1
|
Wang Y, Jiang J, Shang K, Xu X, Sun J. Turning "trashed" genomic loci into treasurable sites for integrating chimeric antigen receptors in T and NK cells. Mol Ther 2025; 33:1368-1379. [PMID: 39980196 PMCID: PMC11997492 DOI: 10.1016/j.ymthe.2025.02.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 10/11/2024] [Accepted: 02/17/2025] [Indexed: 02/22/2025] Open
Abstract
Chimeric antigen receptor (CAR)-based immune cell therapy involves genetically engineering immune cells, such as T cells and natural killer (NK) cells, to express CARs that can specifically recognize target antigens. This modification enables T/NK cells to selectively eliminate tumor cells following adoptive transfer. One common approach to stably integrate CARs into the genome of T/NK cells is through retroviral or lentiviral vectors. However, these vectors mediate semi-random gene integration, posing risks such as oncogenic mutations, gene silencing, and variable CAR expression levels. Targeted integration of CAR genes into the specific genomic locus could overcome these limitations, but identifying the optimal integration sites to maximize the safety and efficacy of CAR-T/NK cell products remains a critical question. Improper integration sites may disturb the endogenous genes surrounding the integration sites, raising safety concerns. Additionally, regulatory elements at the integration sites, such as promoters, can influence the expression level of CAR genes, thus affecting the efficacy of CAR-T/NK cells. In this review, we summarized current strategies for selecting integration sites and promoters in the engineering of CAR-T/NK cells to achieve potent anti-tumor efficacy in preclinical studies.
Collapse
Affiliation(s)
- Yajie Wang
- Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China; Liangzhu Laboratory, Zhejiang University, Hangzhou 311121, China; Department of Cell Biology, Zhejiang University School of Medicine, Hangzhou 310058, China; Institute of Hematology, Zhejiang University and Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou 310058, Zhejiang, China
| | - Jie Jiang
- Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China; Liangzhu Laboratory, Zhejiang University, Hangzhou 311121, China; Department of Cell Biology, Zhejiang University School of Medicine, Hangzhou 310058, China; Institute of Hematology, Zhejiang University and Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou 310058, Zhejiang, China
| | - Kai Shang
- Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China; Liangzhu Laboratory, Zhejiang University, Hangzhou 311121, China; Department of Cell Biology, Zhejiang University School of Medicine, Hangzhou 310058, China; Institute of Hematology, Zhejiang University and Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou 310058, Zhejiang, China
| | - Xiaobao Xu
- Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China; Liangzhu Laboratory, Zhejiang University, Hangzhou 311121, China; Institute of Hematology, Zhejiang University and Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou 310058, Zhejiang, China
| | - Jie Sun
- Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China; Liangzhu Laboratory, Zhejiang University, Hangzhou 311121, China; Department of Cell Biology, Zhejiang University School of Medicine, Hangzhou 310058, China; Institute of Hematology, Zhejiang University and Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou 310058, Zhejiang, China.
| |
Collapse
|
2
|
Chesnokova E, Bal N, Alhalabi G, Balaban P. Regulatory Elements for Gene Therapy of Epilepsy. Cells 2025; 14:236. [PMID: 39937026 PMCID: PMC11816724 DOI: 10.3390/cells14030236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2024] [Revised: 01/23/2025] [Accepted: 02/04/2025] [Indexed: 02/13/2025] Open
Abstract
The problem of drug resistance in epilepsy means that in many cases, a surgical treatment may be advised. But this is only possible if there is an epileptic focus, and resective brain surgery may have adverse side effects. One of the promising alternatives is gene therapy, which allows the targeted expression of therapeutic genes in different brain regions, and even in specific cell types. In this review, we provide detailed explanations of some key terms related to genetic engineering, and describe various regulatory elements that have already been used in the development of different approaches to treating epilepsy using viral vectors. We compare a few universal promoters for their strength and duration of transgene expression, and in our description of cell-specific promoters, we focus on elements driving expression in glutamatergic neurons, GABAergic neurons and astrocytes. We also explore enhancers and some other cis-regulatory elements currently used in viral vectors for gene therapy, and consider future perspectives of state-of-the-art technologies for designing new, stronger and more specific regulatory elements. Gene therapy has multiple advantages and should become more common in the future, but there is still a lot to study and invent in this field.
Collapse
Affiliation(s)
- Ekaterina Chesnokova
- Laboratory of Cellular Neurobiology of Learning, Institute of Higher Nervous Activity and Neurophysiology of the Russian Academy of Sciences, Moscow 117485, Russia; (E.C.); (P.B.)
| | - Natalia Bal
- Laboratory of Cellular Neurobiology of Learning, Institute of Higher Nervous Activity and Neurophysiology of the Russian Academy of Sciences, Moscow 117485, Russia; (E.C.); (P.B.)
| | - Ghofran Alhalabi
- Laboratory of Molecular Neurobiology, Institute of Higher Nervous Activity and Neurophysiology of the Russian Academy of Sciences, Moscow 117485, Russia;
| | - Pavel Balaban
- Laboratory of Cellular Neurobiology of Learning, Institute of Higher Nervous Activity and Neurophysiology of the Russian Academy of Sciences, Moscow 117485, Russia; (E.C.); (P.B.)
| |
Collapse
|
3
|
Xu L, Yao S, Ding YE, Xie M, Feng D, Sha P, Tan L, Bei F, Yao Y. Designing and optimizing AAV-mediated gene therapy for neurodegenerative diseases: from bench to bedside. J Transl Med 2024; 22:866. [PMID: 39334366 PMCID: PMC11429861 DOI: 10.1186/s12967-024-05661-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 09/04/2024] [Indexed: 09/30/2024] Open
Abstract
Recombinant adeno-associated viruses (rAAVs) have emerged as an attractive tool for gene delivery, and demonstrated tremendous promise in gene therapy and gene editing-therapeutic modalities with potential "one-and-done" treatment benefits compared to conventional drugs. Given their tropisms for the central nervous system (CNS) across various species including humans, rAAVs have been extensively investigated in both pre-clinical and clinical studies targeting neurodegenerative disease. However, major challenges remain in the application of rAAVs for CNS gene therapy, such as suboptimal vector design, low CNS transduction efficiency and specificity, and therapy-induced immunotoxicity. Therefore, continuing efforts are being made to optimize the rAAV vectors from their "core" genetic payloads to their "coat" or capsid structure. In this review, we describe current approaches for rAAV vector design tailored for transgene expression in the CNS, summarize the development of CNS-targeting AAV serotypes, and highlight recent advancements in AAV capsid engineering, aimed at generating a new generation of rAAVs with improved CNS tropism. Additionally, we discuss various administration routes for delivering rAAVs to the CNS and provide an overview of AAV-mediated gene therapies currently under investigation in clinical trials for the treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Liang Xu
- Clinical Research Center of Neurological Disease, Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, The Second Affiliated Hospital of Soochow University, Soochow University, Suzhou, China
- Department of Neurosurgery, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Shun Yao
- Department of Neurosurgery, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China.
| | - Yifan Evan Ding
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Mengxiao Xie
- Department of Laboratory Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Dingqi Feng
- Center of Clinical Laboratory, Dushu Lake Hospital Affiliated to Soochow University, Suzhou, 215123, China
| | - Pengfei Sha
- Clinical Research Center of Neurological Disease, Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, The Second Affiliated Hospital of Soochow University, Soochow University, Suzhou, China
| | - Lu Tan
- Clinical Research Center of Neurological Disease, Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, The Second Affiliated Hospital of Soochow University, Soochow University, Suzhou, China
- Department of Neurosurgery, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Fengfeng Bei
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| | - Yizheng Yao
- Clinical Research Center of Neurological Disease, Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, The Second Affiliated Hospital of Soochow University, Soochow University, Suzhou, China.
| |
Collapse
|
4
|
Yoon S, Park S, Lee J, Kim B, Gwak W. Novel Enhanced Mammalian Cell Transient Expression Vector via Promoter Combination. Int J Mol Sci 2024; 25:2330. [PMID: 38397006 PMCID: PMC10888961 DOI: 10.3390/ijms25042330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 02/09/2024] [Accepted: 02/13/2024] [Indexed: 02/25/2024] Open
Abstract
During the emergence of infectious diseases, evaluating the efficacy of newly developed vaccines requires antigen proteins. Available methods enhance antigen protein productivity; however, structural modifications may occur. Therefore, we aimed to construct a novel transient overexpression vector capable of rapidly producing large quantities of antigenic proteins in mammalian cell lines. This involved expanding beyond the exclusive use of the human cytomegalovirus (CMV) promoter, and was achieved by incorporating a transcriptional enhancer (CMV enhancer), a translational enhancer (woodchuck hepatitis virus post-transcriptional regulatory element), and a promoter based on the CMV promoter. Twenty novel transient expression vectors were constructed, with the vector containing the human elongation factor 1-alpha (EF-1a) promoter showing the highest efficiency in expressing foreign proteins. This vector exhibited an approximately 27-fold higher expression of enhanced green fluorescent protein than the control vector containing only the CMV promoter. It also expressed the highest level of severe acute respiratory syndrome coronavirus 2 receptor-binding domain protein. These observations possibly result from the simultaneous enhancement of the transcriptional activity of the CMV promoter and the human EF-1a promoter by the CMV enhancer. Additionally, the synergistic effect between the CMV and human EF-1a promoters likely contributed to the further enhancement of protein expression.
Collapse
Affiliation(s)
| | | | | | | | - WonSeok Gwak
- Division of Clinical Vaccine Research, Center for Vaccine Research, National Institute of Infectious Diseases, National Institute of Health, Korea Disease Control and Prevention Agency, Cheongju 28160, Chungcheongbuk-do, Republic of Korea; (S.Y.); (S.P.); (J.L.); (B.K.)
| |
Collapse
|
5
|
Kuppers DA, Linton J, Ortiz Espinosa S, McKenna KM, Rongvaux A, Paddison PJ. Gene knock-outs in human CD34+ hematopoietic stem and progenitor cells and in the human immune system of mice. PLoS One 2023; 18:e0287052. [PMID: 37379309 PMCID: PMC10306193 DOI: 10.1371/journal.pone.0287052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 05/26/2023] [Indexed: 06/30/2023] Open
Abstract
Human CD34+ hematopoietic stem and progenitor cells (HSPCs) are a standard source of cells for clinical HSC transplantations as well as experimental xenotransplantation to generate "humanized mice". To further extend the range of applications of these humanized mice, we developed a protocol to efficiently edit the genomes of human CD34+ HSPCs before transplantation. In the past, manipulating HSPCs has been complicated by the fact that they are inherently difficult to transduce with lentivectors, and rapidly lose their stemness and engraftment potential during in vitro culture. However, with optimized nucleofection of sgRNA:Cas9 ribonucleoprotein complexes, we are now able to edit a candidate gene in CD34+ HSPCs with almost 100% efficiency, and transplant these modified cells in immunodeficient mice with high engraftment levels and multilineage hematopoietic differentiation. The result is a humanized mouse from which we knocked out a gene of interest from their human immune system.
Collapse
Affiliation(s)
- Daniel A. Kuppers
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
| | - Jonathan Linton
- Translational Science and Therapeutics Division, Program in Immunology, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
| | - Sergio Ortiz Espinosa
- Translational Science and Therapeutics Division, Program in Immunology, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
| | - Kelly M. McKenna
- Translational Science and Therapeutics Division, Program in Immunology, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
| | - Anthony Rongvaux
- Translational Science and Therapeutics Division, Program in Immunology, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
- Department of Immunology, University of Washington, Seattle, Washington, United States of America
| | - Patrick J. Paddison
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
| |
Collapse
|
6
|
Lail SS, McKenna N, Yates RM. The Derivation and Use of HoxB8-Driven Conditionally Immortalized Macrophages. Methods Mol Biol 2023; 2692:109-120. [PMID: 37365464 DOI: 10.1007/978-1-0716-3338-0_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2023]
Abstract
The use of Hox-driven conditionally immortalized immune cells has significantly increased in biomedical research over the past 15 years. HoxB8-driven conditionally immortalized myeloid progenitor cells maintain their ability to differentiate into functional macrophages. There are multiple benefits to this conditional immortalization strategy including the ability for unlimited propagation, genetic mutability, primary-like immune cells (macrophages, dendritic cells, and granulocytes) on demand, derivation from variety of mouse strains, and simple cryopreservation and reconstitution. In this chapter, we will discuss how to derive and use these HoxB8-conditionally immortalized myeloid progenitor cells.
Collapse
Affiliation(s)
- Shranjit S Lail
- Department of Medical Science, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Neil McKenna
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| | - Robin M Yates
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada.
- Snyder Institute of Chronic Disease, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.
| |
Collapse
|
7
|
Lieske A, Agyeman-Duah E, Selich A, Dörpmund N, Talbot SR, Schambach A, Maetzig T. A pro B cell population forms the apex of the leukemic hierarchy in Hoxa9/Meis1-dependent AML. Leukemia 2023; 37:79-90. [PMID: 36517672 PMCID: PMC9883166 DOI: 10.1038/s41375-022-01775-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 11/21/2022] [Accepted: 11/23/2022] [Indexed: 12/15/2022]
Abstract
Relapse is a major challenge to therapeutic success in acute myeloid leukemia (AML) and can be partly associated with heterogeneous leukemic stem cell (LSC) properties. In the murine Hoxa9/Meis1-dependent (H9M) AML model, LSC potential lies in three defined immunophenotypes, including Lin-cKit+ progenitor cells (Lin-), Gr1+CD11b+cKit+ myeloid cells, and lymphoid cells (Lym+). Previous reports demonstrated their interconversion and distinct drug sensitivities. In contrast, we here show that H9M AML is hierarchically organized. We, therefore, tracked the developmental potential of LSC phenotypes. This unexpectedly revealed a substantial fraction of Lin- LSCs that failed to regenerate Lym+ LSCs, and that harbored reduced leukemogenic potential. However, Lin- LSCs capable of producing Lym+ LSCs as well as Lym+ LSCs triggered rapid disease development suggestive of their high relapse-driving potential. Transcriptional analyses revealed that B lymphoid master regulators, including Sox4 and Bach2, correlated with Lym+ LSC development and presumably aggressive disease. Lentiviral overexpression of Sox4 and Bach2 induced dedifferentiation of H9M cells towards a lineage-negative state in vitro as the first step of lineage conversion. This work suggests that the potency to initiate a partial B lymphoid primed transcriptional program as present in infant AML correlates with aggressive disease and governs the H9M LSC hierarchy.
