1
|
Zeng Q, Song J, Wang D, Sun X, Xiao Y, Zhang H, Xiao Y, Zhou Z, Deng T. Identification of Sorafenib as a Treatment for Type 1 Diabetes. Front Immunol 2022; 13:740805. [PMID: 35242127 PMCID: PMC8886732 DOI: 10.3389/fimmu.2022.740805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 01/21/2022] [Indexed: 11/13/2022] Open
Abstract
Th1 cell activation is considered a key mediator of the pathogenesis of type 1 diabetes. Targeting IL-12-induced Th1 cell differentiation seems to be an effective way to block the development of type 1 diabetes. However, given the critical function of Th1 in the immune system, the potential side effects hinder the application of anti-Th1 therapy in the treatment of type 1 diabetes. To identify safe anti-Th1 treatment(s), we screened the FDA-approved tyrosine kinase inhibitor (TKI) drug library using an IL-12-induced Th1 differentiation cell model. We found that among the TKIs with little effect on T cell viability, sorafenib is the top contender for the inhibition of Th1 differentiation. Treatment of NOD mice with sorafenib significantly impeded the development of type 1 diabetes and ameliorated insulitis, which coincided with a specifically decreased accumulation of Th1 cell population in the pancreas but not in peripheral immune organs. Mechanistically, sorafenib indirectly inhibited janus kinase 2 (JAK2) activity and blocked IL-12-induced phosphorylations of JAK2 and signal transducer and activator of transcription 4 (STAT4). Since sorafenib is classified as an FDA-approved drug, it serves as a preliminary lead point for additional experimentation and may be a promising therapy for type 1 diabetes in humans.
Collapse
Affiliation(s)
- Qin Zeng
- National Clinical Research Center for Metabolic Diseases, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China.,Key Laboratory of Diabetes Immunology, Ministry of Education, and Metabolic Syndrome Research Center, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Jianfeng Song
- National Clinical Research Center for Metabolic Diseases, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China.,Key Laboratory of Diabetes Immunology, Ministry of Education, and Metabolic Syndrome Research Center, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Dandan Wang
- National Clinical Research Center for Metabolic Diseases, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China.,Key Laboratory of Diabetes Immunology, Ministry of Education, and Metabolic Syndrome Research Center, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Xiaoxiao Sun
- National Clinical Research Center for Metabolic Diseases, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China.,Key Laboratory of Diabetes Immunology, Ministry of Education, and Metabolic Syndrome Research Center, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Yalun Xiao
- National Clinical Research Center for Metabolic Diseases, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China.,Key Laboratory of Diabetes Immunology, Ministry of Education, and Metabolic Syndrome Research Center, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Haowei Zhang
- National Clinical Research Center for Metabolic Diseases, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China.,Key Laboratory of Diabetes Immunology, Ministry of Education, and Metabolic Syndrome Research Center, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Yang Xiao
- National Clinical Research Center for Metabolic Diseases, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China.,Key Laboratory of Diabetes Immunology, Ministry of Education, and Metabolic Syndrome Research Center, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Zhiguang Zhou
- National Clinical Research Center for Metabolic Diseases, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China.,Key Laboratory of Diabetes Immunology, Ministry of Education, and Metabolic Syndrome Research Center, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Tuo Deng
- National Clinical Research Center for Metabolic Diseases, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China.,Key Laboratory of Diabetes Immunology, Ministry of Education, and Metabolic Syndrome Research Center, The Second Xiangya Hospital of Central South University, Changsha, China.,Clinical Immunology Center, The Second Xiangya Hospital of Central South University, Changsha, China
| |
Collapse
|
2
|
Preisser TM, da Cunha VP, Santana MP, Pereira VB, Cara DC, Souza BM, Miyoshi A. Recombinant Lactococcus lactis Carrying IL-4 and IL-10 Coding Vectors Protects against Type 1 Diabetes in NOD Mice and Attenuates Insulitis in the STZ-Induced Model. J Diabetes Res 2021; 2021:6697319. [PMID: 33604389 PMCID: PMC7872750 DOI: 10.1155/2021/6697319] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 01/21/2021] [Accepted: 01/23/2021] [Indexed: 01/01/2023] Open
Abstract
