1
|
Valencia-Olvera AC, Maldonado Weng J, Christensen A, LaDu MJ, Pike CJ. Role of estrogen in women's Alzheimer's disease risk as modified by APOE. J Neuroendocrinol 2023; 35:e13209. [PMID: 36420620 PMCID: PMC10049970 DOI: 10.1111/jne.13209] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 09/29/2022] [Accepted: 10/13/2022] [Indexed: 12/15/2022]
Abstract
Alzheimer's disease (AD) is characterized by numerous sexual dimorphisms that impact the development, progression, and probably the strategies to prevent and treat the most common form of dementia. In this review, we consider this topic from a female perspective with a specific focus on how women's vulnerability to the disease is affected by the individual and interactive effects of estrogens and apolipoprotein E (APOE) genotype. Importantly, APOE appears to modulate systemic and neural outcomes of both menopause and estrogen-based hormone therapy. In the brain, dementia risk is greater in APOE4 carriers, and the impacts of hormone therapy on cognitive decline and dementia risk vary according to both outcome measure and APOE genotype. Beyond the CNS, estrogen and APOE genotype affect vulnerability to menopause-associated bone loss, dyslipidemia and cardiovascular disease risk. An emerging concept that may link these relationships is the possibility that the effects of APOE in women interact with estrogen status by mechanisms that may include modulation of estrogen responsiveness. This review highlights the need to consider the key AD risk factors of advancing age in a sex-specific manner to optimize development of therapeutic approaches for AD, a view aligned with the principle of personalized medicine.
Collapse
Affiliation(s)
- AC Valencia-Olvera
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL 60612 USA
| | - J Maldonado Weng
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL 60612 USA
| | - A Christensen
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089 USA
| | - MJ LaDu
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL 60612 USA
| | - CJ Pike
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089 USA
| |
Collapse
|
2
|
Pike CJ. Sex and the development of Alzheimer's disease. J Neurosci Res 2017; 95:671-680. [PMID: 27870425 DOI: 10.1002/jnr.23827] [Citation(s) in RCA: 285] [Impact Index Per Article: 35.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Revised: 06/17/2016] [Accepted: 06/20/2016] [Indexed: 12/20/2022]
Abstract
Men and women exhibit differences in the development and progression of Alzheimer's disease (AD). The factors underlying the sex differences in AD are not well understood. This Review emphasizes the contributions of sex steroid hormones to the relationship between sex and AD. In women, events that decrease lifetime exposure to estrogens are generally associated with increased AD risk, whereas estrogen-based hormone therapy administered near the time of menopause may reduce AD risk. In men, estrogens do not exhibit age-related reduction and are not significantly associated with AD risk. Rather, normal age-related depletions of testosterone in plasma and brain predict enhanced vulnerability to AD. Both estrogens and androgens exert numerous protective actions in the adult brain that increase neural functioning and resilience as well as specifically attenuating multiple aspects of AD-related neuropathology. Aging diminishes the activational effects of sex hormones in sex-specific manners, which is hypothesized to contribute to the relationship between aging and AD. Sex steroid hormones may also drive sex differences in AD through their organizational effects during developmental sexual differentiation of the brain. Specifically, sex hormone actions during early development may confer inherent vulnerability of the female brain to development of AD in advanced age. The combined effects of organizational and activational effects of sex steroids yield distinct sex differences in AD pathogenesis, a significant variable that must be more rigorously considered in future research. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Christian J Pike
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, California
| |
Collapse
|
3
|
Pooley AE, Luong M, Hussain A, Nathan BP. Neurite outgrowth promoting effect of 17-β estradiol is mediated through estrogen receptor alpha in an olfactory epithelium culture. Brain Res 2015. [PMID: 26206299 DOI: 10.1016/j.brainres.2015.07.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Olfactory deficits are observed early in the course of chronic neurological disorders including Alzheimer's disease (AD). Estrogen treatment in post-menopausal women reduced the incidence of olfactory dysfunction, raising the possibility that estrogen treatment can cure olfactory deficits in preclinical stages of AD. In this study, we examined the estradiol׳s effects on neurite outgrowth in explant cultures of mouse olfactory epithelium (OE). We found that neurons in OE cultures treated with 100 pM 17-β estradiol (estradiol) had significantly longer neurite outgrowth than cultures treated with ethanol alone (vehicle). The OE neurons expressed estrogen receptors alpha (ERα) and ER beta (ERβ). Estrogen treatment upregulated both ERα and ERβ expression in OE culture. Treatment of OE cultures with propyl pyrazole triol (PPT), a selective agonist for ERα increased neurite outgrowth to comparable extent as estradiol treatment. In contrast, 2,3-bis-4-hydroxyphenyl (DPN), a specific agonist for ERβ, had no effect on neurite outgrowth. Furthermore, estradiol treatment increased neurite outgrowth in OE cultures derived from ERβ-deficient/knockout mice and wild-type littermates, but not in ERα-deficient/knockout mice. These data suggest that ERα mediates the neurite outgrowth promoting effects of estradiol in OE cultures. We propose that olfactory dysfunction in chronic neurological disorders, where estrogen deficiency is a risk factor, is an indicator of compromised axonal regeneration of olfactory sensory neurons.
Collapse
Affiliation(s)
- Apryl E Pooley
- Department of Biological Sciences, Eastern Illinois University, 600 Lincoln Avenue, Charleston IL 61920, United States
| | - Minh Luong
- Department of Biological Sciences, Eastern Illinois University, 600 Lincoln Avenue, Charleston IL 61920, United States
| | - Aseem Hussain
- Department of Biological Sciences, Eastern Illinois University, 600 Lincoln Avenue, Charleston IL 61920, United States
| | - Britto P Nathan
- Department of Biological Sciences, Eastern Illinois University, 600 Lincoln Avenue, Charleston IL 61920, United States.
| |
Collapse
|
4
|
Bali N, Arimoto JM, Morgan TE, Finch CE. Progesterone antagonism of neurite outgrowth depends on microglial activation via Pgrmc1/S2R. Endocrinology 2013; 154:2468-80. [PMID: 23653459 PMCID: PMC3689281 DOI: 10.1210/en.2012-2109] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Neuronal plasticity is regulated by the ovarian steroids estradiol (E2) and progesterone (P4) in many normal brain functions, as well as in acute response to injury and chronic neurodegenerative disease. In a female rat model of axotomy, the E2-dependent compensatory neuronal sprouting is antagonized by P4. To resolve complex glial-neuronal cell interactions, we used the "wounding-in-a-dish" model of neurons cocultured with astrocytes or mixed glia (microglia to astrocytes, 1:3). Although both astrocytes and mixed glia supported E2-enhanced neurite outgrowth, P4 antagonized E2-induced neurite outgrowth only with mixed glia, but not astrocytes alone. We now show that P4-E2 antagonism of neurite outgrowth is mediated by microglial expression of progesterone receptor (Pgr) membrane component 1 (Pgrmc1)/S2R, a putative nonclassical Pgr mediator with multiple functions. The P4-E2 antagonism of neurite outgrowth was restored by add-back of microglia to astrocyte-neuron cocultures. Because microglia do not express the classical Pgr, we examined the role of Pgrmc1, which is expressed in microglia in vitro and in vivo. Knockdown by siRNA-Pgrmc1 in microglia before add-back to astrocyte-neuron cocultures suppressed the P4-E2 antagonism of neurite outgrowth. Conditioned media from microglia restored the P4-E2 activity, but only if microglia were activated by lipopolysaccharide or by wounding. Moreover, the microglial activation was blocked by Pgmrc1-siRNA knockdown. These findings explain why nonwounded cultures without microglial activation lack P4 antagonism of E2-induced neurite outgrowth. We suggest that microglial activation may influence brain responses to exogenous P4, which is a prospective therapy in traumatic brain injury.