Collapse
Affiliation(s)
- Anna Lieske
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
- Pediatric Hematology and Oncology, Hannover Medical School, Hannover, Germany
| | - Eric Agyeman-Duah
- Pediatric Hematology and Oncology, Hannover Medical School, Hannover, Germany
| | - Anton Selich
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
| | - Nicole Dörpmund
- Pediatric Hematology and Oncology, Hannover Medical School, Hannover, Germany
| | - Steven R Talbot
- Institute for Laboratory Animal Science, Hannover Medical School, Hannover, Germany
| | - Axel Schambach
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
- Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Tobias Maetzig
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany.
- Pediatric Hematology and Oncology, Hannover Medical School, Hannover, Germany.
| |
Collapse
|
8
|
Kuzmin AA, Tomilin AN. Building Blocks of Artificial CRISPR-Based Systems beyond Nucleases. Int J Mol Sci 2022; 24:ijms24010397. [PMID: 36613839 PMCID: PMC9820447 DOI: 10.3390/ijms24010397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 12/19/2022] [Accepted: 12/19/2022] [Indexed: 12/28/2022] Open
Abstract
Tools developed in the fields of genome engineering, precise gene regulation, and synthetic gene networks have an increasing number of applications. When shared with the scientific community, these tools can be used to further unlock the potential of precision medicine and tissue engineering. A large number of different genetic elements, as well as modifications, have been used to create many different systems and to validate some technical concepts. New studies have tended to optimize or improve existing elements or approaches to create complex synthetic systems, especially those based on the relatively new CRISPR technology. In order to maximize the output of newly developed approaches and to move from proof-of-principle experiments to applications in regenerative medicine, it is important to navigate efficiently through the vast number of genetic elements to choose those most suitable for specific needs. In this review, we have collected information regarding the main genetic elements and their modifications, which can be useful in different synthetic systems with an emphasis of those based on CRISPR technology. We have indicated the most suitable elements and approaches to choose or combine in planning experiments, while providing their deeper understanding, and have also stated some pitfalls that should be avoided.
Collapse
|
9
|
Bagchi A, Devaraju N, Chambayil K, Rajendiran V, Venkatesan V, Sayed N, Pai AA, Nath A, David E, Nakamura Y, Balasubramanian P, Srivastava A, Thangavel S, Mohankumar KM, Velayudhan SR. Erythroid lineage-specific lentiviral RNAi vectors suitable for molecular functional studies and therapeutic applications. Sci Rep 2022; 12:14033. [PMID: 35982069 PMCID: PMC9388678 DOI: 10.1038/s41598-022-13783-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Accepted: 05/27/2022] [Indexed: 12/02/2022] Open
Abstract
Numerous genes exert multifaceted roles in hematopoiesis. Therefore, we generated novel lineage-specific RNA interference (RNAi) lentiviral vectors, H23B-Ery-Lin-shRNA and H234B-Ery-Lin-shRNA, to probe the functions of these genes in erythroid cells without affecting other hematopoietic lineages. The lineage specificity of these vectors was confirmed by transducing multiple hematopoietic cells to express a fluorescent protein. Unlike the previously reported erythroid lineage RNAi vector, our vectors were designed for cloning the short hairpin RNAs (shRNAs) for any gene, and they also provide superior knockdown of the target gene expression with a single shRNA integration per cell. High-level lineage-specific downregulation of BCL11A and ZBTB7A, two well-characterized transcriptional repressors of HBG in adult erythroid cells, was achieved with substantial induction of fetal hemoglobin with a single-copy lentiviral vector integration. Transduction of primary healthy donor CD34+ cells with these vectors resulted in >80% reduction in the target protein levels and up to 40% elevation in the γ-chain levels in the differentiated erythroid cells. Xenotransplantation of the human CD34+ cells transduced with H23B-Ery-Lin-shBCL11A LV in immunocompromised mice showed ~ 60% reduction in BCL11A protein expression with ~ 40% elevation of γ-chain levels in the erythroid cells derived from the transduced CD34+ cells. Overall, the novel erythroid lineage-specific lentiviral RNAi vectors described in this study provide a high-level knockdown of target gene expression in the erythroid cells, making them suitable for their use in gene therapy for hemoglobinopathies. Additionally, the design of these vectors also makes them ideal for high-throughput RNAi screening for studying normal and pathological erythropoiesis.
Collapse
Affiliation(s)
- Abhirup Bagchi
- Center for Stem Cell Research (A Unit of inStem, Bengaluru, India), Christian Medical College, Vellore, Tamil Nadu, 632002, India
- Department of Biotechnology, Thiruvalluvar University, Vellore, Tamil Nadu, 632115, India
| | - Nivedhitha Devaraju
- Center for Stem Cell Research (A Unit of inStem, Bengaluru, India), Christian Medical College, Vellore, Tamil Nadu, 632002, India
- Manipal Academy of Higher Education, Manipal, Karnataka, 576119, India
| | - Karthik Chambayil
- Center for Stem Cell Research (A Unit of inStem, Bengaluru, India), Christian Medical College, Vellore, Tamil Nadu, 632002, India
- Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram, Kerala, 695011, India
| | - Vignesh Rajendiran
- Center for Stem Cell Research (A Unit of inStem, Bengaluru, India), Christian Medical College, Vellore, Tamil Nadu, 632002, India
- Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram, Kerala, 695011, India
| | - Vigneshwaran Venkatesan
- Center for Stem Cell Research (A Unit of inStem, Bengaluru, India), Christian Medical College, Vellore, Tamil Nadu, 632002, India
- Manipal Academy of Higher Education, Manipal, Karnataka, 576119, India
| | - Nilofer Sayed
- Center for Stem Cell Research (A Unit of inStem, Bengaluru, India), Christian Medical College, Vellore, Tamil Nadu, 632002, India
| | - Aswin Anand Pai
- Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram, Kerala, 695011, India
- Department of Haematology, Christian Medical College, Vellore, Tamil Nadu, 632004, India
| | - Aneesha Nath
- Center for Stem Cell Research (A Unit of inStem, Bengaluru, India), Christian Medical College, Vellore, Tamil Nadu, 632002, India
- Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram, Kerala, 695011, India
| | - Ernest David
- Department of Biotechnology, Thiruvalluvar University, Vellore, Tamil Nadu, 632115, India
| | - Yukio Nakamura
- Cell Engineering Division, RIKEN BioResource Research Center, Ibaraki, 3050074, Japan
| | - Poonkuzhali Balasubramanian
- Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram, Kerala, 695011, India
- Department of Haematology, Christian Medical College, Vellore, Tamil Nadu, 632004, India
| | - Alok Srivastava
- Center for Stem Cell Research (A Unit of inStem, Bengaluru, India), Christian Medical College, Vellore, Tamil Nadu, 632002, India
- Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram, Kerala, 695011, India
- Department of Haematology, Christian Medical College, Vellore, Tamil Nadu, 632004, India
| | - Saravanabhavan Thangavel
- Center for Stem Cell Research (A Unit of inStem, Bengaluru, India), Christian Medical College, Vellore, Tamil Nadu, 632002, India
- Manipal Academy of Higher Education, Manipal, Karnataka, 576119, India
| | - Kumarasamypet M Mohankumar
- Center for Stem Cell Research (A Unit of inStem, Bengaluru, India), Christian Medical College, Vellore, Tamil Nadu, 632002, India.
- Manipal Academy of Higher Education, Manipal, Karnataka, 576119, India.
| | - Shaji R Velayudhan
- Center for Stem Cell Research (A Unit of inStem, Bengaluru, India), Christian Medical College, Vellore, Tamil Nadu, 632002, India.
- Department of Biotechnology, Thiruvalluvar University, Vellore, Tamil Nadu, 632115, India.
- Department of Haematology, Christian Medical College, Vellore, Tamil Nadu, 632004, India.
| |
Collapse
|
10
|
Huo J, Huang Y, Zheng Z, Tay XN, Mahfut FB, Zhang W, Lam KP, Yang Y, Xu S. Development of a T cell-redirecting bispecific antibody targeting B-cell maturation antigen for the suppression of multiple myeloma cell growth. Antib Ther 2022; 5:138-149. [PMID: 35774245 PMCID: PMC9237814 DOI: 10.1093/abt/tbac012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 05/13/2022] [Accepted: 05/18/2022] [Indexed: 11/25/2022] Open
Abstract
Background Multiple myeloma (MM) is the second most common hematological malignancy. It has emerged as one of the next possible hematological diseases amenable to immunotherapy. B-cell maturation antigen (BCMA), a member of the tumor necrosis factor receptor superfamily, is highly expressed in MM cells and is one target with the most potential for developing MM-targeting immunotherapy. Other than the FDA-approved BCMA-targeting CAR T-cell therapy, such as Abecma and CARVYKTI, T cell-engaging multi-specific antibody is another promising therapeutic modality for BCMA-targeting MM treatment. We develop a T-cell redirecting BCMA-targeting bispecific antibody (bsAb) and evaluate its anti-MM activity. Methods We first generated several clones of mouse anti-human BCMA monoclonal antibodies using DNA immunization. One of the anti-BCMA antibodies was then used to design and produce a T cell-redirecting BCMA × CD3 bsAb in CHO cells. Finally, we examined the effect of the bsAb on MM cell growth both in vitro and in vivo. Results The BCMA × CD3 bsAb was designed in a FabscFv format and produced in CHO cells with good yield and purity. Moreover, the bsAb can trigger robust T cell proliferation and activation and induce efficient T cell-mediated MM cell killing in vitro. Using a MM xenograft mouse model, we demonstrate that the bsAb can effectively suppress MM cell growth in vivo. Conclusions Our results suggest that the BCMA × CD3 bsAb in the FabscFv format can efficiently inhibit MM cell growth and have promising potential to be developed into a therapeutic antibody drug for the treatment of MM.
Collapse
Affiliation(s)
- Jianxin Huo
- Singapore Immunology Network, Agency for Science, Technology and Research, 8A Biomedical Grove, Immunos Building, Singapore 138648, Singapore
| | - Yuhan Huang
- Singapore Immunology Network, Agency for Science, Technology and Research, 8A Biomedical Grove, Immunos Building, Singapore 138648, Singapore
| | - Ziying Zheng
- Bioprocessing Technology Institute, Agency for Science, Technology and Research, 20 Biopolis Way, Centros Building, Singapore 138668, Singapore
| | - Xin Ni Tay
- Bioprocessing Technology Institute, Agency for Science, Technology and Research, 20 Biopolis Way, Centros Building, Singapore 138668, Singapore
| | - Farouq Bin Mahfut
- Bioprocessing Technology Institute, Agency for Science, Technology and Research, 20 Biopolis Way, Centros Building, Singapore 138668, Singapore
| | - Wei Zhang
- Bioprocessing Technology Institute, Agency for Science, Technology and Research, 20 Biopolis Way, Centros Building, Singapore 138668, Singapore
| | - Kong-Peng Lam
- Singapore Immunology Network, Agency for Science, Technology and Research, 8A Biomedical Grove, Immunos Building, Singapore 138648, Singapore
| | - Yuansheng Yang
- Bioprocessing Technology Institute, Agency for Science, Technology and Research, 20 Biopolis Way, Centros Building, Singapore 138668, Singapore
| | - Shengli Xu
- Singapore Immunology Network, Agency for Science, Technology and Research, 8A Biomedical Grove, Immunos Building, Singapore 138648, Singapore
| |
Collapse
|
11
|
Guzman RA, Maruyama M, Moeinzadeh S, Lui E, Zhang N, Storaci HW, Tam K, Huang EE, Utsunomiya T, Rhee C, Gao Q, Yao Z, Yang YP, Goodman SB. The effect of genetically modified platelet-derived growth factor-BB over-expressing mesenchymal stromal cells during core decompression for steroid-associated osteonecrosis of the femoral head in rabbits. Stem Cell Res Ther 2021; 12:503. [PMID: 34526115 PMCID: PMC8444495 DOI: 10.1186/s13287-021-02572-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 08/27/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Approximately one third of patients undergoing core decompression (CD) for early-stage osteonecrosis of the femoral head (ONFH) experience progression of the disease, and subsequently require total hip arthroplasty (THA). Thus, identifying adjunctive treatments to optimize bone regeneration during CD is an unmet clinical need. Platelet-derived growth factor (PDGF)-BB plays a central role in cell growth and differentiation. The aim of this study was to characterize mesenchymal stromal cells (MSCs) that were genetically modified to overexpress PDGF-BB (PDGF-BB-MSCs) in vitro and evaluate their therapeutic effect when injected into the bone tunnel at the time of CD in an in vivo rabbit model of steroid-associated ONFH. METHODS In vitro studies: Rabbit MSCs were transduced with a lentivirus vector carrying the human PDGF-BB gene under the control of either the cytomegalovirus (CMV) or phosphoglycerate (PGK) promoter. The proliferative rate, PDGF-BB expression level, and osteogenic differentiation capacity of unmodified MSCs, CMV-PDGF-BB-MSCs, and PGK-PDGF-BB-MSCs were assessed. In vivo studies: Twenty-four male New Zealand white rabbits received an intramuscular (IM) injection of methylprednisolone 20 mg/kg. Four weeks later, the rabbits were divided into four groups: the CD group, the hydrogel [HG, (a collagen-alginate mixture)] group, the MSC group, and the PGK-PDGF-BB-MSC group. Eight weeks later, the rabbits were sacrificed, their femurs were harvested, and microCT, mechanical testing, and histological analyses were performed. RESULTS In vitro studies: PGK-PDGF-BB-MSCs proliferated more rapidly than unmodified MSCs (P < 0.001) and CMV-PDGF-BB-MSCs (P < 0.05) at days 3 and 7. CMV-PDGF-BB-MSCs demonstrated greater PDGF-BB expression than PGK-PDGF-BB-MSCs (P < 0.01). However, PGK-PDGF-BB-MSCs exhibited greater alkaline phosphatase staining at 14 days (P < 0.01), and osteogenic differentiation at 28 days (P = 0.07) than CMV-PDGF-BB-MSCs. In vivo: The PGK-PDGF-BB-MSC group had a trend towards greater bone mineral density (BMD) than the CD group (P = 0.074). The PGK-PDGF-BB-MSC group demonstrated significantly lower numbers of empty lacunae (P < 0.001), greater osteoclast density (P < 0.01), and greater angiogenesis (P < 0.01) than the other treatment groups. CONCLUSION The use of PGK-PDGF-BB-MSCs as an adjunctive treatment with CD may reduce progression of osteonecrosis and enhance bone regeneration and angiogenesis in the treatment of early-stage ONFH.