Type 1 diabetes (T1D) is an autoimmune disease that culminates in beta cell destruction in the pancreas and, subsequently, deficiency in insulin production. Cytokines play a crucial role in the development of diabetes, orchestrating the recruitment and action of immune cells, to not only destroy insulin-producing cells but also preserve them. Therefore, the aim of this study was to investigate the effect of orally administered Lactococcus lactis MG1363 FnBPA+ strains carrying plasmids encoding IL-4 and IL-10 in the streptozotocin- (STZ-) induced diabetes model and in nonobese diabetic (NOD) mice. The STZ-induced mice that were treated with combined bacterial strains carrying plasmids encoding IL-4 and IL-10 showed lower incidence of diabetes and more preserved pancreatic islets than the mice that received the individual bacterial strains. Combined administration of L. lactis MG1363 FnBPA+ (pValac::dts::IL-4) and L. lactis MG1363 FnBPA+ (pValac::IL-10) resulted in protection against diabetes in NOD mice. It was shown that the combined treatment with recombinant bacterial by oral route prevented hyperglycemia and reduced the pancreatic islets-destruction in NOD mice. In addition, increased levels of IL-4 and IL-10 in serum and pancreatic tissue revealed a systemic effect of the treatment and also favored an anti-inflammatory microenvironment. Reduced concentrations of IL-12 in pancreas were essential to the regulation of inflammation, resulting in no incidence of diabetes in treated NOD mice. Normal levels of intestinal sIgA after long-term treatment with the L. lactis strains carrying plasmids encoding IL-4 and IL-10 indicate the development of oral tolerance and corroborate the use of this potent tool of mucosal delivery. For the first time, L. lactis MG1363 FnBPA+ strains carrying eukaryotic expression vectors encoding IL-4 and IL-10 are tested in STZ-induced and NOD mouse models. Therefore, our study demonstrates this innovative strategy provides immunomodulatory potential for further investigations in T1D and other autoimmune diseases.
Collapse
MESH Headings
- Animals
- Blood Glucose/metabolism
- Colon/immunology
- Colon/metabolism
- Diabetes Mellitus, Experimental/genetics
- Diabetes Mellitus, Experimental/immunology
- Diabetes Mellitus, Experimental/metabolism
- Diabetes Mellitus, Experimental/prevention & control
- Diabetes Mellitus, Type 1/genetics
- Diabetes Mellitus, Type 1/immunology
- Diabetes Mellitus, Type 1/metabolism
- Diabetes Mellitus, Type 1/prevention & control
- Female
- Genetic Therapy
- Genetic Vectors
- Immunoglobulin A, Secretory/metabolism
- Insulin/blood
- Interleukin-10/biosynthesis
- Interleukin-10/blood
- Interleukin-10/genetics
- Interleukin-4/biosynthesis
- Interleukin-4/blood
- Interleukin-4/genetics
- Islets of Langerhans/immunology
- Islets of Langerhans/metabolism
- Islets of Langerhans/pathology
- Lactococcus lactis/genetics
- Lactococcus lactis/metabolism
- Male
- Mice, Inbred C57BL
- Mice, Inbred NOD
- Mice
Collapse
Affiliation(s)
- Tatiane M. Preisser
- Laboratory of Genetic Technology, Department of Genetics, Ecology and Evolution, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais ZIP/Post Code: 31270-901, Brazil
| | - Vanessa P. da Cunha
- Laboratory of Genetic Technology, Department of Genetics, Ecology and Evolution, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais ZIP/Post Code: 31270-901, Brazil
| | - Mariana P. Santana
- Laboratory of Genetic Technology, Department of Genetics, Ecology and Evolution, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais ZIP/Post Code: 31270-901, Brazil
| | - Vanessa B. Pereira
- Laboratory of Genetic Technology, Department of Genetics, Ecology and Evolution, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais ZIP/Post Code: 31270-901, Brazil
| | - Denise C. Cara
- Center for Gastrointestinal Biology, Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais ZIP/Post Code: 31270-901, Brazil
| | - Bianca M. Souza
- Laboratory of Genetic Technology, Department of Genetics, Ecology and Evolution, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais ZIP/Post Code: 31270-901, Brazil
| | - Anderson Miyoshi
- Laboratory of Genetic Technology, Department of Genetics, Ecology and Evolution, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais ZIP/Post Code: 31270-901, Brazil
| |
Collapse
|
3
|
Flores RR, Carbo L, Kim E, Van Meter M, De Padilla CML, Zhao J, Colangelo D, Yousefzadeh MJ, Angelini LA, Zhang L, Pola E, Vo N, Evans CH, Gambotto A, Niedernhofer LJ, Robbins PD. Adenoviral gene transfer of a single-chain IL-23 induces psoriatic arthritis-like symptoms in NOD mice. FASEB J 2019; 33:9505-9515. [PMID: 31170010 PMCID: PMC6662986 DOI: 10.1096/fj.201900420r] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 04/23/2019] [Indexed: 01/08/2023]
Abstract
Previously, we demonstrated that intratumoral delivery of adenoviral vector encoding single-chain (sc)IL-23 (Ad.scIL-23) was able to induce systemic antitumor immunity. Here, we examined the role of IL-23 in diabetes in nonobese diabetic mice. Intravenous delivery of Ad.scIL-23 did not accelerate the onset of hyperglycemia but instead resulted in the development of psoriatic arthritis. Ad.scIL-23-treated mice developed erythema, scales, and thickening of the skin, as well as intervertebral disc degeneration and extensive synovial hypertrophy and loss of articular cartilage in the knees. Immunological analysis revealed activation of conventional T helper type 17 cells and IL-17-producing γδ T cells along with a significant depletion and suppression of T cells in the pancreatic lymph nodes. Furthermore, treatment with anti-IL-17 antibody reduced joint and skin psoriatic arthritis pathologies. Thus, these Ad.scIL-23-treated mice represent a physiologically relevant model of psoriatic arthritis for understanding disease progression and for testing therapeutic approaches.-Flores, R. R., Carbo, L., Kim, E., Van Meter, M., De Padilla, C. M. L., Zhao, J., Colangelo, D., Yousefzadeh, M. J., Angelini, L. A., Zhang, L., Pola, E., Vo, N., Evans, C. H., Gambotto, A., Niedernhofer, L. J., Robbins, P. D. Adenoviral gene transfer of a single-chain IL-23 induces psoriatic arthritis-like symptoms in NOD mice.