Collapse
Affiliation(s)
- N Bali
- Molecular Biology Program, University of Southern California, Los Angeles, CA 90089, USA
| | | | | | | |
Collapse
|
5
|
Arimoto JM, Wong A, Rozovsky I, Lin SW, Morgan TE, Finch CE. Age increase of estrogen receptor-α (ERα) in cortical astrocytes impairs neurotrophic support in male and female rats. Endocrinology 2013; 154:2101-13. [PMID: 23515288 PMCID: PMC3740484 DOI: 10.1210/en.2012-2046] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Rodent models show decreased neuronal responses to estradiol (E2) during aging (E2-desensitization) in association with reduced neuronal estrogen receptor (ER)-α, but little is known about age changes of E2-dependent astrocytic neurotrophic support. Because elevated expression of astrocyte glial fibrillary acidic protein (GFAP) is associated with impaired neurotrophic activity and because the GFAP promoter responds to ERα, we investigated the role of astrocytic ERα and ERβ in impaired astrocyte neurotrophic activity during aging. In vivo and in vitro, ERα was increased greater than 50% with age in astrocytes from the cerebral cortex of male rats (24 vs 3 months), whereas ERβ did not change. In astrocytes from 3-month-old males, experimentally increasing the ERα to ERβ ratio induced the aging phenotype of elevated GFAP and impaired E2-dependent neurite outgrowth. In 24-month-old male astrocytes, lowering ERα reversed the age elevation of GFAP and partially restored E2-dependent neurite outgrowth. Mixed glia (astrocytes to microglia, 3:1) of both sexes also showed these age changes. In a model of perimenopause, mixed glia from 9- to 15-month rats showed E2 desensitization: 9-month regular cyclers retained young-like ERα to ERβ ratios and neurotrophic activity, whereas 9-month noncyclers had elevated ERα and GFAP but low E2-dependent neurotrophic activity. In vivo, ERα levels in cortical astrocytes were also elevated. The persisting effects of ovarian acyclicity in vitro are hypothesized to arise from steroidal perturbations during ovarian senescence. These findings suggest that increased astrocyte ERα expression during aging contributes to the E2 desensitization of the neuronal responses in both sexes.
Collapse
Affiliation(s)
- Jason M Arimoto
- Department of Biological Sciences, University of Southern California, 3715 McClintock Avenue, Los Angeles, California 90089-0191, USA
| | | | | | | | | | | |
Collapse
|
6
|
Abstract
A promising strategy to delay and perhaps prevent Alzheimer's disease (AD) is to identify the age-related changes that put the brain at risk for the disease. A significant normal age change known to result in tissue-specific dysfunction is the depletion of sex hormones. In women, menopause results in a relatively rapid loss of estradiol and progesterone. In men, aging is associated with a comparatively gradual yet significant decrease in testosterone. We review a broad literature that indicates age-related losses of estrogens in women and testosterone in men are risk factors for AD. Both estrogens and androgens exert a wide range of protective actions that improve multiple aspects of neural health, suggesting that hormone therapies have the potential to combat AD pathogenesis. However, translation of experimental findings into effective therapies has proven challenging. One emerging treatment option is the development of novel hormone mimetics termed selective estrogen and androgen receptor modulators. Continued research of sex hormones and their roles in the aging brain is expected to yield valuable approaches to reducing the risk of AD.
Collapse
Affiliation(s)
- Anna M. Barron
- USC Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089 USA
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, 153-8902 Japan
| | - Christian J. Pike
- USC Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089 USA
| |
Collapse
|
7
|
Barron AM, Pike CJ. Sex hormones, aging, and Alzheimer's disease. Front Biosci (Elite Ed) 2012. [PMID: 22201929 DOI: 10.2741/434] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
A promising strategy to delay and perhaps prevent Alzheimer's disease (AD) is to identify the age-related changes that put the brain at risk for the disease. A significant normal age change known to result in tissue-specific dysfunction is the depletion of sex hormones. In women, menopause results in a relatively rapid loss of estradiol and progesterone. In men, aging is associated with a comparatively gradual yet significant decrease in testosterone. We review a broad literature that indicates age-related losses of estrogens in women and testosterone in men are risk factors for AD. Both estrogens and androgens exert a wide range of protective actions that improve multiple aspects of neural health, suggesting that hormone therapies have the potential to combat AD pathogenesis. However, translation of experimental findings into effective therapies has proven challenging. One emerging treatment option is the development of novel hormone mimetics termed selective estrogen and androgen receptor modulators. Continued research of sex hormones and their roles in the aging brain is expected to yield valuable approaches to reducing the risk of AD.
Collapse
Affiliation(s)
- Anna M Barron
- USC Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089 USA
| | | |
Collapse
|
8
|
Anand R, Kaushal A, Wani WY, Gill KD. Road to Alzheimer's disease: the pathomechanism underlying. Pathobiology 2011; 79:55-71. [PMID: 22205086 DOI: 10.1159/000332218] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2011] [Accepted: 08/23/2011] [Indexed: 12/22/2022] Open
Abstract
Alzheimer's disease (AD), the most common cause of dementia, results from the interplay of various deregulated mechanisms triggering a complex pathophysiology. The neurons suffer from and slowly succumb to multiple irreversible damages, resulting in cell death and thus memory deficits that characterize AD. In spite of our vast knowledge, it is still unclear as to when the disease process starts and how long the perturbations continue before the disease manifests. Recent studies provide sufficient evidence to prove amyloid β (Aβ) as the primary cause initiating secondary events, but Aβ is also known to be produced under normal conditions and to possess physiological roles, hence, the questions that remain are: What are the factors that lead to abnormal Aβ production? When does Aβ turn into a pathological molecule? What is the chain of events that follows Aβ? The answers are still under debate, and further insight may help us in creating better diagnostic and therapeutic options in AD. The present article attempts to review the current literature regarding AD pathophysiology and proposes a pathophysiologic cascade in AD.
Collapse
Affiliation(s)
- R Anand
- Department of Biochemistry, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | | | | | | |
Collapse
|
9
|
Pike CJ, Carroll JC, Rosario ER, Barron AM. Protective actions of sex steroid hormones in Alzheimer's disease. Front Neuroendocrinol 2009; 30:239-58. [PMID: 19427328 PMCID: PMC2728624 DOI: 10.1016/j.yfrne.2009.04.015] [Citation(s) in RCA: 388] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2009] [Revised: 04/25/2009] [Accepted: 04/28/2009] [Indexed: 12/19/2022]
Abstract
Risk for Alzheimer's disease (AD) is associated with age-related loss of sex steroid hormones in both women and men. In post-menopausal women, the precipitous depletion of estrogens and progestogens is hypothesized to increase susceptibility to AD pathogenesis, a concept largely supported by epidemiological evidence but refuted by some clinical findings. Experimental evidence suggests that estrogens have numerous neuroprotective actions relevant to prevention of AD, in particular promotion of neuron viability and reduction of beta-amyloid accumulation, a critical factor in the initiation and progression of AD. Recent findings suggest neural responsiveness to estrogen can diminish with age, reducing neuroprotective actions of estrogen and, consequently, potentially limiting the utility of hormone therapies in aged women. In addition, estrogen neuroprotective actions are also modulated by progestogens. Specifically, continuous progestogen exposure is associated with inhibition of estrogen actions whereas cyclic delivery of progestogens may enhance neural benefits of estrogen. In recent years, emerging literature has begun to elucidate a parallel relationship of sex steroid hormones and AD risk in men. Normal age-related testosterone loss in men is associated with increased risk to several diseases including AD. Like estrogen, testosterone has been established as an endogenous neuroprotective factor that not only increases neuronal resilience against AD-related insults, but also reduces beta-amyloid accumulation. Androgen neuroprotective effects are mediated both directly by activation of androgen pathways and indirectly by aromatization to estradiol and initiation of protective estrogen signaling mechanisms. The successful use of hormone therapies in aging men and women to delay, prevent, and or treat AD will require additional research to optimize key parameters of hormone therapy and may benefit from the continuing development of selective estrogen and androgen receptor modulators.
