapsulation, seeding in a 3D scaffold and co-culture with relevant tissue cells. 3D microenvironments are covered with a specific focus on innate cells since a large proportion of these studies used innate immune cells. Finally, the recent studies on the incorporation of adaptive immune cells in immunomodulatory systems are covered in this review. Biomaterial-immune cell interactions are a critical part of regenerative medicine applications. Current efforts in establishing the ground rules for such interactions following implantation can control immune response during all phases of inflammation. Thus, in the near future for complete functional recovery, tissue engineering and control over biomaterials must be considered at the first step of immune modulation and this review covers these interactions, which have remained elusive up to now.
Collapse
Affiliation(s)
- Ezgi Antmen
- BIOMATEN, Middle East Technical University, Center of Excellence in Biomaterials and Tissue Engineering, Ankara, Turkey.
| | - Nihal Engin Vrana
- SPARTHA Medical, 14B Rue de la Canardiere, Strasbourg Cedex 67100, France. .,INSERM Unité 1121 Biomaterials and Bioengineering, CRBS, 1 Rue Eugène Boeckel, Strasbourg Cedex 67000, France
| | - Vasif Hasirci
- BIOMATEN, Middle East Technical University, Center of Excellence in Biomaterials and Tissue Engineering, Ankara, Turkey. .,Biomaterials A&R Center, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey.,Department of Medical Engineering, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
| |
Collapse
|
10
|
Ryan C, Pugliese E, Shologu N, Gaspar D, Rooney P, Islam MN, O'Riordan A, Biggs M, Griffin M, Zeugolis D. A combined physicochemical approach towards human tenocyte phenotype maintenance. Mater Today Bio 2021; 12:100130. [PMID: 34632361 PMCID: PMC8488312 DOI: 10.1016/j.mtbio.2021.100130] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 08/27/2021] [Accepted: 08/28/2021] [Indexed: 02/08/2023] Open
Abstract
During in vitro culture, bereft of their optimal tissue context, tenocytes lose their phenotype and function. Considering that tenocytes in their native tissue milieu are exposed simultaneously to manifold signals, combination approaches (e.g. growth factor supplementation and mechanical stimulation) are continuously gaining pace to control cell fate during in vitro expansion, albeit with limited success due to the literally infinite number of possible permutations. In this work, we assessed the potential of scalable and potent physicochemical approaches that control cell fate (substrate stiffness, anisotropic surface topography, collagen type I coating) and enhance extracellular matrix deposition (macromolecular crowding) in maintaining human tenocyte phenotype in culture. Cell morphology was primarily responsive to surface topography. The tissue culture plastic induced the largest nuclei area, the lowest aspect ratio, and the highest focal adhesion kinase. Collagen type I coating increased cell number and metabolic activity. Cell viability was not affected by any of the variables assessed. Macromolecular crowding intensely enhanced and accelerated native extracellular matrix deposition, albeit not in an aligned fashion, even on the grooved substrates. Gene analysis at day 14 revealed that the 130 kPa grooved substrate without collagen type I coating and under macromolecular crowding conditions positively regulated human tenocyte phenotype. Collectively, this work illustrates the beneficial effects of combined physicochemical approaches in controlling cell fate during in vitro expansion.
Collapse
Affiliation(s)
- C.N.M. Ryan
- Regenerative, Modular & Developmental Engineering Laboratory (REMODEL), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland
- Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland
| | - E. Pugliese
- Regenerative, Modular & Developmental Engineering Laboratory (REMODEL), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland
- Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland
| | - N. Shologu
- Regenerative, Modular & Developmental Engineering Laboratory (REMODEL), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland
- Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland
| | - D. Gaspar
- Regenerative, Modular & Developmental Engineering Laboratory (REMODEL), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland
- Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland
| | - P. Rooney
- Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland
| | - Md N. Islam
- Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland
- Regenerative Medicine Institute (REMEDI), School of Medicine, Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland
- Discipline of Biochemistry, School of Natural Sciences, National University of Ireland Galway (NUI Galway), Galway, Ireland
| | - A. O'Riordan
- Tyndall National Institute, University College Cork (UCC), Cork, Ireland
| | - M.J. Biggs
- Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland
| | - M.D. Griffin
- Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland
- Regenerative Medicine Institute (REMEDI), School of Medicine, Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland
| | - D.I. Zeugolis
- Regenerative, Modular & Developmental Engineering Laboratory (REMODEL), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland
- Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland
- Regenerative, Modular & Developmental Engineering Laboratory (REMODEL), Charles Institute of Dermatology, Conway Institute of Biomolecular & Biomedical Research and School of Mechanical & Materials Engineering, University College Dublin (UCD), Dublin, Ireland
| |
Collapse
|
11
|
Zhou H, Xue Y, Dong L, Wang C. Biomaterial-based physical regulation of macrophage behaviour. J Mater Chem B 2021; 9:3608-3621. [PMID: 33908577 DOI: 10.1039/d1tb00107h] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Macrophages play a critical role in regulating immune reactions induced by implanted biomaterials. They are highly plastic and in response to diverse stimuli in the microenvironment can exhibit a spectrum of phenotypes and functions. In addition to biochemical signals, the physical properties of biomaterials are becoming increasingly appreciated for their significant impact on macrophage behaviour, and the underlying mechanisms deserve more in-depth investigations. This review first summarises the effects of key physical cues - including stiffness, topography, physical confinement and applied force - on macrophage behaviour. Then, it reviews the current knowledge of cellular sensing and transduction of physical cues into intracellular signals. Finally, it discusses the major challenges in understanding mechanical regulation that could provide insights for biomaterial design.
Collapse
Affiliation(s)
- Huiqun Zhou
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau SAR, China.
| | - Yizebang Xue
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau SAR, China. and Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Lei Dong
- State Key Laboratory of Pharmaceutical Biotechnology, Medical School & School of Life Sciences, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Chunming Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau SAR, China.
| |
Collapse
|
12
|
Vesperini D, Montalvo G, Qu B, Lautenschläger F. Characterization of immune cell migration using microfabrication. Biophys Rev 2021; 13:185-202. [PMID: 34290841 PMCID: PMC8285443 DOI: 10.1007/s12551-021-00787-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 01/24/2021] [Indexed: 12/14/2022] Open
Abstract
The immune system provides our defense against pathogens and aberrant cells, including tumorigenic and infected cells. Motility is one of the fundamental characteristics that enable immune cells to find invading pathogens, control tissue damage, and eliminate primary developing tumors, even in the absence of external treatments. These processes are termed "immune surveillance." Migration disorders of immune cells are related to autoimmune diseases, chronic inflammation, and tumor evasion. It is therefore essential to characterize immune cell motility in different physiologically and pathologically relevant scenarios to understand the regulatory mechanisms of functionality of immune responses. This review is focused on immune cell migration, to define the underlying mechanisms and the corresponding investigative approaches. We highlight the challenges that immune cells encounter in vivo, and the microfabrication methods to mimic particular aspects of their microenvironment. We discuss the advantages and disadvantages of the proposed tools, and provide information on how to access them. Furthermore, we summarize the directional cues that regulate individual immune cell migration, and discuss the behavior of immune cells in a complex environment composed of multiple directional cues.
Collapse
Affiliation(s)
- Doriane Vesperini
- Department of Experimental Physics, Saarland University, 66123 Saarbrücken, Germany
- Center for Biophysics, Saarland University, 66123 Saarbrücken, Germany
| | - Galia Montalvo
- Department of Experimental Physics, Saarland University, 66123 Saarbrücken, Germany
- Center for Biophysics, Saarland University, 66123 Saarbrücken, Germany
- Biophysics, Center for Integrative Physiology and Molecular Medicine (CIPMM), School of Medicine, Saarland University, 66421 Homburg, Germany
| | - Bin Qu
- Biophysics, Center for Integrative Physiology and Molecular Medicine (CIPMM), School of Medicine, Saarland University, 66421 Homburg, Germany
- Leibniz Institute for New Materials, 66123 Saarbrücken, Germany
| | - Franziska Lautenschläger
- Department of Experimental Physics, Saarland University, 66123 Saarbrücken, Germany
- Center for Biophysics, Saarland University, 66123 Saarbrücken, Germany
| |
Collapse
|
13
|
Negrescu AM, Necula MG, Gebaur A, Golgovici F, Nica C, Curti F, Iovu H, Costache M, Cimpean A. In Vitro Macrophage Immunomodulation by Poly(ε-caprolactone) Based-Coated AZ31 Mg Alloy. Int J Mol Sci 2021; 22:ijms22020909. [PMID: 33477539 PMCID: PMC7831122 DOI: 10.3390/ijms22020909] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/14/2021] [Accepted: 01/14/2021] [Indexed: 12/12/2022] Open
Abstract
Due to its excellent bone-like mechanical properties and non-toxicity, magnesium (Mg) and its alloys have attracted great interest as biomaterials for orthopaedic applications. However, their fast degradation rate in physiological environments leads to an acute inflammatory response, restricting their use as biodegradable metallic implants. Endowing Mg-based biomaterials with immunomodulatory properties can help trigger a desired immune response capable of supporting a favorable healing process. In this study, electrospun poly(ε-caprolactone) (PCL) fibers loaded with coumarin (CM) and/or zinc oxide nanoparticles (ZnO) were used to coat the commercial AZ31 Mg alloy as single and combined formulas, and their effects on the macrophage inflammatory response and osteoclastogenic process were investigated by indirect contact studies. Likewise, the capacity of the analyzed samples to generate reactive oxygen species (ROS) has been investigated. The data obtained by attenuated total reflection Fourier-transform infrared (FTIR-ATR) and X-ray photoelectron spectroscopy (XPS) analyses indicate that AZ31 alloy was perfectly coated with the PCL fibers loaded with CM and ZnO, which had an important influence on tuning the release of the active ingredient. Furthermore, in terms of degradation in phosphate-buffered saline (PBS) solution, the PCL-ZnO- and secondary PCL-CM-ZnO-coated samples exhibited the best corrosion behaviour. The in vitro results showed the PCL-CM-ZnO and, to a lower extent, PCL-ZnO coated sample exhibited the best behaviour in terms of inflammatory response and receptor activator of nuclear factor kappa-B ligand (RANKL)-mediated differentiation of RAW 264.7 macrophages into osteoclasts. Altogether, the results obtained suggest that the coating of Mg alloys with fibrous PCL containing CM and/or ZnO can constitute a feasible strategy for biomedical applications.
