1
|
Ren C, Carrillo ND, Cryns VL, Anderson RA, Chen M. Environmental pollutants and phosphoinositide signaling in autoimmunity. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133080. [PMID: 38091799 PMCID: PMC10923067 DOI: 10.1016/j.jhazmat.2023.133080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 11/16/2023] [Accepted: 11/22/2023] [Indexed: 02/08/2024]
Abstract
Environmental pollution stands as one of the most critical challenges affecting human health, with an estimated mortality rate linked to pollution-induced non-communicable diseases projected to range from 20% to 25%. These pollutants not only disrupt immune responses but can also trigger immunotoxicity. Phosphoinositide signaling, a pivotal regulator of immune responses, plays a central role in the development of autoimmune diseases and exhibits high sensitivity to environmental stressors. Among these stressors, environmental pollutants have become increasingly prevalent in our society, contributing to the initiation and exacerbation of autoimmune conditions. In this review, we summarize the intricate interplay between phosphoinositide signaling and autoimmune diseases within the context of environmental pollutants and contaminants. We provide an up-to-date overview of stress-induced phosphoinositide signaling, discuss 14 selected examples categorized into three groups of environmental pollutants and their connections to immune diseases, and shed light on the associated phosphoinositide signaling pathways. Through these discussions, this review advances our understanding of how phosphoinositide signaling influences the coordinated immune response to environmental stressors at a biological level. Furthermore, it offers valuable insights into potential research directions and therapeutic targets aimed at mitigating the impact of environmental pollutants on the pathogenesis of autoimmune diseases. SYNOPSIS: Phosphoinositide signaling at the intersection of environmental pollutants and autoimmunity provides novel insights for managing autoimmune diseases aggravated by pollutants.
Collapse
Affiliation(s)
- Chang Ren
- Department of Pharmacology, Joint Laboratory of Guangdong-Hong Kong Universities for Vascular Homeostasis and Diseases, School of Medicine, Southern University of Science and Technology, Shenzhen 518055, China
| | - Noah D Carrillo
- Department of Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Vincent L Cryns
- Department of Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA; University of Wisconsin Carbone Cancer Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Richard A Anderson
- University of Wisconsin Carbone Cancer Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Mo Chen
- Department of Pharmacology, Joint Laboratory of Guangdong-Hong Kong Universities for Vascular Homeostasis and Diseases, School of Medicine, Southern University of Science and Technology, Shenzhen 518055, China.
| |
Collapse
|
2
|
Baccianti F, Masson C, Delecluse S, Li Z, Poirey R, Delecluse HJ. Epstein-Barr virus infectious particles initiate B cell transformation and modulate cytokine response. mBio 2023; 14:e0178423. [PMID: 37830871 PMCID: PMC10653912 DOI: 10.1128/mbio.01784-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 08/14/2023] [Indexed: 10/14/2023] Open
Abstract
IMPORTANCE The Epstein-Barr virus efficiently infects and transforms B lymphocytes. During this process, infectious viral particles transport the viral genome to the nucleus of target cells. We show here that these complex viral structures serve additional crucial roles by activating transcription of the transforming genes encoded by the virus. We show that components of the infectious particle sequentially activate proinflammatory B lymphocyte signaling pathways that, in turn, activate viral gene expression but also cause cytokine release. However, virus infection activates expression of ZFP36L1, an RNA-binding stress protein that limits the length and the intensity of the cytokine response. Thus, the infectious particles can activate viral gene expression and initiate cellular transformation at the price of a limited immune response.
Collapse
Affiliation(s)
- Francesco Baccianti
- Pathogenesis of Virus Associated Tumors, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Unit U1074, INSERM, Heidelberg, Germany
| | - Charlène Masson
- Pathogenesis of Virus Associated Tumors, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Unit U1074, INSERM, Heidelberg, Germany
| | - Susanne Delecluse
- Pathogenesis of Virus Associated Tumors, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Unit U1074, INSERM, Heidelberg, Germany
- Nierenzentrum Heidelberg e.V., Heidelberg, Germany
- Deutsches Zentrum für Infektionsforschung (DZIF), Braunschweig, Germany
| | - Zhe Li
- Pathogenesis of Virus Associated Tumors, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Unit U1074, INSERM, Heidelberg, Germany
| | - Remy Poirey
- Pathogenesis of Virus Associated Tumors, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Unit U1074, INSERM, Heidelberg, Germany
| | - Henri-Jacques Delecluse
- Pathogenesis of Virus Associated Tumors, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Unit U1074, INSERM, Heidelberg, Germany
| |
Collapse
|
3
|
Lui WY, Bharti A, Wong NHM, Jangra S, Botelho MG, Yuen KS, Jin DY. Suppression of cGAS- and RIG-I-mediated innate immune signaling by Epstein-Barr virus deubiquitinase BPLF1. PLoS Pathog 2023; 19:e1011186. [PMID: 36802409 PMCID: PMC9983872 DOI: 10.1371/journal.ppat.1011186] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 03/03/2023] [Accepted: 02/06/2023] [Indexed: 02/23/2023] Open
Abstract
Epstein-Barr virus (EBV) has developed effective strategies to evade host innate immune responses. Here we reported on mitigation of type I interferon (IFN) production by EBV deubiquitinase (DUB) BPLF1 through cGAS-STING and RIG-I-MAVS pathways. The two naturally occurring forms of BPLF1 exerted potent suppressive effect on cGAS-STING-, RIG-I- and TBK1-induced IFN production. The observed suppression was reversed when DUB domain of BPLF1 was rendered catalytically inactive. The DUB activity of BPLF1 also facilitated EBV infection by counteracting cGAS-STING- and TBK1-mediated antiviral defense. BPLF1 associated with STING to act as an effective DUB targeting its K63-, K48- and K27-linked ubiquitin moieties. BPLF1 also catalyzed removal of K63- and K48-linked ubiquitin chains on TBK1 kinase. The DUB activity of BPLF1 was required for its suppression of TBK1-induced IRF3 dimerization. Importantly, in cells stably carrying EBV genome that encodes a catalytically inactive BPLF1, the virus failed to suppress type I IFN production upon activation of cGAS and STING. This study demonstrated IFN antagonism of BPLF1 mediated through DUB-dependent deubiquitination of STING and TBK1 leading to suppression of cGAS-STING and RIG-I-MAVS signaling.
Collapse
Affiliation(s)
- Wai-Yin Lui
- School of Biomedical Sciences, the University of Hong Kong, Pokfulam, Hong Kong
| | - Aradhana Bharti
- Faculty of Dentistry, the University of Hong Kong, Sai Yin Pun, Hong Kong
| | - Nok-Hei Mickey Wong
- School of Biomedical Sciences, the University of Hong Kong, Pokfulam, Hong Kong
| | - Sonia Jangra
- Faculty of Dentistry, the University of Hong Kong, Sai Yin Pun, Hong Kong
| | - Michael G. Botelho
- Faculty of Dentistry, the University of Hong Kong, Sai Yin Pun, Hong Kong
| | - Kit-San Yuen
- School of Biomedical Sciences, the University of Hong Kong, Pokfulam, Hong Kong
- School of Nursing, Tung Wah College, Kowloon, Hong Kong
- * E-mail: (K-SY); (D-YJ)
| | - Dong-Yan Jin
- School of Biomedical Sciences, the University of Hong Kong, Pokfulam, Hong Kong
- * E-mail: (K-SY); (D-YJ)
| |
Collapse
|
4
|
Lymphotropic Viruses: Chronic Inflammation and Induction of Cancers. BIOLOGY 2020; 9:biology9110390. [PMID: 33182552 PMCID: PMC7697807 DOI: 10.3390/biology9110390] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 11/04/2020] [Accepted: 11/06/2020] [Indexed: 12/18/2022]
Abstract
Inflammation induced by transcription factors, including Signal Transducers and Activators of Transcription (STATs) and NF-κB, in response to microbial pathogenic infections and ligand dependent receptors stimulation are critical for controlling infections. However, uncontrolled inflammation induced by these transcription factors could lead to immune dysfunction, persistent infection, inflammatory related diseases and the development of cancers. Although the induction of innate immunity and inflammation in response to viral infection is important to control virus replication, its effects can be modulated by lymphotropic viruses including human T-cell leukemia virus type 1 (HTLV-1), Κaposi's sarcoma herpesvirus (KSHV), and Epstein Barr virus (EBV) during de novo infection as well as latent infection. These lymphotropic viruses persistently activate JAK-STAT and NF-κB pathways. Long-term STAT and NF-κB activation by these viruses leads to the induction of chronic inflammation, which can support the persistence of these viruses and promote virus-mediated cancers. Here, we review how HTLV-1, KSHV and EBV hijack the function of host cell surface molecules (CSMs), which are involved in the regulation of chronic inflammation, innate and adaptive immune responses, cell death and the restoration of tissue homeostasis. Thus, better understanding of CSMs-mediated chronic activation of STATs and NF-κB pathways in lymphotropic virus-infected cells may pave the way for therapeutic intervention in malignancies caused by lymphotropic viruses.
Collapse
|
5
|
Peng Y, Li JZ, You M, Murr MM. Roux-en-Y gastric bypass improves glucose homeostasis, reduces oxidative stress and inflammation in livers of obese rats and in Kupffer cells via an AMPK-dependent pathway. Surgery 2017; 162:59-67. [PMID: 28291540 DOI: 10.1016/j.surg.2017.01.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2010] [Revised: 01/08/2017] [Accepted: 01/09/2017] [Indexed: 02/07/2023]
Abstract
BACKGROUND Oxidative stress and inflammation are implicated in the pathogenesis of steatohepatitis. We hypothesize that Roux-en-Y gastric bypass reduces oxidative stress and inflammation in the liver of obese rats via activation of AMPK-α. METHODS Obese Sprague-Dawley male rats underwent either sham operation or Roux-en-Y gastric bypass. Hepatic TNF-α, NF-κB, IRS-2, PI3 kinase, PKC-ζ, NOX2, and AMPK-α were measured. Mechanistic studies were done in a rat Kupffer cell line (RKC1) that was treated with free fatty acids to mimic lipotoxicity and then transfected with AMPK-α siRNA. Reactive oxygen species, TNF-α, NF-κB, AMPK-α, p-AMPK-α, PPAR-γ, and NOX2 were measured. A t test was used. RESULTS Roux-en-Y gastric bypass lowered nonfasting serum glucose, improved the glucose tolerance test, and induced IRS2/PI3 kinase interaction. Additionally, Roux-en-Y gastric bypass decreased hepatic NOX2, PKC-ζ, TNF-α expression and activation of NF-κB. Free fatty acids increased reactive oxygen species, TNF-α protein, NOX2 protein, and activated NF-κB. Rosiglitazone attenuated the free fatty acids-induced increase in reactive oxygen species, TNF-α, NOX2, and NF-κB; blocking AMPK-α by siRNA abolished the effects of rosiglitazone. CONCLUSION Roux-en-Y gastric bypass exhibits antidiabetic properties and is associated with downregulation of proinflammation genes and oxidative stress in the liver and within Kupffer cells via activation of AMPK-α.