Collapse
Affiliation(s)
- Rafael R. Flores
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, Minnesota, USA
- Institute on the Biology of Aging and Metabolism, University of Minnesota, Minneapolis, Minnesota, USA
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, Florida, USA
- Center on Aging, The Scripps Research Institute, Jupiter, Florida, USA
| | - Lana Carbo
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, Florida, USA
- Center on Aging, The Scripps Research Institute, Jupiter, Florida, USA
| | - Eun Kim
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Montina Van Meter
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, Florida, USA
- Center on Aging, The Scripps Research Institute, Jupiter, Florida, USA
| | | | - Jing Zhao
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, Florida, USA
- Center on Aging, The Scripps Research Institute, Jupiter, Florida, USA
| | - Debora Colangelo
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, Minnesota, USA
- Institute on the Biology of Aging and Metabolism, University of Minnesota, Minneapolis, Minnesota, USA
- Department of Orthopaedic Surgery, Catholic University of Rome School of Medicine, Agostino Gemelli University Hospital, Rome, Italy
| | - Matthew J. Yousefzadeh
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, Minnesota, USA
- Institute on the Biology of Aging and Metabolism, University of Minnesota, Minneapolis, Minnesota, USA
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, Florida, USA
- Center on Aging, The Scripps Research Institute, Jupiter, Florida, USA
| | - Luise A. Angelini
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, Minnesota, USA
- Institute on the Biology of Aging and Metabolism, University of Minnesota, Minneapolis, Minnesota, USA
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, Florida, USA
- Center on Aging, The Scripps Research Institute, Jupiter, Florida, USA
| | - Lei Zhang
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, Minnesota, USA
- Institute on the Biology of Aging and Metabolism, University of Minnesota, Minneapolis, Minnesota, USA
| | - Enrico Pola
- Department of Orthopaedic Surgery, Catholic University of Rome School of Medicine, Agostino Gemelli University Hospital, Rome, Italy
| | - Nam Vo
- Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | | | - Andrea Gambotto
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Laura J. Niedernhofer
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, Minnesota, USA
- Institute on the Biology of Aging and Metabolism, University of Minnesota, Minneapolis, Minnesota, USA
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, Florida, USA
- Center on Aging, The Scripps Research Institute, Jupiter, Florida, USA
| | - Paul D. Robbins
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, Minnesota, USA
- Institute on the Biology of Aging and Metabolism, University of Minnesota, Minneapolis, Minnesota, USA
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, Florida, USA
- Center on Aging, The Scripps Research Institute, Jupiter, Florida, USA
| |
Collapse
|
4
|
Wu T, Mester T, Gupta S, Sun F, Smith TJ, Douglas RS. Thyrotropin and CD40L Stimulate Interleukin-12 Expression in Fibrocytes: Implications for Pathogenesis of Thyroid-Associated Ophthalmopathy. Thyroid 2016; 26:1768-1777. [PMID: 27612658 PMCID: PMC5175425 DOI: 10.1089/thy.2016.0243] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
BACKGROUND Increased numbers of bone marrow-derived progenitor cells, known as fibrocytes, populate the peripheral circulation, orbit, and thyroid of patients with Graves' disease (GD). These cells have been implicated in the development of thyroid-associated ophthalmopathy. They can differentiate into myofibroblasts or adipocytes, produce inflammatory cytokines, and remodel tissue. This study sought to determine whether thyrotropin (TSH) and CD40 ligand (CD40L), implicated in the pathogenesis of GD, induce interleukin-12 (IL-12) in human fibrocytes. MATERIALS AND METHODS IL-12 protein concentrations and mRNA levels were measured by Luminex and real-time polymerase chain reaction, respectively. Flow cytometry assessed intracellular IL-12 concentrations. Vector containing IL-12p40 promoter was transfected into cultured fibrocytes, and promoter activity was monitored using luciferase assay. RESULTS TSH and CD40L stimulated intracellular IL-12 protein accumulation in peripheral blood fibrocytes. Inhibiting Akt and nuclear factor-κB (NF-κB) activity diminished IL-12 expression in fibrocytes, while TSH did not induce promoter activity. TSH-mediated IL-12 production required de novo synthesized proteins and augmented IL-12 mRNA stability. IL-12 production mediated by CD40L required tumor necrosis factor receptor-associated factor 6. CONCLUSION TSH and CD40L induce IL-12 expression in fibrocytes, and Akt and NF-κB mediate this activity. Given the importance of IL-12 in immune function, its production by fibrocytes may promote an inflammatory immune response and tissue remodeling in thyroid-associated ophthalmopathy.