Collapse
Affiliation(s)
- Andreea-Mariana Negrescu
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, 91-95 Splaiul Independentei, 050095 Bucharest, Romania; (A.-M.N.); (M.-G.N.); (C.N.); (M.C.)
| | - Madalina-Georgiana Necula
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, 91-95 Splaiul Independentei, 050095 Bucharest, Romania; (A.-M.N.); (M.-G.N.); (C.N.); (M.C.)
| | - Adi Gebaur
- Advance Polymer Materials Group, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, Gh. Polizu 17, 011061 Bucharest, Romania; (A.G.); (F.C.); (H.I.)
| | - Florentina Golgovici
- Department of General Chemistry, Faculty of Applied Chemistry and Material Science, University Politehnica of Bucharest, Gh. Polizu 1-7, 011061 Bucharest, Romania;
| | - Cristina Nica
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, 91-95 Splaiul Independentei, 050095 Bucharest, Romania; (A.-M.N.); (M.-G.N.); (C.N.); (M.C.)
| | - Filis Curti
- Advance Polymer Materials Group, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, Gh. Polizu 17, 011061 Bucharest, Romania; (A.G.); (F.C.); (H.I.)
| | - Horia Iovu
- Advance Polymer Materials Group, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, Gh. Polizu 17, 011061 Bucharest, Romania; (A.G.); (F.C.); (H.I.)
| | - Marieta Costache
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, 91-95 Splaiul Independentei, 050095 Bucharest, Romania; (A.-M.N.); (M.-G.N.); (C.N.); (M.C.)
| | - Anisoara Cimpean
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, 91-95 Splaiul Independentei, 050095 Bucharest, Romania; (A.-M.N.); (M.-G.N.); (C.N.); (M.C.)
- Correspondence: ; Tel.: +40-21-318-1575 (ext. 106)
| |
Collapse
|
14
|
Antmen E, Demirci U, Hasirci V. Micropatterned Surfaces Expose the Coupling between Actin Cytoskeleton-Lamin/Nesprin and Nuclear Deformability of Breast Cancer Cells with Different Malignancies. Adv Biol (Weinh) 2021; 5:e2000048. [PMID: 33724728 PMCID: PMC9049775 DOI: 10.1002/adbi.202000048] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 10/16/2020] [Indexed: 12/18/2022]
Abstract
Mechanotransduction proteins transfer mechanical stimuli through nucleo-cytoskeletal coupling and affect the nuclear morphology of cancer cells. However, the contribution of actin filament integrity has never been studied directly. It is hypothesized that differences in nuclear deformability of cancer cells are influenced by the integrity of actin filaments. In this study, transparent micropatterned surfaces as simple tools to screen cytoskeletal and nuclear distortions are presented. Surfaces decorated with micropillars are used to culture and image breast cancer cells and quantify their deformation using shape descriptors (circularity, area, perimeter). Using two drugs (cytochalasin D and jasplakinolide), actin filaments are disrupted. Deformation of cells on micropillars is decreased upon drug treatment as shown by increased circularity. However, the effect is much smaller on benign MCF10A than on malignant MCF7 and MDAMB231 cells. On micropatterned surfaces, molecular analysis shows that Lamin A/C and Nesprin-2 expressions decreased but, after drug treatment, increased in malignant cells but not in benign cells. These findings suggest that Lamin A/C, Nesprin-2 and actin filaments are critical in mechanotransduction of cancer cells. Consequently, transparent micropatterned surfaces can be used as image analysis platforms to provide robust, high throughput measurements of nuclear deformability of cancer cells, including the effect of cytoskeletal elements.
Collapse
Affiliation(s)
- Ezgi Antmen
- BIOMATEN, Middle East Technical University (METU) Center of Excellence in Biomaterials and Tissue Engineering, Ankara, Turkey
- METU, Department of Biotechnology, Ankara, Turkey
| | - Utkan Demirci
- Department of Radiology, School of Medicine, Stanford University, Palo Alto, CA, USA
| | - Vasif Hasirci
- BIOMATEN, Middle East Technical University (METU) Center of Excellence in Biomaterials and Tissue Engineering, Ankara, Turkey
- METU, Department of Biological Sciences, Ankara, Turkey
- Acibadem Mehmet Ali Aydinlar University, Department of Medical Engineering, Atasehir, Istanbul, Turkey
| |
Collapse
|
15
|
Leclech C, Villard C. Cellular and Subcellular Contact Guidance on Microfabricated Substrates. Front Bioeng Biotechnol 2020; 8:551505. [PMID: 33195116 PMCID: PMC7642591 DOI: 10.3389/fbioe.2020.551505] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 09/21/2020] [Indexed: 12/14/2022] Open
Abstract
Topography of the extracellular environment is now recognized as a major biophysical regulator of cell behavior and function. The study of the influence of patterned substrates on cells, named contact guidance, has greatly benefited from the development of micro and nano-fabrication techniques, allowing the emergence of increasingly diverse and elaborate engineered platforms. The purpose of this review is to provide a comprehensive view of the process of contact guidance from cellular to subcellular scales. We first classify and illustrate the large diversity of topographies reported in the literature by focusing on generic cellular responses to diverse topographical cues. Subsequently, and in a complementary fashion, we adopt the opposite approach and highlight cell type-specific responses to classically used topographies (arrays of pillars or grooves). Finally, we discuss recent advances on the key subcellular and molecular players involved in topographical sensing. Throughout the review, we focus particularly on neuronal cells, whose unique morphology and behavior have inspired a large body of studies in the field of topographical sensing and revealed fascinating cellular mechanisms. We conclude by using the current understanding of the cell-topography interactions at different scales as a springboard for identifying future challenges in the field of contact guidance.
Collapse
Affiliation(s)
- Claire Leclech
- Hydrodynamics Laboratory, CNRS UMR 7646, Ecole Polytechnique, Palaiseau, France
| | - Catherine Villard
- Physico-Chimie Curie, CNRS UMR 168, Université PSL, Sorbonne Université, Paris, France
| |
Collapse
|
16
|
Amin Yavari S, Castenmiller SM, van Strijp JAG, Croes M. Combating Implant Infections: Shifting Focus from Bacteria to Host. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e2002962. [PMID: 32914481 DOI: 10.1002/adma.202002962] [Citation(s) in RCA: 107] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 06/28/2020] [Indexed: 05/06/2023]
Abstract
The widespread use of biomaterials to support or replace body parts is increasingly threatened by the risk of implant-associated infections. In the quest for finding novel anti-infective biomaterials, there generally has been a one-sided focus on biomaterials with direct antibacterial properties, which leads to excessive use of antibacterial agents, compromised host responses, and unpredictable effectiveness in vivo. This review sheds light on how host immunomodulation, rather than only targeting bacteria, can endow biomaterials with improved anti-infective properties. How antibacterial surface treatments are at risk to be undermined by biomaterial features that dysregulate the protection normally provided by critical immune cell subsets, namely, neutrophils and macrophages, is discussed. Accordingly, how the precise modification of biomaterial surface biophysical cues, or the incorporation of immunomodulatory drug delivery systems, can render biomaterials with the necessary immune-compatible and immune-protective properties to potentiate the host defense mechanisms is reviewed. Within this context, the protective role of host defense peptides, metallic particles, quorum sensing inhibitors, and therapeutic adjuvants is discussed. The highlighted immunomodulatory strategies may lay a foundation to develop anti-infective biomaterials, while mitigating the increasing threat of antibacterial drug resistance.
Collapse
Affiliation(s)
- Saber Amin Yavari
- Department of Orthopedics, University Medical Center Utrecht, Utrecht, 3508GA, The Netherlands
| | - Suzanne M Castenmiller
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, 3508GA, The Netherlands
| | - Jos A G van Strijp
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, 3508GA, The Netherlands
| | - Michiel Croes
- Department of Orthopedics, University Medical Center Utrecht, Utrecht, 3508GA, The Netherlands
| |
Collapse
|
17
|
Sunami H, Shimizu Y, Denda J, Yokota I, Kishimoto H, Igarashi Y. A 3D Microfabricated Scaffold System for Unidirectional Cell Migration. ACTA ACUST UNITED AC 2020; 4:e2000113. [PMID: 32924291 DOI: 10.1002/adbi.202000113] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 08/02/2020] [Indexed: 11/08/2022]
Abstract
The present study demonstrates unidirectional cell migration using a novel 3D microfabricated scaffold, as revealed by the uneven sorting of cells into an area of 1 mm × 1 mm. To induce unidirectional cell migration, it is important to determine the optimal arrangement of 3D edges, and thus, the anisotropic periodic structures of micropatterns are adjusted appropriately. The cells put forth protrusions directionally along the sharp edges of these micropatterns, and migrated in the protruding direction. There are three advantages to this novel system. First, the range of applications is wide, because this system effectively induces unidirectional migration as long as 3D shapes of the scaffolds are maintained. Second, this system can contribute to the field of cell biology as a novel taxis assay. Third, this system is highly applicable to the development of medical devices. In the present report, unique 3D microfabricated scaffolds that provoked unidirectional migration of NIH3T3 cells are described. The 3D scaffolds could provoke cells to accumulate in a single target location, or could provoke a dissipated cell distribution. Because the shapes are very simple, they could be applied to the surfaces of various medical devices. Their utilization as a cell separation technology is also anticipated.
Collapse
Affiliation(s)
- Hiroshi Sunami
- Faculty of Medicine, University of the Ryukyus, Nishihara, 903-0215, Japan
| | - Yusuke Shimizu
- Faculty of Medicine, University of the Ryukyus, Nishihara, 903-0215, Japan
| | - Junko Denda
- Faculty of Medicine, University of the Ryukyus, Nishihara, 903-0215, Japan
| | - Ikuko Yokota
- Faculty of Advanced Life Science, Hokkaido University, Sapporo, 001-0021, Japan
| | - Hidehiro Kishimoto
- Faculty of Medicine, University of the Ryukyus, Nishihara, 903-0215, Japan
| | - Yasuyuki Igarashi
- Faculty of Advanced Life Science, Hokkaido University, Sapporo, 001-0021, Japan
| |
Collapse
|
18
|
Avery SJ, Ayre WN, Sloan AJ, Waddington RJ. Interrogating the Osteogenic Potential of Implant SurfacesIn Vitro: A Review of Current Assays. TISSUE ENGINEERING PART B-REVIEWS 2020; 26:217-229. [DOI: 10.1089/ten.teb.2019.0312] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Steven James Avery
- Department of Oral and Biomedical Sciences, College of Biomedical and Life Sciences, Cardiff Institute for Tissue Engineering and Repair, School of Dentistry, Cardiff University, Cardiff, United Kingdom
| | - Wayne Nishio Ayre
- Department of Oral and Biomedical Sciences, College of Biomedical and Life Sciences, Cardiff Institute for Tissue Engineering and Repair, School of Dentistry, Cardiff University, Cardiff, United Kingdom
| | - Alastair James Sloan
- Department of Oral and Biomedical Sciences, College of Biomedical and Life Sciences, Cardiff Institute for Tissue Engineering and Repair, School of Dentistry, Cardiff University, Cardiff, United Kingdom
| | - Rachel Jane Waddington
- Department of Oral and Biomedical Sciences, College of Biomedical and Life Sciences, Cardiff Institute for Tissue Engineering and Repair, School of Dentistry, Cardiff University, Cardiff, United Kingdom
| |
Collapse
|
19
|
Hoffmann EJ, Ponik SM. Biomechanical Contributions to Macrophage Activation in the Tumor Microenvironment. Front Oncol 2020; 10:787. [PMID: 32509583 PMCID: PMC7251173 DOI: 10.3389/fonc.2020.00787] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 04/22/2020] [Indexed: 12/15/2022] Open
Abstract
Alterations in extracellular matrix composition and organization are known to promote tumor growth and metastatic progression in breast cancer through interactions with tumor cells as well as stromal cell populations. Macrophages display a spectrum of behaviors from tumor-suppressive to tumor-promoting, and their function is spatially and temporally dependent upon integrated signals from the tumor microenvironment including, but not limited to, cytokines, metabolites, and hypoxia. Through years of investigation, the specific biochemical cues that recruit and activate tumor-promoting macrophage functions within the tumor microenvironment are becoming clear. In contrast, the impact of biomechanical stimuli on macrophage activation has been largely underappreciated, however there is a growing body of evidence that physical cues from the extracellular matrix can influence macrophage migration and behavior. While the complex, heterogeneous nature of the extracellular matrix and the transient nature of macrophage activation make studying macrophages in their native tumor microenvironment challenging, this review highlights the importance of investigating how the extracellular matrix directly and indirectly impacts tumor-associated macrophage activation. Additionally, recent advances in investigating macrophages in the tumor microenvironment and future directions regarding mechano-immunomodulation in cancer will also be discussed.