Collapse
Affiliation(s)
- Roberto Alfonso Guzman
- Department of Orthopaedic Surgery, Stanford University School of Medicine, 300 Pasteur Drive, Edwards R155, Stanford, CA, 94305, USA
| | - Masahiro Maruyama
- Department of Orthopaedic Surgery, Stanford University School of Medicine, 300 Pasteur Drive, Edwards R155, Stanford, CA, 94305, USA
| | - Seyedsina Moeinzadeh
- Department of Orthopaedic Surgery, Stanford University School of Medicine, 300 Pasteur Drive, Edwards R155, Stanford, CA, 94305, USA
| | - Elaine Lui
- Department of Orthopaedic Surgery, Stanford University School of Medicine, 300 Pasteur Drive, Edwards R155, Stanford, CA, 94305, USA.,Department of Mechanical Engineering, Stanford University School of Medicine, Stanford, CA, USA
| | - Ning Zhang
- Department of Orthopaedic Surgery, Stanford University School of Medicine, 300 Pasteur Drive, Edwards R155, Stanford, CA, 94305, USA
| | - Hunter W Storaci
- Department of Orthopaedic Surgery, Stanford University School of Medicine, 300 Pasteur Drive, Edwards R155, Stanford, CA, 94305, USA
| | - Kaysie Tam
- Department of Orthopaedic Surgery, Stanford University School of Medicine, 300 Pasteur Drive, Edwards R155, Stanford, CA, 94305, USA
| | - Elijah Ejun Huang
- Department of Orthopaedic Surgery, Stanford University School of Medicine, 300 Pasteur Drive, Edwards R155, Stanford, CA, 94305, USA
| | - Takeshi Utsunomiya
- Department of Orthopaedic Surgery, Stanford University School of Medicine, 300 Pasteur Drive, Edwards R155, Stanford, CA, 94305, USA
| | - Claire Rhee
- Department of Orthopaedic Surgery, Stanford University School of Medicine, 300 Pasteur Drive, Edwards R155, Stanford, CA, 94305, USA
| | - Qi Gao
- Department of Orthopaedic Surgery, Stanford University School of Medicine, 300 Pasteur Drive, Edwards R155, Stanford, CA, 94305, USA
| | - Zhenyu Yao
- Department of Orthopaedic Surgery, Stanford University School of Medicine, 300 Pasteur Drive, Edwards R155, Stanford, CA, 94305, USA
| | - Yunzhi Peter Yang
- Department of Orthopaedic Surgery, Stanford University School of Medicine, 300 Pasteur Drive, Edwards R155, Stanford, CA, 94305, USA. .,Department of Material Science and Engineering, Stanford University School of Medicine, Stanford, CA, USA. .,Department of Bioengineering, Stanford University School of Medicine, Stanford, CA, USA.
| | - Stuart B Goodman
- Department of Orthopaedic Surgery, Stanford University School of Medicine, 300 Pasteur Drive, Edwards R155, Stanford, CA, 94305, USA. .,Department of Bioengineering, Stanford University School of Medicine, Stanford, CA, USA. .,Department of Orthopaedic Surgery, Stanford University School of Medicine, 450 Broadway Street, Redwood City, CA, 94063, USA.
| |
Collapse
|
12
|
Nowlan B, Futrega K, Williams ED, Doran MR. Human bone marrow-derived stromal cell behavior when injected directly into the bone marrow of NOD-scid-gamma mice pre-conditioned with sub-lethal irradiation. Stem Cell Res Ther 2021; 12:231. [PMID: 33845908 PMCID: PMC8042930 DOI: 10.1186/s13287-021-02297-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 03/18/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Direct bone marrow injection of cells into murine marrow cavities is used in a range of cell characterization assays and to develop disease models. While human bone marrow-derived stromal cells (hBMSC, also known as mesenchymal stem cells (MSC)) are frequently described in therapeutic applications, or disease modeling, their behavior following direct injection into murine bone marrow is poorly characterized. Herein, we characterized hBMSC engraftment and persistence within the bone marrow of NOD-scid interleukin (IL)-2γ-/- (NSG) mice with or without prior 2 Gy total-body γ-irradiation of recipient mice. METHODS One day after conditioning NSG mice with sublethal irradiation, 5 × 105 luciferase (Luc) and green fluorescent protein (GFP)-expressing hBMSC (hBMSC-Luc/GFP) were injected into the right femurs of animals. hBMSC-Luc/GFP were tracked in live animals using IVIS imaging, and histology was used to further characterize hBMSC location and behavior in tissues. RESULTS hBMSC-Luc/GFP number within injected marrow cavities declined rapidly over 4 weeks, but prior irradiation of animals delayed this decline. At 4 weeks, hBMSC-Luc/GFP colonized injected marrow cavities and distal marrow cavities at rates of 2.5 ± 2.2% and 1.7 ± 1.9% of total marrow nucleated cells, respectively in both irradiated and non-irradiated mice. In distal marrow cavities, hBMSC were not uniformly distributed and appeared to be co-localized in clusters, with the majority found in the endosteal region. CONCLUSIONS While significant numbers of hBMSC-Luc/GFP could be deposited into the mouse bone marrow via direct bone marrow injection, IVIS imaging indicated that the number of hBMSC-Luc/GFP in that bone marrow cavity declined with time. Irradiation of mice prior to transplant only delayed the rate of hBMSC-Luc/GFP population decline in injected femurs. Clusters of hBMSC-Luc/GFP were observed in the histology of distal marrow cavities, suggesting that some transplanted cells actively homed to distal marrow cavities. Individual cell clusters may have arisen from discrete clones that homed to the marrow, and then underwent modest proliferation. The transient high-density population of hBMSC within the injected femur, or the longer-term low-density population of hBMSC in distal marrow cavities, offers useful models for studying disease or regenerative processes. Experimental designs should consider how relative hBMSC distribution and local hBMSC densities evolve over time.
Collapse
Affiliation(s)
- Bianca Nowlan
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology (QUT), Brisbane, Australia.,Australian Prostate Cancer Research Centre - Queensland (APCCRC-Q) and Queensland Bladder Cancer Initiative (QBCI), Brisbane, Queensland, Australia.,Translational Research Institute, 37 Kent Street, Brisbane, Queensland, 4102, Australia
| | - Kathryn Futrega
- Translational Research Institute, 37 Kent Street, Brisbane, Queensland, 4102, Australia.,Centre for Biomedical Technologies (CBT) and School of Mechanical, Medical, and Process Engineering (MMPE), Queensland University of Technology (QUT), Brisbane, Australia.,Skeletal Biology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Building 30, 30 Convent Dr MSC 4320, Bethesda, MD, 20892-4320, USA
| | - Elizabeth Deborah Williams
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology (QUT), Brisbane, Australia.,Australian Prostate Cancer Research Centre - Queensland (APCCRC-Q) and Queensland Bladder Cancer Initiative (QBCI), Brisbane, Queensland, Australia.,Translational Research Institute, 37 Kent Street, Brisbane, Queensland, 4102, Australia
| | - Michael Robert Doran
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology (QUT), Brisbane, Australia. .,Australian Prostate Cancer Research Centre - Queensland (APCCRC-Q) and Queensland Bladder Cancer Initiative (QBCI), Brisbane, Queensland, Australia. .,Translational Research Institute, 37 Kent Street, Brisbane, Queensland, 4102, Australia. .,Centre for Biomedical Technologies (CBT) and School of Mechanical, Medical, and Process Engineering (MMPE), Queensland University of Technology (QUT), Brisbane, Australia. .,Skeletal Biology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Building 30, 30 Convent Dr MSC 4320, Bethesda, MD, 20892-4320, USA. .,Mater Research Institute - University of Queensland, Brisbane, Australia. .,Australian National Centre for the Public Awareness of Science, Australian National University, Canberra, Australia.
| |
Collapse
|
13
|
Kondrashov A, Karpova E. Notes on Functional Modules in the Assembly of CRISPR/Cas9-Mediated Epigenetic Modifiers. Methods Mol Biol 2021; 2198:401-428. [PMID: 32822047 DOI: 10.1007/978-1-0716-0876-0_30] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
CRISPR/cas9 is a popular tool, widely used today for genome editing. However, the modular organization of this tool allows it to be used not only for DNA modifications but also for introducing epigenetic modifications both in DNA (methylation/demethylation) and in histones (acetylation/deacetylation). In these notes we will concentrate on the ways to adapt the CRISPR/cas9 system for epigenetic DNA modification of specific regions of interest. The modular organization represents a universal principal, that allows to create infinite number of functions with a limited number of tools. CRISPR/cas9, in which each subunit can be adapted for a particular task, is an excellent example of this rule. Made of two main subunits, it can be modified for targeted delivery of foreign activity (effector, an epigenetic enzyme in our case) to a selected part of the genome. In doing this the CRISPR/cas9 system represents a unique method that allows the introduction of both genomic and epigenetic modifications. This chapter gives a detailed review of how to prepare DNA for the fully functional CRISPR/cas9 system, able to introduce required modifications in the region of interest. We will discuss specific requirements for each structural component of the system as well as for auxiliary elements (modules), which are needed to ensure efficient expression of the elements of the system within the cell and the needs of selection and visualization.
Collapse
Affiliation(s)
- Alexander Kondrashov
- Division of Cancer and Stem Cells, School of Medicine, University of Nottingham Biodiscovery Institute, Nottingham, UK.
| | | |
Collapse
|
14
|
Ali A, Swanepoel CM, Winger QA, Rozance PJ, Anthony RV. Chorionic somatomammotropin RNA interference alters fetal liver glucose utilization. J Endocrinol 2020; 247:251-262. [PMID: 33108344 PMCID: PMC7643541 DOI: 10.1530/joe-20-0375] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 09/22/2020] [Indexed: 12/20/2022]
Abstract
Chorionic somatomammotropin (CSH) is a placenta-specific hormone associated with fetal growth, and fetal and maternal metabolism in both humans and sheep. We hypothesized that CSH deficiency could impact sheep fetal liver glucose utilization. To generate CSH-deficient pregnancies, day 9 hatched blastocysts were infected with lentiviral particles expressing CSH-specific shRNA (RNAi) or scramble control shRNA (SC) and transferred to synchronized recipients. CSH RNAi generated two distinct phenotypes at 135 days of gestational age (dGA); pregnancies with IUGR (RNAi-IUGR) or with normal fetal weight (RNAi-NW). Fetal body, fetal liver and placental weights were reduced (P < 0.05) only in RNAi-IUGR pregnancies compared to SC. Umbilical artery plasma insulin and insulin-like growth factor 1 (IGF1) concentrations were decreased, whereas insulin receptor beta (INSR) concentration in fetal liver was increased (P < 0.05) in both RNAi phenotypes. The mRNA concentrations of IGF1, IGF2, IGF binding protein 2 (IGFBP2) and IGFBP3 were decreased (P < 0.05) in fetal livers from both RNAi phenotypes. Fetal liver glycogen concentration and glycogen synthase 1 (GYS1) concentration were increased (P < 0.05), whereas fetal liver phosphorylated-GYS (inactive GYS) concentration was reduced (P < 0.05) in both RNAi phenotypes. Lactate dehydrogenase B (LDHB) concentration was increased (P < 0.05) and IGF2 concentration was decreased (P < 0.05) in RNAi-IUGR fetal livers only. Our findings suggest that fetal liver glucose utilization is impacted by CSH RNAi, independent of IUGR, and is likely tied to enhanced fetal liver insulin sensitivity in both RNAi phenotypes. Determining the physiological ramifications of both phenotypes, may help to differentiate direct effect of CSH deficiency or its indirect effect through IUGR.
Collapse
Affiliation(s)
- Asghar Ali
- Colorado State University, Animal Reproduction and Biotechnology Lab, Fort Collins, CO, US
| | - Callie M. Swanepoel
- Colorado State University, Animal Reproduction and Biotechnology Lab, Fort Collins, CO, US
| | - Quinton A. Winger
- Colorado State University, Animal Reproduction and Biotechnology Lab, Fort Collins, CO, US
| | - Paul J. Rozance
- University of Colorado Anschutz Medical Campus, Perinatal Research Center, Aurora, CO, US
| | - Russell V. Anthony
- Colorado State University, Animal Reproduction and Biotechnology Lab, Fort Collins, CO, US
- Corresponding Author: 1683 Campus Delivery, 3107 Rampart Road, Colorado State University, Fort Collins, CO 80523-1683. Telephone: 970-491-2586; FAX: 970-491-3557;
| |
Collapse
|
15
|
Buck TM, Wijnholds J. Recombinant Adeno-Associated Viral Vectors (rAAV)-Vector Elements in Ocular Gene Therapy Clinical Trials and Transgene Expression and Bioactivity Assays. Int J Mol Sci 2020; 21:E4197. [PMID: 32545533 PMCID: PMC7352801 DOI: 10.3390/ijms21124197] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 06/09/2020] [Accepted: 06/10/2020] [Indexed: 02/06/2023] Open
Abstract
Inherited retinal dystrophies and optic neuropathies cause chronic disabling loss of visual function. The development of recombinant adeno-associated viral vectors (rAAV) gene therapies in all disease fields have been promising, but the translation to the clinic has been slow. The safety and efficacy profiles of rAAV are linked to the dose of applied vectors. DNA changes in the rAAV gene cassette affect potency, the expression pattern (cell-specificity), and the production yield. Here, we present a library of rAAV vectors and elements that provide a workflow to design novel vectors. We first performed a meta-analysis on recombinant rAAV elements in clinical trials (2007-2020) for ocular gene therapies. We analyzed 33 unique rAAV gene cassettes used in 57 ocular clinical trials. The rAAV gene therapy vectors used six unique capsid variants, 16 different promoters, and six unique polyadenylation sequences. Further, we compiled a list of promoters, enhancers, and other sequences used in current rAAV gene cassettes in preclinical studies. Then, we give an update on pro-viral plasmid backbones used to produce the gene therapy vectors, inverted terminal repeats, production yield, and rAAV safety considerations. Finally, we assess rAAV transgene and bioactivity assays applied to cells or organoids in vitro, explants ex vivo, and clinical studies.
Collapse
Affiliation(s)
- Thilo M. Buck
- Department of Ophthalmology, Leiden University Medical Center (LUMC), 2333 ZC Leiden, The Netherlands;
| | - Jan Wijnholds
- Department of Ophthalmology, Leiden University Medical Center (LUMC), 2333 ZC Leiden, The Netherlands;
- Netherlands Institute of Neuroscience, Royal Netherlands Academy of Arts and Sciences (KNAW), 1105 BA Amsterdam, The Netherlands
| |
Collapse
|
16
|
Maturana CJ, Verpeut JL, Pisano TJ, Dhanerawala ZM, Esteves A, Enquist LW, Engel EA. Small Alphaherpesvirus Latency-Associated Promoters Drive Efficient and Long-Term Transgene Expression in the CNS. Mol Ther Methods Clin Dev 2020; 17:843-857. [PMID: 32368565 PMCID: PMC7191541 DOI: 10.1016/j.omtm.2020.04.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 04/06/2020] [Indexed: 02/06/2023]
Abstract
Recombinant adeno-associated viruses (rAAVs) are used as gene therapy vectors to treat central nervous system (CNS) diseases. Despite their safety and broad tropism, important issues need to be corrected such as the limited payload capacity and the lack of small gene promoters providing long-term, pan-neuronal transgene expression in the CNS. Commonly used gene promoters are relatively large and can be repressed a few months after CNS transduction, risking the long-term performance of single-dose gene therapy applications. We used a whole-CNS screening approach based on systemic delivery of AAV-PHP.eB, iDisco+ tissue-clearing and light-sheet microscopy to identify three small latency-associated promoters (LAPs) from the herpesvirus pseudorabies virus (PRV). These promoters are LAP1 (404 bp), LAP2 (498 bp), and LAP1_2 (880 bp). They drive chronic transcription of the virus-encoded latency-associated transcript (LAT) during productive and latent phases of PRV infection. We observed stable, pan-neuronal transgene transcription and translation from AAV-LAPs in the CNS for 6 months post AAV transduction. In several CNS areas, the number of cells expressing the transgene was higher for LAP2 than the large conventional EF1α promoter (1,264 bp). Our data suggest that the LAPs are suitable candidates for viral vector-based CNS gene therapies requiring chronic transgene expression after one-time viral-vector administration.