Collapse
Affiliation(s)
- Tong Wu
- Department of Ophthalmology and Visual Sciences, University of Michigan Medical School, Ann Arbor, Michigan
- Department of Ophthalmology, Tianjin Medical University Eye Hospital, Tianjin, People's Republic of China
| | - Tünde Mester
- Department of Ophthalmology and Visual Sciences, University of Michigan Medical School, Ann Arbor, Michigan
| | - Shivani Gupta
- Department of Ophthalmology and Visual Sciences, University of Michigan Medical School, Ann Arbor, Michigan
| | - Fengyuan Sun
- Department of Ophthalmology, Tianjin Medical University Eye Hospital, Tianjin, People's Republic of China
| | - Terry J. Smith
- Department of Ophthalmology and Visual Sciences, University of Michigan Medical School, Ann Arbor, Michigan
- Division of Metabolism, Endocrinology, and Diabetes, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan
| | - Raymond S. Douglas
- Department of Ophthalmology and Visual Sciences, University of Michigan Medical School, Ann Arbor, Michigan
- Ann Arbor Veterans Administration Medical Center, Ann Arbor, Michigan
| |
Collapse
|
5
|
Lin ACC, Dissanayake D, Dhanji S, Elford AR, Ohashi PS. Different toll-like receptor stimuli have a profound impact on cytokines required to break tolerance and induce autoimmunity. PLoS One 2011; 6:e23940. [PMID: 21931625 PMCID: PMC3171407 DOI: 10.1371/journal.pone.0023940] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2011] [Accepted: 07/29/2011] [Indexed: 11/18/2022] Open
Abstract
Although toll-like receptor (TLR) signals are critical for promoting antigen presenting cell maturation, it remains unclear how stimulation via different TLRs influence dendritic cell (DC) function and the subsequent adaptive response in vivo. Furthermore, the relationship between TLR-induced cytokine production by DCs and the consequences on the induction of a functional immune response is not clear. We have established a murine model to examine whether TLR3 or TLR4 mediated DC maturation has an impact on the cytokines required to break tolerance and induce T-cell-mediated autoimmunity. Our study demonstrates that IL-12 is not absolutely required for the induction of a CD8 T-cell-mediated tissue specific immune response, but rather the requirement for IL-12 is determined by the stimuli used to mature the DCs. Furthermore, we found that IFNα is a critical pathogenic component of the cytokine milieu that circumvents the requirement for IL-12 in the induction of autoimmunity. These studies illustrate how different TLR stimuli have an impact on DC function and the induction of immunity.
