1
|
Arcani R, Bertin D, Bardin N, Mazodier K, Jean R, Suchon P, Venton G, Daumas A, Jean E, Villani P, Kaplanski G, Jarrot PA. Anti-NuMA antibodies: clinical associations and significance in patients with primary Sjögren's syndrome or systemic lupus erythematosus. Rheumatology (Oxford) 2021; 60:4074-4084. [PMID: 33404653 DOI: 10.1093/rheumatology/keaa881] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 11/26/2020] [Indexed: 01/07/2023] Open
Abstract
OBJECTIVE To determine the clinical significance of anti-nuclear mitotic apparatus (NuMA) antibodies (AC-26 or AC-25) in patients with primary Sjögren's syndrome (pSS) and SLE. METHODS Between 2013 and 2018, clinical and immunological features of pSS and SLE patients with anti-NuMA antibodies were compared with anti-NuMA antibodies-negative pSS and SLE cohorts. RESULTS Among 31 284 sera positive for antinuclear antibodies, 90 patients (0.29%) had anti-AC-26 (anti-NuMA1) and AC-25 (anti-HsEg5) antibodies (73.3% and 26.7%, respectively). Autoimmune diseases, mainly consisting in pSS (28.9%) and SLE (21.1%), were found in 67.8%. Anti-NuMA antibodies represented the unique ANA in 60% and 50% of patients with pSS and SLE patients, respectively. Compared with 137 anti-NuMA-negative pSS patients, 20 anti-NuMA-positive pSS presented with less frequent ocular sicca syndrome (70.0% vs 89.1%, P=0.031), dryness complications (15.0% vs 39.4%, P=0.045), or detectable anti-SSa and/or anti-SSb antibodies (40.0% vs 66.4%, P=0.027). Compared with 80 anti-NuMA-negative SLE patients, 14 anti-NuMA-positive SLE patients had no lupus nephritis (0.0% vs 28.8%, P=0.049), less frequent dsDNA antibodies (42.9% vs 75.0%, P=0.025) and complement consumption (21.4% vs 53.8%, P=0.040). Anti-NuMA-positive pSS and SLE patients less frequently required treatments compared with anti-NuMA-negative patients. CONCLUSION Although rare, anti-NuMA antibodies are mainly associated with pSS and SLE and may be useful for diagnosis when other auto-antibodies are negative. PSS and SLE patients with anti-NuMA antibodies have less severe clinical and biological profiles, suggesting that anti-NuMA antibodies may constitute a good prognosis marker in both autoimmune diseases.
Collapse
Affiliation(s)
- Robin Arcani
- Department of Internal Medicine and Clinical Immunology, CHU La Conception, Assistance Publique-Hôpitaux de Marseille (AP-HM).,Center for Cardiovascular and Nutrition research (C2VN), INRA 1260, INSERM UMR_S 1263, Aix-Marseille University
| | - Daniel Bertin
- Department of Biological Immunology, CHU La Conception
| | - Nathalie Bardin
- Center for Cardiovascular and Nutrition research (C2VN), INRA 1260, INSERM UMR_S 1263, Aix-Marseille University.,Department of Biological Immunology, CHU La Conception
| | - Karin Mazodier
- Department of Internal Medicine and Clinical Immunology, CHU La Conception, Assistance Publique-Hôpitaux de Marseille (AP-HM)
| | - Rodolphe Jean
- Department of Internal Medicine and Clinical Immunology, CHU La Conception, Assistance Publique-Hôpitaux de Marseille (AP-HM)
| | | | - Geoffroy Venton
- Hematology and Cellular Therapy Department, CHU La Conception
| | - Aurélie Daumas
- Center for Cardiovascular and Nutrition research (C2VN), INRA 1260, INSERM UMR_S 1263, Aix-Marseille University.,Internal Medicine, Geriatrics and Therapeutics Department, CHU La Timone
| | - Estelle Jean
- Internal Medicine Department, CHU La Timone, Assistance Publique-Hôpitaux de Marseille (AP-HM), Marseille, France
| | - Patrick Villani
- Internal Medicine, Geriatrics and Therapeutics Department, CHU La Timone
| | - Gilles Kaplanski
- Department of Internal Medicine and Clinical Immunology, CHU La Conception, Assistance Publique-Hôpitaux de Marseille (AP-HM).,Center for Cardiovascular and Nutrition research (C2VN), INRA 1260, INSERM UMR_S 1263, Aix-Marseille University
| | - Pierre-André Jarrot
- Department of Internal Medicine and Clinical Immunology, CHU La Conception, Assistance Publique-Hôpitaux de Marseille (AP-HM).,Center for Cardiovascular and Nutrition research (C2VN), INRA 1260, INSERM UMR_S 1263, Aix-Marseille University
| |
Collapse
|
2
|
Panula S, Reda A, Stukenborg JB, Ramathal C, Sukhwani M, Albalushi H, Edsgärd D, Nakamura M, Söder O, Orwig KE, Yamanaka S, Reijo Pera RA, Hovatta O. Over Expression of NANOS3 and DAZL in Human Embryonic Stem Cells. PLoS One 2016; 11:e0165268. [PMID: 27768780 PMCID: PMC5074499 DOI: 10.1371/journal.pone.0165268] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Accepted: 10/07/2016] [Indexed: 12/05/2022] Open
Abstract
The mechanisms underlying human germ cell development are largely unknown, partly due to the scarcity of primordial germ cells and the inaccessibility of the human germline to genetic analysis. Human embryonic stem cells can differentiate to germ cells in vitro and can be genetically modified to study the genetic requirements for germ cell development. Here, we studied NANOS3 and DAZL, which have critical roles in germ cell development in several species, via their over expression in human embryonic stem cells using global transcriptional analysis, in vitro germ cell differentiation, and in vivo germ cell formation assay by xenotransplantation. We found that NANOS3 over expression prolonged pluripotency and delayed differentiation. In addition, we observed a possible connection of NANOS3 with inhibition of apoptosis. For DAZL, our results suggest a post-transcriptional regulation mechanism in hES cells. In addition, we found that DAZL suppressed the translation of OCT4, and affected the transcription of several genes associated with germ cells, cell cycle arrest, and cell migration. Furthermore, DAZL over expressed cells formed spermatogonia-like colonies in a rare instance upon xenotransplantation. These data can be used to further elucidate the role of NANOS3 and DAZL in germ cell development both in vitro and in vivo.