Collapse
Affiliation(s)
- Carola J. Maturana
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08544, USA
| | - Jessica L. Verpeut
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08544, USA
| | - Thomas J. Pisano
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08544, USA
| | - Zahra M. Dhanerawala
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08544, USA
| | - Andrew Esteves
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Lynn W. Enquist
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Esteban A. Engel
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08544, USA
| |
Collapse
|
17
|
Concise review on optimized methods in production and transduction of lentiviral vectors in order to facilitate immunotherapy and gene therapy. Biomed Pharmacother 2020; 128:110276. [PMID: 32502836 DOI: 10.1016/j.biopha.2020.110276] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 05/10/2020] [Accepted: 05/14/2020] [Indexed: 02/06/2023] Open
Abstract
Lentiviral vectors (LVs) have provided an efficient way to integrate our gene of interest into eukaryote cells. Human immunodeficiency virus (HIV)-derived LVs have been vastly studied to become an invaluable asset in gene delivery. This abled LVs to be used in both research laboratories and gene therapy. Pseudotyping HIV-1 based LVs, abled it to transduce different types of cells, especially hematopoietic stem cells. A wide range of tropism, plus to the ability to integrate genes into target cells, made LVs an armamentarium in gene therapy. The third and fourth generations of self-inactivating LVs are being used to achieve safe gene therapy. Not only advanced methods enabled the clinical-grade LV production on a large scale, but also considerably heightened transduction efficiency. One of which is microfluidic systems that revolutionized gene delivery approaches. Since gene therapy using LVs attracted lots of attention to itself, we provided a brief review of LV structure and life-cycle along with methods for improving both LV production and transduction. Also, we mentioned some of their utilization in immunotherapy and gene therapy.
Collapse
|
18
|
Espinoza DA, Fan X, Yang D, Cordes SF, Truitt LL, Calvo KR, Yabe IM, Demirci S, Hope KJ, Hong SG, Krouse A, Metzger M, Bonifacino A, Lu R, Uchida N, Tisdale JF, Wu X, DeRavin SS, Malech HL, Donahue RE, Wu C, Dunbar CE. Aberrant Clonal Hematopoiesis following Lentiviral Vector Transduction of HSPCs in a Rhesus Macaque. Mol Ther 2019; 27:1074-1086. [PMID: 31023523 PMCID: PMC6554657 DOI: 10.1016/j.ymthe.2019.04.003] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 04/04/2019] [Accepted: 04/04/2019] [Indexed: 01/21/2023] Open
Abstract
Lentiviral vectors (LVs) are used for delivery of genes into hematopoietic stem and progenitor cells (HSPCs) in clinical trials worldwide. LVs, in contrast to retroviral vectors, are not associated with insertion site-associated malignant clonal expansions and, thus, are considered safer. Here, however, we present a case of markedly abnormal dysplastic clonal hematopoiesis affecting the erythroid, myeloid, and megakaryocytic lineages in a rhesus macaque transplanted with HSPCs that were transduced with a LV containing a strong retroviral murine stem cell virus (MSCV) constitutive promoter-enhancer in the LTR. Nine insertions were mapped in the abnormal clone, resulting in overexpression and aberrant splicing of several genes of interest, including the cytokine stem cell factor and the transcription factor PLAG1. This case represents the first clear link between lentiviral insertion-induced clonal expansion and a clinically abnormal transformed phenotype following transduction of normal primate or human HSPCs, which is concerning, and suggests that strong constitutive promoters should not be included in LVs.
Collapse
Affiliation(s)
- Diego A Espinoza
- Translational Stem Cell Biology Branch, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD 20892, USA; Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Xing Fan
- Translational Stem Cell Biology Branch, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD 20892, USA
| | - Di Yang
- Translational Stem Cell Biology Branch, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD 20892, USA; Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Stefan F Cordes
- Translational Stem Cell Biology Branch, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD 20892, USA
| | - Lauren L Truitt
- Translational Stem Cell Biology Branch, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD 20892, USA
| | - Katherine R Calvo
- Translational Stem Cell Biology Branch, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD 20892, USA
| | - Idalia M Yabe
- Translational Stem Cell Biology Branch, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD 20892, USA
| | - Selami Demirci
- Sickle Cell and Vascular Biology Branch, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD, USA
| | - Kristin J Hope
- Stem Cell and Cancer Research Institute, McMaster University, Hamilton, ON, Canada
| | - So Gun Hong
- Translational Stem Cell Biology Branch, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD 20892, USA
| | - Allen Krouse
- Translational Stem Cell Biology Branch, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD 20892, USA
| | - Mark Metzger
- Translational Stem Cell Biology Branch, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD 20892, USA
| | - Aylin Bonifacino
- Translational Stem Cell Biology Branch, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD 20892, USA
| | - Rong Lu
- Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, University of Southern California, Los Angeles, CA, USA
| | - Naoya Uchida
- Sickle Cell and Vascular Biology Branch, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD, USA
| | - John F Tisdale
- Sickle Cell and Vascular Biology Branch, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD, USA
| | - Xiaolin Wu
- Cancer Research Technology Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Suk See DeRavin
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD, USA
| | - Harry L Malech
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD, USA
| | - Robert E Donahue
- Translational Stem Cell Biology Branch, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD 20892, USA
| | - Chuanfeng Wu
- Translational Stem Cell Biology Branch, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD 20892, USA.
| | - Cynthia E Dunbar
- Translational Stem Cell Biology Branch, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD 20892, USA.
| |
Collapse
|
19
|
Ruan S, Deng J, Yan L, Huang W. Evaluation of the effects of the combination of BMP-2-modified BMSCs and PRP on cartilage defects. Exp Ther Med 2018; 16:4569-4577. [PMID: 30542406 PMCID: PMC6257496 DOI: 10.3892/etm.2018.6776] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2017] [Accepted: 07/20/2018] [Indexed: 01/28/2023] Open
Abstract
Articular cartilage is avascular and aneural, and has limited capacity for self-regeneration when injured. Tissue engineering has emerged as a promising approach in repairing cartilage defects. To improve the therapy of cartilage healing, the present study investigated the efficacy of the combination of lentivirus-mediated bone morphogenetic protein-2 (BMP2) in bone marrow-derived stromal cells (BMSCs) and platelet-rich plasma (PRP) on cartilage and bone healing in a cartilage defect model using the rabbit knee. The BMSCs were harvested from New Zealand rabbits and transduced with lentivirus carrying BMP-2. Standard bone defects were introduced in the femoral groove of patellofemoral joints of 48 New Zealand rabbits. The cartilage defects were subjected to synthetic scaffold mosaicplasty with chitosan/silk fibroin/nanohydroxyapatite particles tri-component scaffolds soaked in BMSCs and PRP. After 16 weeks, the tissue specimens were assessed by micro-computed tomography (micro-CT) and macroscopic examination. The results showed that lentivirus-mediated BMP-2 and PRP increased the cell viability of the BMSCs, induced the expression of associated genes and enhanced osteogenic differentiation in vitro. In vivo, the expression of BMP-2 was observed for 16 weeks. The combination of BMP-2 and PRP treatment led to optimal results, compared with the other groups on micro-CT and gross observations. The results of the present study present a novel therapy using the lentivirus-mediated BMP-2 gene together with PRP for cartilage healing.
Collapse
Affiliation(s)
- Shiqiang Ruan
- Department of Orthopaedics Surgery, The First People's Hospital of Zunyi, Zunyi, Guizhou 563003, P.R. China
| | - Jiang Deng
- Department of Orthopaedics Surgery, The First People's Hospital of Zunyi, Zunyi, Guizhou 563003, P.R. China
| | - Ling Yan
- Department of Orthopaedics Surgery, The First People's Hospital of Zunyi, Zunyi, Guizhou 563003, P.R. China
| | - Wenliang Huang
- Department of Orthopaedics Surgery, The First People's Hospital of Zunyi, Zunyi, Guizhou 563003, P.R. China
| |
Collapse
|
20
|
Charlesworth CT, Camarena J, Cromer MK, Vaidyanathan S, Bak RO, Carte JM, Potter J, Dever DP, Porteus MH. Priming Human Repopulating Hematopoietic Stem and Progenitor Cells for Cas9/sgRNA Gene Targeting. MOLECULAR THERAPY. NUCLEIC ACIDS 2018; 12:89-104. [PMID: 30195800 PMCID: PMC6023838 DOI: 10.1016/j.omtn.2018.04.017] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2018] [Revised: 04/27/2018] [Accepted: 04/28/2018] [Indexed: 12/11/2022]
Abstract
Engineered nuclease-mediated gene targeting through homologous recombination (HR) in hematopoietic stem and progenitor cells (HSPCs) has the potential to treat a variety of genetic hematologic and immunologic disorders. Here, we identify critical parameters to reproducibly achieve high frequencies of RNA-guided (single-guide RNA [sgRNA]; CRISPR)-Cas9 nuclease (Cas9/sgRNA) and rAAV6-mediated HR at the β-globin (HBB) locus in HSPCs. We identified that by transducing HSPCs with rAAV6 post-electroporation, there was a greater than 2-fold electroporation-aided transduction (EAT) of rAAV6 endocytosis with roughly 70% of the cell population having undergone transduction within 2 hr. When HSPCs are cultured at low densities (1 × 105 cells/mL) prior to HBB targeting, HSPC expansion rates are significantly positively correlated with HR frequencies in vitro as well as in repopulating cells in immunodeficient NSG mice in vivo. We also show that culturing fluorescence-activated cell sorting (FACS)-enriched HBB-targeted HSPCs at low cell densities in the presence of the small molecules, UM171 and SR1, stimulates the expansion of gene-edited HSPCs as measured by higher engraftment levels in immunodeficient mice. This work serves not only as an optimized protocol for genome editing HSPCs at the HBB locus for the treatment of β-hemoglobinopathies but also as a foundation for editing HSPCs at other loci for both basic and translational research.
Collapse
Affiliation(s)
| | - Joab Camarena
- Department of Pediatrics, Stanford University, Stanford, CA 94305, USA
| | - M Kyle Cromer
- Department of Pediatrics, Stanford University, Stanford, CA 94305, USA
| | | | - Rasmus O Bak
- Department of Pediatrics, Stanford University, Stanford, CA 94305, USA
| | - Jason M Carte
- Thermo Fisher Scientific, 5781 Van Allen Way, Carlsbad, CA 92008, USA
| | - Jason Potter
- Thermo Fisher Scientific, 5781 Van Allen Way, Carlsbad, CA 92008, USA
| | - Daniel P Dever
- Department of Pediatrics, Stanford University, Stanford, CA 94305, USA.
| | - Matthew H Porteus
- Department of Pediatrics, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
21
|
Li Y, Zhang W, Zhao J, Li S, Shan L, Zhu J, Li Y, Zhu H, Mao Q, Xia H. Establishing a dual knock-out cell line by lentivirus based combined CRISPR/Cas9 and Loxp/Cre system. Cytotechnology 2018; 70:1595-1605. [PMID: 30173403 DOI: 10.1007/s10616-018-0252-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Accepted: 08/23/2018] [Indexed: 10/28/2022] Open
Abstract
The clustered regulatory interspersed short palindromic repeat (CRISPR)/CRISPR-associated protein (Cas) system has been widely used for gene knock-out. Lentiviral vectors have been commonly used as a delivery method for this system, however, prolonged Cas9/sgRNA expression due to lentiviral integration can lead to accumulating off-target mutations. To solve this issue in engineering a gene knock-out cell line, this study established a novel system, which was composed of two lentiviral vectors. One lentiviral vector carried simultaneously sgRNAs and CRISPR/Cas9 expression cassettes targeting single or multiple gene(s); the other lentiviral vector carried Cre that could remove excess sgRNAs and Cas9 expression cassettes in the genome after gene targeting was achieved. To prove the principle, two candidate genes, extracellular matrix protein 1 (ECM1) and progranulin (PGRN), both highly expressed in MDA-MB-231 cells, were selected for testing the novel system. A dual knock-out of ECM1 and PGRN was successfully achieved in MDA-MB-231 cell line, with the sgRNAs and Cas9 expression cassettes being removed by Cre. This system should have great potential in applications for multiple genes knock-out in vitro.