Collapse
Affiliation(s)
- Yanhua Peng
- Department of Surgery, University of South Florida, Tampa, FL
| | - James Zongyu Li
- Department of Surgery, University of South Florida, Tampa, FL
| | - Min You
- Department of Molecular Pharmacology and Physiology, University of South Florida, Tampa, FL
| | - Michel M Murr
- Department of Surgery, University of South Florida, Tampa, FL; Department of Molecular Pharmacology and Physiology, University of South Florida, Tampa, FL.
| |
Collapse
|
6
|
Farina A, Peruzzi G, Lacconi V, Lenna S, Quarta S, Rosato E, Vestri AR, York M, Dreyfus DH, Faggioni A, Morrone S, Trojanowska M, Farina GA. Epstein-Barr virus lytic infection promotes activation of Toll-like receptor 8 innate immune response in systemic sclerosis monocytes. Arthritis Res Ther 2017; 19:39. [PMID: 28245863 PMCID: PMC5331713 DOI: 10.1186/s13075-017-1237-9] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Accepted: 01/16/2017] [Indexed: 01/15/2023] Open
Abstract
Background Monocytes/macrophages are activated in several autoimmune diseases, including systemic sclerosis (scleroderma; SSc), with increased expression of interferon (IFN)-regulatory genes and inflammatory cytokines, suggesting dysregulation of the innate immune response in autoimmunity. In this study, we investigated whether the lytic form of Epstein-Barr virus (EBV) infection (infectious EBV) is present in scleroderma monocytes and contributes to their activation in SSc. Methods Monocytes were isolated from peripheral blood mononuclear cells (PBMCs) depleted of the CD19+ cell fraction, using CD14/CD16 negative-depletion. Circulating monocytes from SSc and healthy donors (HDs) were infected with EBV. Gene expression of innate immune mediators were evaluated in EBV-infected monocytes from SSc and HDs. Involvement of Toll-like receptor (TLR)8 in viral-mediated TLR8 response was investigated by comparing the TLR8 expression induced by infectious EBV to the expression stimulated by CL075/TLR8/agonist-ligand in the presence of TLR8 inhibitor in THP-1 cells. Results Infectious EBV strongly induced TLR8 expression in infected SSc and HD monocytes in vitro. Markers of activated monocytes, such as IFN-regulated genes and chemokines, were upregulated in SSc- and HD-EBV-infected monocytes. Inhibiting TLR8 expression reduced virally induced TLR8 in THP-1 infected cells, demonstrating that innate immune activation by infectious EBV is partially dependent on TLR8. Viral mRNA and proteins were detected in freshly isolated SSc monocytes. Microarray analysis substantiated the evidence of an increased IFN signature and altered level of TLR8 expression in SSc monocytes carrying infectious EBV compared to HD monocytes. Conclusion This study provides the first evidence of infectious EBV in monocytes from patients with SSc and links EBV to the activation of TLR8 and IFN innate immune response in freshly isolated SSc monocytes. This study provides the first evidence of EBV replication activating the TLR8 molecular pathway in primary monocytes. Immunogenicity of infectious EBV suggests a novel mechanism mediating monocyte inflammation in SSc, by which EBV triggers the innate immune response in infected cells. Electronic supplementary material The online version of this article (doi:10.1186/s13075-017-1237-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Antonella Farina
- Rheumatology, Boston University School of Medicine, Arthritis Center, 72 E. Concord Street, E-5, Boston, MA, 02118, USA.,Department of Experimental Medicine, Sapienza University, Rome, Italy
| | | | - Valentina Lacconi
- Rheumatology, Boston University School of Medicine, Arthritis Center, 72 E. Concord Street, E-5, Boston, MA, 02118, USA
| | - Stefania Lenna
- Rheumatology, Boston University School of Medicine, Arthritis Center, 72 E. Concord Street, E-5, Boston, MA, 02118, USA
| | - Silvia Quarta
- Department of Clinical Medicine, Sapienza University, Rome, Italy
| | - Edoardo Rosato
- Department of Clinical Medicine, Sapienza University, Rome, Italy
| | | | - Michael York
- Rheumatology, Boston University School of Medicine, Arthritis Center, 72 E. Concord Street, E-5, Boston, MA, 02118, USA
| | | | - Alberto Faggioni
- Department of Experimental Medicine, Sapienza University, Rome, Italy
| | - Stefania Morrone
- Department of Experimental Medicine, Sapienza University, Rome, Italy
| | - Maria Trojanowska
- Rheumatology, Boston University School of Medicine, Arthritis Center, 72 E. Concord Street, E-5, Boston, MA, 02118, USA
| | - G Alessandra Farina
- Rheumatology, Boston University School of Medicine, Arthritis Center, 72 E. Concord Street, E-5, Boston, MA, 02118, USA.
| |
Collapse
|
7
|
Epstein-Barr Virus BZLF1-Mediated Downregulation of Proinflammatory Factors Is Essential for Optimal Lytic Viral Replication. J Virol 2015; 90:887-903. [PMID: 26537683 DOI: 10.1128/jvi.01921-15] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Accepted: 10/19/2015] [Indexed: 12/13/2022] Open
Abstract
UNLABELLED Elevated secretion of inflammatory factors is associated with latent Epstein-Barr virus (EBV) infection and the pathology of EBV-associated diseases; however, knowledge of the inflammatory response and its biological significance during the lytic EBV cycle remains elusive. Here, we demonstrate that the immediate early transcriptional activator BZLF1 suppresses the proinflammatory factor tumor necrosis factor alpha (TNF-α) by binding to the promoter of TNF-α and preventing NF-κB activation. A BZLF1Δ207-210 mutant with a deletion of 4 amino acids (aa) in the protein-protein binding domain was not able to inhibit the proinflammatory factors TNF-α and gamma interferon (IFN-γ) and reduced viral DNA replication with complete transcriptional activity during EBV lytic gene expression. TNF-α depletion restored the viral replication mediated by BZLF1Δ207-210. Furthermore, a combination of TNF-α- and IFN-γ-neutralizing antibodies recovered BZLF1Δ207-210-mediated viral replication, indicating that BZLF1 attenuates the antiviral response to aid optimal lytic replication primarily through the inhibition of TNF-α and IFN-γ secretion during the lytic cycle. These results suggest that EBV BZLF1 attenuates the proinflammatory responses to facilitate viral replication. IMPORTANCE The proinflammatory response is an antiviral and anticancer strategy following the complex inflammatory phenotype. Latent Epstein-Barr virus (EBV) infection strongly correlates with an elevated secretion of inflammatory factors in a variety of severe diseases, while the inflammatory responses during the lytic EBV cycle have not been established. Here, we demonstrate that BZLF1 acts as a transcriptional suppressor of the inflammatory factors TNF-α and IFN-γ and confirm that BZLF1-facilitated escape from the TNF-α and IFN-γ response during the EBV lytic life cycle is required for optimal viral replication. This finding implies that the EBV lytic cycle employs a distinct strategy to evade the antiviral inflammatory response.
Collapse
|
8
|
Shen Y, Zhang S, Sun R, Wu T, Qian J. Understanding the interplay between host immunity and Epstein-Barr virus in NPC patients. Emerg Microbes Infect 2015; 4:e20. [PMID: 26038769 PMCID: PMC4395660 DOI: 10.1038/emi.2015.20] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Revised: 12/22/2014] [Accepted: 02/23/2015] [Indexed: 12/23/2022]
Abstract
Epstein-Barr virus (EBV) has been used as a paradigm for studying host-virus interactions, not only because of its importance as a human oncogenic virus associated with several malignancies including nasopharyngeal carcinoma (NPC) but also owing to its sophisticated strategies to subvert the host antiviral responses. An understanding of the interplay between EBV and NPC is critical for the development of EBV-targeted immunotherapy. Here, we summarize the current knowledge regarding the host immune responses and EBV immune evasion mechanisms in the context of NPC.
Collapse
Affiliation(s)
- Yong Shen
- Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, The Second Affiliated Hospital, Cancer Institute, Zhejiang University School of Medicine , Hangzhou 310009, Zhejiang Province, China ; ZJU-UCLA Joint Center for Medical Education and Research, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University School of Medicine , Hangzhou 310058, Zhejiang Province, China
| | - Suzhan Zhang
- Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, The Second Affiliated Hospital, Cancer Institute, Zhejiang University School of Medicine , Hangzhou 310009, Zhejiang Province, China ; ZJU-UCLA Joint Center for Medical Education and Research, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University School of Medicine , Hangzhou 310058, Zhejiang Province, China
| | - Ren Sun
- Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, The Second Affiliated Hospital, Cancer Institute, Zhejiang University School of Medicine , Hangzhou 310009, Zhejiang Province, China ; ZJU-UCLA Joint Center for Medical Education and Research, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University School of Medicine , Hangzhou 310058, Zhejiang Province, China ; Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California at Los Angeles , Los Angeles, California 90095, USA
| | - Tingting Wu
- Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, The Second Affiliated Hospital, Cancer Institute, Zhejiang University School of Medicine , Hangzhou 310009, Zhejiang Province, China ; ZJU-UCLA Joint Center for Medical Education and Research, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University School of Medicine , Hangzhou 310058, Zhejiang Province, China ; Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California at Los Angeles , Los Angeles, California 90095, USA
| | - Jing Qian
- ZJU-UCLA Joint Center for Medical Education and Research, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University School of Medicine , Hangzhou 310058, Zhejiang Province, China ; Research Center of Infection and Immunity, Zhejiang University School of Medicine , Hangzhou 310058, Zhejiang Province, China
| |
Collapse
|
9
|
Analysis of host gene expression changes reveals distinct roles for the cytoplasmic domain of the Epstein-Barr virus receptor/CD21 in B-cell maturation, activation, and initiation of virus infection. J Virol 2014; 88:5559-77. [PMID: 24600013 DOI: 10.1128/jvi.03099-13] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
UNLABELLED Epstein-Barr virus (EBV) attachment to human CD21 on the B-cell surface initiates infection. Whether CD21 is a simple tether or conveys vital information to the cell interior for production of host factors that promote infection of primary B cells is controversial, as the cytoplasmic fragment of CD21 is short, though highly conserved. The ubiquity of CD21 on normal B cells, the diversity of this population, and the well-known resistance of primary B cells to gene transfer technologies have all impeded resolution of this question. To uncover the role(s) of the CD21 cytoplasmic domain during infection initiation, the full-length receptor (CD21=CR), a mutant lacking the entire cytoplasmic tail (CT), and a control vector (NEO) were stably expressed in two pre-B-cell lines that lack endogenous receptor. Genome-wide transcriptional analysis demonstrated that stable CD21 surface expression alone (either CR or CT) produced multiple independent changes in gene expression, though both dramatically decreased class I melanoma-associated antigen (MAGE) family RNAs and upregulated genes associated with B-cell differentiation (e.g., C2TA, HLA-II, IL21R, MIC2, CD48, and PTPRCAP/CD45-associated protein). Temporal analysis spanning 72 h revealed that not only CR- but also CT-expressing lines initiated latency. In spite of this, the number and spectrum of transcripts altered in CR- compared with CT-bearing lines at 1 h after infection further diverged. Differential modulation of immediate early cellular transcripts (e.g., c-Jun and multiple histones), both novel and previously linked to CD21-initiated signaling, as well as distinct results from pathway analyses support a separate role for the cytoplasmic domain in initiation of intracellular signals. IMPORTANCE Membrane proteins that mediate virus attachment tether virus particles to the cell surface, initiating infection. In addition, upon virus interaction such proteins may transmit signals to the interior of the cell that support subsequent steps in the infection process. Here we show that expression of the Epstein-Barr virus B-cell attachment receptor, CD21, in B cells that lack this receptor results in significant changes in gene expression, both before and rapidly following EBV-CD21 interaction. These changes translate into major signaling pathway alterations that are predicted to support stable infection.
Collapse
|
10
|
Lerner AM, Ariza ME, Williams M, Jason L, Beqaj S, Fitzgerald JT, Lemeshow S, Glaser R. Antibody to Epstein-Barr virus deoxyuridine triphosphate nucleotidohydrolase and deoxyribonucleotide polymerase in a chronic fatigue syndrome subset. PLoS One 2012; 7:e47891. [PMID: 23155374 PMCID: PMC3498272 DOI: 10.1371/journal.pone.0047891] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2012] [Accepted: 09/17/2012] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND A defined diagnostic panel differentiated patients who had been diagnosed with chronic fatigue syndrome (CFS), based upon Fukuda/Carruthers criteria. This diagnostic panel identified an Epstein-Barr virus (EBV) subset of patients (6), excluding for the first time other similar "clinical" conditions such as cytomegalovirus (CMV), human herpesvirus 6 (HHV6), babesiosis, ehrlichiosis, borreliosis, Mycoplasma pneumoniae, Chlamydia pneumoniae, and adult rheumatic fever, which may be mistakenly called CFS. CFS patients were treated with valacyclovir (14.3 mg/kg q6h) for ≥ 12 months. Each patient improved, based upon the Functional Activity Appraisal: Energy Index Score Healthcare Worker Assessment (EIPS), which is a validated (FSS-9), item scale with high degree of internal consistency measured by Cronbach's alpha. METHODS Antibody to EBV viral capsid antigen (VCA) IgM, EBV Diffuse Early Antigen EA(D), and neutralizing antibodies against EBV-encoded DNA polymerase and EBV-encoded dUTPase were assayed serially approximately every three months for 13-16 months from sera obtained from patients with CFS (6) and from sera obtained from twenty patients who had no history of CFS. RESULTS Antibodies to EBV EA(D) and neutralizing antibodies against the encoded-proteins EBV DNA polymerase and deoxyuridine triphosphate nucleotidohydrolase (dUTPase) were present in the EBV subset CFS patients. Of the sera samples obtained from patients with CFS 93.9% were positive for EA(D), while 31.6% of the control patients were positive for EBV EA(D). Serum samples were positive for neutralizing antibodies against the EBV-encoded dUTPase (23/52; 44.2%) and DNA polymerase (41/52; 78.8%) in EBV subset CFS patients, but negative in sera of controls. CONCLUSIONS There is prolonged elevated antibody level against the encoded proteins EBV dUTPase and EBV DNA polymerase in a subset of CFS patients, suggesting that this antibody panel could be used to identify these patients, if these preliminary findings are corroborated by studies with a larger number of EBV subset CFS patients.