Collapse
Affiliation(s)
- Sarita Panula
- Division of Obstetrics and Gynecology, Department of Clinical Sciences, Intervention and Technology, Karolinska Institutet and Karolinska University Hospital, Huddinge, SE-141 86, Stockholm, Sweden
| | - Ahmed Reda
- Pediatric Endocrinology Unit, Department of Women’s and Children’s Health, Karolinska Institutet and Karolinska University Hospital, SE-171 76, Stockholm, Sweden
| | - Jan-Bernd Stukenborg
- Pediatric Endocrinology Unit, Department of Women’s and Children’s Health, Karolinska Institutet and Karolinska University Hospital, SE-171 76, Stockholm, Sweden
| | - Cyril Ramathal
- Department of Genetics and Department of Obstetrics and Gynecology, Institute for Stem Cell Biology and Regenerative Medicine, Center for Reproductive and Stem Cell Biology, Stanford University, Stanford, CA, 94305, United States of America
| | - Meena Sukhwani
- Department of Obstetrics, Gynaecology, and Reproductive Sciences, University of Pittsburgh School of Medicine, Magee-Womens Research Institute, Pittsburgh, PA, 15213, United States of America
| | - Halima Albalushi
- Pediatric Endocrinology Unit, Department of Women’s and Children’s Health, Karolinska Institutet and Karolinska University Hospital, SE-171 76, Stockholm, Sweden
- Sultan Qaboos University, College of Medicine and Health Sciences, Muscat, Oman
| | - Daniel Edsgärd
- Department of Cell and Molecular Biology, Karolinska Institutet, SE-171 77, Stockholm, Sweden
| | - Michiko Nakamura
- Center for iPS Cell Research and Application, Kyoto University, Kyoto, 606-8507, Japan
| | - Olle Söder
- Pediatric Endocrinology Unit, Department of Women’s and Children’s Health, Karolinska Institutet and Karolinska University Hospital, SE-171 76, Stockholm, Sweden
| | - Kyle E. Orwig
- Department of Obstetrics, Gynaecology, and Reproductive Sciences, University of Pittsburgh School of Medicine, Magee-Womens Research Institute, Pittsburgh, PA, 15213, United States of America
| | - Shinya Yamanaka
- Center for iPS Cell Research and Application, Kyoto University, Kyoto, 606-8507, Japan
- Gladstone Institute of Cardiovascular Disease, San Francisco, CA, 94158, United States of America
| | - Renee A. Reijo Pera
- Department of Genetics and Department of Obstetrics and Gynecology, Institute for Stem Cell Biology and Regenerative Medicine, Center for Reproductive and Stem Cell Biology, Stanford University, Stanford, CA, 94305, United States of America
- Department of Cell Biology and Neurosciences and Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT, 59717, United States of America
| | - Outi Hovatta
- Division of Obstetrics and Gynecology, Department of Clinical Sciences, Intervention and Technology, Karolinska Institutet and Karolinska University Hospital, Huddinge, SE-141 86, Stockholm, Sweden
- * E-mail:
| |
Collapse
|
3
|
Brüning-Richardson A, Bond J, Alsiary R, Richardson J, Cairns DA, McCormac L, Hutson R, Burns PA, Wilkinson N, Hall GD, Morrison EE, Bell SM. NuMA overexpression in epithelial ovarian cancer. PLoS One 2012; 7:e38945. [PMID: 22719996 PMCID: PMC3375276 DOI: 10.1371/journal.pone.0038945] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2012] [Accepted: 05/14/2012] [Indexed: 11/18/2022] Open
Abstract
Highly aneuploid tumours are common in epithelial ovarian cancers (EOC). We investigated whether NuMA expression was associated with this phenomenon.NuMA protein levels in normal and tumour tissues, ovarian cell lines and primary cultures of malignant cells derived from ovarian ascitic fluids were analysed by Affymetrix microarray analysis, immunoblotting, immunohistochemistry (IHC) and immunofluorescence (IF), with results correlated to associated clinical data. Aneuploidy status in primary cultures was determined by FACS analysis.Affymetrix microarray data indicated that NuMA was overexpressed in tumour tissue, primary cultures and cell lines compared to normal ovarian tissue. IHC revealed low to weak NuMA expression in normal tissues. Expression was upregulated in tumours, with a significant association with disease stage in mucinous EOC subtypes (p = 0.009), lymph node involvement (p = 0.03) and patient age (p = 0.04). Additional discontinuous data analysis revealed that high NuMA levels in tumours decreased with grade (p = 0.02) but increased with disease stage (p = 0.04) in serous EOC. NuMA expression decreased in late disease stage 4 endometrioid EOCs. High NuMA levels decreased with increased tumour invasion in all subtypes (p = 0.03). IF of primary cultures revealed that high NuMA levels at mitotic spindle poles were significantly associated with a decreased proportion of cells in cytokinesis (p = 0.05), increased binucleation (p = 0.021) and multinucleation (p = 0.007), and aneuploidy (p = 0.008).NuMA is highly expressed in EOC tumours and high NuMA levels correlate with increases in mitotic defects and aneuploidy in primary cultures.
Collapse
Affiliation(s)
- Anke Brüning-Richardson
- Section of Ophthalmology and Neuroscience, Leeds Institute of Molecular Medicine, St James's University Hospital, Leeds, United Kingdom.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Lau P, Chin JL, Pautler S, Razvi H, Izawa JI. NMP22 is predictive of recurrence in high-risk superficial bladder cancer patients. Can Urol Assoc J 2011; 3:454-8. [PMID: 20019971 DOI: 10.5489/cuaj.1173] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
INTRODUCTION The nuclear matrix protein 22 (NMP22) assay has been shown to have greater sensitivity for the diagnosis and detection of recurrent urothelial carcinoma of the bladder (UCB) over that of traditional urine cytology. We assessed the use of NMP22 to predict which high-risk superficial UCB patients will have recurrence, progression or disease-related death; we compared these results to standard urine cytology. METHODS One hundred consecutive patients with high-risk superficial UCB were enrolled. During surveillance, urine was collected for cytology and NMP22 testing. Patients were followed for at least 6 months. Retrospective chart review was undertaken to collect data on previous tumour history, tumour characteristics, disease recurrences, progression and death. Kaplan-Meier analyses were performed to determine the significance between NMP22-positive and -negative patients in terms of recurrence-free, progression-free and overall survival. Similar analyses were performed for urine cytology. RESULTS From 94 eligible patients, 15 and 79 were NMP22 positive and negative, respectively. The baseline characteristics between the 2 groups were not significantly different in terms of patient characteristics, prior tumour history or intravesical therapies received. Mean recurrence-free survival time was significantly lower in the NMP22 positive group (p = 0.038); however, mean progression-free and overall survival were not significantly different between the 2 groups (p = 0.297 and 0.519, respectively). Urine cytology demonstrated no significant predictive power for disease recurrence, progression or survival. CONCLUSION The nuclear matrix protein 22 assay appears to have predictive value for future tumour recurrences, but not progression or overall survival in patients with high-risk superficial UCB.