Collapse
Affiliation(s)
- Erica J. Hoffmann
- Department of Cell and Regenerative Biology, Wisconsin Institutes for Medical Research, University of Wisconsin-Madison, Madison, WI, United States
| | - Suzanne M. Ponik
- Department of Cell and Regenerative Biology, Wisconsin Institutes for Medical Research, University of Wisconsin-Madison, Madison, WI, United States
- University of Wisconsin Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI, United States
| |
Collapse
|
20
|
Antmen E, Demirci U, Hasirci V. Amplification of nuclear deformation of breast cancer cells by seeding on micropatterned surfaces to better distinguish their malignancies. Colloids Surf B Biointerfaces 2019; 183:110402. [DOI: 10.1016/j.colsurfb.2019.110402] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 07/21/2019] [Accepted: 07/26/2019] [Indexed: 12/16/2022]
|
21
|
Sadowska JM, Wei F, Guo J, Guillem-Marti J, Lin Z, Ginebra MP, Xiao Y. The effect of biomimetic calcium deficient hydroxyapatite and sintered β-tricalcium phosphate on osteoimmune reaction and osteogenesis. Acta Biomater 2019; 96:605-618. [PMID: 31269454 DOI: 10.1016/j.actbio.2019.06.057] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 06/25/2019] [Accepted: 06/27/2019] [Indexed: 11/15/2022]
Abstract
Biomaterial implantation triggers inflammatory reactions. Understanding the effect of physicochemical features of biomaterials on the release of inflammatory cytokines from immune cells would be of great interest in view of designing bone graft materials to enhance the healing of bone defects. The present work investigated the interactions of two chemically and texturally different calcium phosphate (CaPs) substrates with macrophages, one of the main innate immune cells, and its further impact on osteogenic differentiation of bone forming cells. The behaviour of macrophages seeded on biomimetic calcium deficient hydroxyapatite (CDHA) and sintered β-tricalcium phosphate (β-TCP) was assessed in terms of the release of inflammatory cytokines and osteoclastogenic factors. The osteogenic differentiation of bone progenitor cells (bone marrow stromal cells (BMSCs) and osteoblastic cell line (SaOS-2)) were subsequently studied by incubating with the conditioned medium induced by macrophage-CaPs interaction in order to reveal the effect of immune cell reaction to CaPs on osteogenic differentiation. It was found that the incubation of macrophages with CaPs substrates caused a decrease of pro-inflammatory cytokines, more pronounced for β-TCP compared with CDHA showing significantly decreased IL-6, TNF-a, and iNOS. However, the macrophage-CDHA interaction resulted in a more favourable environment for osteogenic differentiation of osteoblasts with more collagen type I production and osteogenic genes (Runx2, BSP) expression, suggesting that osteogenic differentiation of bone cells is not only determined by the nature of biomaterials, but also significantly influenced by the inflammatory environment generated by the interaction of immune cells and biomaterials. STATEMENT OF SIGNIFICANCE: The field of osteoimmunology highlights the importance of the cross-talk between immune and bone cells for effective bone regeneration. This tight interaction opens the door to new strategies that encompass the development of smart cell-instructive biomaterials which performance covers the events from early inflammation to osteogenesis. The present work links the anti-inflammatory and osteoimmunomodulatory features of synthetic bone grafts to their chemistry and texture, focussing on the cross-talk between macrophages and two major orchestrators of bone healing, namely primary mesenchymal stem cells and osteoblasts. The results emphasize the importance of the microenvironment created through the interaction between the substrate and the immune cells as it can stimulate osteogenic events and subsequently foster bone healing.
Collapse
Affiliation(s)
- Joanna M Sadowska
- Biomaterials, Biomechanics and Tissue Engineering Group, Department of Materials Science and Metallurgical Engineering, Universitat Politècnica de Catalunya (UPC), Av. Eduard Maristany 16, 08019 Barcelona, Spain; Barcelona Research Centre in Multiscale Science and Engineering, Universitat Politècnica de Catalunya (UPC), Av. Eduard Maristany 16, 08019 Barcelona, Spain.
| | - Fei Wei
- Institute of Health and Biomedical Innovation and the Australia-China Centre for Tissue Engineering and Regenerative Medicine (ACCTERM), Queensland University of Technology, Brisbane, QLD 4059, Australia.
| | - Jia Guo
- Institute of Health and Biomedical Innovation and the Australia-China Centre for Tissue Engineering and Regenerative Medicine (ACCTERM), Queensland University of Technology, Brisbane, QLD 4059, Australia; Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University and Guanghua Provincial Key Laboratory of Stomatology, Guangzhou, Guangdong 510055, People's Republic of China.
| | - Jordi Guillem-Marti
- Biomaterials, Biomechanics and Tissue Engineering Group, Department of Materials Science and Metallurgical Engineering, Universitat Politècnica de Catalunya (UPC), Av. Eduard Maristany 16, 08019 Barcelona, Spain; Barcelona Research Centre in Multiscale Science and Engineering, Universitat Politècnica de Catalunya (UPC), Av. Eduard Maristany 16, 08019 Barcelona, Spain.
| | - Zhengmei Lin
- Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University and Guanghua Provincial Key Laboratory of Stomatology, Guangzhou, Guangdong 510055, People's Republic of China.
| | - Maria-Pau Ginebra
- Biomaterials, Biomechanics and Tissue Engineering Group, Department of Materials Science and Metallurgical Engineering, Universitat Politècnica de Catalunya (UPC), Av. Eduard Maristany 16, 08019 Barcelona, Spain; Barcelona Research Centre in Multiscale Science and Engineering, Universitat Politècnica de Catalunya (UPC), Av. Eduard Maristany 16, 08019 Barcelona, Spain; Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Baldiri Reixac 10-12, 08028 Barcelona, Spain.
| | - Yin Xiao
- Institute of Health and Biomedical Innovation and the Australia-China Centre for Tissue Engineering and Regenerative Medicine (ACCTERM), Queensland University of Technology, Brisbane, QLD 4059, Australia.
| |
Collapse
|
22
|
Meli VS, Veerasubramanian PK, Atcha H, Reitz Z, Downing TL, Liu WF. Biophysical regulation of macrophages in health and disease. J Leukoc Biol 2019; 106:283-299. [PMID: 30861205 PMCID: PMC7001617 DOI: 10.1002/jlb.mr0318-126r] [Citation(s) in RCA: 91] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Macrophages perform critical functions for homeostasis and immune defense in tissues throughout the body. These innate immune cells are capable of recognizing and clearing dead cells and pathogens, and orchestrating inflammatory and healing processes that occur in response to injury. In addition, macrophages are involved in the progression of many inflammatory diseases including cardiovascular disease, fibrosis, and cancer. Although it has long been known that macrophages respond dynamically to biochemical signals in their microenvironment, the role of biophysical cues has only recently emerged. Furthermore, many diseases that involve macrophages are also characterized by changes to the tissue biophysical environment. This review will discuss current knowledge about the effects of biophysical cues including matrix stiffness, material topography, and applied mechanical forces, on macrophage behavior. We will also describe the role of molecules that are known to be important for mechanotransduction, including adhesion molecules, ion channels, as well as nuclear mediators such as transcription factors, scaffolding proteins, and epigenetic regulators. Together, this review will illustrate a developing role of biophysical cues in macrophage biology, and also speculate upon molecular targets that may potentially be exploited therapeutically to treat disease.
Collapse
Affiliation(s)
- Vijaykumar S. Meli
- Department of Biomedical Engineering, University of California Irvine, CA 92697
- The Edwards Lifesciences Center for Advanced Cardiovascular Technology, University of California Irvine, CA 92697
| | - Praveen K. Veerasubramanian
- Department of Biomedical Engineering, University of California Irvine, CA 92697
- The Edwards Lifesciences Center for Advanced Cardiovascular Technology, University of California Irvine, CA 92697
| | - Hamza Atcha
- Department of Biomedical Engineering, University of California Irvine, CA 92697
- The Edwards Lifesciences Center for Advanced Cardiovascular Technology, University of California Irvine, CA 92697
| | - Zachary Reitz
- Department of Biomedical Engineering, University of California Irvine, CA 92697
- The Edwards Lifesciences Center for Advanced Cardiovascular Technology, University of California Irvine, CA 92697
| | - Timothy L. Downing
- Department of Biomedical Engineering, University of California Irvine, CA 92697
- The Edwards Lifesciences Center for Advanced Cardiovascular Technology, University of California Irvine, CA 92697
- Department of Microbiology and Molecular Genetics, University of California Irvine, CA 92697
| | - Wendy F. Liu
- Department of Biomedical Engineering, University of California Irvine, CA 92697
- The Edwards Lifesciences Center for Advanced Cardiovascular Technology, University of California Irvine, CA 92697
- Department of Chemical and Biomolecular Engineering, University of California Irvine, CA 92697
| |
Collapse
|
23
|
Dynamic fibroblast contractions attract remote macrophages in fibrillar collagen matrix. Nat Commun 2019; 10:1850. [PMID: 31015429 PMCID: PMC6478854 DOI: 10.1038/s41467-019-09709-6] [Citation(s) in RCA: 170] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Accepted: 03/26/2019] [Indexed: 12/23/2022] Open
Abstract
Macrophage (Mϕ)-fibroblast interactions coordinate tissue repair after injury whereas miscommunications can result in pathological healing and fibrosis. We show that contracting fibroblasts generate deformation fields in fibrillar collagen matrix that provide far-reaching physical cues for Mϕ. Within collagen deformation fields created by fibroblasts or actuated microneedles, Mϕ migrate towards the force source from several hundreds of micrometers away. The presence of a dynamic force source in the matrix is critical to initiate and direct Mϕ migration. In contrast, collagen condensation and fiber alignment resulting from fibroblast remodelling activities or chemotactic signals are neither required nor sufficient to guide Mϕ migration. Binding of α2β1 integrin and stretch-activated channels mediate Mϕ migration and mechanosensing in fibrillar collagen ECM. We propose that Mϕ mechanosense the velocity of local displacements of their substrate, allowing contractile fibroblasts to attract Mϕ over distances that exceed the range of chemotactic gradients. Macrophages play an important role in wound healing but the guidance cues driving macrophages to sites of repair are still not clear. Here the authors discover that macrophages are attracted to contracting fibroblasts by responding to locally sensed displacements of collagen fibres.