Collapse
Affiliation(s)
- A Martin Lerner
- Department of Medicine, Oakland University William Beaumont School of Medicine, Rochester, Michigan, United States of America.
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Mameli G, Poddighe L, Mei A, Uleri E, Sotgiu S, Serra C, Manetti R, Dolei A. Expression and activation by Epstein Barr virus of human endogenous retroviruses-W in blood cells and astrocytes: inference for multiple sclerosis. PLoS One 2012; 7:e44991. [PMID: 23028727 PMCID: PMC3459916 DOI: 10.1371/journal.pone.0044991] [Citation(s) in RCA: 141] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2012] [Accepted: 08/15/2012] [Indexed: 11/20/2022] Open
Abstract
Background Proposed co-factors triggering the pathogenesis of multiple sclerosis (MS) are the Epstein Barr virus (EBV), and the potentially neuropathogenic MSRV (MS-associated retrovirus) and syncytin-1, of the W family of human endogenous retroviruses. Methodology/Principal Findings In search of links, the expression of HERV-W/MSRV/syncytin-1, with/without exposure to EBV or to EBV glycoprotein350 (EBVgp350), was studied on peripheral blood mononuclear cells (PBMC) from healthy volunteers and MS patients, and on astrocytes, by discriminatory env-specific RT-PCR assays, and by flow cytometry. Basal expression of HERV-W/MSRV/syncytin-1 occurs in astrocytes and in monocytes, NK, and B, but not in T cells. This uneven expression is amplified in untreated MS patients, and dramatically reduced during therapy. In astrocytes, EBVgp350 stimulates the expression of HERV-W/MSRV/syncytin-1, with requirement of the NF-κB pathway. In EBVgp350-treated PBMC, MSRVenv and syncytin-1 transcription is activated in B cells and monocytes, but not in T cells, nor in the highly expressing NK cells. The latter cells, but not the T cells, are activated by proinflammatory cytokines. Conclusions/Significance In vitro EBV activates the potentially immunopathogenic and neuropathogenic HERV-W/MSRV/syncytin-1, in cells deriving from blood and brain. In vivo, pathogenic outcomes would depend on abnormal situations, as in late EBV primary infection, that is often symptomatic, or/and in the presence of particular host genetic backgrounds. In the blood, HERV-Wenv activation might induce immunopathogenic phenomena linked to its superantigenic properties. In the brain, toxic mechanisms against oligodendrocytes could be established, inducing inflammation, demyelination and axonal damage. Local stimulation by proinflammatory cytokines and other factors might activate further HERV-Ws, contributing to the neuropathogenity. In MS pathogenesis, a possible model could include EBV as initial trigger of future MS, years later, and HERV-W/MSRV/syncytin-1 as actual contributor to MS pathogenicity, in striking parallelism with disease behaviour.
Collapse
Affiliation(s)
- Giuseppe Mameli
- Department of Biomedical Sciences and Centre of Excellence for Biotechnology Development and Biodiversity Research, University of Sassari, Sassari, Italy
| | - Luciana Poddighe
- Department of Biomedical Sciences and Centre of Excellence for Biotechnology Development and Biodiversity Research, University of Sassari, Sassari, Italy
| | - Alessandra Mei
- Department of Biomedical Sciences and Centre of Excellence for Biotechnology Development and Biodiversity Research, University of Sassari, Sassari, Italy
| | - Elena Uleri
- Department of Biomedical Sciences and Centre of Excellence for Biotechnology Development and Biodiversity Research, University of Sassari, Sassari, Italy
| | - Stefano Sotgiu
- Department of Neurosciences and MIS, University of Sassari, Sassari, Italy
| | - Caterina Serra
- Department of Biomedical Sciences and Centre of Excellence for Biotechnology Development and Biodiversity Research, University of Sassari, Sassari, Italy
| | - Roberto Manetti
- Department of Clinical, Experimental and Oncological Medicine, University of Sassari, Sassari, Italy
| | - Antonina Dolei
- Department of Biomedical Sciences and Centre of Excellence for Biotechnology Development and Biodiversity Research, University of Sassari, Sassari, Italy
- * E-mail:
| |
Collapse
|
12
|
Rodríguez-Martín S, Kropp KA, Wilhelmi V, Lisnic VJ, Hsieh WY, Blanc M, Livingston A, Busche A, Tekotte H, Messerle M, Auer M, Fraser I, Jonjic S, Angulo A, Reddehase MJ, Ghazal P. Ablation of the regulatory IE1 protein of murine cytomegalovirus alters in vivo pro-inflammatory TNF-alpha production during acute infection. PLoS Pathog 2012; 8:e1002901. [PMID: 22952450 PMCID: PMC3431344 DOI: 10.1371/journal.ppat.1002901] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2012] [Accepted: 07/27/2012] [Indexed: 12/24/2022] Open
Abstract
Little is known about the role of viral genes in modulating host cytokine responses. Here we report a new functional role of the viral encoded IE1 protein of the murine cytomegalovirus in sculpting the inflammatory response in an acute infection. In time course experiments of infected primary macrophages (MΦs) measuring cytokine production levels, genetic ablation of the immediate-early 1 (ie1) gene results in a significant increase in TNFα production. Intracellular staining for cytokine production and viral early gene expression shows that TNFα production is highly associated with the productively infected MΦ population of cells. The ie1- dependent phenotype of enhanced MΦ TNFα production occurs at both protein and RNA levels. Noticeably, we show in a series of in vivo infection experiments that in multiple organs the presence of ie1 potently inhibits the pro-inflammatory cytokine response. From these experiments, levels of TNFα, and to a lesser extent IFNβ, but not the anti-inflammatory cytokine IL10, are moderated in the presence of ie1. The ie1- mediated inhibition of TNFα production has a similar quantitative phenotype profile in infection of susceptible (BALB/c) and resistant (C57BL/6) mouse strains as well as in a severe immuno-ablative model of infection. In vitro experiments with infected macrophages reveal that deletion of ie1 results in increased sensitivity of viral replication to TNFα inhibition. However, in vivo infection studies show that genetic ablation of TNFα or TNFRp55 receptor is not sufficient to rescue the restricted replication phenotype of the ie1 mutant virus. These results provide, for the first time, evidence for a role of IE1 as a regulator of the pro-inflammatory response and demonstrate a specific pathogen gene capable of moderating the host production of TNFα in vivo. The suppression of the production rather than the blockage of action of the potent inflammatory mediator TNFα is a particular hallmark of anti-TNFα mechanisms associated with microbial and parasitic infections. Whether this mode of counter-regulation is an important feature of infection by viruses is not clear. Also, it remains to be determined whether a specific pathogen gene in the context of an infection in vivo is capable of modulating levels of TNFα production. In this study we disclose a virus-mediated moderation of TNFα production, dependent on the ie1 gene of murine cytomegalovirus (MCMV). The ie1 gene product IE1 is a well-characterized nuclear protein capable of altering levels of host and viral gene expression although its biological role in the context of a natural infection is to date unknown. We provide evidence showing that ie1 is associated with a moderated pro-inflammatory cytokine response, in particular with TNFα production. Further, we show that the viral moderation of this cytokine is not only readily apparent in vitro but also in the natural host. The identification of a viral gene responsible for this mode of regulation in vivo may have therapeutic potential in the future in both anti-viral and anti-inflammatory strategies.
Collapse
Affiliation(s)
- Sara Rodríguez-Martín
- Division of Pathway Medicine and Centre for Infectious Diseases, University of Edinburgh, Edinburgh, United Kingdom
| | - Kai Alexander Kropp
- Division of Pathway Medicine and Centre for Infectious Diseases, University of Edinburgh, Edinburgh, United Kingdom
| | - Vanessa Wilhelmi
- Institute for Virology, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Vanda Juranic Lisnic
- Department of Histology and Embryology/Center for Proteomics, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | - Wei Yuan Hsieh
- Division of Pathway Medicine and Centre for Infectious Diseases, University of Edinburgh, Edinburgh, United Kingdom
| | - Mathieu Blanc
- Division of Pathway Medicine and Centre for Infectious Diseases, University of Edinburgh, Edinburgh, United Kingdom
| | - Andrew Livingston
- Division of Pathway Medicine and Centre for Infectious Diseases, University of Edinburgh, Edinburgh, United Kingdom
| | - Andreas Busche
- Department of Virology, Hannover Medical School, Hannover, Germany
| | - Hille Tekotte
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, Edinburgh, United Kingdom
| | - Martin Messerle
- Department of Virology, Hannover Medical School, Hannover, Germany
| | - Manfred Auer
- University of Edinburgh, School of Biological Sciences (CSE) and School of Biomedical Sciences (CMVM), Edinburgh, United Kingdom
| | - Iain Fraser
- Laboratory of Systems Biology, National Institution of Allergy and Infectious Disease, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Stipan Jonjic
- Department of Histology and Embryology/Center for Proteomics, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | - Ana Angulo
- Institut d'Investigacions Biomediques August Pi i Sunyer, Barcelona, Spain
| | - Matthias J. Reddehase
- Institute for Virology, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Peter Ghazal
- Division of Pathway Medicine and Centre for Infectious Diseases, University of Edinburgh, Edinburgh, United Kingdom
- * E-mail:
| |
Collapse
|
13
|
Herpes simplex virus glycoproteins gH/gL and gB bind Toll-like receptor 2, and soluble gH/gL is sufficient to activate NF-κB. J Virol 2012; 86:6555-62. [PMID: 22496225 DOI: 10.1128/jvi.00295-12] [Citation(s) in RCA: 133] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A number of sentinels sense incoming herpes simplex virus (HSV) virions and initiate an immediate innate response. The first line of defense at the cell surface is TLR2 (Toll-like receptor 2), whose signature signaling activity leads to activation of the key transcription factor NF-κB. We report that the HSV pathogen-associated molecular patterns for TLR2 are the virion glycoproteins gH/gL and gB, which constitute the conserved fusion core apparatus across the members of the Herpesviridae family. Specifically, virions devoid singly of one of essential fusion glycoproteins (gD, gB, or gH null), able to attach to cells but defective in fusion/entry, were sufficient to elicit the first wave of NF-κB response to HSV. The most effective were the gD-null virions, positive for gH/gL and gB. A soluble form of gB, truncated upstream of the transmembrane sequence (gB(730t-st)), was produced in human cells and purified by means of a Strep tag. gH/gL and gB were each able to physically interact with TLR2 in coimmunoprecipitation assays, one independently of the other, yet gH(t-st)/gL, but not gB(730t-st), elicited an NF-κB response. Thus, whereas both HSV gH/gL and gB are ligands to TLR2, only gH/gL is sufficient to initiate a signaling cascade which leads to NF-κB activation.