Collapse
Affiliation(s)
- Albert C. C. Lin
- Campbell Family Institute for Breast Cancer Research, Ontario Cancer Institute, Toronto, Ontario, Canada
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| | - Dilan Dissanayake
- Campbell Family Institute for Breast Cancer Research, Ontario Cancer Institute, Toronto, Ontario, Canada
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| | - Salim Dhanji
- Campbell Family Institute for Breast Cancer Research, Ontario Cancer Institute, Toronto, Ontario, Canada
| | - Alisha R. Elford
- Campbell Family Institute for Breast Cancer Research, Ontario Cancer Institute, Toronto, Ontario, Canada
| | - Pamela S. Ohashi
- Campbell Family Institute for Breast Cancer Research, Ontario Cancer Institute, Toronto, Ontario, Canada
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
- * E-mail:
| |
Collapse
|
6
|
Altinova AE, Engin D, Akbay E, Akturk M, Toruner F, Ersoy R, Yetkin I, Arslan M. Association of polymorphisms in the IL-18 and IL-12 genes with susceptibility to Type 1 diabetes in Turkish patients. J Endocrinol Invest 2010; 33:451-4. [PMID: 20061784 DOI: 10.1007/bf03346623] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
BACKGROUND Recent studies have indicated that polymorphisms of the interleukin-18 (IL-18) and interleukin- 12 (IL-12) genes are associated with the development of Type 1 diabetes mellitus (T1DM) in some populations, but not all. AIM The present study was designed to examine the roles of polymorphisms in the IL-18 promoter and IL-12p40 with respect to susceptibility to T1DM in Turkish patients. SUBJECTS AND METHODS Ninety-one patients with T1DM and 87 unrelated healthy subjects were included in the study. The IL-18 polymorphisms at positions -607 and -137 were detected by a sequence-specific PCR method. The single nucleotide polymorphism in the IL-12p40 3' untranslated region (3'-UTR) at position +1188 was analyzed by the PCR-restriction fragment length polymorphism (RFPL) method. RESULTS The allelic and genotypic frequencies of the IL-18 and IL-12p40 polymorphisms did not differ significantly between subjects with T1DM and the controls (p>0.05). However, diabetic patients with the -137 (CC) genotype showed a younger onset age compared to patients with the -137 (GG) genotype (p=0.02). In addition, patients with the -607 (CC) genotype had higher levels of glycated hemoglobin (HbA1c) than patients with the -607 (AC) genotype (p=0.004). Furthermore, patients with the IL-12p40 (AC) genotype had higher HbA(1c) levels than patients with the IL-12p40 (AA) genotype (p=0.01). CONCLUSIONS The results of the present study show that the IL- 18 and IL-12p40 polymorphisms may have some effect on the onset age and deterioration of glycemic control in Turkish patients with T1DM.
Collapse
Affiliation(s)
- A E Altinova
- Department of Endocrinology and Metabolism, Gazi University Faculty of Medicine, Ankara, Turkey.
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Cho YC, You SK, Kim HJ, Cho CW, Lee IS, Kang BY. Xanthohumol inhibits IL-12 production and reduces chronic allergic contact dermatitis. Int Immunopharmacol 2010; 10:556-61. [PMID: 20144742 DOI: 10.1016/j.intimp.2010.02.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2009] [Revised: 01/26/2010] [Accepted: 02/02/2010] [Indexed: 01/06/2023]
Abstract
Xanthohumol (XN) and its related compounds were evaluated for their effects on modulating the production of interleukin (IL)-12, the most important factor driving T helper 1 immune responses. XN showed the strongest inhibitory effect on IL-12 production in macrophages stimulated by lipopolysaccharide (LPS) or LPS/interferon-gamma. Xanthohumol 4'-O-beta-D-glucopyranoside (XNG) inhibited IL-12 production less effectively than XN. Isoxanthohumol and 8-prenylnaringenin showed comparatively lower inhibitory effects on IL-12 production than XNG. (2S)-5-methoxy-8-prenylnaringenin 7-O-beta-D-glucopyranoside did not exert any effect on IL-12 production. We then tested how these compounds affected NF-kappaB binding activity to the kappaB site in the nucleus. The compounds inhibited kappaB binding in macrophages with the same potency order as IL-12 inhibition. Furthermore, we investigated whether XN, which showed the most effective reduction of IL-12 production, attenuated skin inflammation. Chronic allergic contact dermatitis, an experimental model for psoriasis, was used to determine the anti-inflammatory effects of XN in vivo. XN treatment reduced the degree of ear thickening induced by oxazolone. Taken together, XN might be effective as an anti-inflammatory agent to reduce skin inflammation by inhibiting IL-12 production.