Collapse
Affiliation(s)
- Ya Li
- Laboratory of Gene Therapy, Department of Biochemistry, College of Life Sciences, Shaanxi Normal University, 199 South Chang'an Road, Xi'an, 710062, Shaanxi, People's Republic of China
| | - Weifeng Zhang
- Laboratory of Gene Therapy, Department of Biochemistry, College of Life Sciences, Shaanxi Normal University, 199 South Chang'an Road, Xi'an, 710062, Shaanxi, People's Republic of China
| | - Junli Zhao
- Laboratory of Gene Therapy, Department of Biochemistry, College of Life Sciences, Shaanxi Normal University, 199 South Chang'an Road, Xi'an, 710062, Shaanxi, People's Republic of China
| | - Sai Li
- Laboratory of Gene Therapy, Department of Biochemistry, College of Life Sciences, Shaanxi Normal University, 199 South Chang'an Road, Xi'an, 710062, Shaanxi, People's Republic of China
| | - Linlin Shan
- Laboratory of Gene Therapy, Department of Biochemistry, College of Life Sciences, Shaanxi Normal University, 199 South Chang'an Road, Xi'an, 710062, Shaanxi, People's Republic of China
| | - Jiuling Zhu
- Laboratory of Gene Therapy, Department of Biochemistry, College of Life Sciences, Shaanxi Normal University, 199 South Chang'an Road, Xi'an, 710062, Shaanxi, People's Republic of China
| | - Yan Li
- Laboratory of Gene Therapy, Department of Biochemistry, College of Life Sciences, Shaanxi Normal University, 199 South Chang'an Road, Xi'an, 710062, Shaanxi, People's Republic of China
| | - He Zhu
- Laboratory of Gene Therapy, Department of Biochemistry, College of Life Sciences, Shaanxi Normal University, 199 South Chang'an Road, Xi'an, 710062, Shaanxi, People's Republic of China
| | - Qinwen Mao
- Department of Pathology, Northwestern University Feinberg School of Medicine, 303 E. Chicago Avenue, Ward 3-140, Chicago, IL, 60611, USA
| | - Haibin Xia
- Laboratory of Gene Therapy, Department of Biochemistry, College of Life Sciences, Shaanxi Normal University, 199 South Chang'an Road, Xi'an, 710062, Shaanxi, People's Republic of China.
| |
Collapse
|
22
|
Hacobian A, Hercher D. Pushing the Right Buttons: Improving Efficacy of Therapeutic DNA Vectors. TISSUE ENGINEERING PART B-REVIEWS 2017; 24:226-239. [PMID: 29264951 DOI: 10.1089/ten.teb.2017.0353] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Gene therapy represents a potent therapeutical application for regenerative medicine. So far, viral and nonviral approaches suffer from major drawbacks hindering efficient gene therapeutic applicability: the immunogenicity of viral systems on the one hand, and the low gene transfer efficiency of nonviral systems on the other hand. Therefore, there is a high demand for improvements of therapeutical systems at several levels. This review summarizes different DNA vector modifications to enhance biological efficacy and efficiency of therapeutical vectors, aiming for low toxicity, high specificity, and biological efficacy-the cornerstones for successful translation of gene therapy into the clinic. We aim to provide a step-by-step instruction to optimize their vectors to achieve the desired outcome of gene therapy. Our review provides the means to either construct a potent gene therapeutic vector de novo or to specifically address a bottleneck in the chain of events mandatory for therapeutic success. Although most of the introduced techniques can be translated into different areas, this review primarily addresses improvements for applications in transient gene therapy in the field of tissue engineering.
Collapse
Affiliation(s)
- Ara Hacobian
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, Department of Molecular Biology, AUVA Research Center, The Austrian Cluster for Tissue Regeneration , Vienna, Austria
| | - David Hercher
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, Department of Molecular Biology, AUVA Research Center, The Austrian Cluster for Tissue Regeneration , Vienna, Austria
| |
Collapse
|
23
|
Detailed comparison of retroviral vectors and promoter configurations for stable and high transgene expression in human induced pluripotent stem cells. Gene Ther 2017; 24:298-307. [PMID: 28346436 DOI: 10.1038/gt.2017.20] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Revised: 01/27/2017] [Accepted: 03/06/2017] [Indexed: 12/19/2022]
Abstract
Correction of patient-specific induced pluripotent stem cells (iPSC) upon gene delivery through retroviral vectors offers new treatment perspectives for monogenetic diseases. Gene-modified iPSC clones can be screened for safe integration sites and differentiated into transplantable cells of interest. However, the current bottleneck is epigenetic vector silencing. In order to identify the most suitable retroviral expression system in iPSC, we systematically compared vectors from different retroviral genera, different promoters and their combination with ubiquitous chromatin opening elements (UCOE), and several envelope pseudotypes. Lentiviral vectors (LV) pseudotyped with vesicular stomatitis virus glycoprotein were superior to gammaretroviral and alpharetroviral vectors and other envelopes tested. The elongation factor 1α short (EFS) promoter mediated the most robust expression, whereas expression levels were lower from the potent but more silencing-prone spleen focus forming virus (SFFV) promoter. Both full-length (A2UCOE) and minimal (CBX3) UCOE juxtaposed to two physiological and one viral promoter reduced transgene silencing with equal efficiency. However, a promoter-specific decline in expression levels was not entirely prevented. Upon differentiation of transgene-positive iPSC into endothelial cells, A2UCOE.EFS and CBX3.EFS vectors maintained highest transgene expression in a larger fraction of cells as compared with all other constructs tested here. The function of UCOE diminished, but did not fully counteract, vector silencing and possibilities for improvements remain. Nevertheless, the CBX3.EFS in a LV background exhibited the most promising promoter and vector configuration for both high titer production and long-term genetic modification of human iPSC and their progeny.
Collapse
|
24
|
Miskolci V, Hodgson L, Cox D. Using Fluorescence Resonance Energy Transfer-Based Biosensors to Probe Rho GTPase Activation During Phagocytosis. Methods Mol Biol 2017; 1519:125-143. [PMID: 27815877 DOI: 10.1007/978-1-4939-6581-6_9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The p21-family members of Rho GTPases are important for the control of actin cytoskeleton dynamics, and are critical regulators of phagocytosis. The three-dimensional structure of phagosomes and the highly compartmentalized nature of the signaling mechanisms during phagocytosis require high-resolution imaging using ratiometric biosensors to decipher Rho GTPase activities regulating phagosome formation and function. Here we describe methods for the expression and ratiometric imaging of FRET-based Rho GTPase biosensors in macrophages during phagocytosis. As an example, we show Cdc42 activity at the phagosome over Z-serial planes. In addition, we demonstrate the usage of a new, fast, and user-friendly deconvolution package that delivers significant improvements in the attainable details of Rho GTPase activity in phagosome structures.
Collapse
Affiliation(s)
- Veronika Miskolci
- Departments of Anatomy and Structural Biology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY, 10461, USA
| | - Louis Hodgson
- Departments of Anatomy and Structural Biology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY, 10461, USA.
- Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY, USA.
| | - Dianne Cox
- Departments of Anatomy and Structural Biology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY, 10461, USA.
- Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY, USA.
- Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY, USA.
| |
Collapse
|
25
|
Masuda J, Kawamoto H, Strober W, Takayama E, Mizutani A, Murakami H, Ikawa T, Kitani A, Maeno N, Shigehiro T, Satoh A, Seno A, Arun V, Kasai T, Fuss IJ, Katsura Y, Seno M. Transient Tcf3 Gene Repression by TALE-Transcription Factor Targeting. Appl Biochem Biotechnol 2016; 180:1559-1573. [PMID: 27406037 DOI: 10.1007/s12010-016-2187-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Accepted: 07/04/2016] [Indexed: 12/14/2022]
Abstract
Transplantation of hematopoietic stem and progenitor cells (HSCs) i.e., self-renewing cells that retain multipotentiality, is now a widely performed therapy for many hematopoietic diseases. However, these cells are present in low number and are subject to replicative senescence after extraction; thus, the acquisition of sufficient numbers of cells for transplantation requires donors able to provide repetitive blood samples and/or methods of expanding cell numbers without disturbing cell multipotentiality. Previous studies have shown that HSCs maintain their multipotentiality and self-renewal activity if TCF3 transcription function is blocked under B cell differentiating conditions. Taking advantage of this finding to devise a new approach to HSC expansion in vitro, we constructed an episomal expression vector that specifically targets and transiently represses the TCF3 gene. This consisted of a vector encoding a transcription activator-like effector (TALE) fused to a Krüppel-associated box (KRAB) repressor. We showed that this TALE-KRAB vector repressed expression of an exogenous reporter gene in HEK293 and COS-7 cell lines and, more importantly, efficiently repressed endogenous TCF3 in a human B lymphoma cell line. These findings suggest that this vector can be used to maintain multipotentiality in HSC being subjected to a long-term expansion regimen prior to transplantation.
Collapse
Affiliation(s)
- Junko Masuda
- Division of Medical Bioengineering, Graduate School of Natural Science and Technology, Okayama University, Okayama, 700-8530, Japan.
- Mucosal Immunity Section, Laboratory of Host Defenses, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA.
| | - Hiroshi Kawamoto
- Laboratory for Lymphocyte Development, RIKEN Research Center for Allergy and Immunology, Yokohama, 230-0045, Japan
- Department of Immunology, Institute for Frontier Medical Sciences, Kyoto University, Kyoto, 606-8507, Japan
| | - Warren Strober
- Mucosal Immunity Section, Laboratory of Host Defenses, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Eiji Takayama
- Department of Oral Biochemistry, Asahi University School of Dentistry, Hozumi 1851, Gifu, 501-0296, Japan
| | - Akifumi Mizutani
- Division of Medical Bioengineering, Graduate School of Natural Science and Technology, Okayama University, Okayama, 700-8530, Japan
| | - Hiroshi Murakami
- Division of Medical Bioengineering, Graduate School of Natural Science and Technology, Okayama University, Okayama, 700-8530, Japan
| | - Tomokatsu Ikawa
- Laboratory for Lymphocyte Development, RIKEN Research Center for Allergy and Immunology, Yokohama, 230-0045, Japan
- Laboratory for Immune Regeneration, RIKEN Center for Integrative Medical Sciences, Yokohama, 230-0045, Japan
| | - Atsushi Kitani
- Mucosal Immunity Section, Laboratory of Host Defenses, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Narumi Maeno
- Division of Medical Bioengineering, Graduate School of Natural Science and Technology, Okayama University, Okayama, 700-8530, Japan
| | - Tsukasa Shigehiro
- Division of Medical Bioengineering, Graduate School of Natural Science and Technology, Okayama University, Okayama, 700-8530, Japan
| | - Ayano Satoh
- Division of Medical Bioengineering, Graduate School of Natural Science and Technology, Okayama University, Okayama, 700-8530, Japan
| | - Akimasa Seno
- Division of Medical Bioengineering, Graduate School of Natural Science and Technology, Okayama University, Okayama, 700-8530, Japan
| | - Vaidyanath Arun
- Division of Medical Bioengineering, Graduate School of Natural Science and Technology, Okayama University, Okayama, 700-8530, Japan
| | - Tomonari Kasai
- Division of Medical Bioengineering, Graduate School of Natural Science and Technology, Okayama University, Okayama, 700-8530, Japan
| | - Ivan J Fuss
- Mucosal Immunity Section, Laboratory of Host Defenses, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Yoshimoto Katsura
- Laboratory for Lymphocyte Development, RIKEN Research Center for Allergy and Immunology, Yokohama, 230-0045, Japan
- Division of Cell Regeneration and Transplantation, Advanced Medical Research Center, School of Medicine, Nihon University, Tokyo, 173-8610, Japan
| | - Masaharu Seno
- Division of Medical Bioengineering, Graduate School of Natural Science and Technology, Okayama University, Okayama, 700-8530, Japan
| |
Collapse
|
26
|
Lykken EA, Li QJ. The MicroRNA miR-191 Supports T Cell Survival Following Common γ Chain Signaling. J Biol Chem 2016; 291:23532-23544. [PMID: 27634043 DOI: 10.1074/jbc.m116.741264] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Indexed: 12/21/2022] Open
Abstract
To ensure lifelong immunocompetency, naïve and memory T cells must be adequately maintained in the peripheral lymphoid tissues. Homeostatic maintenance of T cells is controlled by tonic signaling through T cell antigen receptors and common γ chain cytokine receptors. In this study, we identify the highly expressed microRNA miR-191 as a key regulator of naïve, memory, and regulatory T cell homeostasis. Conditional deletion of miR-191 using LckCre resulted in preferential loss of peripheral CD4+ regulatory T cells as well as naïve and memory CD8+ T cells. This preferential loss stemmed from reduced survival following deficient cytokine signaling and STAT5 activation. Mechanistically, insulin receptor substrate 1 (Irs1) is a direct target of miR-191, and dysregulated IRS1 expression antagonizes STAT5 activation. Our study identifies a novel role for microRNAs in fine-tuning immune homeostasis and thereby maintaining the lymphocyte reservoir necessary to mount productive immune responses.
Collapse
Affiliation(s)
- Erik Allen Lykken
- From the Department of Immunology, Duke University Medical Center, Durham, North Carolina 27710
| | - Qi-Jing Li
- From the Department of Immunology, Duke University Medical Center, Durham, North Carolina 27710
| |
Collapse
|
27
|
Wang L, Wang Z, Zhang F, Zhu R, Bi J, Wu J, Zhang H, Wu H, Kong W, Yu B, Yu X. Enhancing Transgene Expression from Recombinant AAV8 Vectors in Different Tissues Using Woodchuck Hepatitis Virus Post-Transcriptional Regulatory Element. Int J Med Sci 2016; 13:286-91. [PMID: 27076785 PMCID: PMC4829541 DOI: 10.7150/ijms.14152] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2015] [Accepted: 02/04/2016] [Indexed: 12/13/2022] Open
Abstract
Adeno-associated virus (AAV) vectors have been utilized extensively in gene therapy and gene function studies, as strong transgene expression is a prerequisite for positive outcomes. AAV8 was reported as the most efficient AAV serotype for transduction of the liver, brain and muscle compared with other serotypes. However, AAV8-mediated transduction of human hepatocytes is rather poor with approximately 20-fold lower efficiency compared with that of mouse hepatocytes. Therefore, we applied the woodchuck hepatitis virus post-transcriptional regulatory element (WPRE) to enhance AAV8-mediated transgene expression driven by a combination promoter (CAG promoter) with a CMV-IE enhancer and chicken beta-actin promoter for a more efficient viral vector. Transgene expression from recombinant AAV8 (rAAV8) vectors harboring a red fluorescent protein (RFP) reporter gene with or without WPRE were evaluated in vitro and in vivo. The results demonstrated that WPRE improved AAV8-mediated RFP expression in different cell lines with clear increases of transgene expression in the liver, brain or muscle of animals. The findings of this study will help to substantially reduce the quantity of viral particles that must be injected in order to reach a therapeutic level of transgene expression in gene therapy. Consequently, such dose reductions may lessen the potential risks associated with high doses of viral vectors.