Collapse
Affiliation(s)
- Christian J Pike
- Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA.
| | | | | | | |
Collapse
|
10
|
Wong AM, Rozovsky I, Arimoto JM, Du Y, Wei M, Morgan TE, Finch CE. Progesterone influence on neurite outgrowth involves microglia. Endocrinology 2009; 150:324-32. [PMID: 18772232 PMCID: PMC2630906 DOI: 10.1210/en.2008-0988] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Progesterone (P4) antagonizes estradiol (E2) in synaptic remodeling in the hippocampus during the rat estrous cycle. To further understand how P4 modulates synaptic plasticity, we used entorhinal cortex lesions, which induce E2-dependent neurite sprouting in the hippocampus. In young ovariectomized rats, the E2-dependent entorhinal cortex lesion-induced sprouting was attenuated by concurrent treatment with P4 and E2. Microglial activation also showed the E2-P4 antagonism. These findings extend reports on the estrous cycle synaptic remodeling without lesions by showing the P4-E2 antagonism during simultaneous treatment with both E2 and P4. Glial mechanisms were analyzed with the wounding-in-a-dish model of cocultured glia and embryonic d-18 cortical neurons from rat. In cocultures of mixed glia (astrocytes plus 30% microglia), P4 antagonized the E2-dependent neurite outgrowth (number and length) and neuron viability in the presence of E2, as observed in vivo. However, removal of microglia (astrocyte-neuron coculture) abolished the antagonism of E2 by P4 on neuron sprouting. The P4 receptor antagonists ORG-31710 and RU-486 blocked the antagonism of P4 on E2-dependent sprouting. These findings suggest a new role for microglia in P4 antagonism of E2 in neuronal plasticity and show its dependence on progesterone receptors. These findings are also relevant to the inclusion of progestins in hormone therapy, which is controversial in relation to cognitive declines during aging and in Alzheimer's disease.
Collapse
Affiliation(s)
- Angela M Wong
- Biogerontology Division, Davis School of Gerontology, University of Southern California, Los Angeles, California 90089, USA
| | | | | | | | | | | | | |
Collapse
|
11
|
Carroll JC, Rosario ER, Pike CJ. Progesterone blocks estrogen neuroprotection from kainate in middle-aged female rats. Neurosci Lett 2008; 445:229-32. [PMID: 18790007 DOI: 10.1016/j.neulet.2008.09.010] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2008] [Revised: 08/26/2008] [Accepted: 09/04/2008] [Indexed: 01/18/2023]
Abstract
The neuroprotective effects of estrogen in young adult rodents are well established. Less well understood is how estrogen neuroprotection is affected by aging and interactions with progesterone. In this study, we investigated the effects of estrogen and continuous progesterone, both alone and in combination, on hippocampal neuron survival following kainate lesion in 14-month-old female rats entering reproductive senescence. Our results show that ovariectomy-induced hormone depletion did not significantly affect the extent of kainate-induced neuron loss. Treatment of ovariectomized rats with estrogen significantly reduced neuron loss, however this effect was blocked by co-administration of continuous progesterone. Treatment of ovariectomized rats with progesterone alone did not significantly affect kainate toxicity. These results provide new insight into factors that regulate estrogen neuroprotection, which has important implications for hormone therapy in postmenopausal women.
Collapse
Affiliation(s)
- Jenna C Carroll
- Neuroscience Graduate Program, Davis School of Gerontology, University of Southern California, 3715 McClintock Avenue, Los Angeles, CA 90089-0191, USA
| | | | | |
Collapse
|
12
|
Buga AM, Sascau M, Pisoschi C, Herndon JG, Kessler C, Popa-Wagner A. The genomic response of the ipsilateral and contralateral cortex to stroke in aged rats. J Cell Mol Med 2008; 12:2731-53. [PMID: 18266980 PMCID: PMC3828887 DOI: 10.1111/j.1582-4934.2008.00252.x] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Aged rats recover poorly after unilateral stroke, whereas young rats recover readily possibly with the help from the contralateral, healthy hemisphere. In this study we asked whether anomalous, age-related changes in the transcriptional activity in the brains of aged rats could be one underlying factor contributing to reduced functional recovery. We analysed gene expression in the periinfarct and contralateral areas of 3-month- and 18-month-old Sprague Dawley rats. Our experimental end-points were cDNA arrays containing genes related to hypoxia signalling, DNA damage and apoptosis, cellular response to injury, axonal damage and re-growth, cell lineage differentiation, dendritogenesis and neurogenesis. The major transcriptional events observed were: (i) Early up-regulation of DNA damage and down-regulation of anti-apoptosis-related genes in the periinfarct region of aged rats after stroke; (ii) Impaired neurogenesis in the periinfarct area, especially in aged rats; (iii) Impaired neurogenesis in the contralateral (unlesioned) hemisphere of both young and aged rats at all times after stroke and (iv) Marked up-regulation, in aged rats, of genes associated with inflammation and scar formation. These results were confirmed with quantitative real-time PCR. We conclude that reduced transcriptional activity in the healthy, contralateral hemisphere of aged rats in conjunction with an early up-regulation of DNA damage-related genes and pro-apoptotic genes and down-regulation of axono- and neurogenesis in the periinfarct area are likely to account for poor neurorehabilitation after stroke in old rats.
Collapse
Affiliation(s)
- A-M Buga
- Molecular Neurobiology Laboratory, Clinic of Neurology, University of Greifswald, Germany
| | | | | | | | | | | |
Collapse
|
13
|
Schumacher M, Guennoun R, Ghoumari A, Massaad C, Robert F, El-Etr M, Akwa Y, Rajkowski K, Baulieu EE. Novel perspectives for progesterone in hormone replacement therapy, with special reference to the nervous system. Endocr Rev 2007; 28:387-439. [PMID: 17431228 DOI: 10.1210/er.2006-0050] [Citation(s) in RCA: 124] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The utility and safety of postmenopausal hormone replacement therapy has recently been put into question by large clinical trials. Their outcome has been extensively commented upon, but discussions have mainly been limited to the effects of estrogens. In fact, progestagens are generally only considered with respect to their usefulness in preventing estrogen stimulation of uterine hyperplasia and malignancy. In addition, various risks have been attributed to progestagens and their omission from hormone replacement therapy has been considered, but this may underestimate their potential benefits and therapeutic promises. A major reason for the controversial reputation of progestagens is that they are generally considered as a single class. Moreover, the term progesterone is often used as a generic one for the different types of both natural and synthetic progestagens. This is not appropriate because natural progesterone has properties very distinct from the synthetic progestins. Within the nervous system, the neuroprotective and promyelinating effects of progesterone are promising, not only for preventing but also for reversing age-dependent changes and dysfunctions. There is indeed strong evidence that the aging nervous system remains at least to some extent sensitive to these beneficial effects of progesterone. The actions of progesterone in peripheral target tissues including breast, blood vessels, and bones are less well understood, but there is evidence for the beneficial effects of progesterone. The variety of signaling mechanisms of progesterone offers exciting possibilities for the development of more selective, efficient, and safe progestagens. The recognition that progesterone is synthesized by neurons and glial cells requires a reevaluation of hormonal aging.
Collapse
Affiliation(s)
- Michael Schumacher
- INSERM UMR 788, 80, rue du Général Leclerc, 94276 Kremlin-Bicêtre, France.