Collapse
|
24
|
Sarhane KA, Ibrahim Z, Martin R, Krick K, Cashman CR, Tuffaha SH, Broyles JM, Prasad N, Yao ZC, Cooney DS, Mi R, Lee WPA, Hoke A, Mao HQ, Brandacher G. Macroporous nanofiber wraps promote axonal regeneration and functional recovery in nerve repair by limiting fibrosis. Acta Biomater 2019; 88:332-345. [PMID: 30807875 DOI: 10.1016/j.actbio.2019.02.034] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 02/14/2019] [Accepted: 02/22/2019] [Indexed: 12/19/2022]
Abstract
Functional outcomes following nerve repair remain suboptimal. Scarring at the repair site is a major impediment to regeneration. A biomaterial scaffold applied around the coaptation site that decreases inflammation holds great potential in reducing scarring, enhancing axonal growth, and improving functional recovery. In this study, we evaluated the effect of a macroporous nanofiber wrap, comprised of nonwoven electrospun poly-ε-caprolactone (PCL), in improving axonal regeneration in a rat sciatic nerve cut and direct repair model. Controls consisted of conventional epineurial repair. We also evaluated our wrap against the commercially available AxoGuard wrap. At five weeks following repair, the nanofiber wrap group showed a significantly decreased intraneural macrophage invasion and collagen deposition at the repair site. This was associated with increased expression of the anti-inflammatory cytokine (IL-10), decreased expression of the pro-inflammatory cytokine (TNF-α), and a decrease in the M1:M2 macrophage phenotype ratio. These findings suggest that this nanofiber wrap, with its unique macroporosity, is modulating the inflammatory response at the repair site by polarizing macrophages towards a pro-regenerative M2 phenotype. Concomitantly, a higher number of regenerated axons was noted. At sixteen weeks, the nanofiber wrap resulted in enhanced functional recovery as demonstrated by electrophysiology, neuromuscular re-innervation, and muscle histology. When compared to the AxoGuard wrap, the nanofiber wrap showed similar inflammation at the repair site and similar nerve morphometric findings, but there was a trend towards a lower overall number of macrophages invading the wrap wall. These results demonstrate favorable outcomes of the macroporous nanofiber wrap in promoting neuroregeneration and functional recovery following nerve repair. STATEMENT OF SIGNIFICANCE: Electrospun nanofiber scaffolds, with specific fiber and pore sizes, were shown to modulate the immune response and create a regenerative environment. In this paper, we present a macroporous nanofiber wrap, made of poly-ε-caprolactone, to be applied at the coaptation site in primary nerve repair. We show that it regulates the inflammatory response at the repair site and decreases scarring/fibrosis. This results in enhanced axonal regeneration, allowing a higher number of axons to cross the suture line and reach the target muscle in a timely fashion. Functional outcomes are thus improved.
Collapse
|
25
|
Kim JK, Shin YJ, Ha LJ, Kim DH, Kim DH. Unraveling the Mechanobiology of the Immune System. Adv Healthc Mater 2019; 8:e1801332. [PMID: 30614636 PMCID: PMC7700013 DOI: 10.1002/adhm.201801332] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 12/01/2018] [Indexed: 12/20/2022]
Abstract
Cells respond and actively adapt to environmental cues in the form of mechanical stimuli. This extends to immune cells and their critical role in the maintenance of tissue homeostasis. Multiple recent studies have begun illuminating underlying mechanisms of mechanosensation in modulating immune cell phenotypes. Since the extracellular microenvironment is critical to modify cellular physiology that ultimately determines the functionality of the cell, understanding the interactions between immune cells and their microenvironment is necessary. This review focuses on mechanoregulation of immune responses mediated by macrophages, dendritic cells, and T cells, in the context of modern mechanobiology.
Collapse
Affiliation(s)
- Jeong-Ki Kim
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 02841, Republic of Korea
| | - Yu Jung Shin
- Department of Bioengineering, University of Washington, Seattle, WA 98109, USA
| | - Leslie Jaesun Ha
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 02841, Republic of Korea
| | - Deok-Ho Kim
- Department of Bioengineering, University of Washington, Seattle, WA 98109, USA
| | - Dong-Hwee Kim
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 02841, Republic of Korea
| |
Collapse
|
26
|
Ermis M, Antmen E, Hasirci V. Micro and Nanofabrication methods to control cell-substrate interactions and cell behavior: A review from the tissue engineering perspective. Bioact Mater 2018; 3:355-369. [PMID: 29988483 PMCID: PMC6026330 DOI: 10.1016/j.bioactmat.2018.05.005] [Citation(s) in RCA: 167] [Impact Index Per Article: 23.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2017] [Revised: 05/09/2018] [Accepted: 05/10/2018] [Indexed: 02/07/2023] Open
Abstract
Cell-substrate interactions play a crucial role in the design of better biomaterials and integration of implants with the tissues. Adhesion is the binding process of the cells to the substrate through interactions between the surface molecules of the cell membrane and the substrate. There are several factors that affect cell adhesion including substrate surface chemistry, topography, and stiffness. These factors physically and chemically guide and influence the adhesion strength, spreading, shape and fate of the cell. Recently, technological advances enabled us to precisely engineer the geometry and chemistry of substrate surfaces enabling the control of the interaction cells with the substrate. Some of the most commonly used surface engineering methods for eliciting the desired cellular responses on biomaterials are photolithography, electron beam lithography, microcontact printing, and microfluidics. These methods allow production of nano- and micron level substrate features that can control cell adhesion, migration, differentiation, shape of the cells and the nuclei as well as measurement of the forces involved in such activities. This review aims to summarize the current techniques and associate these techniques with cellular responses in order to emphasize the effect of chemistry, dimensions, density and design of surface patterns on cell-substrate interactions. We conclude with future projections in the field of cell-substrate interactions in the hope of providing an outlook for the future studies.
Collapse
Affiliation(s)
- Menekse Ermis
- BIOMATEN, Middle East Technical University (METU) Center of Excellence in Biomaterials and Tissue Engineering, Ankara, Turkey
- METU, Department of Biomedical Engineering, Ankara, Turkey
| | - Ezgi Antmen
- BIOMATEN, Middle East Technical University (METU) Center of Excellence in Biomaterials and Tissue Engineering, Ankara, Turkey
- METU, Department of Biotechnology, Ankara, Turkey
| | - Vasif Hasirci
- BIOMATEN, Middle East Technical University (METU) Center of Excellence in Biomaterials and Tissue Engineering, Ankara, Turkey
- METU, Department of Biomedical Engineering, Ankara, Turkey
- METU, Department of Biotechnology, Ankara, Turkey
- METU, Department of Biological Sciences, Ankara, Turkey
| |
Collapse
|
27
|
Effect of nano-structural properties of biomimetic hydroxyapatite on osteoimmunomodulation. Biomaterials 2018; 181:318-332. [PMID: 30098568 DOI: 10.1016/j.biomaterials.2018.07.058] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 07/22/2018] [Accepted: 07/28/2018] [Indexed: 12/27/2022]
Abstract
Immune cells are sensitive to the microstructural and textural properties of materials. Tuning the structural features of synthetic bone grafts could be a valuable strategy to regulate the specific response of the immune system, which in turn modulates the activity of bone cells. The aim of this study was to analyse the effect of the structural characteristics of biomimetic calcium deficient hydroxyapatite (CDHA) on the innate immune response of macrophages and the subsequent impact on osteogenesis and osteoclastogenesis. Murine RAW 264.7 cells were cultured, under standard and inflammatory conditions, on chemically identical CDHA substrates that varied in microstructure and porosity. The impact on osteogenesis was evaluated by incubating osteoblastic cells (SaOS-2) with RAW-CDHA conditioned extracts. The results showed that macrophages were sensitive to different textural and structural properties of CDHA. Under standard conditions, the impact of inflammatory cytokine production by RAW cells cultured on CDHA played a significant role in the degradation of substrates, suggesting the impact of resorptive behaviour of RAW cells on biomimetic surfaces. Osteoblast differentiation was stimulated by the conditioned media collected from RAW cells cultured on needle-like nanostructured CDHA. The results demonstrated that needle-like nanostructured CDHA was able to generate a favourable osteoimmune environment to regulate osteoblast differentiation and osteogenesis. Under inflammatory conditions, the incubation of RAW cells with less porous CDHA resulted in a decreased gene expression and release of pro-inflammatory cytokines.
Collapse
|
28
|
Larouche J, Sheoran S, Maruyama K, Martino MM. Immune Regulation of Skin Wound Healing: Mechanisms and Novel Therapeutic Targets. Adv Wound Care (New Rochelle) 2018; 7:209-231. [PMID: 29984112 PMCID: PMC6032665 DOI: 10.1089/wound.2017.0761] [Citation(s) in RCA: 362] [Impact Index Per Article: 51.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Accepted: 12/12/2017] [Indexed: 12/17/2022] Open
Abstract
Significance: The immune system plays a central role in orchestrating the tissue healing process. Hence, controlling the immune system to promote tissue repair and regeneration is an attractive approach when designing regenerative strategies. This review discusses the pathophysiology of both acute and chronic wounds and possible strategies to control the immune system to accelerate chronic wound closure and promote skin regeneration (scar-less healing) of acute wounds. Recent Advances: Recent studies have revealed the key roles of various immune cells and immune mediators in skin repair. Thus, immune components have been targeted to promote chronic wound repair or skin regeneration and several growth factors, cytokines, and biomaterials have shown promising results in animal models. However, these novel strategies are often struggling to meet efficacy standards in clinical trials, partly due to inadequate drug delivery systems and safety concerns. Critical Issues: Excess inflammation is a major culprit in the dysregulation of normal wound healing, and further limiting inflammation effectively reduces scarring. However, current knowledge is insufficient to efficiently control inflammation and specific immune cells. This is further complicated by inadequate drug delivery methods. Future Directions: Improving our understanding of the molecular pathways through which the immune system controls the wound healing process could facilitate the design of novel regenerative therapies. Additionally, better delivery systems may make current and future therapies more effective. To promote the entry of current regenerative strategies into clinical trials, more evidence on their safety, efficacy, and cost-effectiveness is also needed.