Collapse
Affiliation(s)
- Paul Lau
- Department of Surgery, Division of Urology
| | | | | | | | | |
Collapse
|
5
|
Silencing of Nuclear Mitotic Apparatus protein (NuMA) accelerates the apoptotic disintegration of the nucleus. Apoptosis 2010; 15:936-45. [PMID: 20467816 DOI: 10.1007/s10495-010-0506-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
One main feature of apoptosis is the sequential degradation of the nuclear structure, including the fragmentation of chromatin and caspase-mediated cleavage of various nuclear proteins. Among these proteins is the Nuclear Mitotic Apparatus protein (NuMA) which plays a specific role in the organization of the mitotic spindle. The exact function of NuMA in the interphase nucleus is unknown, but a number of reports have suggested that it may play a role in chromatin organization and/or gene expression. Here we show that upon cleavage in apoptotic cells, the N-terminal cleavage fragment of NuMA is solubilized while the C-terminal fragment remains associated with the condensed chromatin. Using pancaspase inhibitor z-VAD-fmk and caspase-3 deficient MCF-7 cells, we further show that the solubilization is dependent on caspase-mediated cleavage of NuMA. Finally, the silencing of NuMA by RNAi accelerated nuclear breakdown in apoptotic MCF-7 cells. These results suggest that NuMA may provide structural support in the interphase nucleus by contributing to the organization of chromatin.
Collapse
|
6
|
Mattagajasingh SN, Huang SC, Benz EJ. Inhibition of protein 4.1 R and NuMA interaction by mutagenization of their binding-sites abrogates nuclear localization of 4.1 R. Clin Transl Sci 2010; 2:102-11. [PMID: 20443879 DOI: 10.1111/j.1752-8062.2008.00087.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Protein 4.1R(4.1R) is a multifunctional structural protein recently implicated in nuclear assembly and cell division. We earlier demonstrated that 4.1R forms a multiprotein complex with mitotic spindle and spindle pole organizing proteins, such as NuMA, dynein, and dynactin, by binding to residues 1788-1810 of NuMA through amino acids encoded by exons 20 and 21 in 24 kD domain. Employing random-and site-directed mutagenesis combined with glycine- and alanine-scanning, we have identified amino acids of 4.1 R and NuMA that sustain their interaction, and have analyzed the effect of mutating the binding sites on their intracellular colocalization. We found that V762, V765, and V767 of 4.1 R, and 11800, 11801,11803, Tl 804, and M1805 of NuMA are necessary for their interaction. GST-fusion peptides of the 4.1R24 kD domain bound to residues 1785-2115 of NuMA in in vitro binding assays, but the binding was inhibited by alanine substitutions of V762, V765, and V767 of 4.1 R, or residues 1800-1805 of NuMA. Additionally, expression of variants of 4.1 R or NuMA that inhibit their in vitro binding also abrogated nuclear localization of 4.1 Rand colocalization with NuMA. Our findings suggest a crucial role of 4.1 R/NuMA interaction in localization and function of 4.1 R in the nucleus.
Collapse
|
7
|
Mattagajasingh SN, Huang SC, Benz EJ. Inhibition of Protein 4.1 R and NuMA Interaction by Mutagenization of Their Binding-Sites Abrogates Nuclear Localization of 4.1 R. Clin Transl Sci 2009. [DOI: 10.1111/j.1752-8062.2009.00087.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
8
|
Yan LY, Huang JC, Zhu ZY, Lei ZL, Shi LH, Nan CL, Zhao ZJ, Ouyang YC, Song XF, Sun QY, Chen DY. NuMA distribution and microtubule configuration in rabbit oocytes and cloned embryos. Reproduction 2007; 132:869-76. [PMID: 17127747 DOI: 10.1530/rep.1.01224] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The assembly of microtubules and the distribution of NuMA were analyzed in rabbit oocytes and early cloned embryos. Alpha-tubulin was localized around the periphery of the germinal vesicle (GV). After germinal vesicle breakdown (GVBD), multi-arrayed microtubules were found tightly associated with the condensed chromosomes and assembled into spindles. After the enucleated oocyte was fused with a fibroblast, microtubules were observed around the introduced nucleus in most reconstructed embryos and formed a transient spindle 2-4 h post-fusion (hpf). A mass of microtubules surrounded the swollen pseudo-pronucleus 5 hpf and a normal spindle was formed 13 hpf in cloned embryos. NuMAwas detected in the nucleus in germinal vesicle-stage oocytes, and it was concentrated at the spindle poles in both meiotic and mitotic metaphase. In both donor cell nucleus and enucleated oocyte cytoplasm, NuMA was not detected, while NuMA reappeared in pseudo-pronucleus as reconstructed embryo development proceeded. However, no evident NuMA staining was observed in the poles of transient spindle and first mitotic spindle in nuclear transfer eggs. These results indicate that NuMA localization and its spindle pole tethering function are different during rabbit oocyte meiosis and cloned embryo mitosis.
Collapse
Affiliation(s)
- Li-Ying Yan
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, 25 Beisihuanxi Road, Haidian, Beijing 100080, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Salim K, Guest PC, Skynner HA, Bilsland JG, Bonnert TP, McAllister G, Munoz-Sanjuan I. Identification of Proteomic Changes during Differentiation of Adult Mouse Subventricular Zone Progenitor Cells. Stem Cells Dev 2007; 16:143-65. [PMID: 17233554 DOI: 10.1089/scd.2006.00100] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The use of neural precursor cells (NPCs) represents a promising repair strategy for many neurological disorders. However, the molecular events and biological features that control NPC proliferation and their differentiation into neurons, astrocytes, and oligodendrocytes are unclear. In the present study, we used a comparative proteomics approach to identify proteins that were differentially regulated in NPCs after short-term differentiation. We also used a subcellular fractionation technique for enrichment of nuclei and other dense organelles to identify proteins that were not readily detected in whole cell extracts. In total, 115 distinct proteins underwent expression changes during NPC differentiation. Forty one of these were only identified following subcellular fractionation. These included transcription factors, RNA-processing factors, cell cycle proteins, and proteins that translocate between the nucleus and cytoplasm. Biological network analysis showed that the differentiation of NPCs was associated with significant changes in cell cycle and protein synthesis machinery. Further characterization of these proteins could provide greater insight into the mechanisms involved in regulation of neurogenesis in the adult central nervous system (CNS) and potentially identify points of therapeutic intervention.