Collapse
Affiliation(s)
- Young-Chang Cho
- College of Pharmacy & Research Institute of Drug Development, Chonnam National University, Gwangju 500-757, Republic of Korea
| | | | | | | | | | | |
Collapse
|
8
|
Wegner M, Araszkiewicz A, Pioruńska-Mikołajczak A, Zozulińska-Ziółkiewicz D, Wierusz-Wysocka B, Pioruńska-Stolzmann M. The evaluation of IL-12 concentration, PAF-AH, and PLA2 activity in patients with type 1 diabetes treated with intensive insulin therapy. Clin Biochem 2009; 42:1621-7. [DOI: 10.1016/j.clinbiochem.2009.07.023] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2009] [Revised: 06/29/2009] [Accepted: 07/17/2009] [Indexed: 12/29/2022]
|
9
|
Roisin-Bouffay C, Castellano R, Valéro R, Chasson L, Galland F, Naquet P. Mouse vanin-1 is cytoprotective for islet beta cells and regulates the development of type 1 diabetes. Diabetologia 2008; 51:1192-201. [PMID: 18463844 DOI: 10.1007/s00125-008-1017-9] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2008] [Accepted: 03/30/2008] [Indexed: 10/22/2022]
Abstract
AIMS/HYPOTHESIS Islet cell death is a key initiating and perpetuating event in type 1 diabetes and involves both immune-mediated and endogenous mechanisms. The epithelial pantetheinase vanin-1 is proinflammatory and cytoprotective via cysteamine release in some tissues. We investigated the impact of a vanin-1 deficiency on islet death and type 1 diabetes incidence. METHODS Vanin-1-deficient mice were produced and tested in drug-induced and autoimmune diabetes models. The contribution of vanin-1 to islet survival versus immune responses was evaluated using lymphocyte transfer and islet culture experiments. RESULTS The vanin-1/cysteamine pathway contributes to the protection of islet beta cells from streptozotocin-induced death in vitro and in vivo. Furthermore, vanin-1-deficient NOD mice showed a significant aggravation of diabetes, which depended upon loss of vanin-1 expression by host tissues. This increased islet fragility was accompanied by greater CD4+ insulitis without impairment of regulatory cells. Addition of cystamine, the product of pantetheinase activity, protected islets in vitro and compensated for vanin-1 deficiency in vivo. CONCLUSIONS/INTERPRETATION This study unravels a major cytoprotective role of cysteamine for islet cells and suggests that modulation of pantetheinase activity may offer alternative strategies to maintain islet cell homeostasis.
Collapse
MESH Headings
- Amidohydrolases
- Animals
- Cell Adhesion Molecules/deficiency
- Cell Adhesion Molecules/genetics
- Cell Adhesion Molecules/metabolism
- Cell Death/physiology
- Cells, Cultured
- Cystamine/pharmacology
- Diabetes Mellitus, Experimental/metabolism
- Diabetes Mellitus, Experimental/pathology
- Diabetes Mellitus, Experimental/prevention & control
- Diabetes Mellitus, Type 1/epidemiology
- Diabetes Mellitus, Type 1/metabolism
- Diabetes Mellitus, Type 1/pathology
- Disease Models, Animal
- Enzyme Inhibitors/pharmacology
- Female
- GPI-Linked Proteins
- Homeostasis/physiology
- Incidence
- Insulin/metabolism
- Insulin-Secreting Cells/metabolism
- Insulin-Secreting Cells/pathology
- Kaplan-Meier Estimate
- Male
- Mice
- Mice, Inbred BALB C
- Mice, Inbred NOD
- Mice, Mutant Strains
- T-Lymphocytes, Regulatory/pathology
- Th1 Cells/pathology
Collapse
Affiliation(s)
- C Roisin-Bouffay
- Aix Marseille Université, Faculté des Sciences de Luminy, Centre d'Immunologie de Marseille-Luminy, Marseille, France
| | | | | | | | | | | |
Collapse
|
10
|
Giarratana N, Penna G, Adorini L. Animal models of spontaneous autoimmune disease: type 1 diabetes in the nonobese diabetic mouse. Methods Mol Biol 2007; 380:285-311. [PMID: 17876100 DOI: 10.1007/978-1-59745-395-0_17] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
The nonobese diabetic (NOD) mouse represents probably the best spontaneous model for a human autoimmune disease. It has provided not only essential information on type 1 diabetes (T1D) pathogenesis, but also valuable insights into mechanisms of immunoregulation and tolerance. Importantly, it allows testing of immunointervention strategies potentially applicable to man. The fact that T1D incidence in the NOD mouse is sensitive to environmental conditions, and responds, sometimes dramatically, to immunomanipulation, does not represent a limit of the model, but is likely to render it even more similar to its human counterpart. In both cases, macrophages, dendritic cells, CD4+, CD8+, and B cells are present in the diseased islets. T1D is a polygenic disease, but, both in human and in NOD mouse T1D, the primary susceptibility gene is located within the MHC. On the other hand, T1D incidence is significantly higher in NOD females, although insulitis is similar in both sexes, whereas in humans, T1D occurs with about equal frequency in males and females. In addition, NOD mice have a more widespread autoimmune disorder, which is not the case in the majority of human T1D cases. Despite these differences, the NOD mouse remains the most representative model of human T1D, with similarities also in the putative target autoantigens, including glutamic acid decarboxylase IA-2, and insulin.