Collapse
Affiliation(s)
- Jacqueline Larouche
- European Molecular Biology Laboratory Australia, Australian Regenerative Medicine Institute, Monash University, Victoria, Australia
| | - Sumit Sheoran
- European Molecular Biology Laboratory Australia, Australian Regenerative Medicine Institute, Monash University, Victoria, Australia
| | - Kenta Maruyama
- WPI Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Mikaël M. Martino
- European Molecular Biology Laboratory Australia, Australian Regenerative Medicine Institute, Monash University, Victoria, Australia
| |
Collapse
|
29
|
Alakpa EV, Saeed A, Chung P, Riehle MO, Gadegaard N, Dalby MJ, Cusack M. The Prismatic Topography of Pinctada maxima
Shell Retains Stem Cell Multipotency and Plasticity In Vitro. ACTA ACUST UNITED AC 2018. [DOI: 10.1002/adbi.201800012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Enateri V. Alakpa
- Institution for Integrative Medical Biology; Umeå University; SE901 87 Umeå Sweden
| | - Anwer Saeed
- Division of Biomedical Engineering; School of Engineering; University of Glasgow; Glasgow G12 8LT Scotland UK
| | - Peter Chung
- School of Geographical & Earth Sciences; College of Science & Engineering; Gregory Building; University of Glasgow; Glasgow G12 8QQ UK
| | - Mathis O. Riehle
- Centre for Cell Engineering; Institute of Molecular Cell & Systems Biology; College of Medical; Veterinary & Life Sciences; Joseph Black Building; University of Glasgow; Glasgow G12 8QQ UK
| | - Nikolaj Gadegaard
- Division of Biomedical Engineering; School of Engineering; University of Glasgow; Glasgow G12 8LT Scotland UK
| | - Matthew J. Dalby
- Centre for Cell Engineering; Institute of Molecular Cell & Systems Biology; College of Medical; Veterinary & Life Sciences; Joseph Black Building; University of Glasgow; Glasgow G12 8QQ UK
| | - Maggie Cusack
- Division of Biological & Environmental Sciences; Faculty of Natural Sciences; Cottrell Building; University of Stirling; Stirling FK9 4LA UK
| |
Collapse
|
30
|
Correia CR, Gaifem J, Oliveira MB, Silvestre R, Mano JF. The influence of surface modified poly(l-lactic acid) films on the differentiation of human monocytes into macrophages. Biomater Sci 2018; 5:551-560. [PMID: 28128374 DOI: 10.1039/c6bm00920d] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Macrophages play a crucial role in the biological performance of biomaterials, as key factors in defining the optimal inflammation-healing balance towards tissue regeneration and implant integration. Here, we investigate how different surface modifications performed on poly(l-lactic acid) (PLLA) films would influence the differentiation of human monocytes into macrophages. We tested PLLA films without modification, surface-modified by plasma treatment (pPLLA) or by combining plasma treatment with different coating materials, namely poly(l-lysine) and a series of proteins from the extracellular matrix: collagen I, fibronectin, vitronectin, laminin and albumin. While all the tested films are non-cytotoxic, differences in cell adhesion and morphology are observed. Monocyte-derived macrophages (MDM) present a more rounded shape in non-modified films, while a more elongated phenotype is observed containing filopodia-like and podosome-like structures in all modified films. No major differences are found for the expression of HLA-DR+/CD80+ and CD206+/CD163+ surface markers, as well as for the ability of MDM to phagocytize. Interestingly, MDM differentiated on pPLLA present the highest expression of MMP9. Upon differentiation, MDM in all surface modified films present lower amounts of IL-6 and IL-10 compared to non-modified films. After stimulating MDM with the potent pro-inflammatory agent LPS, pPLLA and poly(l-lysine) and fibronectin-modified films reveal a significant reduction in IL-6 secretion, while the opposite effect is observed with IL-10. Of note, in comparison to non-modified films, all surface modified films induce a significant reduction of the IL-6/IL-10 ratio, a valuable prognosticator of the pro- versus anti-inflammatory balance. These findings provide important insights into MDM-biomaterial interactions, while strengthening the need for designing immune-informed biomaterials.
Collapse
Affiliation(s)
- Clara R Correia
- 3B's Research Group - Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, 4805-017 Barco, Guimarães, Portugal. and ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal.
| | - Joana Gaifem
- ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal. and Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Braga, Portugal
| | - Mariana B Oliveira
- 3B's Research Group - Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, 4805-017 Barco, Guimarães, Portugal. and ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal.
| | - Ricardo Silvestre
- ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal. and Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Braga, Portugal
| | - João F Mano
- 3B's Research Group - Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, 4805-017 Barco, Guimarães, Portugal. and ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal.
| |
Collapse
|
31
|
Diez-Escudero A, Espanol M, Bonany M, Lu X, Persson C, Ginebra MP. Heparinization of Beta Tricalcium Phosphate: Osteo-immunomodulatory Effects. Adv Healthc Mater 2018; 7. [PMID: 29266807 DOI: 10.1002/adhm.201700867] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 10/16/2017] [Indexed: 01/18/2023]
Abstract
Immune cells play a vital role in regulating bone dynamics. This has boosted the interest in developing biomaterials that can modulate both the immune and skeletal systems. In this study, calcium phosphates discs (i.e., beta-tricalcium phosphate, β-TCP) are functionalized with heparin to investigate the effects on immune and stem cell responses. The results show that the functionalized surfaces downregulate the release of hydrogen peroxide and proinflammatory cytokines (tumor necrosis factor alpha and interleukin 1 beta) from human monocytes and neutrophils, compared to nonfunctionalized discs. The macrophages show both elongated and round shapes on the two ceramic substrates, but the morphology of cells on heparinized β-TCP tends toward a higher elongation after 72 h. The heparinized substrates support rat mesenchymal stem cell (MSC) adhesion and proliferation, and anticipate the differentiation toward the osteoblastic lineage as compared to β-TCP and control. The coupling between the inflammatory response and osteogenesis is assessed by culturing MSCs with the macrophage supernatants. The downregulation of inflammation in contact with the heparinized substrates induces higher expression of bone-related markers by MSCs.
Collapse
Affiliation(s)
- Anna Diez-Escudero
- Biomaterials, Biomechanics and Tissue Engineering Group; Department of Materials Science and Metallurgical Engineering; Universitat Politècnica de Catalunya (UPC); EEBE; Av. Eduard Maristany 10-14 08019 Barcelona Spain
- Barcelona Research Centre for Multiscale Science and Engineering; Universitat Politècnica de Catalunya (UPC); EEBE; Av. Eduard Maristany 10-14 08019 Barcelona Spain
| | - Montserrat Espanol
- Biomaterials, Biomechanics and Tissue Engineering Group; Department of Materials Science and Metallurgical Engineering; Universitat Politècnica de Catalunya (UPC); EEBE; Av. Eduard Maristany 10-14 08019 Barcelona Spain
- Barcelona Research Centre for Multiscale Science and Engineering; Universitat Politècnica de Catalunya (UPC); EEBE; Av. Eduard Maristany 10-14 08019 Barcelona Spain
| | - Mar Bonany
- Biomaterials, Biomechanics and Tissue Engineering Group; Department of Materials Science and Metallurgical Engineering; Universitat Politècnica de Catalunya (UPC); EEBE; Av. Eduard Maristany 10-14 08019 Barcelona Spain
- Barcelona Research Centre for Multiscale Science and Engineering; Universitat Politècnica de Catalunya (UPC); EEBE; Av. Eduard Maristany 10-14 08019 Barcelona Spain
| | - Xi Lu
- Materials in Medicine Group; Division of Applied Materials Science; Department of Engineering Science; Uppsala University; Lägerhyddsy. 1 751 21 Uppsala Sweden
| | - Cecilia Persson
- Materials in Medicine Group; Division of Applied Materials Science; Department of Engineering Science; Uppsala University; Lägerhyddsy. 1 751 21 Uppsala Sweden
| | - Maria-Pau Ginebra
- Biomaterials, Biomechanics and Tissue Engineering Group; Department of Materials Science and Metallurgical Engineering; Universitat Politècnica de Catalunya (UPC); EEBE; Av. Eduard Maristany 10-14 08019 Barcelona Spain
- Barcelona Research Centre for Multiscale Science and Engineering; Universitat Politècnica de Catalunya (UPC); EEBE; Av. Eduard Maristany 10-14 08019 Barcelona Spain
- Institute for Bioengineering of Catalonia (IBEC); Barcelona Institute of Science and Technology; C/ Baldiri Reixac 10-12 08028 Barcelona Spain
| |
Collapse
|
32
|
Aluminum Templates of Different Sizes with Micro-, Nano- and Micro/Nano-Structures for Cell Culture. COATINGS 2017. [DOI: 10.3390/coatings7110179] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
33
|
Thomson SE, Charalambous C, Smith CA, Tsimbouri PM, Déjardin T, Kingham PJ, Hart AM, Riehle MO. Microtopographical cues promote peripheral nerve regeneration via transient mTORC2 activation. Acta Biomater 2017; 60:220-231. [PMID: 28754648 PMCID: PMC5593812 DOI: 10.1016/j.actbio.2017.07.031] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 07/04/2017] [Accepted: 07/20/2017] [Indexed: 12/16/2022]
Abstract
Despite microsurgical repair, recovery of function following peripheral nerve injury is slow and often incomplete. Outcomes could be improved by an increased understanding of the molecular biology of regeneration and by translation of experimental bioengineering strategies. Topographical cues have been shown to be powerful regulators of the rate and directionality of neurite regeneration, and in this study we investigated the downstream molecular effects of linear micropatterned structures in an organotypic explant model. Linear topographical cues enhanced neurite outgrowth and our results demonstrated that the mTOR pathway is important in regulating these responses. mTOR gene expression peaked between 48 and 72 h, coincident with the onset of rapid neurite outgrowth and glial migration, and correlated with neurite length at 48 h. mTOR protein was located to glia and in a punctate distribution along neurites. mTOR levels peaked at 72 h and were significantly increased by patterned topography (p < 0.05). Furthermore, the topographical cues could override pharmacological inhibition. Downstream phosphorylation assays and inhibition of mTORC1 using rapamycin highlighted mTORC2 as an important mediator, and more specific therapeutic target. Quantitative immunohistochemistry confirmed the presence of the mTORC2 component rictor at the regenerating front where it co-localised with F-actin and vinculin. Collectively, these results provide a deeper understanding of the mechanism of action of topography on neural regeneration, and support the incorporation of topographical patterning in combination with pharmacological mTORC2 potentiation within biomaterial constructs used to repair peripheral nerves. Statement of Significance Peripheral nerve injury is common and functionally devastating. Despite microsurgical repair, healing is slow and incomplete, with lasting functional deficit. There is a clear need to translate bioengineering approaches and increase our knowledge of the molecular processes controlling nerve regeneration to improve the rate and success of healing. Topographical cues are powerful determinants of neurite outgrowth and represent a highly translatable engineering strategy. Here we demonstrate, for the first time, that microtopography potentiates neurite outgrowth via the mTOR pathway, with the mTORC2 subtype being of particular importance. These results give further evidence for the incorporation of microtopographical cues into peripheral nerve regeneration conduits and indicate that mTORC2 may be a suitable therapeutic target to potentiate nerve regeneration.