Collapse
Affiliation(s)
- Kamran Salim
- Merck Sharp & Dohme Research Laboratories, The Neuroscience Research Centre, Terlings Park, Harlow, Essex, CM20 2QR, United Kingdom.
| | | | | | | | | | | | | |
Collapse
|
10
|
Salim K, Guest PC, Skynner HA, Bilsland JG, Bonnert TP, McAllister G, Munoz-Sanjuan I. Identification of Proteomic Changes During Differentiation of Adult Mouse Subventricular Zone Progenitor Cells. Stem Cells Dev 2007. [DOI: 10.1089/scd.2007.16.ft-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
|
11
|
Santiso R, Muriel L, Goyanes V, Segrelles E, Gosálvez J, Fernández JL. Evidence of modified nuclear protein matrix in human spermatozoa with fragmented deoxyribonucleic acid. Fertil Steril 2007; 87:191-4. [PMID: 17074333 DOI: 10.1016/j.fertnstert.2006.05.055] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2005] [Revised: 05/18/2006] [Accepted: 05/18/2006] [Indexed: 11/29/2022]
Abstract
Human spermatozoa were processed for determination of DNA fragmentation with use of an in situ diffusion assay, so that those cells containing DNA fragmentation produce extensive peripheral dissemination of DNA fragments after lysis in an agarose microgel. Quantification of specific protein staining confirmed that sperm cells without DNA fragmentation had almost complete removal of nuclear matrix proteins, whereas spermatozoa with DNA fragmentation tended to retain residual nucleoskeletal protein in a collapsed and condensed state. This result suggests that a modified nuclear protein matrix associates with fragmented sperm DNA.
Collapse
Affiliation(s)
- Rebeca Santiso
- Sección de Genética y Unidad de Investigación, Complejo Hospitalario Universitario Juan Canalejo, A Coruña, Spain
| | | | | | | | | | | |
Collapse
|
12
|
Abad PC, Lewis J, Mian IS, Knowles DW, Sturgis J, Badve S, Xie J, Lelièvre SA. NuMA influences higher order chromatin organization in human mammary epithelium. Mol Biol Cell 2006; 18:348-61. [PMID: 17108325 PMCID: PMC1783787 DOI: 10.1091/mbc.e06-06-0551] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The coiled-coil protein NuMA is an important contributor to mitotic spindle formation and stabilization. A potential role for NuMA in nuclear organization or gene regulation is suggested by the observations that its pattern of nuclear distribution depends upon cell phenotype and that it interacts and/or colocalizes with transcription factors. To date, the precise contribution of NuMA to nuclear function remains unclear. Previously, we observed that antibody-induced alteration of NuMA distribution in growth-arrested and differentiated mammary epithelial structures (acini) in three-dimensional culture triggers the loss of acinar differentiation. Here, we show that in mammary epithelial cells, NuMA is present in both the nuclear matrix and chromatin compartments. Expression of a portion of the C terminus of NuMA that shares sequence similarity with the chromatin regulator HPC2 is sufficient to inhibit acinar differentiation and results in the redistribution of NuMA, chromatin markers acetyl-H4 and H4K20m, and regions of deoxyribonuclease I-sensitive chromatin compared with control cells. Short-term alteration of NuMA distribution with anti-NuMA C-terminus antibodies in live acinar cells indicates that changes in NuMA and chromatin organization precede loss of acinar differentiation. These findings suggest that NuMA has a role in mammary epithelial differentiation by influencing the organization of chromatin.
Collapse
Affiliation(s)
- Patricia C. Abad
- *Department of Basic Medical Sciences and Cancer Center, Purdue University, West Lafayette, IN 47907-2026
| | - Jason Lewis
- *Department of Basic Medical Sciences and Cancer Center, Purdue University, West Lafayette, IN 47907-2026
| | - I. Saira Mian
- Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720-8268
| | - David W. Knowles
- Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720-8268
| | - Jennifer Sturgis
- *Department of Basic Medical Sciences and Cancer Center, Purdue University, West Lafayette, IN 47907-2026
| | - Sunil Badve
- Indiana University School of Medicine, Indianapolis, IN 46202-5280; and
| | - Jun Xie
- Department of Statistics, Purdue University, West Lafayette, IN 47907-2067
| | - Sophie A. Lelièvre
- *Department of Basic Medical Sciences and Cancer Center, Purdue University, West Lafayette, IN 47907-2026
| |
Collapse
|
13
|
Bonaci-Nikolic B, Andrejevic S, Bukilica M, Urosevic I, Nikolic M. Autoantibodies to mitotic apparatus: association with other autoantibodies and their clinical significance. J Clin Immunol 2006; 26:438-46. [PMID: 16941236 DOI: 10.1007/s10875-006-9038-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2006] [Accepted: 07/21/2006] [Indexed: 10/24/2022]
Abstract
The most important mitotic apparatus (MA) antigens are centrosome (CE), nuclear mitotic apparatus (NuMA-1, NuMA-2), midbody, and centromere F (CENP-F). We studied associations of anti-MA antibodies with other autoantibodies and their clinical significance. A total of 6270 patients were studied for the presence of anti-MA antibodies on HEp-2 cells. Sera positive for anti-MA were tested for anti-extractable nuclear antigens (ENA) antibodies. Anti-MA antibodies were detected in 56 (45 females and 11 males) of 6270 sera (0.9%). Of these 56, NuMA-1 was found in 23, NuMA-2 in 7, CE in 20, CENP-F in 5, and CENP-F/centrosome in 1 case. Anti-NuMA-1 were associated with anti-ENA antibodies (p < 0.001). Diagnoses were established in 43/56 patients: 22 connective tissue diseases, 7 infections, 6 autoimmune hepatitis, 3 vasculitis, 3 primary antiphospholipid syndrome, 1 malignancy, and 1 fever of unknown origin. The differential diagnosis of anti-NuMA-1-positive patients must include Sjögren's syndrome, while patients with anti-CE antibodies must be observed for HCV infection.
Collapse
Affiliation(s)
- Branka Bonaci-Nikolic
- Institute of Allergy and Clinical Immunology, Clinical Center of Serbia, Koste Todorovica 2, 11000 Belgrade, Serbia.
| | | | | | | | | |
Collapse
|
14
|
Dai Y, Wang L, Wang H, Liu Y, Li N, Lyu Q, Keefe DL, Albertini DF, Liu L. Fate of centrosomes following somatic cell nuclear transfer (SCNT) in bovine oocytes. Reproduction 2006; 131:1051-61. [PMID: 16735544 DOI: 10.1530/rep.1.01058] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Cloning mammalians by somatic cell nuclear transfer (SCNT) remains inefficient. A majority of clones produced by SCNT fail to develop properly and of those which do survive, some exhibit early aging, premature death, tumors, and other pathologies associated with aneuploidy. Alterations of centrosomes are linked to aberrant cell cycle progression, aneuploidy, and tumorigenesis in many cell types. It remains to be determined how centrosomes are remodeled in cloned bovine embryos. We show that abnormalities in either distribution and/or number of centrosomes were evident in approximately 50% of reconstructed embryos following SCNT. Moreover, centrosome abnormalities and failed ‘pronuclear’ migration which manifested during the first cell cycle coincided with errors in spindle morphogenesis, chromosome alignment, and cytokinesis. By contrast, nuclear mitotic apparatus protein (NuMA) exhibited normal expression patterns at metaphase spindle poles and in ‘pronucleus’ during interphase. The defects in centrosome remodeling and ‘pronuclear’ migration could lead to chromosome instability and developmental failures associated with embryo production by SCNT. Addressing these fundamental problems may enhance production of normal clones.