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Popa-Wagner A, Badan I, Walker L, Groppa S, Patrana N, Kessler C. Accelerated infarct development, cytogenesis and apoptosis following transient cerebral ischemia in aged rats. Acta Neuropathol 2007; 113:277-93. [PMID: 17131130 DOI: 10.1007/s00401-006-0164-7] [Citation(s) in RCA: 107] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2006] [Revised: 10/23/2006] [Accepted: 10/23/2006] [Indexed: 01/04/2023]
Abstract
Old age is associated with a deficient recovery from stroke, but the cellular mechanisms underlying such phenomena are poorly understood. To address this issue, focal cerebral ischemia was produced by reversible occlusion of the right middle cerebral artery in 3- and 20-month-old male Sprague-Dawley rats. Aged rats showed a delayed and suboptimal functional recovery in the post-stroke period. Using BrdU-labeling, quantitative immunohistochemistry and 3-D reconstruction of confocal images, we found that aged rats are predisposed to rapidly develop an infarct within the first few days after ischemia. The emergence of the necrotic zone is associated with a high rate of cellular degeneration, premature accumulation of proliferating BrdU-positive cells that appear to emanate from capillaries in the infarcted area, and a large number of apoptotic cells. With double labeling techniques, we were able to identify, for the first time, over 60% of BrdU-positive cells either as reactive microglia (45%), oligodendrocyte progenitors (17%), astrocytes (23%), CD8+ lymphocytes (4%), or apoptotic cells (<1%). Paradoxically, despite a robust reactive phenotype of microglia and astrocytes in aged rats, at 1-week post-stroke, the number of proliferating microglia and astrocytes was lower in aged rats than in young rats. Our data indicate that aging is associated with rapid infarct development and a poor prognosis for full recovery from stroke that is correlated with premature cellular proliferation and increased cellular degeneration and apoptosis in the infarcted area.
Collapse
Affiliation(s)
- Aurel Popa-Wagner
- Department of Neurology, University of Greifswald, Ellernholzstr. 1-2, 17487, Greifswald, Germany.
| | | | | | | | | | | |
Collapse
|
15
|
Abstract
In the late 1980s, the finding that the dentate gyrus contains more granule cells in the male than in the female of certain mouse strains provided the first indication that the dentate gyrus is a significant target for the effects of sex steroids during development. Gonadal hormones also play a crucial role in shaping the function and morphology of the adult brain. Besides reproduction-related processes, sex steroids participate in higher brain operations such as cognition and mood, in which the hippocampus is a critical mediator. Being part of the hippocampal formation, the dentate gyrus is naturally involved in these mechanisms and as such, this structure is also a critical target for the activational effects of sex steroids. These activational effects are the results of three major types of steroid-mediated actions. Sex steroids modulate the function of dentate neurons under normal conditions. In addition, recent research suggests that hormone-induced cellular plasticity may play a larger role than previously thought, particularly in the dentate gyrus. Specifically, the regulation of dentate gyrus neurogenesis and synaptic remodeling by sex steroids received increasing attention lately. Finally, the dentate gyrus is influenced by gonadal hormones in the context of cellular injury, and the work in this area demonstrates that gonadal hormones have neuroprotective potential. The expression of estrogen, progestin, and androgen receptors in the dentate gyrus suggests that sex steroids, which could be of gonadal origin and/or synthesized locally in the dentate gyrus, may act directly on dentate cells. In addition, gonadal hormones could also influence the dentate gyrus indirectly, by subcortical hormone-sensitive structures such as the cholinergic septohippocampal system. Importantly, these three sex steroid-related themes, functional effects in the normal dentate gyrus, mechanisms involving neurogenesis and synaptic remodeling, as well as neuroprotection, have substantial implications for understanding normal cognitive function, with clinical importance for epilepsy, Alzheimer's disease and mental disorders.
Collapse
Affiliation(s)
- Tibor Hajszan
- Departments of Obstetrics, Gynecology, and Reproductive Sciences, Yale University School of Medicine, New Haven, CT, USA
- Department of Biophysics, Biological Research Center, Hungarian Academy of Sciences, Szeged, Hungary
| | - Teresa A Milner
- Department of Neurology and Neuroscience, Division of Neurobiology, Weill Medical College of Cornell University, New York, NY, USA
- Harold and Milliken Hatch Laboratory of Neuroendocrinology, The Rockefeller University, New York, NY, USA
| | - Csaba Leranth
- Departments of Obstetrics, Gynecology, and Reproductive Sciences, Yale University School of Medicine, New Haven, CT, USA
- Department of Neurobiology, Yale University School of Medicine, New Haven, CT, USA
| |
Collapse
|
16
|
Ishunina TA, Fischer DF, Swaab DF. Estrogen receptor alpha and its splice variants in the hippocampus in aging and Alzheimer's disease. Neurobiol Aging 2006; 28:1670-81. [PMID: 17010478 DOI: 10.1016/j.neurobiolaging.2006.07.024] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2006] [Revised: 07/04/2006] [Accepted: 07/21/2006] [Indexed: 11/28/2022]
Abstract
Clinical and experimental studies show that estrogens can have beneficial effects on hippocampus-dependent cognitive functions that may be mediated by estrogen receptor (ER)alpha. We investigated whether menopause and Alzheimer's disease (AD) cause changes in this ER subtype. Immunocytochemical staining of ERalpha, aromatase and Golgi complex (GC) was performed on paraffin embedded hippocampal tissue from women of the pre-, peri- and postmenopausal age. Canonical ERalpha mRNA amplicons, ERalpha splice variants (del.2, del.4, del.7, MB1) and aromatase transcripts were measured by Q-PCR in frozen hippocampal samples of AD and matched control cases. Nuclear ERalpha, aromatase and the GC enhanced during aging in women indicating availability of locally synthesized estrogens that may up-regulate ERalpha by which neuronal metabolism can be augmented in the hippocampus after the menopause. In AD cases canonical and alternatively spliced ERalpha mRNA, and aromatase gene expression were down-regulated suggesting a deficit in local estrogen levels and diminished signalling through ERalpha. The major ERalpha splice variants in the hippocampus were found to be MB1 and del.4. A novel ERalpha isoform TADDI was isolated and sequenced from two female patients. It lacks 31 bp at the junction between exons 3 and 4 with an insertion of 13 nucleotides from the middle of the exon 2.
Collapse
Affiliation(s)
- Tatjana A Ishunina
- Netherlands Institute for Neuroscience, Meibergdreef 47, 1105 BA Amsterdam, The Netherlands
| | | | | |
Collapse
|
17
|
McAsey ME, Cady C, Jackson LM, Li M, Randall S, Nathan BP, Struble RG. Time course of response to estradiol replacement in ovariectomized mice: brain apolipoprotein E and synaptophysin transiently increase and glial fibrillary acidic protein is suppressed. Exp Neurol 2005; 197:197-205. [PMID: 16226751 DOI: 10.1016/j.expneurol.2005.09.008] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2005] [Revised: 09/02/2005] [Accepted: 09/15/2005] [Indexed: 11/23/2022]
Abstract
The current study examined the effect of long-term estradiol replacement in ovariectomized mice. Estradiol-17beta (E2) pellets or vehicle pellets were implanted at the time of ovariectomy (OVX) in young adult female mice. Five mice from each group were sacrificed at 5, 14, 28 and 49 days after OVX and pellet replacement. Western blotting of homogenates from somatosensory cortex, hippocampus, olfactory bulb and cerebellum was performed to obtain concentrations of glial fibrillary acidic protein (GFAP), apolipoprotein E (apoE) and synaptophysin (SYN). At 5 days after OVX, GFAP levels were not affected by E2 replacement. In contrast to GFAP, synaptophysin and apoE concentrations were significantly elevated by 15% and 25%, respectively, in the E2-replaced group compared to the vehicle-replaced group at 5 days but by 14 days concentrations were equivalent. Late in the time course of this study, at 49 days, GFAP concentrations were higher in the E2-deprived mice but did not increase in the E2-replaced group. Immunocytochemistry for GFAP confirmed this observation. Of note was that these effects occurred in all four brain regions measured. These observations suggest that estradiol is able to suppress reactive gliosis. In addition, E2 replacement in OVX mice is associated with transiently higher levels of apoE and synaptophysin.