Collapse
|
34
|
Sales A, Holle AW, Kemkemer R. Initial contact guidance during cell spreading is contractility-independent. SOFT MATTER 2017; 13:5158-5167. [PMID: 28664962 DOI: 10.1039/c6sm02685k] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
A wide variety of cell types exhibit substrate topography-based behavior, also known as contact guidance. However, the precise cellular mechanisms underlying this process are still unknown. In this study, we investigated contact guidance by studying the reaction of human endothelial cells (ECs) to well-defined microgroove topographies, both during and after initial cell spreading. As the cytoskeleton plays a major role in cellular adaptation to topographical features, two methods were used to perturb cytoskeletal structures. Inhibition of actomyosin contractility with the chemical inhibitor blebbistatatin demonstrated that initial contact guidance events are independent of traction force generation. However, cell alignment to the grooved substrate was altered at later time points, suggesting an initial 'passive' phase of contact guidance, followed by a contractility-dependent 'active' phase that relies on mechanosensitive feedback. The actin cytoskeleton was also perturbed in an indirect manner by culturing cells upside down, resulting in decreased levels of contact guidance and suggesting that a possible loss of contact between the actin cytoskeleton and the substrate could lead to cytoskeleton impairment. The process of contact guidance at the microscale was found to be primarily lamellipodia driven, as no bias in filopodia extension was observed on micron-scale grooves.
Collapse
Affiliation(s)
- Adrià Sales
- Max Planck Institute for Intelligent Systems, Department of New Materials and Biosystems, Heisenbergstrasse 3, 70569 Stuttgart, Germany.
| | | | | |
Collapse
|
35
|
Abagnale G, Sechi A, Steger M, Zhou Q, Kuo CC, Aydin G, Schalla C, Müller-Newen G, Zenke M, Costa IG, van Rijn P, Gillner A, Wagner W. Surface Topography Guides Morphology and Spatial Patterning of Induced Pluripotent Stem Cell Colonies. Stem Cell Reports 2017; 9:654-666. [PMID: 28757164 PMCID: PMC5550028 DOI: 10.1016/j.stemcr.2017.06.016] [Citation(s) in RCA: 111] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Revised: 06/27/2017] [Accepted: 06/28/2017] [Indexed: 12/31/2022] Open
Abstract
The relevance of topographic cues for commitment of induced pluripotent stem cells (iPSCs) is largely unknown. In this study, we demonstrate that groove-ridge structures with a periodicity in the submicrometer range induce elongation of iPSC colonies, guide the orientation of apical actin fibers, and direct the polarity of cell division. Elongation of iPSC colonies impacts also on their intrinsic molecular patterning, which seems to be orchestrated from the rim of the colonies. BMP4-induced differentiation is enhanced in elongated colonies, and the submicron grooves impact on the spatial modulation of YAP activity upon induction with this morphogen. Interestingly, TAZ, a YAP paralog, shows distinct cytoskeletal localization in iPSCs. These findings demonstrate that topography can guide orientation and organization of iPSC colonies, which may affect the interaction between mechanosensors and mechanotransducers in iPSCs.
Collapse
Affiliation(s)
- Giulio Abagnale
- Helmholtz Institute for Biomedical Engineering, Stem Cell Biology and Cellular Engineering, RWTH Aachen University Medical School, Pauwelsstrasse 20, 52074 Aachen, Germany
| | - Antonio Sechi
- Institute of Biomedical Engineering, Department of Cell Biology, RWTH Aachen University Medical School, 52074 Aachen, Germany; Helmholtz Institute for Biomedical Engineering, RWTH Aachen University, 52074 Aachen, Germany
| | - Michael Steger
- Laser Technology (ILT), RWTH Aachen University, 52074 Aachen, Germany
| | - Qihui Zhou
- University of Groningen, University Medical Center Groningen, Biomedical Engineering Department-FB40, Groningen, the Netherlands
| | - Chao-Chung Kuo
- Institute of Biomedical Engineering, Department of Cell Biology, RWTH Aachen University Medical School, 52074 Aachen, Germany; IZKF Bioinformatics Research Group, RWTH Aachen University Medical School, 52074 Aachen, Germany
| | - Gülcan Aydin
- Institute of Biomedical Engineering, Department of Cell Biology, RWTH Aachen University Medical School, 52074 Aachen, Germany; Helmholtz Institute for Biomedical Engineering, RWTH Aachen University, 52074 Aachen, Germany
| | - Carmen Schalla
- Institute of Biomedical Engineering, Department of Cell Biology, RWTH Aachen University Medical School, 52074 Aachen, Germany; Helmholtz Institute for Biomedical Engineering, RWTH Aachen University, 52074 Aachen, Germany
| | - Gerhard Müller-Newen
- Department of Biochemistry and Molecular Biology, RWTH Aachen University Medical School, 52074 Aachen, Germany
| | - Martin Zenke
- Institute of Biomedical Engineering, Department of Cell Biology, RWTH Aachen University Medical School, 52074 Aachen, Germany; Helmholtz Institute for Biomedical Engineering, RWTH Aachen University, 52074 Aachen, Germany
| | - Ivan G Costa
- Institute of Biomedical Engineering, Department of Cell Biology, RWTH Aachen University Medical School, 52074 Aachen, Germany; IZKF Bioinformatics Research Group, RWTH Aachen University Medical School, 52074 Aachen, Germany; Aachen Institute for Advanced Study in Computational Engineering Science (AICES), RWTH Aachen University, 52074 Aachen, Germany
| | - Patrick van Rijn
- University of Groningen, University Medical Center Groningen, Biomedical Engineering Department-FB40, Groningen, the Netherlands
| | - Arnold Gillner
- Laser Technology (ILT), RWTH Aachen University, 52074 Aachen, Germany
| | - Wolfgang Wagner
- Helmholtz Institute for Biomedical Engineering, Stem Cell Biology and Cellular Engineering, RWTH Aachen University Medical School, Pauwelsstrasse 20, 52074 Aachen, Germany; Institute of Biomedical Engineering, Department of Cell Biology, RWTH Aachen University Medical School, 52074 Aachen, Germany.
| |
Collapse
|
36
|
Goonoo N. Modulating Immunological Responses of Electrospun Fibers for Tissue Engineering. ACTA ACUST UNITED AC 2017; 1:e1700093. [PMID: 32646177 DOI: 10.1002/adbi.201700093] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Indexed: 12/28/2022]
Abstract
The promise of tissue engineering is to improve or restore functions of impaired tissues or organs. However, one of the biggest challenges to its translation to clinical applications is the lack of tissue integration and functionality. The plethora of cellular and molecular events occurring following scaffold implantation is a major bottleneck. Recent studies confirmed that inflammation is a crucial component influencing tissue regeneration. Immuno-modulation or immune-engineering has been proposed as a potential solution to overcome this key challenge in regenerative medicine. In this review, strategies to modify scaffold physicochemical properties through the use of the electrospinning technique to modulate host response and improve scaffold integration will be discussed. Electrospinning, being highly versatile allows the fabrication of ECM-mimicking scaffolds and also offers the possibility to control scaffold properties for instance, tailoring of fiber properties, chemical conjugation or physical adsorption of non-immunogenic materials on the scaffold surface, encapsulating cells or anti-inflammatory molecules within the scaffold. Such electrospun scaffold-based immune-engineering strategies can significantly improve the resulting outcomes of tissue engineering scaffolds.
Collapse
Affiliation(s)
- Nowsheen Goonoo
- Physical Chemistry I, Department of Chemistry and Biology & Research Center of Micro and Nanochemistry and Engineering (Cµ), University of Siegen, 57076, Siegen, Germany.,Biomaterials, Drug Delivery & Nanotechnology Unit, Centre for Biomedical and Biomaterials Research, MSIRI Building, University of Mauritius, Réduit, Mauritius
| |
Collapse
|
37
|
Risbud M, Bhonde M, Bhonde R. Chitosan-Polyvinyl Pyrrolidone Hydrogel does Not Activate Macrophages: Potentials for Transplantation Applications. Cell Transplant 2017. [DOI: 10.3727/000000001783986828] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Affiliation(s)
- Makarand Risbud
- Tissue Engineering and Banking Laboratory, National Centre for Cell Science, Ganeshkhind, Pune 411 007, India
| | - Mandar Bhonde
- Tissue Engineering and Banking Laboratory, National Centre for Cell Science, Ganeshkhind, Pune 411 007, India
| | - Ramesh Bhonde
- Tissue Engineering and Banking Laboratory, National Centre for Cell Science, Ganeshkhind, Pune 411 007, India
| |
Collapse
|
38
|
Kianoush F, Nematollahi M, Waterfield JD, Brunette DM. Regulation of RAW264.7 macrophage polarization on smooth and rough surface topographies by galectin-3. J Biomed Mater Res A 2017; 105:2499-2509. [PMID: 28498622 DOI: 10.1002/jbm.a.36107] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Revised: 05/04/2017] [Accepted: 05/08/2017] [Indexed: 11/05/2022]
Abstract
Recognition of topographical features induces phenotypic changes in macrophages although the receptors and signaling pathways are not completely characterized. As integrin molecules in focal adhesions/podosomes are in intimate contact with topography and topography modulates the NFkB pathway through cholesterol enriched raft-associated adhesive signaling structures we hypothesized that a cell-surface signaling complex comprised of galectin-3 together with its ligand CD98 and integrinβ1 is important for topography-directed lineage determination. This study used polished, sand blasted and acid etched (SLA) surfaces and two novel grooved topographies (G1 and G2) produced by anisotropic etching of Si <1 1 0> to evaluate the role of galectin-3 in macrophage polarization in RAW 264.7 macrophages, as determined by gene expression and morphology. In the presence of the galectin-3 inhibitor, lactose, the M2 marker (mannose receptor) was down-regulated while the M1 marker (iNOS) was up-regulated on smooth and rough surfaces. This skewing of phenotype suggests a role for galectin-3 in macrophage polarization towards the M2 phenotype. Additionally, we evaluated the role of PI3K on polarization using PI3K inhibitor LY294002. We found that the M2 marker was down-regulated on both PO (surface polished) and G1 surfaces implicating PI3K in lineage determination. We also found that surface topography altered cell morphology; macrophages had a larger area on G2 surfaces. Lactose treatment significantly reduced the cell area on all topographies suggesting that the galectin-3 is also involved in signaling complexes triggering the rearrangement of the actin cytoskeleton. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 2499-2509, 2017.