Collapse
Affiliation(s)
- Yunping Dai
- State Key Laboratory for Agrobiotechnology, China Agricultural University, Beijing
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Abstract
AIM: To elucidate the molecular mechanisms of the inhibitory effects of IFN-α on tumor growth and metastasis in MHCC97 xenografts.
METHODS: Three thousand international units per milliliter of IFN-α-treated and -untreated MHCC97 cells were enrolled for gene expression analysis using cDNA microarray. The mRNA levels of several differentially expressed genes in cDNA microarray were further identified by Northern blot and RT-PCR.
RESULTS: A total of 190 differentially expressed genes including 151 IFN-α-repressed and 39 -stimulated genes or expressed sequence tags from 8 464 known human genes were found to be regulated by IFN-α in MHCC97. With a few exceptions, mRNA levels of the selected genes in RT-PCR and Northern blot were in good agreement with those in cDNA microarray.
CONCLUSION: IFN-α might exert its complicated anti-tumor effects on MHCC97 xenografts by regulating the expression of functional genes involved in cell metabolism, proliferation, morphogenesis, angiogenesis, and signaling.
Collapse
Affiliation(s)
- Wei-Zhong Wu
- Liver Cancer Institute and Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | | | | | | | | | | |
Collapse
|
16
|
Kivinen K, Kallajoki M, Taimen P. Caspase-3 is required in the apoptotic disintegration of the nuclear matrix. Exp Cell Res 2005; 311:62-73. [PMID: 16199031 DOI: 10.1016/j.yexcr.2005.08.006] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2005] [Revised: 08/12/2005] [Accepted: 08/17/2005] [Indexed: 01/27/2023]
Abstract
Apoptotic breakdown of cellular structures is largely mediated by caspases. One target of degradation is a proteinaceous framework of the nucleus termed the nuclear matrix. We compared the apoptotic changes of the nuclear matrix in staurosporine-treated caspase-3-deficient MCF-7 cells transfected with intact CASP-3 gene (MCF-7c3) or an empty vector (MCF-7v) as a control. Nuclear Mitotic Apparatus protein (NuMA), lamin A/C and lamin B were used as markers for internal nuclear matrix and peripheral nuclear lamina, respectively. In both cell lines, staurosporine induced rapid cytoplasmic shrinkage and partial chromatin condensation. MCF-7c3 cells formed apoptotic bodies, whereas MCF-7v cells did not. NuMA and lamins were actively cleaved in MCF-7c3 cells following caspase-3 activation, but only minimal or no cleavage was detected in MCF-7v cells. Interestingly, lamin B but not lamin A/C was relocated into cytoplasmic granules in apoptotic MCF-7v cells. Pancaspase inhibitor, z-VAD-fmk, prevented the apoptotic changes, while caspase-3 inhibitor, z-DEVD-fmk, induced lamin B granules in both cell lines. These results show that caspase-3 is involved in the cleavage of NuMA and lamins either directly or by activating other proteases. This may be essential for disintegration of the nuclear structure during apoptosis.
Collapse
Affiliation(s)
- Katri Kivinen
- Department of Pathology, University of Turku, MediCity Research Laboratory, Tykistökatu 6 A, 4th floor, FIN-20520 Turku, Finland
| | | | | |
Collapse
|
17
|
Maxwell CA, Pilarski LM. A potential role for centrosomal deregulation within IgH translocation-positive myeloma. Med Hypotheses 2005; 65:915-21. [PMID: 16023302 DOI: 10.1016/j.mehy.2005.05.031] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2005] [Accepted: 05/16/2005] [Indexed: 01/13/2023]
Abstract
Multiple myeloma is a late stage B-cell malignancy that is characterized by recurrent translocations into the immunoglobulin heavy chain locus as well as multiple and complex chromosomal abnormalities. Multiple myeloma is not characterized by a defining IgH translocation partner locus; rather, the frequency of individual translocations ranges from 5% to 15% of the patient population. The current hypothesis that IgH translocations contribute to chromosomal instability through the augmented expression of cyclin D family members and upstream regulatory gene products has led to the development of clinical therapies targeting these potentially oncogenic gene products. Here, we postulate that IgH translocations affect both cyclin D family members and spindle assembly pathways. In forming the hypothesis, this manuscript provides a mechanistic connectivity between IgH translocations and associated chromosome 13 deletions and highlights a number of additional gene products that, along with already defined target genes, may be deregulated in myeloma and represent potential therapeutic targets.
Collapse
Affiliation(s)
- Christopher A Maxwell
- Department of Life Sciences, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | | |
Collapse
|
18
|
Kammerer S, Roth RB, Hoyal CR, Reneland R, Marnellos G, Kiechle M, Schwarz-Boeger U, Griffiths LR, Ebner F, Rehbock J, Cantor CR, Nelson MR, Braun A. Association of the NuMA region on chromosome 11q13 with breast cancer susceptibility. Proc Natl Acad Sci U S A 2005; 102:2004-9. [PMID: 15684076 PMCID: PMC548529 DOI: 10.1073/pnas.0409806102] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
The development of breast cancer is a complex process that involves multiple genes at many stages, from initial cell cycle dysregulation to disease progression. To identify genetic variations that influence this process, we conducted a large-scale association study using a collection of German cases and controls and >25,000 SNPs located within 16,000 genes. One of the loci identified was located on chromosome 11q13 [odds ratio (OR)=1.85, P=0.017]. The initial association was subsequently tested in two independent breast cancer collections. In both sample sets, the frequency of the susceptibility allele was increased in the cases (OR=1.6, P=0.01). The susceptibility allele was also associated with an increase in cancer family history (P=0.1). Fine mapping showed that the region of association extends approximately 300 kb and spans several genes, including the gene encoding the nuclear mitotic apparatus protein (NuMA). A nonsynonymous SNP (A794G) in NuMA was identified that showed a stronger association with breast cancer risk than the initial marker SNP (OR=2.8, P=0.005 initial sample; OR=2.1, P=0.002 combined). NuMA is a cell cycle-related protein essential for normal mitosis that is degraded in early apoptosis. NuMA-retinoic acid receptor alpha fusion proteins have been described in acute promyelocytic leukemia. Although the potential functional relevance of the A794G variation requires further biological validation, we conclude that variations in the NuMA gene are likely responsible for the observed increased breast cancer risk.
Collapse
|
19
|
Abstract
Nuclear architecture - the spatial arrangement of chromosomes and other nuclear components - provides a framework for organizing and regulating the diverse functional processes within the nucleus. There are characteristic differences in the nuclear architectures of cancer cells, compared with normal cells, and some anticancer treatments restore normal nuclear structure and function. Advances in understanding nuclear structure have revealed insights into the process of malignant transformation and provide a basis for the development of new diagnostic tools and therapeutics.