Collapse
|
14
|
Genes, epigenetic regulation and environmental factors: which is the most relevant in developing autoimmune diseases? Autoimmun Rev 2011; 11:604-9. [PMID: 22041580 DOI: 10.1016/j.autrev.2011.10.022] [Citation(s) in RCA: 160] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Autoimmune diseases such as rheumatoid arthritis, systemic lupus erythematosus, multiple sclerosis and inflammatory bowel disease, have complex pathogeneses and likely multifactorial etiologies. The current paradigm for understanding their development is that the disease is triggered in genetically-susceptible individuals by exposure to environmental factors. Some of these environmental factors have been specifically identified, while others are hypothesized and not yet proven, and it is likely that most have yet to be identified. One interesting hypothesis is that environmental effects on immune responses could be mediated by changes in epigenetic regulation. Major mechanisms of epigenetic gene regulation include DNA methylation and histone modification. In these cases, gene expression is modified without involving changes in DNA sequence. Epigenetics is a new and interesting research field in autoimmune diseases. We review the roles of genetic factors, epigenetic regulation and the most studied environmental risk factors such as cigarette smoke, crystalline silica, Epstein-Barr virus, and reproductive hormones in the pathogenesis of autoimmune disease.
Collapse
|
15
|
Söllner J, Heinzel A, Summer G, Fechete R, Stipkovits L, Szathmary S, Mayer B. Concept and application of a computational vaccinology workflow. Immunome Res 2010; 6 Suppl 2:S7. [PMID: 21067549 PMCID: PMC2981879 DOI: 10.1186/1745-7580-6-s2-s7] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The last years have seen a renaissance of the vaccine area, driven by clinical needs in infectious diseases but also chronic diseases such as cancer and autoimmune disorders. Equally important are technological improvements involving nano-scale delivery platforms as well as third generation adjuvants. In parallel immunoinformatics routines have reached essential maturity for supporting central aspects in vaccinology going beyond prediction of antigenic determinants. On this basis computational vaccinology has emerged as a discipline aimed at ab-initio rational vaccine design.Here we present a computational workflow for implementing computational vaccinology covering aspects from vaccine target identification to functional characterization and epitope selection supported by a Systems Biology assessment of central aspects in host-pathogen interaction. We exemplify the procedures for Epstein Barr Virus (EBV), a clinically relevant pathogen causing chronic infection and suspected of triggering malignancies and autoimmune disorders. RESULTS We introduce pBone/pView as a computational workflow supporting design and execution of immunoinformatics workflow modules, additionally involving aspects of results visualization, knowledge sharing and re-use. Specific elements of the workflow involve identification of vaccine targets in the realm of a Systems Biology assessment of host-pathogen interaction for identifying functionally relevant targets, as well as various methodologies for delineating B- and T-cell epitopes with particular emphasis on broad coverage of viral isolates as well as MHC alleles.Applying the workflow on EBV specifically proposes sequences from the viral proteins LMP2, EBNA2 and BALF4 as vaccine targets holding specific B- and T-cell epitopes promising broad strain and allele coverage. CONCLUSION Based on advancements in the experimental assessment of genomes, transcriptomes and proteomes for both, pathogen and (human) host, the fundaments for rational design of vaccines have been laid out. In parallel, immunoinformatics modules have been designed and successfully applied for supporting specific aspects in vaccine design. Joining these advancements, further complemented by novel vaccine formulation and delivery aspects, have paved the way for implementing computational vaccinology for rational vaccine design tackling presently unmet vaccine challenges.
Collapse
Affiliation(s)
- Johannes Söllner
- emergentec biodevelopment GmbH, Rathausstrasse 5/3, 1010 Vienna, Austria
| | - Andreas Heinzel
- emergentec biodevelopment GmbH, Rathausstrasse 5/3, 1010 Vienna, Austria
- University of Applied Sciences, Softwarepark 11, 4232 Hagenberg, Austria
| | - Georg Summer
- University of Applied Sciences, Softwarepark 11, 4232 Hagenberg, Austria
| | - Raul Fechete
- emergentec biodevelopment GmbH, Rathausstrasse 5/3, 1010 Vienna, Austria
| | | | - Susan Szathmary
- Galenbio Kft., Erdőszél köz 21, 1037 Budapest, Hungary and GalenBio, Inc., 5922 Farnsworth Ct, Carlsbad, CA 92008, USA
| | - Bernd Mayer
- emergentec biodevelopment GmbH, Rathausstrasse 5/3, 1010 Vienna, Austria
- Institute for Theoretical Chemistry, University of Vienna, Währinger Strasse 17, 1090 Vienna, Austria
| |
Collapse
|
16
|
MacLeod IJ, Minson T. Binding of herpes simplex virus type-1 virions leads to the induction of intracellular signalling in the absence of virus entry. PLoS One 2010; 5:e9560. [PMID: 20221426 PMCID: PMC2832691 DOI: 10.1371/journal.pone.0009560] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2009] [Accepted: 02/16/2010] [Indexed: 12/31/2022] Open
Abstract
The envelope of HSV-1 contains a number of glycoproteins, four of which are essential for virus entry. Virus particles lacking gB, gD, gH or gL are entry-defective, although these viruses retain the ability to bind to the plasma membrane via the remaining glycoproteins. Soluble forms of gD have been shown to trigger the nuclear translocation of the NF-kappaB transcriptional complex in addition to stimulating the production of Type I interferon. By taking advantage of the entry-defective phenotype of glycoprotein-deficient HSV-1 virus particles, the results presented here show that binding of virions to cellular receptors on the plasma membrane is sufficient to stimulate a change in cellular gene expression. Preliminary microarray studies, validated by quantitative real-time PCR, identified the differential expression of cellular genes associated with the NF-kappaB, PI3K/Akt, Jak/Stat and related Jak/Src pathways by virions lacking gB or gH but not gD. Gene induction occurred at a few particles per cell, corresponding to physiological conditions during primary infection. Reporter assay studies determined that NF-kappaB transcriptional activity is stimulated within an hour of HSV-1 binding, peaks between two and three hours post-binding and declines to background levels by five hours after induction. The immediate, transient nature of these signalling events suggests that HSV-1 glycoproteins, particularly gD, may alter the cellular environment pre-entry so as to condition the cell for viral replication.
Collapse
Affiliation(s)
- Iain J MacLeod
- Division of Virology, Department of Pathology, University of Cambridge, Cambridge, United Kingdom.
| | | |
Collapse
|
17
|
Wang N, Gates KL, Trejo H, Favoreto S, Schleimer RP, Sznajder JI, Beitel GJ, Sporn PHS. Elevated CO2 selectively inhibits interleukin-6 and tumor necrosis factor expression and decreases phagocytosis in the macrophage. FASEB J 2010; 24:2178-90. [PMID: 20181940 DOI: 10.1096/fj.09-136895] [Citation(s) in RCA: 98] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Elevated blood and tissue CO(2), or hypercapnia, is common in severe lung disease. Patients with hypercapnia often develop lung infections and have an increased risk of death following pneumonia. To explore whether hypercapnia interferes with host defense, we studied the effects of elevated P(CO2) on macrophage innate immune responses. In differentiated human THP-1 macrophages and human and mouse alveolar macrophages stimulated with lipopolysaccharide (LPS) and other Toll-like receptor ligands, hypercapnia inhibited expression of tumor necrosis factor and interleukin (IL)-6, nuclear factor (NF)-kappaB-dependent cytokines critical for antimicrobial host defense. Inhibition of IL-6 expression by hypercapnia was concentration dependent, rapid, reversible, and independent of extracellular and intracellular acidosis. In contrast, hypercapnia did not down-regulate IL-10 or interferon-beta, which do not require NF-kappaB. Notably, hypercapnia did not affect LPS-induced degradation of IkappaB alpha, nuclear translocation of RelA/p65, or activation of mitogen-activated protein kinases, but it did block IL-6 promoter-driven luciferase activity in mouse RAW 264.7 macrophages. Elevated P(CO2) also decreased phagocytosis of opsonized polystyrene beads and heat-killed bacteria in THP-1 and human alveolar macrophages. By interfering with essential innate immune functions in the macrophage, hypercapnia may cause a previously unrecognized defect in resistance to pulmonary infection in patients with advanced lung disease.
Collapse
Affiliation(s)
- Naizhen Wang
- Division of Pulmonary and Critical Care Medicine, Feinberg School of Medicine, Northwestern University, 240 E. Huron St., Chicago, IL 60611, USA
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Abstract
Abstract
Background: Although the presence of Epstein-Barr virus (EBV) in different T-cell malignancies has been widely reported, there is very few data available for EBV infection of normal T cells. This leads to the lack of knowledge on the early events after T cell infection. Objective: Investigate the early events occurring after normal human peripheral T-cells are infected with EBV in vitro. Methods: T-cells were treated with EBV in vitro. The expression of tumor necrosis factor- α (TNF-α) mRNA were determined using reverse-transcription (RT)-PCR, and the level of TNF-α and interferon- γ (IFN-γ) in the culture supernatant were measured using ELISA. The effect of virus inactivation on cytokine induction from T-cells was also determined. Results: At the beginning of T cell infection by EBV, the expression of several lytic EBV transcripts (BALF5, BcLF1, and BLLF1) were observed using RT-PCR. This indicated the susceptibility of in vitro EBV infection and the entering lytic cycle of EBV-infected T-cells. The interactions of EBV with T-cells lead to induction of inflammatory cytokines, tumour necrosis factor- α (TNF-α) and interferon- γ (IFN-γ), production from the T-cells. Inactivation of the virus by UV irradiation eliminated the TNF-α and IFN-γ induction by EBV, suggesting the involvement in the expression of viral gene(s). Conclusion: This in vitro analysis demonstrated the cytokine induction by EBV after primary infection of T-cells.
Collapse
|
19
|
Jacques A, Bleau C, Turbide C, Beauchemin N, Lamontagne L. Macrophage interleukin-6 and tumour necrosis factor-alpha are induced by coronavirus fixation to Toll-like receptor 2/heparan sulphate receptors but not carcinoembryonic cell adhesion antigen 1a. Immunology 2009; 128:e181-92. [PMID: 19740307 PMCID: PMC2753892 DOI: 10.1111/j.1365-2567.2008.02946.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2008] [Revised: 07/27/2008] [Accepted: 08/07/2008] [Indexed: 01/06/2023] Open
Abstract
A rapid antiviral immune response may be related to viral interaction with the host cell leading to activation of macrophages via pattern recognition receptors (PPRs) or specific viral receptors. Carcinoembryonic cell adhesion antigen 1a (CEACAM1a) is the specific receptor for the mouse hepatitis virus (MHV), a coronavirus known to induce acute viral hepatitis in mice. The objective of this study was to understand the mechanisms responsible for the secretion of high-pathogenic MHV3-induced inflammatory cytokines. We report that the induction of the pro-inflammatory cytokines interleukin (IL)-6 and tumour necrosis factor (TNF)-alpha in peritoneal macrophages does not depend on CEACAM1a, as demonstrated in cells isolated from Ceacam1a(-/-) mice. The induction of IL-6 and TNF-alpha production was related rather to the fixation of the spike (S) protein of MHV3 on Toll-like receptor 2 (TLR2) in regions enriched in heparan sulphate and did not rely on viral replication, as demonstrated with denatured S protein and UV-inactivated virus. High levels of IL-6 and TNF-alpha were produced in livers from infected C57BL/6 mice but not in livers from Tlr2(-/-) mice. The histopathological observations were correlated with the levels of those inflammatory cytokines. Depending on mouse strain, the viral fixation to heparan sulfate/TLR2 stimulated differently the p38 mitogen-activated protein kinase (MAPK) and nuclear factor (NF)-kappaB in the induction of IL-6 and TNF-alpha. These results suggest that TLR2 and heparan sulphate receptors can act as new viral PPRs involved in inflammatory responses.