Collapse
Affiliation(s)
- Lizheng Wang
- 1. National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Zixuan Wang
- 1. National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Fangfang Zhang
- 1. National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Rui Zhu
- 1. National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Jinpeng Bi
- 1. National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Jiaxin Wu
- 1. National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Haihong Zhang
- 1. National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Hui Wu
- 1. National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Wei Kong
- 1. National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, China
- 2. Key Laboratory for Molecular Enzymology and Engineering, the Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Bin Yu
- 1. National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Xianghui Yu
- 1. National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, China
- 2. Key Laboratory for Molecular Enzymology and Engineering, the Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China
| |
Collapse
|
28
|
Hwang I, Hahm SC, Choi KA, Park SH, Jeong H, Yea JH, Kim J, Hong S. Intrathecal Transplantation of Embryonic Stem Cell-Derived Spinal GABAergic Neural Precursor Cells Attenuates Neuropathic Pain in a Spinal Cord Injury Rat Model. Cell Transplant 2016; 25:593-607. [DOI: 10.3727/096368915x689460] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Neuropathic pain following spinal cord injury (SCI) is a devastating disease characterized by spontaneous pain such as hyperalgesia and allodynia. In this study, we investigated the therapeutic potential of ESC-derived spinal GABAergic neurons to treat neuropathic pain in a SCI rat model. Mouse embryonic stem cell–derived neural precursor cells (mESC-NPCs) were cultured in media supplemented with sonic hedgehog (SHH) and retinoic acid (RA) and efficiently differentiated into GABAergic neurons. Interestingly, low doses of SHH and RA induced MGE-like progenitors, which expressed low levels of DARPP32 and Nkx2.1 and high levels of Irx3 and Pax6. These cells subsequently generated the majority of the DARPP32- GABAergic neurons after in vitro differentiation. The spinal mESC-NPCs were intrathecally transplanted into the lesion area of the spinal cord around T10–T11 at 21 days after SCI. The engrafted spinal GABAergic neurons remarkably increased both the paw withdrawal threshold (PWT) below the level of the lesion and the vocalization threshold (VT) to the level of the lesion (T12, T11, and T10 vertebrae), which indicates attenuation of chronic neuropathic pain by the spinal GABAergic neurons. The transplanted cells were positive for GABA antibody staining in the injured region, and cells migrated to the injured spinal site and survived for more than 7 weeks in L4–L5. The mESC-NPC-derived spinal GABAergic neurons dramatically attenuated the chronic neuropathic pain following SCI, suggesting that the spinal GABAergic mESC-NPCs cultured with low doses of SHH and RA could be alternative cell sources for treatment of SCI neuropathic pain by stem cell-based therapies.
Collapse
Affiliation(s)
- Insik Hwang
- School of Biosystem and Biomedical Science, College of Health Science, Korea University, Anam-dong, Seongbuk-gu, Seoul, Republic of Korea
- Department of Public Health Sciences, Graduate School, Korea University, Anam-dong, Seongbuk-gu, Seoul, Republic of Korea
| | - Suk-Chan Hahm
- Department of Public Health Sciences, Graduate School, Korea University, Anam-dong, Seongbuk-gu, Seoul, Republic of Korea
- Department of Physical Therapy, College of Health Science, Korea University, Anam-dong, Seongbuk-gu, Seoul, Republic of Korea
| | - Kyung-Ah Choi
- School of Biosystem and Biomedical Science, College of Health Science, Korea University, Anam-dong, Seongbuk-gu, Seoul, Republic of Korea
- Department of Chemistry, College of Science; Korea University, Anam-dong, Seongbuk-gu, Seoul, Republic of Korea
| | - Sung-Ho Park
- Department of Physical Therapy, College of Health Science, Korea University, Anam-dong, Seongbuk-gu, Seoul, Republic of Korea
| | - Hyesun Jeong
- School of Biosystem and Biomedical Science, College of Health Science, Korea University, Anam-dong, Seongbuk-gu, Seoul, Republic of Korea
- Department of Public Health Sciences, Graduate School, Korea University, Anam-dong, Seongbuk-gu, Seoul, Republic of Korea
| | - Ji-Hye Yea
- Department of Public Health Sciences, Graduate School, Korea University, Anam-dong, Seongbuk-gu, Seoul, Republic of Korea
- Department of Physical Therapy, College of Health Science, Korea University, Anam-dong, Seongbuk-gu, Seoul, Republic of Korea
| | - Junesun Kim
- Department of Public Health Sciences, Graduate School, Korea University, Anam-dong, Seongbuk-gu, Seoul, Republic of Korea
- Department of Physical Therapy, College of Health Science, Korea University, Anam-dong, Seongbuk-gu, Seoul, Republic of Korea
| | - Sunghoi Hong
- School of Biosystem and Biomedical Science, College of Health Science, Korea University, Anam-dong, Seongbuk-gu, Seoul, Republic of Korea
- Department of Public Health Sciences, Graduate School, Korea University, Anam-dong, Seongbuk-gu, Seoul, Republic of Korea
- Department of Integrated Biomedical and Life Science, Graduate School, Korea University, Anam-dong, Seongbuk-gu, Seoul, Republic of Korea
| |
Collapse
|
29
|
Progress in gene therapy for primary immunodeficiencies using lentiviral vectors. Curr Opin Allergy Clin Immunol 2015; 14:527-34. [PMID: 25207699 DOI: 10.1097/aci.0000000000000114] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
PURPOSE OF REVIEW This review gives an overview over the most recent progress in the field of lentiviral gene therapy for primary immunodeficiencies (PIDs). The history and state-of-the-art of lentiviral vector development are summarized and the recent advancements for a number of selected diseases are reviewed in detail. Past retroviral vector trials for these diseases, the most recent improvements of lentiviral vector platforms and their application in preclinical development as well as ongoing clinical trials are discussed. RECENT FINDINGS Main focus is on the preclinical studies and clinical trials for the treatment of Wiskott-Aldrich syndrome, chronic granulomatous disease, adenosine deaminase deficient severe combined immunodeficiency (ADA-SCID) and X-linked severe combined immunodeficiency with lentiviral gene therapy. SUMMARY Gene therapy for PIDs is an effective treatment, providing potential long-term clinical benefit for affected patients. Substantial progress has been made to make lentiviral gene therapy platforms available for a number of rare genetic diseases. Although many ongoing gene therapy trials are based on ex-vivo approaches with autologous hematopoietic stem cells, other approaches such as in-vivo gene therapy or gene-repair platforms might provide further advancement for certain PIDs.
Collapse
|
30
|
Smurthwaite CA, Williams W, Fetsko A, Abbadessa D, Stolp ZD, Reed CW, Dharmawan A, Wolkowicz R. Genetic barcoding with fluorescent proteins for multiplexed applications. J Vis Exp 2015:52452. [PMID: 25938804 PMCID: PMC4541556 DOI: 10.3791/52452] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Fluorescent proteins, fluorescent dyes and fluorophores in general have revolutionized the field of molecular cell biology. In particular, the discovery of fluorescent proteins and their genes have enabled the engineering of protein fusions for localization, the analysis of transcriptional activation and translation of proteins of interest, or the general tracking of individual cells and cell populations. The use of fluorescent protein genes in combination with retroviral technology has further allowed the expression of these proteins in mammalian cells in a stable and reliable manner. Shown here is how one can utilize these genes to give cells within a population of cells their own biosignature. As the biosignature is achieved with retroviral technology, cells are barcoded 'indefinitely'. As such, they can be individually tracked within a mixture of barcoded cells and utilized in more complex biological applications. The tracking of distinct populations in a mixture of cells is ideal for multiplexed applications such as discovery of drugs against a multitude of targets or the activation profile of different promoters. The protocol describes how to elegantly develop and amplify barcoded mammalian cells with distinct genetic fluorescent markers, and how to use several markers at once or one marker at different intensities. Finally, the protocol describes how the cells can be further utilized in combination with cell-based assays to increase the power of analysis through multiplexing.
Collapse
|
31
|
Cooper AR, Lill GR, Gschweng EH, Kohn DB. Rescue of splicing-mediated intron loss maximizes expression in lentiviral vectors containing the human ubiquitin C promoter. Nucleic Acids Res 2014; 43:682-90. [PMID: 25520191 PMCID: PMC4288199 DOI: 10.1093/nar/gku1312] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Lentiviral vectors almost universally use heterologous internal promoters to express transgenes. One of the most commonly used promoter fragments is a 1.2-kb sequence from the human ubiquitin C (UBC) gene, encompassing the promoter, some enhancers, first exon, first intron and a small part of the second exon of UBC. Because splicing can occur after transcription of the vector genome during vector production, we investigated whether the intron within the UBC promoter fragment is faithfully transmitted to target cells. Genetic analysis revealed that more than 80% of proviral forms lack the intron of the UBC promoter. The human elongation factor 1 alpha (EEF1A1) promoter fragment intron was not lost during lentiviral packaging, and this difference between the UBC and EEF1A1 promoter introns was conferred by promoter exonic sequences. UBC promoter intron loss caused a 4-fold reduction in transgene expression. Movement of the expression cassette to the opposite strand prevented intron loss and restored full expression. This increase in expression was mostly due to non-classical enhancer activity within the intron, and movement of putative intronic enhancer sequences to multiple promoter-proximal sites actually repressed expression. Reversal of the UBC promoter also prevented intron loss and restored full expression in bidirectional lentiviral vectors.
Collapse
Affiliation(s)
- Aaron R Cooper
- Molecular Biology Interdepartmental PhD Program, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Georgia R Lill
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Eric H Gschweng
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Donald B Kohn
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA Department of Pediatrics, University of California, Los Angeles, Los Angeles, CA 90095, USA Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA
| |
Collapse
|
32
|
Construction and quantitative evaluation of a dual specific promoter system for monitoring the expression status of Stra8 and c-kit genes. Mol Biotechnol 2014; 56:1100-9. [PMID: 25260891 DOI: 10.1007/s12033-014-9790-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Applications of genetic constructs with multiple promoters, which are fused with reporter genes and simultaneous monitoring of various events in cells, have gained special attention in recent years. Lentiviral vectors, with their distinctive characteristics, have been considered to monitor the developmental changes of cells in vitro. In this study, we constructed a novel lentiviral vector (FUM-M), containing two germ cell-specific promoters (Stra8 and c-kit), fused with ZsGreen and DsRed2 reporter genes, and evaluated its efficiency in different cells following treatments with retinoic acid and DMSO. Several cell lines (P19, GC-1 spg and HEK293T) were transduced with this vector, and functional capabilities of the promoters were verified by flow cytometry and quantitative RT-PCR. Our results indicate that FUM-M shows dynamic behavior in the presence and absence of extrinsic factors. A correlation was also observed between the function of promoters, present in the lentiviral construct and the endogenous level of the Stra8 and c-kit mRNAs in the cells. In conclusion, we recommend this strategy, which needs further optimization of the constructs, as a beneficial and practical way to screen chemical inducers involved in cellular differentiation toward germ-like cells.
Collapse
|
33
|
Bosch MK, Nerbonne JM, Ornitz DM. Dual transgene expression in murine cerebellar Purkinje neurons by viral transduction in vivo. PLoS One 2014; 9:e104062. [PMID: 25093726 PMCID: PMC4122438 DOI: 10.1371/journal.pone.0104062] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Accepted: 07/08/2014] [Indexed: 12/19/2022] Open
Abstract
Viral-vector mediated gene transfer to cerebellar Purkinje neurons in vivo is a promising avenue for gene therapy of cerebellar ataxias and for genetic manipulation in functional studies of animal models of cerebellar disease. Here, we report the results of experiments designed to identify efficient methods for viral transduction of adult murine Purkinje neurons in vivo. For these analyses, several lentiviral and an adeno-associated virus (AAV), serotype 1, vector with various promoter combinations were generated and compared for in situ transduction efficiency, assayed by fluorescent reporter protein expression in Purkinje neurons. Additional experiments were also conducted to identify the optimal experimental strategy for co-expression of two proteins in individual Purkinje neurons. Of the viruses tested, AAV1 with a CAG promoter exhibited the highest specificity for Purkinje neurons. To deliver two proteins to the same Purkinje neuron, several methods were tested, including: an internal ribosome entry site (IRES), a 2A sequence, a dual promoter vector, and co-injection of two viruses. Efficient expression of both proteins in the same Purkinje neuron was only achieved by co-injecting two AAV1-CAG viruses. We found that use of an AAV1-CAG virus outperformed similar lentivirus vectors and that co-injection of two AAV1-CAG viruses could be used to efficiently deliver two proteins to the same Purkinje neuron in adult mice. AAV1 with a CAG promoter is highly efficient and selective at transducing adult cerebellar Purkinje neurons and two AAV-CAG viruses can be used to efficiently express two proteins in the same neuron in vivo.
Collapse
Affiliation(s)
- Marie K. Bosch
- Developmental Biology, Washington University School of Medicine, Saint Louis, Missouri, United States of America
| | - Jeanne M. Nerbonne
- Developmental Biology, Washington University School of Medicine, Saint Louis, Missouri, United States of America
- Internal Medicine, Washington University School of Medicine, Saint Louis, Missouri, United States of America
| | - David M. Ornitz
- Developmental Biology, Washington University School of Medicine, Saint Louis, Missouri, United States of America
- * E-mail:
| |
Collapse
|
34
|
Okonogi N, Nakamura K, Suzuki Y, Suto N, Suzue K, Kaminuma T, Nakano T, Hirai H. Cranial irradiation induces bone marrow-derived microglia in adult mouse brain tissue. JOURNAL OF RADIATION RESEARCH 2014; 55:713-719. [PMID: 24706998 PMCID: PMC4100007 DOI: 10.1093/jrr/rru015] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2013] [Revised: 02/16/2014] [Accepted: 02/21/2014] [Indexed: 06/03/2023]
Abstract
Postnatal hematopoietic progenitor cells do not contribute to microglial homeostasis in adult mice under normal conditions. However, previous studies using whole-body irradiation and bone marrow (BM) transplantation models have shown that adult BM cells migrate into the brain tissue and differentiate into microglia (BM-derived microglia; BMDM). Here, we investigated whether cranial irradiation alone was sufficient to induce the generation of BMDM in the adult mouse brain. Transgenic mice that express green fluorescent protein (GFP) under the control of a murine stem cell virus (MSCV) promoter (MSCV-GFP mice) were used. MSCV-GFP mice express GFP in BM cells but not in the resident microglia in the brain. Therefore, these mice allowed us to detect BM-derived cells in the brain without BM reconstitution. MSCV-GFP mice, aged 8-12 weeks, received 13.0 Gy irradiation only to the cranium, and BM-derived cells in the brain were quantified at 3 and 8 weeks after irradiation. No BM-derived cells were detected in control non-irradiated MSCV-GFP mouse brains, but numerous GFP-labeled BM-derived cells were present in the brain stem, basal ganglia and cerebral cortex of the irradiated MSCV-GFP mice. These BM-derived cells were positive for Iba1, a marker for microglia, indicating that GFP-positive BM-derived cells were microglial in nature. The population of BMDM was significantly greater at 8 weeks post-irradiation than at 3 weeks post-irradiation in all brain regions examined. Our results clearly show that cranial irradiation alone is sufficient to induce the generation of BMDM in the adult mouse.