Collapse
Affiliation(s)
- Daniele Zink
- University of Munich (LMU), Department of Biology II, Goethestr. 31, 80336 Munich, Germany.
| | | | | |
Collapse
|
20
|
Taimen P, Parvinen M, Osborn M, Kallajoki M. NuMA in rat testis—Evidence for roles in proliferative activity and meiotic cell division. Exp Cell Res 2004; 298:512-20. [PMID: 15265698 DOI: 10.1016/j.yexcr.2004.05.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2004] [Revised: 04/13/2004] [Indexed: 10/26/2022]
Abstract
NuMA is a well-characterized organizer of the mitotic spindle, which is believed to play a structural role in interphase nucleus. We studied the expression of NuMA in rat seminiferous epithelium in detail. Different stages of the cycle of the seminiferous epithelium were identified using transillumination. Corresponding areas were microdissected and analysed using immunofluorescence, immunohistochemistry, or immunoblotting. NuMA was expressed in Sertoli cells, proliferating type A and B spermatogonia, and early spermatids but it was absent in late spermatids and mature spermatozoa. Interestingly, NuMA-positive primary spermatocytes lost their nuclear NuMA at the beginning of long-lasting prophase of the first meiotic division. A strong expression was again observed at the end of the prophase and finally, a redistribution of NuMA into pole regions of the meiotic spindle was observed in first and second meiotic divisions. In immunoblotting, a single 250-kDa protein present in all stages of the rat seminiferous epithelial cycle was detected. Our results show that NuMA is not essential for the organization of nuclear structure in all cell types and suggest that its presence is more likely connected to the proliferation phase of the cells. They also suggest that NuMA may play an important role in meiotic cell division.
Collapse
Affiliation(s)
- Pekka Taimen
- Department of Anatomy, University of Turku, FIN-20520 Turku, Finland.
| | | | | | | |
Collapse
|
21
|
Crockett DK, Lin Z, Elenitoba-Johnson KSJ, Lim MS. Identification of NPM-ALK interacting proteins by tandem mass spectrometry. Oncogene 2004; 23:2617-29. [PMID: 14968112 DOI: 10.1038/sj.onc.1207398] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Constitutive overexpression of nucleophosmin-anaplastic lymphoma kinase (NPM-ALK) is a key oncogenic event in anaplastic large-cell lymphomas with the characteristic chromosomal aberration t(2;5)(p23;q35). Proteins that interact with ALK tyrosine kinase play important roles in mediating downstream cellular signals, and are potential targets for novel therapies. Using a functional proteomic approach, we determined the identity of proteins that interact with the ALK tyrosine kinase by co-immunoprecipitation with anti-ALK antibody, followed by electrospray ionization and tandem mass spectrometry (MS/MS). A total of 46 proteins were identified as unique to the ALK immunocomplex using monoclonal and polyclonal antibodies, while 11 proteins were identified in the NPM immunocomplex. Previously reported proteins in the ALK signal pathway were identified including PI3-K, Jak2, Jak3, Stat3, Grb2, IRS, and PLCgamma1. More importantly, many proteins previously not recognized to be associated with NPM-ALK, but with potential NPM-ALK interacting protein domains, were identified. These include adaptor molecules (SOCS, Rho-GTPase activating protein, RAB35), kinases (MEK kinase 1 and 4, PKC, MLCK, cyclin G-associated kinase, EphA1, JNK kinase, MAP kinase 1), phosphatases (meprin, PTPK, protein phosphatase 2 subunit), and heat shock proteins (Hsp60 precursor). Proteins identified by MS were confirmed by Western blotting and reciprocal immunoprecipitation. This study demonstrates the utility of antibody immunoprecipitation and subsequent peptide identification by tandem mass spectrometry for the elucidation of ALK-binding proteins, and its potential signal transduction pathways.
Collapse
Affiliation(s)
- David K Crockett
- ARUP Institute for Clinical and Experimental Pathology, Salt Lake City, UT 84108, USA
| | | | | | | |
Collapse
|
22
|
Taimen P, Berghäll H, Vainionpää R, Kallajoki M. NuMA and nuclear lamins are cleaved during viral infection--inhibition of caspase activity prevents cleavage and rescues HeLa cells from measles virus-induced but not from rhinovirus 1B-induced cell death. Virology 2004; 320:85-98. [PMID: 15003865 DOI: 10.1016/j.virol.2003.11.026] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2003] [Revised: 09/25/2003] [Accepted: 11/11/2003] [Indexed: 11/20/2022]
Abstract
Nuclear matrix is a structural framework of important nuclear processes. We studied the effect of two different types of viral infections on nuclear matrix. HeLa cells were infected with human rhinovirus 1B (HRV 1B) or measles virus (MV), and Nuclear Mitotic Apparatus protein (NuMA) and lamins A/C and B were used as markers for internal nuclear matrix and peripheral nuclear lamina, respectively. We show that NuMA, lamins, and poly(ADP-ribose) polymerase-1 are cleaved during viral infection in a virus family-specific manner suggesting that these viruses activate different sets of proteases. Morphologically, NuMA was excluded from the condensed chromatin, lamins showed a folded distribution, and both proteins finally remained around the nuclear fragments. A general caspase inhibitor benzyloxycarbonyl-Val-Ala-Asp-fluoromethylketone (z-VAD-FMK) prevented the nuclear disintegration and the cleavage of the proteins studied. Interestingly, z-VAD-FMK rescued MV-infected but not HRV 1B-infected cells from cell death. These results show for the first time that NuMA and lamins are specific target proteins during virus-induced programmed cell death.
Collapse
Affiliation(s)
- Pekka Taimen
- Department of Pathology, University of Turku, Kiinamyllynkatu 10, FIN-20520 Turku, Finland.
| | | | | | | |
Collapse
|
23
|
Fant X, Merdes A, Haren L. Cell and molecular biology of spindle poles and NuMA. INTERNATIONAL REVIEW OF CYTOLOGY 2004; 238:1-57. [PMID: 15364196 DOI: 10.1016/s0074-7696(04)38001-0] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
Mitotic and meiotic cells contain a bipolar spindle apparatus of microtubules and associated proteins. To arrange microtubules into focused spindle poles, different mechanisms are used by various organisms. Principally, two major pathways have been characterized: nucleation and anchorage of microtubules at preexisting centers such as centrosomes or spindle pole bodies, or microtubule growth off the surface of chromosomes, followed by sorting and focusing into spindle poles. These two mechanisms can even be found in cells of the same organism: whereas most somatic animal cells utilize the centrosome as an organizing center for spindle microtubules, female meiotic cells build an acentriolar spindle apparatus. Most interestingly, the molecular components that drive acentriolar spindle pole formation are also present in cells containing centrosomes. They include microtubule-dependent motor proteins and a variety of structural proteins that regulate microtubule orientation, anchoring, and stability. The first of these spindle pole proteins, NuMA, had already been identified more than 20 years ago. In addition, several new proteins have been characterized more recently. This review discusses their role during spindle formation and their regulation in the cell cycle.