Collapse
Affiliation(s)
- Mary E McAsey
- Department of Obstetrics and Gynecology, Southern Illinois University School of Medicine, Springfield, IL 62794-9672, USA.
| | | | | | | | | | | | | |
Collapse
|
18
|
Kheirandish L, Gozal D, Pequignot JM, Pequignot J, Row BW. Intermittent hypoxia during development induces long-term alterations in spatial working memory, monoamines, and dendritic branching in rat frontal cortex. Pediatr Res 2005; 58:594-9. [PMID: 16148079 DOI: 10.1203/01.pdr.0000176915.19287.e2] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Exposure to intermittent hypoxia (IH), such as occurs in sleep-disordered breathing, is associated with increased apoptosis in vulnerable brain regions as well as with spatial reference memory deficits in adult and developing rats. The latter are more susceptible to IH, suggesting that early exposure to IH may have long-term consequences. Rats were exposed to 14 d of room air (RA) or IH starting at postnatal d 10. Working memory was then assessed in the water maze at 4 mo of age using a delayed matching to place task in which the rats were required to locate a submerged platform hidden in a novel location on the first trial (T1 or acquisition trial), and then remember that position after a delay (T2 or test trial). Mean escape latencies and swim distances were derived and the savings (T1-T2) were used as a measure of working memory. Male but not female rats exposed to IH showed working memory deficits at both a 10- and 120-min delay (for both latency and pathlength). Additionally, Sholl analysis of Golgi-stained neurons revealed decreased dendritic branching in the frontal cortex, but not the hippocampus, of male rats exposed to IH. Norepinephrine concentrations, dopamine turnover, and tyrosine hydroxylase activity were increased similarly in males and females. However, increased dopamine concentrations were present only in the frontal cortex of female rats. In conclusion, exposure to IH during a critical developmental period is associated with long-term alterations in frontal cortical dopaminergic pathways that may underlie gender differences in neurobehavioral deficits.
Collapse
Affiliation(s)
- Leila Kheirandish
- Department of Pediatrics, Kosair Children's Hospital Research Institute, Louisville, KY 40202, USA
| | | | | | | | | |
Collapse
|
19
|
Schmoll H, Ramboiu S, Platt D, Herndon JG, Kessler C, Popa-Wagner A. Age Influences the Expression of GAP-43 in the Rat Hippocampus following Seizure. Gerontology 2005; 51:215-24. [PMID: 15980649 DOI: 10.1159/000085117] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2003] [Accepted: 08/18/2004] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Normal aging is associated with impairments in learning and memory and motor function. One viable hypothesis is that these changes reflect an age-related decrease in brain plasticity. OBJECTIVE The aim of the present study was to identify age-related changes in the time course of expression of the axonal growth associated protein 43 (GAP-43) in a rat model of brain plasticity. METHODS We examined by Northern blotting, in situ hybridization, and immunohistochemistry the effects of age on the time course of the expression GAP-43 following pentylenetetrazole-induced seizure in the hippocampus of 3-, 18-, and 28-month-old rats. RESULTS In this model of brain plasticity, young rats displayed a decrease in GAP-43 mRNA levels in CA1, CA3, and polymorphic regions, lasting from 10 h to 3 days after seizure. This was followed by recovery, with peak expression between days 10 and 20. The baseline levels of GAP-43 mRNA decreased with age, especially in the CA3 region. Despite lower baseline levels, middle-aged rats showed the same pattern of upregulation of GAP-43 mRNA expression as the young animals. Old rats showed only minimal upregulation, however, and this occurred only in the polymorphic layer. The level GAP-43 protein itself was higher in old control rats than in the other two control groups, a condition that was transiently reversed by seizure activity. CONCLUSIONS Middle-aged rats are still capable of a sustained, though diminished, response to seizure activity, while old rats lose this ability. Disruption of the temporal and anatomical coordination of expression of GAP-43 may contribute to the general decline in brain plasticity with age.
Collapse
Affiliation(s)
- H Schmoll
- Department of Neurology, Ernst Moritz Arndt University, Greifswald, Germany
| | | | | | | | | | | |
Collapse
|
20
|
Rozovsky I, Wei M, Morgan TE, Finch CE. Reversible age impairments in neurite outgrowth by manipulations of astrocytic GFAP. Neurobiol Aging 2005; 26:705-15. [PMID: 15708446 DOI: 10.1016/j.neurobiolaging.2004.06.009] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2004] [Revised: 05/26/2004] [Accepted: 06/16/2004] [Indexed: 11/18/2022]
Abstract
Aging is associated with neuron atrophy and impaired sprouting after lesions. In contrast during normal aging without neurodegenerative diseases, astrocytes display increasing activation, with progressive increases of glial fibrillary acidic protein (GFAP) beginning before midlife. Because many neuronal functions depend on astrocytic support, we developed a heterochronic co-culture system to study influences of aging astrocytes on neurons. Neurite outgrowth by embryonic neurons (E18) was markedly less when co-cultured with confluent astrocytes derived from old (24 mo) versus young (3 mo) cortex. These impairments were reversible. Diminishing the GFAP levels of old astrocytes by RNAi restored neurite outgrowth, whereas overexpression of GFAP in young astrocytes modeled these effects of aging by reducing neurite outgrowth. Quantitative relationships were found such that neurites were co-localized with high intensity laminin, which both varied inversely with GFAP. These results implicate increased astrocytic GFAP expression as a proximal cause of neuron atrophy during normal aging.
Collapse
Affiliation(s)
- Irina Rozovsky
- Andrus Gerontology Center and Department of Biological Sciences, University of Southern California, 3715 McClintock Ave., Los Angeles, CA 90089-0191, USA.
| | | | | | | |
Collapse
|
21
|
Garcia-Ovejero D, Azcoitia I, Doncarlos LL, Melcangi RC, Garcia-Segura LM. Glia-neuron crosstalk in the neuroprotective mechanisms of sex steroid hormones. ACTA ACUST UNITED AC 2005; 48:273-86. [PMID: 15850667 DOI: 10.1016/j.brainresrev.2004.12.018] [Citation(s) in RCA: 175] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2004] [Accepted: 12/09/2004] [Indexed: 11/22/2022]
Abstract
Proteins involved in the intramitochondrial trafficking of cholesterol, the first step in steroidogenesis, such as the steroidogenic acute regulatory protein (StAR) and the peripheral-type benzodiazepine receptor (PBR), are upregulated in the nervous system after injury. Accordingly, a local increase in the levels of steroids, such as pregnenolone and progesterone, is observed following traumatic injury in the brain and spinal cord. The expression and activity of aromatase, the enzyme that synthesizes estradiol, is also increased in injured brain areas and its inhibition results in an increased neurodegeneration. These findings suggest that an increase in steroidogenesis is part of an overall mechanism used by the nervous tissue to cope with neurodegenerative conditions. Neural steroidogenesis is the result of a coordinated interaction of neurons and glia. For example, after neural injury, there is an upregulation of StAR in neurons and of PBR in microglia and astroglia. Aromatase is expressed in neurons under basal conditions and is upregulated in reactive astrocytes after injury. Some of the steroids produced by glia are neuroprotective. Progesterone and progesterone derivatives produced by Schwann cells, promote myelin formation and the remyelination and regeneration of injured nerves. In the central nervous system, the steroids produced by glia regulate synaptic function, affect anxiety, cognition, sleep and behavior, and exert neuroprotective and reparative roles. In addition, glial cells are targets for steroids and mediate some of the effects of these molecules on neurons, including the regulation of survival and regeneration.