Collapse
Affiliation(s)
- F Kianoush
- Department of Oral Biological and Medical Sciences, Faculty of Dentistry, University of British Columbia, Vancouver, British Columbia, Canada
| | - M Nematollahi
- Department of Oral Biological and Medical Sciences, Faculty of Dentistry, University of British Columbia, Vancouver, British Columbia, Canada
| | - J D Waterfield
- Department of Oral Biological and Medical Sciences, Faculty of Dentistry, University of British Columbia, Vancouver, British Columbia, Canada
| | - D M Brunette
- Department of Oral Biological and Medical Sciences, Faculty of Dentistry, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
39
|
Irving M, Murphy MF, Lilley F, French PW, Burton DR, Dixon S, Sharp MC. The use of abrasive polishing and laser processing for developing polyurethane surfaces for controlling fibroblast cell behaviour. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 71:690-697. [PMID: 27987762 DOI: 10.1016/j.msec.2016.10.067] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Revised: 10/03/2016] [Accepted: 10/24/2016] [Indexed: 01/02/2023]
Affiliation(s)
- Michael Irving
- General Engineering Research Institute, Liverpool John Moores University, Liverpool, L3 3AF, UK
| | - Mark F Murphy
- General Engineering Research Institute, Liverpool John Moores University, Liverpool, L3 3AF, UK
| | - Francis Lilley
- General Engineering Research Institute, Liverpool John Moores University, Liverpool, L3 3AF, UK
| | - Paul W French
- General Engineering Research Institute, Liverpool John Moores University, Liverpool, L3 3AF, UK
| | - David R Burton
- General Engineering Research Institute, Liverpool John Moores University, Liverpool, L3 3AF, UK
| | - Simon Dixon
- Biomer Technology LTD, 10 Seymour Court, Tudor Road, Manor Park, Runcorn, Cheshire, WA7 1SY, UK
| | - Martin C Sharp
- General Engineering Research Institute, Liverpool John Moores University, Liverpool, L3 3AF, UK
| |
Collapse
|
40
|
Abstract
Macrophages are the initial biologic responders to biomaterials. These highly plastic immune sentinels control and modulate responses to materials, foreign or natural. The responses may vary from immune stimulatory to immune suppressive. Several parameters have been identified that influence macrophage response to biomaterials, specifically size, geometry, surface topography, hydrophobicity, surface chemistry, material mechanics, and protein adsorption. In this review, the influence of these parameters is supported with examples of both synthetic and naturally derived materials and illustrates that a combination of these parameters ultimately influences macrophage responses to the biomaterial. Having an understanding of these properties may lead to highly efficient design of biomaterials with desirable biologic response properties.
Collapse
|
41
|
Mennens SFB, van den Dries K, Cambi A. Role for Mechanotransduction in Macrophage and Dendritic Cell Immunobiology. Results Probl Cell Differ 2017; 62:209-242. [PMID: 28455711 DOI: 10.1007/978-3-319-54090-0_9] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Tissue homeostasis is not only controlled by biochemical signals but also through mechanical forces that act on cells. Yet, while it has long been known that biochemical signals have profound effects on cell biology, the importance of mechanical forces has only been recognized much more recently. The types of mechanical stress that cells experience include stretch, compression, and shear stress, which are mainly induced by the extracellular matrix, cell-cell contacts, and fluid flow. Importantly, macroscale tissue deformation through stretch or compression also affects cellular function.Immune cells such as macrophages and dendritic cells are present in almost all peripheral tissues, and monocytes populate the vasculature throughout the body. These cells are unique in the sense that they are subject to a large variety of different mechanical environments, and it is therefore not surprising that key immune effector functions are altered by mechanical stimuli. In this chapter, we describe the different types of mechanical signals that cells encounter within the body and review the current knowledge on the role of mechanical signals in regulating macrophage, monocyte, and dendritic cell function.
Collapse
Affiliation(s)
- Svenja F B Mennens
- Department of Cell Biology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Geert Grooteplein Zuid 26-28, 6525 GA, Nijmegen, The Netherlands
| | - Koen van den Dries
- Department of Cell Biology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Geert Grooteplein Zuid 26-28, 6525 GA, Nijmegen, The Netherlands
| | - Alessandra Cambi
- Department of Cell Biology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Geert Grooteplein Zuid 26-28, 6525 GA, Nijmegen, The Netherlands.
| |
Collapse
|
42
|
Responses of Vascular Endothelial Cells to Photoembossed Topographies on Poly(Methyl Methacrylate) Films. J Funct Biomater 2016; 7:jfb7040033. [PMID: 27941669 PMCID: PMC5197992 DOI: 10.3390/jfb7040033] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Revised: 12/02/2016] [Accepted: 12/05/2016] [Indexed: 11/18/2022] Open
Abstract
Failures of vascular grafts are normally caused by the lack of a durable and adherent endothelium covering the graft which leads to thrombus and neointima formation. A promising approach to overcome these issues is to create a functional, quiescent monolayer of endothelial cells on the surface of implants. The present study reports for the first time on the use of photoembossing as a technique to create polymer films with different topographical features for improved cell interaction in biomedical applications. For this, a photopolymer is created by mixing poly(methyl methacrylate) (PMMA) and trimethylolpropane ethoxylate triacrylate (TPETA) at a 1:1 ratio. This photopolymer demonstrated an improvement in biocompatibility over PMMA which is already known to be biocompatible and has been extensively used in the biomedical field. Additionally, photoembossed films showed significantly improved cell attachment and proliferation compared to their non-embossed counterparts. Surface texturing consisted of grooves of different pitches (6, 10, and 20 µm) and heights (1 µm and 2.5 µm). The 20 µm pitch photoembossed films significantly accelerated cell migration in a wound-healing assay, while films with a 6 µm pitch inhibited cells from detaching. Additionally, the relief structure obtained by photoembossing also changed the surface wettability of the substrates. Photoembossed PMMA-TPETA systems benefited from this change as it improved their water contact angle to around 70°, making it well suited for cell adhesion.
Collapse
|
43
|
Greiner AM, Sales A, Chen H, Biela SA, Kaufmann D, Kemkemer R. Nano- and microstructured materials for in vitro studies of the physiology of vascular cells. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2016; 7:1620-1641. [PMID: 28144512 PMCID: PMC5238670 DOI: 10.3762/bjnano.7.155] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2016] [Accepted: 10/04/2016] [Indexed: 05/21/2023]
Abstract
The extracellular environment of vascular cells in vivo is complex in its chemical composition, physical properties, and architecture. Consequently, it has been a great challenge to study vascular cell responses in vitro, either to understand their interaction with their native environment or to investigate their interaction with artificial structures such as implant surfaces. New procedures and techniques from materials science to fabricate bio-scaffolds and surfaces have enabled novel studies of vascular cell responses under well-defined, controllable culture conditions. These advancements are paving the way for a deeper understanding of vascular cell biology and materials-cell interaction. Here, we review previous work focusing on the interaction of vascular smooth muscle cells (SMCs) and endothelial cells (ECs) with materials having micro- and nanostructured surfaces. We summarize fabrication techniques for surface topographies, materials, geometries, biochemical functionalization, and mechanical properties of such materials. Furthermore, various studies on vascular cell behavior and their biological responses to micro- and nanostructured surfaces are reviewed. Emphasis is given to studies of cell morphology and motility, cell proliferation, the cytoskeleton and cell-matrix adhesions, and signal transduction pathways of vascular cells. We finalize with a short outlook on potential interesting future studies.
Collapse
Affiliation(s)
- Alexandra M Greiner
- Karlsruhe Institute of Technology (KIT), Institute of Zoology, Department of Cell and Neurobiology, Haid-und-Neu-Strasse 9, 76131 Karlsruhe, Germany
- now at: Pforzheim University, School of Engineering, Tiefenbronner Strasse 65, 75175 Pforzheim, Germany
| | - Adria Sales
- Max Planck Institute for Intelligent Systems, Department of New Materials and Biosystems, Heisenbergstrasse 3, 70569 Stuttgart, Germany
| | - Hao Chen
- Karlsruhe Institute of Technology (KIT), Institute of Zoology, Department of Cell and Neurobiology, Haid-und-Neu-Strasse 9, 76131 Karlsruhe, Germany
| | - Sarah A Biela
- Max Planck Institute for Intelligent Systems, Department of New Materials and Biosystems, Heisenbergstrasse 3, 70569 Stuttgart, Germany
| | - Dieter Kaufmann
- Universitätsklinikum Ulm, Institut für Humangenetik, Albert Einstein Allee 11, 89070 Ulm, Germany
| | - Ralf Kemkemer
- Max Planck Institute for Intelligent Systems, Department of New Materials and Biosystems, Heisenbergstrasse 3, 70569 Stuttgart, Germany
- Reutlingen University, Faculty of Applied Chemistry, Alteburgstrasse 150, 72762 Reutlingen, Germany
| |
Collapse
|
44
|
Christo S, Bachhuka A, Diener KR, Vasilev K, Hayball JD. The contribution of inflammasome components on macrophage response to surface nanotopography and chemistry. Sci Rep 2016; 6:26207. [PMID: 27188492 PMCID: PMC4870632 DOI: 10.1038/srep26207] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Accepted: 04/22/2016] [Indexed: 01/28/2023] Open
Abstract
Implantable devices have become an established part of medical practice. However, often a negative inflammatory host response can impede the integration and functionality of the device. In this paper, we interrogate the role of surface nanotopography and chemistry on the potential molecular role of the inflammasome in controlling macrophage responses. To achieve this goal we engineered model substrata having precisely controlled nanotopography of predetermined height and tailored outermost surface chemistry. Bone marrow derived macrophages (BMDM) were harvested from genetically engineered mice deficient in the inflammasome components ASC, NLRP3 and AIM2. These cells were then cultured on these nanoengineered substrata and assessed for their capacity to attach and express pro-inflammatory cytokines. Our data provide evidence that the inflammasome components ASC, NLRP3 and AIM2 play a role in regulating macrophage adhesion and activation in response to surface nanotopography and chemistry. The findings of this paper are important for understanding the inflammatory consequences caused by biomaterials and pave the way to the rational design of future implantable devices having controlled and predictable inflammatory outcomes.