Collapse
Affiliation(s)
- Xavier Fant
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, King's Buildings, Edinburgh EH9 3JR, United Kingdom
| | | | | |
Collapse
|
24
|
Radisavljevic ZM, González-Flecha B, Manasija-Radisavljevic Z. Signaling through Cdk2, importin-alpha and NuMA is required for H2O2-induced mitosis in primary type II pneumocytes. BIOCHIMICA ET BIOPHYSICA ACTA 2003; 1640:163-70. [PMID: 12729926 DOI: 10.1016/s0167-4889(03)00044-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Proliferation of alveolar type II pneumocytes, the multipotent stem cells of the alveoli, has been implicated in the development of lung adenocarcinoma. Hydrogen peroxide (H(2)O(2)), a potent promoter of signaling cascades, can mediate the transmission of many intracellular signals including those involved in cell proliferation. In this study using rat primary type II pneumocytes, we demonstrate that H(2)O(2) significantly increases mitosis through a pathway that includes cyclin-dependent kinase 2 (Cdk2); importin-alpha, a nuclear trafficking regulator; and nuclear mitotic apparatus protein (NuMA), an essential component in mitotic spindle pole formation. Upon H(2)O(2) treatment, Cdk2 is phosphorylated at position thr-160 leading to increases in importin-alpha and NuMA protein levels and resulting in a significant increase of G(2)/M phase in a roscovatine-dependent manner. Type II pneumocytes transfected with NuMA cDNA also show significant increases in G(2)/M phase, NuMA, Cdk2 thr-160 and importin-alpha expression. These effects were prevented by catalase. These results demonstrate that H(2)O(2) orchestrates a complex signaling network regulating S phase entry, nuclear trafficking and spindle pole formation through activation of Cdk2, importin-alpha, and NuMA. This pathway is essential for H(2)O(2)-induced mitosis in type II pneumocytes.
Collapse
Affiliation(s)
- Ziv Manasija Radisavljevic
- Department of Environmental Health, Physiology Program, Harvard University, School of Public Health, 665 Huntington Avenue, Boston, MA 02115, USA.
| | | | | |
Collapse
|
25
|
Taimen P, Kallajoki M. NuMA and nuclear lamins behave differently in Fas-mediated apoptosis. J Cell Sci 2003; 116:571-83. [PMID: 12508117 DOI: 10.1242/jcs.00227] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
NuMA is a nuclear matrix protein that has an essential function in the organization of the mitotic spindle. Here we have studied the fate of NuMA in Fas-treated apoptotic Jurkat T and HeLa cells. We show that in both cell lines NuMA is an early target protein for caspases and that NuMA is cleaved coincidently with poly(ADP-ribose) polymerase-1 (PARP-1) and nuclear lamin B. NuMA is cleaved differently in Jurkat T and HeLa cells, suggesting that different sets of caspases are activated in these cell lines. The normal diffuse intranuclear distribution of NuMA changed during apoptosis: first NuMA condensed, then concentrated in the center of the nucleus and finally encircled the nuclear fragments within the apoptotic bodies. NuMA seems to be preferentially cleaved by caspase-3 in vivo since it was not cleaved in staurosporine-treated caspase-3-null MCF-7 breast cancer cells. The cleavage of NuMA, lamin B and PARP-1 was inhibited in the presence of three different caspase inhibitors: z-DEVD-FMK, z-VEID-FMK and z-IETD-FMK. Furthermore, in the presence of caspase inhibitors approximately 5-10% of the cells showed atypical apoptotic morphology. These cells had convoluted nuclei, altered chromatin structure and additionally, they were negative for NuMA and lamins. Since caspase-8, -3 and -7 were not activated and PARP was not cleaved in these cells as judged by western blotting and immunofluorescence studies, it is likely that this is an atypical form of programmed cell death owing to a proteinase(s) independent of caspases. These results characterize the role of NuMA in programmed cell death and suggest that cleavage of NuMA plays a role in apoptotic nuclear breakdown.
Collapse
Affiliation(s)
- Pekka Taimen
- Department of Pathology, University of Turku, Kiinamyllynkatu 10, FIN-20520 Turku, Finland
| | | |
Collapse
|
26
|
Krauss SW, Heald R, Lee G, Nunomura W, Gimm JA, Mohandas N, Chasis JA. Two distinct domains of protein 4.1 critical for assembly of functional nuclei in vitro. J Biol Chem 2002; 277:44339-46. [PMID: 12171917 DOI: 10.1074/jbc.m204135200] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Protein 4.1R, a multifunctional structural protein, acts as an adaptor in mature red cell membrane skeletons linking spectrin-actin complexes to plasma membrane-associated proteins. In nucleated cells protein 4.1 is not associated exclusively with plasma membrane but is also detected at several important subcellular locations crucial for cell division. To identify 4.1 domains having critical functions in nuclear assembly, 4.1 domain peptides were added to Xenopus egg extract nuclear reconstitution reactions. Morphologically disorganized, replication deficient nuclei assembled when spectrin-actin-binding domain or NuMA-binding C-terminal domain peptides were present. However, control variant spectrin-actin-binding domain peptides incapable of binding actin or mutant C-terminal domain peptides with reduced NuMA binding had no deleterious effects on nuclear reconstitution. To test whether 4.1 is required for proper nuclear assembly, 4.1 isoforms were depleted with spectrin-actin binding or C-terminal domain-specific antibodies. Nuclei assembled in the depleted extracts were deranged. However, nuclear assembly could be rescued by the addition of recombinant 4.1R. Our data establish that protein 4.1 is essential for nuclear assembly and identify two distinct 4.1 domains, initially characterized in cytoskeletal interactions, that have crucial and versatile functions in nuclear assembly.