Collapse
|
22
|
Reyna-Neyra A, Arias C, Ferrera P, Morimoto S, Camacho-Arroyo I. Changes in the content and distribution of microtubule associated protein 2 in the hippocampus of the rat during the estrous cycle. ACTA ACUST UNITED AC 2004; 60:473-80. [PMID: 15307151 DOI: 10.1002/neu.20042] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The molecular mechanisms involved in the regulation of synaptic plasticity in the hippocampus during the estrous cycle of the rat are not completely understood. Because this process implicates changes in neuronal cytoskeleton organization, we analyzed the content of microtubule associated protein 2 (MAP2) and Tau in the hippocampus and the frontal cortex of the rat by Western blot, as well as the hippocampal distribution of MAP2 during the estrous cycle by immunohistochemistry. In the hippocampus the lowest content of MAP2 was found on diestrus day, and it significantly increased at proestrus. This increase was maintained on estrus and metestrus days. In the frontal cortex MAP2 content did not significantly change during the estrous cycle. In contrast, the content of Tau did not vary during the estrous cycle in either the hippocampus or the frontal cortex. The immunohistochemical analysis showed an increase in dendrite thickness and in dendritic branching in the CA1 region on proestrus day, as well as an aggregation of MAP2 in apical dendrites near to pyramidal somata on this day in comparison with diestrus. We suggest that changes in the content and neuronal distribution of MAP2 are involved in the structural changes that occur in the hippocampus of the rat during the estrous cycle, and that these variations are related to changes in estradiol and progesterone levels.
Collapse
Affiliation(s)
- Andrea Reyna-Neyra
- Departamento de Biología, Facultad de Química, Universidad Nacional Autónoma de México, 04510 México D.F., México
| | | | | | | | | |
Collapse
|
23
|
Danilovich N, Maysinger D, Sairam MR. Perspectives on reproductive senescence and biological aging: studies in genetically altered follitropin receptor knockout [FORKO] mice. Exp Gerontol 2004; 39:1669-78. [PMID: 15582283 DOI: 10.1016/j.exger.2004.05.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2004] [Accepted: 05/17/2004] [Indexed: 11/30/2022]
Abstract
Increased life expectancy leads to increased age-associated health issues in both sexes. For menopausal women the most important of these appear to result from the severe estrogen deficiency caused by ovarian dysfunction. The consequences among others include hot flashes, osteoporosis, obesity, impaired memory, higher incidence of Alzheimer's disease and cardiovascular disease. Ovarian function and steroidogenesis are influenced by pituitary gonadotropins, including follicle-stimulating hormone (FSH), whose actions are mediated through ovarian receptors. This article highlights our recent data pertinent to aging as derived from a novel genetically modified animal model [the FORKO mouse (FOllitropin Receptor KnockOut) lacking the FSH receptor. FORKO female mice experience a chronic depletion of estrogen (E2) from early development, and have phenotypes similar to aging women, with ovarian failure, obesity, skeletal changes, and ovarian tumors. A variety of findings support the conclusion that E2 deficiency in FORKO mice is responsible for their neural impairments associated with glial cell hypertrophy, region-specific brain cells loss, and abnormal behavior. Findings from mice with FSH receptor haploinsufficiency mice ('menopausal mice') are also shedding light on the molecular basis of menopausal conditions that include degeneration of the hippocampus. Many phenotypes noted in the null condition also occur in +/- females but in an age related manner. Thus, the FORKO mouse becomes an excellent model to investigate mechanisms underlying age-related changes especially when these events are accelerated, as in menopausal women. Opportunities abound to assess the potential benefits/adverse effects of hormone replacement regimen on various targets.
Collapse
Affiliation(s)
- N Danilovich
- Molecular Reproduction Research Laboratory, Clinical Research Institute of Montreal, 110 Pine Avenue West, Montreal, Que., Canada H2W 1R7
| | | | | |
Collapse
|
24
|
Abstract
The relationship between the brain and the endocrine system is now seen to extend far beyond the regulation of somatic hormone production by the hypothalamus and pituitary: the brain itself can be considered both as an endocrine organ, producing hormones that act both within and outside the central nervous system, and as a target for hormones. The current extent of this concept with respect to the gonadal hormones was explored at a recent meeting ('Hormones and the Brain', Third Endocrinology Colloquium of the Fondation Ipsen, Paris, December 8, 2003). The discussion, reviewed in this article, ranged from intracellular signalling pathways and intercellular networks regulating hormone production and action in the central nervous system to hormone involvement in the generation of sexual behaviour and in development, plasticity, neuroprotection and repair. The hormonal contribution to psychiatric and neurodegenerative illnesses was also examined. The picture presented is complex, with layers of controls and with hormones that have diverse actions at different sites in the central nervous system. This richness of actions and functions is providing some interesting leads for developing new therapeutics.
Collapse
|
25
|
Champagne D, Pearson D, Dea D, Rochford J, Poirier J. The cholesterol-lowering drug probucol increases apolipoprotein E production in the hippocampus of aged rats: implications for Alzheimer's disease. Neuroscience 2003; 121:99-110. [PMID: 12946703 DOI: 10.1016/s0306-4522(03)00361-0] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Several recent epidemiological studies have proposed that cholesterol-lowering drug Statin may provide protection against Alzheimer's disease (AD). Probucol is a non-Statin cholesterol-lowering drug and a potent inducer of apolipoprotein E (apoE) production in peripheral circulation. A recent clinical study using Probucol in elderly AD subjects revealed a concomitant stabilisation of cognitive symptoms and significant increases in apoE levels in the cerebral spinal fluid in these patients. To gain insight into the mechanisms underlying these effects, we treated a cohort of aged male rats (26-month-old) with oral dose of Probucol for 30 days. Specifically, we examined the effects of Probucol on apoE production and its receptors (low density lipoprotein receptor [LDLr] and low density lipoprotein receptor-related protein [LRP]), astroglial marker of cell damage (glial fibrillary acidic protein [GFAP]), markers of neuronal synaptic plasticity and integrity (synaptosomal associated protein of 25 kDa [SNAP-25] and synaptophysin) as well as cholesterol biosynthesis (3-hydroxy-3-methylglutaryl coenzyme A reductase [HMGCoAr]) in the hippocampus. We report that Probucol induces the production of apoE and one of its main receptors, LRP, increases HMGCoAr (rate-limiting enzyme in cholesterol synthesis), substantially attenuates age-related increases in glial activation, and induces production of synaptic marker SNAP-25, a molecule commonly associated with synaptogenesis and dendritic remodeling. These findings suggest that Probucol could promote neural and synaptic plasticity to counteract the synaptic deterioration associated with brain aging through an apoE/LRP-mediated system. Consistent with the beneficial effects of other cholesterol-lowering drugs such as the Statin, Probucol could also offers additional benefits based on apoE neurobiology.