Collapse
Affiliation(s)
- Alexandre Jacques
- Département des Sciences Biologiques, Université du Québec à Montréal, Montréal, QC, Canada
| | | | | | | | | |
Collapse
|
20
|
EBV Zta protein induces the expression of interleukin-13, promoting the proliferation of EBV-infected B cells and lymphoblastoid cell lines. Blood 2009; 114:109-18. [PMID: 19417211 DOI: 10.1182/blood-2008-12-193375] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Epstein-Barr virus (EBV) infection can modify the cytokine expression profiles of host cells and determine the fate of those cells. Of note, expression of interleukin-13 (IL-13) may be detected in EBV-associated Hodgkin lymphoma and the natural killer (NK) cells of chronic active EBV-infected patients, but its biologic role and regulatory mechanisms are not understood. Using cytokine antibody arrays, we found that IL-13 production is induced in B cells early during EBV infection. Furthermore, the EBV lytic protein, Zta (also known as the BZLF-1 product), which is a transcriptional activator, was found to induce IL-13 expression following transfection. Mechanistically, induction of IL-13 expression by Zta is mediated directly through its binding to the IL-13 promoter, via a consensus AP-1 binding site. Blockade of IL-13 by antibody neutralization showed that IL-13 is required at an early stage of EBV-induced proliferation and for long-term maintenance of the growth of EBV immortalized lymphoblastoid cell lines (LCLs). Thus, Zta-induced IL-13 production facilitates B-cell proliferation and may contribute to the pathogenesis of EBV-associated lymphoproliferative disorders, such as posttransplantation lymphoproliferative disease (PTLD) and Hodgkin lymphoma.
Collapse
|
21
|
Ariza ME, Glaser R, Kaumaya PTP, Jones C, Williams MV. The EBV-encoded dUTPase activates NF-kappa B through the TLR2 and MyD88-dependent signaling pathway. THE JOURNAL OF IMMUNOLOGY 2009; 182:851-9. [PMID: 19124728 DOI: 10.4049/jimmunol.182.2.851] [Citation(s) in RCA: 127] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The innate immune response plays a key role as the primary host defense against invading pathogens including viruses. We have previously shown that treatment of human monocyte-derived macrophages with EBV-encoded dUTPase induces the expression of proinflammatory cytokines through the activation of NF-kappaB. However, the receptor responsible for EBV-encoded dUTPase-mediated biological effects is not known. In this study, we demonstrate that the purified EBV-encoded dUTPase activates NF-kappaB in a dose-dependent manner through TLR2 and requires the recruitment of the adaptor molecule MyD88 but not CD14. Furthermore, activation of NF-kappaB was abrogated by anti-TLR2, anti-EBV-encoded dUTPase blocking Abs and the overexpression of a dominant negative construct of MyD88 in human embryonic kidney 293 cells expressing TLR2. In addition, treatment of human monocyte-derived macrophages with the anti-EBV-encoded dUTPase Ab 7D6 or the anti-TLR2 Ab blocked the production of IL-6 by the EBV-encoded dUTPase. To our knowledge, this is the first report demonstrating that a nonstructural protein encoded by EBV is a pathogen-associated molecular pattern and that it has immunomodulatory functions. Although additional studies are necessary to define the signaling pathways activated by the EBV-encoded dUTPase and to determine its role in modulating immune responses to EBV infection, our results suggest that the dUTPase could be a potential target for the development of novel therapeutic agents against infections caused by EBV.
Collapse
Affiliation(s)
- Maria-Eugenia Ariza
- Department of Environmental Health Sciences, Arnold School of Public Health, University of South Carolina, Columbia, SC 29208, USA.
| | | | | | | | | |
Collapse
|
22
|
Huber SA, Rincon M. Coxsackievirus B3 induction of NFAT: requirement for myocarditis susceptibility. Virology 2008; 381:155-60. [PMID: 18829062 PMCID: PMC2590670 DOI: 10.1016/j.virol.2008.08.020] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2008] [Revised: 04/28/2008] [Accepted: 08/12/2008] [Indexed: 12/19/2022]
Abstract
Ultraviolet (u.v.) inactivated coxsackievirus B3 (CVB3) induces rapid calcium flux in naïve BALB/c CD4+ T cells. CD4+ cells lacking decay accelerating factor (DAF-/-) show little calcium flux indicating that virus cross-linking of this virus receptor protein is necessary for calcium signaling in CVB3 infection. Interaction of CVB3 with CD4+ cells also activates NFAT DNA binding. To show that NFAT activation is crucial to CVB3 induced disease, wild-type mice and transgenic mice expressing dominant-negative NFAT (dnNFAT) mutant in T cells were infected and evaluated for myocarditis and pancreatitis 7 days later. Inhibition of NFAT in T cells prevented myocarditis but had no effect on pancreatitis. Virus titers in pancreas were equivalent in wild-type and dnNFAT animals but cardiac virus titers were increased in dnNFAT mice. Interferon-gamma (IFN gamma) expression was reduced in both CD4+ and V gamma 4+ T cells from dnNFAT mice compared to controls. FasL expression by V gamma 4+ cells was also suppressed. Inhibition of FasL expression by V gamma 4+ cells is consistent with myocarditis protection in dnNFAT mice.
Collapse
Affiliation(s)
- S A Huber
- Department of Pathology, University of Vermont, Colchester, VT 05446, USA.
| | | |
Collapse
|
23
|
Krug LT, Moser JM, Dickerson SM, Speck SH. Inhibition of NF-kappaB activation in vivo impairs establishment of gammaherpesvirus latency. PLoS Pathog 2007; 3:e11. [PMID: 17257062 PMCID: PMC1781481 DOI: 10.1371/journal.ppat.0030011] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2006] [Accepted: 12/13/2006] [Indexed: 12/20/2022] Open
Abstract
A critical determinant in chronic gammaherpesvirus infections is the ability of these viruses to establish latency in a lymphocyte reservoir. The nuclear factor (NF)-κB family of transcription factors represent key players in B-cell biology and are targeted by gammaherpesviruses to promote host cell survival, proliferation, and transformation. However, the role of NF-κB signaling in the establishment of latency in vivo has not been addressed. Here we report the generation and in vivo characterization of a recombinant murine gammaherpesvirus 68 (γHV68) that expresses a constitutively active form of the NF-κB inhibitor, IκBαM. Inhibition of NF-κB signaling upon infection with γHV68-IκBαM did not affect lytic replication in cell culture or in the lung following intranasal inoculation. However, there was a substantial decrease in the frequency of latently infected lymphocytes in the lung (90% reduction) and spleens (97% reduction) 16 d post intranasal inoculation. Importantly, the defect in establishment of latency in lung B cells could not be overcome by increasing the dose of virus 100-fold. The observed decrease in establishment of viral latency correlated with a loss of activated, CD69hi B cells in both the lungs and spleen at day 16 postinfection, which was not apparent by 6 wk postinfection. Constitutive expression of Bcl-2 in B cells did not rescue the defect in the establishment of latency observed with γHV68-IκBαM, indicating that NF-κB–mediated functions apart from Bcl-2–mediated B-cell survival are critical for the efficient establishment of gammaherpesvirus latency in vivo. In contrast to the results obtained following intranasal inoculation, infection of mice with γHV68-IκBαM by the intraperitoneal route had only a modest impact on splenic latency, suggesting that route of inoculation may alter requirements for establishment of virus latency in B cells. Finally, analyses of the pathogenesis of γHV68-IκBαM provides evidence that NF-κB signaling plays an important role during multiple stages of γHV68 infection in vivo and, as such, represents a key host regulatory pathway that is likely manipulated by the virus to establish latency in B cells. A central aspect of chronic infection of a host by herpesviruses is the ability of these viruses to establish a quiescent infection (latent infection) in some cell type(s) in which there is only intermittent production of progeny virus (virus reactivation). The establishment of a latent infection in the antibody producing cells of the host immune system (B lymphocytes) is critical for life-long persistence of gammaherpesviruses, as well as the development of virus-associated lymphoproliferative diseases (e.g., B-cell lymphomas). Nuclear factor (NF)-κB transcription factors are a family of cellular proteins that play an important role regulating gene expression in B cells, and it has been shown that gammaherpesviruses have evolved multiple strategies for manipulating NF-κB activity. However, to date there has been no reported examination of the role of NF-κB in the establishment of chronic gammaherpesvirus infection in vivo. Murine gammaherpesvirus 68 (γHV68) infects rodents and shares genetic and biologic properties with the human gammaherpesviruses, Epstein-Barr virus and Kaposi sarcoma–associated herpesvirus. To selectively block the function of NF-κB in infected cells, we engineered a transgenic virus that expresses a repressor of NF-κB activation (IκBαM). Notably, this recombinant virus was defective in the establishment of latency in B cells in the lungs and spleen following intranasal inoculation. We also observed that the decrease in B-cell infection could not be rescued by forced expression of the cellular Bcl-2 protein, which is normally upregulated by NF-κB and serves to protect B cells from some forms of cell death. Thus, we conclude that NF-κB is an important host factor for the successful establishment of a chronic infection by gammaherpesviruses, and likely requires functions of NF-κB apart from its role in B-cell survival.
Collapse
Affiliation(s)
- Laurie T Krug
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia, United States of America
- The Emory Vaccine Center, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Janice M Moser
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia, United States of America
- The Emory Vaccine Center, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Shelley M Dickerson
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia, United States of America
- The Emory Vaccine Center, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Samuel H Speck
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia, United States of America
- The Emory Vaccine Center, Emory University School of Medicine, Atlanta, Georgia, United States of America
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
24
|
Ait-Ali T, Wilson AD, Westcott DG, Clapperton M, Waterfall M, Mellencamp MA, Drew TW, Bishop SC, Archibald AL. Innate immune responses to replication of porcine reproductive and respiratory syndrome virus in isolated Swine alveolar macrophages. Viral Immunol 2007; 20:105-18. [PMID: 17425425 DOI: 10.1089/vim.2006.0078] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Porcine reproductive and respiratory syndrome (PRRS) is an infectious disease caused by a positive RNA strand arterivirus. PRRS virus (PRRSV) interacts primarily with lung macrophages. Identifying the genetic components involved in host resistance/susceptibility would represent an important step forward in the design of disease control programs. In this study, alveolar macrophages derived from five commercial pig lines were used to study the innate immune response to PRRSV infection in vitro. Analysis by flow cytometry has demonstrated that bronchial alveolar lavage fluid (BALF) preparations were almost exclusively composed of alveolar macrophages and that the pigs tested were free from infection. Macrophages from the Landrace line showed significantly reduced virus replication and poor growth of PRRSV during 30 h of infection. By 72 h, PRRSV viral load was down to 2.5 log(10) TCID(50) compared with an average of 5 log(10) TCID(50) for the other breeds tested. These observations suggest that factors intrinsic to the Landrace breed may be responsible for this reduced or delayed response to PRRSV. Preliminary investigation suggests that the PRRSV coreceptor, sialoadhesin, may not be responsible for the Landrace macrophage phenotype as its abundance and localisation were comparable in all the breeds. Strikingly, we found that the reduced or delayed growth of PRRSV was temporally associated with high levels of tumor necrosis factor-alpha (TNF-alpha) and interleukin (IL)-8 mRNA accumulation and substantial reduction of secretion of IL-8, suggesting a key contributory role for cytokine synthesis and secretion during the innate immune response to PRRSV infection.
Collapse
Affiliation(s)
- Tahar Ait-Ali
- Roslin Institute, Roslin, Midlothian, United Kingdom.
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Ahmad R, Ennaciri J, Cordeiro P, El Bassam S, Menezes J. Herpes simplex virus-1 up-regulates IL-15 gene expression in monocytic cells through the activation of protein tyrosine kinase and PKC zeta/lambda signaling pathways. J Mol Biol 2006; 367:25-35. [PMID: 17239392 DOI: 10.1016/j.jmb.2006.12.060] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2006] [Revised: 12/14/2006] [Accepted: 12/19/2006] [Indexed: 11/29/2022]
Abstract
IL-15 plays a seminal role in innate immunity through enhancing the cytotoxic function as well as cytokine production by NK and T cells. We have previously shown that exposure of PBMC as well as monocytic cells to different viruses results in immediate up-regulation of IL-15 gene expression and subsequent NK cell activation as an innate immune response of those cells to these viruses. However, no signaling pathway involved in this up-regulation has been identified. Here we show for the first time that HSV-1-induced up-regulation of IL-15 gene expression is independent of viral infectivity/replication. IL-15 gene is up-regulated by HSV-1 in human monocytes, but not in CD3+ T cells. HSV-1 induces the phosphorylation of protein tyrosine kinases (PTKs) and protein kinase C (PKC) for inducing IL-15 expression in monocytic cells. Inhibitors for PTKs reduced HSV-1-induced PTK activity, DNA binding activity of NF-kB as well as IL-15 gene expression. In contrast, an inhibitor for membrane-bound tyrosine kinases had no effect on these events. Experiments using PKC inhibitors revealed that phosphorylation of PKC zeta/lambda (PKC zeta/lambda), DNA binding activity of NF-kB and HSV-1-induced up-regulation of IL-15 were all decreased. Furthermore, we found that HSV-1-induced IL-15 up-regulation was also dependent on PTKs regulation of PKC phosphorylation. Thus, we conclude that IL-15 up-regulation in HSV-1-treated monocytic cells is dependent on the activity of both PTKs and PKC zeta/lambda.