Collapse
|
11
|
Bi EG, Shi W, Zou J, Hao ZH, Li ZH, Cai D, Zhang HQ, Sun B. IL-12p40 is not required for islet allograft rejection. Acta Pharmacol Sin 2006; 27:1065-70. [PMID: 16867260 DOI: 10.1111/j.1745-7254.2006.00341.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
AIM To investigate whether IL-12p40 plays a crucial role in regulating islet allograft rejection in a streptozotocin (STZ)-induced diabetes mouse model. METHODS C57BL/6 and IL-12p40 gene knockout mice were selected as recipient mice, to which the diabetes was induced with a treatment of STZ (150-200 mg/kg) by a single ip injection. BALB/c mice were selected as donor mice and islet cells were isolated from the mice. The 500 islets were transplanted into recipient mice beneath the capsule of the left kidney. Following the islet transplantation the glucose from the mice sera was monitored and the rejection rate of islets was analyzed. RESULTS STZ could induce diabetes in the recipient mice within 1 week. After transplantation of allograft islets, the increased glucose in wild-type (WT) mice returned to normal level and was maintained for 10 d. Unexpectedly, the rejection rate of islet allograft between IL-12p40-deficient mice and WT mice was similar. CONCLUSION The results suggested that, although islet allograft rejection is believed to be Th1-cell predominant, the Th1 response inducer, IL-12 and IL-23 are not essential to induce islet allograft rejection.
Collapse
Affiliation(s)
- En-Guang Bi
- Laboratory of Molecular Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Graduate School of the Chinese Academy of Sciences, Shanghai 200031, China
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Fronhofer V, Lennartz MR, Loegering DJ. Role of PKC isoforms in the Fc(gamma)R-mediated inhibition of LPS-stimulated IL-12 secretion by macrophages. J Leukoc Biol 2005; 79:408-15. [PMID: 16330529 DOI: 10.1189/jlb.0805438] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Ligation of Fc receptors for immunoglobulin G (FcgammaRs) inhibits lipopolysaccharide (LPS)-stimulated secretion of interleukin (IL)-12 by macrophages. FcgammaR activation of protein kinase C (PKC) contributes to several functions of this receptor including phagocytosis, activation of the reduced nicotinamide adenine dinucleotide phosphate oxidase, and secretion of certain cytokines. Therefore, we tested the hypothesis that PKC mediates the FcgammaR inhibition of IL-12 secretion by macrophages. In murine macrophages, FcgammaR ligation augmented LPS-stimulated activation of PKC-alpha and PKC-delta but reduced IL-12p40 secretion. Similarly, activation of PKC with phorbol 12-myristate 13-acetate (PMA) depressed LPS-stimulated IL-12p40 secretion, and depletion of PKC augmented LPS-stimulated IL-12p40 secretion. Antisense down-regulation of PKC-delta increased LPS-stimulated IL-12p40 secretion and fully prevented the effects of FcgammaR ligation or PMA on IL-12p40 secretion. In contrast, down-regulation of PKC-epsilon blocked LPS-stimulated secretion of IL-12p40. Down-regulation of PKC-alpha had no effect on LPS-stimulated IL-12p40 secretion. The results suggest a negative role for PKC-delta and a positive role for PKC-epsilon in the regulation of LPS-stimulated IL-12p40 secretion.
Collapse
Affiliation(s)
- Van Fronhofer
- Albany Medical College, 47 New Scotland Avenue, Albany, NY 12208-3479, USA
| | | | | |
Collapse
|
13
|
Hung JT, Liao JH, Lin YC, Chang HY, Wu SF, Chang TH, Kung JT, Hsieh SL, McDevitt H, Sytwu HK. Immunopathogenic role of TH1 cells in autoimmune diabetes: Evidence from a T1 and T2 doubly transgenic non-obese diabetic mouse model. J Autoimmun 2005; 25:181-92. [PMID: 16263243 DOI: 10.1016/j.jaut.2005.08.010] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2005] [Revised: 06/11/2005] [Accepted: 08/17/2005] [Indexed: 01/17/2023]
Abstract
To improve the feasibility of in vivo monitoring of autoreactive T cells in the diabetogenic process, we generated T1 and T2 doubly transgenic non-obese diabetic (NOD) mice in which transgenic human CD90 (hCD90) is simultaneously expressed on IFN-gamma-producing cells or murine CD90.1 (mCD90.1) is expressed on IL-4-producing cells. These transgenic NOD mice develop diabetes with the same kinetics and incidence as wild type NOD mice, permitting the physiological characterization of CD4(+)hCD90(+) cells, which represent T(H)1 cells in lymphoid organs and at the site of insulitis. CD4(+)hCD90(+) cells had a higher capacity to secret IFN-gamma than CD4(+)hCD90(-) cells in an autoantigen-specific manner. Transgenic mice treated with GAD65 plasmid were protected from autoimmune diabetes, and had a lower number of CD4(+)hCD90(+) cells, confirming the pathogenic role of CD4(+)hCD90(+) cells in autoimmune diabetes. To further investigate the effect of IL-12 on the development of T(H)1 cells in autoimmune diabetes, we crossed these doubly transgenic mice to IL-12p35-deficient NOD mice. Despite severe disturbance of diabetes in p35(-/-) mice, the frequency of T(H)1 cells in these mice was slightly lower than in wild type mice. These data support the pathological role of IL-12 in autoimmune diabetes and suggest the existence an IL-12-independent pathway of T(H)1 development.