Collapse
Affiliation(s)
- D Champagne
- Department of Neurology and Neurosurgery, McGill University, Verdun, Quebec, Canada
| | | | | | | | | |
Collapse
|
26
|
Danilovich N, Sairam MR, Maysinger D. The menopausal mouse: a new neural paradigm of a distressing human condition. Neuroreport 2003; 14:1617-22. [PMID: 14502087 DOI: 10.1097/00001756-200308260-00015] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Progressive and long-term sex hormone imbalance in the FSH-R haploinsufficient menopausal mouse leads to degenerative changes in the CNS associated with increased anxiety. The brain region most affected by aging in these mice is the hippocampus. Choline acetyltransferase (ChAT) enzymatic activity and synapsin immunoreactivity are reduced at 20 months of age. Neurons in the dentate gyrus show signs of progressive degenerative changes, hypertrophy and glyosis, and subsequent cell shrinkage and death. These results suggest that the menopausal mouse mimics degenerative changes in the hippocampus of hormonally imbalanced aging humans. We propose using this animal model to test the effectiveness of potential therapeutics in paradigms of accelerated aging.
Collapse
Affiliation(s)
- Natalia Danilovich
- Department of Pharmacology and Therapeutics, McGill University, 3655 Promenade Sir-William-Osler, Room 1314, McIntyre Building, Montreal, QC, Canada H3G 1Y6
| | | | | |
Collapse
|
27
|
Abstract
Early manifestations of brain aging have received much less attention than the drastic degeneration of AD and MID. During nonpathological changes of normal aging, brain systems differ in the involvement of neuron loss. Spatial learning can become impaired without evidence for neuron loss, whereas eye-blink conditioning deficits are well correlated with Purkinje neuron loss. Glial activation, in particular the increased expression of glial fibrillary acidic protein (GFAP), may be a factor in impaired synaptic plasticity. Lastly, it is discussed how developmental variations in the numbers of Purkinje cells and ovarian oocytes can be factors in outcomes of aging that are not under strict genetic control.
Collapse
Affiliation(s)
- Caleb E Finch
- Department of Biological Sciences, Ethel Percy Andrus Gerontology Center, University of Southern California, 3715 McClintock Avenue, Los Angeles, CA 90089-0191, USA.
| |
Collapse
|
28
|
Abstract
Ramon y Cajal proclaimed in 1928 that "once development was ended, the founts of growth and regeneration of the axons and dendrites dried up irrevocably. In the adult centers the nerve paths are something fixed, ended and immutable. Everything must die, nothing may be regenerated. It is for the science of the future to change, if possible, this harsh decree." (Ramon y Cajal, 1928). In large part, despite the extensive knowledge gained since then, the latter directive has not yet been achieved by 'modern' science. Although we know now that Ramon y Cajal's observation on CNS plasticity is largely true (for lower brain and primary cortical structures), there are mechanisms for recovery from CNS injury. These mechanisms, however, may contribute to the vulnerability to neurodegenerative disease. They may also be exploited therapeutically to help alleviate the suffering from neurodegenerative conditions.
Collapse
Affiliation(s)
- Bruce Teter
- Department of Medicine, University of California Los Angeles, California and Veteran's Affairs-Greater Los Angeles Healthcare System, Sepulveda, California 91343, USA
| | | |
Collapse
|
29
|
Abstract
Clusterin/Apolipoprotein J (ApoJ) is a heterodimeric highly conserved secreted glycoprotein being expressed in a wide variety of tissues and found in all human fluids. Despite being cloned since 1989, no genuine function has been attributed to ApoJ so far. The protein has been reportedly implicated in several diverse physiological processes such as sperm maturation, lipid transportation, complement inhibition, tissue remodeling, membrane recycling, cell-cell and cell-substratum interactions, stabilization of stressed proteins in a folding-competent state and promotion or inhibition of apoptosis. ApoJ gene is differentially regulated by cytokines, growth factors and stress-inducing agents, while another defining prominent and intriguing ApoJ feature is its upregulation in many severe physiological disturbances states and in several neurodegenerative conditions mostly related to advanced aging. Moreover, ApoJ accumulates during the viable growth arrested cellular state of senescence, that is thought to contribute to aging and to tumorigenesis suppression; paradoxically ApoJ is also upregulated in several cases of in vivo cancer progression and tumor formation. This review focuses on the reported data related to ApoJ cell-type and signal specific regulation, function and site of action in normal and cancer cells. We discuss the role of ApoJ during cellular senescence and tumorigenesis, especially under the light of the recently demonstrated various ApoJ intracellular protein forms and their interaction with molecules involved in signal transduction and DNA repair, raising the possibility that its overexpression during cellular senescence might cause a predisposition to cancer.
Collapse
Affiliation(s)
- Ioannis P Trougakos
- Laboratory of Molecular & Cellular Aging, Institute of Biological Research and Biotechnology, National Hellenic Research Foundation, 48 Vas Constantinou Avenue, Athens 11635, Greece
| | | |
Collapse
|
30
|
Trougakos IP, Poulakou M, Stathatos M, Chalikia A, Melidonis A, Gonos ES. Serum levels of the senescence biomarker clusterin/apolipoprotein J increase significantly in diabetes type II and during development of coronary heart disease or at myocardial infarction. Exp Gerontol 2002; 37:1175-87. [PMID: 12470829 DOI: 10.1016/s0531-5565(02)00139-0] [Citation(s) in RCA: 121] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Clusterin/apolipoprotein J (hereafter ApoJ) is a conserved secreted glycoprotein expressed by a wide array of tissues and being implicated in several physiological processes. ApoJ has been shown to associate with both normal in vitro aging, namely replicative senescence, as well as with stress induced premature senescence. In vivo, the protein is up-regulated in many severe physiological disturbances that relate to advanced aging, including accumulation in the artery wall during the development of atherosclerosis. In the current report we have expanded our previous studies that focus in the biological role of ApoJ during aging by addressing two interrelated issues: (a) we have examined the potential ApoJ association with in vivo aging and (b) we have studied whether its accumulation in the artery wall during the development of atherosclerosis is combined with a measurable increase of its serum levels, as well as, whether a similar effect occurs in diseases, such as diabetes type II, known to represent major risk factors of atherosclerosis. By combining a sandwich ELISA assay and immunoblotting analysis we demonstrate a measurable increase of ApoJ serum levels with age in males and provide evidence that, as compared to healthy donors, the serum ApoJ amount increases significantly in diabetic type II patients and in patients suffering from either a developing coronary heart disease, or myocardial infarction. The highest serum ApoJ levels were found during myocardial infarction but no correlation was observed with the number of vessels with documented atherosclerotic damage. In conclusion, this report illustrates that ApoJ accumulation in serum is probably coupled to a generalized stress mediated induction mechanism that is specifically related to certain diseases; moreover these data raise the possibility that elevated ApoJ levels in serum may represent a strong indication of vascular damage.
Collapse
Affiliation(s)
- Ioannis P Trougakos
- Laboratory of Molecular and Cellular Ageing, Institute of Biological Research and Biotechnology, National Hellenic Research Foundation, 48 Vas. Constantinou Avenue, Athens 11635, Greece
| | | | | | | | | | | |
Collapse
|
31
|
Estrogen and aging affect the subcellular distribution of estrogen receptor-alpha in the hippocampus of female rats. J Neurosci 2002. [PMID: 11978836 DOI: 10.1523/jneurosci.22-09-03608.2002] [Citation(s) in RCA: 193] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Estrogen replacement increases both the number of dendritic spines and the density of axospinous synapses in the hippocampal CA1 region in young rats, yet this is attenuated in aged rats. The estrogen receptor-alpha (ER-alpha) is localized within select spines of CA1 pyramidal cells in young animals and thus may be involved locally in this process. The present study investigated the effects of estrogen on the ultrastructural distribution of ER-alpha in the CA1 of young (3-4 months) and aged (22-23 months) Sprague Dawley rats using postembedding immunogold electron microscopy. Within dendritic spines, most ER-alpha immunoreactivity (IR) was seen in plasmalemmal and cytoplasmic regions of spine heads, with a smaller proportion within 60 nm of the postsynaptic density. In presynaptic terminals, ER-alpha-IR was clustered and often associated with synaptic vesicles. Significant effects of both aging and estrogen were observed. Quantitative analysis revealed that nonsynaptic pools of ER-alpha-IR within the presynaptic and postsynaptic compartments were decreased (35 and 27%, respectively) in the young estrogen-replaced animals compared with those that received vehicle. Such localized regulation of ER-alpha in response to circulating estrogen levels might directly affect synaptic signaling in CA1 pyramidal cells. No estrogen treatment-related differences were observed in the aged animals. However, 50% fewer spines contained ER-alpha in the aged compared with young hippocampus. These data suggest that the decreased responsiveness of hippocampal synapses to estrogen in aged animals may result from age-related decrements in ER-alpha levels and its subcellular localization vis-à-vis the synapse. Such a role for spinous ER-alpha has important implications for age-related attenuation of estrogen-induced hippocampal plasticity.