Collapse
Affiliation(s)
- Rasheed Ahmad
- Laboratory of Immunovirology and Viral and Immune Diseases Program, Sainte Justine Hospital Research Center, 3175 Chemin Cote Ste-Catherine, Montreal, QC, H3T 1C5, Canada
| | | | | | | | | |
Collapse
|
26
|
Glaser R, Litsky ML, Padgett DA, Baiocchi RA, Yang EV, Chen M, Yeh PE, Green-Church KB, Caligiuri MA, Williams MV. EBV-encoded dUTPase induces immune dysregulation: Implications for the pathophysiology of EBV-associated disease. Virology 2006; 346:205-18. [PMID: 16321417 DOI: 10.1016/j.virol.2005.10.034] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2005] [Revised: 10/06/2005] [Accepted: 10/26/2005] [Indexed: 12/18/2022]
Abstract
Epstein-Barr virus (EBV) encodes for several enzymes that are involved in viral DNA replication. There is evidence that some viral proteins, by themselves, can induce immune dysregulation that may contribute to the pathophysiology of the virus infection. In this study, we focused on the EBV-encoded deoxyuridine triphosphate nucleotidohydrolase (dUTPase) and present the first evidence that the dUTPase is able to induce immune dysregulation in vitro as demonstrated by the inhibition of the replication of stimulated peripheral blood mononuclear cells (PBMCs) and the upregulation of several proinflammatory cytokines including TNF-alpha, IL-1beta, IL-8, IL-6, and IL-10 produced by unstimulated PBMCs treated with purified EBV-encoded dUTPase. Depletion of CD14-positive cells (monocytes) eliminated the cytokine profile induced by EBV dUTPase treatment. The data support the hypothesis that at least one protein of the EBV early antigen complex can induce immune dysregulation and may be involved in the pathophysiology of EBV-associated disease.
Collapse
Affiliation(s)
- Ronald Glaser
- Department of Molecular Virology, Immunology and Medical Genetics, The Ohio State University Medical Center, 333 W. 10th Avenue, Columbus, OH 43210, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Abstract
Rheumatoid arthritis is a systemic autoimmune disease characterized by chronic, destructive, debilitating arthritis. Its etiology is unknown; it is presumed that environmental factors trigger development in the genetically predisposed. Epstein–Barr virus, a nearly ubiquitous virus in the human population, has generated great interest as a potential trigger. This virus stimulates polyclonal lymphocyte expansion and persists within B lymphocytes for the host's life, inhibited from reactivating by the immune response. In latent and replicating forms, it has immunomodulating actions that could play a role in the development of this autoimmune disease. The evidence linking Epstein–Barr virus and rheumatoid arthritis is reviewed.
Collapse
Affiliation(s)
- Karen H Costenbader
- Brigham and Women's Hospital, Division of Rheumatology, Immunology and Allergy, Department of Medicine, Harvard Medical School, 75 Francis Street, Boston, MA 02115, USA
| | - Elizabeth W Karlson
- Brigham and Women's Hospital, Division of Rheumatology, Immunology and Allergy, Department of Medicine, Harvard Medical School, 75 Francis Street, Boston, MA 02115, USA
| |
Collapse
|
28
|
Amici C, Rossi A, Costanzo A, Ciafrè S, Marinari B, Balsamo M, Levrero M, Santoro MG. Herpes simplex virus disrupts NF-kappaB regulation by blocking its recruitment on the IkappaBalpha promoter and directing the factor on viral genes. J Biol Chem 2006; 281:7110-7. [PMID: 16407234 DOI: 10.1074/jbc.m512366200] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Herpes simplex viruses (HSVs) are able to hijack the host-cell IkappaB kinase (IKK)/NF-kappaB pathway, which regulates critical cell functions from apoptosis to inflammatory responses; however, the molecular mechanisms involved and the outcome of the signaling dysregulation on the host-virus interaction are mostly unknown. Here we show that in human keratinocytes HSV-1 attains a sophisticated control of the IKK/NF-kappaB pathway, inducing two distinct temporally controlled waves of IKK activity and disrupting the NF-kappaB autoregulatory mechanism. Using chromatin immunoprecipitation we demonstrate that dysregulation of the NF-kappaB-response is mediated by a virus-induced block of NF-kappaB recruitment to the promoter of the IkappaBalpha gene, encoding the main NF-kappaB-inhibitor. We also show that HSV-1 redirects NF-kappaB recruitment to the promoter of ICP0, an immediate-early viral gene with a key role in promoting virus replication. The results reveal a new level of control of cellular functions by invading viruses and suggest that persistent NF-kappaB activation in HSV-1-infected cells, rather than being a host response to the virus, may play a positive role in promoting efficient viral replication.
Collapse
Affiliation(s)
- Carla Amici
- Department of Biology and Dermatology, University of Rome Tor Vergata, Via della Ricerca Scientifica, 00133 Rome, Italy
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Affiliation(s)
- Sally Huber
- University of Vermont, Colchester, VT 05446, USA.
| |
Collapse
|
30
|
Glaser R, Padgett DA, Litsky ML, Baiocchi RA, Yang EV, Chen M, Yeh PE, Klimas NG, Marshall GD, Whiteside T, Herberman R, Kiecolt-Glaser J, Williams MV. Stress-associated changes in the steady-state expression of latent Epstein-Barr virus: implications for chronic fatigue syndrome and cancer. Brain Behav Immun 2005; 19:91-103. [PMID: 15664781 DOI: 10.1016/j.bbi.2004.09.001] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2004] [Accepted: 09/01/2004] [Indexed: 11/15/2022] Open
Abstract
Antibodies to several Epstein-Barr virus (EBV)-encoded enzymes are observed in patients with different EBV-associated diseases. The reason for these antibody patterns and the role these proteins might play in the pathophysiology of disease, separate from their role in virus replication, is unknown. In this series of studies, we found that purified EBV deoxyuridine triphosphate nucleotidohydrolase (dUTPase) can inhibit the replication of human peripheral blood mononuclear cells in vitro and upregulate the production of TNF-alpha, IL-1beta, IL-6, IL-8, and IL-10. It also enhanced the ability of natural killer cells to lyse target cells. The EBV dUTPase also significantly inhibited the replication of mitogen-stimulated lymphocytes and the synthesis of IFN-gamma by cells isolated from lymph nodes and spleens obtained from mice inoculated with the protein. It also produced sickness behaviors known to be induced by some of the cytokines that were studied in the in vitro experiments. These symptoms include an increase in body temperature, a decrease in body mass and in physical activity. The data provide a new perspective on how an early nonstructural EBV-encoded protein can cause immune dysregulation and produce clinical symptoms observed in patients with chronic fatigue syndrome (CFS) separate from its role in virus replication and may serve as a new approach to help identify one of the etiological agents for CFS. The data also provide additional insight into the pathophysiology of EBV infection, inflammation, and cancer.
Collapse
Affiliation(s)
- Ronald Glaser
- Department of Molecular Virology, Immunology and Medical Genetics, The Ohio State University Medical Center, 333 W. 10th Avenue, Columbus, OH 43210, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Abstract
Myocarditis is a complex disease in which distinct immunopathogenic mechanisms cause tissue injury. In some but not all cases, autoimmunity is a major pathogenic factor. Cross-reactivity between viral and myosin epitopes underlies both cellular and humoral autoimmunity in myocarditis. Thus, the genetics of the host as well as the virus determine disease pathogenicity. Innate immunity, as represented by gammadelta+ T cells, is important in determining disease susceptibility. The innate effectors rapidly localize in the infected myocardium and through release of IFNgamma (Vgamma4+ cells; BALB/c) or IL-4 (Vgamma1+ cells; C57Bl/6), modulate the developing adaptive immune response to either a Th1 or Th2 response, respectively. The Vgamma4+ cells in BALB/c mice recognize CD1d, a major histocompatibility complex class I-like antigen. The ligand for Vgamma1+ cells is unknown. Only infected myocytes up-regulate CD1d. Signaling through both infection (double stranded RNA) and TNFalpha is required for CD1d up-regulation.
Collapse
Affiliation(s)
- Sally Huber
- Department of Pathology, University of Vermont, Bington, Vermont 05405, USA.
| |
Collapse
|
32
|
Bonilla V, Sobrino F, Lucas M, Pintado E. Epstein-Barr virus transformation of human lymphoblastoid cells from patients with fragile X syndrome induces variable changes on CGG repeats size and promoter methylation. ACTA ACUST UNITED AC 2004; 7:163-7. [PMID: 15068386 DOI: 10.1007/bf03260033] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
BACKGROUND Our understanding of fragile X syndrome can be improved by reversing the expression of the silenced fragile X mental retardation 1 (FMR1) gene in immortalized cells from these patients. Epstein-Barr virus (EBV) infection has been extensively used to transform B cells into a permanent lymphoblastoid cell line. METHODS We immortalized B lymphocytes from three different fragile X patients and one normal male. We analyzed the CGG triplet repeats and methylation status of the FMR1 and interferon (IFN)-gamma promoter. We also assayed FMR1 mRNA levels by real-time PCR and FMR1 protein (FMRP) by Western blot. RESULTS We observed that EBV transformation may induce the instability of CGG repeats and DNA demethylation that can lead to the modification of mRNA expression. CONCLUSIONS EBV transformation may induce variable changes in the genome that can lead to the misinterpretations of experimental data obtained from these cells. Thus, periodic testing of DNA from immortalized cells should be routinely undertaken to detect undesired effects.
Collapse
Affiliation(s)
- Victoria Bonilla
- Department of Biochemical Medicine and Molecular Biology, Faculty of Medicine and University Hospital of the Virgin Macarena, University of Seville, Seville, Spain
| | | | | | | |
Collapse
|
33
|
Katzman RB, Longnecker R. Cholesterol-dependent infection of Burkitt's lymphoma cell lines by Epstein–Barr virus. J Gen Virol 2003; 84:2987-2992. [PMID: 14573803 DOI: 10.1099/vir.0.19252-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Epstein-Barr virus (EBV) infection is a multi-step process, first requiring virus binding to the host cell, followed by fusion of the viral envelope with the host cell plasma membrane. Efficient EBV entry into B cells requires, at the minimum, the interaction of the EBV-encoded glycoproteins gp350 with cellular CD21 and gp42 with MHC class II proteins. In this study, use of the cholesterol-binding drugs methyl-beta-cyclodextrin and nystatin efficiently inhibited EBV infection of target Burkitt's lymphoma B-cell lines, indicating an important role for cholesterol and suggesting the involvement of lipid rafts in EBV infection.