Collapse
Affiliation(s)
- Sharon Wald Krauss
- Department of Subcellular Structure, Life Sciences Division, University of California, Lawrence Berkeley National Laboratory, 94720, USA.
| | | | | | | | | | | | | |
Collapse
|
27
|
Gribbon C, Dahm R, Prescott AR, Quinlan RA. Association of the nuclear matrix component NuMA with the Cajal body and nuclear speckle compartments during transitions in transcriptional activity in lens cell differentiation. Eur J Cell Biol 2002; 81:557-66. [PMID: 12437190 DOI: 10.1078/0171-9335-00275] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The transcriptional status of cells can be deduced from the staining pattern of various nuclear markers such as the Cajal body, nucleolus and nuclear speckles. In this study we have used these markers to correlate transcriptional status with cell differentiation in the lens. As a closed system with no cell loss and with each stage being spatially preserved, it is particularly well suited to such studies. To confirm that the nuclear markers in lens cells follow the same trends as in other cells, primary bovine lens epithelial cells were cultured and then treated with actinomycin D to inhibit transcription. This reduced the Cajal body markers to one or two foci per nucleus and the nucleoli became compacted as revealed by fibrillarin staining. The nuclear speckles, containing snRNPs (e.g. Sm) and the splicing factor, SC35, also became larger and more numerous while the signal for trimethylguanine (TMG) decreased suggesting a role hierarchy for the various speckle factors during transcriptional shutdown. The signal for survival of motor neurones gene product (SMN) also decreased at this point. In the lens epithelium, postmitotic cells near the equatorial region had one or two Cajal bodies per nucleus, indicating these cells had only basal levels of transcription. Sm was also present as large foci in these cells. Interestingly, both the speckles and Cajal bodies were NuMA-positive in these post-mitotic cells. At the epithelial-fibre cell transition, Cajal body number increased, while their size decreased indicative of increased transcriptional activity. Fibrillarin adopted the open floret pattern indicating increased transcriptional activity. The nuclear speckles adopted a more diffuse nucleoplasmic pattern, although some spots were still observed. All NuMA colocalisation with the Cajal bodies and nuclear speckles was lost at this stage of lens cell differentiation. Transcriptional shutdown occurs at a later stage in fibre cell differentiation, prior to programmed nuclear destruction. In the lens, both the Cajal bodies and nuclear speckles again became NuMA-positive, although separate NuMA spots were also formed during transcriptional shutdown. These data suggest the nuclear matrix is important in the concentration of Cajal body and speckle components into large, distinct spots in transcriptionally inactive nuclei and also suggest a new role for NuMA in post-mitotic cells to assist in these sub-nuclear reorganisations.
Collapse
Affiliation(s)
- Chris Gribbon
- School of Life Sciences, MSIWTB, University of Dundee, UK
| | | | | | | |
Collapse
|
28
|
Choi EK, Lee YH, Choi YS, Kwon HM, Choi MS, Ro JY, Park SK, Yu E. Heterogeneous expression of Ku70 in human tissues is associated with morphological and functional alterations of the nucleus. J Pathol 2002; 198:121-30. [PMID: 12210072 DOI: 10.1002/path.1164] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Ku70 is a subunit of DNA-protein kinase complex and involved in diverse intranuclear events including the repair of double-stranded DNA breaks. Ku70 is rich in the interphase nucleus of cultured cells. In human tissues, however, the distribution of Ku70 has not yet been systematically examined. To characterize the difference of Ku70 distribution between cells of human tissues and cultured cells, the expression of Ku70 was examined in various normal and neoplastic human tissues by immunohistochemistry and immunoblot. In addition, the role of Ku70 in the cellular response against ionizing radiation (IR) was analysed in fibroblasts after exposure to 5 Gy IR and apoptotic indices were examined in Ku70-overexpressed fibroblasts from an ataxia telangiectasia patient and in normal fibroblasts, before and after irradiation. In contrast to cultured cells, Ku70 was not detected in some interphase cells of human tissues and was distributed heterogeneously, even in the same nucleus. Ku70 expression was strikingly low in terminally differentiated cells such as neutrophils, eosinophils, glomerular capillary endothelial cells and fibroblasts, and was absent in spermatids. In spermatocytes, Ku70 was tightly integrated with chromosome filaments, unlike other somatic cells under mitosis. After exposure to IR, Ku70 expression was not increased in ataxia telangiectasia fibroblasts, but was significantly increased in normal fibroblasts. Most of the increased Ku70 was of soluble nuclear protein fraction. Furthermore, overexpression of Ku70 increased radiation resistance both in ataxia telangiectasia fibroblasts and normal fibroblasts. The presented data indicate that the distribution of Ku70 in cells of human tissues is closely associated with the cell cycle, cellular differentiation, nuclear shape and the process of repair of DNA damage caused by IR.
Collapse
Affiliation(s)
- Eun Kyung Choi
- Department of Radiation Oncology, University of Ulsan College of Medicine Asan Medical Centre, Seoul, Korea
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Bortul R, Zweyer M, Billi AM, Tabellini G, Ochs RL, Bareggi R, Cocco L, Martelli AM. Nuclear changes in necrotic HL-60 cells. JOURNAL OF CELLULAR BIOCHEMISTRY. SUPPLEMENT 2001; Suppl 36:19-31. [PMID: 11455567 DOI: 10.1002/jcb.1073] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Cell death in eukaryotes can occur by either apoptosis or necrosis. Apoptosis is characterized by well-defined nuclear changes which are thought to be the consequence of both proteolysis and DNA fragmentation. On the other hand, the nuclear modifications that occur during necrosis are largely less known. Here, we have investigated whether or not nuclear modifications occur during ethanol-induced necrotic cell death of HL-60 cells. By means of immunofluorescence staining, we demonstrate that the patterns given by antibodies directed against some nuclear proteins (lamin B1, NuMA, topoisomerase IIalpha, SC-35, B23/nucleophosmin) changed in necrotic cells. The changes in the spatial distribution of NuMA strongly resembled those described to occur during apoptosis. On the contrary, the fluorescent pattern characteristic for other nuclear proteins (C23/nucleolin, UBF, fibrillarin, RNA polymerase I) did not change during necrosis. By immunoblotting analysis, we observed that some nuclear proteins (SAF-A, SATB1, NuMA) were cleaved during necrosis, and in the case of SATB1, the apoptotic signature fragment of 70 kDa was also present to the same extent in necrotic samples. Caspase inhibitors did not prevent proteolytic cleavage of the aforementioned polypeptides during necrosis, while they were effective if apoptosis was induced. In contrast, lamin B1 and topoisomerase IIalpha were uncleaved in necrotic cells, whereas they were proteolyzed during apoptosis. Transmission electron microscopy analysis revealed that slight morphological changes were present in the nuclear matrix fraction prepared from necrotic cells. However, these modifications (mainly consisting of a rarefaction of the inner fibrogranular network) were not as striking as those we have previously described in apoptotic HL-60 cells. Taken together, our results indicate that during necrosis marked biochemical and morphological changes do occur at the nuclear level. These alterations are quite distinct from those known to take place during apoptosis. Our results identify additional biochemical and morphological criteria that could be used to discriminate between the two types of cell death. J. Cell. Biochem. Suppl. 36: 19-31, 2001.
Collapse
Affiliation(s)
- R Bortul
- Dipartimento di Morfologia Umana Normale, Università di Trieste, 34138 Trieste, Italy
| | | | | | | | | | | | | | | |
Collapse
|