Collapse
|
32
|
Catalani A, Sabbatini M, Consoli C, Cinque C, Tomassoni D, Azmitia E, Angelucci L, Amenta F. Glial fibrillary acidic protein immunoreactive astrocytes in developing rat hippocampus. Mech Ageing Dev 2002; 123:481-90. [PMID: 11796133 DOI: 10.1016/s0047-6374(01)00356-6] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The developmental pattern of glial fibrillary acidic protein (GFAP)-immunoreactive astrocytes was investigated in the hippocampus (subfields CA1, CA3 and CA4) and in the dentate gyrus of male and female rats aged 11, 16, 30, 90 and 150 days by immunohistochemistry associated with image analysis. Analysis was centred on stratum radiatum, a hippocampal area rich in GFAP-immunoreactive astrocytes. The volume of different portions of hippocampus, the number and the size of astrocytes, the intensity of cell body GFAP immunostaining as well as the extension of astrocyte were assessed. A maturation pattern consisting in higher cellular expression of GFAP, an increase in overall cell size and expanding arborisation from the 11th to the 30th postnatal day, followed by stabilisation of these parameters until the 90th day of life, and a subsequent decrease in the oldest age group studied was found. A sex-related different temporal pattern of astrocytes maturation in size and GFAP content was observed in the CA1 subfield only. The increase of GFAP content during pre-weaning ages was less pronounced in females than in males as well as the decrease between the 90th and the 150th day of age. Moreover, the size of astrocytes was larger in females than in males at the 11th and 150th days of life. These findings suggest that hippocampal astrocytes undergo rapid maturation in the 1st month of postnatal life, followed by a slow consolidation of this process until the 3rd month of life. At 5 months of age, there are still dynamic changes in the mature astrocytes, which become slender and thinner probably as a response to the increased volume of hippocampus noticeable at this age.
Collapse
Affiliation(s)
- Assia Catalani
- Dipartimento di Fisiologia Umana e Farmacologia, Università La Sapienza, P. le. A. Moro 5, 00185, Rome, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Rozovsky I, Wei M, Stone DJ, Zanjani H, Anderson CP, Morgan TE, Finch CE. Estradiol (E2) enhances neurite outgrowth by repressing glial fibrillary acidic protein expression and reorganizing laminin. Endocrinology 2002; 143:636-46. [PMID: 11796520 DOI: 10.1210/endo.143.2.8615] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Neuronal remodeling in response to deafferenting lesions in the brain can be enhanced by estradiol (E2). Astrocytes are among the targets of E2 in complex interactions with neurons and may support or inhibit neuronal remodeling. In ovariectomized female rats given entorhinal cortex lesions, E2 replacement inhibited the increase of glial fibrillary acidic protein (GFAP) protein. To model the role of E2 in these complex processes, we used the "wounding-in-a-dish" of astrocyte-neuron cocultures. Low physiological E2 (1 pM) blocks the wound-induced increase of GFAP expression (transcription and protein) and enhances neurite outgrowth. The transcriptional responses to E2 during wounding are mediated by sequences in the 5'-upstream region of the rat GFAP promoter. Concurrently, E2 reorganized astrocytic laminin into extracellular fibrillar arrays, which others have shown support neurite outgrowth. The inhibition of GFAP expression by E2 in this model is consistent with in vivo findings that E2 enhanced recovery from deafferenting cortical lesions by increased neurite outgrowth in association with decreased GFAP expression. More generally, we hypothesize that physiological variations in E2 levels modulate neuronal plasticity through direct effects on GFAP transcription that, in turn, modify GFAP-containing intermediate filaments and reorganize astrocytic laminin.
Collapse
Affiliation(s)
- Irina Rozovsky
- Neurogerontology Division, Andrus Gerontology Center, University of Southern California, Los Angeles, California 90089-0191, USA.
| | | | | | | | | | | | | |
Collapse
|
34
|
Adams MM, Gazzaley AH, Morrison JH. Attenuated lesion-induced N-methyl-D-aspartate receptor (NMDAR) plasticity in the dentate gyrus of aged rats following perforant path lesions. Exp Neurol 2001; 172:244-9. [PMID: 11681857 DOI: 10.1006/exnr.2001.7794] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Young animals demonstrate a significant upregulation of N-methyl-d-aspartate receptor 1 (NMDAR1) in the outer molecular layer (OML) of the dentate gyrus following a total unilateral ablation of the perforant path, and this response presumably facilitates a degree of functional recovery. Aged animals have attenuated responses to lesion-induced synaptic plasticity as compared with young subjects, and in fact display decreased synaptogenesis and sprouting following a unilateral perforant path lesion. To investigate the response of NMDAR1 in the dentate gyrus of aged animals to perforant path ablation, 24-month-old Sprague-Dawley male rats received a unilateral knife cut of the angular bundle. Our results demonstrated that aged animals displayed a blunted response to lesion-induced NMDA receptor-mediated plasticity, suggesting that aged animals have an impaired ability to respond to deafferentation through an increase in NMDA receptor levels in the deafferented zone.
Collapse
Affiliation(s)
- M M Adams
- Kastor Neurobiology of Aging Laboratories, Mount Sinai School of Medicine, New York, New York 10029-6574, USA
| | | | | |
Collapse
|
35
|
Adams MM, Shah RA, Janssen WG, Morrison JH. Different modes of hippocampal plasticity in response to estrogen in young and aged female rats. Proc Natl Acad Sci U S A 2001; 98:8071-6. [PMID: 11427724 PMCID: PMC35469 DOI: 10.1073/pnas.141215898] [Citation(s) in RCA: 169] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2001] [Accepted: 05/02/2001] [Indexed: 11/18/2022] Open
Abstract
Estrogen regulates hippocampal dendritic spine density and synapse number in an N-methyl-D-aspartate (NMDA) receptor-dependent manner, and these effects may be of particular importance in the context of age-related changes in endocrine status. We investigated estrogen's effects on axospinous synapse density and the synaptic distribution of the NMDA receptor subunit, NR1, within the context of aging. Although estrogen induced an increase in axospinous synapse density in young animals, it did not alter the synaptic representation of NR1, in that the amount of NR1 per synapse was equivalent across groups. Estrogen replacement in aged female rats failed to increase axospinous synapse density; however, estrogen up-regulated synaptic NR1 compared with aged animals with no estrogen. Therefore, the young and aged hippocampi react differently to estrogen replacement, with the aged animals unable to mount a plasticity response generating additional synapses, yet responsive to estrogen with respect to additional NMDA receptor content per synapse. These findings have important implications for estrogen replacement therapy in the context of aging.
Collapse
Affiliation(s)
- M M Adams
- Kastor Neurobiology of Aging Laboratories, Fishberg Research Center for Neurobiology, Mount Sinai School of Medicine, New York, NY 10029, USA
| | | | | | | |
Collapse
|