Collapse
Affiliation(s)
- Susan Christo
- Experimental Therapeutics Laboratory, Sansom Institute and Hanson Institute, School of Pharmacy and Medical Science, University of South Australia, Adelaide, SA, 5000, Australia
| | - Akash Bachhuka
- Mawson Institute, University of South Australia, SA, 5095, Australia
| | - Kerrilyn R Diener
- Experimental Therapeutics Laboratory, Sansom Institute and Hanson Institute, School of Pharmacy and Medical Science, University of South Australia, Adelaide, SA, 5000, Australia.,Robinson Research Institute, School of Paediatrics and Reproductive Health, University of Adelaide, Adelaide, SA, 5005, Australia
| | - Krasimir Vasilev
- Mawson Institute, University of South Australia, SA, 5095, Australia.,School of Engineering, University of South Australia, SA, 5095, Australia
| | - John D Hayball
- Experimental Therapeutics Laboratory, Sansom Institute and Hanson Institute, School of Pharmacy and Medical Science, University of South Australia, Adelaide, SA, 5000, Australia.,Robinson Research Institute, School of Paediatrics and Reproductive Health, University of Adelaide, Adelaide, SA, 5005, Australia.,School of Medicine, University of Adelaide, Adelaide, SA, 5005, Australia
| |
Collapse
|
45
|
Moon H, Cremmel CVM, Kulpa A, Jaeger NAF, Kappelhoff R, Overall CM, Waterfield JD, Brunette DM. Novel grooved substrata stimulate macrophage fusion, CCL2 and MMP-9 secretion. J Biomed Mater Res A 2016; 104:2243-54. [PMID: 27102570 DOI: 10.1002/jbm.a.35757] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Revised: 04/14/2016] [Accepted: 04/20/2016] [Indexed: 01/21/2023]
Abstract
Rough surface topographies on implants attract macrophages but the influence of topography on macrophage fusion to produce multinucleated giant cells (MGC) and foreign body giant cells (FBGC) is unclear. Two rough novel grooved substrata, G1 and G2, fabricated by anisotropic etching of Silicon <110> crystals without the use of photolithographic patterning, and a control smooth surface (Pol) were produced and replicated in epoxy. The surfaces were compared for their effects on RAW264.7 macrophage morphology, gene expression, cyto/chemokine secretion, and fusion for one and five days. Macrophages on grooved surfaces exhibited an elongated morphology similar to M2 macrophages and increased cell alignment with surface directionality, roughness and cell culture time. Up-regulated expression of macrophage chemoattractants at gene and protein level was observed on both grooved surfaces relative to Pol. Grooved surfaces showed time-dependent increase in soluble mediators involved in cell fusion, CCL2 and MMP-9, and an increased proportion of multinucleated cells at Day 5. Collectively, this study demonstrated that a rough surface with surface directionality produced changes in macrophage shape and macrophage attractant chemokines and soluble mediators involved in cell fusion. These in vitro results suggest a possible explanation for the observed accumulation of macrophages and MGCs on rough surfaced implants in vivo. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 2243-2254, 2016.
Collapse
Affiliation(s)
- Haisle Moon
- Department of Oral Biological & Medical Sciences, Faculty of Dentistry, University of British Columbia, Vancouver, Canada
| | - Clément V M Cremmel
- Laboratory for Surface Science and Technology, Department of Materials, ETH Zurich, Zurich, Switzerland
| | - Alina Kulpa
- Advanced Materials and Process Engineering Laboratory (AMPEL) Advanced Nanofabrication Facility (ANF), University of British Columbia, Vancouver, Canada
| | - Nicolas A F Jaeger
- Department of Electrical and Computer Engineering, Faculty of Applied Science, University of British Columbia, Vancouver, Canada
| | - Reinhild Kappelhoff
- Centre for Blood Research, Department of Oral Biological & Medical Sciences, Faculty of Dentistry, University of British Columbia, Vancouver, Canada
| | - Christopher M Overall
- Centre for Blood Research, Department of Oral Biological & Medical Sciences, Faculty of Dentistry, University of British Columbia, Vancouver, Canada
| | - J Douglas Waterfield
- Department of Oral Biological & Medical Sciences, Faculty of Dentistry, University of British Columbia, Vancouver, Canada
| | - Donald M Brunette
- Department of Oral Biological & Medical Sciences, Faculty of Dentistry, University of British Columbia, Vancouver, Canada
| |
Collapse
|
46
|
Seras-Franzoso J, Tatkiewicz WI, Vazquez E, García-Fruitós E, Ratera I, Veciana J, Villaverde A. Integrating mechanical and biological control of cell proliferation through bioinspired multieffector materials. Nanomedicine (Lond) 2016; 10:873-91. [PMID: 25816885 DOI: 10.2217/nnm.15.5] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
In nature, cells respond to complex mechanical and biological stimuli whose understanding is required for tissue construction in regenerative medicine. However, the full replication of such bimodal effector networks is far to be reached. Engineering substrate roughness and architecture allows regulating cell adhesion, positioning, proliferation, differentiation and survival, and the external supply of soluble protein factors (mainly growth factors and hormones) has been long applied to promote growth and differentiation. Further, bioinspired scaffolds are progressively engineered as reservoirs for the in situ sustained release of soluble protein factors from functional topographies. We review here how research progresses toward the design of integrative, holistic scaffold platforms based on the exploration of individual mechanical and biological effectors and their further combination.
Collapse
Affiliation(s)
- Joaquin Seras-Franzoso
- Departament de Genètica & de Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain
| | | | | | | | | | | | | |
Collapse
|
47
|
Kim TH, Kim SH, Leong KW, Jung Y. Nanografted Substrata and Triculture of Human Pericytes, Fibroblasts, and Endothelial Cells for Studying the Effects on Angiogenesis. Tissue Eng Part A 2016; 22:698-706. [DOI: 10.1089/ten.tea.2015.0461] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Tae Hee Kim
- Biomaterials Research Center, Korea Institute of Science and Technology, Seoul, Republic of Korea
- NBIT, KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, Republic of Korea
| | - Soo Hyun Kim
- Biomaterials Research Center, Korea Institute of Science and Technology, Seoul, Republic of Korea
- NBIT, KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, Republic of Korea
- Department of Biomedical Engineering, Korea University of Science and Technology (UST), Daejeon, Republic of Korea
| | - Kam W. Leong
- Department of Biomedical Engineering, Columbia University, New York, New York
| | - Youngmee Jung
- Biomaterials Research Center, Korea Institute of Science and Technology, Seoul, Republic of Korea
- Department of Biomedical Engineering, Korea University of Science and Technology (UST), Daejeon, Republic of Korea
| |
Collapse
|
48
|
Pedraz P, Casado S, Rodriguez V, Giordano MC, Mongeot FBD, Ayuso-Sacido A, Gnecco E. Adhesion modification of neural stem cells induced by nanoscale ripple patterns. NANOTECHNOLOGY 2016; 27:125301. [PMID: 26889870 DOI: 10.1088/0957-4484/27/12/125301] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
We have studied the influence of anisotropic nanopatterns (ripples) on the adhesion and morphology of mouse neural stem cells (C17.2) on glass substrates using cell viability assay, optical microscopy and atomic force microscopy. The ripples were produced by defocused ion beam sputtering with inert Ar ions, which physically remove atoms from the surface at the energy of 800 eV. The ripple periodicity (∼200 nm) is comparable to the thickness of the cytoplasmatic microspikes (filopodia) which link the stem cells to the substrate. All methods show that the cell adhesion is significantly lowered compared to the same type of cells on flat glass surfaces. Furthermore, the AFM analysis reveals that the filopodia tend to be trapped parallel or perpendicular to the ripples, which limits the spreading of the stem cell on the rippled substrate. This opens the perspective of controlling the micro-adhesion of stem cells and the orientation of their filopodia by tuning the anisotropic substrate morphology without chemical reactions occurring at the surface.
Collapse
Affiliation(s)
- P Pedraz
- IMDEA Nanociencia, Campus Universitario de Cantoblanco, Calle Faraday 9, E-28049 Madrid, Spain
| | | | | | | | | | | | | |
Collapse
|
49
|
Malheiro V, Lehner F, Dinca V, Hoffmann P, Maniura-Weber K. Convex and concave micro-structured silicone controls the shape, but not the polarization state of human macrophages. Biomater Sci 2016; 4:1562-1573. [DOI: 10.1039/c6bm00425c] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The typical foreign body response (FBR) to synthetic implants is characterized by local inflammation and tissue fibrosis.
Collapse
Affiliation(s)
- V. Malheiro
- Biointerfaces
- Empa
- Swiss Federal Laboratories for Materials Science and Technology
- St. Gallen
- Switzerland
| | - F. Lehner
- Biointerfaces
- Empa
- Swiss Federal Laboratories for Materials Science and Technology
- St. Gallen
- Switzerland
| | - V. Dinca
- Advanced Materials Processing
- Empa
- Swiss Federal Laboratories for Materials Science and Technology
- Thun
- Switzerland
| | - P. Hoffmann
- Advanced Materials Processing
- Empa
- Swiss Federal Laboratories for Materials Science and Technology
- Thun
- Switzerland
| | - K. Maniura-Weber
- Biointerfaces
- Empa
- Swiss Federal Laboratories for Materials Science and Technology
- St. Gallen
- Switzerland
| |
Collapse
|
50
|
Surface topography of hydroxyapatite promotes osteogenic differentiation of human bone marrow mesenchymal stem cells. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2015; 60:45-53. [PMID: 26706505 DOI: 10.1016/j.msec.2015.11.012] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Revised: 10/13/2015] [Accepted: 11/05/2015] [Indexed: 11/20/2022]
Abstract
Effective and safe induction of osteogenic differentiation is one of the key elements of bone tissue engineering. Surface topography of scaffold materials was recently found to promote osteogenic differentiation. Utilization of this topography may be a safer approach than traditional induction by growth factors or chemicals. The aim of this study is to investigate the enhancement of osteogenic differentiation by surface topography and its mechanism of action. Hydroxyapatite (HA) discs with average roughness (Ra) of surface topography ranging from 0.2 to 1.65 μm and mean distance between peaks (RSm) ranging from 89.7 to 18.6 μm were prepared, and human bone-marrow mesenchymal stem cells (hBMSCs) were cultured on these discs. Optimal osteogenic differentiation was observed on discs with surface topography characterized by Ra ranging from 0.77 to 1.09 μm and RSm ranging from 53.9 to 39.3 μm. On this surface configuration of HA, hBMSCs showed oriented attachment, F-actin arrangement, and a peak in the expression of Yes-associated protein (YAP) and PDZ binding motif (TAZ) (YAP/TAZ). These results indicated that the surface topography of HA promoted osteogenic differentiation of hBMSCs, possibly by increasing cell attachment and promoting the YAP/TAZ signaling pathway.
Collapse
|