Collapse
Affiliation(s)
- Rebecca B Katzman
- Department of Microbiology-Immunology, Northwestern University Medical School Chicago, IL 60611, USA
| | - Richard Longnecker
- Department of Microbiology-Immunology, Northwestern University Medical School Chicago, IL 60611, USA
| |
Collapse
|
34
|
Waterboer T, Rahaus M, Wolff MH. Varicella-zoster virus (VZV) mediates a delayed host shutoff independent of open reading frame (ORF) 17 expression. Virus Genes 2003; 24:49-56. [PMID: 11928988 DOI: 10.1023/a:1014086004141] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Varicella-zoster virus (VZV) open reading frame 17 (ORF 17) is the gene corresponding to Herpes simplex-virus (HSV) UL41. The UL41 gene encodes the virion host shutoff factor (vhs), a RNase that has been the object of detailed studies. In contrast to HSV, knowledge about VZV mediated shutoff effects and the role of ORF 17 is poor. We investigated the ORF 17 expression in infected cells and analyzed shutoff effects. ORF 17 expression could not be proven in infected human fibroblast cell lines and melanoma (MeWo) cells. Only after induction by Phorbol 12-myristate 13-acetate an ORF 17 expression became detectable in MeWo cells. Nevertheless, using stable expressed GAPDH mRNA as a marker for mRNA degradation, a VZV mediated shutoff, independent of ORF 17 expression, became measurable. Transfection experiments demonstrated that transient ORF 17 expression did not decrease the cellular GAPDH mRNA level. We examined whether the VZV shutoff factor is a tegument protein causing an early shutoff or whether it needs to be expressed (delayed shutoff). The GAPDH mRNA level in Actinomycin D pretreated and infected MeWo cells did not decrease even faster than the theoretical decay rate based on a half-life of 24 h. These findings lead to the conclusion that the VZV shutoff factor is not a mature protein localized in the virion and that VZV causes a delayed virion host shutoff effect.
Collapse
Affiliation(s)
- Tim Waterboer
- Institute of Microbiology and Virology, University of Witten/Herdecke, Germany
| | | | | |
Collapse
|
35
|
Abstract
Among the different definitions of viruses, 'pirates of the cell' is one of the most picturesque, but also one of the most appropriate. Viruses have been known for a long time to utilize a variety of strategies to penetrate cells and, once inside, to take over the host nucleic acid and protein synthesis machinery to build up their own components and produce large amounts of viral progeny. As their genomes carry a minimal amount of information, encoding only a few structural and regulatory proteins, viruses are largely dependent on their hosts for survival; however, despite their apparent simplicity, viruses have evolved different replicative strategies that are regulated in a sophisticated manner. During the last years, the study of the elaborate relationship between viruses and their hosts has led to the understanding of how viral pathogens not only are able to alter the host metabolism via their signaling proteins, but are also able to hijack cellular signaling pathways and transcription factors, and control them to their own advantage. In particular, the nuclear factor-kappaB (NF-kappaB) pathway appears to be an attractive target for common human viral pathogens. This review summarizes what is known about the control of NF-kappaB by viruses, and discusses the possible outcome of NF-kappaB activation during viral infection, which may benefit either the host or the pathogen.
Collapse
Affiliation(s)
- M Gabriella Santoro
- Department of Biology, University of Rome Tor Vergata, Via della Ricerca Scientifica and INeMM, CNR, 00133 Rome, Italy.
| | | | | |
Collapse
|
36
|
Rogers PD, Thornton J, Barker KS, McDaniel DO, Sacks GS, Swiatlo E, McDaniel LS. Pneumolysin-dependent and -independent gene expression identified by cDNA microarray analysis of THP-1 human mononuclear cells stimulated by Streptococcus pneumoniae. Infect Immun 2003; 71:2087-94. [PMID: 12654830 PMCID: PMC152049 DOI: 10.1128/iai.71.4.2087-2094.2003] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Pneumolysin is an important virulence factor of Streptococcus pneumoniae, interacting with the membranes of host cells to elicit a multitude of inflammatory responses. We used cDNA microarrays to identify genes which are responsive to S. pneumoniae in a pneumolysin-dependent and -independent fashion. The THP-1 human monocytic cell line was coincubated for 3 h with medium alone, with the virulent type 2 S. pneumoniae strain D39, or with the isogenic strain PLN, which does not express pneumolysin. RNA was isolated from the monocytes and hybridized on cDNA microarrays. Of 4,133 genes evaluated, 142 were found to be responsive in a pneumolysin-dependent fashion, whereas 40 were found to be responsive independent of pneumolysin. Genes that were up-regulated in cells exposed to D39 relative to those exposed to PLN included genes encoding proteins such as mannose binding lectin 1, lysozyme, alpha-1 catenin, cadherin 17, caspases 4 and 6, macrophage inflammatory protein 1beta (MIP-1beta), interleukin 8 (IL-8), monocyte chemotactic protein 3 (MCP-3), IL-2 receptor beta (IL-2Rbeta), IL-15 receptor alpha (IL-15Ralpha), interferon receptor 2, and prostaglandin E synthase. Down-regulated genes included those encoding complement component receptor 2/CD21, platelet-activating factor acetylhydrolase, and oxidized low-density lipoprotein receptor 1 (OLR1). Pneumolysin-independent responses included down-regulation of the genes encoding CD68, CD53, CD24, transforming growth factor beta2, and signal transducers and activators of transcription 1. These results demonstrate the striking effects of pneumolysin on the host cell upon exposure to S. pneumoniae.
Collapse
Affiliation(s)
- P David Rogers
- Departments of Clinical Pharmacy and Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | | | | | | | | | | | | |
Collapse
|
37
|
Abstract
Infectious agents and their hosts interact in a complex manner, involving not only superficially apparent mechanisms, but also the signaling machinery that governs host cells responses. Thus, signaling events, surface molecule expression, and transcriptional control may be affected in various cell types, with profound consequences for the function of individual cells and organ systems. Studies of the biochemistry of cell signaling and cell invasion by infectious agents have begun to detail the interplay between elements of infectious organisms and the host at the molecular level. Consequently, the resulting interferences with lymphocyte signaling may disturb the function of the immune system. In B cells, alterations of immune receptor signaling has implications for human diseases. By affecting the mechanisms of the host's immune defense, this may not only lead to inadequate elimination of an infectious agent, but also to autoimmunity or neoplasia.
Collapse
Affiliation(s)
- P Hasler
- Rheumatologische Universitätsklinik, Felix Platter-Spital, Basel, Switzerland
| | | |
Collapse
|
38
|
Abstract
Epstein-Barr virus (EBV) infects and persists for life in the majority of the human population. Persistence is achieved through a combination of strictly regulated programs of latent infection in B-cells and chronic reactivation of virus replication in lymphoid tissue and mucosal surfaces. The resulting multiple patterns of virus-host interaction have selected unique strategies of immune escape. T-cell mediated immunity plays a central role in the control of EBV latency and several immune escape mechanism that protect the virus at this stage of its life circle have been characterized in details. In contrast, the contribution of innate immunity and the immune regulation of productive infection are largely unexplored areas that may yield important clues on the establishment and maintenance of EBV persistence. This review summarizes well known and emerging mechanisms of EBV immune escape that may reveal new strategies of immunoregulation and promote new approaches to the prophylaxis and treatment of EBV associated diseases.
Collapse
Affiliation(s)
- Victor Levitsky
- Microbiology and Tumor Biology Center, Karolinska Institutet, Box 280, SE-171 77, Stockholm, Sweden.
| | | |
Collapse
|
39
|
Tardif M, Savard M, Flamand L, Gosselin J. Impaired protein kinase C activation/translocation in Epstein-Barr virus-infected monocytes. J Biol Chem 2002; 277:24148-54. [PMID: 11971896 DOI: 10.1074/jbc.m109036200] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Infection of human monocytes by Epstein-Barr virus (EBV) has been linked to a decrease in the production of proinflammatory mediators as well as an impairment of phagocytosis. Considering the key role of protein kinases C (PKCs) in many biological functions of monocytes, including phagocytosis, we investigated the effects of EBV on the PKC activity in infected monocytes. Our results indicate that infection of monocytes by EBV impairs both phorbol 12-myristate 13-acetate (PMA)-induced translocation of PKC isozymes alpha and beta from cytosol to membrane as well as the PKC enzymatic activity. Similarly, the subcellular distribution of the receptor for activated C kinase (RACK), an anchoring protein essential to PKC translocation, was also found to be reduced in EBV-infected monocytes. Transfection of 293T cells with an expression vector coding for the immediate-early protein ZEBRA of EBV resulted in impaired PMA-induced translocation and activity of PKC. Using co-immunoprecipitation assays, the ZEBRA protein was found to physically interact with the RACK1 protein. Thus interaction of ZEBRA with RACK likely results in the inhibition of PKC activity, which in turn affects functions of monocytes, such as phagocytosis.
Collapse
Affiliation(s)
- Melanie Tardif
- Laboratory of Viral Immunology, Laboratory of Virology, Centre de Recherche en Rhumatologie et Immunologie, Centre de Recherche du Centre Hospitalier de l'Université Laval, and Université Laval, Québec G1V 4G2, Canada
| | | | | | | |
Collapse
|
40
|
Li L, Liu D, Hutt-Fletcher L, Morgan A, Masucci MG, Levitsky V. Epstein-Barr virus inhibits the development of dendritic cells by promoting apoptosis of their monocyte precursors in the presence of granulocyte macrophage-colony-stimulating factor and interleukin-4. Blood 2002; 99:3725-34. [PMID: 11986229 DOI: 10.1182/blood.v99.10.3725] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Epstein-Barr virus (EBV) is a tumorigenic human herpesvirus that persists for life in healthy immunocompetent carriers. The viral strategies that prevent its clearance and allow reactivation in the face of persistent immunity are not well understood. Here we demonstrate that EBV infection of monocytes inhibits their development into dendritic cells (DCs), leading to an abnormal cellular response to granulocyte macrophage-colony-stimulating factor (GM-CSF) and interleukin-4 (IL-4) and to apoptotic death. This proapoptotic activity was not affected by UV inactivation and was neutralized by EBV antibody-positive human sera, indicating that binding of the virus to monocytes is sufficient to alter their response to the cytokines. Experiments with the relevant blocking antibodies or with mutated EBV strains lacking either the EBV envelope glycoprotein gp42 or gp85 demonstrated that interaction of the trimolecular gp25-gp42-gp85 complex with the monocyte membrane is required for the effect. Our data provide the first evidence that EBV can prevent the development of DCs through a mechanism that appears to bypass the requirement for viral gene expression, and they suggest a new strategy for interference with the function of DCs during the initiation and maintenance of virus-specific immune responses.
Collapse
Affiliation(s)
- LiQi Li
- Microbiology and Tumor Biology Center, Karolinska Institutet, Stockholm, Sweden
| | | | | | | | | | | |
Collapse
|
41
|
Hayes MM, Lane BR, King SR, Markovitz DM, Coffey MJ. Peroxisome proliferator-activated receptor gamma agonists inhibit HIV-1 replication in macrophages by transcriptional and post-transcriptional effects. J Biol Chem 2002; 277:16913-9. [PMID: 11847231 DOI: 10.1074/jbc.m200875200] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Previous studies have demonstrated that cyclopentenone prostaglandins (cyPG) inhibit human immunodeficiency virus type 1 (HIV-1) replication in various cell types. We investigated the role of PG in the replication of HIV-1 in primary macrophages. The cyPG, PGA(1) and PGA(2), inhibited HIV-1 replication in acutely infected human monocyte-derived macrophages (MDM). Because PGA(1) and PGA(2) have previously been shown to be peroxisome proliferator-activated receptor gamma (PPARgamma) agonists, we examined the effect of synthetic PPARgamma agonists on HIV replication. The PPARgamma agonist ciglitazone inhibited HIV-1 replication in a dose-dependent manner in acutely infected human MDM. In addition, cyPG and ciglitazone reduced HIV replication in latently infected and viral entry-independent U1 cells, suggesting an effect at the level of HIV gene expression. Ciglitazone also suppressed HIV-1 mRNA levels as measured by reverse transcriptase PCR, in parallel with the decrease in reverse transcriptase activity. Co-transfection of PPARgamma wild type vectors and treatment with PPARgamma agonists inhibited HIV-1 promoter activity in U937 cells. Activation of PPARgamma also decreased HIV-1 mRNA stability following actinomycin D treatment. In summary, our experimental findings implicate PPARgamma as an important factor in the suppression of HIV-1 gene expression in MDM by cyPG. Thus natural and synthetic PPARgamma agonists may play a role in controlling HIV-1 infection in macrophages.