Collapse
Affiliation(s)
- Noriyuki Okonogi
- Department of Radiation Oncology, Gunma University Graduate School of Medicine, 3-39-22 Showa-machi, Maebashi, Gunma 371-8511, Japan
| | - Kazuhiro Nakamura
- Department of Neurophysiology, Gunma University Graduate School of Medicine, 3-39-22 Showa-machi, Maebashi, Gunma 371-8511, Japan
| | - Yoshiyuki Suzuki
- Department of Radiation Oncology, Gunma University Graduate School of Medicine, 3-39-22 Showa-machi, Maebashi, Gunma 371-8511, Japan
| | - Nana Suto
- Department of Neurophysiology, Gunma University Graduate School of Medicine, 3-39-22 Showa-machi, Maebashi, Gunma 371-8511, Japan
| | - Kazutomo Suzue
- Department of Parasitology, Gunma University Graduate School of Medicine, 3-39-22 Showa-machi, Maebashi, Gunma 371-8511, Japan
| | - Takuya Kaminuma
- Department of Radiation Oncology, Gunma University Graduate School of Medicine, 3-39-22 Showa-machi, Maebashi, Gunma 371-8511, Japan
| | - Takashi Nakano
- Department of Radiation Oncology, Gunma University Graduate School of Medicine, 3-39-22 Showa-machi, Maebashi, Gunma 371-8511, Japan
| | - Hirokazu Hirai
- Department of Neurophysiology, Gunma University Graduate School of Medicine, 3-39-22 Showa-machi, Maebashi, Gunma 371-8511, Japan
| |
Collapse
|
35
|
VIP-expressing dendritic cells protect against spontaneous autoimmune peripheral polyneuropathy. Mol Ther 2014; 22:1353-1363. [PMID: 24762627 DOI: 10.1038/mt.2014.77] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Accepted: 04/21/2014] [Indexed: 12/20/2022] Open
Abstract
The spontaneous autoimmune peripheral polyneuropathy (SAPP) model in B7-2 knockout nonobese diabetic mice mimics a progressive and unremitting course of chronic inflammatory demyelinating polyradiculoneuropathy (CIDP). In this study, bone marrow-derived dendritic cells (DCs) were transduced to express vasoactive intestinal polypeptide (VIP) using a lentiviral vector (LV-VIP). These transduced DCs (LV-VIP-DCs) were then injected intravenously (i.v.) into 16-week-old (before disease onset) and 21-week-old (after disease onset) SAPP mice in order to prevent or attenuate the disease. Outcome measures included behavioral tests, clinical and histological scoring, electrophysiology, real-time PCR, flow cytometry analyses, and enzyme-linked immunosorbent assay. LV-VIP-DCs were recruited to the inflamed sciatic nerve and reduced the expression of inflammatory cytokines. A single injection of LV-VIP-DC delayed the onset of disease, stabilized, and attenuated clinical signs correlating with ameliorated behavioral functions, reduced nerve demyelination, and improved nerve conduction. This proof-of-principle study is an important step potentially leading to a clinical translational study using DCs expressing VIP in cases of CIDP refractory to standard immunosuppressive therapy.
Collapse
|
36
|
Optimization of multimodal imaging of mesenchymal stem cells using the human sodium iodide symporter for PET and Cerenkov luminescence imaging. PLoS One 2014; 9:e94833. [PMID: 24747914 PMCID: PMC3991630 DOI: 10.1371/journal.pone.0094833] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Accepted: 03/19/2014] [Indexed: 01/14/2023] Open
Abstract
Purpose The use of stably integrated reporter gene imaging provides a manner to monitor the in vivo fate of engrafted cells over time in a non-invasive manner. Here, we optimized multimodal imaging (small-animal PET, Cerenkov luminescence imaging (CLI) and bioluminescence imaging (BLI)) of mesenchymal stem cells (MSCs), by means of the human sodium iodide symporter (hNIS) and firefly luciferase (Fluc) as reporters. Methods First, two multicistronic lentiviral vectors (LV) were generated for multimodal imaging: BLI, 124I PET/SPECT and CLI. Expression of the imaging reporter genes was validated in vitro using 99mTcO4− radioligand uptake experiments and BLI. Uptake kinetics, specificity and tracer elution were determined as well as the effect of the transduction process on the cell's differentiation capacity. MSCs expressing the LV were injected intravenously or subcutaneously and imaged using small-animal PET, CLI and BLI. Results The expression of both imaging reporter genes was functional and specific. An elution of 99mTcO4− from the cells was observed, with 31% retention after 3 h. After labeling cells with 124I in vitro, a significantly higher CLI signal was noted in hNIS expressing murine MSCs. Furthermore, it was possible to visualize cells injected intravenously using BLI or subcutaneously in mice, using 124I small-animal PET, CLI and BLI. Conclusions This study identifies hNIS as a suitable reporter gene for molecular imaging with PET and CLI, as confirmed with BLI through the expression of Fluc. It supports the potential for a wider application of hNIS reporter gene imaging and future clinical applications.
Collapse
|
37
|
Wang N, Rajasekaran N, Hou T, Lisowski L, Mellins ED. Comparison of transduction efficiency among various lentiviruses containing GFP reporter in bone marrow hematopoietic stem cell transplantation. Exp Hematol 2013; 41:934-43. [PMID: 23954710 PMCID: PMC3833897 DOI: 10.1016/j.exphem.2013.07.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2013] [Revised: 07/05/2013] [Accepted: 07/25/2013] [Indexed: 10/26/2022]
Abstract
HIV-derived lentiviral vectors have been used widely to transduce non-dividing cells, such as hematopoietic stem cells (HSCs), in the setting of gene therapy. In this study, we screened lentiviral vectors for their ability to drive expression of the murine MHC class II chaperone, invariant chain (Ii) and a GFP reporter. The vectors included T2A vector with T2A-separated Ii and GFP under the same MSCV promoter, dual-promoter vectors with separate promoters for Ii and GFP (called MSCV or EF1a according to the promoter driving Ii expression), and a vector with EF1a driving a fusion of Ii/GFP (called Fusion vector). T2A and MSCV induced the highest levels of Ii and GFP expression, respectively, after direct transfection of 293T cells. All vectors except the Fusion vector drove expression of functional Ii, based on the enhancement of MHC class II level, which is a known consequence of Ii expression. Comparing the vectors after they were packaged into lentiviruses and used to transduce 293T, we found that MSCV and EF1a vectors mediated higher Ii and GFP expression. In ckit(+) bone marrow (BM) cells, MSCV still induced the highest Ii and GFP expression, whereas EF1a induced only robust Ii expression. Regardless of the vector, both Ii and GFP levels were significantly reduced in BM cells compared to 293T cells. When in vivo expression was assessed in cells derived from MSCV-transduced BM-HSCs, up to 80% of myeloid cells were GFP(+), but no Ii expression was observed. In contrast, transplantation of EF1a-transduced BM-HSCs led to much higher in vivo Ii expression. Thus, among those compared, dual-promoter vector-based lentivirus with the EF1a promoter driving the gene of interest is optimal for murine BM-HSC transduction.
Collapse
Affiliation(s)
| | | | | | - Leszek Lisowski
- Departments of Pediatrics and Genetics, Program in Human Gene Therapy, Stanford University School of Medicine, Stanford, CA
| | - Elizabeth D. Mellins
- Corresponding author at: Prof. Elizabeth D. Mellins, M.D., CCSR 2105c, Stanford University School of Medicine, 300 Pasteur Drive, Stanford, CA 94305-5164, USA, Tel: 650-498-7350, Fax: 650-498-6540,
| |
Collapse
|
38
|
Zhang XB. Cellular reprogramming of human peripheral blood cells. GENOMICS PROTEOMICS & BIOINFORMATICS 2013; 11:264-74. [PMID: 24060839 PMCID: PMC4357833 DOI: 10.1016/j.gpb.2013.09.001] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Revised: 08/29/2013] [Accepted: 09/03/2013] [Indexed: 12/22/2022]
Abstract
Breakthroughs in cell fate conversion have made it possible to generate large quantities of patient-specific cells for regenerative medicine. Due to multiple advantages of peripheral blood cells over fibroblasts from skin biopsy, the use of blood mononuclear cells (MNCs) instead of skin fibroblasts will expedite reprogramming research and broaden the application of reprogramming technology. This review discusses current progress and challenges of generating induced pluripotent stem cells (iPSCs) from peripheral blood MNCs and of in vitro and in vivo conversion of blood cells into cells of therapeutic value, such as mesenchymal stem cells, neural cells and hepatocytes. An optimized design of lentiviral vectors is necessary to achieve high reprogramming efficiency of peripheral blood cells. More recently, non-integrating vectors such as Sendai virus and episomal vectors have been successfully employed in generating integration-free iPSCs and somatic stem cells.
Collapse
Affiliation(s)
- Xiao-Bing Zhang
- Department of Medicine, Loma Linda University, Loma Linda, CA 92354, USA.
| |
Collapse
|
39
|
Li H, Wang J, Xiao W, Xia D, Lang B, Yu G, Guo X, Guan W, Wang Z, Hu Z, Liu J, Ye Z, Xu H. Epigenetic alterations of Krüppel-like factor 4 and its tumor suppressor function in renal cell carcinoma. Carcinogenesis 2013; 34:2262-70. [PMID: 23722653 DOI: 10.1093/carcin/bgt189] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Krüppel-like factor 4 (KLF4) is a transcription factor that can have divergent functions in different malignancies. The expression and role of KLF4 in renal cell cancer remain unclear. The purpose of this study is to determine epigenetic alterations and possible roles of KLF4 in renal cell carcinoma. The KLF4 expression in primary renal cell cancer tissues and case-matched normal renal tissues was determined by protein and messenger RNA analyses. The epigenetic alterations were detected by methylation-specific PCR and Sequenom MassARRAY. Kaplan-Meier curves and the log-rank test were used for the survival analysis. The effects of KLF4 on cell growth and epithelial-to-mesenchymal transition (EMT) were determined in renal cancer cell lines after viral-based and RNA activation-mediated overexpression of KLF4. In vivo antitumor activity of KLF4 was evaluated by using stably KLF4-transfected renal cancer cells. KLF4 expression was dramatically decreased in various pathological types of renal cancer and associated with poor survival after nephrectomy. Hypermethylation of KLF4 promoter mainly contributed to its expression suppression. In vitro assays indicated that KLF4 overexpression inhibited renal cancer cell growth and survival. KLF4 overexpression also suppressed renal cancer cell migration and invasion by altering the EMT-related factors. In vivo assay showed that ectopic expression of KLF4 also inhibited tumorigenicity and metastasis of renal cancer. Our results suggest that KLF4 is a putative tumor suppressor gene epigenetically silenced in renal cell cancers by promoter CpG methylation and that it has prognostic value for renal cell progression.
Collapse
Affiliation(s)
- Heng Li
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Oue M, Handa H, Matsuzaki Y, Suzue K, Murakami H, Hirai H. The murine stem cell virus promoter drives correlated transgene expression in the leukocytes and cerebellar Purkinje cells of transgenic mice. PLoS One 2012; 7:e51015. [PMID: 23226450 PMCID: PMC3511439 DOI: 10.1371/journal.pone.0051015] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2012] [Accepted: 10/31/2012] [Indexed: 11/19/2022] Open
Abstract
The murine stem cell virus (MSCV) promoter exhibits activity in mouse hematopoietic cells and embryonic stem cells. We generated transgenic mice that expressed enhanced green fluorescent protein (GFP) under the control of the MSCV promoter. We obtained 12 transgenic founder mice through 2 independent experiments and found that the bodies of 9 of the founder neonates emitted different levels of GFP fluorescence. Flow cytometric analysis of circulating leukocytes revealed that the frequency of GFP-labeled leukocytes among white blood cells ranged from 1.6% to 47.5% across the 12 transgenic mice. The bodies of 9 founder transgenic mice showed various levels of GFP expression. GFP fluorescence was consistently observed in the cerebellum, with faint or almost no fluorescence in other brain regions. In the cerebellum, 10 founders exhibited GFP expression in Purkinje cells at frequencies of 3% to 76%. Of these, 4 mice showed Purkinje cell-specific expression, while 4 and 2 mice expressed GFP in the Bergmann glia and endothelial cells, respectively. The intensity of the GFP fluorescence in the body was relative to the proportion of GFP-positive leukocytes. Moreover, the frequency of the GFP-expressing leukocytes was significantly correlated with the frequency of GFP-expressing Purkinje cells. These results suggest that the MSCV promoter is useful for preferentially expressing a transgene in Purkinje cells. In addition, the proportion of transduced leukocytes in the peripheral circulation reflects the expression level of the transgene in Purkinje cells, which can be used as a way to monitor transgene expression properties in the cerebellum without invasive techniques.
Collapse
Affiliation(s)
- Miho Oue
- Department of Neurophysiology, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan
| | - Hiroshi Handa
- Department of Medicine and Clinical Science, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan
| | - Yasunori Matsuzaki
- Department of Neurophysiology, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan
| | - Kazutomo Suzue
- Department of Parasitology, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan
| | - Hirokazu Murakami
- Department of Laboratory Sciences, Gunma University Graduate School of Health Sciences, Maebashi, Gunma, Japan
| | - Hirokazu Hirai
- Department of Neurophysiology, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan
- * E-mail:
| |
Collapse
|
41
|
Transcriptional burst frequency and burst size are equally modulated across the human genome. Proc Natl Acad Sci U S A 2012; 109:17454-9. [PMID: 23064634 DOI: 10.1073/pnas.1213530109] [Citation(s) in RCA: 333] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Gene expression occurs either as an episodic process, characterized by pulsatile bursts, or as a constitutive process, characterized by a Poisson-like accumulation of gene products. It is not clear which mode of gene expression (constitutive versus bursty) predominates across a genome or how transcriptional dynamics are influenced by genomic position and promoter sequence. Here, we use time-lapse fluorescence microscopy to analyze 8,000 individual human genomic loci and find that at virtually all loci, episodic bursting--as opposed to constitutive expression--is the predominant mode of expression. Quantitative analysis of the expression dynamics at these 8,000 loci indicates that both the frequency and size of the transcriptional bursts varies equally across the human genome, independent of promoter sequence. Strikingly, weaker expression loci modulate burst frequency to increase activity, whereas stronger expression loci modulate burst size to increase activity. Transcriptional activators such as trichostatin A (TSA) and tumor necrosis factor α (TNF) only modulate burst size and frequency along a constrained trend line governed by the promoter. In summary, transcriptional bursting dominates across the human genome, both burst frequency and burst size vary by chromosomal location, and transcriptional activators alter burst frequency and burst size, depending on the expression level of the locus.
Collapse
|
42
|
Abstract
More than two decades have passed since genetically modified HIV was used for gene delivery. Through continuous improvements these early marker gene-carrying HIVs have evolved into safer and more effective lentiviral vectors. Lentiviral vectors offer several attractive properties as gene-delivery vehicles, including: (i) sustained gene delivery through stable vector integration into host genome; (ii) the capability of infecting both dividing and non-dividing cells; (iii) broad tissue tropisms, including important gene- and cell-therapy-target cell types; (iv) no expression of viral proteins after vector transduction; (v) the ability to deliver complex genetic elements, such as polycistronic or intron-containing sequences; (vi) potentially safer integration site profile; and (vii) a relatively easy system for vector manipulation and production. Accordingly, lentivector technologies now have widespread use in basic biology and translational studies for stable transgene overexpression, persistent gene silencing, immunization, in vivo imaging, generating transgenic animals, induction of pluripotent cells, stem cell modification and lineage tracking, or site-directed gene editing. Moreover, in the present high-throughput '-omics' era, the commercial availability of premade lentiviral vectors, which are engineered to express or silence genome-wide genes, accelerates the rapid expansion of this vector technology. In the present review, we assess the advances in lentiviral vector technology, including basic lentivirology, vector designs for improved efficiency and biosafety, protocols for vector production and infection, targeted gene delivery, advanced lentiviral applications and issues associated with the vector system.