Collapse
Affiliation(s)
- Jung-Tung Hung
- Graduate Institute of Life Sciences, National Defense Medical Center, 161, Section 6, MinChuan East Road, Neihu, Taipei 114, Taiwan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Kang BY, Kim E, Kim TS. Regulatory mechanisms and their therapeutic implications of interleukin-12 production in immune cells. Cell Signal 2005; 17:665-73. [PMID: 15722191 DOI: 10.1016/j.cellsig.2004.12.010] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2004] [Accepted: 12/21/2004] [Indexed: 02/08/2023]
Abstract
Studies with neutralizing anti-interleukin (IL)-12 antibodies and IL-12-deficient mice have suggested that endogenous IL-12 plays an important role in the normal host defense against infection by a variety of intracellular microorganisms. However, IL-12 also appears to play a central role in the pathogenesis of autoimmune diseases such as multiple sclerosis or rheumatic arthritis. Therefore, it is crucial to understand how IL-12 is produced and its production is regulated at the molecular level. IL-12 production is differentially regulated through multiple pathways, which can be classified as follows: nuclear factor-kappaB (NF-kappaB) and other transcription factors, p38 mitogen-activated protein (MAP) kinase, cyclic adenosine monophosphate (cyclic AMP)-modulating molecules, cell membrane ion channels and pumps, nitric oxide (NO), and receptors. In this review we describe the regulatory mechanisms of IL-12 production in immune cells and also some agents to control IL-12 production for the treatment of immune-related diseases.
Collapse
Affiliation(s)
- Bok Yun Kang
- Department of Pharmacy, College of Pharmacy and Research Institute of Drug Development, Chonnam National University, 300 Yongbong-dong, Buk-ku, Gwangju 500-757, South Korea
| | | | | |
Collapse
|
15
|
Abstract
Either ribavirin (RBV) or cyclophosphamide (CY) can shift an immune response from Th2 toward a Th1 cytokine profile. CY is used in this role in various current cancer immunotherapy attempts but with mixed success. More potent and reliable immunoadjuvants and Th1 response biasing methods are needed. RBV is used today mainly to augment interferon-alpha treatment of hepatitis C. RBV shifts an immune response from Th2 toward Th1 more effectively than CY and may be a safe and useful adjuvant for current cancer immunotherapeutic efforts. RBV is thought to act by inhibition of tetrahydrobiopterin synthesis. Tetrahydrobiopterin is an essential cofactor for all known isoforms of nitric oxide synthase. Lowered nitric oxide favors Th1 development as high levels favor Th2 weighting.
Collapse
Affiliation(s)
- Richard E Kast
- College of Medicine, University of Vermont, Bington, VT 05401, USA.
| |
Collapse
|
16
|
Abstract
Type 1 or insulin-dependent diabetes is an autoimmune disease that causes the selective destruction of insulin-secreting beta cells in the pancreatic islets. Although this is a polygenic disease, with at least 20 genes implicated, the dominant susceptibility locus maps to the major histocompatibility complex (MHC), both in humans and in rodent models. However, in spite of progress on several fronts, the molecular pathology of autoimmune diabetes remains incompletely defined. Major areas of research include environmental trigger factors, the identification and role of beta-cell antigens in inducing and maintaining the autoimmune response, and the nature of the pathogenic and protective lymphocytes involved. In this review, we will focus on these areas to highlight recent advances in understanding the pathogenesis of autoimmune diabetes, drawing extensively on insights gained by studying the non-obese diabetic (NOD) mouse.
Collapse
Affiliation(s)
- Luciano Adorini
- Roche Milano Ricerche, Via Olgettina 58, I-20132 Milan, Italy.
| | | | | |
Collapse
|