Collapse
Affiliation(s)
- Michael M Hayes
- Divisions of Pulmonary and Critical Care Medicine, Rheumatology, University of Michigan Medical Center, Ann Arbor, Michigan 48109, USA
| | | | | | | | | |
Collapse
|
42
|
Thomas KW, Monick MM, Staber JM, Yarovinsky T, Carter AB, Hunninghake GW. Respiratory syncytial virus inhibits apoptosis and induces NF-kappa B activity through a phosphatidylinositol 3-kinase-dependent pathway. J Biol Chem 2002; 277:492-501. [PMID: 11687577 DOI: 10.1074/jbc.m108107200] [Citation(s) in RCA: 124] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Respiratory syncytial virus (RSV) infects airway epithelial cells, resulting in cell death and severe inflammation through the induction of NF-kappaB activity and inflammatory cytokine synthesis. Both NF-kappaB activity and apoptosis regulation have been linked to phosphatidylinositol 3-kinase (PI 3-K) and its downstream effector enzymes, AKT and GSK-3. This study evaluates the role of PI 3-K and its downstream mediators in apoptosis and inflammatory gene induction during RSV infection of airway epithelial cells. Whereas RSV infection alone did not produce significant cytotoxicity until 24-48 h following infection, simultaneous RSV infection and exposure to LY294002, a blocker of PI 3-K activity, resulted in cytotoxicity within 12 h. Furthermore, we found that RSV infection during PI 3-K blockade resulted in apoptosis by examining DNA fragmentation, DNA labeling by terminal dUTP nick-end labeling assay, and poly(ADP-ribose) polymerase cleavage by Western blotting. RSV infection produced an increase in the phosphorylation state of AKT, GSK-3, and the p85 regulatory subunit of PI 3-K. The activation of PI 3-K by RSV and its inhibition by LY294002 was confirmed in direct PI 3-K activity assays. Further evidence for the central role of a pathway involving PI 3-K and AKT in preserving cell viability during RSV infection was established by the observation that constitutively active AKT transfected into A549 cells prevented the cytotoxicity and apoptosis of combined RSV and LY294002 treatment. Finally, both PI 3-K inhibition by LY294002 and AKT inhibition by transfection of a dominant negative enzyme blocked RSV-induced NF-kappaB transcriptional activity. These data demonstrate that anti-apoptotic signaling and NF-kappaB activation by RSV are mediated through activation of PI 3-K-dependent pathways. Blockade of PI 3-K activation resulted in rapid, premature apoptosis and inhibition of RSV-stimulated NF-kappaB-dependent gene transcription.
Collapse
Affiliation(s)
- Karl W Thomas
- Department of Internal Medicine, University of Iowa College of Medicine and Veterans Administration Medical Center, Iowa City, Iowa 52242, USA.
| | | | | | | | | | | |
Collapse
|
43
|
Paludan SR, Mogensen SC. Virus-cell interactions regulating induction of tumor necrosis factor alpha production in macrophages infected with herpes simplex virus. J Virol 2001; 75:10170-8. [PMID: 11581385 PMCID: PMC114591 DOI: 10.1128/jvi.75.21.10170-10178.2001] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Macrophages respond to virus infections by rapidly secreting proinflammatory cytokines, which play an important role in the first line of defense. Tumor necrosis factor alpha (TNF-alpha) is one of the major macrophage-produced cytokines. In this study we have investigated the virus-cell interactions responsible for induction of TNF-alpha expression in herpes simplex virus (HSV)-infected macrophages. Both HSV type 1 (HSV-1) and HSV-2 induced TNF-alpha expression in macrophages activated with gamma interferon (IFN-gamma). This induction was to some extent sensitive to UV treatment of the virus. Virus particles unable to enter the cells displayed reduced capacity to stimulate TNF-alpha expression but retained a significant portion which was abolished by HSV-specific antibodies. Recombinant HSV-1 glycoprotein D was able to trigger TNF-alpha secretion in concert with IFN-gamma. Sugar moieties of HSV glycoproteins have been reported to be involved in induction of IFN-alpha but did not contribute to TNF-alpha expression in macrophages. Moreover, the entry-dependent portion of the TNF-alpha induction was investigated with HSV-1 mutants and found to be independent of the tegument proteins VP16 and UL13 and partly dependent on nuclear translocation of the viral DNA. Finally, we found that macrophages expressing an inactive mutant of the double-stranded RNA (dsRNA)-activated protein kinase (PKR) produced less TNF-alpha in response to infectious HSV infection than the empty-vector control cell line but displayed the same responsiveness to UV-inactivated virus. These results indicate that HSV induces TNF-alpha expression in macrophages through mechanisms involving (i) viral glycoproteins, (ii) early postentry events occurring prior to nuclear translocation of viral DNA, and (iii) viral dsRNA-PKR.
Collapse
Affiliation(s)
- S R Paludan
- Department of Medical Microbiology and Immunology, University of Aarhus, Aarhus, Denmark.
| | | |
Collapse
|
44
|
D'Addario M, Arora PD, Fan J, Ganss B, Ellen RP, McCulloch CA. Cytoprotection against mechanical forces delivered through beta 1 integrins requires induction of filamin A. J Biol Chem 2001; 276:31969-77. [PMID: 11423540 DOI: 10.1074/jbc.m102715200] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cells in mechanically active environments can activate cytoprotective mechanisms to maintain membrane integrity in the face of potentially lethal applied forces. Cytoprotection may be mediated by expression of membrane-associated cytoskeletal proteins including filamin A, an actin-binding protein that increases the rigidity of the subcortical actin cytoskeleton. In this study, we tested the hypotheses that applied forces induce the expression of filamin A specifically and that this putative protective response inhibits cell death. Magnetically generated forces were applied to protein-coated magnetite beads bound to human gingival fibroblasts, cells with constitutively low basal levels of filamin A mRNA and protein. Forces applied through collagen or fibronectin, but not bovine serum albumin or poly-l-lysine-coated beads, increased mRNA and protein content of filamin A by 3-7-fold. Forces had no effect on the expression of other filamin isotypes or other cytoskeletal proteins. This effect was dependent on the duration of force and was blocked by anti-beta(1) integrin antibodies. Force also stimulated a 60% increase in expression of luciferase under the control of a filamin A promoter in transiently transfected Rat2 fibroblasts and was dependent on Sp1 transcription factor binding sites located immediately upstream of the transcription start site. Experiments with actinomycin D-treated cells showed that the increased filamin A expression after force application was due in part to prolongation of mRNA half-life. Antisense filamin oligonucleotides blocked force-induced filamin A expression and increased cell death by >2-fold above controls. The force-induced regulation of filamin A was dependent on intact actin filaments. We conclude that cells from mechanically active environments can couple diverse signals from forces applied through beta-integrins to up-regulate the production of cytoprotective cytoskeletal proteins, typified by filamin A.
Collapse
Affiliation(s)
- M D'Addario
- Canadian Institute of Health Research Group in Periodontal Physiology, Toronto, Ontario M5S 3E2, Canada
| | | | | | | | | | | |
Collapse
|
45
|
Paludan SR, Ellermann-Eriksen S, Kruys V, Mogensen SC. Expression of TNF-alpha by herpes simplex virus-infected macrophages is regulated by a dual mechanism: transcriptional regulation by NF-kappa B and activating transcription factor 2/Jun and translational regulation through the AU-rich region of the 3' untranslated region. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2001; 167:2202-8. [PMID: 11490006 DOI: 10.4049/jimmunol.167.4.2202] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Here we have investigated the regulation of TNF-alpha expression in macrophages during HSV-2 infection. Despite a low basal level of TNF-alpha mRNA present in resting macrophages, no TNF-alpha protein is detectable. HSV-2 infection marginally increases the level of TNF-alpha mRNA and protein in resting macrophages, whereas a strong increase is observed in IFN-gamma-activated cells infected with the virus. By reporter gene assay it was found that HSV infection augments TNF-alpha promoter activity. Moreover, treatment of the cells with actinomycin D, which totally blocked mRNA synthesis, only partially prevented accumulation of TNF-alpha protein, indicating that the infection lifts a block on translation of TNF-alpha mRNA. EMSA analysis showed that specific binding to the kappaB#3 site of the murine TNF-alpha promoter was induced within 1 h after infection and persisted beyond 5 h where TNF-alpha expression is down-modulated. Binding to the cAMP responsive element site was also induced but more transiently with kinetics closely following activation of the TNF-alpha promoter. Inhibitors against either NF-kappaB activation or the activating transcription factor 2 kinase p38 abrogated TNF-alpha expression, showing a requirement for both signals for activation of the promoter. This observation was corroborated by reporter gene assays. As to the translational regulation of TNF-alpha, the AU-rich sequence in the 3' untranslated region of the mRNA was found to be responsible for this control because deletion of this region renders mRNA constitutively translationable. These results show that TNF-alpha production is induced by HSV-2 in macrophages through both transcriptional and translational regulation.
Collapse
Affiliation(s)
- S R Paludan
- Medical Microbiology and Immunology, University of Aarhus, Aarhus, Denmark.
| | | | | | | |
Collapse
|
46
|
D'Addario M, Libermann TA, Xu J, Ahmad A, Menezes J. Epstein-Barr Virus and its glycoprotein-350 upregulate IL-6 in human B-lymphocytes via CD21, involving activation of NF-kappaB and different signaling pathways. J Mol Biol 2001; 308:501-14. [PMID: 11327783 DOI: 10.1006/jmbi.2001.4589] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Epstein-Barr virus (EBV) is a ubiquitous and highly immunotropic gamma herpesvirus that infects more than 90 % of humans worldwide. Its pathogenicity leads to a number of diseases including tumors that result from EBV's ability to readily transform B-lymphocytes and, to a lesser extent, epithelial cells. EBV utilizes CD21/CR2 as its receptor on B cells to initiate the infection process. EBV binds to CR2 through its major envelope glycoprotein-350 (gp350) and is also a remarkable immunomodulating agent. We had previously shown that EBV is capable of modulating the synthesis of a number of cytokines. We now show that while both purified recombinant gp350 (rgp350) and EBV upregulate IL-6 mRNA synthesis in B cells, EBV-induced IL-6 gene activation occurs for a significantly longer period of time (i.e. 12 hours for EBV as compared to 6 hours for rgp350). Moreover, the half-life of EBV-induced IL-6 mRNA was also significantly longer (10 hours) than that of mRNA induced by rgp350 (about 6 hours). Both EBV and gp350 enhance the binding of the NF-kappaB transcription factor, as determined by band-shift and augment NF-kappaB-mediated activation of a CAT reporter plasmid. Furthermore, we demonstrate that while the activation of IL-6 gene expression by gp350 is mediated primarily by the protein kinase C pathway, EBV can mediate its effects through multiple signaling pathways. To our knowledge this is the first report showing that the binding of a herpesvirus envelope glycoprotein to CR2 on human B cells results in the activation of the NF-kappaB transcription factor leading to the upregulation of IL-6 gene expression in these lymphocytes.
Collapse
Affiliation(s)
- M D'Addario
- Laboratory of Immunovirology, Department of Microbiology and Immunology and Pediatric Research Center, University of Montreal, and Ste. Justine Hospital, 3175 Côte Ste. Catherine, Montreal, Quebec H3T 1C5, Canada
| | | | | | | | | |
Collapse
|
47
|
Abstract
Virus infections induce a proinflammatory response including expression of cytokines and chemokines. The subsequent leukocyte recruitment and antiviral effector functions contribute to the first line of defense against viruses. The molecular virus-cell interactions initiating these events have been studied intensively, and it appears that viral surface glycoproteins, double-stranded RNA, and intracellular viral proteins all have the capacity to activate signal transduction pathways leading to the expression of cytokines and chemokines. The signaling pathways activated by viral infections include the major proinflammatory pathways, with the transcription factor NF-kappaB having received special attention. These transcription factors in turn promote the expression of specific inducible host proteins and participate in the expression of some viral genes. Here we review the current knowledge of virus-induced signal transduction by seven human pathogenic viruses and the most widely used experimental models for viral infections. The molecular mechanisms of virus-induced expression of cytokines and chemokines is also analyzed.
Collapse
Affiliation(s)
- T H Mogensen
- Department of Medical Microbiology and Immunology, University of Aarhus, DK-8000 Aarhus C, Denmark
| | | |
Collapse
|