Collapse
|
43
|
Yang S, Karne NK, Goff SL, Black MA, Xu H, Bischof D, Cornetta K, Rosenberg SA, Morgan RA, Feldman SA. A simple and effective method to generate lentiviral vectors for ex vivo gene delivery to mature human peripheral blood lymphocytes. Hum Gene Ther Methods 2012; 23:73-83. [PMID: 22515320 PMCID: PMC3847989 DOI: 10.1089/hgtb.2011.199] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2011] [Accepted: 03/01/2012] [Indexed: 01/08/2023] Open
Abstract
Human ex vivo gene therapy protocols have been used successfully to treat a variety of genetic disorders, infectious diseases, and cancer. Murine oncoretroviruses (specifically, gammaretroviruses) have served as the primary gene delivery vehicles for these trials. However, in some cases, such vectors have been associated with insertional mutagenesis. As a result, alternative vector platforms such as lentiviral vectors (LVVs) are being developed. LVVs may provide advantages compared with gammaretroviral vectors, including the ability to transduce large numbers of nondividing cells, resistance to gene silencing, and a potentially safer integration profile. The aim of this study was to develop a simplified process for the rapid production of clinical-grade LVVs. To that end, we used a self-inactivating bicistronic LVV encoding an MART (melanoma antigen recognized by T cells)-1-reactive T cell receptor containing oPRE, an optimized and truncated version of woodchuck hepatitis virus posttranslational regulatory element (wPRE). Using our simplified clinical production process, 293T cells were transiently transfected in roller bottles. The LVV supernatant was collected, treated with Benzonase, and clarified by modified step filtration. LVV produced in this manner exhibited titers and a biosafety profile similar to those of cGMP (current Good Manufacturing Practices) LVVs previously manufactured at the Indiana University Vector Production Facility in support of a phase I/II clinical trial. We describe a simple, efficient, and low-cost method for the production of clinical-grade LVV for ex vivo gene therapy protocols.
Collapse
Affiliation(s)
- Shicheng Yang
- Surgery Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Neel K. Karne
- Surgery Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
- Department of Surgery/General Surgery, SUNY Upstate Medical University, Syracuse, NY 13210
| | - Stephanie L. Goff
- Surgery Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
- Department of Surgery, College of Physicicans and Surgeons, Columbia University, New York, NY 10032
| | - Mary A. Black
- Surgery Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Hui Xu
- Surgery Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Daniela Bischof
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202
| | - Kenneth Cornetta
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN 46202
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202
| | - Steven A. Rosenberg
- Surgery Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Richard A. Morgan
- Surgery Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Steven A. Feldman
- Surgery Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| |
Collapse
|
44
|
Cotugno G, Annunziata P, Barone MV, Karali M, Banfi S, Auricchio A. Impact of age at administration, lysosomal storage, and transgene regulatory elements on AAV2/8-mediated rat liver transduction. PLoS One 2012; 7:e33286. [PMID: 22428010 PMCID: PMC3302848 DOI: 10.1371/journal.pone.0033286] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2011] [Accepted: 02/08/2012] [Indexed: 12/24/2022] Open
Abstract
Liver-directed gene transfer is being investigated for the treatment of systemic or liver-specific diseases. Recombinant vectors based on adeno-associated virus serotype 8 (AAV2/8) efficiently transduce liver cells allowing long term transgene expression after a single administration in animal models and in patients.We evaluated the impact on AAV2/8-mediated rat liver transduction of the following variables: i) age at vector administration, ii) presence of lysosomal storage in liver cells, and iii) regulatory elements included in the transgene expression cassette. We found that systemic administration of AAV2/8 to newborn rats results in vector genome dilution and reduced transduction efficacy when compared to adult injected animals, presumably due to hepatocyte proliferation. Accumulation of glycosaminoglycans in lysosomes does not impact on levels and distribution of AAV2/8-mediated liver transduction. Transgene expression occurs in hepatocytes but not in Kupffer or liver endothelial cells when the liver-specific thyroxine-binding-globulin promoter is used. However, extra-hepatic transduction is observed in the spleen and kidney of animals injected at birth. The use of target sequences for the hematopoietic-specific microRNA miR142-3p does not improve liver transduction efficacy neither reduce immune responses to the lysosomal enzyme arylsulfatase B. The inclusion of a variant of the Woodchuck hepatitis virus post-transcriptional regulatory element (WPRE-m) decreases AAV2/8-mediated liver transduction levels.As AAV2/8-mediated liver gene transfer is entering in the clinical arena, these data will provide relevant information to the design of efficient AAV2/8-based therapeutic strategies.
Collapse
Affiliation(s)
- Gabriella Cotugno
- Telethon Institute of Genetics and Medicine, Naples, Italy
- Medical Genetics, Dept. of Pediatrics, “Federico II” University, Naples, Italy
| | - Patrizia Annunziata
- Telethon Institute of Genetics and Medicine, Naples, Italy
- Medical Genetics, Dept. of Pediatrics, “Federico II” University, Naples, Italy
| | - Maria Vittoria Barone
- Department of Pediatrics and European Laboratory for the Investigation of Food-Induced Diseases, “Federico II” University, Naples, Italy
| | | | - Sandro Banfi
- Telethon Institute of Genetics and Medicine, Naples, Italy
- Medical Genetics, Dept. of General Pathology, Second University of Naples, Naples, Italy
| | - Alberto Auricchio
- Telethon Institute of Genetics and Medicine, Naples, Italy
- Medical Genetics, Dept. of Pediatrics, “Federico II” University, Naples, Italy
| |
Collapse
|
45
|
Kacherovsky N, Harkey MA, Blau CA, Giachelli CM, Pun SH. Combination of Sleeping Beauty transposition and chemically induced dimerization selection for robust production of engineered cells. Nucleic Acids Res 2012; 40:e85. [PMID: 22402491 PMCID: PMC3367214 DOI: 10.1093/nar/gks213] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The main methods for producing genetically engineered cells use viral vectors for which safety issues and manufacturing costs remain a concern. In addition, selection of desired cells typically relies on the use of cytotoxic drugs with long culture times. Here, we introduce an efficient non-viral approach combining the Sleeping Beauty (SB) Transposon System with selective proliferation of engineered cells by chemically induced dimerization (CID) of growth factor receptors. Minicircles carrying a SB transposon cassette containing a reporter transgene and a gene for the F36VFGFR1 fusion protein were delivered to the hematopoietic cell line Ba/F3. Stably-transduced Ba/F3 cell populations with >98% purity were obtained within 1 week using this positive selection strategy. Copy number analysis by quantitative PCR (qPCR) revealed that CID-selected cells contain on average higher copy numbers of transgenes than flow cytometry-selected cells, demonstrating selective advantage for cells with multiple transposon insertions. A diverse population of cells is present both before and after culture in CID media, although site-specific qPCR of transposon junctions show that population diversity is significantly reduced after selection due to preferential expansion of clones with multiple integration events. This non-viral, positive selection approach is an attractive alternative for producing engineered cells.
Collapse
Affiliation(s)
- Nataly Kacherovsky
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA
| | | | | | | | | |
Collapse
|
46
|
Efficient reprogramming of human cord blood CD34+ cells into induced pluripotent stem cells with OCT4 and SOX2 alone. Mol Ther 2011; 20:408-16. [PMID: 22108860 PMCID: PMC3277237 DOI: 10.1038/mt.2011.258] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The reprogramming of cord blood (CB) cells into induced pluripotent stem cells (iPSCs) has potential applications in regenerative medicine by converting CB banks into iPSC banks for allogeneic cell replacement therapy. Therefore, further investigation into novel approaches for efficient reprogramming is necessary. Here, we show that the lentiviral expression of OCT4 together with SOX2 (OS) driven by a strong spleen focus-forming virus (SFFV) promoter in a single vector can convert 2% of CB CD34(+) cells into iPSCs without additional reprogramming factors. Reprogramming efficiency was found to be critically dependent upon expression levels of OS. To generate transgene-free iPSCs, we developed an improved episomal vector with a woodchuck post-transcriptional regulatory element (Wpre) that increases transgene expression by 50%. With this vector, we successfully generated transgene-free iPSCs using OS alone. In conclusion, high-level expression of OS alone is sufficient for efficient reprogramming of CB CD34(+) cells into iPSCs. This report is the first to describe the generation of transgene-free iPSCs with the use of OCT4 and SOX2 alone. These findings have important implications for the clinical applications of iPSCs.
Collapse
|
47
|
Chung J, Rossi JJ, Jung U. Current progress and challenges in HIV gene therapy. Future Virol 2011; 6:1319-1328. [PMID: 22754586 DOI: 10.2217/fvl.11.113] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
HIV-1 causes AIDS, a syndrome that affects millions of people globally. Existing HAART is efficient in slowing down disease progression but cannot eradicate the virus. Furthermore the severity of the side effects and the emergence of drug-resistant mutants call for better therapy. Gene therapy serves as an attractive alternative as it reconstitutes the immune system with HIV-resistant cells and could thereby provide a potential cure. The feasibility of this approach was first demonstrated with the 'Berlin patient', who was functionally cured from HIV/AIDS with undetectable HIV-1 viral load after transplantation of bone marrow harboring a naturally occurring CCR5 mutation that blocks viral entry. Here, we give an overview of the current status of HIV gene therapy and remaining challenges and obstacles.
Collapse
Affiliation(s)
- Janet Chung
- Division of Molecular & Cell Biology, Beckman Research Institute of the City of Hope, 1500 East Duarte Road, CA 91010, USA
| | | | | |
Collapse
|
48
|
Normal collagen and bone production by gene-targeted human osteogenesis imperfecta iPSCs. Mol Ther 2011; 20:204-13. [PMID: 22031238 DOI: 10.1038/mt.2011.209] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Osteogenesis imperfecta (OI) is caused by dominant mutations in the type I collagen genes. In principle, the skeletal abnormalities of OI could be treated by transplantation of patient-specific, bone-forming cells that no longer express the mutant gene. Here, we develop this approach by isolating mesenchymal cells from OI patients, inactivating their mutant collagen genes by adeno-associated virus (AAV)-mediated gene targeting, and deriving induced pluripotent stem cells (iPSCs) that were expanded and differentiated into mesenchymal stem cells (iMSCs). Gene-targeted iMSCs produced normal collagen and formed bone in vivo, but were less senescent and proliferated more than bone-derived MSCs. To generate iPSCs that would be more appropriate for clinical use, the reprogramming and selectable marker transgenes were removed by Cre recombinase. These results demonstrate that the combination of gene targeting and iPSC derivation can be used to produce potentially therapeutic cells from patients with genetic disease.
Collapse
|
49
|
Li PY, Yu L, Wu XA, Bai WT, Li K, Wang HT, Hu G, Zhang L, Zhang FL, Xu ZK. Modification of the adenoviral transfer vector enhances expression of the Hantavirus fusion protein GnS0.7 and induces a strong immune response in C57BL/6 mice. J Virol Methods 2011; 179:90-6. [PMID: 22015676 DOI: 10.1016/j.jviromet.2011.10.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2011] [Revised: 09/28/2011] [Accepted: 10/04/2011] [Indexed: 11/20/2022]
Abstract
Hantavirus glycoproteins (Gn and Gc) are significant components of vaccines for haemorrhagic fever with renal syndrome (HFRS); however, they are not effective due to weak immunogenicity and low levels of production in expression systems. To circumvent this problem, a 0.7-kb fragment of the S segment was fused to Gn, and a hybrid CAG promoter/enhancer in conjunction with (or without) the WPRE (Woodchuck hepatitis virus post-transcriptional regulatory element) was used to improve the expression of fusion protein GnS0.7 in the adenoviral expression system. The expression level of the fusion protein as well as the response of mice immunized with recombinant adenoviruses containing GnS0.7 was investigated. In addition, a series of immunological assays were conducted to determine the immunogenicity of the recombinant adenoviruses. The results showed that the recombinant adenovirus with the CAG promoter/enhancer (rAd-GnS0.7-pCAG) expressed approximately 2.1-fold more GnS0.7 than the unmodified recombinant adenovirus containing GnS0.7 (rAd-GnS0.7-pShuttle). This enhanced expression level was also higher than for other modified recombinant adenoviruses studied. Animal experiments showed that rAd-GnS0.7-pCAG induced a stronger Hantaan virus (HTNV)-specific humoral and cellular immune response in mice, with the cellular immune response to the GnS0.7 being stronger than the HFRS vaccine control. These results demonstrate that the CAG promoter/enhancer improved significantly the expression of the chimeric gene GnS0.7 in the adenovirus expression system. These findings may have significant implications for the development of genetically engineered vaccines for HFRS.
Collapse
Affiliation(s)
- Pu-Yuan Li
- Department of Microbiology, Fourth Military Medical University, Xi'an 710032, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Mejía-Toiber J, Castillo CG, Giordano M. Strategies for the Development of Cell Lines for Ex Vivo Gene Therapy in the Central Nervous System. Cell Transplant 2011; 20:983-1001. [DOI: 10.3727/096368910x546599] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Disorders of the central nervous system (CNS) as a result of trauma or ischemic or neurodegenerative processes still pose a challenge for modern medicine. Due to the complexity of the CNS, and in spite of the advances in the knowledge of its anatomy, pharmacology, and molecular and cellular biology, treatments for these diseases are still limited. The development of cell lines as a source for transplantation into the damaged CNS (cell therapy), and more recently their genetic modification to favor the expression and delivery of molecules with therapeutic potential (ex vivo gene therapy), are some of the techniques used in search of novel restorative strategies. This article reviews the different approaches that have been used and perfected during the last decade to generate cell lines and their use in experimental models of neuronal damage, and evaluates the prospects of applying these methods to treat CNS disorders.
Collapse
Affiliation(s)
- Jana Mejía-Toiber
- Laboratorio de Plasticidad Neuronal, Departamento de Neurobiología Conductual y Cognitiva, Instituto de Neurobiología, Universidad Nacional Autónoma de Mexico, Querétaro, Mexico
| | - Claudia G. Castillo
- Departamento de Bioquímica, Facultad de Medicina, Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico
| | - Magda Giordano
- Laboratorio de Plasticidad Neuronal, Departamento de Neurobiología Conductual y Cognitiva, Instituto de Neurobiología, Universidad Nacional Autónoma de Mexico, Querétaro, Mexico
| |
Collapse
|